

Oracle® Fusion Middleware
Programming Security for Oracle WebLogic Server

11g Release 1 (10.3.1)

E13711-01

May 2009

This document explains how to use the Oracle WebLogic
Server security programming features.

Oracle Fusion Middleware Programming Security for Oracle WebLogic Server, 11g Release 1 (10.3.1)

E13711-01

Copyright © 2007, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... ix

Documentation Accessibility ... ix
Conventions ... ix

1 Introduction and Roadmap

1.1 Document Scope.. 1-1
1.2 Audience for This Guide.. 1-1
1.3 Guide to this Document ... 1-2
1.4 Related Information.. 1-3
1.5 Security Samples and Tutorials .. 1-4
1.5.1 Security Examples in the WebLogic Server Distribution... 1-4
1.6 New and Changed Security Features in This Release ... 1-4

2 WebLogic Security Programming Overview

2.1 What Is Security?... 2-1
2.2 Administration Console and Security.. 2-2
2.3 Types of Security Supported by WebLogic Server .. 2-2
2.3.1 Authentication.. 2-2
2.3.2 Authorization ... 2-2
2.3.3 Java EE Security ... 2-3
2.4 Security APIs ... 2-3
2.4.1 JAAS Client Application APIs ... 2-3
2.4.1.1 Java JAAS Client Application APIs.. 2-3
2.4.1.2 WebLogic JAAS Client Application APIs ... 2-4
2.4.2 SSL Client Application APIs .. 2-4
2.4.2.1 Java SSL Client Application APIs... 2-4
2.4.2.2 WebLogic SSL Client Application APIs .. 2-4
2.4.3 Other APIs .. 2-5

3 Securing Web Applications

3.1 Authentication With Web Browsers .. 3-1
3.1.1 User Name and Password Authentication .. 3-2
3.1.2 Digital Certificate Authentication ... 3-3
3.2 Multiple Web Applications, Cookies, and Authentication... 3-4
3.2.1 Using Secure Cookies to Prevent Session Stealing ... 3-5

iv

3.3 Developing Secure Web Applications ... 3-6
3.3.1 Developing BASIC Authentication Web Applications .. 3-6
3.3.1.1 Using HttpSessionListener to Account for Browser Caching of Credentials 3-9
3.3.2 Understanding BASIC Authentication with Unsecured Resources.......................... 3-10
3.3.2.1 Setting the enforce-valid-basic-auth-credentials Flag .. 3-11
3.3.2.2 Using WLST to Check the Value of enforce-valid-basic-auth-credentials 3-11
3.3.3 Developing FORM Authentication Web Applications ... 3-12
3.3.4 Using Identity Assertion for Web Application Authentication................................. 3-16
3.3.5 Using Two-Way SSL for Web Application Authentication.. 3-17
3.3.6 Providing a Fallback Mechanism for Authentication Methods................................. 3-17
3.3.6.1 Configuration ... 3-18
3.3.7 Developing Swing-Based Authentication Web Applications 3-18
3.3.8 Deploying Web Applications.. 3-18
3.4 Using Declarative Security With Web Applications... 3-19
3.5 Web Application Security-Related Deployment Descriptors.. 3-20
3.5.1 web.xml Deployment Descriptors.. 3-20
3.5.1.1 auth-constraint ... 3-20
3.5.1.1.1 Used Within .. 3-21
3.5.1.1.2 Example ... 3-21
3.5.1.2 security-constraint ... 3-21
3.5.1.2.1 Example ... 3-21
3.5.1.3 security-role.. 3-22
3.5.1.3.1 Example ... 3-22
3.5.1.4 security-role-ref.. 3-22
3.5.1.4.1 Example ... 3-23
3.5.1.5 user-data-constraint .. 3-23
3.5.1.5.1 Used Within .. 3-23
3.5.1.5.2 Example ... 3-23
3.5.1.6 web-resource-collection.. 3-23
3.5.1.6.1 Used Within .. 3-24
3.5.1.6.2 Example ... 3-24
3.5.2 weblogic.xml Deployment Descriptors ... 3-24
3.5.2.1 externally-defined.. 3-24
3.5.2.1.1 Used Within .. 3-25
3.5.2.1.2 Example ... 3-25
3.5.2.2 run-as-principal-name .. 3-26
3.5.2.2.1 Used Within .. 3-26
3.5.2.2.2 Example ... 3-26
3.5.2.3 run-as-role-assignment ... 3-26
3.5.2.3.1 Example: .. 3-27
3.5.2.4 security-permission ... 3-27
3.5.2.4.1 Example ... 3-27
3.5.2.5 security-permission-spec.. 3-27
3.5.2.5.1 Used Within .. 3-27
3.5.2.5.2 Example ... 3-27
3.5.2.6 security-role-assignment .. 3-28
3.5.2.6.1 Example ... 3-28

v

3.6 Using Programmatic Security With Web Applications.. 3-28
3.6.1 getUserPrincipal.. 3-29
3.6.2 isUserInRole .. 3-29
3.7 Using the Programmatic Authentication API.. 3-30

4 Using JAAS Authentication in Java Clients

4.1 JAAS and WebLogic Server... 4-1
4.2 JAAS Authentication Development Environment... 4-2
4.2.1 JAAS Authentication APIs ... 4-3
4.2.2 JAAS Client Application Components ... 4-6
4.2.3 WebLogic LoginModule Implementation.. 4-7
4.2.4 JVM-Wide Default User and the runAs() Method.. 4-8
4.3 Writing a Client Application Using JAAS Authentication ... 4-8
4.4 Using JNDI Authentication .. 4-12
4.5 Java Client JAAS Authentication Code Examples .. 4-13

5 Using SSL Authentication in Java Clients

5.1 JSSE and WebLogic Server .. 5-1
5.2 Using JNDI Authentication ... 5-2
5.3 SSL Certificate Authentication Development Environment... 5-3
5.3.1 SSL Authentication APIs .. 5-3
5.3.2 SSL Client Application Components .. 5-7
5.4 Writing Applications that Use SSL... 5-8
5.4.1 Communicating Securely From WebLogic Server to Other WebLogic Servers......... 5-8
5.4.2 Writing SSL Clients ... 5-9
5.4.2.1 SSLClient Sample.. 5-9
5.4.2.2 SSLSocketClient Sample ... 5-10
5.4.3 Using Two-Way SSL Authentication... 5-11
5.4.3.1 Two-Way SSL Authentication with JNDI .. 5-11
5.4.3.2 Writing a User Name Mapper ... 5-14
5.4.3.3 Using Two-Way SSL Authentication Between WebLogic Server Instances..... 5-14
5.4.3.4 Using Two-Way SSL Authentication with Servlets... 5-16
5.4.4 Using a Custom Hostname Verifier ... 5-16
5.4.5 Using a Trust Manager .. 5-18
5.4.6 Using the CertPath Trust Manager .. 5-19
5.4.7 Using a Handshake Completed Listener .. 5-19
5.4.8 Using an SSLContext.. 5-20
5.4.9 Using URLs to Make Outbound SSL Connections .. 5-21
5.5 SSL Client Code Examples.. 5-23

6 Securing Enterprise JavaBeans (EJBs)

6.1 Java EE Architecture Security Model... 6-1
6.1.1 Declarative Authorization .. 6-2
6.1.2 Programmatic Authorization... 6-2
6.1.3 Declarative Versus Programmatic Authorization... 6-3
6.2 Using Declarative Security With EJBs.. 6-3

vi

6.3 EJB Security-Related Deployment Descriptors... 6-5
6.3.1 ejb-jar.xml Deployment Descriptors ... 6-5
6.3.1.1 method ... 6-5
6.3.1.1.1 Used Within ... 6-6
6.3.1.1.2 Example .. 6-6
6.3.1.2 method-permission .. 6-6
6.3.1.2.1 Used Within ... 6-7
6.3.1.2.2 Example .. 6-7
6.3.1.3 role-name ... 6-7
6.3.1.3.1 Used Within ... 6-7
6.3.1.3.2 Example .. 6-7
6.3.1.4 run-as.. 6-7
6.3.1.4.1 Used Within ... 6-7
6.3.1.4.2 Example .. 6-7
6.3.1.5 security-identity.. 6-7
6.3.1.5.1 Used Within ... 6-7
6.3.1.5.2 Example .. 6-8
6.3.1.6 security-role... 6-8
6.3.1.6.1 Used Within ... 6-8
6.3.1.6.2 Example .. 6-8
6.3.1.7 security-role-ref... 6-8
6.3.1.7.1 Used Within ... 6-8
6.3.1.7.2 Example .. 6-8
6.3.1.8 unchecked.. 6-9
6.3.1.8.1 Used Within ... 6-9
6.3.1.8.2 Example .. 6-9
6.3.1.9 use-caller-identity ... 6-9
6.3.1.9.1 Used Within ... 6-9
6.3.1.9.2 Example .. 6-9
6.3.2 weblogic-ejb-jar.xml Deployment Descriptors... 6-10
6.3.2.1 client-authentication.. 6-10
6.3.2.1.1 Example ... 6-10
6.3.2.2 client-cert-authentication.. 6-10
6.3.2.2.1 Example ... 6-11
6.3.2.3 confidentiality .. 6-11
6.3.2.3.1 Example ... 6-11
6.3.2.4 externally-defined.. 6-11
6.3.2.5 identity-assertion ... 6-13
6.3.2.5.1 Used Within .. 6-14
6.3.2.5.2 Example ... 6-14
6.3.2.6 iiop-security-descriptor .. 6-14
6.3.2.6.1 Example ... 6-14
6.3.2.7 integrity... 6-14
6.3.2.7.1 Used Within .. 6-14
6.3.2.7.2 Example ... 6-14
6.3.2.8 principal-name... 6-15
6.3.2.8.1 Used Within .. 6-15

vii

6.3.2.8.2 Example ... 6-15
6.3.2.9 role-name .. 6-15
6.3.2.9.1 Used Within .. 6-15
6.3.2.9.2 Example ... 6-15
6.3.2.10 run-as-identity-principal .. 6-15
6.3.2.10.1 Used Within .. 6-15
6.3.2.10.2 Example ... 6-15
6.3.2.11 run-as-principal-name .. 6-16
6.3.2.11.1 Used Within .. 6-16
6.3.2.11.2 Example ... 6-16
6.3.2.12 run-as-role-assignment ... 6-17
6.3.2.12.1 Example ... 6-17
6.3.2.13 security-permission ... 6-18
6.3.2.13.1 Example ... 6-19
6.3.2.14 security-permission-spec.. 6-19
6.3.2.14.1 Used Within .. 6-19
6.3.2.14.2 Example ... 6-19
6.3.2.15 security-role-assignment .. 6-19
6.3.2.15.1 Example ... 6-20
6.3.2.16 transport-requirements... 6-20
6.3.2.16.1 Used Within .. 6-20
6.3.2.16.2 Example ... 6-20
6.4 Using Programmatic Security With EJBs ... 6-20
6.4.1 getCallerPrincipal ... 6-20
6.4.2 isCallerInRole .. 6-21

7 Using Network Connection Filters

7.1 The Benefits of Using Network Connection Filters .. 7-1
7.2 Network Connection Filter API .. 7-1
7.2.1 Connection Filter Interfaces ... 7-2
7.2.1.1 ConnectionFilter Interface... 7-2
7.2.1.2 ConnectionFilterRulesListener Interface... 7-2
7.2.2 Connection Filter Classes.. 7-2
7.2.2.1 ConnectionFilterImpl Class... 7-3
7.2.2.2 ConnectionEvent Class .. 7-3
7.3 Guidelines for Writing Connection Filter Rules... 7-3
7.3.1 Connection Filter Rules Syntax.. 7-3
7.3.2 Types of Connection Filter Rules .. 7-4
7.3.3 How Connection Filter Rules are Evaluated ... 7-5
7.4 Configuring the WebLogic Connection Filter... 7-5
7.5 Developing Custom Connection Filters .. 7-5

8 Using Java Security to Protect WebLogic Resources

8.1 Using Java EE Security to Protect WebLogic Resources ... 8-1
8.2 Using the Java Security Manager to Protect WebLogic Resources...................................... 8-2
8.2.1 Setting Up the Java Security Manager .. 8-2

viii

8.2.1.1 Modifying the weblogic.policy file for General Use ... 8-3
8.2.1.2 Setting Application-Type Security Policies .. 8-4
8.2.1.3 Setting Application-Specific Security Policies.. 8-4
8.2.2 Using Printing Security Manager.. 8-5
8.2.2.1 Printing Security Manager Startup Arguments ... 8-5
8.2.2.2 Starting WebLogic Server With Printing Security Manager 8-6
8.2.2.3 Writing Output Files .. 8-6
8.2.3 Using the Java Authorization Contract for Containers.. 8-7
8.2.3.1 Comparing the WebLogic JACC Provider with the WebLogic Authentication

Provider 8-8
8.2.3.2 Enabling the WebLogic JACC Provider .. 8-8

9 SAML APIs

9.1 SAML API Description... 9-2
9.2 Custom POST Form Parameter Names ... 9-4

10 Using CertPath Building and Validation

10.1 CertPath Building .. 10-1
10.1.1 Instantiate a CertPathSelector ... 10-1
10.1.2 Instantiate a CertPathBuilderParameters.. 10-2
10.1.3 Use the JDK CertPathBuilder Interface ... 10-3
10.1.4 Example Code Flow for Looking Up a Certificate Chain ... 10-4
10.2 CertPath Validation ... 10-4
10.2.1 Instantiate a CertPathValidatorParameters .. 10-4
10.2.2 Use the JDK CertPathValidator Interface.. 10-5
10.2.3 Example Code Flow for Validating a Certificate Chain.. 10-6

A Deprecated Security APIs

ix

Preface

This preface describes the document accessibility features and conventions used in this
guide—Programming Security for Oracle WebLogic Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Conventions
The following text conventions are used in this document:

x

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

The following sections describe the contents and organization of this
guide—Programming WebLogic Security:

■ Section 1.1, "Document Scope"

■ Section 1.2, "Audience for This Guide"

■ Section 1.3, "Guide to this Document"

■ Section 1.4, "Related Information"

■ Section 1.5, "Security Samples and Tutorials"

■ Section 1.6, "New and Changed Security Features in This Release"

1.1 Document Scope
This document explains how to use the WebLogic Server security programming
features.

See Section 1.4, "Related Information" for a description of other WebLogic Server
security documentation.

1.2 Audience for This Guide
This document is intended for the following audiences:

■ Application Developers

Java programmers who focus on developing client applications, adding security to
Web applications and Enterprise JavaBeans (EJBs). They work with other
engineering, Quality Assurance (QA), and database teams to implement security
features. Application developers have in-depth/working knowledge of Java
(including Java Platform, Enterprise Edition (Java EE) Version 5 components such
as servlets/JSPs and JSEE) and Java security.

Application developers use the WebLogic security and Java 2 security application
programming interfaces (APIs) to secure their applications. Therefore, this
document provides instructions for using those APIs for securing Web
applications, Java applications, and Enterprise JavaBeans (EJBs).

■ Security Developers

Developers who focus on defining the system architecture and infrastructure for
security products that integrate into WebLogic Server and on developing custom
security providers for use with WebLogic Server. They work with application
architects to ensure that the security architecture is implemented according to

Guide to this Document

1-2 Programming Security for Oracle WebLogic Server

design and that no security holes are introduced. They also work with WebLogic
Server administrators to ensure that security is properly configured. Security
developers have a solid understanding of security concepts, including
authentication, authorization, auditing (AAA), in-depth knowledge of Java
(including Java Management eXtensions (JMX), and working knowledge of
WebLogic Server and security provider functionality.

Security developers use the Security Service Provider Interfaces (SSPIs) to develop
custom security providers for use with WebLogic Server. This document does not
address this task; for information on how to use the SSPIs to develop custom
security providers, see Oracle Fusion Middleware Developing Security Providers for
Oracle WebLogic Server

■ Server Administrators

Administrators who work closely with application architects to design a security
scheme for the server and the applications running on the server, to identify
potential security risks, and to propose configurations that prevent security
problems. Related responsibilities may include maintaining critical production
systems, configuring and managing security realms, implementing authentication
and authorization schemes for server and application resources, upgrading
security features, and maintaining security provider databases. WebLogic Server
administrators have in-depth knowledge of the Java security architecture,
including Web application and EJB security, Public Key security, and SSL.

■ Application Administrators

Administrators who work with WebLogic Server administrators to implement and
maintain security configurations and authentication and authorization schemes,
and to set up and maintain access to deployed application resources in defined
security realms. Application administrators have general knowledge of security
concepts and the Java Security architecture. They understand Java, XML,
deployment descriptors, and can identify security events in server and audit logs.

While administrators typically use the Administration Console to deploy,
configure, and manage applications when they put the applications into
production, application developers may also use the Administration Console to
test their applications before they are put into production. At a minimum, testing
requires that applications be deployed and configured. This document does not
cover some aspects of administration as it relates to security, rather, it references
Oracle Fusion Middleware Securing Oracle WebLogic Server, Oracle Fusion Middleware
Securing Resources Using Roles and Policies for Oracle WebLogic Server, and Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help for
descriptions of how to use the Administration Console to perform security tasks.

1.3 Guide to this Document
This document is organized as follows:

■ Chapter 2, "WebLogic Security Programming Overview" discusses the need for
security, and the WebLogic Security application programming Interfaces (APIs).

■ Chapter 3, "Securing Web Applications" describes how to implement security in
Web applications.

■ Chapter 4, "Using JAAS Authentication in Java Clients" describes how to
implement JAAS authentication in Java clients.

■ Chapter 5, "Using SSL Authentication in Java Clients" describes how to implement
SSL and digital certificate authentication in Java clients.

Related Information

Introduction and Roadmap 1-3

■ Chapter 6, "Securing Enterprise JavaBeans (EJBs)" describes how to implement
security in Enterprise JavaBeans.

■ Chapter 7, "Using Network Connection Filters"describes how to implement
network connection filters.

■ Chapter 8, "Using Java Security to Protect WebLogic Resources"discusses using
Java security to protect WebLogic resources.

■ Chapter 9, "SAML APIs" describes the WebLogic SAML APIs.

■ Chapter 10, "Using CertPath Building and Validation" describes how to build and
validate certification paths.

■ Appendix A, "Deprecated Security APIs" provides a list of weblogic.security
packages in which APIs have been deprecated.

1.4 Related Information
In addition to this document, Programming WebLogic Security, the following documents
provide information on the WebLogic Security Service:

■ Oracle Fusion Middleware Understanding Security for Oracle WebLogic
Server—This document summarizes the features of the WebLogic Security Service
and presents an overview of the architecture and capabilities of the WebLogic
Security Service. It is the starting point for understanding the WebLogic Security
Service.

■ Oracle Fusion Middleware Securing a Production Environment for Oracle WebLogic
Server— This document highlights essential security measures for you to consider
before you deploy WebLogic Server into a production environment.

■ Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic
Server—This document provides security vendors and application developers with
the information needed to develop custom security providers that can be used
with WebLogic Server.

■ Oracle Fusion Middleware Securing Oracle WebLogic Server—This document explains
how to configure security for WebLogic Server and how to use Compatibility
security.

■ Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle
WebLogic Server—This document introduces the various types of WebLogic
resources, and provides information that allows you to secure these resources
using WebLogic Server.

■ Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help—This
document describes how to use the Administration Console to perform security
tasks.

■ Javadocs for WebLogic Classes—This document includes reference documentation
for the WebLogic security packages that are provided with and supported by the
WebLogic Server software.

Note: This document does not supply detailed information for
developers who want to write custom security providers for use with
WebLogic Server. For information on developing custom security
providers, see Oracle Fusion Middleware Developing Security Providers for
Oracle WebLogic Server.

Security Samples and Tutorials

1-4 Programming Security for Oracle WebLogic Server

1.5 Security Samples and Tutorials
In addition to the documents listed in Section 1.4, "Related Information", Oracle
provides a variety of code samples for developers.

1.5.1 Security Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in WL_
HOME\samples\server\examples\src\examples\security, where WL_HOME
is the top-level directory of your WebLogic Server installation. You can start the
examples server, and obtain information about the samples and how to run them from
the WebLogic Server Start menu.

The following examples illustrate WebLogic security features:

■ Java Authentication and Authorization Service

■ Outbound and Two-way SSL

The security tasks and code examples provided in this document assume that you are
using the WebLogic security providers that are included in the WebLogic Server
distribution, not custom security providers. The usage of the WebLogic security APIs
does not change if you elect to use custom security providers, however, the
management procedures of your custom security providers may be different.

1.6 New and Changed Security Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see Oracle Fusion Middleware What's New in Oracle WebLogic Server.

Note: This document does not provide comprehensive instructions
on how to configure WebLogic Security providers or custom security
providers. For information on configuring WebLogic security
providers and custom security providers, see Oracle Fusion Middleware
Securing Oracle WebLogic Server.

2

WebLogic Security Programming Overview 2-1

2WebLogic Security Programming Overview

The following topics are covered in this section:

■ Section 2.1, "What Is Security?"

■ Section 2.2, "Administration Console and Security"

■ Section 2.3, "Types of Security Supported by WebLogic Server"

■ Section 2.4, "Security APIs"

2.1 What Is Security?
Security refers to techniques for ensuring that data stored in a computer or passed
between computers is not compromised. Most security measures involve proof
material and data encryption. Proof material is typically a secret word or phrase that
gives a user access to a particular application or system. Data encryption is the
translation of data into a form that cannot be interpreted without holding or supplying
the same secret.

Distributed applications, such as those used for electronic commerce (e-commerce),
offer many access points at which malicious people can intercept data, disrupt
operations, or generate fraudulent input. As a business becomes more distributed the
probability of security breaches increases. Accordingly, as a business distributes its
applications, it becomes increasingly important for the distributed computing software
upon which such applications are built to provide security.

An application server resides in the sensitive layer between end users and your
valuable data and resources. WebLogic Server provides authentication, authorization,
and encryption services with which you can guard these resources. These services
cannot provide protection, however, from an intruder who gains access by discovering
and exploiting a weakness in your deployment environment.

Therefore, whether you deploy WebLogic Server on the Internet or on an intranet, it is
a good idea to hire an independent security expert to go over your security plan and
procedures, audit your installed systems, and recommend improvements.

Another good strategy is to read as much as possible about security issues and
appropriate security measures. The document Oracle Fusion Middleware Securing a
Production Environment for Oracle WebLogic Server highlights essential security
measures for you to consider before you deploy WebLogic Server into a production
environment. The document Oracle Fusion Middleware Securing Resources Using Roles
and Policies for Oracle WebLogic Server introduces the various types of WebLogic
resources, and provides information that allows you to secure these resources using
WebLogic Server. For the latest information about securing Web servers, Oracle also
recommends reading the Security Improvement Modules, Security Practices, and

Administration Console and Security

2-2 Programming Security for Oracle WebLogic Server

Technical Implementations information (http://www.cert.org/) available from
the CERT™ Coordination Center operated by Carnegie Mellon University.

Oracle suggests that you apply the remedies recommended in our security advisories.
In the event of a problem with an Oracle product, Oracle distributes an advisory and
instructions with the appropriate course of action. If you are responsible for security
related issues at your site, please register to receive future notifications.

2.2 Administration Console and Security
With regard to security, you can use the Administration Console to define and edit
deployment descriptors for Web Applications, EJBs, Java EE Connectors, and
Enterprise Applications. This document, Programming WebLogic Security, does not
describe how to use the Administration Console to configure security. For information
on how to use the Administration Console to define and edit deployment descriptors,
see Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle
WebLogic Server and Oracle Fusion Middleware Securing Oracle WebLogic Server.

2.3 Types of Security Supported by WebLogic Server
WebLogic Server supports the following security mechanisms:

■ Section 2.3.1, "Authentication"

■ Section 2.3.2, "Authorization"

■ Section 2.3.3, "Java EE Security"

2.3.1 Authentication
Authentication is the mechanism by which callers and service providers prove that
they are acting on behalf of specific users or systems. Authentication answers the
question, "Who are you?" using credentials. When the proof is bidirectional, it is
referred to as mutual authentication.

WebLogic Server supports username and password authentication and certificate
authentication. For certificate authentication, WebLogic Server supports both one-way
and two-way SSL (Secure Sockets Layer) authentication. Two-way SSL authentication
is a form of mutual authentication.

In WebLogic Server, Authentication providers are used to prove the identity of users
or system processes. Authentication providers also remember, transport, and make
identity information available to various components of a system (via subjects) when
needed. You can configure the Authentication providers using the Web application
and EJB deployment descriptor files, or the Administration Console, or a combination
of both.

2.3.2 Authorization
Authorization is the process whereby the interactions between users and WebLogic
resources are controlled, based on user identity or other information. In other words,
authorization answers the question, "What can you access?"

In WebLogic Server, a WebLogic Authorization provider is used to limit the
interactions between users and WebLogic resources to ensure integrity, confidentiality,
and availability. You can configure the Authorization provider using the Web
application and EJB deployment descriptor files, or the Administration Console, or a
combination of both.

Security APIs

WebLogic Security Programming Overview 2-3

WebLogic Server also supports the use of programmatic authorization (also referred to
in this document as programmatic security) to limit the interactions between users and
WebLogic resources.

2.3.3 Java EE Security
For implementation and use of user authentication and authorization, WebLogic
Server utilizes the security services of the Java EE Development Kit 5.0 (JDK 6.0). Like
the other Java EE components, the security services are based on standardized,
modular components. WebLogic Server implements these Java security service
methods according to the standard, and adds extensions that handle many details of
application behavior automatically, without requiring additional programming.

2.4 Security APIs
This section lists the Security packages and classes that are implemented and
supported by WebLogic Server. You use these packages to secure interactions between
WebLogic Server and client applications, Enterprise JavaBeans (EJBs), and Web
applications.

The following topics are covered in this section:

■ Section 2.4.1, "JAAS Client Application APIs"

■ Section 2.4.2, "SSL Client Application APIs"

■ Section 2.4.3, "Other APIs"

2.4.1 JAAS Client Application APIs
You use Java APIs and WebLogic APIs to write client applications that use JAAS
authentication.

The following topics are covered in this section:

■ Section 2.4.1.1, "Java JAAS Client Application APIs"

■ Section 2.4.1.2, "WebLogic JAAS Client Application APIs"

2.4.1.1 Java JAAS Client Application APIs
You use the following Java APIs to write JAAS client applications. The APIs are
available at http://java.sun.com/javase/6/docs/api/index.html.

■ javax.naming

■ javax.security.auth

■ javax.security.auth.callback

■ javax.security.auth.login

■ javax.security.auth.spi

Note: Several of the WebLogic security packages, classes, and
methods are deprecated in this release of WebLogic Server. For more
detailed information on deprecated packages and classes, see
Appendix A, "Deprecated Security APIs".

Security APIs

2-4 Programming Security for Oracle WebLogic Server

For information on how to use these APIs, see Section 4.2.1, "JAAS Authentication
APIs".

2.4.1.2 WebLogic JAAS Client Application APIs
You use the following WebLogic APIs to write JAAS client applications:

■ weblogic.security

■ weblogic.security.auth

■ weblogic.security.auth.callback

For information on how to use these APIs, see Section 4.2.1, "JAAS Authentication
APIs".

2.4.2 SSL Client Application APIs
You use Java and WebLogic APIs to write client applications that use SSL
authentication:

The following topics are covered in this section:

■ Section 2.4.2.1, "Java SSL Client Application APIs"

■ Section 2.4.2.2, "WebLogic SSL Client Application APIs"

2.4.2.1 Java SSL Client Application APIs
You use the following Java APIs (available from
http://java.sun.com/javase/6/docs/api/index.html) to write SSL client
applications:

■ java.security

■ java.security.cert

■ javax.crypto

■ javax.naming

■ javax.net

■ javax.security

■ javax.servlet

■ javax.servet.http

WebLogic Server also supports the javax.net.SSL API
(http://java.sun.com/javase/6/docs/api/index.html), but Oracle
recommends that you use the weblogic.security.SSL package when you use SSL
with WebLogic Server.

For information on how to use these APIs, see Section 5.3.1, "SSL Authentication
APIs".

2.4.2.2 WebLogic SSL Client Application APIs
You use the following WebLogic APIs to write SSL client applications.

■ weblogic.net.http

■ weblogic.security.SSL

For information on how to use these APIs, see Section 5.3.1, "SSL Authentication
APIs".

Security APIs

WebLogic Security Programming Overview 2-5

2.4.3 Other APIs
Additionally, you use the following APIs to develop WebLogic Server applications:

■ weblogic.security.jacc

This API provides the RoleMapper interface. If you implement the Java
Authorization Contract for Containers (JACC), you can use this package with the
javax.security.jacc package
(http://java.sun.com/javaee/5/docs/api/javax/security/jacc/pa
ckage-summary.html). See Section 8.2.3, "Using the Java Authorization
Contract for Containers" for information about the WebLogic JACC provider. See
http://java.sun.com/j2ee/javaacc/ for information on developing a
JACC provider.

■ weblogic.security.net

This API provides interfaces and classes that are used to implement network
connection filters. Network connection filters allow or deny connections to
WebLogic Server based on attributes such as the IP address, domain, or protocol of
the initiator of the network connection. For more information about how to use
this API, see Chapter 7, "Using Network Connection Filters".

■ weblogic.security.pk

This API provides interfaces and classes to build and validate certification paths.
See Chapter 10, "Using CertPath Building and Validation" for information on using
this API to build and validate certificate chains.

See the java.security.cert package
(http://java.sun.com/javase/6/docs/api/java/security/cert/pac
kage-summary.html) for additional information on certificates and certificate
paths.

■ weblogic.security.providers.saml

This API provides interfaces and classes that are used to perform mapping of user
and group information to Security Assertion Markup Language (SAML)
assertions, and to cache and retrieve SAML assertions.

SAML is an XML-based framework for exchanging security information.
WebLogic Server supports SAML V2.0 and V1.1, including the Browser/Post and
Browser/Artifact profiles. SAML authorization is not supported.

For more information about SAML, see http://www.oasis-open.org.

■ weblogic.security.service

This API includes interfaces, classes, and exceptions that support security
providers. The WebLogic Security Framework consists of interfaces, classes, and
exceptions provided by this API. The interfaces, classes, and exceptions in this API
should be used in conjunction with those in the weblogic.security.spi
package. For more information about how to use this API, see Oracle Fusion
Middleware Developing Security Providers for Oracle WebLogic Server.

■ weblogic.security.services

This API provides the server-side authentication class. This class is used to
perform a local login to the server. It provides login methods that are used with
CallbackHandlers to authenticate the user and return credentials using the default
security realm.

■ weblogic.security.spi

Security APIs

2-6 Programming Security for Oracle WebLogic Server

This package provides the Security Service Provider Interfaces (SSPIs). It provides
interfaces, classes, and exceptions that are used for developing custom security
providers. In many cases, these interfaces, classes, and exceptions should be used
in conjunction with those in the weblogic.security.service API. You
implement interfaces, classes, and exceptions from this package to create runtime
classes for security providers. For more information about how to use the SSPIs,
see Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic
Server.

■ weblogic.servlet.security

This API provides a server-side API that supports programmatic authentication
from within a servlet application. For more about how to use this API, see
Section 3.7, "Using the Programmatic Authentication API".

3

Securing Web Applications 3-1

3Securing Web Applications

WebLogic Server supports the Java EE architecture security model for securing Web
applications, which includes support for declarative authorization (also referred to in
this document as declarative security) and programmatic authorization (also referred
to in this document as programmatic security).

This section covers the following topics:

■ Section 3.1, "Authentication With Web Browsers"

■ Section 3.2, "Multiple Web Applications, Cookies, and Authentication"

■ Section 3.3, "Developing Secure Web Applications"

■ Section 3.4, "Using Declarative Security With Web Applications"

■ Section 3.5, "Web Application Security-Related Deployment Descriptors"

■ Section 3.6, "Using Programmatic Security With Web Applications"

■ Section 3.7, "Using the Programmatic Authentication API"

WebLogic Server supports the use of the HttpServletRequest.isUserInRole
and HttpServletRequest.getUserPrincipal methods and the use of the
security-role-ref element in deployment descriptors to implement programmatic
authorization in Web applications.

3.1 Authentication With Web Browsers
Web browsers can connect to WebLogic Server over either a HyperText Transfer
Protocol (HTTP) port or an HTTP with SSL (HTTPS) port. The benefits of using an
HTTPS port versus an HTTP port are two-fold. With HTTPS connections:

■ All communication on the network between the Web browser and the server is
encrypted. None of the communication, including the user name and password, is
in clear text.

■ As a minimum authentication requirement, the server is required to present a
digital certificate to the Web browser client to prove its identity.

Note: You can use deployment descriptor files and the
Administration Console to secure Web applications. This document
describes how to use deployment descriptor files. For information on
using the Administration Console to secure Web applications, see
Oracle Fusion Middleware Securing Resources Using Roles and Policies for
Oracle WebLogic Server.

Authentication With Web Browsers

3-2 Programming Security for Oracle WebLogic Server

If the server is configured for two-way SSL authentication, both the server and client
are required to present a digital certificate to each other to prove their identity.

3.1.1 User Name and Password Authentication
WebLogic Server performs user name and password authentication when users use a
Web browser to connect to the server via the HTTP port. In this scenario, the browser
and an instance of WebLogic Server interact in the following manner to authenticate a
user (see Figure 3–1):

1. A user invokes a WebLogic resource in WebLogic Server by entering the URL for
that resource in a Web browser. The HTTP URL contains the HTTP listen port, for
example, http://myserver:7001.

2. The Web server in WebLogic Server receives the request.

3. The Web server determines whether the WebLogic resource is protected by a
security policy. If the WebLogic resource is protected, the Web server uses the
established HTTP connection to request a user name and password from the user.

4. When the user's Web browser receives the request from the Web server, it prompts
the user for a user name and password.

5. The Web browser sends the request to the Web server again, along with the user
name and password.

6. The Web server forwards the request to the Web server plug-in. WebLogic Server
provides the following plug-ins for Web servers:

■ Apache-WebLogic Server plug-in

■ Sun Java System Web Server plug-in

■ Internet Information Server Application Programming Interface (ISAPI)

The Web server plug-in performs authentication by sending the request, via the
HTTP protocol, to WebLogic Server, along with the authentication data (user name
and password) received from the user.

7. Upon successful authentication, WebLogic Server proceeds to determine whether
the user is authorized to access the WebLogic resource.

8. Before invoking a method on the WebLogic resource, the WebLogic Server instance
performs a security authorization check. During this check, the server security
extracts the user's credentials from the security context, determines the user's
security role, compares the user's security role to the security policy for the
requested WebLogic resource, and verifies that the user is authorized to invoke the
method on the WebLogic resource.

9. If authorization succeeds, the server fulfills the request.

Note: WebLogic Server provides its own Web server but also
supports the use of Apache Server, Microsoft Internet Information
Server, and Sun Java System Web Server as Web servers.

Authentication With Web Browsers

Securing Web Applications 3-3

Figure 3–1 Secure Login for Web Browsers

3.1.2 Digital Certificate Authentication
WebLogic Server uses encryption and digital certificate authentication when Web
browser users connect to the server via the HTTPS port. In this scenario, the browser
and WebLogic Server instance interact in the following manner to authenticate and
authorize a user (see Figure 3–1):

1. A user invokes a WebLogic resource in WebLogic Server by entering the URL for
that resource in a Web browser. The HTTPS URL contains the SSL listen port, for
example, https://myserver:7002.

2. The Web server in WebLogic Server receives the request.

3. The Web server checks whether the WebLogic resource is protected by a security
policy. If the WebLogic resource is protected, the Web server uses the established
HTTPS connection to request a user name and password from the user.

4. When the user's Web browser receives the request from WebLogic Server, it
prompts the user for a user name and password. (This step is optional.)

5. The Web browser sends the request again, along with the user name and
password. (Only supplied if requested by the server.)

6. WebLogic Server presents its digital certificate to the Web browser.

7. The Web browser checks that the server's name used in the URL (for example,
myserver) matches the name in the digital certificate and that the digital
certificate was issued by a trusted third party, that is, a trusted CA

8. If two-way SSL authentication is in force on the server, the server requests a digital
certificate from the client.

Note: WebLogic Server provides its own Web server but also
supports the use of Apache Server, Microsoft Internet Information
Server, and Netscape Enterprise Server as Web servers.

Multiple Web Applications, Cookies, and Authentication

3-4 Programming Security for Oracle WebLogic Server

9. The Web server forwards the request to the Web server plug-in. If secure proxy is
set (this is the case if the HTTPS protocol is being used), the Web server plug-in
also performs authentication by sending the request, via the HTTPS protocol, to
the WebLogic resource in WebLogic Server, along with the authentication data
(user name and password) received from the user.

10. Upon successful authentication, WebLogic Server proceeds to determine whether
the user is authorized to access the WebLogic resource.

11. Before invoking a method on the WebLogic resource, the server performs a
security authorization check. During this check, the server extracts the user's
credentials from the security context, determines the user's security role, compares
the user's security role to the security policy for the requested WebLogic resource,
and verifies that the user is authorized to invoke the method on the WebLogic
resource.

12. If authorization succeeds, the server fulfills the request.

For more information, see the following documents:

■ Oracle Fusion Middleware Securing Oracle WebLogic Server

■ Installing and Configuring the Apache HTTP Server Plug-In

■ Installing and Configuring the Microsoft Internet Information Server (IIS) Plug-In

3.2 Multiple Web Applications, Cookies, and Authentication
By default, WebLogic Server assigns the same cookie name (JSESSIONID) to all Web
applications. When you use any type of authentication, all Web applications that use
the same cookie name use a single sign-on for authentication. Once a user is
authenticated, that authentication is valid for requests to any Web Application that
uses the same cookie name. The user is not prompted again for authentication.

If you want to require separate authentication for a Web application, you can specify a
unique cookie name or cookie path for the Web application. Specify the cookie name
using the CookieName parameter and the cookie path with the CookiePath
parameter, defined in the WebLogic-specific deployment descriptor weblogic.xml
<session-descriptor> element. For more information, see "session-descriptor" in
Oracle Fusion Middleware Managing Server Startup and Shutdown for Oracle WebLogic
Server.

Note: Even though WebLogic Server cannot be configured to enforce
the full two-way SSL handshake with Web Server proxy plug-ins,
proxy plug-ins can be configured to provide the client certificate to the
server if it is needed. To do this, configure the proxy plug-in to export
the client certificate in the HTTP Header for WebLogic Server. For
instructions on how to configure proxy plug-ins to export the client
certificate to WebLogic Server, see the configuration information for
the specific plug-in in Using Web Server Plug-Ins With WebLogic Server.

Note: When using two-way SSL authentication, you can also
configure the server to do identity assertion based on the client's
certificate, where, instead of supplying a user name and password, the
server extracts the user name and password from the client's
certificate.

Multiple Web Applications, Cookies, and Authentication

Securing Web Applications 3-5

If you want to retain the cookie name and still require independent authentication for
each Web application, you can set the cookie path parameter (CookiePath)
differently for each Web application.

WebLogic Server allows a user to securely access HTTPS resources in a session that
was initiated using HTTP, without loss of session data. This feature enables Web site
designers to prevent session stealing. For more information on this feature, see
Section 3.2.1, "Using Secure Cookies to Prevent Session Stealing".

3.2.1 Using Secure Cookies to Prevent Session Stealing
A common Web security problem is session stealing. This happens when an attacker
manages to get a copy of your session cookie, generally while the cookie is being
transmitted over the network. This can only happen when the data is being sent in
clear-text; that is, the cookie is not encrypted.

WebLogic Server allows a user to securely access HTTPS resources in a session that
was initiated using HTTP, without loss of session data. To enable this feature, add
AuthCookieEnabled="true" to the WebServer element in config.xml:

<WebServer Name="myserver" AuthCookieEnabled="true"/>

Setting AuthCookieEnabled to true, which is the default setting, causes the
WebLogic Server instance to send a new secure cookie, _WL_AUTHCOOKIE_
JSESSIONID, to the browser when authenticating via an HTTPS connection. Once the
secure cookie is set, the session is allowed to access other security-constrained HTTPS
resources only if the cookie is sent from the browser.

Thus, WebLogic Server uses two cookies: the JSESSIONID cookie and the _WL_
AUTHCOOKIE_JSESSIONID cookie. By default, the JSESSIONID cookie is never
secure, but the _WL_AUTHCOOKIE_JSESSIONID cookie is always secure. A secure
cookie is only sent when an encrypted communication channel is in use. Assuming a
standard HTTPS login (HTTPS is an encrypted HTTP connection), your browser gets
both cookies.

For subsequent HTTP access, you are considered authenticated if you have a valid
JSESSIONID cookie, but for HTTPS access, you must have both cookies to be
considered authenticated. If you only have the JSESSIONID cookie, you must
re-authenticate.

With this feature enabled, once you have logged in over HTTPS, the secure cookie is
only sent encrypted over the network and therefore can never be stolen in transit. The
JSESSIONID cookie is still subject to in-transit hijacking. Therefore, a Web site
designer can ensure that session stealing is not a problem by making all sensitive data
require HTTPS. While the HTTP session cookie is still vulnerable to being stolen and
used, all sensitive operations require the _WL_AUTHCOOKIE_JSESSIONID, which
cannot be stolen, so those operations are protected.

You can also specify a cookie name for JSESSIONID or _WL_AUTHCOOKIE_
JSESSIONID using the CookieName parameter defined in the weblogic.xml
deployment descriptor's <session-descriptor> element, as follows:

<session-descriptor>
 <cookie-name>FOOAPPID</cookie-name>
</session-descriptor>

In this case, Weblogic Server will not use JSESSIONID and _WL_AUTHCOOKIE_
JSESSIONID, but FOOAPPID and _WL_AUTHCOOKIE_FOOAPPID to serve the same
purpose, as shown in Table 3–1.

Developing Secure Web Applications

3-6 Programming Security for Oracle WebLogic Server

3.3 Developing Secure Web Applications
WebLogic Server supports three types of authentication for Web browsers:

■ BASIC

■ FORM

■ CLIENT-CERT

The following sections cover the different ways to use these types of authentication:

■ Section 3.3.1, "Developing BASIC Authentication Web Applications"

■ Section 3.3.2, "Understanding BASIC Authentication with Unsecured Resources"

■ Section 3.3.3, "Developing FORM Authentication Web Applications"

■ Section 3.3.4, "Using Identity Assertion for Web Application Authentication"

■ Section 3.3.5, "Using Two-Way SSL for Web Application Authentication"

■ Section 3.3.6, "Providing a Fallback Mechanism for Authentication Methods"

■ Section 3.3.7, "Developing Swing-Based Authentication Web Applications"

■ Section 3.3.8, "Deploying Web Applications"

3.3.1 Developing BASIC Authentication Web Applications
With basic authentication, the Web browser pops up a login screen in response to a
WebLogic resource request. The login screen prompts the user for a user name and
password. Figure 3–2 shows a typical login screen.

Figure 3–2 Authentication Login Screen

To develop a Web application that provides basic authentication, perform these steps:

Table 3–1 WebLogic Server Cookies

User-Specified in Deployment
Descriptor HTTP Session HTTPS Session

No - uses the JSESSIONID default JSESSIONID _WL_AUTHCOOKIE_JSESSIONID

Yes - specified as FOOAPPID FOOAPPID _WL_AUTHCOOKIE_FOOAPPID

Note: See Section 3.3.2, "Understanding BASIC Authentication with
Unsecured Resources" for important information about how
unsecured resources are handled.

Developing Secure Web Applications

Securing Web Applications 3-7

1. Create the web.xml deployment descriptor. In this file you include the following
information (see Example 3–1):

a. Define the welcome file. The welcome file name is welcome.jsp.

b. Define a security constraint for each set of Web application resources, that is,
URL resources, that you plan to protect. Each set of resources share a common
URL. URL resources such as HTML pages, JSPs, and servlets are the most
commonly protected, but other types of URL resources are supported. In
Example 3–1, the URL pattern points to the welcome.jsp file located in the
Web application's top-level directory; the HTTP methods that are allowed to
access the URL resource, POST and GET; and the security role name,
webuser.

c. Use the <login-config> tag to define the type of authentication you want
to use and the security realm to which the security constraints will be applied.
In Example 3–1, the BASIC type is specified and the realm is the default realm,
which means that the security constraints will apply to the active security
realm when the WebLogic Server instance boots.

d. Define one or more security roles and map them to your security constraints.
In our sample, only one security role, webuser, is defined in the security
constraint so only one security role name is defined here (see the
<security-role> tag in Example 3–1). However, any number of security
roles can be defined.

Example 3–1 Basic Authentication web.xml File

<?xml version='1.0' encoding='UTF-8'?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<web-app>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Success</web-resource-name>
 <url-pattern>/welcome.jsp</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>

Note: When specifying security role names, observe the following
conventions and restrictions:

■ The proper syntax for a security role name is as defined for an
Nmtoken in the Extensible Markup Language (XML)
recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

■ Do not use blank spaces, commas, hyphens, or any characters in
this comma-separated list: \t, < >, #, |, &, ~, ?, (), { }.

■ Security role names are case sensitive.

■ The suggested convention for security role names is that they be
singular.

Developing Secure Web Applications

3-8 Programming Security for Oracle WebLogic Server

 <role-name>webuser</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>default</realm-name>
 </login-config>
 <security-role>
 <role-name>webuser</role-name>
 </security-role>
 </web-app>

2. Create the weblogic.xml deployment descriptor. In this file you map security
role names to users and groups. Example 3–2 shows a sample weblogic.xml file
that maps the webuser security role defined in the <security-role> tag in the
web.xml file to a group named myGroup. Note that principals can be users or
groups, so the <principal-tag> can be used for either. With this configuration,
WebLogic Server will only allow users in myGroup to access the protected URL
resource—welcome.jsp.

Example 3–2 BASIC Authentication weblogic.xml File

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<weblogic-web-app>
 <security-role-assignment>
 <role-name>webuser</role-name>
 <principal-name>myGroup</principal-name>
 </security-role-assignment>
</weblogic-web-app>

3. Create a file that produces the Welcome screen that displays when the user enters
a user name and password and is granted access. Example 3–3 shows a sample
welcome.jsp file. Figure 3–3 shows the Welcome screen.

Example 3–3 BASIC Authentication welcome.jsp File

<html>
 <head>
 <title>Browser Based Authentication Example Welcome Page</title>
 </head>
 <h1> Browser Based Authentication Example Welcome Page </h1>
 <p> Welcome <%= request.getRemoteUser() %>!
 </blockquote>
 </body>
</html>

Note: Starting in version 9.0, the default role mapping behavior is to
create empty role mappings when none are specified in weblogic.xml.
In version 8.x, if you did not include a weblogic.xml file, or included
the file but did not include mappings for all security roles, security
roles without mappings defaulted to any user or group whose name
matched the role name. For information on role mapping behavior
and backward compatibility settings, see the section "Understanding
the Combined Role Mapping Enabled Setting" in Oracle Fusion
Middleware Securing Resources Using Roles and Policies for Oracle
WebLogic Server.

Developing Secure Web Applications

Securing Web Applications 3-9

Figure 3–3 Welcome Screen

4. Start WebLogic Server and define the users and groups that will have access to the
URL resource. In the weblogic.xml file (see Example 3–2), the
<principal-name> tag defines myGroup as the group that has access to the
welcome.jsp. Therefore, use the Administration Console to define the myGroup
group, define a user, and add that user to the myGroup group. For information on
adding users and groups, see "Users, Groups, and Security Roles" in Oracle Fusion
Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.

5. Deploy the Web application and use the user defined in the previous step to access
the protected URL resource.

a. For deployment instructions, see Section 3.3.8, "Deploying Web Applications".

b. Open a Web browser and enter this URL:

http://localhost:7001/basicauth/welcome.jsp

c. Enter the user name and password. The Welcome screen displays.

3.3.1.1 Using HttpSessionListener to Account for Browser Caching of Credentials
The browser caches user credentials and frequently re-sends them to the server
automatically. This can give the appearance that WebLogic Server sessions are not
being destroyed after logout or timeout. Depending on the browser, the credentials can
be cached just for the current browser session, or across browser sessions.

You can validate that a WebLogic Server's session was destroyed by creating a class
that implements the javax.servlet.http.HttpSessionListener interface.
Implementations of this interface are notified of changes to the list of active sessions in
a web application. To receive notification events, the implementation class must be
configured in the deployment descriptor for the web application in web.xml.

Note: In Example 3–3, notice that the JSP is calling an API
(request.getRemoteUser()) to get the name of the user that logged in.
A different API, weblogic.security.Security.getCurrentSubject(), could
be used instead. To use this API to get the name of the user, use it with
the SubjectUtils API as follows:

String username = weblogic.security.SubjectUtils.getUsername
weblogic.security.Security.getCurrentSubject());

Developing Secure Web Applications

3-10 Programming Security for Oracle WebLogic Server

To configure a session listener class:

1. Open the web.xml deployment descriptor of the Web application for which you
are creating a session listener class in a text editor. The web.xml file is located in
the WEB-INF directory of your Web application.

2. Add an event declaration using the listener element of the web.xml deployment
descriptor. The event declaration defines the event listener class that is invoked
when the event occurs. For example:

<listener>
 <listener-class>myApp.MySessionListener</listener-class>
</listener>

See "Configuring an Event Listener Class" in Oracle Fusion Middleware Developing
Web Applications, Servlets, and JSPs for Oracle WebLogic Server for additional
information and guidelines.

Write and deploy the session listener class. The example shown in Example 3–4 uses a
simple counter to track the session count.

Example 3–4 Tracking the Session Count

package myApp;
import javax.servlet.http.HttpSessionListener;
import javax.servlet.http.HttpSessionEvent;
public class MySessionListener implements HttpSessionListener {
 private static int sessionCount = 0;

 public void sessionCreated(HttpSessionEvent se) {
 sessionCount++;
 // Write to a log or do some other processing.
 }
 public void sessionDestroyed(HttpSessionEvent se) {
 if(sessionCount > 0)
 sessionCount--;
 //Write to a log or do some other processing.
 }
}

3.3.2 Understanding BASIC Authentication with Unsecured Resources
For WebLogic Server versions 9.2 and later, client requests that use HTTP BASIC
authentication must pass WebLogic Server authentication, even if access control is not
enabled on the target resource.

The setting of the Security Configuration MBean flag
enforce-valid-basic-auth-credentials determines this behavior. (The DomainMBean can
return the new Security Configuration MBean for the domain.) It specifies whether or
not the system should allow requests with invalid HTTP BASIC authentication
credentials to access unsecured resources.

Note: The Security Configuration MBean provides domain-wide
security configuration information. The
enforce-valid-basic-auth-credentials flag effects the entire domain.

Developing Secure Web Applications

Securing Web Applications 3-11

The enforce-valid-basic-auth-credentials flag is true by default, and WebLogic Server
authentication is performed. If authentication fails, the request is rejected. WebLogic
Server must therefore have knowledge of the user and password.

You may want to change the default behavior if you rely on an alternate authentication
mechanism. For example, you might use a backend web service to authenticate the
client, and WebLogic Server does not need to know about the user. With the default
authentication enforcement enabled, the web service can do its own authentication,
but only if WebLogic Server authentication first succeeds.

If you explicitly set the enforce-valid-basic-auth-credentials flag to false, WebLogic
Server does not perform authentication for HTTP BASIC authentication client requests
for which access control was not enabled for the target resource.

In the previous example of a backend web service that authenticates the client, the web
service can then perform its own authentication without WebLogic Server having
knowledge of the user.

3.3.2.1 Setting the enforce-valid-basic-auth-credentials Flag
To set the enforce-valid-basic-auth-credentials flag, perform the following steps:

1. Add the <enforce-valid-basic-auth-credentials> element to
config.xml within the <security-configuration> element.

:
<enforce-valid-basic-auth-credentials>false</enforce-valid-basic-auth-credentia
ls>
 </security-configuration>

2. Start or restart all of the servers in the domain.

3.3.2.2 Using WLST to Check the Value of enforce-valid-basic-auth-credentials
The Administration Console does not display or log the
enforce-valid-basic-auth-credentials setting. However, you can use WLST to check the
value in a running server. Remember that enforce-valid-basic-auth-credentials is a
domain-wide setting.

The WLST session shown in Example 3–5 demonstrates how to check the value of the
enforce-valid-basic-auth-credentials flag in a sample running server.

Example 3–5 Checking the Value of enforce-valid-basic-auth-credentials

wls:/offline> connect('weblogic','weblogic','t3://localhost:7001')
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server 'examplesServer' that belongs to domain '
wl_server'.
wls:/wl_server/serverConfig> cd('SecurityConfiguration')

wls:/wl_server/serverConfig/SecurityConfiguration> ls()
dr-- wl_server
wls:/wl_server/serverConfig/SecurityConfiguration> cd('wl_server')
wls:/wl_server/serverConfig/SecurityConfiguration/wl_server> ls()
dr-- DefaultRealm
dr-- Realms
-r-- AnonymousAdminLookupEnabled false
-r-- CompatibilityConnectionFiltersEnabled false
-r-- ConnectionFilter null
-r-- ConnectionFilterRules null
-r-- ConnectionLoggerEnabled false

Developing Secure Web Applications

3-12 Programming Security for Oracle WebLogic Server

-r-- ConsoleFullDelegationEnabled false
-r-- Credential ******
-r-- CredentialEncrypted ******
-r-- CrossDomainSecurityEnabled false
-r-- DowngradeUntrustedPrincipals false
-r-- EnforceStrictURLPattern true
-r-- EnforceValidBasicAuthCredentials false
:
:

3.3.3 Developing FORM Authentication Web Applications
When using FORM authentication with Web applications, you provide a custom login
screen that the Web browser displays in response to a Web application resource
request and an error screen that displays if the login fails. The login screen can be
generated using an HTML page, JSP, or servlet. The benefit of form-based login is that
you have complete control over these screens so that you can design them to meet the
requirements of your application or enterprise policy/guideline.

The login screen prompts the user for a user name and password. Figure 3–4 shows a
typical login screen generated using a JSP and Example 3–6 shows the source code.

Figure 3–4 Form-Based Login Screen (login.jsp)

Example 3–6 Form-Based Login Screen Source Code (login.jsp)

<html>
 <head>)
 <title>Security WebApp login page</title>
 </head>
 <body bgcolor="#cccccc">
 <blockquote>

 <h2>Please enter your user name and password:</h2>
 <p>
 <form method="POST" action="j_security_check">
 <table border=1>
 <tr>
 <td>Username:</td>
 <td><input type="text" name="j_username"></td>
 </tr>
 <tr>

Developing Secure Web Applications

Securing Web Applications 3-13

 <td>Password:</td>
 <td><input type="password" name="j_password"></td>
 </tr>
 <tr>
 <td colspan=2 align=right><input type=submit
 value="Submit"></td>
 </tr>
 </table>
 </form>
 </blockquote>
 </body>
</html>

Figure 3–5 shows a typical login error screen generated using HTML and Example 3–7
shows the source code.

Figure 3–5 Login Error Screen

Example 3–7 Login Error Screen Source Code

<html>
 <head>
 <title>Login failed</title>
 </head>
 <body bgcolor=#ffffff>
 <blockquote>

 <h2>Sorry, your user name and password were not recognized.</h2>
 <p>
 Return to welcome page or
 logout

 </blockquote>
 </body>
</html>

To develop a Web application that provides FORM authentication, perform these
steps:

1. Create the web.xml deployment descriptor. In this file you include the following
information (see Example 3–8):

a. Define the welcome file. The welcome file name is welcome.jsp.

Developing Secure Web Applications

3-14 Programming Security for Oracle WebLogic Server

b. Define a security constraint for each set of URL resources that you plan to
protect. Each set of URL resources share a common URL. URL resources such
as HTML pages, JSPs, and servlets are the most commonly protected, but
other types of URL resources are supported. In Example 3–8, the URL pattern
points to /admin/edit.jsp, thus protecting the edit.jsp file located in the
Web application's admin sub-directory, defines the HTTP method that is
allowed to access the URL resource, GET, and defines the security role name,
admin.

c. Define the type of authentication you want to use and the security realm to
which the security constraints will be applied. In this case, the FORM type is
specified and no realm is specified, so the realm is the default realm, which
means that the security constraints will apply to the security realm that is
activated when a WebLogic Server instance boots.

d. Define one or more security roles and map them to your security constraints.
In our sample, only one security role, admin, is defined in the security
constraint so only one security role name is defined here. However, any
number of security roles can be defined.

Example 3–8 FORM Authentication web.xml File

<?xml version='1.0' encoding='UTF-8'?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<web-app>
 <welcome-file-list>
 <welcome-file>welcome.jsp</welcome-file>
 </welcome-file-list>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AdminPages</web-resource-name>
 <description>
 These pages are only accessible by authorized
 administrators.
 </description>
 <url-pattern>/admin/edit.jsp</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description>
 These are the roles who have access.
 </description>
 <role-name>
 admin
 </role-name>
 </auth-constraint>
 <user-data-constraint>
 <description>
 This is how the user data must be transmitted.
 </description>
 <transport-guarantee>NONE</transport-guarantee>

Note: Do not use hyphens in security role names. Security role
names with hyphens cannot be modified in the Administration
Console. Also, the suggested convention for security role names is that
they be singular.

Developing Secure Web Applications

Securing Web Applications 3-15

 </user-data-constraint>
 </security-constraint>
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/fail_login.html</form-error-page>
 </form-login-config>
 </login-config>
 <security-role>
 <description>
 An administrator
 </description>
 <role-name>
 admin
 </role-name>
 </security-role>
</web-app>

2. Create the weblogic.xml deployment descriptor. In this file you map security
role names to users and groups. Example 3–9 shows a sample weblogic.xml file
that maps the admin security role defined in the <security-role> tag in the
web.xml file to the group supportGroup. With this configuration, WebLogic Server
will only allow users in the supportGroup group to access the protected WebLogic
resource. However, you can use the Administration Console to modify the Web
application's security role so that other groups can be allowed to access the
protected WebLogic resource.

Example 3–9 FORM Authentication weblogic.xml File

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<weblogic-web-app>
 <security-role-assignment>
 <role-name>admin</role-name>
 <principal-name>supportGroup</principal-name>
 </security-role-assignment>
</weblogic-web-app>

3. Create a Web application file that produces the welcome screen when the user
requests the protected Web application resource by entering the URL.
Example 3–10 shows a sample welcome.jsp file. Figure 3–3 shows the Welcome
screen.

Example 3–10 Form Authentication welcome.jsp File

<html>
 <head>
 <title>Security login example</title>
 </head>
 <%
 String bgcolor;
 if ((bgcolor=(String)application.getAttribute("Background")) ==
 null)
 {
 bgcolor="#cccccc";
 }
 %>
 <body bgcolor=<%="\""+bgcolor+"\""%>>

Developing Secure Web Applications

3-16 Programming Security for Oracle WebLogic Server

 <blockquote>

 <h1> Security Login Example </h1>
 <p> Welcome <%= request.getRemoteUser() %>!
 <p> If you are an administrator, you can configure the background
 color of the Web Application.

 Configure background.
 <% if (request.getRemoteUser() != null) { %>
 <p> Click here to logout.
 <% } %>
 </blockquote>
 </body>
</html>

4. Start WebLogic Server and define the users and groups that will have access to the
URL resource. In the weblogic.xml file (see Example 3–9), the <role-name>
tag defines admin as the group that has access to the edit.jsp, file and defines the
user joe as a member of that group. Therefore, use the Administration Console to
define the admin group, and define user joe and add joe to the admin group. You
can also define other users and add them to the group and they will also have
access to the protected WebLogic resource. For information on adding users and
groups, see "Users, Groups, and Security Roles" in Oracle Fusion Middleware
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

5. Deploy the Web application and use the user(s) defined in the previous step to
access the protected Web application resource.

a. For deployment instructions, see Section 3.3.8, "Deploying Web Applications".

b. Open a Web browser and enter this URL:

http://hostname:7001/security/welcome.jsp

c. Enter the user name and password. The Welcome screen displays.

3.3.4 Using Identity Assertion for Web Application Authentication
You use identity assertion in Web applications to verify client identities for
authentication purposes. When using identity assertion, the following requirements
must be met:

1. The authentication type must be set to CLIENT-CERT.

2. An Identity Assertion provider must be configured in the server. If the Web
browser or Java client requests a WebLogic Server resource protected by a security
policy, WebLogic Server requires that the Web browser or Java client have an
identity. The WebLogic Identity Assertion provider maps the token from a Web
browser or Java client to a user in a WebLogic Server security realm. For
information on how to configure an Identity Assertion provider, see "Configuring

Note: In Example 3–3, notice that the JSP is calling an API
(request.getRemoteUser()) to get the name of the user that logged in.
A different API, weblogic.security.Security.getCurrentSubject(), could
be used instead. To use this API to get the name of the user, use it with
the SubjectUtils API as follows:

String username = weblogic.security.SubjectUtils.getUsername
weblogic.security.Security.getCurrentSubject());

Developing Secure Web Applications

Securing Web Applications 3-17

Identity Assertion Providers" in Oracle Fusion Middleware Securing Oracle WebLogic
Server.

3. The user corresponding to the token's value must be defined in the server's
security realm; otherwise the client will not be allowed to access a protected
WebLogic resource. For information on configuring users on the server, see "Users,
Groups, and Security Roles" in Oracle Fusion Middleware Securing Resources Using
Roles and Policies for Oracle WebLogic Server.

3.3.5 Using Two-Way SSL for Web Application Authentication
You use two-way SSL in Web applications to verify that clients are whom they claim to
be. When using two-way SSL, the following requirements must be met:

1. The authentication type must be set to CLIENT-CERT.

2. The server must be configured for two-way SSL. For information on using SSL and
digital certificates, see Chapter 5, "Using SSL Authentication in Java Clients". For
information on configuring SSL on the server, see "Configuring SSL" in Oracle
Fusion Middleware Securing Oracle WebLogic Server.

3. The client must use HTTPS to access the Web application on the server.

4. An Identity Assertion provider must be configured in the server. If the Web
browser or Java client requests a WebLogic Server resource protected by a security
policy, WebLogic Server requires that the Web browser or Java client have an
identity. The WebLogic Identity Assertion provider allows you to enable a user
name mapper in the server that maps the digital certificate of a Web browser or
Java client to a user in a WebLogic Server security realm. For information on how
to configure security providers, see "Configuring WebLogic Security Providers" in
Oracle Fusion Middleware Securing Oracle WebLogic Server.

5. The user corresponding to the Subject's Distinguished Name (SubjectDN) attribute
in the client's digital certificate must be defined in the server's security realm;
otherwise the client will not be allowed to access a protected WebLogic resource.
For information on configuring users on the server, see "Users, Groups, and
Security Roles" in Oracle Fusion Middleware Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

3.3.6 Providing a Fallback Mechanism for Authentication Methods
The Servlet 2.4 specification
(http://java.sun.com/products/servlet/download.html#specs) allows
you to define the authentication method (BASIC, FORM, etc.) to be used in a Web
application. WebLogic Server provides an auth-method security module that allows
you to define multiple authentication methods (as a comma separated list), so the
container can provide a fall-back mechanism. Authentication will be attempted in the
order the values are defined in the auth-method list.

For example, you can define the following auth-method list in the login-config
element of your web.xml file:

<login-config>
 <auth-method>CLIENT-CERT,BASIC</auth-method>

Note: When you use SSL authentication, it is not necessary to use
web.xml and weblogic.xml files to specify server configuration
because you use the Administration Console to specify the server's
SSL configuration.

Developing Secure Web Applications

3-18 Programming Security for Oracle WebLogic Server

</login-config>

Then the container will first try to authenticate by looking at the CLIENT-CERT value.
If that should fail, the container will challenge the user-agent for BASIC
authentication.

If either FORM or BASIC are configured, then they must exist at the end of the list
since they require a round-trip communication with the user. However, both FORM
and BASIC cannot exist together in the list of auth-method values.

3.3.6.1 Configuration
The auth-method authentication security can be configured in two ways:

■ Define a comma separated list of auth-method values in the login-config
element of your web.xml file.

■ Define the auth-method values as a comma separated list on the RealmMBean
and in the login-config element of your web.xml use the REALM value, then
the Web application will pick up the authentication methods from the security
realm.

WebLogic Java Management Extensions (JMX) enables you to access the RealmMBean
to create and manage the security resources. For more information, see "Overview of
WebLogic Server Subsystem MBeans" in Oracle Fusion Middleware Developing Custom
Management Utilities With JMX for Oracle WebLogic Server.

3.3.7 Developing Swing-Based Authentication Web Applications
Web browsers can also be used to run graphical user interfaces (GUIs) that were
developed using Java Foundation Classes (JFC) Swing components.

For information on how to create a graphical user interface (GUI) for applications and
applets using the Swing components, see the Creating a GUI with JFC/Swing tutorial
(also known as The Swing Tutorial) produced by Sun Microsystems, Inc. You can
access this tutorial on the Web at
http://java.sun.com/docs/books/tutorial/uiswing/.

After you have developed your Swing-based GUI, refer to Section 3.3.3, "Developing
FORM Authentication Web Applications" and use the Swing-based screens to perform
the steps required to develop a Web application that provides FORM authentication.

3.3.8 Deploying Web Applications
To deploy a Web application on a server running in development mode, perform the
following steps:

Note: When developing a Swing-based GUI, do not rely on the Java
Virtual Machine-wide user for child threads of the swing event thread.
This is not Java EE compliant and does not work in thin clients, or in
IIOP in general. Instead, take either of the following approaches:

■ Make sure an InitialContext is created before any Swing artifacts.

■ Or, use the Java Authentication and Authorization Service (JAAS)
to log in and then use the Security.runAs() method inside the
Swing event thread and its children.

Using Declarative Security With Web Applications

Securing Web Applications 3-19

1. Set up a directory structure for the Web application's files. Figure 3–6 shows the
directory structure for the Web application named basicauth. The top-level
directory must be assigned the name of the Web application and the sub-directory
must be named WEB-INF.

Figure 3–6 Basicauth Web Application Directory Structure

2. To deploy the Web application in exploded directory format, that is, not in the Java
archive (jar) format, simply move your directory to the applications directory
on your server. For example, you would deploy the basicauth Web application
in the following location:

WL_HOME\user_projects\domains\mydomain\applications\basicauth

If the WebLogic Server instance is running, the application should auto-deploy.
Use the Administration Console to verify that the application deployed.

If the WebLogic Server instance is not running, the Web application should
auto-deploy when you start the server.

3. If you have not done so already, use the Administration Console to configure the
users and groups that will have access to the Web application. To determine the
users and groups that are allowed access to the protected WebLogic resource,
examine the weblogic.xml file. For example, the weblogic.xml file for the
basicauth sample (see Example 3–2) defines myGroup as the only group to have
access to the welcome.jsp file.

For more information on deploying secure Web applications, see "Deploying
Applications and Modules with weblogic.deployer" in Oracle Fusion Middleware
Deploying Applications to Oracle WebLogic Server.

3.4 Using Declarative Security With Web Applications
There are three ways to implement declarative security:

1. Security providers via the Administration Console, as described in Oracle Fusion
Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.

2. Java Authorization Contract for Containers (JACC), as described in Section 8.2.3,
"Using the Java Authorization Contract for Containers".

3. Deployment descriptors, which are discussed in this section.

Note: For more information about deploying Web applications in
either development of production mode, see "Deploying Applications
and Modules with weblogic.deployer" in Oracle Fusion Middleware
Deploying Applications to Oracle WebLogic Server.

Web Application Security-Related Deployment Descriptors

3-20 Programming Security for Oracle WebLogic Server

Which of these three methods is used is defined by the JACC flags and the security
model. (Security models are described in "Options for Securing EJB and Web
Application Resources" in Oracle Fusion Middleware Securing Resources Using Roles and
Policies for Oracle WebLogic Server.)

To implement declarative security in Web applications, you can use deployment
descriptors (web.xml and weblogic.xml) to define security requirements. The
deployment descriptors map the application's logical security requirements to its
runtime definitions. And at runtime, the servlet container uses the security definitions
to enforce the requirements. For a discussion of using deployment descriptors, see
Section 3.3, "Developing Secure Web Applications".

For information about how to use deployment descriptors and the
externally-defined element to configure security in Web applications
declaratively, see Section 3.5.2.1, "externally-defined".

For information about how to use the Administration Console to configure security in
Web applications, see Oracle Fusion Middleware Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

3.5 Web Application Security-Related Deployment Descriptors
The following topics describe the deployment descriptor elements that are used in the
web.xml and weblogic.xml files to define security requirements in Web
applications:

■ Section 3.5.1, "web.xml Deployment Descriptors"

■ Section 3.5.2, "weblogic.xml Deployment Descriptors"

3.5.1 web.xml Deployment Descriptors
The following web.xml security-related deployment descriptor elements are
supported by WebLogic Server:

■ Section 3.5.1.1, "auth-constraint"

■ Section 3.5.1.2, "security-constraint"

■ Section 3.5.1.3, "security-role"

■ Section 3.5.1.4, "security-role-ref"

■ Section 3.5.1.5, "user-data-constraint"

■ Section 3.5.1.6, "web-resource-collection"

3.5.1.1 auth-constraint
The optional auth-constraint element defines which groups or principals have
access to the collection of Web resources defined in this security constraint.

The following table describes the elements you can define within an
auth-constraint element.

Table 3–2 auth-constraint Element

Element
Required/
Optional Description

<description> Optional A text description of this security constraint.

Web Application Security-Related Deployment Descriptors

Securing Web Applications 3-21

3.5.1.1.1 Used Within The auth-constraint element is used within the
security-constraint element.

3.5.1.1.2 Example See Example 3–11 for an example of how to use the
auth-constraint element in a web.xml file.

3.5.1.2 security-constraint
The security-constraint element is used in the web.xml file to define the access
privileges to a collection of resources defined by the web-resource-collection
element.

The following table describes the elements you can define within a security-constraint
element.

3.5.1.2.1 Example Example 3–11 shows how to use the security-constraint
element to defined security for the SecureOrdersEast resource in a web.xml file.

Example 3–11 Security Constraint Example

web.xml entries:
<security-constraint>
 <web-resource-collection>
 <web-resource-name>SecureOrdersEast</web-resource-name>
 <description>
 Security constraint for
 resources in the orders/east directory
 </description>
 <url-pattern>/orders/east/*</url-pattern>
 <http-method>POST</http-method>
 <http-method>GET</http-method>
 </web-resource-collection>

<role-name> Optional Defines which security roles can access resources
defined in this <security-constraint>. Security
role names are mapped to principals using the
<security-role-ref> element. See
Section 3.5.1.4, "security-role-ref".

Table 3–3 security-constraint Element

Element
Required/
Optional Description

<web-resource-collec
tion>

Required Defines the components of the Web Application to
which this security constraint is applied. For more
information, see .Section 3.5.1.6,
"web-resource-collection"

<auth-constraint> Optional Defines which groups or principals have access to
the collection of web resources defined in this
security constraint.For more information, see
Section 3.5.1.1, "auth-constraint".

<user-data-constrain
t>

Optional Defines defines how data communicated between
the client and the server should be protected. For
more information, see Section 3.5.1.5,
"user-data-constraint".

Table 3–2 (Cont.) auth-constraint Element

Element
Required/
Optional Description

Web Application Security-Related Deployment Descriptors

3-22 Programming Security for Oracle WebLogic Server

 <auth-constraint>
 <description>
 constraint for east coast sales
 </description>
 <role-name>east</role-name>
 <role-name>manager</role-name>
 </auth-constraint>
 <user-data-constraint>
 <description>SSL not required</description>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
</security-constraint>
...

3.5.1.3 security-role
The security-role element contains the definition of a security role. The definition
consists of an optional description of the security role, and the security role name.

The following table describes the elements you can define within a security-role
element.

3.5.1.3.1 Example See Example 3–14 for an example of how to use the
security-role element in a web.xml file.

3.5.1.4 security-role-ref
The security-role-ref element links a security role name defined by
<security-role> to an alternative role name that is hard-coded in the servlet logic.
This extra layer of abstraction allows the servlet to be configured at deployment
without changing servlet code.

The following table describes the elements you can define within a
security-role-ref element.

Table 3–4 security-role Element

Element
Required/
Optional Description

<description> Optional A text description of this security role.

<role-name> Required The role name. The name you use here must have a
corresponding entry in the WebLogic-specific
deployment descriptor, weblogic.xml, which
maps roles to principals in the security realm. For
more information, see Section 3.5.2.6,
"security-role-assignment".

Table 3–5 security-role-ref Element

Element
Required/
Optional Description

<description> Optional Text description of the role.

<role-name> Required Defines the name of the security role or principal
that is used in the servlet code.

<role-link> Required Defines the name of the security role that is defined
in a <security-role> element later in the
deployment descriptor.

Web Application Security-Related Deployment Descriptors

Securing Web Applications 3-23

3.5.1.4.1 Example See Example 3–17 for an example of how to use the
security-role-ref element in a web.xml file.

3.5.1.5 user-data-constraint
The user-data-constraint element defines how data communicated between the
client and the server should be protected.

The following table describes the elements you can define within a
user-data-constraint element.

3.5.1.5.1 Used Within The user-data-constraint element is used within the
security-constraint element.

3.5.1.5.2 Example See Example 3–11 for an example of how to use the
user-data-constraint element in a web.xml file.

3.5.1.6 web-resource-collection
The web-resource-collection element identifies a subset of the resources and
HTTP methods on those resources within a Web application to which a security
constraint applies. If no HTTP methods are specified, the security constraint applies to
all HTTP methods.

The following table describes the elements you can define within a
web-resource-collection element.

Table 3–6 user-data-constraint Element

Element
Required/
Optional Description

<description> Optional A text description.

<transport-guarantee
>

Required Specifies data security requirements for
communications between the client and the server.

Range of values:

■ NONE—The application does not require any
transport guarantees.

■ INTEGRAL—The application requires that the
data be sent between the client and server in
such a way that it cannot be changed in transit.

■ CONFIDENTIAL—The application requires
that data be transmitted so as to prevent other
entities from observing the contents of the
transmission.

WebLogic Server establishes a Secure Sockets Layer
(SSL) connection when the user is authenticated
using the INTEGRAL or CONFIDENTIAL transport
guarantee.

Table 3–7 web-resource-collection Element

Element
Required/
Optional Description

<web-resource-name> Required The name of this web resource collection.

<description> Optional Text description of the Web resource.

Web Application Security-Related Deployment Descriptors

3-24 Programming Security for Oracle WebLogic Server

3.5.1.6.1 Used Within The web-resource-collection element is used within the
security-constraint element.

3.5.1.6.2 Example See Example 3–11 for an example of how to use the
web-resource-collection element in a web.xml file.

3.5.2 weblogic.xml Deployment Descriptors
The following weblogic.xml security-related deployment descriptor elements are
supported by WebLogic Server:

■ Section 3.5.2.1, "externally-defined"

■ Section 3.5.2.2, "run-as-principal-name"

■ Section 3.5.2.3, "run-as-role-assignment"

■ Section 3.5.2.4, "security-permission"

■ Section 3.5.2.5, "security-permission-spec"

■ Section 3.5.2.6, "security-role-assignment"

For additional information on weblogic.xml deployment descriptors, see the section
"XML Deployment Descriptors" in Oracle Fusion Middleware Developing Applications for
Oracle WebLogic Server.

For additional information on the weblogic.xml elements, see "weblogic.xml
Deployment Descriptor Elements" in Oracle Fusion Middleware Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

3.5.2.1 externally-defined
The externally-defined element lets you explicitly indicate that you want the
security roles defined by the role-name element in the web.xml deployment
descriptors to use the mappings specified in the Administration Console. The element
gives you the flexibility of not having to specify a specific security role mapping for
each security role defined in the deployment descriptors for a particular Web
application. Therefore, within the same security realm, deployment descriptors can be

<url-pattern> Required The mapping, or location, of the Web resource
collection.

URL patterns must use the syntax defined in section
11.2 of JSR-000154, Java Servlet Specification Version
2.4
(http://www.jcp.org/aboutJava/community
process/final/jsr154/).

The pattern <url-pattern>/</url-pattern>
applies the security constraint to the entire Web
application.

<http-method> Optional The HTTP methods to which the security constraint
applies when clients attempt to access the Web
resource collection. If no HTTP methods are
specified, then the security
constraint applies to all HTTP methods.

Table 3–7 (Cont.) web-resource-collection Element

Element
Required/
Optional Description

Web Application Security-Related Deployment Descriptors

Securing Web Applications 3-25

used to specify and modify security for some applications while the Administration
Console can be used to specify and modify security for others.

The role mapping behavior for a server depends on which security deployment model
is selected on the Administration Console. For information on security deployment
models, see "Options for Securing EJB and Web Application Resources" in Oracle
Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.

3.5.2.1.1 Used Within The externally-defined element is used within the
security-role-assignment element.

3.5.2.1.2 Example Example 3–12 and Example 3–13 show by comparison how to use
the externally-defined element in the weblogic.xml file. In Example 3–13,
the specification of the "webuser" externally-defined element in the
weblogic.xml means that for security to be correctly configured on the
getReceipts method, the principals for webuser will have to be created in the
Administration Console.

Example 3–12 Using the web.xml and weblogic.xml Files to Map Security Roles and
Principals to a Security Realm

web.xml entries:
<web-app>
 ...
 <security-role>
 <role-name>webuser</role-name>
 </security-role>
 ...
</web-app>
<weblogic.xml entries:
<weblogic-web-app>
 <security-role-assignment>
 <role-name>webuser</role-name>
 <principal-name>myGroup</principal-name>
 <principal-name>Bill</principal-name>
 <principal-name>Mary</principal-name>
 </security-role-assignment>

Note: When specifying security role names, observe the following
conventions and restrictions:

■ The proper syntax for a security role name is as defined for an
Nmtoken in the Extensible Markup Language (XML)
recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

■ Do not use blank spaces, commas, hyphens, or any characters in
this comma-separated list: \t, < >, #, |, &, ~, ?, (), { }.

■ Security role names are case sensitive.

■ The suggested convention for security role names is that they be
singular.

Note: If you need to list a significant number of principals, consider
specifying groups instead of users. There are performance issues if
you specify too many users.

Web Application Security-Related Deployment Descriptors

3-26 Programming Security for Oracle WebLogic Server

</weblogic-web-app>

Example 3–13 Using the externally-defined tag in Web Application Deployment
Descriptors

web.xml entries:
<web-app>
 ...
 <security-role>
 <role-name>webuser</role-name>
 </security-role>
 ...
</web-app>
<weblogic.xml entries:
<weblogic-web-app>
 <security-role-assignment>
 <role-name>webuser</role-name>
 <externally-defined/>
 </security-role-assignment>

For information about how to use the Administration Console to configure security for
Web applications, see Oracle Fusion Middleware Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

3.5.2.2 run-as-principal-name
The run-as-principal-name element specifies the name of a principal to use for a
security role defined by a run-as element in the companion web.xml file.

3.5.2.2.1 Used Within The run-as-principal-name element is used within a
run-as-role-assignment element.

3.5.2.2.2 Example For an example of how to use the run-as-principal-name
element, see Example 3–14.

3.5.2.3 run-as-role-assignment
The run-as-role-assignment element maps a given role name, defined by a
role-name element in the companion web.xml file, to a valid user name in the
system. The value can be overridden for a given servlet by the
run-as-principal-name element in the servlet-descriptor. If the
run-as-role-assignment element is absent for a given role name, the Web
application container chooses the first principal-name defined in the
security-role-assignment element.

The following table describes the elements you can define within a
run-as-role-assignment element.

Table 3–8 run-as-role-assignment Element

Element
Required/
Optional Description

<role-name> Required Specifies the name of a security role name specified
in a run-as element in the companion web.xml
file.

<run-as-principal-na
me>

Required Specifies a principal for the security role name
defined in a run-as element in the companion
web.xml file.

Web Application Security-Related Deployment Descriptors

Securing Web Applications 3-27

3.5.2.3.1 Example: Example 3–14 shows how to use the run-as-role-assignment
element to have the SnoopServlet always execute as a user joe.

Example 3–14 run-as-role-assignment Element Example

web.xml:
 <servlet>
 <servlet-name>SnoopServlet</servlet-name>
 <servlet-class>extra.SnoopServlet</servlet-class>
 <run-as>
 <role-name>runasrole</role-name>
 </run-as>
 </servlet>
 <security-role>
 <role-name>runasrole</role-name>
 </security-role>
weblogic.xml:
 <weblogic-web-app>
 <run-as-role-assignment>
 <role-name>runasrole</role-name>
 <run-as-principal-name>joe</run-as-principal-name>
 </run-as-role-assignment>
 </weblogic-web-app>

3.5.2.4 security-permission
The security-permission element specifies a security permission that is
associated with a Java EE Sandbox.

3.5.2.4.1 Example For an example of how to used the security-permission
element, see Example 3–15.

3.5.2.5 security-permission-spec
The security-permission-spec element specifies a single security permission based on
the Security policy file syntax. Refer to the following URL for Sun's implementation of
the security permission specification:

http://java.sun.com/javase/6/docs/technotes/guides/security/Poli
cyFiles.html#FileSyntax

3.5.2.5.1 Used Within The security-permission-spec element is used within the
security-permission element.

3.5.2.5.2 Example Example 3–15 shows how to use the security-permission-spec
element to grant permission to the java.net.SocketPermission class.

Example 3–15 security-permission-spec Element Example

<weblogic-web-app>
 <security-permission>
 <description>Optional explanation goes here</description>
 <security-permission-spec>
<!--
A single grant statement following the syntax of

Note: Disregard the optional codebase and signedBy clauses.

Using Programmatic Security With Web Applications

3-28 Programming Security for Oracle WebLogic Server

http://java.sun.com/j2se/1.5.0/docs/guide/security/PolicyFiles.html#FileSyntax,
without the "codebase" and "signedBy" clauses, goes here. For example:
-->
 grant {
 permission java.net.SocketPermission "*", "resolve";
 };
 </security-permission-spec>
 </security-permission>
</weblogic-web-app>

In Example 3–15, permission java.net.SocketPermission is the permission class
name, "*" represents the target name, and resolve indicates the action (resolve host/IP
name service lookups).

3.5.2.6 security-role-assignment
The security-role-assignment element declares a mapping between a security
role and one or more principals in the WebLogic Server security realm.

3.5.2.6.1 Example Example 3–16 shows how to use the
security-role-assignment element to assign principals to the PayrollAdmin
role.

Example 3–16 security-role-assignment Element Example

<weblogic-web-app>
 <security-role-assignment>
 <role-name>PayrollAdmin</role-name>
 <principal-name>Tanya</principal-name>
 <principal-name>Fred</principal-name>
 <principal-name>system</principal-name>
 </security-role-assignment>
</weblogic-web-app>

3.6 Using Programmatic Security With Web Applications
You can write your servlets to access users and security roles programmatically in
your servlet code. To do this, use the following methods in your servlet code:
javax.servlet.http.HttpServletRequest.getUserPrincipal and
javax.servlet.http.HttpServletRequest.isUserInRole(String role)
methods.

Note: For information on using the security-role-assignment element
in a weblogic-application.xml deployment descriptor for an enterprise
application, see "Enterprise Application Deployment Descriptor
Elements" in Oracle Fusion Middleware Developing Applications for Oracle
WebLogic Server.

Note: If you need to list a significant number of principals, consider
specifying groups instead of users. There are performance issues if
you specify too many users.

Using Programmatic Security With Web Applications

Securing Web Applications 3-29

3.6.1 getUserPrincipal
You use the getUserPrincipal() method to determine the current user of the Web
application. This method returns a WLSUser Principal if one exists in the current
user. In the case of multiple WLSUser Principals, the method returns the first in the
ordering defined by the Subject.getPrincipals().iterator() method. If
there are no WLSUser Principals, then the getUserPrincipal() method returns
the first non-WLSGroup Principal. If there are no Principals or all Principals
are of type WLSGroup, this method returns null. This behavior is identical to the
semantics of the weblogic.security.SubjectUtils.getUserPrincipal()
method.

For more information about how to use the getUserPrincipal() method, see
http://java.sun.com/javaee/technologies/javaee5.jsp.

3.6.2 isUserInRole
The javax.servlet.http.HttpServletRequest.isUserInRole(String
role) method returns a boolean indicating whether the authenticated user is granted
the specified logical security "role." If the user has not been authenticated, this method
returns false.

The isUserInRole() method maps security roles to the group names in the security
realm. Example 3–17 shows the elements that are used with the <servlet> element
to define the security role in the web.xml file.

Example 3–17 IsUserInRole web.xml and weblogic.xml Elements

Begin web.xml entries:
...
<servlet>
 <security-role-ref>
 <role-name>user-rolename</role-name>
 <role-link>rolename-link</role-link>
 </security-role-ref>
</servlet>
<security-role>
 <role-name>rolename-link</role-name>
</security-role>
...
Begin weblogic.xml entries:
...
<security-role-assignment>
 <role-name>rolename-link</role-name>
 <principal-name>groupname</principal>
 <principal-name>username</principal>
</security-role-assignment>
...

The string role is mapped to the name supplied in the <role-name> element, which
is nested inside the <security-role-ref> element of a <servlet> declaration in
the web.xml deployment descriptor. The <role-name> element defines the name of
the security role or principal (the user or group) that is used in the servlet code. The
<role-link> element maps to a <role-name> defined in the
<security-role-assignment> element in the weblogic.xml deployment
descriptor.

Using the Programmatic Authentication API

3-30 Programming Security for Oracle WebLogic Server

For example, if the client has successfully logged in as user Bill with the security role
of manager, the following method would return true:

request.isUserInRole("manager")

Example 3–18 provides an example.

Example 3–18 Example of Security Role Mapping

Servlet code:
out.println("Is the user a Manager? " +

request.isUserInRole("manager"));
web.xml entries:
<servlet>
. . .
 <role-name>manager</role-name>
 <role-link>mgr</role-link>
. . .
</servlet>
<security-role>
 <role-name>mgr</role-name>
</security-role>
weblogic.xml entries:
<security-role-assignment>
 <role-name>mgr</role-name>
 <principal-name>bostonManagers</principal-name>
 <principal-name>Bill</principal-name>
 <principal-name>Ralph</principal-name>
</security-role-ref>

3.7 Using the Programmatic Authentication API
There are some applications where programmatic authentication is appropriate.

WebLogic Server provides a server-side API that supports programmatic
authentication from within a servlet application:

weblogic.servlet.security.ServletAuthentication

Using this API, you can write servlet code that authenticates the user, logs in the user,
and associates the user with the current session so that the user is registered in the

Note: When specifying security role names, observe the following
conventions and restrictions:

■ The proper syntax for a security role name is as defined for an
Nmtoken in the Extensible Markup Language (XML)
recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

■ Do not use blank spaces, commas, hyphens, or any characters in
this comma-separated list: \t, < >, #, |, &, ~, ?, (), { }.

■ Security role names are case sensitive.

■ The suggested convention for security role names is that they be
singular.

Using the Programmatic Authentication API

Securing Web Applications 3-31

default (active) security realm. Once the login is completed, it appears as if the user
logged in using the standard mechanism.

You have the option of using either of two WebLogic-supplied classes with the
ServletAuthentication API, the
weblogic.security.SimpleCallbackHandler class or the
weblogic.security.URLCallbackHandler class. For more information on these
classes, see Javadocs for WebLogic Classes.

Example 3–19 shows an example that uses SimpleCallbackHandler. Example 3–20
shows an example that uses URLCallbackHandler.

Example 3–19 Programmatic Authentication Code Fragment Using the
SimpleCallbackHandler Class

CallbackHandler handler = new SimpleCallbackHandler(username,
password);

Subject mySubject =
 weblogic.security.services.Authentication.login(handler);
weblogic.servlet.security.ServletAuthentication.runAs(mySubject, request);
// Where request is the httpservletrequest object.

Example 3–20 Programmatic Authentication Code Fragment Using the
URLCallbackHandler Class

CallbackHandler handler = new URLCallbackHandler(username,
password);

Subject mySubject =
 weblogic.security.services.Authentication.login(handler);
weblogic.servlet.security.ServletAuthentication.runAs(mySubject, request);
// Where request is the httpservletrequest object.

Using the Programmatic Authentication API

3-32 Programming Security for Oracle WebLogic Server

4

Using JAAS Authentication in Java Clients 4-1

4Using JAAS Authentication in Java Clients

The following topics are covered in this section:

■ Section 4.1, "JAAS and WebLogic Server"

■ Section 4.2, "JAAS Authentication Development Environment"

■ Section 4.3, "Writing a Client Application Using JAAS Authentication"

■ Section 4.4, "Using JNDI Authentication"

■ Section 4.5, "Java Client JAAS Authentication Code Examples"

The sections refer to sample code which is included in the WebLogic Server
distribution at:

SAMPLES_HOME\server\examples\src\examples\security\jaas

The jaas directory contains an instructions.html file, ant build files, a sample_
jaas.config file, and the following Java files:

■ BaseClient.java

■ BaseClientConstants.java

■ SampleAction.java

■ SampleCallbackHandler.java

■ SampleClient.java

■ TradeResult.java

■ TraderBean.java

You will need to look at the examples when reading the information in the following
sections.

4.1 JAAS and WebLogic Server
The Java Authentication and Authorization Service (JAAS) is a standard extension to
the security in the Java EE Development Kit 5.0. JAAS provides the ability to enforce
access controls based on user identity. JAAS is provided in WebLogic Server as an
alternative to the JNDI authentication mechanism.

WebLogic Server clients use the authentication portion of the standard JAAS only. The
JAAS LoginContext provides support for the ordered execution of all configured
authentication provider LoginModule instances and is responsible for the
management of the completion status of each configured provider.

Note the following considerations when using JAAS authentication for Java clients:

JAAS Authentication Development Environment

4-2 Programming Security for Oracle WebLogic Server

■ WebLogic Server clients can either use the JNDI login or JAAS login for
authentication, however JAAS login is the preferred method.

■ While JAAS is the preferred method of authentication, the WebLogic-supplied
LoginModule
(weblogic.security.auth.login.UsernamePasswordLoginModule) only
supports username and password authentication. Thus, for client certificate
authentication (also referred to as two-way SSL authentication), you should use
JNDI. To use JAAS for client certificate authentication, you must write a custom
LoginModule that does certificate authentication.

■ To perform a JAAS login from a remote Java client (that is, the Java client is not a
WebLogic Server client), you may use the WebLogic-supplied LoginModule to
perform the login. However, if you elect not to use the WebLogic-supplied
LoginModule but decide to write your own instead, you must have it call the
weblogic.security.auth.Authenticate.authenticate() method to
perform the login.

■ If you are using a remote, or perimeter, login system such as Security Assertion
Markup Language (SAML), you do not need to call
weblogic.security.auth.Authenticate.authenticate(). You only
need to call the authenticate() method if you are using WebLogic Server to
perform the logon.

■ Within WebLogic Server, JAAS is called to perform the login. Each Authentication
provider includes a LoginModule. This is true for servlet logins as well as Java
client logins via JNDI or JAAS. The method WebLogic Server calls internally to
perform the JAAS logon is
weblogic.security.auth.Authentication.authenticate(). When
using the Authenticate class, weblogic.security.SimpleCallbackHandler
may be a useful helper class.

■ While WebLogic Server does not protect any resources using JAAS authorization
(it uses WebLogic security), you can use JAAS authorization in application code to
protect the application's own resources.

For more information about JAAS, see the JAAS documentation at
http://java.sun.com/products/jaas/reference/docs/index.html.

4.2 JAAS Authentication Development Environment
Whether the client is an application, applet, Enterprise JavaBean (EJB), or servlet that
requires authentication, WebLogic Server uses the JAAS classes to reliably and
securely authenticate to the server. JAAS implements a Java version of the Pluggable
Authentication Module (PAM) framework, which permits applications to remain

Note: If you write your own LoginModule for use with WebLogic
Server clients, have it call
weblogic.security.auth.Authenticate.authenticate() to perform the
login.

Note: WebLogic Server provides full container support for JAAS
authentication and supports full use of JAAS authentication and
authorization in application code.

JAAS Authentication Development Environment

Using JAAS Authentication in Java Clients 4-3

independent from underlying authentication technologies. Therefore, the PAM
framework allows the use of new or updated authentication technologies without
requiring modifications to a Java application.

WebLogic Server uses JAAS for remote Java client authentication, and internally for
authentication. Therefore, only developers of custom Authentication providers and
developers of remote Java client applications need to be involved with JAAS directly.
Users of Web browser clients or developers of within-container Java client applications
(for example, those calling an EJB from a servlet) do not require direct use or
knowledge of JAAS.

The following topics are covered in this section:

■ Section 4.2.1, "JAAS Authentication APIs"

■ Section 4.2.2, "JAAS Client Application Components"

■ Section 4.2.3, "WebLogic LoginModule Implementation"

4.2.1 JAAS Authentication APIs
To implement Java clients that use JAAS authentication on WebLogic Server, you use a
combination of Java EE application programming interfaces (APIs) and WebLogic
APIs.

Table 4–1 lists and describes the Java API packages used to implement JAAS
authentication. The information in Table 4–1 is taken from the Java API documentation
and annotated to add WebLogic Server specific information. For more information on
the Java APIs, see the Javadocs at
http://java.sun.com/javase/6/docs/api/index.html and
http://java.sun.com/javaee/5/docs/api.

Table 4–1 lists and describes the WebLogic APIs used to implement JAAS
authentication. For more information, see Javadocs for WebLogic Classes.

Note: In order to implement security in a WebLogic client you must
install the WebLogic Server software distribution kit on the Java client.

Table 4–1 Java JAAS APIs

Java JAAS API Description

javax.security.auth.Subject
(http://java.sun.com/j
avase/6/docs/api/index
.html)

The Subject class represents the source of the request, and
can be an individual user or a group. The Subject object is
created only after the subject is successfully logged in.

JAAS Authentication Development Environment

4-4 Programming Security for Oracle WebLogic Server

javax.security.auth.login.Logi
nContext
(http://java.sun.com/j
avase/6/docs/api/index
.html)

The LoginContext class describes the basic methods used to
authenticate Subjects and provides a way to develop an
application independent of the underlying authentication
technology. A Configuration specifies the authentication
technology, or LoginModule, to be used with a particular
application. Therefore, different LoginModules can be plugged
in under an application without requiring any modifications to
the application itself.

After the caller instantiates a LoginContext, it invokes the
login method to authenticate a Subject. This login method
invokes the login method from each of the LoginModules
configured for the name specified by the caller.

If the login method returns without throwing an exception,
then the overall authentication succeeded. The caller can then
retrieve the newly authenticated Subject by invoking the
getSubject method. Principals and credentials associated
with the Subject may be retrieved by invoking the
Subject's respective getPrincipals,
getPublicCredentials, and getPrivateCredentials
methods.

To log the Subject out, the caller invokes the logout
method. As with the login method, this logout method
invokes the logout method for each LoginModule configured
for this LoginContext.

For a sample implementation of this class, see Example 4–3.

javax.security.auth.login.Conf
iguration
(http://java.sun.com/j
avase/6/docs/api/index
.html)

This is an abstract class for representing the configuration of
LoginModules under an application. The Configuration
specifies which LoginModules should be used for a particular
application, and in what order the LoginModules should be
invoked. This abstract class needs to be subclassed to provide
an implementation which reads and loads the actual
configuration.

In WebLogic Server, use a login configuration file instead of
this class. For a sample configuration file, see Example 4–2. By
default, WebLogic Server uses the Sun Microsystems, Inc.
configuration class, which reads from a configuration file.

javax.security.auth.spi.Login
Module
(http://java.sun.com/j
avase/6/docs/api/index
.html)

LoginModule describes the interface implemented by
authentication technology providers. LoginModules are
plugged in under applications to provide a particular type of
authentication.

While application developers write to the LoginContext API,
authentication technology providers implement the
LoginModule interface. A configuration specifies the
LoginModule(s) to be used with a particular login application.
Therefore, different LoginModules can be plugged in under the
application without requiring any modifications to the
application itself.

Note: WebLogic Server provides an implementation of the
LoginModule (weblogic.security.auth.login.

UsernamePasswordLoginModule). Oracle recommends that
you use this implementation for JAAS authentication in
WebLogic Server Java clients; however, you can develop your
own LoginModule.

Table 4–1 (Cont.) Java JAAS APIs

Java JAAS API Description

JAAS Authentication Development Environment

Using JAAS Authentication in Java Clients 4-5

javax.security.auth.

callback.Callback
(http://java.sun.com/j
avase/6/docs/api/index
.html)

Implementations of this interface are passed to a
CallbackHandler, allowing underlying security services to
interact with a calling application to retrieve specific
authentication data, such as usernames and passwords, or to
display information such as error and warning messages.

Callback implementations do not retrieve or display the
information requested by underlying security services.
Callback implementations simply provide the means to pass
such requests to applications, and for applications to return
requested information to the underlying security services.

javax.security.auth.

callback.CallbackHandler
(http://java.sun.com/j
avase/6/docs/api/index
.html)

An application implements a CallbackHandler and passes it
to underlying security services so that they can interact with
the application to retrieve specific authentication data, such as
usernames and passwords, or to display information such as
error and warning messages.

CallbackHandlers are implemented in an
application-dependent fashion.

Underlying security services make requests for different types
of information by passing individual Callbacks to the
CallbackHandler. The CallbackHandler implementation
decides how to retrieve and display information depending on
the Callbacks passed to it. For example, if the underlying
service needs a username and password to authenticate a user,
it uses a NameCallback and PasswordCallback. The
CallbackHandler can then choose to prompt for a username
and password serially, or to prompt for both in a single
window.

Table 4–2 WebLogic JAAS APIs

WebLogic JAAS API Description

weblogic.security.auth.Authenticate An authentication class used to authenticate user
credentials.

The WebLogic implementation of the LoginModule,
(weblogic.security.auth.login.

UsernamePasswordLoginModule, uses this class to
authenticate a user and add Principals to the
Subject. Developers who write LoginModules must
also use this class for the same purpose.

weblogic.security.auth.Callback.Cont
extHandlerCallback

Underlying security services use this class to instantiate
and pass a ContextHandlerCallback to the
invokeCallback method of a CallbackHandler to
retrieve the ContextHandler related to this security
operation. If no ContextHandler is associated with this
operation, the
javax.security.auth.callback.UnsupportedC
allbackexception is thrown.

This callback passes the ContextHandler to
LoginModule.login() methods.

weblogic.security.auth.Callback.Grou
pCallback

Underlying security services use this class to instantiate
and pass a GroupCallback to the invokeCallback
method of a CallbackHandler to retrieve group
information.

Table 4–1 (Cont.) Java JAAS APIs

Java JAAS API Description

JAAS Authentication Development Environment

4-6 Programming Security for Oracle WebLogic Server

4.2.2 JAAS Client Application Components
At a minimum, a JAAS authentication client application includes the following
components:

■ Java client

The Java client instantiates a LoginContext object and invokes the login by
calling the object's login() method. The login() method calls methods in each
LoginModule to perform the login and authentication.

The LoginContext also instantiates a new empty
javax.security.auth.Subject object (which represents the user or service
being authenticated), constructs the configured LoginModule, and initializes it
with this new Subject and CallbackHandler.

The LoginContext subsequently retrieves the authenticated Subject by calling the
LoginContext's getSubject method. The LoginContext uses the
weblogic.security.Security.runAs() method to associate the Subject
identity with the PrivilegedAction or PrivilegedExceptionAction to be
executed on behalf of the user identity.

■ LoginModule

The LoginModule uses the CallbackHandler to obtain the user name and
password and determines whether that name and password are the ones required.

If authentication is successful, the LoginModule populates the Subject with a
Principal representing the user. The Principal the LoginModule places in the
Subject is an instance of Principal, which is a class implementing the
java.security.Principal interface.

You can write LoginModule files that perform different types of authentication,
including username/password authentication and certificate authentication. A
client application can include one LoginModule (the minimum requirement) or
several LoginModules.

weblogic.security.auth.Callback.URL
Callback

Underlying security services use this class to instantiate
and pass a URLCallback to the invokeCallback
method of a CallbackHandler to retrieve URL
information.

The WebLogic implementation of the LoginModule,
(weblogic.security.auth.login.

UsernamePasswordLoginModule, uses this class.

Note: Application developers should not use this class
to retrieve URL information. Instead, they should use
the weblogic.security.URLCallbackHandler.

weblogic.security.Security This class implements the WebLogic Server client
runAs methods. Client applications use the runAs
methods to associate their Subject identity with the
PrivilegedAction or
PrivilegedExceptionAction that they execute.

For a sample implementation, see Example 4–5.

weblogic.security.URLCallbackHandl
er

The class used by application developers for returning
a username, password and URL. Application
developers should use this class to handle the
URLCallback to retrieve URL information.

Table 4–2 (Cont.) WebLogic JAAS APIs

WebLogic JAAS API Description

JAAS Authentication Development Environment

Using JAAS Authentication in Java Clients 4-7

■ Callbackhandler

The CallbackHandler implements the
javax.security.auth.callback.CallbackHandler interface. The
LoginModule uses the CallbackHandler to communicate with the user and
obtain the requested information, such as the username and password.

■ Configuration file

This file configures the LoginModule(s) used in the application. It specifies the
location of the LoginModule(s) and, if there are multiple LoginModules, the order
in which they are executed. This file enables Java applications to remain
independent from the authentication technologies, which are defined and
implemented using the LoginModule.

■ Action file

This file defines the operations that the client application will perform.

■ ant build script (build.xml)

This script compiles all the files required for the application and deploys them to
the WebLogic Server applications directories.

For a complete working JAAS authentication client that implements the components
described here, see the JAAS sample application in the SAMPLES_
HOME\server\examples\src\examples\security\jaas directory provided
with WebLogic Server.

For more information on the basics of JAAS authentication, see Sun's JAAS
Authentication Tutorial available at
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas
/tutorials/GeneralAcnOnly.html.

4.2.3 WebLogic LoginModule Implementation
The WebLogic implementation of the LoginModule class
(UsernamePasswordLoginModule.class) is provided in the WebLogic Server
distribution in the weblogic.jar file, located in the WL_HOME\server\lib
directory.

The WebLogic Server UsernamePasswordLoginModule checks for existing system
user authentication definitions prior to execution, and does nothing if they are already
defined.

For more information about implementing JAAS LoginModules, see the LoginModule
Developer's Guide at

Note: Use of the JAAS javax.security.auth.Subject.doAs methods in
WebLogic Server applications do not associate the Subject with the
client actions. You can use the doAs methods to implement Java EE
security in WebLogic Server applications, but such usage is
independent of the need to use the Security.runAs() method.

Note: WebLogic Server supports all callback types defined by JAAS
as well as all callback types that extend the JAAS specification.

Writing a Client Application Using JAAS Authentication

4-8 Programming Security for Oracle WebLogic Server

http://java.sun.com/javase/6/docs/technotes/guides/security/jaas
/JAASLMDevGuide.html

4.2.4 JVM-Wide Default User and the runAs() Method
The first time you use the WebLogic Server implementation of the LoginModule
(weblogic.security.auth.login.UsernamePasswordLoginModule) to log
on, the specified user becomes the machine-wide default user for the JVM (Java virtual
machine). When you execute the weblogic.security.Security.runAs()
method, it associates the specified Subject with the current thread's access
permissions and then executes the action. If a specified Subject represents a
non-privileged user (users who are not assigned to any groups are considered
non-privileged), the JVM-wide default user is used. Therefore, it is important make
sure that the runAs() method specifies the desired Subject. You can do this using
one of the following options:

■ Option 1: If the client has control of main(), implement the wrapper code shown
in Example 4–1 in the client code.

■ Option 2: If the client does not have control of main(), implement the wrapper
code shown in Example 4–1 on each thread's run() method.

Example 4–1 runAs() Method Wrapper Code

import java.security.PrivilegedAction;
import javax.security.auth.Subject;
import weblogic.security.Security;

public class client
{
 public static void main(String[] args)
 {
 Security.runAs(new Subject(),
 new PrivilegedAction() {

public Object run() {
 //
 //If implementing in client code, main() goes here.
 //

return null;
}

 });
 }
}

4.3 Writing a Client Application Using JAAS Authentication
To use JAAS in a WebLogic Server Java client to authenticate a subject, perform the
following procedure:

1. Implement LoginModule classes for the authentication mechanisms you want to
use with WebLogic Server. You will need a LoginModule class for each type of
authentication mechanism. You can have multiple LoginModule classes for a
single WebLogic Server deployment.

Writing a Client Application Using JAAS Authentication

Using JAAS Authentication in Java Clients 4-9

The weblogic.security.auth.Authenticate class uses a JNDI
Environment object for initial context as described in Table 4–1.

2. Implement the CallbackHandler class that the LoginModule will use to
communicate with the user and obtain the requested information, such as the
username, password, and URL. The URL can be the URL of a WebLogic cluster,
providing the client with the benefits of server failover. The WebLogic Server
distribution provides a SampleCallbackHandler which is used in the JAAS
client sample. The SampleCallbackHandler.java code is available as part of
the distribution in the directory SAMPLES_
HOME\server\examples\src\examples\security\jaas.

3. Write a configuration file that specifies which LoginModule classes to use for your
WebLogic Server and in which order the LoginModule classes should be invoked.
See Example 4–2 for the sample configuration file used in the JAAS client sample
provided in the WebLogic Server distribution.

Example 4–2 sample_jaas.config Code Example

/** Login Configuration for the JAAS Sample Application **/
Sample {

weblogic.security.auth.login.UsernamePasswordLoginModule
required debug=false;

};

1. In the Java client, write code to instantiate a LoginContext. The LoginContext
consults the configuration file, sample_jaas.config, to load the default
LoginModule configured for WebLogic Server. See Example 4–3 for an example
LoginContext instantiation.

Note: Oracle recommends that you use the implementation of the
LoginModule provided by WebLogic Server
(weblogic.security.auth.login.UsernamePasswordLoginModule) for
username/password authentication. You can write your own
LoginModule for username/password authentication, however, do
not attempt to modify the WebLogic Server LoginModule and reuse it.
If you write your own LoginModule, you must have it call the
weblogic.security.auth.Authenticate.authenticate() method to perform
the login. If you use a remote login mechanism such as SAML, you do
not need to call the authenticate() method. You only need to call
authenticate() if you are using WebLogic Server to perform the logon.

Note: Instead of implementing your own CallbackHandler class, you
can use either of two WebLogic-supplied CallbackHandler classes,
weblogic.security.SimpleCallbackHandler or
weblogic.security.URLCallbackHandler. For more information on
these classes, see Javadocs for WebLogic Classes.

Note: If you use another means to authenticate the user, such as an
Identity Assertion provider or a remote instance of WebLogic Server,
the default LoginModule is determined by the remote source.

Writing a Client Application Using JAAS Authentication

4-10 Programming Security for Oracle WebLogic Server

Example 4–3 LoginContext Code Fragment

...
import javax.security.auth.login.LoginContext;
...
 LoginContext loginContext = null;
 try
 {
 // Create LoginContext; specify username/password login module
 loginContext = new LoginContext("Sample",
 new SampleCallbackHandler(username, password, url));
 }

1. Invoke the login() method of the LoginContext instance. The login()
method invokes all the loaded LoginModules. Each LoginModule attempts to
authenticate the subject. If the configured login conditions are not met, the
LoginContext throws a LoginException. See Example 4–4 for an example of
the login() method.

Example 4–4 Login() Method Code Fragment

...
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;
import javax.security.auth.login.FailedLoginException;
import javax.security.auth.login.AccountExpiredException;
import javax.security.auth.login.CredentialExpiredException;
...
 /**
 * Attempt authentication
 */
 try
 {
 // If we return without an exception, authentication succeeded
 loginContext.login();
 }
 catch(FailedLoginException fle)
 {
 System.out.println("Authentication Failed, " +

fle.getMessage());
 System.exit(-1);
 }
 catch(AccountExpiredException aee)
 {
 System.out.println("Authentication Failed: Account Expired");
 System.exit(-1);
 }
 catch(CredentialExpiredException cee)
 {
 System.out.println("Authentication Failed: Credentials

Expired");
 System.exit(-1);
 }
 catch(Exception e)
 {
 System.out.println("Authentication Failed: Unexpected

Exception, " + e.getMessage());
 e.printStackTrace();
 System.exit(-1);
 }

Writing a Client Application Using JAAS Authentication

Using JAAS Authentication in Java Clients 4-11

1. Write code in the Java client to retrieve the authenticated Subject from the
LoginContext instance using the
javax.security.auth.Subject.getSubject() method and call the action
as the Subject. Upon successful authentication of a Subject, access controls can be
placed upon that Subject by invoking the
weblogic.security.Security.runAs() method. The runAs() method
associates the specified Subject with the current thread's access permissions and
then executes the action. See Example 4–5 for an example implementation of the
getSubject() and runAs() methods.

Example 4–5 getSubject() and runAs() Methods Code Fragment

...
/**
 * Retrieve authenticated subject, perform SampleAction as Subject
 */
 Subject subject = loginContext.getSubject();
 SampleAction sampleAction = new SampleAction(url);
 Security.runAs(subject, sampleAction);
 System.exit(0);
...

1. Write code to execute an action if the Subject has the required privileges. Oracle
provides a a sample implementation, SampleAction, of the
javax.security.PrivilegedAction class that executes an EJB to trade
stocks. The SampleAction.java code is available as part of the distribution in
the directory SAMPLES_
HOME\server\examples\src\examples\security\jaas.

2. Invoke the logout() method of the LoginContext instance. The logout()
method closes the user's session and clear the Subject. See Example 4–6 for an
example of the login() method.

Example 4–6 logout() Method Code Example

...
import javax.security.auth.login.LoginContext;
...
try
 {
 System.out.println("logging out...");
 loginContext.logout();
 }

Note: Use of the JAAS javax.security.auth.Subject.doAs methods in
WebLogic Server applications do not associate the Subject with the
client actions. You can use the doAs methods to implement Java EE
security in WebLogic Server applications, but such usage is
independent of the need to use the Security.runAs() method.

Using JNDI Authentication

4-12 Programming Security for Oracle WebLogic Server

4.4 Using JNDI Authentication
Java clients use the Java Naming and Directory Interface (JNDI) to pass credentials to
WebLogic Server. A Java client establishes a connection with WebLogic Server by
getting a JNDI InitialContext. The Java client then uses the InitialContext to
look up the resources it needs in the WebLogic Server JNDI tree.

To specify a user and the user's credentials, set the JNDI properties listed in Table 4–1.

These properties are stored in a hash table that is passed to the InitialContext
constructor. Example 4–7illustrates how to use JNDI authentication in a Java client
running on WebLogic Server.

Example 4–7 Example of Authentication

...
Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,

Note: The LoginModule.logout() method is never called for a
WebLogic Authentication provider or a custom Authentication
provider, because once the Principals are created and placed into a
Subject, the WebLogic Security Framework no longer controls the
lifecycle of the Subject. Therefore, code that creates the JAAS
LoginContext to log in and obtain the Subject should also call the
LoginContext to log out. Calling LoginContext.logout() results in the
clearing of the Principals from the Subject.

Note: JAAS is the preferred method of authentication, however, the
WebLogic Authentication provider's LoginModule supports only user
name and password authentication. Thus, for client certificate
authentication (also referred to as two-way SSL authentication), you
should use JNDI. To use JAAS for client certificate authentication, you
must write a custom Authentication provider whose LoginModule
does certificate authentication. For information on how to write
LoginModules, see
http://java.sun.com/javase/6/docs/technotes/guides/s
ecurity/jaas/JAASLMDevGuide.html.

Table 4–3 JNDI Properties for Authentication

Property Meaning

INITIAL_CONTEXT_FACTORY Provides an entry point into the WebLogic Server
environment. The class
weblogic.jndi.WLInitialContextFactory is the JNDI SPI
for WebLogic Server.

PROVIDER_URL Specifies the host and port of the WebLogic Server that
provides the name service. For example:
t3://weblogic:7001.

SECURITY_PRINCIPAL Specifies the identity of the user when that user
authenticates to the default (active) security realm.

SECURITY_CREDENTIALS Specifies the credentials of the user when that user
authenticates to the default (active) security realm.

Java Client JAAS Authentication Code Examples

Using JAAS Authentication in Java Clients 4-13

 "weblogic.jndi.WLInitialContextFactory");
 env.put(Context.PROVIDER_URL, "t3://weblogic:7001");
 env.put(Context.SECURITY_PRINCIPAL, "javaclient");
 env.put(Context.SECURITY_CREDENTIALS, "javaclientpassword");
 ctx = new InitialContext(env);

4.5 Java Client JAAS Authentication Code Examples
A complete working JAAS authentication sample is provided with the WebLogic
Server product. The sample is located in the SAMPLES_
HOME\server\examples\src\examples\security\jaas directory. For a
description of the sample and instructions on how to build, configure, and run this
sample, see the package.html file in the sample directory. You can modify this code
example and reuse it.

Notes: For information on JNDI contexts and threads and how to
avoid potential JNDI context problems, see "JNDI Contexts and
Threads" and "How to Avoid Potential JNDI Context Problems" in
Oracle Fusion Middleware Programming JNDI for Oracle WebLogic Server.

In versions of WebLogic Server prior to 9.0, when using protocols
other than IIOP with JNDI, the first user is "sticky" in the sense that it
becomes the default user when no other user is present. This is not a
good practice, as any subsequent logins that do not have a username
and credential are granted the identify of the default user.

In version 9.0, this is no longer true and there is no default user.

To return to the previous behavior, the
weblogic.jndi.WLContext.ENABLE_DEFAULT_USER field must be
set, either via the command line or through the InitialContext
interface.

Java Client JAAS Authentication Code Examples

4-14 Programming Security for Oracle WebLogic Server

5

Using SSL Authentication in Java Clients 5-1

5Using SSL Authentication in Java Clients

The following topics are covered in this section:

■ Section 5.1, "JSSE and WebLogic Server"

■ Section 5.2, "Using JNDI Authentication"

■ Section 5.3, "SSL Certificate Authentication Development Environment"

■ Section 5.4, "Writing Applications that Use SSL"

■ Section 5.5, "SSL Client Code Examples"

The sections refer to sample code which is included in the WebLogic Server
distribution at:

SAMPLES_HOME\server\examples\src\examples\security\sslclient

The sslclient directory contains an instructions.html file, ant build files, and
the following Java and JavaServer Pages (.jsp) files:

■ MyListener.java

■ NulledHostnameVerifier.java

■ NulledTrustManager.java

■ SSLClient.java

■ SSLClientServlet.java

■ SSLSocketClient.java

■ SnoopServlet.jsp

You will need to look at the examples when reading the information in the following
sections.

5.1 JSSE and WebLogic Server
The Java Secure Socket Extension (JSSE) is a set of packages that support and
implement the SSL and TLS v1 protocols, making those capabilities programmatically
available. WebLogic Server provides Secure Sockets Layer (SSL) support for
encrypting data transmitted between WebLogic Server clients and servers, Java clients,
Web browsers, and other servers.

WebLogic Server's JSSE implementation can be used by WebLogic clients, but is not
required. Other JSSE implementations can be used for their client-side code outside the
server as well.

The following restrictions apply when using SSL in WebLogic server-side applications:

Using JNDI Authentication

5-2 Programming Security for Oracle WebLogic Server

■ The use of other (third-party) JSSE implementations to develop WebLogic Server
applications is not supported. The SSL implementation that WebLogic Server uses
is static to the server configuration and is not replaceable by customer
applications.

■ The WebLogic implementation of JSSE does support JCE Cryptographic Service
Providers (CSPs); however, due to the inconsistent provider support for JCE,
Oracle cannot guarantee that untested providers will work out of the box. Oracle
has tested WebLogic Server with the following providers:

– The default JCE provider (SunJCE provider) included with JDK 5.0. See
http://java.sun.com/j2se/1.5.0/docs/guide/security/jce/How
ToImplAJCEProvider.html for information about the SunJCE provider.

– The nCipher JCE provider.

Other providers may work with WebLogic Server, but an untested provider is not
likely to work out of the box. For more information on using the JCE providers
supported by WebLogic Server, see "Configuring SSL" in Oracle Fusion Middleware
Securing Oracle WebLogic Server.

WebLogic Server uses the HTTPS port for Secure Sockets Layer (SSL) encrypted
communication; only SSL can be used on that port.

5.2 Using JNDI Authentication
Java clients use the Java Naming and Directory Interface (JNDI) to pass credentials to
WebLogic Server. A Java client establishes a connection with WebLogic Server by
getting a JNDI InitialContext. The Java client then uses the InitialContext to
look up the resources it needs in the WebLogic Server JNDI tree.

To specify a user and the user's credentials, set the JNDI properties listed in Table 5–1.

Note: In order to implement security in a WebLogic client, you must
install the WebLogic Server software distribution kit on the Java client.

Note: JAAS is the preferred method of authentication; however, the
Authentication provider's LoginModule supports only username and
password authentication. Thus, for client certificate authentication
(also referred to as two-way SSL authentication), you should use
JNDI. To use JAAS for client certificate authentication, you must write
a custom Authentication provider whose LoginModule does
certificate authentication.

Table 5–1 JNDI Properties Used for Authentication

Property Meaning

INITIAL_CONTEXT_FACTORY Provides an entry point into the WebLogic Server
environment. The class
weblogic.jndi.WLInitialContextFactory is the
JNDI SPI for WebLogic Server.

PROVIDER_URL Specifies the host and port of the WebLogic Server
that provides the name service. For example:
t3s://weblogic:7002.

(t3s is a WebLogic Server proprietary version of
SSL.)

SSL Certificate Authentication Development Environment

Using SSL Authentication in Java Clients 5-3

These properties are stored in a hash table which is passed to the InitialContext
constructor.

Example 5–1 demonstrates how to use one-way SSL certificate authentication in a Java
client. For a two-SSL authentication code example, see Example 5–4.

Example 5–1 Example One-Way SSL Authentication Using JNDI

...
Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 env.put(Context.PROVIDER_URL, "t3s://weblogic:7002");
 env.put(Context.SECURITY_PRINCIPAL, "javaclient");
 env.put(Context.SECURITY_CREDENTIALS, "javaclientpassword");
 ctx = new InitialContext(env);

5.3 SSL Certificate Authentication Development Environment
The following topics are covered in this section:

■ Section 5.3.1, "SSL Authentication APIs"

■ Section 5.3.2, "SSL Client Application Components"

5.3.1 SSL Authentication APIs
To implement Java clients that use SSL authentication on WebLogic Server, use a
combination of Java JDK 5.0 application programming interfaces (APIs) and WebLogic
APIs.

Table 5–1 lists and describes the Java APIs packages used to implement certificate
authentication. The information in Table 5–1 is taken from the Java API documentation
and annotated to add WebLogic Server specific information. For more information on
the Java APIs, see the Javadocs at
http://java.sun.com/javase/6/docs/api/index.html and
http://java.sun.com/javaee/5/docs/api/.

Table 5–1 lists and describes the WebLogic APIs used to implement certificate
authentication. For more information, see Javadocs for WebLogic Classes.

SECURITY_PRINCIPAL Specifies the identity of the user when that user
authenticates to the default (active) security realm.

SECURITY_CREDENTIALS Specifies the credentials of the user when that user
authenticates to the default (active) security realm.

Note: For information on JNDI contexts and threads and how to
avoid potential JNDI context problems, see "JNDI Contexts and
Threads" and "How to Avoid Potential JNDI Context Problems" in
Oracle Fusion Middleware Programming JNDI for Oracle WebLogic Server.

Table 5–1 (Cont.) JNDI Properties Used for Authentication

Property Meaning

SSL Certificate Authentication Development Environment

5-4 Programming Security for Oracle WebLogic Server

Table 5–2 Java Certificate APIs

Java Certificate APIs Description

javax.crypto
(http://java.sun.com/javase
/6/docs/api/index.html)

This package provides the classes and
interfaces for cryptographic operations.
The cryptographic operations defined in
this package include encryption, key
generation and key agreement, and
Message Authentication Code (MAC)
generation.

Support for encryption includes symmetric,
asymmetric, block, and stream ciphers.
This package also supports secure streams
and sealed objects.

Many classes provided in this package are
provider-based (see the
java.security.Provider class). The
class itself defines a programming interface
to which applications may be written. The
implementations themselves may then be
written by independent third-party
vendors and plugged in seamlessly as
needed. Therefore, application developers
can take advantage of any number of
provider-based implementations without
having to add or rewrite code.

javax.net
(http://java.sun.com/javase
/6/docs/api/index.html)

This package provides classes for
networking applications. These classes
include factories for creating sockets. Using
socket factories you can encapsulate socket
creation and configuration behavior.

javax.net.SSL
(http://java.sun.com/javase
/6/docs/api/index.html)

While the classes and interfaces in this
package are supported by WebLogic Server,
Oracle recommends that you use the
weblogic.security.SSL package when
you use SSL with WebLogic Server.

java.security.cert
(http://java.sun.com/javase
/6/docs/api/index.html)

This package provides classes and
interfaces for parsing and managing
certificates, certificate revocation lists
(CRLs), and certification paths. It contains
support for X.509 v3 certificates and X.509
v2 CRLs.

SSL Certificate Authentication Development Environment

Using SSL Authentication in Java Clients 5-5

java.security.KeyStore
(http://java.sun.com/javase
/6/docs/api/index.html)

This class represents an in-memory
collection of keys and certificates. It is used
to manage two types of keystore entries:

■ Key Entry

This type of keystore entry holds
cryptographic key information, which
is stored in a protected format to
prevent unauthorized access.

Typically, a key stored in this type of
entry is a secret key, or a private key
accompanied by the certificate chain
for the corresponding public key.

Private keys and certificate chains are
used by a given entity for
self-authentication. Applications for
this authentication include software
distribution organizations that sign
JAR files as part of releasing and/or
licensing software.

■ Trusted Certificate Entry

This type of entry contains a single
public key certificate belonging to
another party. It is called a trusted
certificate because the keystore owner
trusts that the public key in the
certificate indeed belongs to the
identity identified by the subject
(owner) of the certificate.

This type of entry can be used to
authenticate other parties.

java.security.PrivateKey
(http://java.sun.com/javase
/6/docs/api/index.html)

A private key. This interface contains no
methods or constants. It merely serves to
group (and provide type safety for) all
private key interfaces.

Note: The specialized private key interfaces
extend this interface. For example, see the
DSAPrivateKey interface in
java.security.interfaces.

java.security.Provider
(http://java.sun.com/javase
/6/docs/api/index.html)

This class represents a "Cryptographic
Service Provider" for the Java Security API,
where a provider implements some or all
parts of Java Security, including:

■ Algorithms (such as DSA, RSA, MD5
or SHA-1).

■ Key generation, conversion, and
management facilities (such as for
algorithm-specific keys).

Each provider has a name and a version
number, and is configured in each runtime
it is installed in.

To supply implementations of
cryptographic services, a team of
developers or a third-party vendor writes
the implementation code and creates a
subclass of the Provider class.

Table 5–2 (Cont.) Java Certificate APIs

Java Certificate APIs Description

SSL Certificate Authentication Development Environment

5-6 Programming Security for Oracle WebLogic Server

javax.servlet.http.HttpServletReques
t
(http://java.sun.com/javaee
/5/docs/api/index.html)

This interface extends the
ServletRequest interface to provide
request information for HTTP servlets.

The servlet container creates an
HttpServletRequest object and passes
it as an argument to the servlet's service
methods (doGet, doPost, and so on.).

javax.servlet.http.HttpServletRespo
nse
(http://java.sun.com/javaee
/5/docs/api/index.html)

This interface extends the
ServletResponse interface to provide
HTTP-specific functionality in sending a
response. For example, it has methods to
access HTTP headers and cookies.

The servlet container creates an
HttpServletRequest object and passes
it as an argument to the servlet's service
methods (doGet, doPost, and so on.).

javax.servlet.ServletOutputStream
(http://java.sun.com/javaee
/5/docs/api/index.html)

This class provides an output stream for
sending binary data to the client. A
ServletOutputStream object is
normally retrieved via the
ServletResponse.getOutputStream(
) method.

This is an abstract class that the servlet
container implements. Subclasses of this
class must implement the
java.io.OutputStream.write(int)
method.

javax.servlet.ServletResponse
(http://java.sun.com/javaee
/5/docs/api/index.html)

This class defines an object to assist a
servlet in sending a response to the client.
The servlet container creates a
ServletResponse object and passes it as
an argument to the servlet's service
methods (doGet, doPost, and so on.).

Table 5–3 WebLogic Certificate APIs

WebLogic Certificate APIs Description

weblogic.net.http.HttpsURLCo
nnection

This class is used to represent a HTTP with SSL
(HTTPS) connection to a remote object. Use this class
to make an outbound SSL connection from a
WebLogic Server acting as a client to another
WebLogic Server.

Table 5–2 (Cont.) Java Certificate APIs

Java Certificate APIs Description

SSL Certificate Authentication Development Environment

Using SSL Authentication in Java Clients 5-7

5.3.2 SSL Client Application Components
At a minimum, an SSL client application includes the following components:

■ Java client

Typically, a Java client performs these functions:

weblogic.security.SSL.Hostnam
eVerifier

During an SSL handshake, hostname verification
establishes that the hostname in the URL matches
the hostname in the server's identification; this
verification is necessary to prevent
man-in-the-middle attacks.

WebLogic Server provides a certificate-based
implementation of HostnameVerifier which is used
by default, and which verifies that the URL
hostname matches the CN field value of the server
certificate.

You can replace this default hostname verifier with a
custom hostname verifier by using the Advanced
Options pane under the Administration Console SSL
tab; this will affect the default for SSL clients
running on the server using the WebLogic SSL APIs.
In addition, WebLogic SSL APIs such as
HttpsURLConnection, and SSLContext allow
the explicit setting of a custom HostnameVerifier.

weblogic.security.SSL.TrustMa
nager

This interface permits the user to override certain
validation errors in the peer's certificate chain and
allow the handshake to continue. This interface also
permits the user to perform additional validation on
the peer certificate chain and interrupt the
handshake if need be.

weblogic.security.SSL.CertPath
TrustManager

This class makes use of the configured
CertPathValidation providers to perform extra
validation; for example, revocation checking.

By default, CertPathTrustManager is installed but
configured not to call the CertPathValidators
(controlled by the SSLMBean attributes
InboundCertificateValidation and
OutboundCertificateValidation).

Applications that install a custom TrustManager will
replace CertPathTrustManager. An application that
wants to use a custom TrustManager, and call the
CertPathProviders at the same time, can delegate to
a CertPathTrustManager from its custom
TrustManager.

weblogic.security.SSL.SSLCont
ext

This class holds all of the state information shared
across all sockets created under that context.

weblogic.security.SSL.SSLSocke
tFactory

This class provides the API for creating SSL sockets.

weblogic.security.SSL.SSLValid
ationConstants

This class defines context element names. SSL
performs some built-in validation before it calls one
or more CertPathValidator objects to perform
additional validation. A validator can reduce the
amount of validation it must do by discovering
what validation has already been done.

Table 5–3 (Cont.) WebLogic Certificate APIs

WebLogic Certificate APIs Description

Writing Applications that Use SSL

5-8 Programming Security for Oracle WebLogic Server

– Initializes an SSLContext with client identity, trust, a HostnameVerifier,
and a TrustManager.

– Loads a keystore and retrieves the private key and certificate chain

– Uses an SSLSocketFactory

– Uses HTTPS to connect to a JSP served by an instance of WebLogic Server

■ HostnameVerifier

The HostnameVerifier implements the
weblogic.security.SSL.HostnameVerifier interface.

■ HandshakeCompletedListener

The HandshakeCompletedListener implements the
javax.net.ssl.HandshakeCompletedListener interface. It is used by the
SSL client to receive notifications about the completion of an SSL handshake on a
given SSL connection.

■ TrustManager

The TrustManager implements the weblogic.security.SSL.TrustManager
interface.

For a complete working SSL authentication client that implements the components
described here, see the SSLClient sample application in the SAMPLES_
HOME\server\examples\src\examples\security\sslclient directory
provided with WebLogic Server.

For more information on JSSE authentication, see Sun's Java Secure Socket Extension
(JSSE) Reference Guide available at
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse
/JSSERefGuide.html.

5.4 Writing Applications that Use SSL
This section covers the following topics:

■ Section 5.4.1, "Communicating Securely From WebLogic Server to Other WebLogic
Servers"

■ Section 5.4.2, "Writing SSL Clients"

■ Section 5.4.3, "Using Two-Way SSL Authentication"

■ Section 5.4.4, "Using a Custom Hostname Verifier"

■ Section 5.4.5, "Using a Trust Manager"

■ Section 5.4.8, "Using an SSLContext"

■ Section 5.4.9, "Using URLs to Make Outbound SSL Connections"

5.4.1 Communicating Securely From WebLogic Server to Other WebLogic Servers
You can use a URL object to make an outbound SSL connection from a WebLogic
Server instance acting as a client to another WebLogic Server instance. The
weblogic.net.http.HttpsURLConnection class provides a way to specify the
security context information for a client, including the digital certificate and private
key of the client.

Writing Applications that Use SSL

Using SSL Authentication in Java Clients 5-9

The weblogic.net.http.HttpsURLConnection class provides methods for
determining the negotiated cipher suite, getting/setting a hostname verifier, getting
the server's certificate chain, and getting/setting an SSLSocketFactory in order to
create new SSL sockets.

The SSLClient code example uses the weblogic.net.http.HttpsURLConnection
class to make an outbound SSL connection. The SSLClient code example is available in
the examples.security.sslclient package in the SAMPLES_
HOME\server\examples\src\examples\security\sslclient directory.

5.4.2 Writing SSL Clients
This section uses examples to show how to write various types of SSL clients.
Examples of the following types of SSL clients are provided:

■ Section 5.4.2.1, "SSLClient Sample"

■ Section 5.4.2.2, "SSLSocketClient Sample"

■ Section 5.4.3, "Using Two-Way SSL Authentication"

5.4.2.1 SSLClient Sample
The SSLClient sample demonstrates how to use the WebLogic SSL library to make
outgoing SSL connections using URL and URLConnection objects. It shows both how
to do this from a stand-alone application as well as from a servlet in WebLogic Server.

Example 5–2 shows code fragments from the SSLClient example; the complete
example is located at SAMPLES_
HOME\server\examples\src\examples\security\sslclient directory in the
SSLClient.java file.

Example 5–2 SSLClient Sample Code Fragments

package examples.security.sslclient;

import java.io.*;
import java.net.URL;
import java.security.Provider;
import javax.servlet.ServletOutputStream;
...
 /*
 * This method contains an example of how to use the URL and
 * URLConnection objects to create a new SSL connection, using
 * WebLogic SSL client classes.
 */
 public void wlsURLConnect(String host, String port,
 String sport, String query,
 OutputStream out)
 throws Exception {
...
 URL wlsUrl = null;
 try {
 wlsUrl = new URL("http", host, Integer.valueOf(port).intValue(),

Note: WebLogic Server acting as an SSL client uses the server's
identity certificate for outgoing SSL connections. Applications running
on WebLogic Server and using the previously described SSL APIs do
not share the server's identity certificates by default, only the trust.

Writing Applications that Use SSL

5-10 Programming Security for Oracle WebLogic Server

 query);
 weblogic.net.http.HttpURLConnection connection =
 new weblogic.net.http.HttpURLConnection(wlsUrl);
 tryConnection(connection, out);
 }
...
 wlsUrl = new URL("https", host, Integer.valueOf(sport).intValue(),

query);
 weblogic.net.http.HttpsURLConnection sconnection =
 new weblogic.net.http.HttpsURLConnection(wlsUrl);
...

5.4.2.2 SSLSocketClient Sample
The SSLSocketClient sample demonstrates how to use SSL sockets to go directly to the
secure port to connect to a JSP served by an instance of WebLogic Server and display
the results of that connection. It shows how to implement the following functions:

■ Initializing an SSLContext with client identity, a HostnameVerifier, and a
TrustManager

■ Loading a keystore and retrieving the private key and certificate chain

■ Using an SSLSocketFactory

■ Using HTTPS to connect to a JSP served by WebLogic Server

■ Implementing the javax.net.ssl.HandshakeCompletedListener interface

■ Creating a dummy implementation of the
weblogic.security.SSL.HostnameVerifier class to verify that the server
the example connects to is running on the desired host

Example 5–3 shows code fragments from the SSLSocketClient example; the complete
example is located at SAMPLES_
HOME\server\examples\src\examples\security\sslclient directory in the
SSLSocketClient.java file. (The SSLClientServlet example in the sslclient
directory is a simple servlet wrapper of the SSLClient example.)

Example 5–3 SSLSocketClient Sample Code Fragments

package examples.security.sslclient;

import java.io.*;
import java.security.KeyStore;
import java.security.PrivateKey;
import java.security.cert.Certificate;
import javax.net.ssl.HandshakeCompletedListener;
import javax.net.ssl.SSLSocket;
import weblogic.security.SSL.HostnameVerifier;
import weblogic.security.SSL.SSLContext;
import weblogic.security.SSL.SSLSocketFactory;
import weblogic.security.SSL.TrustManager;
...
 SSLContext sslCtx = SSLContext.getInstance("https");
 File KeyStoreFile = new File ("mykeystore");
...
 // Open the keystore, retrieve the private key, and certificate chain
 KeyStore ks = KeyStore.getInstance("jks");
 ks.load(new FileInputStream("mykeystore"), null);
 PrivateKey key = (PrivateKey)ks.getKey("mykey",

Writing Applications that Use SSL

Using SSL Authentication in Java Clients 5-11

"testkey".toCharArray());
 Certificate [] certChain = ks.getCertificateChain("mykey");
 sslCtx.loadLocalIdentity(certChain, key);
 HostnameVerifier hVerifier = null;
 if (argv.length < 3)
 hVerifier = new NulledHostnameVerifier();
 else
 hVerifier = (HostnameVerifier)
 Class.forName(argv[2]).newInstance();

 sslCtx.setHostnameVerifier(hVerifier);
 TrustManager tManager = new NulledTrustManager();
 sslCtx.setTrustManager(tManager);
 System.out.println(" Creating new SSLSocketFactory with SSLContext");
 SSLSocketFactory sslSF = (SSLSocketFactory)

sslCtx.getSocketFactory();
 System.out.println(" Creating and opening new SSLSocket with
 SSLSocketFactory");
 // using createSocket(String hostname, int port)
 SSLSocket sslSock = (SSLSocket) sslSF.createSocket(argv[0],
 new Integer(argv[1]).intValue());
 System.out.println(" SSLSocket created");

HandshakeCompletedListener mListener = null;
mListener = new MyListener();
sslSock.addHandshakeCompletedListener(new MyListener());

 ...

5.4.3 Using Two-Way SSL Authentication
When using certificate authentication, WebLogic Server sends a digital certificate to
the requesting client. The client examines the digital certificate to ensure that it is
authentic, has not expired, and matches the WebLogic Server instance that presented
it.

With two-way SSL authentication (a form of mutual authentication), the requesting
client also presents a digital certificate to WebLogic Server. When the instance of
WebLogic Server is configured for two-way SSL authentication, requesting clients are
required to present digital certificates from a specified set of certificate authorities.
WebLogic Server accepts only digital certificates that are signed by trusted certificate
authorities.

For information on how to configure WebLogic Server for two-way SSL authentication,
see the "Configuring SSL" in Oracle Fusion Middleware Securing Oracle WebLogic Server.

The following sections describe the different ways two-way SSL authentication can be
implemented in WebLogic Server.

■ Section 5.4.3.1, "Two-Way SSL Authentication with JNDI"

■ Section 5.4.3.3, "Using Two-Way SSL Authentication Between WebLogic Server
Instances"

■ Section 5.4.3.4, "Using Two-Way SSL Authentication with Servlets"

5.4.3.1 Two-Way SSL Authentication with JNDI
When using JNDI for two-way SSL authentication in a Java client, use the
setSSLClientCertificate() method of the WebLogic JNDI Environment class.
This method sets a private key and chain of X.509 digital certificates for client
authentication.

Writing Applications that Use SSL

5-12 Programming Security for Oracle WebLogic Server

To pass digital certificates to JNDI, create an array of InputStreams opened on files
containing DER-encoded digital certificates and set the array in the JNDI hash table.
The first element in the array must contain an InputStream opened on the Java
client's private key file. The second element must contain an InputStream opened on
the Java client's digital certificate file. (This file contains the public key for the Java
client.) Additional elements may contain the digital certificates of the root certificate
authority and the signer of any digital certificates in a certificate chain. A certificate
chain allows WebLogic Server to authenticate the digital certificate of the Java client if
that digital certificate was not directly issued by the server's trusted certificate
authority.

You can use the weblogic.security.PEMInputStream class to read digital certificates
stored in Privacy Enhanced Mail (PEM) files. This class provides a filter that decodes
the base 64-encoded certificate from a PEM file.

Example 5–4 demonstrates how to use two-way SSL authentication in a Java client.

Example 5–4 Example of a Two-Way SSL Authentication Client That Uses JNDI

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import weblogic.jndi.Environment;
import weblogic.security.PEMInputStream;
import java.io.InputStream;
import java.io.FileInputStream;
public class SSLJNDIClient
{
 public static void main(String[] args) throws Exception
 {
 Context context = null;
 try {
 Environment env = new Environment();
 // set connection parameters
 env.setProviderUrl("t3s://localhost:7002");
 // The next two set methodes are optional if you are using
 // a UserNameMapper interface.
 env.setSecurityPrincipal("system");
 env.setSecurityCredentials("weblogic");
 InputStream key = new FileInputStream("certs/demokey.pem");
 InputStream cert = new FileInputStream("certs/democert.pem");
 // wrap input streams if key/cert are in pem files
 key = new PEMInputStream(key);
 cert = new PEMInputStream(cert);
 env.setSSLClientCertificate(new InputStream[] { key, cert});
 env.setInitialContextFactory(Environment.DEFAULT_INITIAL_CONTEXT_
FACTORY);
 context = env.getInitialContext();
 Object myEJB = (Object) context.lookup("myEJB");
 }
 finally {
 if (context != null) context.close();
 }
 }
}

When the JNDI getInitialContext() method is called, the Java client and
WebLogic Server execute mutual authentication in the same way that a Web browser
performs mutual authentication to get a secure Web server connection. An exception is
thrown if the digital certificates cannot be validated or if the Java client's digital

Writing Applications that Use SSL

Using SSL Authentication in Java Clients 5-13

certificate cannot be authenticated in the default (active) security realm. The
authenticated user object is stored on the Java client's server thread and is used for
checking the permissions governing the Java client's access to any protected WebLogic
resources.

When you use the WebLogic JNDI Environment class, you must create a new
Environment object for each call to the getInitialContext() method. Once you
specify a User object and security credentials, both the user and their associated
credentials remain set in the Environment object. If you try to reset them and then
call the JNDI getInitialContext() method, the original user and credentials are
used.

When you use two-way SSL authentication from a Java client, WebLogic Server gets a
unique Java Virtual Machine (JVM) ID for each client JVM so that the connection
between the Java client and WebLogic Server is constant. Unless the connection times
out from lack of activity, it persists as long as the JVM for the Java client continues to
execute. The only way a Java client can negotiate a new SSL connection reliably is by
stopping its JVM and running another instance of the JVM.

The code in Example 5–4 generates a call to the WebLogic Identity Assertion provider
that implements the
weblogic.security.providers.authentication.UserNameMapper
interface. The class that implements the UserNameMapper interface returns a user
object if the digital certificate is valid. WebLogic Server stores this authenticated user
object on the Java client's thread in WebLogic Server and uses it for subsequent
authorization requests when the thread attempts to use WebLogic resources protected
by the default (active) security realm.

If you have not configured an Identity Assertion provider that performs
certificate-based authentication, a Java client running in a JVM with an SSL connection
can change the WebLogic Server user identity by creating a new JNDI
InitialContext and supplying a new user name and password in the JNDI
SECURITY_PRINCIPAL and SECURITY_CREDENTIALS properties. Any digital
certificates passed by the Java client after the SSL connection is made are not used. The
new WebLogic Server user continues to use the SSL connection negotiated with the
initial user's digital certificate.

If you have configured an Identity Assertion provider that performs certificate-based
authentication, WebLogic Server passes the digital certificate from the Java client to the
class that implements the UserNameMapper interface and the UserNameMapper
class maps the digital certificate to a WebLogic Server user name. Therefore, if you
want to set a new user identity when you use the certificate-based identity assertion,
you cannot change the identity. This is because the digital certificate is processed only
at the time of the first connection request from the JVM for each Environment.

Note: Your CLASSPATH must specify the implementation of the
weblogic.security.providers.authentication.UserNameMapper
interface.

Writing Applications that Use SSL

5-14 Programming Security for Oracle WebLogic Server

5.4.3.2 Writing a User Name Mapper
When using two-way SSL, WebLogic Server verifies the digital certificate of the Web
browser or Java client when establishing an SSL connection. However, the digital
certificate does not identify the Web browser or Java client as a user in the WebLogic
Server security realm. If the Web browser or Java client requests a WebLogic Server
resource protected by a security policy, WebLogic Server requires the Web browser or
Java client to have an identity. To handle this requirement, the WebLogic Identity
Assertion provider allows you to enable a user name mapper that maps the digital
certificate of a Web browser or Java client to a user in a WebLogic Server security
realm. The user name mapper must be an implementation the
weblogic.security.providers.authentication.UserNameMapper
interface.

You have the option of the using the default implementation of the
weblogic.security.providers.authentication.UserNameMapper
interface, DefaultUserNameMapperImpl, or developing your own implementation.

The WebLogic Identity Assertion provider can call the implementation of the
UserNameMapper interface for the following types of identity assertion token types:

■ X.509 digital certificates passed via the SSL handshake

■ X.509 digital certificates passed via CSIv2

■ X.501 distinguished names passed via CSIv2

If you need to map different types of certificates, write your own implementation of
the UserNameMapper interface.

To implement a UserNameMapper interface that maps a digital certificate to a user
name, write a UserNameMapper class that performs the following operations:

1. Instantiates the UserNameMapper implementation class.

2. Creates the UserNameMapper interface implementation.

3. Uses the mapCertificateToUserName() method to map a certificate to a user
name based on a certificate chain presented by the client.

4. Maps a string attribute type to the corresponding Attribute Value
Assertion field type.

5.4.3.3 Using Two-Way SSL Authentication Between WebLogic Server Instances
You can use two-way SSL authentication in server-to-server communication in which
one WebLogic Server instance is acting as the client of another WebLogic Server
instance. Using two-way SSL authentication in server-to-server communication

Caution: Multiple, concurrent, user logins to WebLogic Server from
a single client JVM when using two-way SSL and JNDI is not
supported. If multiple logins are executed on different threads, the
results are undeterminable and might result in one user's requests
being executed on another user's login, thereby allowing one user to
access another user's data. WebLogic Server does not support
multiple, concurrent, certificate-based logins from a single client JVM.
For information on JNDI contexts and threads and how to avoid
potential JNDI context problems, see "JNDI Contexts and Threads"
and "How to Avoid Potential JNDI Context Problems" in Oracle Fusion
Middleware Programming JNDI for Oracle WebLogic Server.

Writing Applications that Use SSL

Using SSL Authentication in Java Clients 5-15

enables you to have dependable, highly-secure connections, even without the more
common client/server environment.

Example 5–5 shows an example of how to establish a secure connection from a servlet
running in one instance of WebLogic Server to a second WebLogic Server instance
called server2.weblogic.com.

Example 5–5 Establishing a Secure Connection to Another WebLogic Server Instance

FileInputStream [] f = new FileInputStream[3];
 f[0]= new FileInputStream("demokey.pem");
 f[1]= new FileInputStream("democert.pem");
 f[2]= new FileInputStream("ca.pem");
Environment e = new Environment ();
e.setProviderURL("t3s://server2.weblogic.com:443");
e.setSSLClientCertificate(f);
e.setSSLServerName("server2.weblogic.com");
e.setSSLRootCAFingerprints("ac45e2d1ce492252acc27ee5c345ef26");

e.setInitialContextFactory
("weblogic.jndi.WLInitialContextFactory");
Context ctx = new InitialContext(e.getProperties())

In Example 5–5, the WebLogic JNDI Environment class creates a hash table to store
the following parameters:

■ setProviderURL—specifies the URL of the WebLogic Server instance acting as
the SSL server. The WebLogic Server instance acting as SSL client calls this
method. The URL specifies the t3s protocol which is a WebLogic Server
proprietary protocol built on the SSL protocol. The SSL protocol protects the
connection and communication between the two WebLogic Servers instances.

■ setSSLClientCertificate—specifies the private key and certificate chain to
use for the SSL connection. You use this method to specify an input stream array
that consists of a private key (which is the first input stream in the array) and a
chain of X.509 certificates (which make up the remaining input streams in the
array). Each certificate in the chain of certificates is the issuer of the certificate
preceding it in the chain.

■ setSSLServerName—specifies the name of the WebLogic Server instance acting
as the SSL server. When the SSL server presents its digital certificate to the
WebLogic Server acting as the SSL client, the name specified using the
setSSLServerName method is compared to the common name field in the
digital certificate. In order for hostname verification to succeed, the names must
match. This parameter is used to prevent man-in-the-middle attacks.

■ setSSLRootCAFingerprint—specifies digital codes that represent a set of
trusted certificate authorities, thus specifying trust based on a trusted certificate
fingerprint. The root certificate in the certificate chain received from the WebLogic
Server instance acting as the SSL server has to match one of the fingerprints
specified with this method in order to be trusted. This parameter is used to
prevent man-in-the-middle attacks. It provides an addition to the default level of
trust, which for clients running on WebLogic Server is that specified by the
WebLogic Server trust configuration.

Writing Applications that Use SSL

5-16 Programming Security for Oracle WebLogic Server

5.4.3.4 Using Two-Way SSL Authentication with Servlets
To authenticate Java clients in a servlet (or any other server-side Java class), you must
check whether the client presented a digital certificate and if so, whether the certificate
was issued by a trusted certificate authority. The servlet developer is responsible for
asking whether the Java client has a valid digital certificate. When developing servlets
with the WebLogic Servlet API, you must access information about the SSL connection
through the getAttribute() method of the HTTPServletRequest object.

The following attributes are supported in WebLogic Server servlets:

■ javax.servlet.request.X509Certificate

■ java.security.cert.X509Certificate []—returns an array of the X.509
certificate.

■ javax.servlet.request.cipher_suite—returns a string representing the
cipher suite used by HTTPS.

■ javax.servlet.request.key_size— returns an integer (0, 40, 56, 128, 168)
representing the bit size of the symmetric (bulk encryption) key algorithm.

■ weblogic.servlet.request.SSLSession

■ javax.net.ssl.SSLSession—returns the SSL session object that contains the
cipher suite and the dates on which the object was created and last used.

You have access to the user information defined in the digital certificates. When you
get the javax.servlet.request.X509Certificate attribute, it is an array of
type java.security.cert.X509Certificate. You simply cast the array to that
type and examine the certificates.

A digital certificate includes information, such as the following:

■ The name of the subject (holder, owner) and other identification information
required to verify the unique identity of the subject.

■ The subject's public key

■ The name of the certificate authority that issued the digital certificate

■ A serial number

■ The validity period (or lifetime) of the digital certificate (as defined by a start date
and an end date)

5.4.4 Using a Custom Hostname Verifier
A hostname verifier validates that the host to which an SSL connection is made is the
intended or authorized party. A hostname verifier is useful when a WebLogic client or
a WebLogic Server instance is acting as an SSL client to another application server. It
helps prevent man-in-the-middle attacks.

Note: For information on JNDI contexts and threads and how to
avoid potential JNDI context problems, see "JNDI Contexts and
Threads" and "How to Avoid Potential JNDI Context Problems" in
Oracle Fusion Middleware Programming JNDI for Oracle WebLogic Server.

Writing Applications that Use SSL

Using SSL Authentication in Java Clients 5-17

By default, WebLogic Server, as a function of the SSL handshake, compares the CN
field of the SSL server certificate Subject DN with the hostname in the URL used to
connect to the server. If these names do not match, the SSL connection is dropped.

The dropping of the SSL connection is caused by the SSL client, which validates the
hostname of the server against the digital certificate of the server. If anything but the
default behavior is desired, you can either turn off hostname verification or register a
custom hostname verifier. Turning off hostname verification leaves the SSL
connections vulnerable to man-in-the-middle attacks.

You can turn off hostname verification in the following ways:

■ In the Administration Console, specify None in the Hostname Verification field
that is located on the Advanced Options pane under the Keystore & SSL tab for
the server (for example, myserver).

■ On the command line of the SSL client, enter the following argument:

-Dweblogic.security.SSL.ignoreHostnameVerification=true

You can write a custom hostname verifier. The
weblogic.security.SSL.HostnameVerifier interface provides a callback
mechanism so that implementers of this interface can supply a policy on whether the
connection to the URL's hostname should be allowed. The policy can be
certificate-based or can depend on other authentication schemes.

To use a custom hostname verifier, create a class that implements the
weblogic.security.SSL.HostnameVerifier interface and define the methods
that capture information about the server's security identity.

Before you can use a custom hostname verifier, you need to specify the class for your
implementation in the following ways:

■ In the Administration Console, set the SSL.HostName Verifier field on the SSL tab
under Server Configuration to the name of a class that implements this interface.
The specified class must have a public no-arg constructor.

■ On the command line, enter the following argument:

-Dweblogic.security.SSL.hostnameVerifier=hostnameverifier

The value for hostnameverifier is the name of the class that implements the
custom hostname verifier.

Example 5–6 shows code fragments from the NulledHostnameVerifier example; the
complete example is located at SAMPLES_
HOME\server\examples\src\examples\security\sslclient directory in the
NulledHostnameVerifier.java file. This code example contains a

Note: Demonstration digital certificates are generated during
installation so they do contain the hostname of the system on which
the WebLogic Server software installed. Therefore, you should leave
hostname verification on when using the demonstration certificates
for development or testing purposes.

Note: This interface takes new style certificates and replaces the
weblogic.security.SSL.HostnameVerifierJSSE interface, which is
deprecated.

Writing Applications that Use SSL

5-18 Programming Security for Oracle WebLogic Server

NulledHostnameVerifier class which always returns true for the comparison. The
sample allows the WebLogic SSL client to connect to any SSL server regardless of the
server's hostname and digital certificate SubjectDN comparison.

Example 5–6 Hostname Verifier Sample Code Fragment

public class NulledHostnameVerifier implements
 weblogic.security.SSL.HostnameVerifier {
 public boolean verify(String urlHostname, javax.net.ssl.SSLSession session) {
 return true;
 }
}

5.4.5 Using a Trust Manager
The weblogic.security.SSL.TrustManager interface provides the ability to:

■ Ignore specific certificate validation errors

■ Perform additional validation on the peer certificate chain

When an SSL client connects to an instance of WebLogic Server, the server presents its
digital certificate chain to the client for authentication. That chain could contain an
invalid digital certificate. The SSL specification says that the client should drop the SSL
connection upon discovery of an invalid certificate. You can use a custom
implementation of the TrustManager interface to control when to continue or
discontinue an SSL handshake. Using a trust manager, you can ignore certain
validation errors, optionally perform custom validation checks, and then decide
whether or not to continue the handshake.

Use the weblogic.security.SSL.TrustManager interface to create a trust
manager. The interface contains a set of error codes for certificate verification. You can
also perform additional validation on the peer certificate and interrupt the SSL
handshake if need be. After a digital certificate has been verified, the
weblogic.security.SSL.TrustManager interface uses a callback function to
override the result of verifying the digital certificate. You can associate an instance of a
trust manager with an SSL context through the setTrustManager() method.

You can only set up a trust manger programmatically; its use cannot be defined
through the Administration Console or on the command-line.

Example 5–7 shows code fragments from the NulledTrustManager example; the
complete example is located at SAMPLES_
HOME\server\examples\src\examples\security\sslclient directory in the
NulledTrustManager.java file. The SSLSocketClient example uses the custom
trust manager. The SSLSocketClient shows how to set up a new SSL connection by
using an SSL context with the trust manager.

Note: This interface takes new style certificates and replaces the
weblogic.security.SSL.TrustManagerJSSE interface, which is
deprecated.

Note: Depending on the checks performed, use of a trust manager
may potentially impact performance.

Writing Applications that Use SSL

Using SSL Authentication in Java Clients 5-19

Example 5–7 NulledTrustManager Sample Code Fragments

package examples.security.sslclient;

import weblogic.security.SSL.TrustManager;
import java.security.cert.X509Certificate;
...
public class NulledTrustManager implements TrustManager{
 public boolean certificateCallback(X509Certificate[] o, int validateErr) {
 System.out.println(" --- Do Not Use In Production ---\n" +

" By using this NulledTrustManager, the trust in" +
" the server's identity is completely lost.\n" +

" --------------------------------");
 for (int i=0; i<o.length; i++)
 System.out.println(" certificate " + i + " -- " + o[i].toString());
 return true;
 }
}

5.4.6 Using the CertPath Trust Manager
The CertPathTrustManager, weblogic.security.SSL.CertPathTrustManager,
makes use of the default security realm's configured CertPath validation providers to
perform extra validation such as revocation checking.

By default, application code using outbound SSL in the server has access only to the
built-in SSL certificate validation. However, application code can specify the
CertPathTrustManager in order to access any additional certificate validation that the
administrator has configured for the server. If you want your application code to also
run the CertPath validators, the application code should use the
CertPathTrustManager.

There are three ways to use this class:

■ The Trust Manager calls the configured CertPathValidators only if the
administrator has set a switch on the SSLMBean stating that outbound SSL should
use the validators. That is, the application completely delegates validation to
whatever the administrator configures. You use the
setUseConfiguredSSLValidation() method for this purpose. This is the
default.

■ The Trust Manager always calls any configured CertPathValidators. You use the
setBuiltinSSLValidationAndCertPathValidators() method for this
purpose.

■ The Trust Manager never calls any configured CertPathValidators. You use the
setBuiltinSSLValidationOnly() method for this purpose.

5.4.7 Using a Handshake Completed Listener
The javax.net.ssl.HandshakeCompletedListener interface defines how an
SSL client receives notifications about the completion of an SSL protocol handshake on
a given SSL connection. Example 5–8 shows code fragments from the MyListener
example; the complete example is located at SAMPLES_
HOME\server\examples\src\examples\security\sslclient directory in the
MyListener.java file.

Writing Applications that Use SSL

5-20 Programming Security for Oracle WebLogic Server

Example 5–8 MyListener (HandshakeCompletedListener) Sample Code Fragments

package examples.security.sslclient;

import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import javax.net.ssl.HandshakeCompletedListener;
import java.util.Hashtable;
import javax.net.ssl.SSLSession;
...
 public class MyListener implements HandshakeCompletedListener
 {
 public void handshakeCompleted(javax.net.ssl.HandshakeCompletedEvent

event)
 {
 SSLSession session = event.getSession();
 System.out.println("Handshake Completed with peer " +

session.getPeerHost());
 System.out.println(" cipher: " + session.getCipherSuite());
 Certificate[] certs = null;
 try
 {
 certs = session.getPeerCertificates();
 }
 catch (SSLPeerUnverifiedException puv)
 {
 certs = null;
 }
 if (certs != null)
 {
 System.out.println(" peer certificates:");
 for (int z=0; z<certs.length; z++)

System.out.println(" certs["+z+"]: " + certs[z]);
 }
 else
 {
 System.out.println("No peer certificates presented");
 }
 }
 }

5.4.8 Using an SSLContext
The SSLContext class is used to programmatically configure SSL and to retain SSL
session information. Each instance can be configured with the keys, certificate chains,
and trusted CA certificates that will be used to perform authentication. SSL sockets
created with the same SSLContext and used to connect to the same SSL server could
potentially reuse SSL session information. Whether the session information is actually
reused depends on the SSL server.

For more information on session caching see "SSL Session Behavior" in Oracle Fusion
Middleware Securing Oracle WebLogic Server. To associate an instance of a trust manager
class with its SSL context, use the
weblogic.security.SSL.SSLContext.setTrustManager() method.

Writing Applications that Use SSL

Using SSL Authentication in Java Clients 5-21

You can only set up an SSL context programmatically; not by using the Administration
Console or the command line. A Java new expression or the getInstance() method
of the SSLContext class can create an SSLContext object. The getInstance()
method is static and it generates a new SSLContext object that implements the
specified secure socket protocol. An example of using the SSLContext class is
provided in the SSLSocketClient.java sample in the SAMPLES_
HOME\server\examples\src\examples\security\sslclient directory. The
SSLSocketClient example shows how to create a new SSL socket factory that will
create a new SSL socket using SSLContext.

Example 5–9 shows a sample instantiation using the getInstance() method.

Example 5–9 SSL Context Code Example

import weblogic.security.SSL.SSLContext;
SSLcontext sslctx = SSLContext.getInstance ("https")

5.4.9 Using URLs to Make Outbound SSL Connections
You can use a URL object to make an outbound SSL connection from a WebLogic
Server instance acting as a client to another WebLogic Server instance. WebLogic
Server supports both one-way and two-way SSL authentication for outbound SSL
connections.

For one-way SSL authentication, you use the java.net.URL,
java.net.URLConnection, and java.net.HTTPURLConnection classes to make
outbound SSL connections using URL objects. Example 5–10 shows a simpleURL class
that supports both HTTP and HTTPS URLs and that only uses these Java classes (that
is, no WebLogic classes are required). To use the simpleURL class for one-way SSL
authentication (HTTPS) on WebLogic Server, all that is required is that
"weblogic.net" be defined in the system property for
java.protocols.handler.pkgs.

Example 5–10 One-Way SSL Authentication URL Outbound SSL Connection Class That
Uses Java Classes Only

import java.net.URL;
import java.net.URLConnection;
import java.net.HttpURLConnection;
import java.io.IOException;
public class simpleURL
{
 public static void main (String [] argv)
 {
 if (argv.length != 1)
 {
 System.out.println("Please provide a URL to connect to");
 System.exit(-1);
 }
 setupHandler();
 connectToURL(argv[0]);

Note: Because the simpleURL sample shown in Example 5–10
defaults trust and hostname checking, this sample requires that you
connect to a real Web server that is trusted and that passes hostname
checking by default. Otherwise, you must override trust and
hostname checking on the command line.

Writing Applications that Use SSL

5-22 Programming Security for Oracle WebLogic Server

 }
 private static void setupHandler()
 {
 java.util.Properties p = System.getProperties();
 String s = p.getProperty("java.protocol.handler.pkgs");
 if (s == null)
 s = "weblogic.net";
 else if (s.indexOf("weblogic.net") == -1)
 s += "|weblogic.net";
 p.put("java.protocol.handler.pkgs", s);
 System.setProperties(p);
 }
 private static void connectToURL(String theURLSpec)
 {
 try
 {
 URL theURL = new URL(theURLSpec);
 URLConnection urlConnection = theURL.openConnection();
 HttpURLConnection connection = null;
 if (!(urlConnection instanceof HttpURLConnection))
 {
 System.out.println("The URL is not using HTTP/HTTPS: " +
 theURLSpec);
 return;
 }
 connection = (HttpURLConnection) urlConnection;
 connection.connect();
 String responseStr = "\t\t" +
 connection.getResponseCode() + " -- " +
 connection.getResponseMessage() + "\n\t\t" +
 connection.getContent().getClass().getName() + "\n";
 connection.disconnect();
 System.out.println(responseStr);
 }
 catch (IOException ioe)
 {
 System.out.println("Failure processing URL: " + theURLSpec);
 ioe.printStackTrace();
 }
 }
}

For two-way SSL authentication, the weblogic.net.http.HttpsURLConnection
class provides a way to specify the security context information for a client, including
the digital certificate and private key of the client. Instances of this class represent an
HTTPS connection to a remote object.

The SSLClient sample code demonstrates using the WebLogic URL object to make an
outbound SSL connection (see Example 5–11). The code example shown in
Example 5–11 is excerpted from the SSLClient.java file in the SAMPLES_
HOME\server\examples\src\examples\security\sslclient directory.

Example 5–11 WebLogic Two-Way SSL Authentication URL Outbound SSL Connection
Code Example

wlsUrl = new URL("https", host, Integer.valueOf(sport).intValue(),
 query);
weblogic.net.http.HttpsURLConnection sconnection =
 new weblogic.net.http.HttpsURLConnection(wlsUrl);
...

SSL Client Code Examples

Using SSL Authentication in Java Clients 5-23

InputStream [] ins = new InputStream[2];
 ins[0] = new FileInputStream("clientkey.pem");
 ins[1] = new FileInputStream("client2certs.pem");
 String pwd = "clientkey";
 sconnection.loadLocalIdentity(ins[0], ins[1], pwd.toCharArray());

5.5 SSL Client Code Examples
A complete working SSL authentication sample is provided with the WebLogic Server
product. The sample is located in the SAMPLES_
HOME\server\examples\src\examples\security\sslclient directory. For a
description of the sample and instructions on how to build, configure, and run this
sample, see the package.html file in the sample directory. You can modify this code
example and reuse it.

SSL Client Code Examples

5-24 Programming Security for Oracle WebLogic Server

6

Securing Enterprise JavaBeans (EJBs) 6-1

6Securing Enterprise JavaBeans (EJBs)

WebLogic Server supports the Java EE architecture security model for securing
Enterprise JavaBeans (EJBs), which includes support for declarative authorization (also
referred to in this document as declarative security) and programmatic authorization
(also referred to in this document as programmatic security).

The following topics are covered in this section:

■ Section 6.1, "Java EE Architecture Security Model"

■ Section 6.2, "Using Declarative Security With EJBs"

■ Section 6.3, "EJB Security-Related Deployment Descriptors"

■ Section 6.4, "Using Programmatic Security With EJBs"

6.1 Java EE Architecture Security Model
The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., states in Section 9.3 Authorization:

"In the J2EE architecture, a container serves as an authorization boundary between the
components it hosts and their callers. The authorization boundary exists inside the
container's authentication boundary so that authorization is considered in the context
of successful authentication. For inbound calls, the container compares security
attributes from the caller's credential with the access control rules for the target
component. If the rules are satisfied, the call is allowed. Otherwise, the call is rejected."

"There are two fundamental approaches to defining access control rules: capabilities
and permissions. Capabilities focus on what a caller can do. Permissions focus on who
can do something. The J2EE application programming model focuses on permissions.
In the J2EE architecture, the job of the deployer is to map the permission model of the
application to the capabilities of users in the operational environment."

The same document then discusses two ways to control access to application resources
using the Java EE architecture, declarative authorization and programmatic
authorization.

Note: You can use deployment descriptor files, the Administration
Console, and JACC to secure EJBs. For information on using the
Administration Console to secure EJBs, see Oracle Fusion Middleware
Securing Resources Using Roles and Policies for Oracle WebLogic Server.
For information on JACC, see Section 8.2.3, "Using the Java
Authorization Contract for Containers".

Java EE Architecture Security Model

6-2 Programming Security for Oracle WebLogic Server

The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., in available online at
http://java.sun.com/blueprints/guidelines/designing_enterprise_
applications_2e/security/security4.html.

6.1.1 Declarative Authorization
The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., states in Section 9.3.1 Authorization:

"The deployer establishes the container-enforced access control rules associated with a
J2EE application. The deployer uses a deployment tool to map an application
permission model, which is typically supplied by the application assembler, to policy
and mechanisms specific to the operational environment. The application permission
model is defined in a deployment descriptor."

WebLogic Server supports the use of deployment descriptors to implement declarative
authorization in EJBs.

The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., in available online at
http://java.sun.com/blueprints/guidelines/designing_enterprise_
applications_2e/security/security4.html.

6.1.2 Programmatic Authorization
The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., states in Section 9.3.2 Programmatic
Authorization:

"A J2EE container makes access control decisions before dispatching method calls to a
component. The logic or state of the component doesn't factor in these access
decisions. However, a component can use two methods,
EJBContext.isCallerInRole (for use by enterprise bean code) and
HttpServletRequest.isUserInRole (for use by Web components), to perform
finer-grained access control. A component uses these methods to determine whether a
caller has been granted a privilege selected by the component based on the parameters
of the call, the internal state of the component, or other factors such as the time of the
call."

"The application component provider of a component that calls one of these functions
must declare the complete set of distinct roleName values to be used in all calls. These
declarations appear in the deployment descriptor as security-role-ref elements.
Each security-role-ref element links a privilege name embedded in the
application as a roleName to a security role. Ultimately, the deployer establishes the
link between the privilege names embedded in the application and the security roles
defined in the deployment descriptor. The link between privilege names and security
roles may differ for components in the same application."

"In addition to testing for specific privileges, an application component can compare
the identity of its caller, acquired using EJBContext.getCallerPrincipal or
HttpServletRequest.getUserPrincipal, to the distinguished caller identities
embedded in the state of the component when it was created. If the identity of the
caller is equivalent to a distinguished caller, the component can allow the caller to

Note: Declarative authorization is also referred in this document as
declarative security.

Using Declarative Security With EJBs

Securing Enterprise JavaBeans (EJBs) 6-3

proceed. If not, the component can prevent the caller from further interaction. The
caller principal returned by a container depends on the authentication mechanism
used by the caller. Also, containers from different vendors may return different
principals for the same user authenticating by the same mechanism. To account for
variability in principal forms, an application developer who chooses to apply
distinguished caller state in component access decisions should allow multiple
distinguished caller identities, representing the same user, to be associated with
components. This is recommended especially where application flexibility or
portability is a priority."

WebLogic Server supports the use of the EJBContext.isCallerInRole and
EJBContext.getCallerPrincipal methods and the use of the
security-role-ref element in deployment descriptors to implement
programmatic authorization in EJBs.

The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., in available online at
http://java.sun.com/blueprints/guidelines/designing_enterprise_
applications_2e/security/security4.html.

6.1.3 Declarative Versus Programmatic Authorization
The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., states in Section 9.3.3 Declarative Versus
Programmatic Authorization:

"There is a trade-off between the external access control policy configured by the
deployer and the internal policy embedded in the application by the component
provider. The external policy is more flexible after the application has been written.
The internal policy provides more flexible functionality while the application is being
written. In addition, the external policy is transparent and completely comprehensible
to the deployer, while internal policy is buried in the application and may only be
completely understood by the application developer. These trade-offs should be
considered in choosing the authorization model for particular components and
methods."

The document Designing Enterprise Applications with the J2EE Platform, Second Edition,
published by Sun Microsystems, Inc., in available online at
http://java.sun.com/blueprints/guidelines/designing_enterprise_
applications_2e/security/security4.html.

6.2 Using Declarative Security With EJBs
There are three ways to implement declarative security:

1. Security providers via the Administration Console, as described in Oracle Fusion
Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.

2. Java Authorization Contract for Containers (JACC), as described in Section 8.2.3,
"Using the Java Authorization Contract for Containers".

3. Deployment descriptors, which are discussed in this section.

Note: Programmatic authorization is also referred in this document
as programmatic security.

Using Declarative Security With EJBs

6-4 Programming Security for Oracle WebLogic Server

Which of these three methods is used is defined by the JACC flags and the security
model. (Security models are described in "Options for Securing EJB and Web
Application Resources" in Oracle Fusion Middleware Securing Resources Using Roles and
Policies for Oracle WebLogic Server)

To implement declarative security in EJBs you can use deployment descriptors
(ejb-jar.xml and weblogic-ejb-jar.xml) to define the security requirements.
Example 6–1 shows examples of how to use the ejb-jar.xml and
weblogic-ejb-jar.xml deployment descriptors to map security role names to a
security realm. The deployment descriptors map the application's logical security
requirements to its runtime definitions. And at runtime, the EJB container uses the
security definitions to enforce the requirements.

To configure security in the EJB deployment descriptors, perform the following steps
(see Example 6–1):

1. Use a text editor to create ejb-jar.xml and weblogic-ejb-jar.xml
deployment descriptor files.

2. In the ejb-jar.xml file, define the security role name, the EJB name, and the
method name (see bold text).

3. In the WebLogic-specific EJB deployment descriptor file,
weblogic-ejb-jar.xml, define the security role name and link it to one or
more principals (users or groups) in a security realm.

For more information on configuring security in the weblogic-ejb-jar.xml
file, see "weblogic-ejb-jar.xml Deployment Descriptor Reference" in Oracle Fusion
Middleware Programming Enterprise JavaBeans for Oracle WebLogic Server.

Example 6–1 Using ejb-jar.xml and weblogic-ejb-jar.xml Files to Map Security Role
Names to a Security Realm

ejb-jar.xml entries:
 ...
<assembly-descriptor>
 <security-role>
 <role-name>manger</role-name>
 </security-role>

Notes: The proper syntax for a security role name is as defined for
an Nmtoken in the Extensible Markup Language (XML)
recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

When specifying security role names, observe the following
conventions and restrictions:

■ Do not use blank spaces, commas, hyphens, or any characters in
this comma-separated list: \t, < >, #, |, &, ~, ?, (), { }.

■ Security role names are case sensitive.

■ The suggested convention for security role names is that they be
singular.

For more information on configuring security in the ejb-jar.xml file,
see the Sun Microsystems Enterprise JavaBeans Specification, Version
2.0 which is at this location on the Internet:
http://java.sun.com/products/ejb/docs.html.

EJB Security-Related Deployment Descriptors

Securing Enterprise JavaBeans (EJBs) 6-5

 <security-role>
 <role-name>east</role-name>
 </security-role>
 <method-permission>
 <role-name>manager</role-name>
 <role-name>east</role-name>
 <method>
 <ejb-name>accountsPayable</ejb-name>
 <method-name>getReceipts</method-name>
 </method>
 </method-permission>
 ...
</assembly-descriptor>
 ...
weblogic-ejb-jar.xml entries:
 <security-role-assignment>
 <role-name>manager</role-name>
 <principal-name>al</principal-name>
 <principal-name>george</principal-name>
 <principal-name>ralph</principal-name>
 </security-role-assignment>
 ...

6.3 EJB Security-Related Deployment Descriptors
The following topics describe the deployment descriptor elements that are used in the
ejb-jar.xml and weblogic-ejb-jar.xml files to define security requirements in
EJBs:

■ Section 6.3.1, "ejb-jar.xml Deployment Descriptors"

■ Section 6.3.2, "weblogic-ejb-jar.xml Deployment Descriptors"

6.3.1 ejb-jar.xml Deployment Descriptors
The following ejb-jar.xml deployment descriptor elements are used to define
security requirements in WebLogic Server:

■ Section 6.3.1.1, "method"

■ Section 6.3.1.2, "method-permission"

■ Section 6.3.1.3, "role-name"

■ Section 6.3.1.4, "run-as"

■ Section 6.3.1.5, "security-identity"

■ Section 6.3.1.6, "security-role"

■ Section 6.3.1.7, "security-role-ref"

■ Section 6.3.1.8, "unchecked"

■ Section 6.3.1.9, "use-caller-identity"

6.3.1.1 method
The method element is used to denote a method of an enterprise bean's home or
component interface, or, in the case of a message-driven bean, the bean's onMessage
method, or a set of methods.

The following table describes the elements you can define within an method element.

EJB Security-Related Deployment Descriptors

6-6 Programming Security for Oracle WebLogic Server

6.3.1.1.1 Used Within The method element is used within the method-permission
element.

6.3.1.1.2 Example For an example of how to use the method element, see Example 6–1.

6.3.1.2 method-permission
The method-permission element specifies that one or more security roles are
allowed to invoke one or more enterprise bean methods. The method-permission
element consists of an optional description, a list of security role names or an indicator
to state that the method is unchecked for authorization, and a list of method elements.

The security roles used in the method-permission element must be defined in the
security-role elements of the deployment descriptor, and the methods must be
methods defined in the enterprise bean's component and/or home interfaces.

The following table describes the elements you can define within a
method-permission element.

Table 6–1 method Element

Element
Required/
Optional Description

<description> Optional A text description of the method.

<ejb-name> Required Specifies the name of one of the enterprise beans
declared in the ejb-jar.xml file.

<method-intf> Optional Allows you to distinguish between a method with
the same signature that is multiply defined across
both the home and component interfaces of the
enterprise bean.

<method-name> Required Specifies a name of an enterprise bean method or the
asterisk (*) character. The asterisk is used when the
element denotes all the methods of an enterprise
bean's component and home interfaces.

<method-params> Optional Contains a list of the fully-qualified Java type names
of the method parameters.

Table 6–2 method-permission Element

Element
Required/
Optional Description

<description> Optional A text description of this security
constraint.

<role-name> or
<unchecked>

Required The role-name element or the
unchecked element must be specified.

The role-name element contains the
name of a security role. The name must
conform to the lexical rules for an
NMTOKEN.

The unchecked element specifies that a
method is not checked for authorization by
the container prior to invocation of the
method.

<method> Required Specifies a method of an enterprise bean's
home or component interface, or, in the
case of a message-driven bean, the bean's
onMessage method, or a set of methods.

EJB Security-Related Deployment Descriptors

Securing Enterprise JavaBeans (EJBs) 6-7

6.3.1.2.1 Used Within The method-permission element is used within the
assembly-descriptor element.

6.3.1.2.2 Example For an example of how to use the method-permission element,
see Example 6–1.

6.3.1.3 role-name
The role-name element contains the name of a security role. The name must conform
to the lexical rules for an NMTOKEN.

6.3.1.3.1 Used Within The role-name element is used within the method-permission,
run-as, security-role, and security-role-ref elements.

6.3.1.3.2 Example For an example of how to use the role-name element, see
Example 6–1.

6.3.1.4 run-as
The run-as element specifies the run-as identity to be used for the execution of the
enterprise bean. It contains an optional description, and the name of a security role.

6.3.1.4.1 Used Within The run-as element is used within the security-identity
element.

6.3.1.4.2 Example For an example of how to use the run-as element, see Example 6–8.

6.3.1.5 security-identity
The security-identity element specifies whether the caller's security identity is to
be used for the execution of the methods of the enterprise bean or whether a specific
run-as identity is to be used. It contains an optional description and a specification of
the security identity to be used.

The following table describes the elements you can define within an
security-identity element.

6.3.1.5.1 Used Within The security-identity element is used within the entity,
message-driven, and session elements.

Table 6–3 security-identity Element

Element
Required/
Optional Description

<description> Optional A text description of the security identity.

<use-caller-identity> or
<run-as>

Required The use-caller-identity element or
the run-as element must be specified.

The use-caller-identity element
specifies that the caller's security identity
be used as the security identity for the
execution of the enterprise bean's methods.

The run-as element specifies the run-as
identity to be used for the execution of the
enterprise bean. It contains an optional
description, and the name of a security role.

EJB Security-Related Deployment Descriptors

6-8 Programming Security for Oracle WebLogic Server

6.3.1.5.2 Example For an example of how to use the security-identity element,
see Example 6–3 and Example 6–8.

6.3.1.6 security-role
The security-role element contains the definition of a security role. The definition
consists of an optional description of the security role, and the security role name.

6.3.1.6.1 Used Within The security-role element is used within the
assembly-descriptor element.

6.3.1.6.2 Example For an example of how to use the assembly-descriptor element,
see Example 6–1.

6.3.1.7 security-role-ref
The security-role-ref element contains the declaration of a security role
reference in the enterprise bean's code. The declaration consists of an optional
description, the security role name used in the code, and an optional link to a security
role. If the security role is not specified, the Deployer must choose an appropriate
security role.

The value of the role-name element must be the String used as the parameter to the
EJBContext.isCallerInRole(String roleName) method or the
HttpServletRequest.isUserInRole(String role) method.

6.3.1.7.1 Used Within The security-role-ref element is used within the entity
and session elements.

6.3.1.7.2 Example For an example of how to use the security-role-ref element, see
Example 6–2.

Example 6–2 Security-role-ref Element Example

<!DOC<weblogic-ejb-jar xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/90
http://www.bea.com/ns/weblogic/90/weblogic-ejb-jar.xsd">
<ejb-jar>
 <enterprise-beans>
 ...
 <session>
 <ejb-name>SecuritySLEJB</ejb-name>
 <home>weblogic.ejb20.security.SecuritySLHome</home>
 <remote>weblogic.ejb20.security.SecuritySL</remote>

<ejb-class>weblogic.ejb20.security.SecuritySLBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <security-role-ref>

<role-name>rolenamedifffromlink</role-name>
<role-link>role121SL</role-link>

 </security-role-ref>
 <security-role-ref>
 <role-name>roleForRemotes</role-name>
 <role-link>roleForRemotes</role-link>
 </security-role-ref>
 <security-role-ref>
 <role-name>roleForLocalAndRemote</role-name>
 <role-link>roleForLocalAndRemote</role-link>

EJB Security-Related Deployment Descriptors

Securing Enterprise JavaBeans (EJBs) 6-9

 </security-role-ref>
 </session>
 ...
 </enterprise-beans>
</ejb-jar>

6.3.1.8 unchecked
The unchecked element specifies that a method is not checked for authorization by
the container prior to invocation of the method.

6.3.1.8.1 Used Within The unchecked element is used within the
method-permission element.

6.3.1.8.2 Example For an example of how to use the unchecked element, see
Example 6–1.

6.3.1.9 use-caller-identity
The use-caller-identity element specifies that the caller's security identity be
used as the security identity for the execution of the enterprise bean's methods.

6.3.1.9.1 Used Within The use-caller-identity element is used within the
security-identity element.

6.3.1.9.2 Example For an example of how to use the use-caller-identity element,
see Example 6–3.

Example 6–3 use-caller-identity Element Example

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>SecurityEJB</ejb-name>
 <home>weblogic.ejb20.SecuritySLHome</home>
 <remote>weblogic.ejb20.SecuritySL</remote>
 <local-home>
 weblogic.ejb20.SecurityLocalSLHome
 </local-home>
 <local>weblogic.ejb20.SecurityLocalSL</local>
 <ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 <message-driven>
 <ejb-name>SecurityEJB</ejb-name>
 <ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </message-driven>
 </enterprise-beans>
</ejb-jar>

EJB Security-Related Deployment Descriptors

6-10 Programming Security for Oracle WebLogic Server

6.3.2 weblogic-ejb-jar.xml Deployment Descriptors
The following weblogic-ejb-jar.xml deployment descriptor elements are used to
define security requirements in WebLogic Server:

■ Section 6.3.2.1, "client-authentication"

■ Section 6.3.2.2, "client-cert-authentication"

■ Section 6.3.2.3, "confidentiality"

■ Section 6.3.2.4, "externally-defined"

■ Section 6.3.2.5, "identity-assertion"

■ Section 6.3.2.6, "iiop-security-descriptor"

■ Section 6.3.2.7, "integrity"

■ Section 6.3.2.8, "principal-name"

■ Section 6.3.2.9, "role-name"

■ Section 6.3.2.10, "run-as-identity-principal"

■ Section 6.3.2.11, "run-as-principal-name"

■ Section 6.3.2.12, "run-as-role-assignment"

■ Section 6.3.2.13, "security-permission"

■ Section 6.3.2.14, "security-permission-spec"

■ Section 6.3.2.15, "security-role-assignment"

■ Section 6.3.2.16, "transport-requirements"

6.3.2.1 client-authentication
The client-authentication element specifies whether the EJB supports or
requires client authentication.

The following table defines the possible settings.

6.3.2.1.1 Example For an example of how to use the client-authentication
element, see Example 6–6.

6.3.2.2 client-cert-authentication
The client-cert-authentication element specifies whether the EJB supports or
requires client certificate authentication at the transport level.

The following table defines the possible settings.

Table 6–4 client-authentication Element

Setting Definition

none Client authentication is not supported.

supported Client authentication is supported, but not required.

required Client authentication is required.

Table 6–5 client-cert-authentication Element

Setting Definition

none Client certificate authentication is not supported.

EJB Security-Related Deployment Descriptors

Securing Enterprise JavaBeans (EJBs) 6-11

6.3.2.2.1 Example For an example of how to use the
client-cert-authentication element, see Example 6–10.

6.3.2.3 confidentiality
The confidentiality element specifies the transport confidentiality requirements
for the EJB. Using the confidentiality element ensures that the data is sent
between the client and server in such a way as to prevent other entities from observing
the contents.

The following table defines the possible settings.

6.3.2.3.1 Example For an example of how to use the confidentiality element, see
Example 6–10 .

6.3.2.4 externally-defined
The externally-defined element lets you explicitly indicate that you want the
security roles defined by the role-name element in the weblogic-ejb-jar.xml
deployment descriptors to use the mappings specified in the Administration Console.
The element gives you the flexibility of not having to specify a specific security role
mapping for each security role defined in the deployment descriptors for a particular
Web application. Therefore, within the same security realm, deployment descriptors
can be used to specify and modify security for some applications while the
Administration Console can be used to specify and modify security for others.

supported Client certificate authentication is supported, but not
required.

required Client certificate authentication is required.

Table 6–6 confidentiality Element

Setting Definition

none Confidentiality is not supported.

supported Confidentiality is supported, but not
required.

required Confidentiality is required.

Table 6–5 (Cont.) client-cert-authentication Element

Setting Definition

EJB Security-Related Deployment Descriptors

6-12 Programming Security for Oracle WebLogic Server

When specifying security role names, observe the following conventions and
restrictions:

■ The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

■ Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list: \t, < >, #, |, &, ~, ?, (), { }.

■ Security role names are case sensitive.

■ The suggested convention for security role names is that they be singular.

Example 6–4 and Example 6–5 show by comparison how to use the
externally-defined element in the weblogic-ejb-jar.xml file. In
Example 6–5, the specification of the "manager" externally-defined element in
the weblogic-ejb-jar.xml means that for security to be correctly configured on
the getReceipts method, the principals for manager will have to be created in the
Administration Console.

Example 6–4 Using the ejb-jar.xml and weblogic-ejb-jar.xml Deployment Descriptors to
Map Security Roles in EJBs

ejb-jar.xml entries:
 ...
<assembly-descriptor>
 <security-role>
 <role-name>manger</role-name>
 </security-role>
 <security-role>
 <role-name>east</role-name>
 </security-role>
 <method-permission>
 <role-name>manager</role-name>
 <role-name>east</role-name>
 <method>
 <ejb-name>accountsPayable</ejb-name>
 <method-name>getReceipts</method-name>
 </method>
 </method-permission>
 ...
</assembly-descriptor>

Note: Starting in version 9.0, the default role mapping behavior is to
create empty role mappings when none are specified. In version 8.1,
EJB required that role mappings be defined in the weblogic-ejb-jar.xml
descriptor or deployment would fail. With 9.0, EJB and WebApp
behavior are consistent in creating empty role mappings.

For information on role mapping behavior and backward
compatibility settings, see the section "Understanding the Combined
Role Mapping Enabled Setting" in Oracle Fusion Middleware Securing
Resources Using Roles and Policies for Oracle WebLogic Server. The role
mapping behavior for a server depends on which security deployment
model is selected on the Administration Console. For information on
security deployment models, see"Options for Securing EJB and Web
Application Resources" in Oracle Fusion Middleware Securing Resources
Using Roles and Policies for Oracle WebLogic Server.

EJB Security-Related Deployment Descriptors

Securing Enterprise JavaBeans (EJBs) 6-13

 ...
weblogic-ejb-jar.xml entries:
 <security-role-assignment>
 <role-name>manager</role-name>
 <principal-name>joe</principal-name>
 <principal-name>Bill</principal-name>
 <principal-name>Mary</principal-name>
 ...
</security-role-assignment>
 ...

Example 6–5 Using the externally-defined Element in EJB Deployment Descriptors for
Role Mapping

ejb-jar.xml entries:
 ...
<assembly-descriptor>
 <security-role>
 <role-name>manger</role-name>
 </security-role>
 <security-role>
 <role-name>east</role-name>
 </security-role>
 <method-permission>
 <role-name>manager</role-name>
 <role-name>east</role-name>
 <method>
 <ejb-name>accountsPayable</ejb-name>
 <method-name>getReceipts</method-name>
 </method>
 </method-permission>
 ...
</assembly-descriptor>
 ...
weblogic-ejb-jar.xml entries:
 <security-role-assignment>
 <role-name>manager</role-name>
 <externally-defined/>
 ...
 </security-role-assignment>
 ...

For more information on using the Administration Console to configure security for
EJBs, see Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle
WebLogic Server.

6.3.2.5 identity-assertion
The identity-assertion element specifies whether the EJB supports identity
assertion.

The following table defines the possible settings.

Table 6–7 identity-assertion Element

Setting Definition

none Identity assertion is not supported

supported Identity assertion is supported, but not
required.

EJB Security-Related Deployment Descriptors

6-14 Programming Security for Oracle WebLogic Server

6.3.2.5.1 Used Within The identity-assertion element is used with the
iiop-security-descriptor element.

6.3.2.5.2 Example For an example of how to the identity-assertion element, see
Example 6–6.

6.3.2.6 iiop-security-descriptor
The iiop-security-descriptor element specifies security configuration
parameters at the bean-level. These parameters determine the IIOP security
information contained in the interoperable object reference (IOR).

6.3.2.6.1 Example For an example of how to use the iiop-security-descriptor
element, see Example 6–6.

Example 6–6 iiop-security-descriptor Element Example

<weblogic-enterprise-bean>
 <iiop-security-descriptor>
 <transport-requirements>
 <confidentiality>supported</confidentiality>
 <integrity>supported</integrity>
 <client-cert-authorization>
 supported

</client-cert-authentication>
 </transport-requirements>
 <client-authentication>supported<client-authentication>
 <identity-assertion>supported</identity-assertion>
 </iiop-security-descriptor>
</weblogic-enterprise-bean>

6.3.2.7 integrity
The integrity element specifies the transport integrity requirements for the EJB.
Using the integrity element ensures that the data is sent between the client and server
in such a way that it cannot be changed in transit.

The following table defines the possible settings.

6.3.2.7.1 Used Within The integrity element is used within the
transport-requirements element.

6.3.2.7.2 Example For an example of how to use the integrity element, see
Example 6–10.

required Identity assertion is required.

Table 6–8 integrity Element

Setting Definition

none Integrity is not supported.

supported Integrity is supported, but not required.

required Integrity is required.

Table 6–7 (Cont.) identity-assertion Element

Setting Definition

EJB Security-Related Deployment Descriptors

Securing Enterprise JavaBeans (EJBs) 6-15

6.3.2.8 principal-name
The principal-name element specifies the name of the principal in the
ProductName security realm that applies to role name specified in the
security-role-assignment element. At least one principal is required in the
security-role-assignment element. You may define more than one
principal-name for each role name.

6.3.2.8.1 Used Within The principal-name element is used within the
security-role-assignment element.

6.3.2.8.2 Example For an example of how to use the principal-name element, see
Example 6–1.

6.3.2.9 role-name
The role-name element identifies an application role name that the EJB provider
placed in the companion ejb-jar.xml file. Subsequent principal-name elements in
the stanza map ProductName principals to the specified role-name.

6.3.2.9.1 Used Within The role-name element is used within the
security-role-assignment element.

6.3.2.9.2 Example For an example of how to use the role-name element, see
Example 6–1.

6.3.2.10 run-as-identity-principal
The run-as-identity-principal element specifies which security principal name
is to be used as the run-as principal for a bean that has specified a security-identity
run-as role-name in its ejb-jar deployment descriptor. For an explanation of how of
run-as role-names to are mapped to run-as-identity-principals (or
run-as-principal-names, see Section 6.3.2.12, "run-as-role-assignment".

6.3.2.10.1 Used Within The run-as-identity-principal element is used within
the run-as-role-assignment element.

6.3.2.10.2 Example For an example of how to use the run-as-identity-principal
element, see Example 6–7.

Example 6–7 run-as-identity-principal Element Example

ebj-jar.xml:
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>Caller2EJB</ejb-name>

Note: If you need to list a significant number of principals, consider
specifying groups instead of users. There are performance issues if
you specify too many users.

Note: Deprecated: The run-as-identity-principal element is
deprecated in the WebLogic Server 8.1. Use the run-as-principal-name
element instead.

EJB Security-Related Deployment Descriptors

6-16 Programming Security for Oracle WebLogic Server

 <home>weblogic.ejb11.security.CallerBeanHome</home>
 <remote>weblogic.ejb11.security.CallerBeanRemote</remote>
 <ejb-class>weblogic.ejb11.security.CallerBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 <ejb-ref><ejb-ref-name>Callee2Bean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>weblogic.ejb11.security.CalleeBeanHome</home>
 <remote>weblogic.ejb11.security.CalleeBeanRemote</remote>
 </ejb-ref>
 <security-role-ref>
 <role-name>users1</role-name>
 <role-link>users1</role-link>
 </security-role-ref>
 <security-identity>
 <run-as>
 <role-name>users2</role-name>
 </run-as>
 </security-identity>
 </session>
 </enterprise-beans>
</ejb-jar>
woblogic-ejb-jar.xml:
<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>Caller2EJB</ejb-name>
 <reference-descriptor>
 <ejb-reference-description>
 <ejb-ref-name>Callee2Bean</ejb-ref-name>

<jndi-name>security.Callee2Bean</jndi-name>
 </ejb-reference-description>
 </reference-descriptor>
 <run-as-identity-principal>wsUser3</run-as-identity-principal>
 </weblogic-enterprise-bean>
 <security-role-assignment>
 <role-name>user</role-name>
 <principal-name>wsUser2</principal-name>
 <principal-name>wsUser3</principal-name>
 <principal-name>wsUser4</principal-name>
 </security-role-assignment>
</weblogic-ejb-jar>

6.3.2.11 run-as-principal-name
The run-as-principal-name element specifies which security principal name is to
be used as the run-as principal for a bean that has specified a security-identity run-as
role-name in its ejb-jar deployment descriptor. For an explanation of how the run-as
role-names map to run-as-principal-names, see Section 6.3.2.12,
"run-as-role-assignment".

6.3.2.11.1 Used Within The run-as-principal-name element is used within the
run-as-role-assignment element.

6.3.2.11.2 Example For an example of how to use the run-as-principal-name
element, see Example 6–8.

EJB Security-Related Deployment Descriptors

Securing Enterprise JavaBeans (EJBs) 6-17

6.3.2.12 run-as-role-assignment
The run-as-role-assignment element is used to map a given security-identity
run-as role-name that is specified in the ejb-jar.xml file to a
run-as-principal-name specified in the weblogic-ejb-jar.xml file. The value
of the run-as-principal-name element for a given role-name is scoped to all beans
in the ejb-jar.xml file that use the specified role-name as their security-identity.
The value of the run-as-principal-name element specified in
weblogic-ejb-jar.xml file can be overridden at the individual bean level by
specifying a run-as-principal-name element under that bean's
weblogic-enterprise-bean element.

6.3.2.12.1 Example For an example of how to use the run-as-role-assignment element,
see Example 6–8.

Example 6–8 run-as-role-assignment Element Example

In the ejb-jar.xml file:
// Beans "A_EJB_with_runAs_role_X" and "B_EJB_with_runAs_role_X"
// specify a security-identity run-as role-name "runAs_role_X".
// Bean "C_EJB_with_runAs_role_Y" specifies a security-identity
// run-as role-name "runAs_role_Y".
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>SecurityEJB</ejb-name>
 <home>weblogic.ejb20.SecuritySLHome</home>
 <remote>weblogic.ejb20.SecuritySL</remote>
 <local-home>
 weblogic.ejb20.SecurityLocalSLHome
 </local-home>
 <local>weblogic.ejb20.SecurityLocalSL</local>

<ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 <message-driven>
 <ejb-name>SecurityEJB</ejb-name>
 <ejb-class>weblogic.ejb20.SecuritySLBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <security-identity>
 <run-as>
 <role-name>runAs_role_X</role-name>
 </run-as>
 </security-identity>
 <security-identity>
 <run-as>
 <role-name>runAs_role_Y</role-name>
 </run-as>
 </security-identity>
 </message-driven>

Note: For a given bean, if there is no run-as-principal-name element
specified in either a run-as-role-assignment element or in a bean
specific run-as-principal-name element, then the EJB container will
choose the first principal-name of a security user in the
weblogic-enterprise-bean security-role-assignment element for the
role-name and use that principal-name as the run-as-principal-name.

EJB Security-Related Deployment Descriptors

6-18 Programming Security for Oracle WebLogic Server

 </enterprise-beans>
</ejb-jar>

weblogic-ejb-jar file:

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>A_EJB_with_runAs_role_X</ejb-name>
 </weblogic-enterprise-bean>
 <weblogic-enterprise-bean>
 <ejb-name>B_EJB_with_runAs_role_X</ejb-name>
 <run-as-principal-name>Joe</run-as-principal-name>
 </weblogic-enterprise-bean>
 <weblogic-enterprise-bean>
 <ejb-name>C_EJB_with_runAs_role_Y</ejb-name>
 </weblogic-enterprise-bean>
 <security-role-assignment>
 <role-name>runAs_role_Y</role-name>
 <principal-name>Harry</principal-name>
 <principal-name>John</principal-name>
 </security-role-assignment>
 <run-as-role-assignment>
 <role-name>runAs_role_X</role-name>
 <run-as-principal-name>Fred</run-as-principal-name>
 </run-as-role-assignment>
</weblogic-ejb-jar>

Each of the three beans shown in Example 6–8 will choose a different principal name
to run as.

■ A_EJB_with_runAs_role_X

This bean's run-as role-name is runAs_role_X. The jar-scoped
<run-as-role-assignment> mapping will be used to look up the name of the
principal to use. The <run-as-role-assignment> mapping specifies that for
<role-name> runAs_role_X we are to use <run-as-principal-name> Fred.
Therefore, Fred is the principal name that will be used.

■ B_EJB_with_runAs_role_X

This bean's run-as role-name is also runAs_role_X. This bean will not use the jar
scoped <run-as-role-assignment> to look up the name of the principal to
use because that value is overridden by this bean's
<weblogic-enterprise-bean> <run-as-principal-name> value Joe.
Therefore Joe is the principal name that will be used.

■ C_EJB_with_runAs_role_Y

This bean's run-as role-name is runAs_role_Y. There is no explicit mapping of
runAs_role_Y to a run-as principal name, that is, there is no jar scoped
<run-as-role-assignment> for runAs_role_Y nor is there a bean scoped
<run-as-principal-name> specified in this bean's
<weblogic-enterprise-bean>. To determine the principal name to use, the
<security-role-assignment> for <role-name> runAs_role_Y is
examined. The first <principal-name> corresponding to a user that is not a
Group is chosen. Therefore, Harry is the principal name that will be used.

6.3.2.13 security-permission
The security-permission element specifies a security permission that is
associated with a Java EE Sandbox.

EJB Security-Related Deployment Descriptors

Securing Enterprise JavaBeans (EJBs) 6-19

6.3.2.13.1 Example For an example of how to use the security-permission
element, see Example 6–9.

6.3.2.14 security-permission-spec
The security-permission-spec element specifies a single security permission
based on the Security policy file syntax.

For more information, see Sun's implementation of the security permission
specification:

http://java.sun.com/javase/6/docs/technotes/guides/security/Poli
cyFiles.html#FileSyntax

6.3.2.14.1 Used Within The security-permission-spec element is used within the
security-permission element.

6.3.2.14.2 Example For an example of how to use the security-permission-spec
element, see Example 6–9.

Example 6–9 security-permission-spec Element Example

<weblogic-ejb-jar>
 <security-permission>
 <description>Optional explanation goes here</description>
 <security-permission-spec>
<!
A single grant statement following the syntax of
http://java.sun.com/j2se/1.5.0/docs/guide/security/PolicyFiles.html#FileSyntax,
without the codebase and signedBy clauses, goes here. For example:
-->
 grant {
 permission java.net.SocketPermission *, resolve;
 };
 </security-permission-spec>
 </security-permission>
</weblogic-ejb-jar>

In Example 6–9, permission java.net.SocketPermission is the permission
class name, "*" represents the target name, and resolve (resolve host/IP name
service lookups) indicates the action.

6.3.2.15 security-role-assignment
The security-role-assignment element maps application roles in the
ejb-jar.xml file to the names of security principals available in ProductName.

Note: Disregard the optional codebase and signedBy clauses.

Note: For information on using the security-role-assignment element
in a weblogic-application.xml deployment descriptor for an enterprise
application, see "Enterprise Application Deployment Descriptor
Elements" in Oracle Fusion Middleware Developing Applications for Oracle
WebLogic Server.

Using Programmatic Security With EJBs

6-20 Programming Security for Oracle WebLogic Server

6.3.2.15.1 Example For an example of how to use the security-role-assignment
element, see Example 6–1.

6.3.2.16 transport-requirements
The transport-requirements element defines the transport requirements for the
EJB.

6.3.2.16.1 Used Within The transport-requirements element is used within the
iiop-security-descriptor element.

6.3.2.16.2 Example For an example of how to use the transport-requirements
element, see Example 6–10.

Example 6–10 transport-requirements Element Example

<weblogic-enterprise-bean>
 <iiop-security-descriptor>
 <transport-requirements>
 <confidentiality>supported</confidentiality>
 <integrity>supported</integrity>
 <client-cert-authorization>
 supported
 </client-cert-authentication>
</transport-requirements>
 </iiop-security-descriptor>
<weblogic-enterprise-bean>

6.4 Using Programmatic Security With EJBs
To implement programmatic security in EJBs, use the
javax.ejb.EJBContext.getCallerPrincipal() and the
javax.ejb.EJBContext.isCallerInRole() methods.

6.4.1 getCallerPrincipal
Use the getCallerPrincipal() method to determine the caller of the EJB. The
javax.ejb.EJBContext.getCallerPrincipal() method returns a WLSUser
Principal if one exists in the Subject of the calling user. In the case of multiple
WLSUser Principals, the method returns the first in the ordering defined by the
Subject.getPrincipals().iterator() method. If there are no WLSUser
Principals, then the getCallerPrincipal() method returns the first
non-WLSGroup Principal. If there are no Principals or all Principals are of
type WLSGroup, this method returns
weblogic.security.WLSPrincipals.getAnonymousUserPrincipal(). This
behavior is similar to the semantics of
weblogic.security.SubjectUtils.getUserPrincipal() except that
SubjectUtils.getUserPrincipal() returns a null whereas
EJBContext.getCallerPrincipal()returns
WLSPrincipals.getAnonmyousUserPrincipal().

For more information about how to use the getCallerPrincipal() method, see
http://java.sun.com/javaee/technologies/javaee5.jsp.

Using Programmatic Security With EJBs

Securing Enterprise JavaBeans (EJBs) 6-21

6.4.2 isCallerInRole
The isCallerInRole() method is used to determine if the caller (the current user)
has been assigned a security role that is authorized to perform actions on the
WebLogic resources in that thread of execution. For example, the method
javax.ejb.EJBContext.isCallerInRole("admin")will return true if the
current user has admin privileges.

For more information about how to use the isCallerInRole() method, see
http://java.sun.com/javaee/technologies/javaee5.jsp.

Using Programmatic Security With EJBs

6-22 Programming Security for Oracle WebLogic Server

7

Using Network Connection Filters 7-1

7Using Network Connection Filters

This section covers the following topics:

■ Section 7.1, "The Benefits of Using Network Connection Filters"

■ Section 7.2, "Network Connection Filter API"

■ Section 7.3, "Guidelines for Writing Connection Filter Rules"

■ Section 7.4, "Configuring the WebLogic Connection Filter"

■ Section 7.5, "Developing Custom Connection Filters"

7.1 The Benefits of Using Network Connection Filters
Security roles and security policies let you secure WebLogic resources at the domain
level, the application level, and the application-component level. Connection filters let
you deny access at the network level. Thus, network connection filters provide an
additional layer of security. Connection filters can be used to protect server resources
on individual servers, server clusters, or an entire internal network.

Connection filters are particularly useful for controlling access through the
Administration port. Depending on your network firewall configuration, you might be
able to use a connection filter to further restrict administration access. A typical use is
to restrict access to the Administration port to only the servers and machines in the
domain. Even if an attacker gets access to a machine inside the firewall, they will not
be able to perform administration operations unless they are on one of the permitted
machines.

Network connection filters are a type of firewall in that they can be configured to filter
on protocols, IP addresses, and DNS node names. For example, you can deny any
non-SSL connections originating outside of your corporate network. This would
ensure that all access from systems on the Internet would be secure.

7.2 Network Connection Filter API
This section describes the weblogic.security.net package. This API provides
interfaces and classes for developing network connection filters. It also includes a
class, ConnectionFilterImpl, which is a ready-to-use implementation of a
network connection filter. For more information, see Javadocs for WebLogic Classes for
this release of WebLogic Server.

This section covers the following topics:

■ Section 7.2.1, "Connection Filter Interfaces"

■ Section 7.2.2, "Connection Filter Classes"

Network Connection Filter API

7-2 Programming Security for Oracle WebLogic Server

7.2.1 Connection Filter Interfaces
To implement connection filtering, write a class that implements the connection filter
interfaces. The following weblogic.security.net interfaces are provided for
implementing connection filters:

■ Section 7.2.1.1, "ConnectionFilter Interface"

■ Section 7.2.1.2, "ConnectionFilterRulesListener Interface"

7.2.1.1 ConnectionFilter Interface
This interface defines the accept() method, which is used to implement connection
filtering. To program the server to perform connection filtering, instantiate a class that
implements this interface and then configure that class in the Administration Console.
This interface is the minimum implementation requirement for connection filtering.

7.2.1.2 ConnectionFilterRulesListener Interface
The server uses this interface to determine whether the rules specified in the
Administration Console in the ConnectionFilterRules field are valid during
startup and at runtime.

This interface defines two methods that are used to implement connection filtering:
setRules() and checkRules(). Implementing this interface in addition to the
ConnectionFilter interface allows the use of the Administration Console to enter
filtering rules to restrict client connections.

7.2.2 Connection Filter Classes
Two weblogic.security.net classes are provided for implementing connection
filters:

■ Section 7.2.2.1, "ConnectionFilterImpl Class"

■ Section 7.2.2.2, "ConnectionEvent Class"

Note: Implementing this interface alone does not permit the use of
the Administration Console to enter and modify filtering rules to
restrict client connections; you must use some other form (such as a
flat file, which is defined in the Administration Console) for that
purpose. To use the Administration Console to enter and modify
filtering rules, you must also implement the
ConnectionFilterRulesListener interface. For a description of the
ConnectionFilterRulesListener interface, see Section 7.2.1.2,
"ConnectionFilterRulesListener Interface".

Note: You can implement this interface or just use the WebLogic
connection filter implementation,
weblogic.security.net.ConnectionFilterImpl, which is provided as part
of the WebLogic Server product.

Note: In order to enter and edit connection filtering rules on the
Administration Console, you must implement the
ConnectionFilterRulesListener interface; otherwise some other means
must be used. For example, you could use a flat file.

Guidelines for Writing Connection Filter Rules

Using Network Connection Filters 7-3

7.2.2.1 ConnectionFilterImpl Class
This class is the WebLogic connection filter implementation of the
ConnectionFilter and ConnectionFilterRulesListener interfaces. Once
configured using the Administration Console, this connection filter accepts all
incoming connections by default, and also provides static factory methods that allow
the server to obtain the current connection filter. To use this connection to deny access,
simply enter connection filter rules using the Administration Console.

This class is provided as part of the WebLogic Server product. To configure this class
for use, see Section 7.4, "Configuring the WebLogic Connection Filter".

7.2.2.2 ConnectionEvent Class
This is the class from which all event state objects are derived. All events are
constructed with a reference to the object, that is, the source that is logically deemed to
be the object upon which a specific event initially occurred. To create a new
ConnectionEvent instance, applications use the methods provided by this class:
getLocalAddress(), getLocalPort(), getRemoteAddress(),
getRemotePort(), and hashcode().

7.3 Guidelines for Writing Connection Filter Rules
This section describes how connection filter rules are written and evaluated. If no
connection rules are specified, all connections are accepted.

Depending on how you implement connection filtering, connection filter rules can be
written in a flat file or input directly on the Administration Console.

The following sections provide information and guidelines for writing connection
filter rules:

■ Section 7.3.1, "Connection Filter Rules Syntax"

■ Section 7.3.2, "Types of Connection Filter Rules"

■ Section 7.3.3, "How Connection Filter Rules are Evaluated"

7.3.1 Connection Filter Rules Syntax
The syntax of connection filter rules is as follows:

■ Each rule must be written on a single line.

■ Tokens in a rule are separated by white space.

■ A pound sign (#) is the comment character. Everything after a pound sign on a line
is ignored.

■ Whitespace before or after a rule is ignored.

■ Lines consisting only of whitespace or comments are skipped.

The format of filter rules differ depending on whether you are using a filter file to
enter the filter rules or you enter the filter rules on the Administration Console.

■ When entering the filter rules on the Administration Console, enter them in the
following format:

targetAddress localAddress localPort action protocols

■ When specifying rules in the filter file, enter them in the following format:

targetAddress action protocols

Guidelines for Writing Connection Filter Rules

7-4 Programming Security for Oracle WebLogic Server

– targetAddress specifies one or more systems to filter.

– localAddress defines the host address of the WebLogic Server instance. (If
you specify an asterisk (*), the match returns all local IP addresses.)

– localPort defines the port on which the WebLogic Server instance is
listening. (If you specify an asterisk (*), the match returns all available ports
on the server).

– action specifies the action to perform. This value must be allow or deny.

– protocols is the list of protocol names to match. The following protocols
may be specified: http, https, t3, t3s, ldap, ldaps, iiop, iiops, and
com. (Although the giop, giops, and dcom protocol names are still
supported, their use is deprecated as of release 9.0; you should use the
equivalent iiop, iiops, and com protocol names.)

– If no protocol is defined, all protocols will match a rule.

7.3.2 Types of Connection Filter Rules
Two types of filter rules are recognized:

■ Fast rules

A fast rule applies to a hostname or IP address with an optional netmask. If a
hostname corresponds to multiple IP addresses, multiple rules are generated (in
no particular order). Netmasks can be specified either in numeric or dotted-quad
form. For example:

dialup-555-1212.pa.example.net 127.0.0.1 7001 deny t3 t3s #http(s) OK
192.168.81.0/255.255.254.0 127.0.0.1 8001 allow #23-bit netmask
192.168.0.0/16 127.0.0.1 8002 deny #like /255.255.0.0

Hostnames for fast rules are looked up once at startup of the WebLogic Server
instance. While this design greatly reduces overhead at connect time, it can result
in the filter obtaining out of date information about what addresses correspond to
a hostname. Oracle recommends using numeric IP addresses instead.

■ Slow rules

A slow rule applies to part of a domain name. Because a slow rule requires a
connect-time DNS lookup on the client-side in order to perform a match, it may
take much longer to run than a fast rule. Slow rules are also subject to DNS
spoofing. Slow rules are specified as follows:

*.script-kiddiez.org 127.0.0.1 7001 deny

An asterisk only matches at the head of a pattern. If you specify an asterisk
anywhere else in a rule, it is treated as part of the pattern. Note that the pattern
will never match a domain name since an asterisk is not a legal part of a domain
name.

Note: The SecurityConfigurationMBean provides a
CompatibilityConnectionFiltersEnabled attribute for enabling
compatibility with previous connection filters.

Developing Custom Connection Filters

Using Network Connection Filters 7-5

7.3.3 How Connection Filter Rules are Evaluated
When a client connects to WebLogic Server, the rules are evaluated in the order in
which they were written. The first rule to match determines how the connection is
treated. If no rules match, the connection is permitted.

To further protect your server and only allow connections from certain addresses,
specify the last rule as:

0.0.0.0/0 * * deny

With this as the last rule, only connections that are allowed by preceding rules are
allowed, all others are denied. For example, if you specify the following rules:

<Remote IP Address> * * allow https
0.0.0.0/0 * * deny

Only machines with the Remote IP Address are allowed to access the instance of
WebLogic Server running connection filter. All other systems are denied access.

7.4 Configuring the WebLogic Connection Filter
WebLogic Server provides an out-of-the-box network connection filter. To use the filter,
simply configure it using the Administration Console. For information on how to
configure connection filters, see Oracle Fusion Middleware Securing Oracle WebLogic
Server.

7.5 Developing Custom Connection Filters
If you decide not to use the WebLogic connection filter and want to develop you own,
your can use the application programming interface (API) provided in the
weblogic.security.net package to do so. For a description of this API, see
Section 7.2, "Network Connection Filter API".

To develop custom connection filters with WebLogic Server, perform the following
steps:

1. Write a class that implements the ConnectionFilter interface (minimum
requirement).

Or, optionally, if you want to use the Administration Console to enter and modify
the connection filtering rules directly, write a class that implements both the
ConnectionFilter interface and the ConnectionFilterRulesListener
interface.

2. If you choose the minimum requirement in step 1 (only implementing the
ConnectionFilter interface), enter the connection filtering rules in a flat file
and define the location of the flat file in the class that implements the
ConnectionFilter interface. Then use the Administration Console to configure
the class in WebLogic Server. For instructions for configuring the class in the

Note: The default connection filter implementation interprets a
target address of 0 (0.0.0.0/0) as meaning "the rule should apply to all
IP addresses." By design, the default filter does not evaluate the port
or the local address, just the action. To clearly specify restrictions
when using the default filter, modify the rules.

Another option is to implement a custom connection filter.

Developing Custom Connection Filters

7-6 Programming Security for Oracle WebLogic Server

Administration Console, see "Using Connection Filters" in Oracle Fusion
Middleware Securing Oracle WebLogic Server.

3. If you choose to implement both interfaces in step 1, use the Administration
Console to configure the class and to enter the connection filtering rules. For
instructions on configuring the class in the Administration Console, see "Using
Connection Filters" in Oracle Fusion Middleware Securing Oracle WebLogic Server.

Note that if connection filtering is implemented when a Java or Web browser client
tries to connect to a WebLogic Server instance, The WebLogic Server instance
constructs a ConnectionEvent object and passes it to the accept() method of your
connection filter class. The connection filter class examines the ConnectionEvent
object and accepts the connection by returning, or denies the connection by throwing a
FilterException.

Both implemented classes (the class that implements only the ConnectionFilter
interface and the class that implements both the ConnectionFilter interface and
the ConnectionFilterRulesListener interface) must call the accept() method
after gathering information about the client connection. However, if you only
implement the ConnectionFilter interface, the information gathered includes the
remote IP address and the connection protocol: http, https, t3, t3s, ldap, ldaps,
iiop, iiops, or com. If you implement both interfaces, the information gathered
includes the remote IP address, remote port number, local IP address, local port
number and the connection protocol.

8

Using Java Security to Protect WebLogic Resources 8-1

8Using Java Security to Protect WebLogic
Resources

This section discusses the following topics:

■ Section 8.1, "Using Java EE Security to Protect WebLogic Resources"

■ Section 8.2, "Using the Java Security Manager to Protect WebLogic Resources"

8.1 Using Java EE Security to Protect WebLogic Resources
WebLogic Server supports the use of Java EE security to protect URL (Web), Enterprise
JavaBeans (EJBs), and Connector components. In addition, WebLogic Server extends
the connector model of specifying additional security policies in the deployment
descriptor to the URL and EJB components.

The connector specification provides for deployment descriptors to specify additional
security policies using the <security-permission> tag (see Example 8–1):

Example 8–1 Security-Permission Tag Sample

<security-permission>
<description> Optional explanation goes here </description>
<security-permission-spec>
<!--
A single grant statement following the syntax of
http://java.sun.com/j2se/1.4.2/docs/guide/security/PolicyFiles.html#FileSyntax
without the "codebase" and "signedBy" clauses goes here. For example:
-->
grant {
permission java.net.SocketPermission "*", "resolve";
};
</security-permission-spec>
</security-permission>

Besides support of the <security-permission> tag in the rar.xml file, WebLogic
Server adds the <security-permission> tag to the weblogic.xml and
weblogic-ejb-jar.xml files. This extends the connector model to the two other
application types, Web applications and EJBs, provides a uniform interface to security

Note: Java EE has requirements for Java 2 security default
permissions for different application types (see the Java EE 5.0
specification) as does the Java EE Connector Architecture
specification.

Using the Java Security Manager to Protect WebLogic Resources

8-2 Programming Security for Oracle WebLogic Server

policies across all component types, and anticipates future Java EE specification
changes.

8.2 Using the Java Security Manager to Protect WebLogic Resources
The Java Security Manager can be used with WebLogic Server to provide additional
protection for resources running in a Java Virtual Machine (JVM). Using a Java
Security Manager is an optional security step. The following sections describe how to
use the Java Security Manager with WebLogic Server:

■ Section 8.2.1, "Setting Up the Java Security Manager"

■ Section 8.2.2, "Using Printing Security Manager"

■ Section 8.2.3, "Using the Java Authorization Contract for Containers"

For more information on Java Security Manager, see the Java Security Web page at
http://java.sun.com/javase/6/docs/technotes/guides/security/inde
x.html.

8.2.1 Setting Up the Java Security Manager
When you run WebLogic Server under Java 2 (SDK 1.2 or later), WebLogic Server can
use the Java Security Manager in Java 2, which prevents untrusted code from
performing actions that are restricted by the Java security policy file.

The JVM has security mechanisms built into it that allow you to define restrictions to
code through a Java security policy file. The Java Security Manager uses the Java
security policy file to enforce a set of permissions granted to classes. The permissions
allow specified classes running in that instance of the JVM to permit or not permit
certain runtime operations. In many cases, where the threat model does not include
malicious code being run in the JVM, the Java Security Manager is unnecessary.
However, when untrusted third-parties use WebLogic Server and untrusted classes are
being run, the Java Security Manager may be useful.

To use the Java Security Manager with WebLogic Server, specify the
-Djava.security.policy and -Djava.security.manager arguments when
starting WebLogic Server. The -Djava.security.policy argument specifies a
filename (using a relative or fully-qualified pathname) that contains Java 2 security
policies.

WebLogic Server provides a sample Java security policy file, which you can edit and
use. The file is located at WL_HOME\server\lib\weblogic.policy.

For example, to successfully start WLS and deploy an application via the
Administration Console, you might need to add permissions such as the following to
weblogic.policy:

permission java.util.PropertyPermission '*', 'read';
permission java.lang.RuntimePermission '*';
permission java.io.FilePermission ' <<ALL FILES>>', 'read,write';
permission javax.management.MBeanPermission '*', '*';

Note: This sample policy file is not complete and is not sufficient to
start WebLogic Server without first being modified. In particular, you
will need to add various permissions based on your configuration in
order for WLS and all applications to work properly.

Using the Java Security Manager to Protect WebLogic Resources

Using Java Security to Protect WebLogic Resources 8-3

If you enable the Java Security Manager but do not specify a security policy file, the
Java Security Manager uses the default security policies defined in the java.policy
file in the $JAVA_HOME\jre\lib\security directory.

Define security policies for the Java Security Manager in one of the following ways:

■ Section 8.2.1.1, "Modifying the weblogic.policy file for General Use"

■ Section 8.2.1.2, "Setting Application-Type Security Policies"

■ Section 8.2.1.3, "Setting Application-Specific Security Policies"

8.2.1.1 Modifying the weblogic.policy file for General Use
To use the Java Security Manager security policy file with your WebLogic Server
deployment, you must specify the location of the weblogic.policy file to the Java
Security Manager when you start WebLogic Server. To do this, you set the following
arguments on the Java command line you use to start the server:

■ java.security.manager tells the JVM to use a Java security policy file.

■ java.security.policy tells the JVM the location of the Java security policy
file to use. The argument is the fully qualified name of the Java security policy,
which in this case is weblogic.policy.

For example:

java...-Djava.security.manager \
 -Djava.security.policy==c:\weblogic\weblogic.policy

If you have extra directories in your CLASSPATH or if you are deploying applications
in extra directories, add specific permissions for those directories to your
weblogic.policy file.

Oracle recommends taking the following precautions when using the
weblogic.policy file:

■ Make a backup copy of the weblogic.policy file and put the backup copy in a
secure location.

■ Set the permissions on the weblogic.policy file via the operating system such
that the administrator of the WebLogic Server deployment has write and read
privileges and no other users have access to the file.

Note: Be sure to use == instead of = when specifying the
java.security.policy argument so that only the weblogic.policy file is
used by the Java Security Manager. The == causes the weblogic.policy
file to override any default security policy. A single equal sign (=)
causes the weblogic.policy file to be appended to an existing security
policy.

Using the Java Security Manager to Protect WebLogic Resources

8-4 Programming Security for Oracle WebLogic Server

For more information about the Java Security Manager, see the Javadoc for the
java.lang.SecurityManager class, available at
http://java.sun.com/javase/6/docs/api/java/lang/SecurityManager.
html.

8.2.1.2 Setting Application-Type Security Policies
Set default security policies for Servlets, EJBs, and Java EE Connector Resource
Adapters in the Java security policy file. The default security policies for Servlets, EJBs,
and Resource Adapters are defined in the Java security policy file under the following
codebases:

■ Servlets—"file:/weblogic/application/defaults/Web"

■ EJBs—"file:/weblogic/application/defaults/EJB"

■ Resource
Adapters—"file:/weblogic/application/defaults/Connector"

8.2.1.3 Setting Application-Specific Security Policies
Set security policies for a specific Servlet, EJB, or Resource Adapter by adding security
policies to their deployment descriptors. Deployment descriptors are defined in the
following files:

■ Servlets—weblogic.xml

■ EJBs—weblogic-ejb-jar.xml

■ Resource Adapters—rar.xml

Example 8–2 shows the syntax for adding a security policy to a deployment descriptor:

Example 8–2 Security Policy Syntax

<security-permission>
 <description>

Caution: The Java Security Manager is partially disabled during the
booting of Administration and Managed Servers. During the boot
sequence, the current Java Security Manager is disabled and replaced
with a variation of the Java Security Manager that has the checkRead()
method disabled. While disabling this method greatly improves the
performance of the boot sequence, it also minimally diminishes
security. The startup classes for WebLogic Server are run with this
partially disabled Java Security Manager and therefore the classes
need to be carefully scrutinized for security considerations involving
the reading of files.

Note: These security policies apply to all Servlets, EJBs, and
Resource Adapters deployed in the particular instance of WebLogic
Server.

Note: The security policies for Resource Adapters follow the Java EE
standard while the security policies for Servlets and EJBs follow the
WebLogic Server extension to the Java EE standard.

Using the Java Security Manager to Protect WebLogic Resources

Using Java Security to Protect WebLogic Resources 8-5

 Allow getting the J2EEJ2SETest4 property
 </description>
 <security-permission-spec>
 grant {
 permission java.util.PropertyPermission "welcome.J2EEJ2SETest4","read";
 };
 </security-permission-spec>
</security-permission>

8.2.2 Using Printing Security Manager
Printing Security Manager is an enhancement to the Java Security Manager. You can
use Printing Security Manager to identify all of the required permissions for any Java
application running under Java Security Manager. Unlike The Java Security Manager,
which identifies needed permissions one at a time, the Printing Security Manager
identifies all of the needed permissions without intervention.

For more information on Java Security Manager, see the Java Security Web page at
http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html.

8.2.2.1 Printing Security Manager Startup Arguments
To use the Java Security Manager with WebLogic Server, you specify two arguments
when starting WebLogic Server:

■ -Djava.security.manager=weblogic.security.psm.PrintingSecurityManager

The -Djava.security.manager argument tells WebLogic Server which Java Security
Manager to start, in this case the Printing Security Manager.

■ -Djava.security.policy

The -Djava.security.policy argument specifies a filename (using a relative or
fully-qualified pathname) that contains Java 2 security policies. WebLogic Server
provides a sample Java security policy file, which you can edit and use. The file is
located at WL_HOME\server\lib\weblogic.policy.

By default, startWebLogic.cmd(sh) already includes the
-Djava.security.policy=$WL_HOME/server/lib/weblogic.policy property, so you do not
need to specify it unless you want to use another Java security policy file.

Note: The <security-permission-spec> tag cannot currently be added
to a weblogic-application.xml file, you are limited to using this tag
within a weblogic-ejb-jar.xml, rar.xml, or weblogic.xml file. Also,
variables are not supported in the <security-permission-spec>
attribute.

Note: Do not use Printing Security Manager in production
environments. It is intended solely for development to identify
missing permissions.

It does not prevent untrusted code operations.

Using the Java Security Manager to Protect WebLogic Resources

8-6 Programming Security for Oracle WebLogic Server

8.2.2.2 Starting WebLogic Server With Printing Security Manager
To start WebLogic Server with the Printing Security Manager from a UNIX shell, pass
the following argument to the startWebLogic.sh script in DOMAIN_HOME. This
example uses the default weblogic.policy Java policy file from startWeblogic.sh.

startWeblogic.sh
-Xbootclasspath/p:$MWHOME/modules/com.bea.core.weblogic.security.psm_1.0.0.0.jar
-Djava.security.manager=weblogic.security.psm.PrintingSecurityManager

For a Windows system without a UNIX shell, first set the startup options in JAVA_
OPTIONS, and then use the startWebLogic.cmd script in DOMAIN_HOME to start
WebLogic Server. This example uses the default weblogic.policy Java policy file from
startWeblogic.cmd.

$ set JAVA_
OPTIONS=-Xbootclasspath/p:$MWHOME/modules/com.bea.core.weblogic.security.psm_
1.0.0.0.jar
-Djava.security.manager=weblogic.security.psm.PrintingSecurityManager

$ DOMAIN_HOME\startWeblogic.cmd

8.2.2.3 Writing Output Files
Printing Security Manager generates output that lists which code source needs which
permissions. It also generates a policy grant that you can copy and paste into the
policy file.

By default, output is to System.out. You can configure output files via two arguments:

■ -Doracle.weblogic.security.manager.printing.file=psm_perms.txt

■ -Doracle.weblogic.security.manager.printing.generated.grants.file=psm_grants.txt

The value of the first system argument is a file to which Printing Security Manager
writes all missing-permission messages. The value of the second argument is a file to
which Printing Security Manager writes the missing policy grants.

For example, for a Windows system without a UNIX shell, add the argument to JAVA_
OPTIONS:

$ set JAVA_OPTIONS=-Xbootclasspath/p:$MW_
HOME/modules/com.bea.core.weblogic.security.psm_1.0.0.0.jar
-Djava.security.manager=weblogic.security.psm.PrintingSecurityManager
-Doracle.weblogic.security.manager.printing.file=psm_perms.txt

$ startWeblogic.cmd

Note: This sample policy file is not complete and is not sufficient to
start WebLogic Server without first being modified. In particular, you
will need to add various permissions based on your configuration in
order for WLS and all applications to work properly.

See the following sections for additional information:

■ Section 8.2.1.1, "Modifying the weblogic.policy file for General
Use"

■ Section 8.2.1.2, "Setting Application-Type Security Policies"

■ Section 8.2.1.3, "Setting Application-Specific Security Policies"

Using the Java Security Manager to Protect WebLogic Resources

Using Java Security to Protect WebLogic Resources 8-7

If you do not specify the full path for the output files, they are created in DOMAIN_
HOME.

8.2.3 Using the Java Authorization Contract for Containers
The Java Authorization Contract for Containers (JACC) is part of Java EE. JACC
extends the Java 2 permission-based security model to EJBs and Servlets. JACC is
defined by JSR-115 (http://www.jcp.org/en/jsr/detail?id=115).

JACC provides an alternate authorization mechanism for the EJB and Servlet
containers in a WebLogic Server domain. As shown in Table 8–2, when JACC is
configured, the WebLogic Security framework access decisions, adjudication, and role
mapping functions are not used for EJB and Servlet authorization decisions.

WebLogic Server implements a JACC provider which, although fully compliant with
JSR-115, is not as optimized as the WebLogic Authorization provider. The Java JACC
classes are used for rendering access decisions. Because JSR-115 does not define how to
address role mapping, WebLogic JACC classes are used for role-to-principal mapping.
See http://java.sun.com/j2ee/javaacc for information on developing a JACC
provider.

This section discusses the following topics:

■ Section 8.2.3.1, "Comparing the WebLogic JACC Provider with the WebLogic
Authentication Provider"

■ Section 8.2.3.2, "Enabling the WebLogic JACC Provider"

Table 8–2 shows which providers are used for role mapping when JACC is enabled.

Note: The JACC classes used by WebLogic Server do not include an
implementation of a Policy object for rendering decisions but instead
rely on the java.security.Policy
(http://java.sun.com/javase/6/docs/api/java/security
/Policy.html) object.

Table 8–1 When JACC is Enabled

Status

Provider used for
EJB/Servlet
Authorization and
Role Mapping

Provider used for all
other Authorization
and Role Mapping

EJB/Servlet Roles and
Policies Can be Viewed
and Modified by the
Administration Console

JACC is enabled JACC provider WebLogic Security
Framework
providers

No

JACC is not enabled WebLogic Security
Framework
providers

WebLogic Security
Framework
providers

Yes, depending on settings

Using the Java Security Manager to Protect WebLogic Resources

8-8 Programming Security for Oracle WebLogic Server

8.2.3.1 Comparing the WebLogic JACC Provider with the WebLogic Authentication
Provider
The WebLogic JACC provider fully complies with JSR-115; however, it does not
support dynamic role mapping, nor does it address authorization decisions for
resources other than EJBs and Servlets. For better performance, and for more flexibility
regarding security features, Oracle recommends using SSPI-based providers.

Table 8–2 compares the features provided by the WebLogic JACC provider with those
of the WebLogic Authorization provider.

8.2.3.2 Enabling the WebLogic JACC Provider
To enable the WebLogic JACC Provider from the command line, you must specify the
following system property/value pairs:

■ Property: java.security.manager

■ Value: No value required.

■ Property: java.security.policy

■ Value: A valid weblogic.policy file, specified using either a relative or an
absolute pathname

■ Property:
javax.security.jacc.PolicyConfigurationFactory.provider

Note: In a domain, either enable JACC on all servers or on none. The
reason is that JACC is server-specific while the WebLogic Security
Framework is realm/domain specific. If you enable JACC, either by
using the WebLogic JACC provider or (recommended) by creating
your own JACC provider, you are responsible for keeping EJB and
Servlet authorization policies synchronized across the domain. For
example, applications are redeployed each time a server boots. If a
server configured for JACC reboots without specifying the JACC
options on the command line, the server will use the default WebLogic
Authorization provider for EJB and Servlet role mapping and
authorization decisions.

Table 8–2 Comparing the WebLogic JACC Provider with the WebLogic Authorization
Provider

WebLogic JACC Provider WebLogic Authorization Provider

Implements the JACC specification (JSR-115) Value-added security framework

Addresses only EJB and Servlet
deployment/authorization decisions

Addresses deployment/authorization
decisions

Uses the java.security.Policy object to
render decisions

Allows for multiple authorization/role
providers

Static role mapping at deployment time Dynamic role mapping

Java EE permissions control access Entitlements engine controls access

Role and role-to-principal mappings are
modifiable only through deployment
descriptors

Roles and role-to-principal mappings are
modifiable through deployment descriptors
and the Administration Console

Using the Java Security Manager to Protect WebLogic Resources

Using Java Security to Protect WebLogic Resources 8-9

■ Value:
weblogic.security.jacc.simpleprovider.PolicyConfigurationFact
oryImpl

■ Property: javax.security.jacc.policy.provider

■ Value: weblogic.security.jacc.simpleprovider.SimpleJACCPolicy

■ Property: weblogic.security.jacc.RoleMapperFactory.provider

■ Value:
weblogic.security.jacc.simpleprovider.RoleMapperFactoryImpl

For example, assuming a properly configured weblogic.policy file, the following
command line will enable the WebLogic JACC provider:

./startWebLogic.sh -Djava.security.manager\
-Djava.security.policy==<pathname>/weblogic.policy \
-Djavax.security.jacc.policy.provider=\
weblogic.security.jacc.simpleprovider.SimpleJACCPolicy \
-Djavax.security.jacc.PolicyConfigurationFactory.provider=\
weblogic.security.jacc.simpleprovider.PolicyConfigurationFactoryImpl \
-Dweblogic.security.jacc.RoleMapperFactory.provider=\
weblogic.security.jacc.simpleprovider.RoleMapperFactoryImpl

Note: Use -Djava.security.policy==<pathname>/weblogic.security if
you want to override any default security policy. A single equal sign
(=) causes the weblogic.policy file to be appended to an existing
security policy.

Using the Java Security Manager to Protect WebLogic Resources

8-10 Programming Security for Oracle WebLogic Server

9

SAML APIs 9-1

9SAML APIs

The Security Assertion Markup Language, SAML, is an XML-based protocol for
exchanging security information between disparate entities. The SAML standard
defines a framework for exchanging security information between software entities on
the Web. SAML security is based on the interaction of asserting and relying parties.

SAML provides single sign-on capabilities; users can authenticate at one location and
then access service providers at other locations without having to log in multiple
times.

WebLogic Server supports SAML versions 2.0 and 1.1. The WebLogic Server
implementation:

■ Supports the HTTP POST and HTTP Artifact bindings for the Web SSO profile for
SAML 1.1. For SAML 2.0, WebLogic Server adds the HTTP Redirect binding for
the Web SSO profile.

■ Supports SAML authentication and attribute statements (does not support SAML
authorization statements)

For a general description of SAML and SAML assertions in a WebLogic Server
environment, see "Security Assertion Markup Language (SAML)" in Oracle Fusion
Middleware Understanding Security for Oracle WebLogic Server.

For information on configuring a SAML credential mapping provider, see
"Configuring a SAML Credential Mapping Provider for SAML 1.1" and "Configuring a
SAML 2.0 Credential Mapping Provider for SAML 2.0" in Oracle Fusion Middleware
Securing Oracle WebLogic Server

For access to the SAML specifications, go to http://www.oasis-open.org. Also
see the Technical Overview of the OASIS Security Assertion Markup Language
(SAML) V1.1
(http://www.oasis-open.org/committees/download.php/6628/sstc-sam
l-tech-overview-1.1-draft-05.pdf) and Security Assertion Markup Language
(SAML) 2.0 Technical Overview
(http://www.oasis-open.org/committees/download.php/11511/sstc-sa
ml-tech-overview-2.0-draft-03.pdf).

This section covers the following topics:

■ Section 9.1, "SAML API Description"

■ Section 9.2, "Custom POST Form Parameter Names"

SAML API Description

9-2 Programming Security for Oracle WebLogic Server

9.1 SAML API Description
Table 9–1 lists the WebLogic SAML APIs. Table 9–2 lists the WebLogic SAML 2.0 APIs.
See the Javadoc for details.

Table 9–1 WebLogic SAML APIs

WebLogic SAML API Description

weblogic.security.providers.saml The WebLogic SAML package.

SAMLAssertionStore Interface that defines methods for storing and
retrieving assertions for the Artifact profile. This
interface is deprecated in favor of
SAMLAssertionStoreV2.

SAMLAssertionStoreV2 The SAMLAssertionStoreV2 interface extends the
SAMLAssertionStore interface, adding methods
to support identification and authentication of
the destination site requesting an assertion from
the SAML ARS.

Note that V2 refers to the second version of the
WebLogic SAML provider, not to version 2 of the
SAML specification.

SAMLCredentialAttributeMapper Interface used to perform mapping from Subject
to SAMLAssertion attributes.

SAMLCredentialNameMapper Interface that defines methods used to map
subject information to fields in a SAML assertion.

SAMLIdentityAssertionAttributeMapper Interface used to perform mapping from SAML
Attribute Statement to Attribute Principals.

SAMLIdentityAssertionNameMapper Interface that defines methods used to map
information from a SAML assertion to user and
group names.

SAMLUsedAssertionCache Interface that defines methods for caching
assertion IDs so that the POST profile one-use
policy can be enforced.

Classes implementing this interface must have a
public no-arg constructor.

SAMLNameMapperInfo Instances of this class are used to pass user and
group information to and from the name
mappers. The class also defines several useful
constants.

SAMLAssertionStoreV2.AssertionInfo The AssertionInfo class is returned by
SAMLAssertionStoreV2.retrieveAssertionInfo().
It contains the retrieved assertion and related
information. An implementation of the
SAMLAssertionStoreV2 interface would have to
return this class.

SAMLAttributeInfo A class that represents a single attribute of a
SAMLAssertion AttributeStatement.

SAMLAttributeStatementInfo A class that represents an AttributeStatement in a
SAMLAssertion.

SAMLNameMapperInfo The SAMLNameMapperInfo is used to represent
user name and group information for SAML
assertions.

SAMLCommonPartner Abstract representation of attributes common to a
SAML 1.1 Partner.

SAML API Description

SAML APIs 9-3

SAMLRelyingParty Represents a SAML Relying Party entry in the
SAML Relying Party registry.

SAMLAssertingParty Represents a SAML Asserting Party entry in the
LDAP Asserting Party registry.

SAMLPartner Abstract representation of a SAML partner.

Note: The SAML name mapper classes are required to be in the
system classpath. If you create a custom
SAMLIdentityAssertionNameMapper, SAMLCredentialNameMapper,
SAMLAssertionStore, or SAMLUsedAssertionCache, you must place
the respective class in the system classpath.

Table 9–2 WebLogic SAML 2.0 APIs

WebLogic SAML 2.0 APIs Description

com.bea.security.saml2.providers Provides interfaces and classes for the
configuration, control, and monitoring of
SAML 2.0 security providers in a WebLogic
security realm.

SAML2CredentialNameMapper Interface used to perform the mapping of user
and group information to SAML 2.0 assertions.

SAML2IdentityAsserterNameMapper Interface used to perform the mapping of user
information contained in a SAML 2.0 assertion
to a local user name.

SAML2NameMapperInfo The SAML2NameMapperInfo is used to
represent user name and group information
contained in SAML 2.0 assertions.

com.bea.security.saml2.providers.registry Abstract interfaces for SAML 2.0 Identity
Provider and Service Provider partners and
metadata.

BindingClientPartner Binding Client partner is a partner that
supports backend channel communication.

IdPPartner Abstract representation of a SAML 2.0 Identity
Provider partner.

Endpoint Abstract representation of a SAML 2.0 service
endpoint.

IndexedEndpoint This class represents the end point that could
be indexed, like Artifact Resolution Service's
end point.

MetadataPartner Metadata partner contains contact information
for the partner, which is mainly required by
the SAML 2.0 metadata profile.

Partner Abstract representation of a SAML 2.0 partner.
This interface defines mandatory information
for a partner.

SPPartner Abstract representation of a SAML 2.0 Service
Provider partner.

Table 9–1 (Cont.) WebLogic SAML APIs

WebLogic SAML API Description

Custom POST Form Parameter Names

9-4 Programming Security for Oracle WebLogic Server

9.2 Custom POST Form Parameter Names
The parameters names passed to the POST form when a custom POST form is
specified for SAML POST profile handling depend on which SAML provider is
configured.

■ For the WebLogic Server 9.1and higher, Federation Services implementation (in
effect when V2 providers are configured), see Table 9–1.

■ For the WebLogic Server 9.0 SAML services implementation (in effect when V1
providers are configured), see Table 9–1.

The tables provide the parameter names and their data types (required for casting the
returned Java Object).

For both implementations, the SAML response itself is passed using the parameter
name specified by SAML:

SAMLResponse (String): The base64-encoded SAML Response element.

WebSSOIdPPartner Abstract representation of a SAML 2.0 Identity
Provider partner for Web SSO profile.

WebSSOPartner Abstract representation of a SAML 2.0 partner
for Web SSO profile.

WebSSOSPPartner Abstract representation of a SAML 2.0 Service
Provider partner for Web SSO profile.

WSSIdPPartner Abstract representation of a SAML 2.0 Identity
Provider partner for WSS SAML Token profile.

WSSPartner Abstract representation of a SAML 2.0 partner
for WSS SAML Token profile.

WSSSPPartner Abstract representation of a SAML 2.0 Service
Provider partner for WSS SAML Token profile.
It has no specific attributes/methods.

Table 9–3 SAML V2 Provider Custom POST Form Parameters

Parameter Description

TARGET (String) The TARGET URL specified as a query
parameter on the incoming Intersite Transfer
Service (ITS) request.

SAML_AssertionConsumerURL (String) The URL of the Assertion Consumer Service
(ACS) at the destination site (where the form
should be POSTed).

SAML_AssertionConsumerParams (Map) A Map containing name/value mappings for the
assertion consumer parameters configured for
the relying party. Names and values are Strings.

SAML_ITSRequestParams (Map) A Map containing name/value mappings for the
query parameters received with the ITS request.
Names and values are Strings. The Map may be
empty. TARGET and Rich Presence Information
Data Format (RPID) parameters are removed
from the map before passing it to the form.

Table 9–2 (Cont.) WebLogic SAML 2.0 APIs

WebLogic SAML 2.0 APIs Description

Custom POST Form Parameter Names

SAML APIs 9-5

Table 9–4 SAML V1 Provider Custom POST Form Parameters

Parameter Description

targetURL (String) The TARGET URL specified as a query parameter on the incoming
ITS request.

consumerURL (String) The URL of the ACS at the destination site (where the form should
be POSTed).

Custom POST Form Parameter Names

9-6 Programming Security for Oracle WebLogic Server

10

Using CertPath Building and Validation 10-1

10Using CertPath Building and Validation

The WebLogic Security service provides the Certificate Lookup and Validation (CLV)
API that finds and validates X509 certificate chains.

A CertPath is a JDK class that stores a certificate chain in memory. The term CertPath
is also used to refer to the JDK architecture and framework that is used to locate and
validate certificate chains. The CLV framework extends and completes the JDK
CertPath functionality. CertPath providers rely on a tightly-coupled integration of
WebLogic and JDK interfaces.

Your application code can use the default CertPath providers provided by WebLogic
Server to build and validate certificate chains, or any custom CertPath providers.

The following topics are covered in this section:

■ Section 10.1, "CertPath Building"

■ Section 10.2, "CertPath Validation"

■ Section 10.1.1, "Instantiate a CertPathSelector"

■ Section 10.1.2, "Instantiate a CertPathBuilderParameters"

■ Section 10.1.3, "Use the JDK CertPathBuilder Interface"

■ Section 10.2.1, "Instantiate a CertPathValidatorParameters"

■ Section 10.2.2, "Use the JDK CertPathValidator Interface"

10.1 CertPath Building
To use a CertPath Builder in your application, follow these steps:

1. Section 10.1.1, "Instantiate a CertPathSelector"

2. Section 10.1.2, "Instantiate a CertPathBuilderParameters"

3. Section 10.1.3, "Use the JDK CertPathBuilder Interface"

10.1.1 Instantiate a CertPathSelector
The CertPathSelector interface (weblogic.security.pk.CertPathSelector)
contains the selection criteria for locating and validating a certification path. Because
there are many ways to look up certification paths, a derived class is implemented for
each type of selection criteria.

Each selector class has one or more methods to retrieve the selection data and a
constructor.

CertPath Building

10-2 Programming Security for Oracle WebLogic Server

The classes in weblogic.security.pk that implement the CertPathSelector
interface, one for each supported type of certificate chain lookup, are as follows:

■ EndCertificateSelector – used to find and validate a certificate chain given its end
certificate.

■ IssuerDNSerialNumberSelector – used to find and validate a certificate chain from
its end certificate's issuer DN and serial number.

■ SubjectDNSelector – used to find and validate a certificate chain from its end
certificate's subject DN.

■ SubjectKeyIdentifierSelector – used to find and validate a certificate chain from its
end certificate's subject key identifier (an optional field in X509 certificates).

Example 10–1 shows an example of choosing a selector.

Example 10–1 Make a certificate chain selector

// you already have the end certificate
// and want to use it to lookup and
// validate the corresponding chain
X509Certificate endCertificate = ...
// make a cert chain selector
CertPathSelector selector = new EndCertificateSelector(endCertificate);

10.1.2 Instantiate a CertPathBuilderParameters
You pass an instance of CertPathBuilderParameters as the
CertPathParameters object to the JDK's CertPathBuilder.build() method.

The following constructor and method are provided:

■ CertPathBuilderParameters

public CertPathBuilderParameters(String realmName,
 CertPathSelector selector,
 X509Certificate[]
 trustedCAs,
 ContextHandler context)

Constructs a CertPathBuilderParameters.

You must provide the realm name. To do this, get the domain's
SecurityConfigurationMBean. Then, get the SecurityConfigurationMBean's default
realm attribute, which is a realm MBean. Finally, get the realm MBean's name
attribute. You must use the runtime JMX MBean server to get the realm name.

You must provide the selector. You use one of the
weblogic.security.pk.CertPathSelector interfaces derived classes,
described in Section 10.1.1, "Instantiate a CertPathSelector" to specify the selection
criteria for locating and validating a certification path.

Notes: The selectors that are supported depend on the configured
CertPath providers. The configured CertPath providers are
determined by the administrator.

The WebLogic CertPath provider uses only the EndCertificateSelector
selector.

CertPath Building

Using CertPath Building and Validation 10-3

Specify trusted CAs if you have them. Otherwise, the server's trusted CAs are
used. These are just a hint to the configured CertPath builder and CertPath
validators which, depending on their lookup/validation algorithm, may or may
not use these trusted CAs.

ContextHandler is used to pass in an optional list of name/value pairs that the
configured CertPathBuilder and CertPathValidators may use to look up and
validate the chain. It is symmetrical with the context handler passed to other types
of security providers. Setting context to null indicates that there are no context
parameters.

■ clone

Object clone()

This interface is not cloneable.

Example 10–2 shows an example of passing an instance of
CertPathBuilderParameters.

Example 10–2 Pass An Instance of CertPathBuilderParameters

// make a cert chain selector
CertPathSelector selector = new EndCertificateSelector(endCertificate);
String realm = _;
// create and populate a context handler if desired, or null
ContextHandler context = _;
// pass in a list of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;
// make the params
CertPathBuilderParams params =
new CertPathBuilderParameters(realm, selector, context, trustedCAs);

10.1.3 Use the JDK CertPathBuilder Interface
The java.security.cert.CertPathBuilder interface is the API for the
CertPathBuilder class. To use the JDK CertPathBuilder interface, do the following:

1. Call the static CertPathBuilder.getInstance method to retrieve the CLV
framework's CertPathBuilder. You must specify "WLSCertPathBuilder" as the
algorithm name that's passed to the call.

2. Once the CertPathBuilder object has been obtained, call the "build" method on the
returned CertPathBuilder. This method takes one argument - a
CertPathParameters that indicates which chain to find and how it should be
validated.

You must pass an instance of
weblogic.security.pk.CertPathBuilderParameters as the
CertPathParameters object to the JDK's CertPathBuilder.build() method, as
described in Section 10.1.2, "Instantiate a CertPathBuilderParameters".

3. If successful, the result (including the CertPath that was built) is returned in an
object that implements the CertPathBuilderResult interface. The builder
determines how much of the CertPath is returned.

4. If not successful, the CertPathBuilder build method throws
InvalidAlgorithmParameterException if the params is not a WebLogic
CertPathBuilderParameters, if the configured CertPathBuilder does not support
the selector, or if the realm name does not match the realm name of the default
realm from when the server was booted.

CertPath Validation

10-4 Programming Security for Oracle WebLogic Server

The CertPathBuilder build method throws CertPathBuilderException if the cert
path could not be located or if the located cert path is not valid

10.1.4 Example Code Flow for Looking Up a Certificate Chain

Example 10–3 Looking up a Certificate Chain

import weblogic.security.pk.CertPathBuilderParameters;
import weblogic.security.pk.CertPathSelector;
import weblogic.security.pk.EndCertificateSelector;
import weblogic.security.service.ContextHandler;
import java.security.cert.CertPath;
import java.security.cert.CertPathBuilder;
import java.security.cert.X509Certificate;
// you already have the end certificate
// and want to use it to lookup and
// validate the corresponding chain
X509Certificate endCertificate = ...

// make a cert chain selector
CertPathSelector selector = new EndCertificateSelector(endCertificate);

String realm = _;

// create and populate a context handler if desired
ContextHandler context = _;

// pass in a list of trusted CAs if desired
X509Certificate[] trustedCAs = _;

// make the params
CertPathBuilderParams params =
new CertPathBuilderParameters(realm, selector, context, trustedCAs);
// get the WLS CertPathBuilder
CertPathBuilder builder =
CertPathBuilder.getInstance("WLSCertPathBuilder");

// use it to look up and validate the chain
CertPath certpath = builder.build(params).getCertPath();
X509Certificate[] chain =
certpath.getCertificates().toArray(new X509Certificate[0]);

10.2 CertPath Validation
To use a CertPath Validator in your application, follow these steps:

1. Section 10.2.1, "Instantiate a CertPathValidatorParameters"

2. Section 10.2.2, "Use the JDK CertPathValidator Interface"

10.2.1 Instantiate a CertPathValidatorParameters
You pass an instance of CertPathValidatorParameters as the
CertPathParameters object to the JDK's CertPathValidator.validate()
method.

The following constructor and method are provided:

■ CertPathValidatorParameters

CertPath Validation

Using CertPath Building and Validation 10-5

public CertPathValidatorParameters(String realmName,
 X509Certificate[] trustedCAs,
 ContextHandler context)

Constructs a CertPathValidatorParameters.

You must provide the realm name. To do this, get the domain's
SecurityConfigurationMBean. Then, get the SecurityConfigurationMBean's default
realm attribute, which is a realm MBean. Finally, get the realm MBean's name
attribute. You must use the runtime JMX MBean server to get the realm name.

Specify trusted CAs if you have them. Otherwise, the server's trusted CAs are
used. These are just a hint to the configured CertPath builder and CertPath
validators which, depending on their lookup/validation algorithm, may or may
not use these trusted CAs.

ContextHandler is used to pass in an optional list of name/value pairs that the
configured CertPathBuilder and CertPathValidators may use to look up and
validate the chain. It is symmetrical with the context handler passed to other types
of security providers. Setting context to null indicates that there are no context
parameters.

■ clone

Object clone()

This interface is not cloneable.

Example 10–4 shows an example of passing an instance of
CertPathValidatorParameters.

Example 10–4 Pass an Instance of CertPathValidatorParameters

// get the WLS CertPathValidator
CertPathValidator validator =
CertPathValidator.getInstance("WLSCertPathValidator");

String realm = _;

// create and populate a context handler if desired, or null
ContextHandler context = _;

// pass in a list of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;

// make the params (for the default security realm)
CertPathValidatorParams params =
new CertPathValidatorParams(realm, context, trustedCAs);

10.2.2 Use the JDK CertPathValidator Interface
The java.security.cert.CertPathValidator interface is the API for the
CertPathValidator class. To use the JDK CertPathValidator interface, do the
following:

1. Call the static CertPathValidator.getInstance method to retrieve the CLV
framework's CertPathValidator. You must specify "WLSCertPathValidator" as the
algorithm name that's passed to the call.

CertPath Validation

10-6 Programming Security for Oracle WebLogic Server

2. Once the CertPathValidator object has been obtained, call the "validate" method on
the returned CertPathValidator. This method takes one argument - a
CertPathParameters that indicates how it should be validated.

You must pass an instance of
weblogic.security.pk.CertPathValidatorParameters as the
CertPathParameters object to the JDK's CertPathValidator.validate()
method, as described in Section 10.2.1, "Instantiate a
CertPathValidatorParameters".

3. If successful, the result is returned in an object that implements the
CertPathValidatorResult interface.

4. If not successful, the CertPathValidator.validate() method throws
InvalidAlgorithmParameterException if params is not a WebLogic
CertPathValidatorParameters or if the realm name does not match the realm name
of the default realm from when the server was booted.

The CertPathValidator validate method throws CertPathValidatorException if the
certificates in the CertPath are not ordered (the end certificate must be the first
cert) or if the CertPath is not valid.

10.2.3 Example Code Flow for Validating a Certificate Chain

Example 10–5 Performing Extra Validation

import weblogic.security.pk.CertPathValidatorParams;
import weblogic.security.service.ContextHandler;
import java.security.cert.CertPath;
import java.security.cert.CertPathValidator;
import java.security.cert.X509Certificate;

// you already have an unvalidated X509 certificate chain
// and you want to get it validated
X509Certificate[] chain = ...

// convert the chain to a CertPath
CertPathFactory factory = CertPathFactory.getInstance("X509");
ArrayList list = new ArrayList(chain.length);
for (int i = 0; i < chain.length; i++) {
list.add(chain[i]);
}
CertPath certPath = factory.generateCertPath(list);

// get the WLS CertPathValidator
CertPathValidator validator =
CertPathValidator.getInstance("WLSCertPathValidator");

String realm = _;

// create and populate a context handler if desired, or null
ContextHandler context = _;

// pass in a list of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;

// make the params (for the default security realm)
CertPathValidatorParams params =
new CertPathValidatorParams(realm, context, trustedCAs);

CertPath Validation

Using CertPath Building and Validation 10-7

// use it to validate the chain
validator.validate(certPath, params);

CertPath Validation

10-8 Programming Security for Oracle WebLogic Server

A

Deprecated Security APIs A-1

ADeprecated Security APIs

Some or all of the Security interfaces, classes, and exceptions in the following
WebLogic security packages were deprecated prior to this release of WebLogic Server:

■ weblogic.security.service

■ weblogic.security.SSL

For specific information on the interfaces, classes, and exceptions deprecated in each
package, see the Javadocs for WebLogic Classes.

A-2 Programming Security for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope
	1.2 Audience for This Guide
	1.3 Guide to this Document
	1.4 Related Information
	1.5 Security Samples and Tutorials
	1.5.1 Security Examples in the WebLogic Server Distribution

	1.6 New and Changed Security Features in This Release

	2 WebLogic Security Programming Overview
	2.1 What Is Security?
	2.2 Administration Console and Security
	2.3 Types of Security Supported by WebLogic Server
	2.3.1 Authentication
	2.3.2 Authorization
	2.3.3 Java EE Security

	2.4 Security APIs
	2.4.1 JAAS Client Application APIs
	2.4.1.1 Java JAAS Client Application APIs
	2.4.1.2 WebLogic JAAS Client Application APIs

	2.4.2 SSL Client Application APIs
	2.4.2.1 Java SSL Client Application APIs
	2.4.2.2 WebLogic SSL Client Application APIs

	2.4.3 Other APIs

	3 Securing Web Applications
	3.1 Authentication With Web Browsers
	3.1.1 User Name and Password Authentication
	3.1.2 Digital Certificate Authentication

	3.2 Multiple Web Applications, Cookies, and Authentication
	3.2.1 Using Secure Cookies to Prevent Session Stealing

	3.3 Developing Secure Web Applications
	3.3.1 Developing BASIC Authentication Web Applications
	3.3.1.1 Using HttpSessionListener to Account for Browser Caching of Credentials

	3.3.2 Understanding BASIC Authentication with Unsecured Resources
	3.3.2.1 Setting the enforce-valid-basic-auth-credentials Flag
	3.3.2.2 Using WLST to Check the Value of enforce-valid-basic-auth-credentials

	3.3.3 Developing FORM Authentication Web Applications
	3.3.4 Using Identity Assertion for Web Application Authentication
	3.3.5 Using Two-Way SSL for Web Application Authentication
	3.3.6 Providing a Fallback Mechanism for Authentication Methods
	3.3.6.1 Configuration

	3.3.7 Developing Swing-Based Authentication Web Applications
	3.3.8 Deploying Web Applications

	3.4 Using Declarative Security With Web Applications
	3.5 Web Application Security-Related Deployment Descriptors
	3.5.1 web.xml Deployment Descriptors
	3.5.1.1 auth-constraint
	3.5.1.1.1 Used Within
	3.5.1.1.2 Example

	3.5.1.2 security-constraint
	3.5.1.2.1 Example

	3.5.1.3 security-role
	3.5.1.3.1 Example

	3.5.1.4 security-role-ref
	3.5.1.4.1 Example

	3.5.1.5 user-data-constraint
	3.5.1.5.1 Used Within
	3.5.1.5.2 Example

	3.5.1.6 web-resource-collection
	3.5.1.6.1 Used Within
	3.5.1.6.2 Example

	3.5.2 weblogic.xml Deployment Descriptors
	3.5.2.1 externally-defined
	3.5.2.1.1 Used Within
	3.5.2.1.2 Example

	3.5.2.2 run-as-principal-name
	3.5.2.2.1 Used Within
	3.5.2.2.2 Example

	3.5.2.3 run-as-role-assignment
	3.5.2.3.1 Example:

	3.5.2.4 security-permission
	3.5.2.4.1 Example

	3.5.2.5 security-permission-spec
	3.5.2.5.1 Used Within
	3.5.2.5.2 Example

	3.5.2.6 security-role-assignment
	3.5.2.6.1 Example

	3.6 Using Programmatic Security With Web Applications
	3.6.1 getUserPrincipal
	3.6.2 isUserInRole

	3.7 Using the Programmatic Authentication API

	4 Using JAAS Authentication in Java Clients
	4.1 JAAS and WebLogic Server
	4.2 JAAS Authentication Development Environment
	4.2.1 JAAS Authentication APIs
	4.2.2 JAAS Client Application Components
	4.2.3 WebLogic LoginModule Implementation
	4.2.4 JVM-Wide Default User and the runAs() Method

	4.3 Writing a Client Application Using JAAS Authentication
	4.4 Using JNDI Authentication
	4.5 Java Client JAAS Authentication Code Examples

	5 Using SSL Authentication in Java Clients
	5.1 JSSE and WebLogic Server
	5.2 Using JNDI Authentication
	5.3 SSL Certificate Authentication Development Environment
	5.3.1 SSL Authentication APIs
	5.3.2 SSL Client Application Components

	5.4 Writing Applications that Use SSL
	5.4.1 Communicating Securely From WebLogic Server to Other WebLogic Servers
	5.4.2 Writing SSL Clients
	5.4.2.1 SSLClient Sample
	5.4.2.2 SSLSocketClient Sample

	5.4.3 Using Two-Way SSL Authentication
	5.4.3.1 Two-Way SSL Authentication with JNDI
	5.4.3.2 Writing a User Name Mapper
	5.4.3.3 Using Two-Way SSL Authentication Between WebLogic Server Instances
	5.4.3.4 Using Two-Way SSL Authentication with Servlets

	5.4.4 Using a Custom Hostname Verifier
	5.4.5 Using a Trust Manager
	5.4.6 Using the CertPath Trust Manager
	5.4.7 Using a Handshake Completed Listener
	5.4.8 Using an SSLContext
	5.4.9 Using URLs to Make Outbound SSL Connections

	5.5 SSL Client Code Examples

	6 Securing Enterprise JavaBeans (EJBs)
	6.1 Java EE Architecture Security Model
	6.1.1 Declarative Authorization
	6.1.2 Programmatic Authorization
	6.1.3 Declarative Versus Programmatic Authorization

	6.2 Using Declarative Security With EJBs
	6.3 EJB Security-Related Deployment Descriptors
	6.3.1 ejb-jar.xml Deployment Descriptors
	6.3.1.1 method
	6.3.1.1.1 Used Within
	6.3.1.1.2 Example

	6.3.1.2 method-permission
	6.3.1.2.1 Used Within
	6.3.1.2.2 Example

	6.3.1.3 role-name
	6.3.1.3.1 Used Within
	6.3.1.3.2 Example

	6.3.1.4 run-as
	6.3.1.4.1 Used Within
	6.3.1.4.2 Example

	6.3.1.5 security-identity
	6.3.1.5.1 Used Within
	6.3.1.5.2 Example

	6.3.1.6 security-role
	6.3.1.6.1 Used Within
	6.3.1.6.2 Example

	6.3.1.7 security-role-ref
	6.3.1.7.1 Used Within
	6.3.1.7.2 Example

	6.3.1.8 unchecked
	6.3.1.8.1 Used Within
	6.3.1.8.2 Example

	6.3.1.9 use-caller-identity
	6.3.1.9.1 Used Within
	6.3.1.9.2 Example

	6.3.2 weblogic-ejb-jar.xml Deployment Descriptors
	6.3.2.1 client-authentication
	6.3.2.1.1 Example

	6.3.2.2 client-cert-authentication
	6.3.2.2.1 Example

	6.3.2.3 confidentiality
	6.3.2.3.1 Example

	6.3.2.4 externally-defined
	6.3.2.5 identity-assertion
	6.3.2.5.1 Used Within
	6.3.2.5.2 Example

	6.3.2.6 iiop-security-descriptor
	6.3.2.6.1 Example

	6.3.2.7 integrity
	6.3.2.7.1 Used Within
	6.3.2.7.2 Example

	6.3.2.8 principal-name
	6.3.2.8.1 Used Within
	6.3.2.8.2 Example

	6.3.2.9 role-name
	6.3.2.9.1 Used Within
	6.3.2.9.2 Example

	6.3.2.10 run-as-identity-principal
	6.3.2.10.1 Used Within
	6.3.2.10.2 Example

	6.3.2.11 run-as-principal-name
	6.3.2.11.1 Used Within
	6.3.2.11.2 Example

	6.3.2.12 run-as-role-assignment
	6.3.2.12.1 Example

	6.3.2.13 security-permission
	6.3.2.13.1 Example

	6.3.2.14 security-permission-spec
	6.3.2.14.1 Used Within
	6.3.2.14.2 Example

	6.3.2.15 security-role-assignment
	6.3.2.15.1 Example

	6.3.2.16 transport-requirements
	6.3.2.16.1 Used Within
	6.3.2.16.2 Example

	6.4 Using Programmatic Security With EJBs
	6.4.1 getCallerPrincipal
	6.4.2 isCallerInRole

	7 Using Network Connection Filters
	7.1 The Benefits of Using Network Connection Filters
	7.2 Network Connection Filter API
	7.2.1 Connection Filter Interfaces
	7.2.1.1 ConnectionFilter Interface
	7.2.1.2 ConnectionFilterRulesListener Interface

	7.2.2 Connection Filter Classes
	7.2.2.1 ConnectionFilterImpl Class
	7.2.2.2 ConnectionEvent Class

	7.3 Guidelines for Writing Connection Filter Rules
	7.3.1 Connection Filter Rules Syntax
	7.3.2 Types of Connection Filter Rules
	7.3.3 How Connection Filter Rules are Evaluated

	7.4 Configuring the WebLogic Connection Filter
	7.5 Developing Custom Connection Filters

	8 Using Java Security to Protect WebLogic Resources
	8.1 Using Java EE Security to Protect WebLogic Resources
	8.2 Using the Java Security Manager to Protect WebLogic Resources
	8.2.1 Setting Up the Java Security Manager
	8.2.1.1 Modifying the weblogic.policy file for General Use
	8.2.1.2 Setting Application-Type Security Policies
	8.2.1.3 Setting Application-Specific Security Policies

	8.2.2 Using Printing Security Manager
	8.2.2.1 Printing Security Manager Startup Arguments
	8.2.2.2 Starting WebLogic Server With Printing Security Manager
	8.2.2.3 Writing Output Files

	8.2.3 Using the Java Authorization Contract for Containers
	8.2.3.1 Comparing the WebLogic JACC Provider with the WebLogic Authentication Provider
	8.2.3.2 Enabling the WebLogic JACC Provider

	9 SAML APIs
	9.1 SAML API Description
	9.2 Custom POST Form Parameter Names

	10 Using CertPath Building and Validation
	10.1 CertPath Building
	10.1.1 Instantiate a CertPathSelector
	10.1.2 Instantiate a CertPathBuilderParameters
	10.1.3 Use the JDK CertPathBuilder Interface
	10.1.4 Example Code Flow for Looking Up a Certificate Chain

	10.2 CertPath Validation
	10.2.1 Instantiate a CertPathValidatorParameters
	10.2.2 Use the JDK CertPathValidator Interface
	10.2.3 Example Code Flow for Validating a Certificate Chain

	A Deprecated Security APIs

