

Oracle® Fusion Middleware
Configuring and Using the Diagnostics Framework for Oracle
WebLogic Server

11g Release 1 (10.3.1)

E13714-01

May 2009

This document describes how to configure and use the
monitoring and diagnostic services provided by WLDF.

Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server,
11g Release 1 (10.3.1)

E13714-01

Copyright © 2007, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... ix

Documentation Accessibility ... ix
Conventions ... ix

1 Introduction and Roadmap

1.1 What Is the WebLogic Diagnostic Framework? ... 1-1
1.2 Document Scope and Audience.. 1-2
1.3 Guide to This Document.. 1-2
1.4 Related Documentation.. 1-3
1.5 Samples and Tutorials .. 1-3
1.5.1 Avitek Medical Records Application (MedRec) and Tutorials..................................... 1-3
1.6 New and Changed Features in this Release.. 1-4

2 Overview of the WLDF Architecture

2.1 Overview of the WebLogic Diagnostic Framework .. 2-1
2.2 Data Creation, Collection, and Instrumentation .. 2-2
2.3 Archive ... 2-3
2.4 Watch and Notification .. 2-4
2.5 Data Accessor .. 2-5
2.6 Diagnostic Image Capture ... 2-5
2.7 How It All Fits Together ... 2-5

3 Understanding WLDF Configuration

3.1 Configuration MBeans and XML.. 3-1
3.2 Tools for Configuring WLDF .. 3-2
3.3 How WLDF Configuration Is Partitioned ... 3-2
3.3.1 Server-Level Configuration.. 3-2
3.3.2 Application-Level Configuration .. 3-3
3.4 Configuring Diagnostic Image Capture and Diagnostic Archives...................................... 3-3
3.5 Configuring Diagnostic System Modules ... 3-3
3.5.1 The Diagnostic System Module and Its Resource Descriptor 3-4
3.5.2 Referencing the Diagnostics System Module from Config.xml.................................... 3-4
3.5.3 The DIAG_MODULE.xml Resource Descriptor Configuration.................................... 3-5
3.5.4 Managing Diagnostic System Modules .. 3-6
3.5.5 More Information About Configuring Diagnostic System Resources 3-6

iv

3.6 Configuring Diagnostic Modules for Applications ... 3-6
3.7 WLDF Configuration MBeans and Their Mappings to XML Elements.............................. 3-7

4 Configuring and Capturing Diagnostic Images

4.1 How to Initiate Image Captures ... 4-1
4.2 Configuring Diagnostic Image Captures... 4-1
4.3 How Diagnostic Image Capture Is Persisted in the Server's Configuration 4-2
4.4 Contents of the Captured Image File ... 4-3

5 Configuring Diagnostic Archives

5.1 Configuring the Archive .. 5-1
5.2 Configuring a File-Based Store ... 5-1
5.3 Configuring a JDBC-Based Store .. 5-2
5.3.1 Creating WLDF Tables in the Database ... 5-2
5.3.2 Configuring JDBC Resources for WLDF .. 5-3
5.4 Retiring Data from the Archives... 5-3
5.4.1 Configuring Data Retirement at the Server Level... 5-4
5.4.2 Configuring Age-Based Data Retirement Policies for Diagnostic Archives 5-4
5.4.3 Sample Configuration ... 5-4

6 Configuring the Harvester for Metric Collection

6.1 Harvesting, Harvestable Data, and Harvested Data ... 6-1
6.2 Harvesting Data from the Different Harvestable Entities ... 6-2
6.3 Configuring the Harvester .. 6-2
6.3.1 Configuring the Harvester Sampling Period... 6-3
6.3.2 Configuring the Types of Data to Harvest... 6-3
6.3.3 Specifying Type Names for WebLogic Server MBeans and Custom MBeans............ 6-4
6.3.4 Harvesting from the DomainRuntime MBeanServer... 6-4
6.3.5 When Configuration Settings Are Validated... 6-5
6.3.6 Sample Configurations for Different Harvestable Types .. 6-5

7 Configuring Watches and Notifications

7.1 Watches and Notifications... 7-1
7.2 Overview of Watch and Notification Configuration .. 7-2
7.3 Sample Watch and Notification Configuration.. 7-3

8 Configuring Watches

8.1 Types of Watches .. 8-1
8.2 Configuration Options Shared by All Types of Watches.. 8-1
8.3 Configuring Harvester Watches ... 8-2
8.4 Configuring Log Watches.. 8-4
8.5 Configuring Instrumentation Watches .. 8-5
8.6 Defining Watch Rule Expressions .. 8-5

v

9 Configuring Notifications

9.1 Types of Notifications .. 9-1
9.2 Configuring JMX Notifications ... 9-2
9.3 Configuring JMS Notifications.. 9-2
9.4 Configuring SNMP Notifications .. 9-3
9.5 Configuring SMTP Notifications ... 9-4
9.6 Configuring Image Notifications.. 9-5

10 Configuring Instrumentation

10.1 Concepts and Terminology .. 10-1
10.1.1 Instrumentation Scope ... 10-2
10.1.2 Configuration and Deployment .. 10-2
10.1.3 Joinpoints, Pointcuts, and Diagnostic Locations.. 10-2
10.1.4 Diagnostic Monitor Types ... 10-2
10.1.5 Diagnostic Actions.. 10-3
10.2 Instrumentation Configuration Files .. 10-4
10.3 XML Elements Used for Instrumentation .. 10-5
10.3.1 <Instrumentation> XML Elements .. 10-5
10.3.2 <wldf-instrumentation-monitor> XML Elements ... 10-7
10.3.3 Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types 10-10
10.4 Configuring Server-Scoped Instrumentation .. 10-10
10.5 Configuring Application-Scoped Instrumentation... 10-11
10.5.1 Comparing System-Scoped to Application-Scoped Instrumentation..................... 10-12
10.5.2 Overview of the Steps Required to Instrument an Application 10-13
10.5.3 Creating a Descriptor File for a Delegating Monitor... 10-13
10.5.4 Creating a Descriptor File for a Custom Monitor .. 10-14
10.5.4.1 Defining Pointcuts for Custom Monitors... 10-15
10.5.4.2 Annotation-based Pointcuts... 10-17

11 Configuring the DyeInjection Monitor to Manage Diagnostic Contexts

11.1 Contents, Life Cycle, and Configuration of a Diagnostic Context.................................... 11-1
11.1.1 Context Life Cycle and the Context ID ... 11-2
11.1.2 Dyes, Dye Flags, and Dye Vectors ... 11-2
11.1.3 Where Diagnostic Context Is Configured ... 11-3
11.2 Overview of the Process.. 11-3
11.3 Configuring the Dye Vector via the DyeInjection Monitor ... 11-4
11.3.1 Dyes Supported by the DyeInjection Monitor.. 11-5
11.3.2 PROTOCOL Dye Flags ... 11-6
11.3.3 THROTTLE Dye Flag ... 11-6
11.3.4 When Diagnostic Contexts Are Created.. 11-6
11.4 Configuring Delegating Monitors to Use Dye Filtering... 11-7
11.5 How Dye Masks Filter Requests to Pass to Monitors... 11-9
11.5.1 Dye Filtering Example ... 11-9
11.6 Using Throttling to Control the Volume of Instrumentation Events 11-10
11.6.1 Configuring the THROTTLE Dye .. 11-11
11.6.2 How Throttling is Handled by Delegating and Custom Monitors 11-12

vi

11.7 Using weblogic.diagnostics.context ... 11-13

12 Accessing Diagnostic Data With the Data Accessor

12.1 Data Stores Accessed by the Data Accessor... 12-1
12.2 Accessing Diagnostic Data Online .. 12-2
12.2.1 Accessing Data Using the Administration Console .. 12-2
12.2.2 Accessing Data Programmatically Using Runtime MBeans 12-2
12.2.3 Using WLST to Access Diagnostic Data Online... 12-3
12.2.4 Using the WLDF Query Language with the Data Accessor....................................... 12-3
12.3 Accessing Diagnostic Data Offline .. 12-3
12.4 Accessing Diagnostic Data Programmatically... 12-3
12.5 Resetting the System Clock Can Affect How Data Is Archived and Retrieved.............. 12-8

13 Deploying WLDF Application Modules

13.1 Deploying a Diagnostic Module as an Application-Scoped Resource............................. 13-1
13.2 Using Deployment Plans to Dynamically Control Instrumentation Configuration...... 13-2
13.3 Using a Deployment Plan: Overview ... 13-3
13.4 Creating a Deployment Plan Using weblogic.PlanGenerator... 13-4
13.5 Sample Deployment Plan for Diagnostics.. 13-4
13.6 Enabling Hot-Swap Capabilities.. 13-5
13.7 Deploying an Application with a Deployment Plan .. 13-5
13.8 Updating an Application with a Modified Plan ... 13-6

14 Configuring and Using WLDF Programmatically

14.1 How WLDF Generates and Retrieves Data.. 14-1
14.2 Mapping WLDF Components to Beans and Packages... 14-2
14.3 Programming Tools ... 14-4
14.3.1 Configuration and Runtime APIs... 14-5
14.3.1.1 Configuration APIs ... 14-5
14.3.1.2 Runtime APIs ... 14-6
14.4 WLDF Packages ... 14-6
14.5 Programming WLDF: Examples.. 14-7
14.5.1 Example: DiagnosticContextExample.java ... 14-7
14.5.2 Example: HarvesterMonitor.java ... 14-8
14.5.2.1 Notification Listeners.. 14-8
14.5.2.2 HarvesterMonitor.java.. 14-9
14.5.3 Example: JMXAccessorExample.java... 14-13

A WLDF Query Language

A.1 Components of a Query Expression ... A-1
A.2 Supported Operators ... A-1
A.3 Operator Precedence ... A-2
A.4 Numeric Relational Operations Supported on String Column Types A-3
A.5 Supported Numeric Constants and String Literals... A-3
A.6 About Variables in Expressions ... A-4
A.7 Creating Watch Rule Expressions ... A-4

vii

A.7.1 Creating Log Event Watch Rule Expressions .. A-4
A.7.2 Creating Instrumentation Event Watch Rule Expressions .. A-5
A.7.3 Creating Harvester Watch Rule Expressions.. A-6
A.8 Creating Data Accessor Queries .. A-6
A.8.1 Data Store Logical Names ... A-7
A.8.2 Data Store Column Names.. A-7
A.9 Creating Log Filter Expressions... A-8
A.10 Building Complex Expressions.. A-9

B WLDF Instrumentation Library

B.1 Diagnostic Monitor Library.. B-1
B.2 Diagnostic Action Library .. B-9
B.2.1 TraceAction.. B-10
B.2.2 DisplayArgumentsAction.. B-10
B.2.3 TraceElapsedTimeAction... B-11
B.2.4 StackDumpAction... B-12
B.2.5 ThreadDumpAction ... B-13
B.2.6 MethodInvocationStatisticsAction ... B-13
B.2.6.1 Configuring the Harvester to Collect MethodInvocationStatisticsAction

Data.. B-14
B.2.6.2 Configuring Watch Rules Based on MethodInvocationStatistics Metrics B-15
B.2.6.3 Using JMX to Collect Data.. B-16

C Using Wildcards in Expressions

C.1 Using Wildcards in Harvester Instance Names .. C-1
C.1.1 Examples .. C-1
C.2 Specifying Complex and Nested Harvester Attributes.. C-2
C.2.1 Examples .. C-3
C.3 Using the Accessor with Harvested Complex or Nested Attributes.................................. C-4
C.4 Using Wildcards in Watch Rule Instance Names ... C-5
C.5 Specifying Complex Attributes in Harvester Watch Rules ... C-5

D WebLogic Scripting Tool Examples

D.1 Example: Dynamically Creating DyeInjection Monitors ... D-1
D.2 Example: Configuring a Watch and a JMX Notification ... D-3
D.3 Example: Writing a JMXWatchNotificationListener Class ... D-5
D.4 Example: Registering MBeans and Attributes For Harvesting ... D-8

viii

ix

Preface

This preface describes the document accessibility features and conventions used in this
guide—Configuring and Using the Oracle WebLogic Diagnostics Framework.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Conventions
The following text conventions are used in this document:

x

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

The following sections describe the contents and audience for this guide—Configuring
and Using the WebLogic Diagnostic Framework:

■ Section 1.1, "What Is the WebLogic Diagnostic Framework?"

■ Section 1.2, "Document Scope and Audience"

■ Section 1.3, "Guide to This Document"

■ Section 1.4, "Related Documentation"

■ Section 1.5, "Samples and Tutorials"

■ Section 1.6, "New and Changed Features in this Release"

1.1 What Is the WebLogic Diagnostic Framework?
The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic
framework that defines and implements a set of services that run within WebLogic
Server processes and participate in the standard server life cycle. Using WLDF, you
can create, collect, analyze, archive, and access diagnostic data generated by a running
server and the applications deployed within its containers. This data provides insight
into the run-time performance of servers and applications and enables you to isolate
and diagnose faults when they occur.

WLDF includes several components for collecting and analyzing data:

■ Diagnostic Image Capture—Creates a diagnostic snapshot from the server that can
be used for post-failure analysis.

■ Archive—Captures and persists data events, log records, and metrics from server
instances and applications.

■ Instrumentation—Adds diagnostic code to WebLogic Server instances and the
applications running on them to execute diagnostic actions at specified locations in
the code. The Instrumentation component provides the means for associating a
diagnostic context with requests so they can be tracked as they flow through the
system.

■ Harvester—Captures metrics from run-time MBeans, including WebLogic Server
MBeans and custom MBeans, which can be archived and later accessed for
viewing historical data.

■ Watches and Notifications—Provides the means for monitoring server and
application states and sending notifications based on criteria set in the watches.

■ Logging services—Manage logs for monitoring server, subsystem, and application
events. The WebLogic Server logging services are documented separately from the

Document Scope and Audience

1-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

rest of the WebLogic Diagnostic Framework. See Oracle Fusion Middleware
Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server.

WLDF provides a set of standardized application programming interfaces (APIs) that
enable dynamic access and control of diagnostic data, as well as improved monitoring
that provides visibility into the server. Independent Software Vendors (ISVs) can use
these APIs to develop custom monitoring and diagnostic tools for integration with
WLDF.

WLDF enables dynamic access to server data through standard interfaces, and the
volume of data accessed at any given time can be modified without shutting down
and restarting the server.

1.2 Document Scope and Audience
This document describes and tells how to configure and use the monitoring and
diagnostic services provided by WLDF.

WLDF provides features for monitoring and diagnosing problems in running
WebLogic Server instances and clusters and in applications deployed to them.
Therefore, the information in this document is directed both to system administrators
and to application developers. It also contains information for third-party tool
developers who want to build tools to support and extend WLDF.

It is assumed that readers are familiar with Web technologies and the operating system
and platform where WebLogic Server is installed.

1.3 Guide to This Document
This document is organized as follows:

■ This chapter, "Introduction and Roadmap," provides an overview of WLDF
components and describes the audience for this guide.

■ Chapter 2, "Overview of the WLDF Architecture," provides a high-level view of
the WLDF architecture.

■ Chapter 3, "Understanding WLDF Configuration," provides an overview of how
WLDF features are configured for servers and applications.

■ Chapter 4, "Configuring and Capturing Diagnostic Images," describes how to
configure and use the WLDF Diagnostic Image Capture component to capture a
snapshot of significant server configuration settings and the server state.

■ Chapter 5, "Configuring Diagnostic Archives," describes how to configure and use
the WLDF Diagnostic Archive component to persist diagnostic data to a file store
or database.

■ Chapter 6, "Configuring the Harvester for Metric Collection," describes how to
configure and use the WLDF Harvester component to harvest metrics from
runtime MBeans, including WebLogic Server MBeans and custom MBeans.

■ Chapter 7, "Configuring Watches and Notifications," provides an overview of
WLDF watches and notifications.

■ Chapter 8, "Configuring Watches," describes how to configure watches to monitor
server instances and applications for specific conditions and send notifications
when those conditions are met.

■ Chapter 9, "Configuring Notifications," describes how to configure notifications
that can be triggered by watches.

Samples and Tutorials

Introduction and Roadmap 1-3

■ Chapter 10, "Configuring Instrumentation," describes how to add diagnostic
instrumentation code to WebLogic Server classes and to the classes of applications
running on the server.

■ Chapter 11, "Configuring the DyeInjection Monitor to Manage Diagnostic
Contexts," describes how to use the DyeInjection monitor and how to use dye
filtering with diagnostic monitors.

■ Chapter 12, "Accessing Diagnostic Data With the Data Accessor," tells how to use
the WLDF Data Accessor component to retrieve diagnostic data.

■ Chapter 14, "Configuring and Using WLDF Programmatically," provides an
overview of how you can use the JMX API and the WebLogic Scripting Tool
(weblogic.WLST) to configure and use WLDF components.

■ Appendix A, "WLDF Query Language," describes the WLDF query language that
is used for constructing expressions to query diagnostic data using the Data
Accessor, constructing watch rules, and constructing rules for filtering logs.

■ Appendix B, "WLDF Instrumentation Library," describes the predefined diagnostic
monitors and diagnostic actions that are included in the WLDF Instrumentation
Library.

■ Appendix D, "WebLogic Scripting Tool Examples," provides examples of how to
perform WLDF monitoring and diagnostic activities using the WebLogic Scripting
Tool.

■ "Glossary" is a glossary of terms used in WLDF.

1.4 Related Documentation
■ Oracle Fusion Middleware Configuring Log Files and Filtering Log Messages for Oracle

WebLogic Server describes how to use WLDF logging services to monitor server,
subsystem, and application events.

■ "Configure the WebLogic Diagnostic Framework" in the Administration Console
Online Help describes how to use the visual tools in the WebLogic Administration
Console to configure WLDF.

■ The WLDF system resource descriptor conforms to the weblogic-diagnostics.xsd
schema, available at
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/web
logic-diagnostics.xsd.

1.5 Samples and Tutorials
In addition to this document, we provide a variety of samples and tutorials that show
WLDF configuration and use.

1.5.1 Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample J2EE application shipped with WebLogic Server that
simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and J2EE features, and highlights
recommended best practices. MedRec is included in the WebLogic Server distribution,
and can be accessed from the Start menu on Windows machines. For Linux and other
platforms, you can start MedRec from the WL_HOME\samples\domains\medrec

New and Changed Features in this Release

1-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

directory, where WL_HOME is the top-level installation directory for WebLogic
Platform.

1.6 New and Changed Features in this Release
Two diagnostic monitors have been added:

■ JDBC_After_Reserve_Connection_Internal

■ JDBC_After_Release_Connection_Internal

These diagnostic instrumentation monitors can be configured in a WLDF module at
the server level. They provide additional visibility when JDBC connections are
reserved and released. For more information, see Section B.1, "Diagnostic Monitor
Library."

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see Oracle Fusion Middleware What's New in Oracle WebLogic Server.

2

Overview of the WLDF Architecture 2-1

2Overview of the WLDF Architecture

The WebLogic Diagnostic Framework (WLDF) consists of a number of components
that work together to collect, archive, and access diagnostic information about a
WebLogic Server instance and the applications it hosts. This section provides an
architectural overview of those components.

The WLDF architecture is described in the following sections:

■ Section 2.1, "Overview of the WebLogic Diagnostic Framework"

■ Section 2.2, "Data Creation, Collection, and Instrumentation"

■ Section 2.3, "Archive"

■ Section 2.4, "Watch and Notification"

■ Section 2.5, "Data Accessor"

■ Section 2.6, "Diagnostic Image Capture"

■ Section 2.7, "How It All Fits Together"

2.1 Overview of the WebLogic Diagnostic Framework
WLDF consists of the following:

■ Data creators (data publishers and data providers that are distributed across
WLDF components)

■ Data collectors (the Logger and the Harvester components)

■ Archive component

■ Accessor component

■ Instrumentation component

■ Watch and Notification component

■ Image Capture component

Note: Concepts are presented in this section in a way to help you
understand how WLDF works. Some of this differs from the way
WLDF is surfaced in its configuration and runtime APIs and in the
WebLogic Server Console. If you want to start configuring and using
WLDF right away, you can safely skip this discussion and start with
Chapter 3, "Understanding WLDF Configuration."

Data Creation, Collection, and Instrumentation

2-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Data creators generate diagnostic data that is consumed by the Logger and the
Harvester. Those components coordinate with the Archive to persist the data, and they
coordinate with the Watch and Notification subsystem to provide automated
monitoring. The Accessor interacts with the Logger and the Harvester to expose
current diagnostic data and with the Archive to present historical data. The Image
Capture facility provides the means for capturing a diagnostic snapshot of a key server
state. The relationship among these components is shown in Figure 2–1.

Figure 2–1 Major WLDF Components

All of the framework components operate at the server level and are only aware of
server scope. All the components exist entirely within the server process and
participate in the standard server lifecycle. All artifacts of the framework are
configured and stored on a per server basis.

2.2 Data Creation, Collection, and Instrumentation
Diagnostic data is collected from a number of sources. These sources can be logically
classified as either data providers, data creators that are sampled at regular intervals to
harvest current values, or data publishers, data creators that synchronously generate
events. Data providers and data publishers are distributed across components, and the
generated data can be collected by the Logger and/or by the Harvester, as shown in
Figure 2–2, and explained below.

Archive

Overview of the WLDF Architecture 2-3

Figure 2–2 Relationship of Data Creation Components to Data Collection Components

Invocations of the server logging infrastructure serve as inline data publishers, and the
generated data is collected as events. (The logging infrastructure can be invoked
through the catalog infrastructure, the debugging model, or directly through the
Logger.)

The Instrumentation system creates monitors and inserts them at well-defined points
in the flow of execution. These monitors publish data directly to the Archive.

Components registered with the MBean Server may also make themselves known as
data providers by registering with the Harvester. Collected data is then exposed to
both the Watch and Notification system for automated monitoring and to the Archive
for persistence.

2.3 Archive
The past state is often critical in diagnosing faults in a system. This requires that the
state be captured and archived for future access, creating a historical archive. In
WLDF, the Archive meets this need with several persistence components. Both events
and harvested metrics can be persisted and made available for historical review.

Traditional logging information, which is human readable and intended for inclusion
in the server log, is persisted through the standard logging appenders. New event data
that is intended for system consumption is persisted into an event store using an event
archiver. Metric data is persisted into a data store using a data archiver. The
relationship of the Archive to the Logger and the Harvester is shown in Figure 2–3.

The Archive provides access interfaces so that the Accessor may expose any of the
persisted historical data.

Watch and Notification

2-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 2–3 Relationship of the Archive to the Logger and the Harvester

2.4 Watch and Notification
The Watch and Notification system can be used to create automated monitors that
observe specific diagnostic states and send notifications based on configured rules.

A watch rule can monitor log data, event data from the Instrumentation component, or
metric data from a data provider that is harvested by the Harvester. The Watch
Manager is capable of managing watches that are composed of a number of watch
rules. These relationships are shown in Figure 2–4.

Figure 2–4 Relationship of the Logger and the Harvester to the Watch and Notification
System

One or more notifications can be configured for use by a watch. By default, every
watch logs an event in the server log. SMTP, SNMP, JMX, and JMS notifications are
also supported.

How It All Fits Together

Overview of the WLDF Architecture 2-5

2.5 Data Accessor
The Accessor provides access to all the data collected by WLDF, including log, event,
and metric data. The Accessor interacts with the Archive to get historical data
including logged event data and persisted metrics.

When accessing data in a running server, a JMX-based access service is used. The
Accessor provides for data lookup by type, by component, and by attribute. It permits
time-based filtering and, in the case of events, filtering by severity, source and content.

Tools may need to access data that was persisted by a currently inactive server. In this
case, an offline Accessor is also provided. You can use it to export archived data to an
XML file for later access. To use the Accessor in this way, you must use the WebLogic
Scripting Tool (WLST) and must have physical access to the machine.

The relationship of the Accessor to the Harvester and the Archive is shown in
Figure 2–5.

Figure 2–5 Relationship of the Online and Offline Accessors to the Archive

2.6 Diagnostic Image Capture
Diagnostic Image Capture support gathers the most common sources of the key server
state used in diagnosing problems. It packages that state into a single artifact which
can be made available to support technicians, as shown in Figure 2–6. The diagnostic
image is in essence a diagnostic snapshot or dump from the server, analogous to a
UNIX "core" dump.

Image Capture support includes both an on-demand capture process and an
automated capture based on some basic failure detection.

Figure 2–6 Diagnostic Image Capture

2.7 How It All Fits Together
Figure 2–7 shows how all the parts of WLDF fit together.

How It All Fits Together

2-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 2–7 Overall View of the WebLogic Diagnostic Framework

3

Understanding WLDF Configuration 3-1

3Understanding WLDF Configuration

The WebLogic Diagnostic Framework (WLDF) provides features for generating,
gathering, analyzing, and persisting diagnostic data from WebLogic Server instances
and from applications deployed to them. For server-scoped diagnostics, some WLDF
features are configured as part of the configuration for a server in a domain. Other
features are configured as system resource descriptors that can be targeted to servers
(or clusters). For application-scoped diagnostics, diagnostic features are configured as
resource descriptors for the application.

The following sections provide an overview of WLDF configuration:

■ Section 3.1, "Configuration MBeans and XML"

■ Section 3.2, "Tools for Configuring WLDF"

■ Section 3.3, "How WLDF Configuration Is Partitioned"

■ Section 3.4, "Configuring Diagnostic Image Capture and Diagnostic Archives"

■ Section 3.5, "Configuring Diagnostic System Modules"

■ Section 3.6, "Configuring Diagnostic Modules for Applications"

■ Section 3.7, "WLDF Configuration MBeans and Their Mappings to XML Elements"

For general information about WebLogic Server domain configuration, see Oracle
Fusion Middleware Understanding Domain Configuration for Oracle WebLogic Server.

3.1 Configuration MBeans and XML
As in other WebLogic Server subsystems, WLDF is configured using configuration
MBeans (Managed Beans), and the configuration is persisted in XML configuration
files. The configuration MBeans are instantiated at startup, based on the configuration
settings in config.xml. When you modify a configuration by changing the values of
MBean attributes, those changes are saved (persisted) in the XML files.

Configuration MBean attributes map directly to configuration XML elements. For
example, the Enable attribute of the WLDFInstrumentationBean maps directly to the
<enabled> sub-element of the <instrumentation> element in the resource descriptor
file (configuration file) for a diagnostic module. If you change the value of the MBean
attribute, the content of the XML element is changed when the configuration is saved.
Conversely, if you were to edit an XML element in the configuration file directly
(which is not recommended), the change to an MBean value would take effect after the
next session is started.

For more information about WLDF Configuration MBeans, see Section 3.7, "WLDF
Configuration MBeans and Their Mappings to XML Elements". For general
information about how MBeans are implemented and used in WebLogic Server, see

Tools for Configuring WLDF

3-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

"Understanding WebLogic Server MBeans" in Oracle Fusion Middleware Developing
Custom Management Utilities With JMX for Oracle WebLogic Server.

3.2 Tools for Configuring WLDF
As with other WebLogic Server subsystems, there are several ways to configure
WLDF:

■ Use the Administration Console to configure WLDF for server instances and
clusters. See "Configure the WebLogic Diagnostic Framework" in the
Administration Console Online Help.

■ Write scripts to be run in the WebLogic Scripting Tool (WLST). For specific
information about using WLST with WLDF, see Appendix D, "WebLogic Scripting
Tool Examples." Also see Oracle Fusion Middleware Oracle WebLogic Scripting Tool
for general information about using WLST.

■ Configure WLDF programmatically using JMX and the WLDF configuration
MBeans. See Chapter 14, "Configuring and Using WLDF Programmatically," for
specific information about programming WLDF. See Oracle Fusion Middleware
Oracle WebLogic Server MBean Reference and browse or search for specific MBeans
for programming reference.

■ Edit the XML configuration files directly. This documentation explains many
configuration tasks by showing and explaining the XML elements in the
configuration files. The XML is easy to understand, and you can edit the
configuration files directly, although it is recommended that you do not. (If you
have a good reason to edit the files directly, you should first generate the XML files
by configuring WLDF in the Administration Console. Doing so provides a
blueprint for valid XML.)

3.3 How WLDF Configuration Is Partitioned
You can use WLDF to perform diagnostics tasks for server instances (and clusters) and
for applications.

3.3.1 Server-Level Configuration
You configure the following WLDF components as part of a server instance in a
domain. The configuration settings are controlled using MBeans and are persisted in
the domain's config.xml file.

■ Diagnostic Image Capture

■ Diagnostic Archives

See Section 3.4, "Configuring Diagnostic Image Capture and Diagnostic Archives".

You configure the following WLDF components as the parts of one or more diagnostic
system modules, or resources, that can be deployed to one or more server instances (or
clusters). These configuration settings are controlled using Beans and are persisted in
one or more diagnostic resource descriptor files (configuration files) that can be
targeted to one or more server instances or clusters.

Note: If you make changes to a configuration by editing
configuration files, you must restart the server for the changes to take
effect.

Configuring Diagnostic System Modules

Understanding WLDF Configuration 3-3

■ Harvester (for collecting metrics)

■ Watch and Notification

■ Instrumentation

See Section 3.5, "Configuring Diagnostic System Modules".

3.3.2 Application-Level Configuration
You can use the WLDF Instrumentation component with applications, as well as at the
server level. The Instrumentation component is configured in a resource descriptor file
deployed with the application in the application's archive file. See Section 3.6,
"Configuring Diagnostic Modules for Applications".

3.4 Configuring Diagnostic Image Capture and Diagnostic Archives
In the config.xml file for a domain, you configure the Diagnostic Image Capture
component and the Diagnostic Archive component in the <server-diagnostic-config>
element, which is a child of the <server> element in a domain, as shown in
Example 3–1.

Example 3–1 Sample WLDF Configuration Information in the config.xml File for a
Domain

<domain>
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <image-dir>logs/diagnostic_images</image-dir>
 <image-timeout>3</image-timeout>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive
 </diagnostic-data-archive-type>
 </server-diagnostic-config>
 </server>
 <!-- Other server elements to configure other servers in this domain -->
 <!-- Other domain-based configuration elements, including references to
 WLDF system resources, or diagnostic system modules.
 See Example 3–2. -->
</domain>

For more information, see the following:

■ Chapter 4, "Configuring and Capturing Diagnostic Images"

■ Chapter 5, "Configuring Diagnostic Archives"

3.5 Configuring Diagnostic System Modules
To configure and use the Instrumentation, Harvester, and Watch and Notification
components at the server level, you must first create a system resource called a
diagnostic system module, which will contain the configurations for all those
components. Keep in mind that:

■ System modules are globally available for targeting to servers and clusters
configured in a domain.

■ In a given domain, you can create multiple diagnostic system modules with
distinct configurations.

Configuring Diagnostic System Modules

3-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

■ At most, one diagnostic system module can be targeted to any given server or
cluster.

3.5.1 The Diagnostic System Module and Its Resource Descriptor
You create a diagnostic system module through the Administration Console or the
WebLogic Scripting Tool (WLST). It is created as a WLDFResourceBean, and the
configuration is persisted in a resource descriptor file (configuration file), called
DIAG_MODULE.xml, where DIAG_MODULE is the name of the diagnostic module.
You can specify a name for the descriptor file, but it is not required. If you do not
provide a file name, a file name is generated based on the value in the descriptor file's
<name> element. The file is created by default in the DOMAIN_
NAME\config\diagnostics directory, where DOMAIN_NAME is the name of the
domain's home directory. The file has the extension .xml.

For instructions on creating a diagnostic system module, see "Create diagnostic system
modules" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Help.

3.5.2 Referencing the Diagnostics System Module from Config.xml
When you create a diagnostic system module using the Administration Console or the
WebLogic Scripting Tool (WLST), WebLogic Server creates it in DOMAIN_
NAME/config/diagnostics, and a reference to the module is added to the domain's
config.xml file.

The config.xml file can contain multiple references to diagnostic modules, in one or
more <wldf-system-resource> elements. The <wldf-system-resource> element
includes the name of the diagnostic module file and the list of servers and clusters to
which the module is targeted.

For example, Example 3–2 shows a config.xml file with a module named
myDiagnosticModule targeted to the server myserver and another module named
newDiagnosticMod targeted to servers ManagedServer1 and ManagedServer2.

Example 3–2 Sample WLDF Configuration Information in the Config.xml File for a
Domain

<domain>
 <!-- Other domain-level configuration elements -->
 <wldf-system-resource
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics">

Note: The diagnostic module conforms to the diagnostics.xsd
schema, available at
http://xmlns.oracle.com/weblogic/weblogic-diagnostic
s/1.0/weblogic-diagnostics.xsd.

Note: Oracle recommends that you do not write XML configuration
files directly. But if you have a valid reason to do so, you should first
create a diagnostic module from the Console. That way, you can start
with the valid XML that the Console creates. For instructions, see
"Create diagnostic system modules" in the Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Help.

Configuring Diagnostic System Modules

Understanding WLDF Configuration 3-5

 <name>myDiagnosticModule</name>
 <target>myserver</target>
 <descriptor-file-name>diagnostics/MyDiagnosticModule.xml
 </descriptor-file-name>
 <description>My diagnostic module</description>
 </wldf-system-resource>
 <wldf-system-resource>
 <name>newDiagnosticMod</name>
 <target>ManagedServer1,ManagedServer2</target>
 <descriptor-file-name>diagnostics/newDiagnosticMod.xml
 </descriptor-file-name>
 <description>A diagnostic module for my managed servers</description>
 </wldf-system-resource>
<!-- Other WLDF system resource configurations -->
</domain>

The relationship of the config.xml file and the MyDiagnosticModule.xml file is shown
in Figure 3–1.

Figure 3–1 Relationship of config.xml to System Descriptor File

3.5.3 The DIAG_MODULE.xml Resource Descriptor Configuration
Except for the name and list of targets, which are listed in the config.xml file, as
described above, all configuration for a diagnostic system module is saved in its
resource descriptor file. Example 3–3 shows portions of the descriptor file for a
diagnostic system module named myDiagnosticModule.

Example 3–3 Sample Structure of a Diagnostic System Module Descriptor File,
MyDiagnosticModule.xml

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <!-- Configuration elements for zero or more diagnostic monitors -->
 </instrumentation>
 <harvester>
 <!-- Configuration elements for harvesting metrics from zero or more

Configuring Diagnostic Modules for Applications

3-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 MBean types, instances, and attributes -->
 </harvester>
 <watch-notification>
 <!-- Configuration elements for one or more watches and one or more
 notifications-->
 </watch-notification>
</wldf-resource>

3.5.4 Managing Diagnostic System Modules
A diagnostic system module can be targeted to zero, one, or more servers or clusters,
although a given server can have only one module targeted to it at a time. You can
create multiple modules that monitor different aspects of your system. You can then
choose which module to target to a server or cluster, based on what you want to
monitor at that time.

Because you can target the same module to multiple servers or clusters, you can write
general purpose modules that you want to use across a domain.

You can change the target of a diagnostic module without restarting the server
instance(s) to which it is targeted or untargeted. This gives you considerable flexibility
in writing and using diagnostic monitors that address a specific diagnostic goal,
without interfering with the operation of the server instances themselves.

3.5.5 More Information About Configuring Diagnostic System Resources
See the following sections for detailed instructions on configuring WLDF system
resources:

■ Chapter 6, "Configuring the Harvester for Metric Collection"

■ Chapter 7, "Configuring Watches and Notifications"

■ Chapter 10, "Configuring Instrumentation"

■ Chapter 11, "Configuring the DyeInjection Monitor to Manage Diagnostic
Contexts"

3.6 Configuring Diagnostic Modules for Applications
You can configure only the Instrumentation component in a diagnostic descriptor for
an application.

You configure and deploy application-scoped instrumentation as a diagnostic module,
which is similar to a diagnostic system module. However, an application module is
configured in an XML descriptor (configuration) file named weblogic-diagnostics.xml,
which is packaged with the application archive in the ARCHIVE_PATH/META-INF
directory for the deployed application. For example, D:\bea\wlserver_
10.3\samples\server\medrec\dist\standalone\exploded\medrec\META-INF\weblo
gic-diagnostics.xml

WLDF Configuration MBeans and Their Mappings to XML Elements

Understanding WLDF Configuration 3-7

For more information about configuring and deploying diagnostic modules for
applications, see:

■ Section 10.5, "Configuring Application-Scoped Instrumentation"

■ Chapter 13, "Deploying WLDF Application Modules."

3.7 WLDF Configuration MBeans and Their Mappings to XML Elements
Figure 3–2 shows the hierarchy of the WLDF configuration MBeans and the diagnostic
system module beans for WLDF objects in a WebLogic Server domain.

Figure 3–2 WLDF Configuration Bean Tree

The following WLDF MBeans configure WLDF at the server level. They map to XML
elements in the config.xml configuration file for a domain:

■ WLDFServerDiagnosticMBean controls configuration settings for the Data Archive
and Diagnostic Images components for a server. It also controls whether
diagnostic context for a diagnostic module is globally enabled or disabled.
(Diagnostic context is a way to uniquely identify requests and track them as they
flow through the system. See Chapter 11, "Configuring the DyeInjection Monitor
to Manage Diagnostic Contexts.")

Note: The DyeInjection monitor, which is used to configure
diagnostic context (a way of tracking requests as they flow through
the system), can be configured only at the server level. But once a
diagnostic context is created, the context attached to incoming
requests remains with the requests as they flow through the
application. For information about the diagnostic context, see
Chapter 11, "Configuring the DyeInjection Monitor to Manage
Diagnostic Contexts."

WLDF Configuration MBeans and Their Mappings to XML Elements

3-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

This MBean is represented by a <server-diagnostic-config> child element of the
<server> element in the config.xml file for the server's domain.

■ WLDFSystemResourceMBean contains the name of a descriptor file for a
diagnostic module in the DOMAIN_NAME/config/diagnostics directory and the
name(s) of the target server(s) to which that module is deployed.

This MBean is represented by a <wldf-system-resource> element in the config.xml
file for the domain.

■ WLDFResourceBean contains the configuration settings for a diagnostic system
module. This bean is represented by a <wldf-resource> element in a DIAG_
MODULE.xml diagnostics descriptor file in the domain's config/diagnostics
directory. (See Figure 3–1 and Example 3–3.) The WLDFResourceBean contains
configuration settings for the following components:

– Harvester: The WLDFHarvesterBean is represented by the <harvester>
element in a DIAG_MODULE.xml file.

– Instrumentation: The WLDFInstrumentationBean is represented by the
<instrumentation> element in a DIAG_MODULE.xml file.

– Watch and Notification: The WLDFWatchNotificationBean is represented by
the <watch-notification> element in a DIAG_MODULE.xml file.

If a WLDFResourceBean is linked from a WLDFSystemResourceMBean, the
settings for WLDF components apply to the targeted server. If a
WLDFResourceBean is contained within a weblogic-diagnostics.xml descriptor file
which is deployed as part of an application archive, you can configure only the
Instrumentation component, and the settings apply only to that application. In the
latter case, the WLDFResourceMBean is not a child of a
WLDFSystemResourceMBean.

Note: You can create multiple diagnostic system modules in a
domain. The configurations for the modules are saved in multiple
descriptor files in the config/diagnostics directory for the domain. The
domain's config.xml file, therefore, can contain the multiple
<wldf-system-resource> elements that represent those modules.
However, you can target only one diagnostic system module to a
server at a time. You cannot have two files in the config/diagnostics
directory whose active target is the same server.

4

Configuring and Capturing Diagnostic Images 4-1

4Configuring and Capturing Diagnostic
Images

You use the Diagnostic Image Capture component of the WebLogic Diagnostic
Framework (WLDF) to create a diagnostic snapshot, or dump, of a server's internal
runtime state at the time of the capture. This information helps support personnel
analyze the cause of a server failure.

The following topics describe the Diagnostic Image Capture component:

■ Section 4.1, "How to Initiate Image Captures"

■ Section 4.2, "Configuring Diagnostic Image Captures"

■ Section 4.3, "How Diagnostic Image Capture Is Persisted in the Server's
Configuration"

■ Section 4.4, "Contents of the Captured Image File"

4.1 How to Initiate Image Captures
A diagnostic image capture can be initiated by:

■ A configured watch notification. See Chapter 9, "Configuring Notifications."

■ A request initiated by a user in the Administration Console (and requests initiated
from third-party diagnostic tools). See "Configure and capture diagnostic images"
in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

■ A direct API call, using JMX. See Example 4–1

■ WLST command

4.2 Configuring Diagnostic Image Captures
Because the diagnostic image capture is meant primarily as a post-failure analysis tool,
there is little control over what information is captured. Available configuration
options are:

■ The destination for the image

■ For a specific capture, a destination that is different from the default destination

■ A lockout, or timeout, period, to control how often an image is taken during a
sequence of server failures and recoveries

As with other WLDF components, you can configure Diagnostic Image Capture using
the Administration Console (see "Configure and capture diagnostic images" in the

How Diagnostic Image Capture Is Persisted in the Server's Configuration

4-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help), the
WebLogic Scripting Tool (WLST), or programmatically.

Example 4–1 shows an example of WLST commands for generating an image capture.

Example 4–1 Sample WLST Commands for Generating a Diagnostic Image

url='t3://localhost:7001'
username='system'
password='gumby1234'
server='myserver'
timeout=120
connect(username, password, url)
serverRuntime()
cd('WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image')
argTypes = jarray.array(['java.lang.Integer'],java.lang.String)
argValues = jarray.array([timeout],java.lang.Object)
invoke('captureImage', argValues, argTypes)

4.3 How Diagnostic Image Capture Is Persisted in the Server's
Configuration

The configuration for Diagnostic Image Capture is persisted in the config.xml file for a
domain, under the <server-diagnostic-config> sub-element of the <server> element for
the server, as shown in Example 4–2:

Example 4–2 Sample Diagnostic Image Capture Configuration

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <image-dir>logs\diagnostic_images</image-dir>
 <image-timeout>2</image-timeout>
 </server-diagnostic-config>
 <!-- Other configuration details for this server -->
 </server>
 <!-- Other server configurations in this domain-->
</domain>

Note: TIt is often useful to generate a diagnostic image capture when
a server fails. To do so, set a watch rule to evaluate to true when the
server's state changes to FAILED; then associate an image notification
with the watch.

The watch rule is as follows:

(${[weblogic.management.runtime.ServerRuntimeMBean]/
/State} = 'FAILED')

For more information, see Section 8.3, "Configuring Harvester
Watches" and Section 9.6, "Configuring Image Notifications". Also see
"Configure Watches and Notifications" in the Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Help.

Contents of the Captured Image File

Configuring and Capturing Diagnostic Images 4-3

4.4 Contents of the Captured Image File
The most common sources of a server state are captured in a diagnostic image capture,
including:

■ Configuration

■ Log cache state

■ Java Virtual Machine (JVM)

■ Work Manager state

■ JNDI state

■ Most recent harvested data

The Diagnostic Image Capture component captures and combines the images
produced by the different server subsystems into a single ZIP file. In addition to
capturing the most common sources of the server state, this component captures
images from all the server subsystems including, for example, images produced by the
JMS, JDBC, EJB, and JNDI subsystems.

Each image is captured as a single file for the entire server. The default location is
SERVER\logs\diagnostic_images. Each image instance has a unique name, as follows:

 diagnostic_image_DOMAIN_SERVER_YYYY_MM_DD_HH_MM_SS.zip

The contents of the file include at least the following information:

■ Creation date and time of the image

■ Source of the capture request

■ Name of each image source included in the image and the time spent processing
each of those image sources

■ JVM and OS information, if available

■ Command line arguments, if available

■ WLS version including patch and build number information

Figure 4–1 shows the contents of an image file. You can open most of the files in this
ZIP file with a text editor to examine the contents.

Note: Oracle recommends that you do not edit the config.xml file
directly.

Note: A diagnostic image is a heavyweight artifact meant to serve as
a server-level state dump for the purpose of diagnosing significant
failures. It enables you to capture a significant amount of important
data in a structured format and then to provide that data to support
personnel for analysis.

Contents of the Captured Image File

4-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 4–1 An Image File

5

Configuring Diagnostic Archives 5-1

5Configuring Diagnostic Archives

The Archive component of the WebLogic Diagnostic Framework (WLDF) captures and
persists all data events, log records, and metrics collected by WLDF from server
instances and applications running on them. You can access archived diagnostic data
in online mode (that is, on a running server). You can also access archived data in
off-line mode using the WebLogic Scripting Tool (WLST).

You can configure WLDF to archive diagnostic data to a file store or a Java Database
Connectivity (JDBC) data source, as described in the following sections:

■ Section 5.1, "Configuring the Archive"

■ Section 5.2, "Configuring a File-Based Store"

■ Section 5.3, "Configuring a JDBC-Based Store"

You can also specify when and under what conditions old data will be removed from
the archive, as described in the following section:

■ Section 5.4, "Retiring Data from the Archives"

5.1 Configuring the Archive
You configure the diagnostic archive on a per-server basis.The configuration is
persisted in the config.xml file for a domain, under the <server-diagnostic-config>
element for the server. Example configurations for file-based stores and JDBC-based
stores are shown in Example 5–1 and Example 5–3.

5.2 Configuring a File-Based Store
For a file-based store, WLDF creates a file to contain the archived information. The
only configuration option for a WLDF file-based archive is the directory where the file
will be created and maintained. The default directory is DOMAIN_
NAME/servers/SERVER_NAME/data/store/diagnostics, where DOMAIN_NAME is
the home directory for the domain, and SERVER_NAME is the home directory for the
server instance.

When you save to a file-based store, WLDF uses the WebLogic Server persistent store.
For more information, see "Using the WebLogic Persistent Store" in Oracle Fusion
Middleware Configuring Server Environments for Oracle WebLogic Server.

Note: Resetting the system clock while diagnostic data is being
written to the archive can produce unexpected results. See
Section 12.5, "Resetting the System Clock Can Affect How Data Is
Archived and Retrieved".

Configuring a JDBC-Based Store

5-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

An example configuration for a file-based store is shown in Example 5–1.

Example 5–1 Sample Configuration for File-based Diagnostic Archive (in config.xml)

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive
 </diagnostic-data-archive-type>
 </server-diagnostic-config>
 </server>
 <!-- Other server configurations in this domain -->
</domain>

5.3 Configuring a JDBC-Based Store
To use a JDBC store, the appropriate tables must exist in a database, and JDBC must be
configured to connect to that database. For information on how to configure JDBC
using the Administration Console, see "Configure database connectivity" in Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help. For additional
information about JDBC configuration, see Oracle Fusion Middleware Configuring and
Managing JDBC for Oracle WebLogic Server.

5.3.1 Creating WLDF Tables in the Database
If they do not already exist, you must create the database tables used by WLDF to store
data in a JDBC-based store. Two tables are required:

■ The wls_events table stores data generated from WLDF Instrumentation events.

■ The wls_hvst table stores data generated from the WLDF Harvester component.

The SQL Data Definition Language (DDL) used to create tables may differ for different
databases, depending on the SQL variation supported by the database. The following
code listing shows the DDL that you can use to create WLDF tables in the PointBase
database.

Example 5–2 DDL Definition of the WLDF Tables for PointBase Database

-- DDL for creating wls_events table for instrumentation events
DROP TABLE wls_events;
CREATE TABLE wls_events (
 RECORDID INTEGER IDENTITY,
 TIMESTAMP NUMERIC default NULL,
 CONTEXTID varchar(128) default NULL,
 TXID varchar(32) default NULL,
 USERID varchar(32) default NULL,
 TYPE varchar(64) default NULL,
 DOMAIN varchar(64) default NULL,
 SERVER varchar(64) default NULL,
 SCOPE varchar(64) default NULL,
 MODULE varchar(64) default NULL,
 MONITOR varchar(64) default NULL,
 FILENAME varchar(64) default NULL,
 LINENUM INTEGER default NULL,
 CLASSNAME varchar(250) default NULL,

Retiring Data from the Archives

Configuring Diagnostic Archives 5-3

 METHODNAME varchar(64) default NULL,
 METHODDSC varchar(4000) default NULL,
 ARGUMENTS clob(100000) default NULL,
 RETVAL varchar(4000) default NULL,
 PAYLOAD blob(100000),
 CTXPAYLOAD VARCHAR(4000),
 DYES NUMERIC default NULL,
 THREADNAME varchar(128) default NULL
);

-- DDL for creating wls_events table for instrumentation events
DROP TABLE wls_hvst;
CREATE TABLE wls_hvst (
 RECORDID INTEGER IDENTITY,
 TIMESTAMP NUMERIC default NULL,
 DOMAIN varchar(64) default NULL,
 SERVER varchar(64) default NULL,
 TYPE varchar(64) default NULL,
 NAME varchar(250) default NULL,
 ATTRNAME varchar(64) default NULL,
 ATTRTYPE INTEGER default NULL,
 ATTRVALUE VARCHAR(4000)
);
COMMIT;

Consult the documentation for your database or your database administrator for
specific instructions for creating these tables for your database.

5.3.2 Configuring JDBC Resources for WLDF
After you create the tables in your database, you must configure JDBC to access the
tables. (See Oracle Fusion Middleware Configuring and Managing JDBC for Oracle
WebLogic Server.) Then, as part of your server configuration, you specify that JDBC
resource as the data store to be used for a server's archive.

An example configuration for a JDBC-based store is shown in Example 5–3.

Example 5–3 Sample configuration for JDBC-based Diagnostic Archive (in config.xml)

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <diagnostic-data-archive-type>JDBCArchive
 </diagnostic-data-archive-type>
 <diagnostic-jdbc-resource>JDBCResource</diagnostic-jdbc-resource>
 <server-diagnostic-config>
 </server>
 <!-- Other server configurations in this domain -->
</domain>

If you specify a JDBC resource but it is configured incorrectly, or if the required tables
do not exist in the database, WLDF uses the default file-based persistent store.

5.4 Retiring Data from the Archives
WLDF includes a configuration-based data retirement feature for periodically deleting
old diagnostic data from the archives. You can configure size-based data retirement at

Retiring Data from the Archives

5-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

the server level and age-based retirement at the individual archive level, as described
in the following sections.

5.4.1 Configuring Data Retirement at the Server Level
You can set the following data retirement options for a server instance:

■ The preferred maximum size of the server instance's data store
(<preferred-store-size-limit>) and the interval at which it is checked, on the hour,
to see if it exceeds that size (<store-size-check-period>).

When the size of the store is found to exceed the preferred maximum, an
appropriate number of the oldest records in the store are deleted to reduce the size
below the specified threshold. This is called "size-based data retirement."

■ Enable or disable data retirement for the server instance.

For file-based diagnostic stores, this enables or disables the size-based data
retirement options discussed above. For both file-based stores and database-based
stores, this also enables or disables any age-based data retirement policies defined
for individual archives in the store. See "Configuring Age-Based Data Retirement
Policies for Diagnostic Archives" below.

5.4.2 Configuring Age-Based Data Retirement Policies for Diagnostic Archives
The data store for a server instance can contain the following types of diagnostic data
archives whose records can be retired using the data retirement feature:

■ Harvested metrics data (logical name: HarvestedDataArchive)

■ Instrumentation events data (logical name: EventsDataArchive)

■ Custom data (user-defined name)

Age-based policies apply to individual archives. The data store for a server instance
can have one age-based policy for the HarvestedDataArchive, one for the
EventsDataArchive, and one each for any custom archives.

When records in an archive exceed the age limit specified for records in that archive,
those records are deleted.

5.4.3 Sample Configuration
Data retirement configuration settings are persisted in the config.xml configuration file
for the server's domain, as shown in Example 5–4.

Note: Size-based data retirement can be used only for file-based
stores. These options are ignored for database-based stores.

Note: WebLogic Server log files are maintained both at the server
level and the domain level. Data is retired from the current log using
the log rotation feature. See "Configuring WebLogic Logging Services"
in Oracle Fusion Middleware Configuring Log Files and Filtering Log
Messages for Oracle WebLogic Server.

Retiring Data from the Archives

Configuring Diagnostic Archives 5-5

Example 5–4 Data Retirement Configuration Settings in config.xml

<domain>
<!-- other domain configuration settings -->
 <server>
 <name>MedRecServer</name>
 <!-- other server configuration settings -->
 <server-diagnostic-config>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive
 </diagnostic-data-archive-type>
 <data-retirement-enabled>true</data-retirement-enabled>
 <preferred-store-size-limit>120</preferred-store-size-limit>
 <store-size-check-period>1</store-size-check-period>
 <wldf-data-retirement-by-age>
 <name>HarvestedDataRetirementPolicy</name>
 <enabled>true</enabled>
 <archive-name>HarvestedDataArchive</archive-name>
 <retirement-time>1</retirement-time>
 <retirement-period>24</retirement-period>
 <retirement-age>45</retirement-age>
 </wldf-data-retirement-by-age>
 <wldf-data-retirement-by-age>
 <name>EventsDataRetirementPolicy</name>
 <enabled>true</enabled>
 <archive-name>EventsDataArchive</archive-name>
 <retirement-time>10</retirement-time>
 <retirement-period>24</retirement-period>
 <retirement-age>72</retirement-age>
 </wldf-data-retirement-by-age>
 </server-diagnostic-config>
 </server>
</domain>

Retiring Data from the Archives

5-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

6

Configuring the Harvester for Metric Collection 6-1

6Configuring the Harvester for Metric
Collection

The Harvester component of the WebLogic Diagnostic Framework (WLDF) gathers
metrics from attributes on qualified MBeans that are instantiated in a running server.
The Harvester can collect metrics from WebLogic Server MBeans and from custom
MBeans.

The following sections describe harvesting and the Harvester configuration process:

■ Section 6.1, "Harvesting, Harvestable Data, and Harvested Data"

■ Section 6.2, "Harvesting Data from the Different Harvestable Entities"

■ Section 6.3, "Configuring the Harvester"

6.1 Harvesting, Harvestable Data, and Harvested Data
Harvesting metrics is the process of gathering data that is useful for monitoring the
system state and performance. Metrics are exposed to WLDF as attributes on qualified
MBeans. The Harvester gathers values from selected MBean attributes at a specified
sampling rate. Therefore, you can track potentially fluctuating values over time.

Data must meet certain requirements in order to be harvestable, and it must meet
further requirements in order to be harvested:

■ Harvestable data is data that can potentially be harvested from harvestable entities,
including MBean types, instances, and attributes. To be harvestable, an MBean
must be registered in the local WebLogic Server runtime MBean server. Only
simple type attributes of an MBean can be harvestable.

■ Harvested data is data that is currently being harvested. To be harvested, the data
must meet all the following criteria:

– The data must be harvestable.

– The data must be configured to be harvested.

– For custom MBeans, the MBean must be currently registered with the JMX
server.

– The data must not throw exceptions while being harvested.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data and
harvested data. The information returned by this MBean is a snapshot of a potentially
changing state. For a description of the information about the data provided by this
MBean, see the description of the

Harvesting Data from the Different Harvestable Entities

6-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

weblogic.management.runtime.WLDFHarvesterRuntimeMBean in the Oracle Fusion
Middleware Oracle WebLogic Server MBean Reference.

You can use the Administration Console, the WebLogic Scripting Tool
(weblogic.WLST), or JMX to configure the harvester to collect and archive the metrics
that the server MBeans and the custom MBeans contain.

6.2 Harvesting Data from the Different Harvestable Entities
You can configure the Harvester to harvest data from named MBean types, instances,
and attributes. In all cases, the Harvester collects the values of attributes of MBean
instances, as explained in Table 6–1.

All WebLogic Server runtime MBean types and attributes are known at startup.
Therefore, when the Harvester configuration is loaded, the set of harvestable
WebLogic Server entities is the same as the set of WebLogic Server runtime MBean
types and attributes. As types are instantiated, those instances also become known and
thus harvestable.

The set of harvestable custom MBean types is dynamic. A custom MBean must be
instantiated before its type can be known. (The type does not exist until at least one
instance is created.) Therefore, as custom MBeans are registered with and removed
from the MBean server, the set of custom harvestable types grows and shrinks. This
process of detecting a new type based on the registration of a new MBean is called type
discovery.

When you configure the Harvester through the Administration Console, the Console
provides a list of harvestable entities that can be configured. The list is always
complete for WebLogic Server MBeans, but for custom MBeans, the list contains only
the currently discovered types. See "Configure metrics to collect in a diagnostic system
module" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Help.

6.3 Configuring the Harvester
The Harvester is configured and metrics are collected in the scope of a diagnostic
module targeted to one or more server instances.

Example 6–1 shows Harvester configuration elements in a WLDF system resource
descriptor file, myWLDF.xml. This sample configuration harvests from the
ServerRuntimeMBean, the WLDFHarvesterRuntimeMBean, and from a custom
(non-WLS) MBean. The text following the listing explains each element in the listing.

Table 6–1 Sources of Harvested Data from Different Configurations

When this entity is configured to
be harvested as... Data is collected from...

A type (only) All harvestable attributes in all instances of the
specified type

An attribute of a type

(type + attribute(s))

The specified attribute in all instances of the specified
type

An instance of a type

(type + instance(s))

All harvestable attributes in the specified instance of
the specified type

An attribute of an instance of a type

(type + instance(s) + attribute(s))

The specified attribute in the specified instance of the
specified type

Configuring the Harvester

Configuring the Harvester for Metric Collection 6-3

Example 6–1 Sample Harvester Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<name>myWLDF</name>
 <harvester>
 <enabled>true</enabled>
 <sample-period>5000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>
 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 <harvested-attribute>TotalSamplingTime</harvested-attribute>
 <harvested-attribute>CurrentSnapshotElapsedTime
 </harvested-attribute>
 </harvested-type>
 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1
 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>
 </harvester>
<!-- ----- Other elements ----- -->
</wldf-resource>

6.3.1 Configuring the Harvester Sampling Period
The <sample-period> element sets the sample period for the Harvester, in
milliseconds. For example:

 <sample-period>5000</sample-period>

The sample period specifies the time between each cycle. For example, if the Harvester
begins execution at time T, and the sample period is I, then the next harvest cycle
begins at T+I. If a cycle takes A seconds to complete and if A exceeds I, then the next
cycle begins at T+A. If this occurs, the Harvester tries to start the next cycle sooner, to
ensure that the average interval is I.

6.3.2 Configuring the Types of Data to Harvest
One or more <harvested-type> elements determine the types of data to harvest. Each
<harvested-type> element specifies an MBean type from which metrics are to be
collected. Optional sub-elements specify the instances and/or attributes to be collected
for that type. Set these options as follows:

■ The optional <harvested-instance> element specifies that metrics are to be
collected only from the listed instances of the specified type. In general, an
instance is specified by providing its JMX ObjectName in JMX canonical form. You
can, however, use pattern-matching to specify instance names in non-canonical
form, as described in Section C.1, "Using Wildcards in Harvester Instance Names".

■ If no <harvested-instance> is present, all instances that are present at the time of
each harvest cycle are collected.

■ The optional <harvested-attribute> element specifies that metrics are to be
collected only for the listed attributes of the specified type. An attribute is

Configuring the Harvester

6-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

specified by providing its name. The first character should be capitalized. For
example, an attribute defined with getter method getFoo() is named Foo.

The <harvested-attribute> element also supports an expression syntax for "drilling
down" into attributes that are complex or aggregate objects, such as lists, maps,
simple POJOs (Plain Old Java Objects), and various nestings of these types. See
Section C.2, "Specifying Complex and Nested Harvester Attributes" for details on
this syntax. Note, however, that the result of these expressions must be a simple
intrinsic type (int, boolean, String, etc.) in order to be harvested.

■ If no <harvested-attribute> is present, all harvestable attributes defined for the
type are collected.

■ Attribute and instance lists can be combined in a type.

6.3.3 Specifying Type Names for WebLogic Server MBeans and Custom MBeans
The Harvester supports WebLogic Server MBeans and custom MBeans. WebLogic
Server MBeans are those that come packaged as part of the WebLogic Server. Custom
MBeans can be harvested as long as they are registered in the local runtime MBean
server.

There is a difference in how WebLogic Server and customer types are specified. For
WebLogic Server types, the type name is the name of the Java interface that defines the
MBean. For example, the server runtime MBean's type name is
weblogic.management.runtime.ServerRuntimeMBean.

For custom MBeans, the Harvester follows these rules:

■ If the MBean is not a ModelMBean, the type name is the implementing class name.
(For example, see Example 6–1.)

■ If the MBean is a ModelMBean, the type name is the value of the MBean
Descriptor field DiagnosticTypeName.

If neither of these conditions is satisfied (if the MBean is a ModelMBean and there is
no value for the MBean Descriptor field DiagnosticTypeName) then the MBean can't
be harvested.

6.3.4 Harvesting from the DomainRuntime MBeanServer
The <harvested-type> element supports a <namespace> attribute that lets you harvest
metrics from MBeans registered in the DomainRuntime MBeanServer. Oracle
recommends, however, that you limit the usage to harvesting only
DomainRuntime-specific MBeans, such as the ServerLifeCycleRuntimeMBean.
Harvesting of remote managed server MBeans through the DomainRuntime
MBeanServer is possible, but is discouraged for performance reasons. It is a best
practice to use the resident Harvester in each managed server to capture metrics
related to that managed server instance.

The <namespace> attribute can have one of two values:

■ ServerRuntime

■ DomainRuntime

If the <namespace> attribute is omitted, it defaults to ServerRuntime.

Configuring the Harvester

Configuring the Harvester for Metric Collection 6-5

6.3.5 When Configuration Settings Are Validated
WLDF attempts to validate configuration as soon as possible. Most configuration is
validated at system startup and whenever a dynamic change is committed. However,
due to limitations in JMX, custom MBeans cannot be validated until instances of those
MBeans have been registered in the MBean server.

6.3.6 Sample Configurations for Different Harvestable Types
In Example 6–2, the <harvested-type> element in the DIAG_MODULE.xml
configuration file specifies that the ServerRuntimeMBean is to be harvested. Because
no <harvested-instance> sub-element is present, all instances of the type will be
collected. However, because there is always only one instance of the server runtime
MBean, there is no need to provide a specific list of instances. And because there are
no <harvested-attribute> sub-elements present, all available attributes of the MBean
are harvested for each of the two instances.

Example 6–2 Sample Configuration for Collecting All Instances and All Attributes of a
Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>

In Example 6–3, the <harvested-type> element in the DIAG_MODULE.xml
configuration file specifies that the WLDFHarvesterRuntimeMBean is to be harvested.
As above, because there is only one WLDFHarvesterRuntimeMBean, there is no need
to provide a specific list of instances. The sub-element <harvested-attribute> specifies
that only two of the available attributes of the WLDFHarvesterRuntimeMBean will be
harvested: TotalSamplingTime and CurrentSnapshotElapsedTime.

Example 6–3 Sample Configuration for Collecting Specified Attributes of All Instances
of a Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 <harvested-attribute>TotalSamplingTime</harvested-attribute>
 <harvested-attribute>CurrentSnapshotElapsedTime
 </harvested-attribute>
 </harvested-type>

In Example 6–4, the <harvested-type> element in the DIAG_MODULE.xml
configuration file specifies that a single instance of a custom MBean type is to be
harvested. Because this is a custom MBean, the type name is the implementation class.
In this example, the two <harvested-instance> elements specify that only two
instances of this type will be harvested. Each instance is specified using the canonical
representation of its JMX ObjectName. Because no instances of <harvested-attribute>
are specified, all attributes will be harvested.

Note: Harvesting from the DomainRuntime MBean server is
available only on the admin server. Attempts to harvest
DomainRuntime MBeans on a managed server will be ignored. For an
example, see Example 6–5.

Configuring the Harvester

6-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Example 6–4 Sample Configuration for Collecting All Attributes of a Specified Instance
of a Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1
 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>

In Example 6–5, the <harvested-type> element in the DIAG_MODULE.xml
configuration file specifies that the ServerLifeCycleRuntimeMBean is to be harvested.
The <namespace> attribute specifies that this is a DomainRuntime MBean, so this
configuration will only be honored on the administration server (see the note in
Section 6.3.4, "Harvesting from the DomainRuntime MBeanServer"). The sub-element
<harvested-attribute> specifies that only the StateVal attribute will be harvested.

Example 6–5 Sample configuration for Collecting Specified Attributes of the
ServerLifeCycleMBean Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.ServerLifeCycleRuntimeMBean</name>
 <namespace>DomainRuntime</namespace>
 <known-type>true</known-type>
 <harvested-attribute>StateVal</harvested-attribute>
 </harvested-type>

7

Configuring Watches and Notifications 7-1

7Configuring Watches and Notifications

The Watch and Notification component of the WebLogic Diagnostic Framework
(WLDF) provides the means for monitoring server and application states and then
sending notifications based on criteria set in the watches.Watches and notifications are
configured as part of a diagnostic module targeted to one or more server instances in a
domain.

Watches and notifications are described in the following sections:

■ Section 7.1, "Watches and Notifications"

■ Section 7.2, "Overview of Watch and Notification Configuration"

■ Section 7.3, "Sample Watch and Notification Configuration"

7.1 Watches and Notifications
A watch identifies a situation that you want to trap for monitoring or diagnostic
purposes. You can configure watches to analyze log records, data events, and
harvested metrics. A watch is specified as a watch rule, which includes:

■ A watch rule expression

■ An alarm setting

■ One or more notification handlers

A notification is an action that is taken when a watch rule expression evaluates to true.
WLDF supports the following types of notifications:

■ Java Management Extensions (JMX)

■ Java Message Service (JMS)

■ Simple Mail Transfer Protocol (SMTP), for example, e-mail

■ Simple Network Management Protocol (SNMP)

■ Diagnostic Images

You must associate a watch with a notification for a useful diagnostic activity to occur,
for example, to notify an administrator about specified states or activities in a running
server.

Watches and notifications are configured separately from each other. A notification can
be associated with multiple watches, and a watch can be associated with multiple
notifications. This provides the flexibility to recombine and re-use watches and
notifications, according to current needs.

Overview of Watch and Notification Configuration

7-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

7.2 Overview of Watch and Notification Configuration
A complete watch and notification configuration includes settings for one or more
watches, one or more notifications, and any underlying configurations required for the
notification media, for example, the SNMP configuration required for an SNMP-based
notification.

The main elements required for configuring watches and notifications in a WLDF
system resource descriptor file, DIAG_MODULE.xml, are shown in Example 7–1. As
the listing shows, the base element for defining watches and notifications is
<watch-notification>. Watches are defined in <watch> elements, and notifications are
defined in elements named for each of the types of notification, for example
<jms-notification>, <jmx-notification>, <smtp-notification>, and <image-notification>.

Example 7–1 A Skeleton Watch and Notification Configuration (in DIAG_MODULE.xml)

<wldf-resource>
<!-- ----- Other system resource configuration elements ----- -->
 <watch-notification>
 <log-watch-severity>
 <!-- Threshhold severity for a log watch to be evaluated further
 (This can be narrowed further at the watch level.) -->
 </log-watch-severity>
 <!-- ----- Watch configuration elements: ----- -->
 <watch>
 <!-- A watch rule -->
 </watch>
 <watch>
 <!-- A watch rule -->
 </watch>
 <!-- Any other watch configurations -->

 <!-- ----- Notification configuration elements: ----- -->
 <!-- The following notification configuration elements show one of each
 type of supported notifications. However, not all types are
 required in any one system resource configuration, and multiples
 of any type are permitted. -->
 <jms-notification>
 <!-- Configuration for a JMS-based notification; requires a
 corresponding JMS configuration via a jms-server element and a
 jms-system-resource element -->
 </jms-notification>

 <jmx-notification>
 <!-- Configuration for a JMX-based notification -->
 </jmx-notification>
 <smtp-notification>
 <!-- Configuration for an SMTP-based notification; requires a
 corresponding SMTP configuration via a mail-session element -->
 </smtp-notification>
 <snmp-notification>
 <!-- Configuration for an SNMP-based notification; requires a
 corresponding SNMP agent configuration via an snmp-agent
 element -->
 </snmp-notification>
 <image-notification>
 <!-- Configuration for an image-based notification -->
 </image-notification>
 <watch-notification>
<!-- ----- Other configuration elements ----- -->

Sample Watch and Notification Configuration

Configuring Watches and Notifications 7-3

</wldf-resource>

Each watch and notification can be individually enabled and disabled by setting
<enabled>true</enabled> or <enabled>false</enabled> for the individual watch
and/or notification. In addition, the entire watch and notification facility can be
enabled and disabled by setting <enabled>true</enabled> or
<enabled>false</enabled> for all watches and notifications. The default value is
<enabled>true</enabled>.

The <watch-notification> element contains a <log-watch-severity> sub-element, which
affects how notifications are triggered by log-rule watches.

If the maximum severity level of the log messages that triggered the watch do not at
least equal the provided severity level, then the resulting notifications are not fired.
Note that this only applies to notifications fired by watches which have log rule types.
Do not confuse this element with the <severity> element defined on watches. The
<severity> element assigns a severity to the watch itself, whereas the
<log-watch-severity> element controls which notifications are triggered by log-rule
watches.

For information about how to configure watches and notifications using the
Administration Console, see "Configure Watches and Notifications" in Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help

7.3 Sample Watch and Notification Configuration
A complete configuration for a set of watches and notifications in a diagnostic module
is shown in Example 7–2. The details of this example are explained in the following
two sections:

■ Chapter 8, "Configuring Watches"

■ Chapter 9, "Configuring Notifications"

Example 7–2 Sample Watch and Notification Configuration (in DIAG_MODULE.xml)

<?xml version='1.0' encoding='UTF-8'?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
 <name>mywldf1</name>
 <!-- Instrumentation must be configured and enabled for instrumentation
 watches -->
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <description>Dye Injection monitor</description>
 <dye-mask xsi:nil="true"></dye-mask>

Note: While the notification media must be configured so they can
be used by the notifications that depend on them, those configurations
are not part of the configuration of the diagnostic module itself. That
is, they are not configured in the <wldf-resource> element in the
diagnostic module's configuration file.

Sample Watch and Notification Configuration

7-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

<properties>ADDR1=127.0.0.1</properties>
 </wldf-instrumentation-monitor>
 </instrumentation>
 <!-- Harvesting does not have to be configured and enabled for harvester
 watches. However, configuring the Harvester can provide advantages;
 for example the data will be archived. -->
 <harvester>
 <name>mywldf1</name>
 <sample-period>20000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>
 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 </harvested-type>
 </harvester>
 <!-- All watches and notifications are defined under the
 watch-notification element -->
 <watch-notification>
 <enabled>true</enabled>
 <log-watch-severity>Info</log-watch-severity>
 <!-- A harvester watch configuration -->
 <watch>
 <name>myWatch</name>
 <enabled>true</enabled>
 <rule-type>Harvester</rule-type>

<rule-expression>${com.bea:Name=myserver,Type=ServerRuntime//SocketsOpenedTotalCou
nt} >= 1</rule-expression>
 <alarm-type>AutomaticReset</alarm-type>
 <alarm-reset-period>60000</alarm-reset-period>
 <notification>myMailNotif,myJMXNotif,mySNMPNotif</notification>
 </watch>
 <!-- An instrumentation watch configuration -->
 <watch>
 <name>myWatch2</name>
 <enabled>true</enabled>
 <rule-type>EventData</rule-type>
 <rule-expression>
 (MONITOR LIKE 'JDBC_After_Execute') AND
 (DOMAIN = 'MedRecDomain') AND
 (SERVER = 'medrec-adminServer') AND
 ((TYPE = 'ThreadDumpAction') OR (TYPE = TraceElapsedTimeAction')) AND
 (SCOPE = 'MedRecEAR')
 </rule-expression>
 <notification>JMXNotifInstr</notification>
 </watch>
 <!-- A log watch configuration -->
 <watch>
 <name>myLogWatch</name>
 <rule-type>Log</rule-type>
 <rule-expression>MSGID='BEA-000360'</rule-expression>
 <severity>Info</severity>
 <notification>myMailNotif2</notification>
 </watch>
 <!-- A JMX notification -->
 <jmx-notification>
 <name>myJMXNotif</name>
 </jmx-notification>
 <!-- Two SMTP notifications -->

Sample Watch and Notification Configuration

Configuring Watches and Notifications 7-5

 <smtp-notification>
 <name>myMailNotif</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a harvester alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 <smtp-notification>
 <name>myMailNotif2</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a log alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 <!-- An SNMP notification -->
 <snmp-notification>
 <name>mySNMPNotif</name>
 <enabled>true</enabled>
 </snmp-notification>
 </watch-notification>
</wldf-resource>

Sample Watch and Notification Configuration

7-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

8

Configuring Watches 8-1

8Configuring Watches

The following sections describe the types of watches and their configuration options:

■ Section 8.1, "Types of Watches"

■ Section 8.2, "Configuration Options Shared by All Types of Watches"

■ Section 8.3, "Configuring Harvester Watches"

■ Section 8.4, "Configuring Log Watches"

■ Section 8.5, "Configuring Instrumentation Watches"

■ Section 8.6, "Defining Watch Rule Expressions"

For information on how to create a watch using the Administration Console, see
"Create watches for a diagnostic system module" in Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

8.1 Types of Watches
WLDF provides three main types of watches, based on what the watch can monitor:

■ Harvester watches monitor the set of harvestable MBeans in the local runtime
MBean server.

■ Log watches monitor the set of messages generated into the server log.

■ Instrumentation (or Event Data) watches monitor the set of events generated by
the WLDF Instrumentation component.

In the WLDF system resource configuration file for a diagnostic module, each type of
watch is defined in a <rule-type> element, which is a child of <watch>. For example:

 <watch>
 <rule-type>Harvester</rule-type>
 <!-- Other configuration elements -->
 </watch>
Watches with different rule types differ in two ways:

■ The rule syntax for specifying the conditions being monitored are unique to the
type.

■ Log and Instrumentation watches are triggered in real time, whereas Harvester
watches are triggered only after the current harvest cycle completes.

8.2 Configuration Options Shared by All Types of Watches
All watches share certain configuration options:

Configuring Harvester Watches

8-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

■ Watch rule expression

In the diagnostic module configuration file, watch rule expressions are defined in
<rule-expression> elements.

A watch rule expression is a logical expression that specifies what significant
events the watch is to trap. For information about the query language you use to
define watch rules, including the syntax available for each type of watch rule, see
Appendix A, "WLDF Query Language."

■ Notifications associated with the watch

In the diagnostic module configuration file, notifications are defined in
<notification> elements.

Each watch can be associated with one or more notifications that are triggered
whenever the watch evaluates to true. The content of this element is a
comma-separated list of notifications. For information about configuring
notifications, see Chapter 9, "Configuring Notifications."

■ Alarm options

In the diagnostic module configuration file, alarm options are set using
<alarm-type> and <alarm-reset-period> elements.

Watches can be specified to trigger repeatedly, or to trigger once, when a condition
is met. For watches that trigger repeatedly, you can optionally define a minimum
time between occurrences. The <alarm-type> element defines whether a watch
automatically repeats, and, if so, how often. A value of none causes the watch to
trigger whenever possible. A value of AutomaticReset also causes the watch to
trigger whenever possible, except that subsequent occurrences cannot occur any
sooner than the millisecond interval specified in the <alarm-reset-period>. A value
of ManualReset causes the watch to fire a single time. After it fires, you must
manually reset it to fire again. For example, you can use the
WatchNotificationRuntimeMBean to reset a manual watch. The default for
<alarm-type> is None.

■ Severity options

Watches contain a severity value which is passed through to the recipients of
notifications. The permissible severity values are as defined in the logging
subsystem. The severity value is specified using sub-element <severity>. The
default is Notice.

■ Enabled options

Each watch can be individually enabled and disabled, using the sub-element
<enabled>. When disabled, the watch does not trigger and corresponding
notifications do not fire. If the more generic watch/notification flag is disabled, it
causes all individual watches to be effectively disabled (that is, the value of this
flag on a specific watch is ignored).

8.3 Configuring Harvester Watches
A Harvester watch can monitor any runtime MBean in the local runtime MBean
server.

Configuring Harvester Watches

Configuring Watches 8-3

Harvester watches are triggered in response to a harvest cycle. So, for Harvester
watches, the Harvester sample period defines a time interval between when a
situation is identified and when it can be reported though a notification. On average,
the delay is SamplePeriod/2.

Example 8–1, shows a configuration example of a Harvester watch that monitors
several runtime MBeans.When the watch rule (defined in the <rule-expression>
element) evaluates to true, six different notifications are sent: a JMX notification, an
SMTP notification, an SNMP notification, an image notification, and JMS notifications
for both a topic and a queue.

The watch rule is a logical expression composed of four Harvester variables. The rule
has the form:

 ((A >= 100) AND (B > 0)) OR C OR D.equals("active")

Each variable is of the form:

 {entityName}//{attributeName}

where {entityName} is the JMX ObjectName as registered in the runtime MBean server
or the type name as defined by the Harvester, and where {attributeName} is the name
of an attribute defined on that MBean type.

Example 8–1 Sample Harvester Watch Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
 <name>mywldf1</name>
 <harvester>
 <!-- Harvesting does not have to be configured and enabled for harvester
 watches. However, configuring the Harvester can provide advantages;
 for example the data will be archived. -->
 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1
 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>
 <!-- Other Harvester configuration elements -->
 </harvester>
 <watch-notification>

Note: If you define a watch rule to monitor an MBean (or MBean
attributes) that the Harvester is not configured to harvest, the watch
will work. The Harvester will "implicitly" harvest values to satisfy the
requirements set in the defined watch rules. However, data harvested
in this way (that is, implicitly for a watch) will not be archived. See
Chapter 6, "Configuring the Harvester for Metric Collection," for more
information about the Harvester.

Note: The comparison operators are qualified in order to be valid in
XML.

Configuring Log Watches

8-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 <watch>
 <name>simpleWebLogicMBeanWatchRepeatingAfterWait</name>
 <enabled>true</enabled>
 <rule-type>Harvester</rule-type>
 <rule-expression>
 (${mydomain:Name=WLDFHarvesterRuntime,ServerRuntime=myserver,Type=
 WLDFHarvesterRuntime,WLDFRuntime=WLDFRuntime//TotalSamplingTime}
 >= 100
 AND
 ${mydomain:Name=myserver,Type=
 ServerRuntime//OpenSocketsCurrentCount} > 0)
 OR
 ${mydomain:Name=WLDFWatchNotificationRuntime,ServerRuntime=
 myserver,Type=WLDFWatchNotificationRuntime,
 WLDFRuntime=WLDFRuntime//Enabled} = true
 OR
 ${myCustomDomain:Name=myCustomMBean3//State} =
 'active')
 </rule-expression>
 <severity>Warning</severity>
 <alarm-type>AutomaticReset</alarm-type>
 <alarm-reset-period>10000</alarm-reset-period>
 <notification>myJMXNotif,myImageNotif,
 myJMSTopicNotif,myJMSQueueNotif,mySNMPNotif,
 mySMTPNotif</notification>
 </watch>
 <!-- Other watch-notification configuration elements -->
 </watch-notification>
</wldf-resource>

This watch uses an alarm type of AutomaticReset, which means that it may be
triggered repeatedly, provided that the last time it was triggered was longer than the
interval set as the alarm reset period (in this case 10000 milliseconds).

The severity level provided, Warning, has no effect on the triggering of the watch, but
will be passed on through the notifications.

8.4 Configuring Log Watches
Use Log watches to monitor the occurrence of specific messages and/or strings in the
server log. Watches of this type are triggered as a result of a log message containing
the specified data being issued.

An example configuration for a log watch is shown in Example 8–2.

Example 8–2 Sample Configuration for a Log Watch (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <enabled>true</enabled>
 <log-watch-severity>Info</log-watch-severity>
 <watch>
 <name>myLogWatch</name>
 <rule-type>Log</rule-type>
 <rule-expression>MSGID='BEA-000360'</rule-expression>

Defining Watch Rule Expressions

Configuring Watches 8-5

 <severity>Info</severity>
 <notification>myMailNotif2</notification>
 </watch>
 <smtp-notification>
 <name>myMailNotif2</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a log alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 </watch-notification>
</wldf-resource>

8.5 Configuring Instrumentation Watches
You use Instrumentation watches to monitor the events from the WLDF
Instrumentation component. Watches of this type are triggered as a result of the event
being posted.

Example 8–3 shows an example configuration for an Instrumentation watch.

Example 8–3 Sample Configuration for an Instrumentation Watch (in DIAG_
MODULE.xml)

 <watch-notification>
 <watch>
 <name>myInstWatch</name>
 <enabled>true</enabled>
 <rule-type>EventData</rule-type>
 <rule-expression>
 (PAYLOAD > 100000000) AND (MONITOR = 'Servlet_Around_Service')
 </rule-expression>
 <alarm-type xsi:nil="true"></alarm-type>
 <notification>mySMTPNotification</notification>
 </watch>
 <smtp-notification>
 <name>mySMTPNotification</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject xsi:nil="true"></subject>
 <body xsi:nil="true"></body>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
</watch-notification>

8.6 Defining Watch Rule Expressions
A watch rule expression encapsulates all information necessary for specifying a rule.
For documentation on the query language you use to define watch rules, see
Appendix A, "WLDF Query Language."

Defining Watch Rule Expressions

8-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

9

Configuring Notifications 9-1

9Configuring Notifications

The following sections describe the types of notifications and their configuration
options:

■ Section 9.1, "Types of Notifications"

■ Section 9.2, "Configuring JMX Notifications"

■ Section 9.3, "Configuring JMS Notifications"

■ Section 9.4, "Configuring SNMP Notifications"

■ Section 9.5, "Configuring SMTP Notifications"

■ Section 9.6, "Configuring Image Notifications"

For information on how to create a notification using the Administration Console, see
"Create notifications for watches in a diagnostic system module" in Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

9.1 Types of Notifications
A notification is an action that is triggered when a watch rule evaluates to true. WLDF
supports four types of diagnostic notifications, based on the delivery mechanism: Java
Management Extensions (JMX), Java Message Service (JMS), Simple Mail Transfer
Protocol (SMTP), and Simple Network Management Protocol (SNMP). You can also
create a notification that generates a diagnostic image.

In the configuration file for a diagnostic module, the different types of notifications are
identified by these elements:

■ <jmx-notification>

■ <jms-notification>

■ <snmp-notification>

■ <smtp-notification>

■ <image-notification>

These notification types all have <name> and <enabled> configuration options. The
value of <name> is used as the value in a <notification> element for a watch, to map
the watch to its corresponding notification(s). The <enabled> element, when set to
true, enables that notification. In other words, the notification is fired when an
associated watch evaluates to true. Other than <name> and <enabled>, each
notification type is unique.

Configuring JMX Notifications

9-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

9.2 Configuring JMX Notifications
For each defined JMX notification, WLDF issues JMX events (notifications) whenever
an associated watch is triggered. Applications can register a notification listener with
the server's WLDFWatchJMXNotificationRuntimeMBeans to receive all notifications
and filter the provided output. You can also specify a JMX "notification type" string
that a JMX client can use as a filter.

Example 9–1 shows an example of a JMX notification configuration.

Example 9–1 Example Configuration for a JMX Notification

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <jmx-notification>
 <name>myJMXNotif</name>
 <enabled>true</enabled>
 </jmx-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

Here is an example of a JMX notification:

 Notification name: myjmx called. Count= 42.
 Watch severity: Notice
 Watch time: Jul 19, 2005 3:40:38 PM EDT
 Watch ServerName: myserver
 Watch RuleType: Harvester
 Watch Rule:
${com.bea:Name=myserver,Type=ServerRuntime//OpenSocketsCurrentCount} > 1
 Watch Name: mywatch
 Watch DomainName: mydomain
 Watch AlarmType: None
 Watch AlarmResetPeriod: 10000

9.3 Configuring JMS Notifications
JMS notifications are used to post messages to JMS topics and/or queues in response
to the triggering of an associated watch. In the system resource configuration file, the
elements <destination-jndi-name> and <connection-factory-jndi-name> define how
the message is to be delivered.

Example 9–2 shows two JMS notifications that cause JMS messages to be sent through
the provided topics and queues using the specified connection factory. For this to work
properly, JMS must be properly configured in the config.xml configuration file for the
domain, and the JMS resource must be targeted to this server.

Note: To define notifications programmatically, use
weblogic.diagnostics.watch.WatchNotification.

Configuring SNMP Notifications

Configuring Notifications 9-3

Example 9–2 Example JMS Notifications

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <jms-notification>
 <name>myJMSTopicNotif</name>
 <destination-jndi-name>MyJMSTopic</destination-jndi-name>
 <connection-factory-jndi-name>weblogic.jms.ConnectionFactory
 </connection-factory-jndi-name>
 </jms-notification>
 <jms-notification>
 <name>myJMSQueueNotif</name>
 <destination-jndi-name>MyJMSQueue</destination-jndi-name>
 <connection-factory-jndi-name>weblogic.jms.ConnectionFactory
 </connection-factory-jndi-name>
 </jms-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

The content of the notification message gives details of the watch and notification.

9.4 Configuring SNMP Notifications
Simple Network Management Protocol (SNMP) notifications are used to post SNMP
traps in response to the triggering of an associated watch. To define an SNMP
notification you only have to provide a notification name, as shown in Example 9–3.
Generated traps contain the names of both the watch and notification that caused the
trap to be generated. For an SNMP trap to work properly, SNMP must be properly
configured in the config.xml configuration file for the domain.

Example 9–3 An Example Configuration for an SNMP Notification

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <snmp-notification>
 <name>mySNMPNotif</name>
 </snmp-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

The trap resulting from the SNMP notification configuration shown in Example 9–3 is
of type 85. It contains the following values (configured values are shown in angle
brackets "<>"):

 .1.3.6.1.4.1.140.625.100.5 timestamp (e.g. Dec 9, 2004 6:46:37 PM EST
 .1.3.6.1.4.1.140.625.100.145 domainName (e.g. mydomain")

Configuring SMTP Notifications

9-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 .1.3.6.1.4.1.140.625.100.10 serverName (e.g. myserver)
 .1.3.6.1.4.1.140.625.100.120 <severity> (e.g. Notice)
 .1.3.6.1.4.1.140.625.100.105 <name> [of watch] (e.g.
 simpleWebLogicMBeanWatchRepeatingAfterWait)
 .1.3.6.1.4.1.140.625.100.110 <rule-type> (e.g. HarvesterRule)
 .1.3.6.1.4.1.140.625.100.115 <rule-expression>
 .1.3.6.1.4.1.140.625.100.125 values which caused rule to
 fire (e.g..State =
 null,weblogic.management.runtime.WLDFHarvesterRuntimeMBean.
 TotalSamplingTime = 886,.Enabled =
 null,weblogic.management.runtime.ServerRuntimeMBean.
 OpenSocketsCurrentCount = 1,)
 .1.3.6.1.4.1.140.625.100.130 <alarm-type> (e.g. None)
 .1.3.6.1.4.1.140.625.100.135 <alarm-reset-period> (e.g. 10000)
 .1.3.6.1.4.1.140.625.100.140 <name> [of notification]
 (e.g.mySNMPNotif)

9.5 Configuring SMTP Notifications
Simple Mail Transfer Protocol (SMTP) notifications are used to send messages (e-mail)
over the SMTP protocol in response to the triggering of an associated watch. To define
an SMTP notification, first configure the SMTP session. That configuration is persisted
in the config.xml configuration file for the domain. In DIAG_MODULE.xml, you
provide the configured SMTP session using sub-element <mail-session-jndi-name>,
and provide a list of at least one recipient using sub-element <recipients>. An optional
subject and/or body can be provided using sub-elements <subject> and <body>
respectively. If these are not provided, they will be defaulted.

Example 9–4 shows an SMTP notification that causes an SMTP (e-mail) message to be
distributed through the configured SMTP session, to the configured recipients. In this
notification configuration, a custom subject and body are provided. If a subject and/or
a body are not specified, defaults are provided, showing details of the watch and
notification.

Example 9–4 Sample Configuration for SMTP Notification (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <smtp-notification>
 <name>mySMTPNotif</name>
 <mail-session-jndi-name>MyMailSession</mail-session-jndi-name>
 <subject>Critical Problem!</subject>
 <body>A system issue occurred. Call Winston ASAP.
 Reference number 81767366662AG-USA23.</body>
 <recipients>administrator@myCompany.com</recipients>
 </smtp-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

The content of the notification message gives details of the watch and notification.

Configuring Image Notifications

Configuring Notifications 9-5

9.6 Configuring Image Notifications
An image notification causes a diagnostic image to be generated in response to the
triggering of an associated watch. You can configure two options for image
notifications: a directory and a lockout period.

The directory name indicates where images will be generated. The lockout period
determines the number of seconds that must elapse before a new image can be
generated after the last one. This is useful for limiting the number of images that will
be generated when there is a sequence of server failures and recoveries

You can specify the directory name relative to the DOMAIN_
NAME\servers\SERVER_NAME, directory where DOMAIN_NAME is the name of
the domain's home directory and SERVER_NAME is the name of the server. The
default directory is DOMAIN_NAME\servers\SERVER_
NAME\logs\diagnostic-images.

Image file names are generated using the current timestamp (for example, diagnostic_
image_myserver_2005_08_09_13_40_34.zip), so a notification can fire many times,
resulting in a separate image file each time.

The configuration is persisted in the DIAG_MODULE.xml configuration file.
Example 9–5 shows an image notification configuration that specifies that the lockout
time will be two minutes and that the image will be generated to the DOMAIN_
NAME\servers\SERVER_NAME\images directory.

Example 9–5 Sample Configuration for Image Notification (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more watch configurations -->
 <image-notification>
 <name>myImageNotif</name>
 <enabled>true</enabled>
 <image-lockout>2</image-lockout>
 <image-directory>images</image-directory>
 </image-notification>
 <!-- Other notification configurations -->
 </watch-notification>
</wldf-resource>

For more information about Diagnostic Images, see Chapter 4, "Configuring and
Capturing Diagnostic Images."

Configuring Image Notifications

9-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

10

Configuring Instrumentation 10-1

10Configuring Instrumentation

The Instrumentation component of the WebLogic Diagnostic Framework (WLDF)
provides a mechanism for adding diagnostic code to WebLogic Server instances and
the applications running on them. The key features provided by WLDF
Instrumentation are:

■ Diagnostic monitors. A diagnostic monitor is a dynamically manageable unit of
diagnostic code which is inserted into server or application code at specific
locations. You define monitors by scope (system or application) and type
(standard, delegating, or custom).

■ Diagnostic actions. A diagnostic action is the action a monitor takes when it is
triggered during program execution.

■ Diagnostic context. A diagnostic context is contextual information, such as unique
request identifier and flags which the indicate presence of certain request
properties such as originating IP address or user identity. The diagnostic context
provides a means for tracking program execution and for controlling when
monitors trigger their diagnostic actions. See Chapter 11, "Configuring the
DyeInjection Monitor to Manage Diagnostic Contexts."

WLDF provides a library of predefined diagnostic monitors and actions. You can also
create application-scoped custom monitors, where you control the locations where
diagnostic code is inserted in the application.

Instrumentation is described in the following sections:

■ Section 10.1, "Concepts and Terminology"

■ Section 10.2, "Instrumentation Configuration Files"

■ Section 10.3, "XML Elements Used for Instrumentation"

■ Section 10.4, "Configuring Server-Scoped Instrumentation"

■ Section 10.5, "Configuring Application-Scoped Instrumentation"

10.1 Concepts and Terminology
This section introduces instrumentation concepts and terminology.

■ Section 10.1.1, "Instrumentation Scope"

■ Section 10.1.2, "Configuration and Deployment"

■ Section 10.1.3, "Joinpoints, Pointcuts, and Diagnostic Locations"

■ Section 10.1.4, "Diagnostic Monitor Types"

■ Section 10.1.5, "Diagnostic Actions"

Concepts and Terminology

10-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

10.1.1 Instrumentation Scope
You can provide instrumentation services at the system level (servers and clusters) and
at the application level. Many concepts, services, configuration options, and
implementation features are the same for both. However, there are differences, and
they are discussed throughout this documentation. The term "server-scoped
instrumentation" refers to instrumentation configuration and features specific to
WebLogic Server instances and clusters. "Application-scoped instrumentation" refers
to configuration and features specific to applications deployed on WebLogic servers.
The scope is built in to each diagnostic monitor; you cannot modify a monitor's scope.

10.1.2 Configuration and Deployment
Server-scoped instrumentation for a server or cluster is configured and deployed as
part of a diagnostic module, an XML configuration file located in the DOMAIN_
NAME/config/diagnostics directory, and linked from config.xml.

Application-scoped instrumentation is also configured and deployed as a diagnostics
module, in this case an XML configuration file named weblogic-diagnostics.xml which
is packaged with the application archive in the ARCHIVE_PATH/META-INF directory
for the deployed application.

10.1.3 Joinpoints, Pointcuts, and Diagnostic Locations
Instrumentation code is inserted into (or "woven" into) server and application code at
precise locations. The following terms are used to describe these locations:

■ A joinpoint is a specific location in a class, for example the entry and/or exit point
of a method or a call site within a method.

■ A pointcut is an expression that specifies a set of joinpoints, for example all
methods related to scheduling, starting, and executing work items. The XML
element used to describe a pointcut is <pointcut>. Pointcuts are described in
Section 10.5.4.1, "Defining Pointcuts for Custom Monitors".

■ A diagnostic location is the position relative to a joinpoint where the diagnostic
activity will take place. Diagnostic locations are before, after, and around. The XML
element used to describe a diagnostic location is <location-type>.

10.1.4 Diagnostic Monitor Types
A diagnostic monitor is categorized by its scope and its type. The scope is either
server-scoped or application-scoped. The type is determined by the monitor's pointcut,
diagnostic location, and actions. For example, Servlet_Around_Service is an
application-scoped delegating monitor, which can be used to trigger diagnostic actions
at the entry to and at the exit of certain servlet and JSP methods.

There are three types of instrumentation diagnostic monitors:

■ A standard monitor performs specific, predefined diagnostic actions at specific,
predefined pointcuts and locations. These actions, pointcuts, and locations are
hard-coded in the monitor. You can enable or disable the monitor but you cannot
modify its behavior.

The only standard server-scoped monitor is the DyeInjection monitor, which you
can use to create diagnostic context and to configure dye injection at the server
level. For more information, see Chapter 11, "Configuring the DyeInjection
Monitor to Manage Diagnostic Contexts."

Concepts and Terminology

Configuring Instrumentation 10-3

The only standard application-scoped monitor is HttpSessionDebug, which you
can use to inspect an HTTP Session object.

■ A delegating monitor has its scope, pointcuts, and locations hard-coded in the
monitor, but you select the actions the monitor will perform. In that sense, the
monitor delegates its actions to the ones you select. Delegating monitors are either
server-scoped or application-scoped.

A delegating monitor by itself is incomplete. In order for a delegating monitor to
perform any useful work, you must assign at least one action to the monitor.

Not all actions are compatible with all monitors. When you configure a delegating
monitor from the Administration Console, you can choose only those actions that
are appropriate for the selected monitor. If you are using WLST or editing a
descriptor file manually, you must make sure that the actions are compatible with
the monitors. Validation is performed when the XML file is loaded at deployment
time.

See Appendix B, "WLDF Instrumentation Library," for a list of the delegating
monitors and actions provided by the WLDF Instrumentation Library.

■ A custom monitor is a special case of a delegating monitor, which is available only
for application-scoped instrumentation, and does not have a predefined pointcut
or location.

You assign a name to a custom monitor, define the pointcut and the diagnostics
location the monitor will use, and then assign actions from the set of predefined
diagnostic actions. The <pointcut> and <location type> elements are mandatory
for a custom monitor.

Table 10–1 summarizes the differences among the types of monitors.

You can restrict when a diagnostic action is triggered by setting a dye mask on a
monitor. This mask determines which dye flags in the diagnostic context trigger
actions. See Section 10.3.2, "<wldf-instrumentation-monitor> XML Elements" for
information on setting a dye mask for a monitor.

10.1.5 Diagnostic Actions
Diagnostic actions execute diagnostic code that is appropriate for the associated
delegating or custom monitor (standard monitors have predefined actions). In order
for a delegating or custom monitor to perform any useful work, you must configure at
least one action for the monitor.

Table 10–1 Diagnostic Monitor Types

Monitor Type Scope Pointcut Location Action

Standard monitor Server Fixed Fixed Fixed

Delegating monitor Server or
Application

Fixed Fixed Configurable

Custom monitor Application Configurable Configurable Configurable

Note: Diagnostic context, dye injection, and dye filtering are
described in Chapter 11, "Configuring the DyeInjection Monitor to
Manage Diagnostic Contexts."

Instrumentation Configuration Files

10-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

The WLDF diagnostics library provides the following actions, which you can attach to
a monitor by including the action's name in an <action> element of the DIAG_
MODULE.xml configuration file:

■ DisplayArgumentsAction

■ StackDumpAction

■ ThreadDumpAction

■ TraceAction

■ TraceElapsedTimeAction

■ MethodInvocationStatisticsAction

Actions must be correctly matched with monitors. For example, the TraceElapsedTime
action is compatible with a delegating or custom monitor whose diagnostic location
type is around. See Appendix B, "WLDF Instrumentation Library," for more
information.

10.2 Instrumentation Configuration Files
Instrumentation is configured as part of a diagnostics descriptor, an XML
configuration file, whose name and location depend on whether you are implementing
system-level (server-scoped) or application-level (application-scoped) instrumentation:

■ System-level instrumentation configuration is stored in diagnostics descriptor(s) in
the following directory:

DOMAIN_NAME/config/diagnostics

This directory can contain multiple system-level diagnostic descriptor files.
Filenames are arbitrary but must be terminated with.xml (myDiag.xml is a valid
filename). Each file can contain configuration information for one or more of the
deployable diagnostic components: Harvester, Instrumentation, or Watch and
Notification. An <instrumentation> section in a descriptor file can configure one
or more diagnostic monitors. Server-scoped instrumentation can be enabled,
disabled, and reconfigured without restarting the server.

Only one WLDF system resource (and hence one system-level diagnostics
descriptor file) can be active at a time for a server (or cluster). The active descriptor
is linked and targeted from the following configuration file:

DOMAIN_NAME/config/config.xml

For more information about configuring diagnostic system modules, see
Section 3.5, "Configuring Diagnostic System Modules". For general information
about the creation, content, and parsing of configuration files in WebLogic Server,
see Oracle Fusion Middleware Understanding Domain Configuration for Oracle
WebLogic Server.

■ Application-level instrumentation configuration is packaged within an
application's archive in the following location:

META-INF/weblogic-diagnostics.xml

Because instrumentation is the only diagnostics component that is deployable to
applications, this descriptor can contain only instrumentation configuration
information.

XML Elements Used for Instrumentation

Configuring Instrumentation 10-5

You can enable and disable diagnostic monitors without redeploying an
application. However, you may have to redeploy the application after modifying
other instrumentation features, for example defining pointcuts or adding or
removing monitors. Whether you have to redeploy depends on how you configure
the instrumentation and how you deploy the application. There are three options:

– Define and change the instrumentation configuration for the application
directly, without using a JSR-88 deployment plan

– Configure and deploy the application using a deployment plan that has
placeholders for instrumentation settings

– Enable the hot-swap feature when starting the server, and deploy using a
deployment plan that has placeholders for instrumentation settings

For more information about these choices, see Section 13.2, "Using Deployment
Plans to Dynamically Control Instrumentation Configuration".

For more information about deploying and modifying diagnostic application
modules, see Chapter 13, "Deploying WLDF Application Modules."

The diagnostics XML schema is located at:

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblog
ic-diagnostics.xsd

Each diagnostics descriptor file must begin with the following lines:

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

For an overview of WLDF resource configuration, see Chapter 3, "Understanding
WLDF Configuration."

10.3 XML Elements Used for Instrumentation
This section provides descriptor fragments and tables that summarize information
about the XML elements used to configure instrumentation and the instrumentation
diagnostic monitors.

■ Section 10.3.1, "<Instrumentation> XML Elements" describes the top-level
elements used within an <instrumentation> element.

■ Section 10.3.2, "<wldf-instrumentation-monitor> XML Elements" describes the
elements used within an <wldf-instrumentation-monitor> element.

■ Section 10.3.3, "Mapping <wldf-instrumentation-monitor> XML Elements to
Monitor Types" summarizes which instrumentation elements apply to which
monitors.

10.3.1 <Instrumentation> XML Elements
Table 10–2 describes the <instrumentation> elements in the DIAG_MODULE.xml file.
The following configuration fragment illustrates the use of those elements:

Note: For instrumentation to be available for an application,
instrumentation must be enabled on the server to which the
application is deployed. (Server-scoped instrumentation is enabled
and disabled in the <instrumentation> element of the diagnostics
descriptor for the server.

XML Elements Used for Instrumentation

10-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

<wldf-resource>
 <name>MyDiagnosticModule</name>
<instrumentation>
 <enabled>true</enabled>
<!-- The following <include> element would apply only to an

 application-scoped Instrumentation descriptor -->
<include>foo.bar.com.*</include>

 <!-- <wldf-instrumentation-monitor> elements to define diagnostic
 monitors for this diagnostic module -->
</instrumentation>
<!-- Other elements to configure this diagnostic module -->
</wldf-resource>

Table 10–2 <instrumentation> XML Elements in the DIAG_MODULE.xml Configuration
File

Element Description

<instrumentation> The element that begins an instrumentation configuration.

<enabled> If true, instrumentation is enabled. If false, no instrumented code
will be inserted in classes in this instrumentation scope, and all
diagnostic monitors within this scope are disabled. The default value
is false.

You must enable instrumentation at the server level to enable
instrumentation for the server and for any applications deployed to
it. You must further enable instrumentation at the application level
to enable instrumentation for the application (that is, in addition to
enabling the server-scoped instrumentation).

<include> An optional element specifying the list of classes where
instrumented code can be inserted. Wildcards (*) are supported. You
can specify multiple <include> elements. If specified, a class must
satisfy an <include> pattern for it to be instrumented.

Applies only to application-scoped instrumentation. Any specified
<include> or <exclude> patterns are applied to the application scope
as a whole.

Note: You can also specify <include> and <exclude> patterns for
specific diagnostic monitors. See the entries for <include> and
<exclude> in Table 10–1.

As classes are loaded, they must pass an include/exclude pattern
check before any instrumentation code is inserted. Even if a class
passes the include/exclude pattern checks, whether or not it is
instrumented depends on the diagnostic monitors included in the
configuration descriptor. An application-scoped delegating monitor
from the library has its own predefined classes and pointcuts. A
custom monitor specifies its own pointcut expression. Therefore a
class can pass the include/exclude checks and still not be
instrumented.

Note: Instrumentation is inserted in applications at class load time. A
large application that is loaded often may benefit from a judicious
use of <include> and/or <exclude> elements. You can probably
ignore these elements for small applications or for medium-to-large
applications that are loaded infrequently.

<exclude> An optional element specifying the list of classes where
instrumented code cannot be inserted. Wildcards (*) are supported.
You can specify multiple <exclude> elements. If specified, classes
satisfying an <exclude> pattern are not instrumented.

Applies only to application-scoped instrumentation. See the
<include> description, above.

XML Elements Used for Instrumentation

Configuring Instrumentation 10-7

10.3.2 <wldf-instrumentation-monitor> XML Elements
Diagnostic monitors are defined in <wldf-instrumentation-monitor> elements, which
are children of the <instrumentation> element in a DIAG_MODULE.xml descriptor for
server-scoped instrumentation or the META-INF/weblogic-diagnostics.xml descriptor
for application-scoped instrumentation.

The following fragment shows the configuration for a delegating monitor and a
custom monitor in an application. (You could modify this fragment for server-scoped
instrumentation by replacing the application-scoped monitors with server-scoped
monitors.)

<instrumentation>
 <enabled>true</enabled>

<wldf-instrumentation-monitor>
<name>Servlet_Before_Service</name>
<enabled>true</enabled>
<dye-mask>USER1</dye-mask>
<dye-filtering-enabled>true</dye-filtering-enabled>
<action>TraceAction</action>

 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>

<name>MyCustomMonitor</name>
<enabled>true</enabled>
<action>TraceAction</action>
<location-type>before</location-type>

<pointcut>call(* com.foo.bar.* get*(...));</pointcut>
</wldf-instrumentation-monitor>

</instrumentation>

Note that the Servlet_Before_Service monitor sets a dye mask and enables dye
filtering. This will be useful only if instrumentation is enabled at the server level and
the DyeInjection monitor is enabled and properly configured. See Chapter 11,
"Configuring the DyeInjection Monitor to Manage Diagnostic Contexts," for
information about configuring the DyeInjection monitor.

Table 10–3 describes the <wldf-instrumentation-monitor> elements.

Table 10–3 <wldf-instrumentation-monitor> XML Elements in the DIAG_MODULE.xml or
weblogic-diagnostics.xml file

Element Description

<wldf-instrumentation-monitor> The element that begins a diagnostic monitor
configuration.

<enabled> If true, the monitor is enabled. If false, the monitor is
disabled. You enable or disable each monitor separately.
The default value is true.

<name> The name of the monitor. For standard and delegating
monitors, use the names of the predefined monitors in
Appendix B, "WLDF Instrumentation Library," For
custom monitors, an arbitrary string that identifies the
monitor. The name for a custom monitor must be
unique; that is, it cannot duplicate the name of any
monitor in the library.

<description> An optional element describing the monitor.

XML Elements Used for Instrumentation

10-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

<action> An optional element, which applies to delegating and
custom monitors. If you do not specify at least one
action, the monitor will not generate any information.
You can specify multiple <action> elements. An action
must be compatible with the monitor type. For the list
of predefined actions for use by delegating and custom
monitors, see Appendix B, "WLDF Instrumentation
Library."

<dye-filtering-enabled> An optional element. If true, dye filtering is enabled for
the monitor. If false, dye-filtering is disabled. The
default value is false.

In order to use dye filtering, the DyeInjection monitor
must be configured appropriately at the server level.

<dye-mask> An optional element. If dye filtering is enabled, the dye
mask, when compared with the values in the diagnostic
context, determines whether actions are taken. See
Chapter 11, "Configuring the DyeInjection Monitor to
Manage Diagnostic Contexts," for information about
dyes and dye filtering.

<properties> An optional element. Sets name=value pairs for dye
flags.

Currently applies only to the DyeInjection monitor.

<location-type> An optional element, whose value is one of before, after,
or around. The location type determines when an action
is triggered at a pointcut: before the pointcut, after the
pointcut, or both before and after the pointcut.

Applies only to custom monitors; standard and
delegating monitors have predefined location types. A
custom monitor must define a location type and a
pointcut.

<pointcut> An optional element. A pointcut element contains an
expression that defines joinpoints where diagnostic
code will be inserted.

Applies only to custom monitors; standard and
delegating monitors have predefined pointcuts. A
custom monitor must define a location type and a
pointcut.

Pointcut syntax is documented in Section 10.5.4.1,
"Defining Pointcuts for Custom Monitors"

Table 10–3 (Cont.) <wldf-instrumentation-monitor> XML Elements in the DIAG_
MODULE.xml or weblogic-diagnostics.xml file

Element Description

XML Elements Used for Instrumentation

Configuring Instrumentation 10-9

Additional information on <dye-filtering-enabled> and <dye-mask> follows:

■ When a DyeInjection monitor is enabled and configured for a server or a cluster,
you can use dye filtering in downstream delegating and custom monitors to
inspect the dyes injected into a request's diagnostic context by that DyeInjection
monitor.

■ The configuration of the DyeInjection monitor determines which bits are set in the
64-bit dye vector associated with a diagnostic context. When the
<dye-filtering-enabled> attribute is enabled for a monitor, its diagnostic activity is
suppressed if the dye vector in a request's diagnostic context does not match the
monitor's configured dye mask. If the dye vector matches the dye mask (a bitwise
AND), the application can execute its diagnostic actions:

(dye_vector & dye_mask == dye_mask)

<include> An optional element specifying the list of classes where
instrumented code can be inserted. Wildcards (*) are
supported. You can specify multiple <include>
elements. If specified, a class must satisfy an <include>
pattern for it to be instrumented.

Applies only to application-scoped instrumentation.
Any specified <include> or <exclude> patterns are
applied only to the monitor defined in the parent
<wldf-instrumentation-monitor> element.

Note: You can also specify <include> and <exclude>
patterns for an entire instrumented application scope.
See the entries for <include> and <exclude> in
Table 10–1.

As classes are loaded, they must pass an
include/exclude pattern check before any
instrumentation code is inserted. Even if a class passes
the include/exclude pattern checks, whether or not it is
instrumented depends on the diagnostic monitors
included in the configuration descriptor. An
application-scoped delegating monitor from the library
has its own predefined classes and pointcuts. A custom
monitor specifies its own pointcut expression. Therefore
a class can pass the include/exclude checks and still not
be instrumented.

Note: Instrumentation is inserted in applications at class
load time. A large application that is loaded often may
benefit from a judicious use of <include> and/or
<exclude> elements. You can probably ignore these
elements for small applications or for medium-to-large
applications that are loaded infrequently.

<exclude> An optional element specifying the list of classes where
instrumented code cannot be inserted. Wildcards (*) are
supported. You can specify multiple <exclude>
elements. If specified, classes satisfying an <exclude>
pattern are not instrumented.

Applies only to diagnostic monitors in
application-scoped instrumentation. See the <include>
description, above.

Table 10–3 (Cont.) <wldf-instrumentation-monitor> XML Elements in the DIAG_
MODULE.xml or weblogic-diagnostics.xml file

Element Description

Configuring Server-Scoped Instrumentation

10-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Thus, the dye filtering mechanism allows monitors to take diagnostic actions only for
specific requests, without slowing down other requests. See Chapter 11, "Configuring
the DyeInjection Monitor to Manage Diagnostic Contexts," for detailed information on
diagnostic contexts and dye vectors.

10.3.3 Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types
Table 10–4 summarizes which <wldf-instrumentation-monitor> elements apply to
which monitors.

10.4 Configuring Server-Scoped Instrumentation
To enable instrumentation at the server level, and to configure server-scoped monitors,
perform the following steps:

1. Decide how many WLDF system resources you want to create.

You can have multiple DIAG_MODULE.xml diagnostic descriptor files in a
domain, but for each server (or cluster) you can deploy only one diagnostic
descriptor file at a time. One reason for creating more than one file is to give
yourself flexibility. You could have, for example, five diagnostic descriptor files in
the DOMAIN_NAME/config/diagnostics directory. Each file contains a different
instrumentation (and perhaps Harvester and Watch and Notification)
configuration. You then deploy a file to a server based on which monitors you
want active for specific situations.

2. Decide which server-scoped monitors you want to include in a configuration:

■ If you plan to use dye filtering on a server, or on any applications deployed on
that server, configure the DyeInjection monitor.

■ If you plan to use one or more of the server-scoped delegating monitors,
decide which monitors to use and which actions to associate with each
monitor.

3. Create and configure the configuration file(s).

■ If you use the Administration Console to create the DIAG_MODULE.xml file
(recommended), for delegating monitors, the console displays only actions
that are compatible with the monitor. If you create a configuration file with an

Table 10–4 Mapping Instrumentation XML Elements to Monitor Types

Element Standard Delegating Custom

<wldf-instrumentation-monitor> X X X

<name> X X X

<description> X X X

<enabled> X X X

<action> X X

<dye-filtering-enabled> X X

<dye-mask> X X

<properties> X1

1 Currently used only by the DyeInjection monitor to set name=value pairs for dye flags.

<location-type> X

<pointcut> X

Configuring Application-Scoped Instrumentation

Configuring Instrumentation 10-11

editor or with the WebLogic Scripting Tool (WLST), you must correctly match
actions to monitors.

■ See the "Domain Configuration Files" in Oracle Fusion Middleware
Understanding Domain Configuration for Oracle WebLogic Server for information
about configuring config.xml.

4. Validate and deploy the descriptor file. For server-scoped instrumentation, you
can add and remove monitors and enable or disable monitors while the server is
running.

Example 10–1 contains a sample server-scoped instrumentation configuration file
which enables instrumentation, and configures the DyeInjection standard monitor and
the Connector_Before_Work delegating monitor. A single <instrumentation> element
contains all instrumentation configuration for the module. Each diagnostic monitor is
defined in a separate <wldf-instrumentation-monitor> element.

Example 10–1 Sample Server-Scoped Instrumentation (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<instrumentation>
<enabled>true</enabled>
<wldf-instrumentation-monitor>
<name>DyeInjection</name>
<description>Inject USER1 and ADDR1 dyes</description>
<enabled>true</enabled>
<properties>USER1=weblogic
ADDR1=127.0.0.1</properties>

</wldf-instrumentation-monitor>
<wldf-instrumentation-monitor>
<name>Connector_Before_Work</name>
<enabled>true</enabled>
<action>TraceAction</action>
<dye-filtering-enabled>true</dye-filtering-enabled>
<dye-mask>USER1</dye-mask>

</wldf-instrumentation-monitor>
</instrumentation>

</wldf-resource>

10.5 Configuring Application-Scoped Instrumentation
At the application level, WLDF instrumentation is configured as a deployable module,
which is then deployed as part of the application.

The following sections provide information you need to configure application-scoped
instrumentation:

■ Section 10.5.1, "Comparing System-Scoped to Application-Scoped
Instrumentation"

■ Section 10.5.2, "Overview of the Steps Required to Instrument an Application"

■ Section 10.5.3, "Creating a Descriptor File for a Delegating Monitor"

■ Section 10.5.4, "Creating a Descriptor File for a Custom Monitor"

■ Section 10.5.4.1, "Defining Pointcuts for Custom Monitors"

Configuring Application-Scoped Instrumentation

10-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

10.5.1 Comparing System-Scoped to Application-Scoped Instrumentation
Instrumenting an application is similar to instrumenting at the system level, but with
the following differences:

■ Applications can use standard, delegating, and custom monitors.

– The only server-scoped standard monitor is DyeInjection. The only
application-scoped standard monitor is HttpSessionDebug. For more
information, see the entry for HttpSessionDebug in Section B.1, "Diagnostic
Monitor Library".

– Delegating monitors are either server-scoped or application-scoped.
Applications must use the application-scoped delegating monitors.

– All custom monitors are application-scoped.

■ The server's instrumentation settings affect the application. In order to enable
instrumentation for an application, instrumentation must be enabled for the server
on which the application is deployed. If server instrumentation is enabled at the
time of deployment, instrumentation will be available for the application. If
instrumentation is not enabled on the server at the time of deployment, enabling
instrumentation in an application will have no effect.

■ Application instrumentation is configured with a weblogic-diagnostics.xml
descriptor file. You create a META-INF/weblogic-diagnostics.xml file, configure
the instrumentation, and put the file in the application's archive. When the archive
is deployed, the instrumentation is automatically inserted when the application is
loaded.

■ You can use a deployment plan to dynamically update configuration elements
without redeploying the application. See Section 13.2, "Using Deployment Plans to
Dynamically Control Instrumentation Configuration"

The XML descriptors for application-scoped instrumentation are defined in the same
way as for server-scoped instrumentation. You can configure instrumentation for an
application solely by using the delegating monitors and diagnostic actions available in
the WLDF Instrumentation Library. You can also create your own custom monitors;
however, the diagnostic actions that you attach to these monitors must be taken from
the WLDF Instrumentation Library.

Table 10–5 compares the function and scope of system and application diagnostic
modules.

Table 10–5 Comparing System and Application Modules

Module Type

Add or
Remove
Objects
Dynamically

Add or
Remove
Objects with
Console

Modify
with JMX
Remotely

Modify with
JSR-88
(non-remote)

Modify with
Console

Enable/Disable
Dye Filtering
and Dye Mask
Dynamically

System
Module

Yes Yes Yes No Yes

(via JMX)

Yes

Application
Module

Yes, when
hot-swap is
enabled

No, when
hot-swap is not
enabled:
module must
be redeployed

Yes No Yes Yes

(via plan)

Yes

Configuring Application-Scoped Instrumentation

Configuring Instrumentation 10-13

10.5.2 Overview of the Steps Required to Instrument an Application

To implement a diagnostic monitor for an application, perform the following steps:

1. Make sure that instrumentation is enabled on the server. See Section 10.4,
"Configuring Server-Scoped Instrumentation".

2. Create a well formed META-INF/weblogic-diagnostics.xml descriptor file for the
application. If you want to add any monitors that will be automatically enabled
each time the application is deployed:

■ Enable the <instrumentation> element: <enabled>true</enabled>.

■ Add and enable at least one diagnostic monitor, with appropriate actions
attached to it. (A monitor will generate diagnostic events only if the monitor is
enabled and actions that generate events are attached to it.).

See Section 10.5.3, "Creating a Descriptor File for a Delegating Monitor" and
Section 10.5.4, "Creating a Descriptor File for a Custom Monitor" for samples of
well-formed descriptor files.

See Section 10.5.4.1, "Defining Pointcuts for Custom Monitors" for information on
creating a pointcut expression.

3. Put the descriptor file in the application archive.

4. Deploy the application. See Chapter 13, "Deploying WLDF Application Modules."

Keep the following points in mind:

■ The diagnostic monitors defined in weblogic-diagnostics.xml will be listed on the
Deployments: <server_name>: Configuration: Instrumentation page of the
Administration Console.

■ If the META-INF/weblogic-diagnostics.xml descriptor in the application archive
defines a monitor, it can't be removed using the Administration Console. It can,
however, be disabled or enabled using the Administration Console.

■ You can add additional monitors from the Administration Console. Any monitors
you add from the Administration Console will not be persisted to
weblogic-diagnostics.xml; they will be saved in the application's deployment plan.
Any monitors that were added in this way can be deleted using the
Administration Console.

10.5.3 Creating a Descriptor File for a Delegating Monitor
The following example shows a well-formed META-INF/weblogic-diagnostics.xml
descriptor file for an application-scoped delegating monitor. At a minimum, this file
must contain the lines shown in bold. In this example, there is only one monitor
defined (Servlet_Before_Service). You can, however, define multiple monitors in the
descriptor file.

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Note: In WLS 10.3, you are not required to create a
weblogic-diagnostics.xml file in the application's META-INF directory,
as was the case in previous WLS releases. You can, however, still use
this method to initially configure diagnostic monitors for your
application.

Configuring Application-Scoped Instrumentation

10-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">

<instrumentation>
<enabled>true</enabled>
<wldf-instrumentation-monitor>

<name>Servlet_Before_Service</name>
<enabled>true</enabled>
<dye-mask>USER1</dye-mask>
<dye-filtering-enabled>true</dye-filtering-enabled>
<action>TraceAction</action>

</wldf-instrumentation-monitor>
</instrumentation>

</wldf-resource>

The Servlet_Before_Service monitor is an application-scoped monitor selected from the
WLDF monitor library. It is hard coded with a pointcut that sets joinpoints at method
entry for several servlet or JSP methods. Because the application enables dye filtering
and sets the USER1 flag in its dye mask, the TraceAction action will be invoked only
when the dye vector in the diagnostic context passed to the application also has its
USER1 flag set.

The dye vector is set at the system level via the DyeInjection monitor as per the
DyeInjection monitor configuration when the request enters the server. For example, if
the DyeInjection monitor is configured with property USER1=weblogic and the
request was originated by user weblogic, the USER1 dye flag in the dye vector will be
set.

Therefore, the Servlet_Before_Service monitor in this application is essentially
quiescent until it inspects a dye vector and finds the USER1 flag set. This filtering
reduces the amount of diagnostic data generated, and ensures that the generated data
is of interest to the administrator.

10.5.4 Creating a Descriptor File for a Custom Monitor
The following is an example of a well-formed META-INF/weblogic-diagnostics.xml
file for a custom monitor. At a minimum, the file must contain the lines shown in bold.

Example 10–2 Sample Custom Monitor Configuration (in DIAG_MODULE.xml)

<?xml version="1.0" encoding="UTF-8"?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/webl
ogic-diagnostics.xsd">
<instrumentation>

 <enabled>true</enabled>
<wldf-instrumentation-monitor>

<name>MyCustomMonitor</name>
<enabled>true</enabled>
<action>TraceAction</action>
<location-type>before</location-type>
<pointcut>call(* com.foo.bar.* get* (...));</pointcut>

</wldf-instrumentation-monitor>
</instrumentation>

</wldf-resource>

Configuring Application-Scoped Instrumentation

Configuring Instrumentation 10-15

The <name> for a custom monitor is an arbitrary string chosen by the developer.
Because this monitor is custom, it has no predefined locations when actions should be
invoked; the descriptor file must define the location type and pointcut expression. In
this example, the TraceAction action will be invoked before
(<location-type>before</location-type) any methods defined by the pointcut
expression is invoked. Table 10–1 shows how the pointcut expression from
Example 10–2 is parsed. (Note the use of wildcards.)

This pointcut expression matches all get*() methods in all classes in package
com.foo.bar and its sub-packages. The methods can return values of any type,
including void, and can have any number of arguments of any type. Instrumentation
code will be inserted before these methods are called, and, just before those methods
are called, the TraceAction action will be invoked.

See Section 10.5.4.1, "Defining Pointcuts for Custom Monitors" for a description of the
grammar used to define pointcuts.

10.5.4.1 Defining Pointcuts for Custom Monitors
Custom monitors provide more flexibility than delegating monitors because you create
pointcut expressions to control where diagnostics actions are invoked. As with
delegating monitors, you must select actions from the action library.

A joinpoint is a specific, well-defined location in a program. A pointcut is an
expression that specifies a set of joinpoints. This section describes how you define
expressions for pointcuts using the following pointcut syntax.

You can specify two types of pointcuts for custom monitors:

■ call: Take an action when a method is invoked.

■ execution: Take an action when a method is executed.

The syntax for defining a pointcut expression is as follows:

pointcutExpr := orExpr ('OR' orExpr) *
orExpr := andExpr ('AND' andExpr) *
andExpr := 'NOT' ? termExpr
termExpr := exec_pointcut | call_pointcut | '(' pointcutExpr ')'
exec_pointcut := 'execution' '(' modifiers?
 returnSpec
 classSpecWithAnnotations
 methodSpec '(' parameterList ')'
 ')'

Table 10–6 Description of a Sample Pointcut Expression

Pointcut Expression Description

call(* com.foo.bar.* get* (...)) call(): Trigger any defined actions when the
methods whose joinpoints are defined by the
remainder of this pointcut expression are invoked.

call(* com.foo.bar.* get* (...)) *: Return value. The wildcard indicates that the
methods can have any type of return value.

call(* com.foo.bar.* get* (...)) com.foo.bar.*: Methods from class com.foo.bar
and its sub-packages are eligible.

call(* com.foo.bar.* get* (...)) get*: Any methods whose name starts with the
string get is eligible.

call(* com.foo.bar.* get* (...)) (...): The ellipsis indicates that the methods can
have any number of arguments.

Configuring Application-Scoped Instrumentation

10-16 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

call_pointcut := 'call' '(' returnSpec
 classSpec
 methodSpec '(' parameterList ')'
 ')'
modifiers := modifier ('OR' modifier) * modifier := 'public' | 'protected' |
'private' | 'static'
returnSpec := '*' | typeSpec
classSpecWithAnnotations := '@' IDENTIFIER ('OR' IDENTIFIER) * | classSpec
classSpec := '+' ? classOrMethodPattern | '*'
typeSpec := (primitiveType | classSpec) ('[]')*
methodSpec := classOrMethodPattern
parameterList := param (',' param) *
param := typeSpec | '...'
primitiveType := 'byte' | 'char' | 'boolean' | 'short' | 'int' | 'float' | 'long'
| 'double' | 'void'
classOrMethodPattern := '*' ? IDENTIFIER '*'? | '*'

The following rules apply:

■ Wildcards (*) can be used in class types and method names.

■ An ellipsis (...) in the argument list signifies a variable number of arguments of
any types beyond the argument.

■ A + (plus sign) prefix to a class type identifies all subclasses, sub-interfaces or
concrete classes implementing the specified class/interface pattern.

■ A pointcut expression specifies a pattern to identify matching joinpoints. An
attempt to match a joinpoint against it will return a boolean, indicating a valid
match (or not).

■ Pointcut expressions can be combined with AND, OR and NOT boolean operators
to build complex pointcut expression trees.

For example, the following pointcut matches method executions of all public initialize
methods in all classes in package com.foo.bar and its sub-packages. The initialize
methods may return values of any type, including void, and may have any number of
arguments of any types.

 execution(public * com.foo.bar.* initialize(...))

The following pointcut matches the method calls (callsites) on all classes that directly
or indirectly implement the com.foo.bar.MyInterface interface (or a subclass, if it
happens to be a class). The method names must start with get, be public, and return an
int value. The method must accept exactly one argument of type java.lang.String:

call(int +com.foo.bar.MyInterface get*(java.lang.String))

The following example shows how to use boolean operators to build a pointcut
expression tree:

 call(void com.foo.bar.* set*(java.lang.String)) OR
 call(* com.foo.bar.* get*())

The following example illustrates how the previous expression tree would be rendered
as a <pointcut> element in a configuration file:

 <pointcut>call(void com.foo.bar.* set*(java.lang.String)) OR
 call(* com.foo.bar.* get*())</pointcut>

Configuring Application-Scoped Instrumentation

Configuring Instrumentation 10-17

10.5.4.2 Annotation-based Pointcuts
You can use JDK-style annotations in class and method specifiers of execution points.
A class or method specifier starting with '@' is interpreted as an annotation name.

When used as a class specifier, the annotation matches all classes that are annotated
with it. While performing the match, only annotation names are considered.
Annotation attributes are ignored.

For example, the following pointcut:

 execution(public void @Service @Invocation (...)

matches methods that:

■ are public method

■ return void

■ are contained in a class that is annotated with @Service

■ have a method annotated with @Invocation

■ contain any number of arguments.

Annotation-based class and method specifiers can use the following wild cards:

■ * matches everything.

■ * at the beginning matches class/interface or method names that end with the
given string. For example, *Bean matches with
weblogic.management.configuration.ServerMBean.

■ * at the end matches class/interface or method names that end with the given
string. For example, weblogic.* matches all classes and interfaces that are in
weblogic and its sub-packages.

■ You can specify a pointcut based on names of inner classes. For example:

 public class Foo {
 class Bar {
 public int getValue() {...}
 }
 }

You can define a pointcut that covers the getValue method of the inner class Bar
using the following specification:

 execution (public int Foo$Bar getValue(...));

You can also use wildcards. For example:

 execution (* Foo$Bar get*(...));

matches only the getter methods in the inner class Bar of class Foo.

You can also use leading and trailing wild cards:

 execution (* Foo$Ba* get*(...));
 execution (* *oo$Bar get*(...));
 execution (* *oo$Ba* get*(...));

Note: Annotation-based specifiers can be used only with execution
pointcuts. They cannot be used with call pointcuts.

Configuring Application-Scoped Instrumentation

10-18 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

also matches the getter methods in class Foo$Bar.

11

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 11-1

11Configuring the DyeInjection Monitor to
Manage Diagnostic Contexts

The WLDF Instrumentation component provides a way to uniquely identify requests
(such as HTTP or RMI requests) and track them as they flow through the system. You
can configure WLDF to check for certain characteristics (such as the originating user or
client address) of every request that enters the system and attach a diagnostic context to
the request. This allows you to take measurements (such as elapsed time) of specific
requests to get an idea of how all requests are being processed as they flow through
the system.

The diagnostic context consists of two pieces: a unique Context ID and a 64-bit dye
vector that represents the characteristics of the request. The Context ID associated with
a given request is recorded in the Event Archive and can be used to:

■ Throttle instrumentation event generation, that is determine how often events are
generated when specified conditions are met

■ Associate log records with a request

■ Filter searches of log or event records using the WLDF Accessor component (see
Chapter 12, "Accessing Diagnostic Data With the Data Accessor").

The process of configuring and using a diagnostic context is described in the following
sections:

■ Section 11.1, "Contents, Life Cycle, and Configuration of a Diagnostic Context"

■ Section 11.2, "Overview of the Process"

■ Section 11.3, "Configuring the Dye Vector via the DyeInjection Monitor"

■ Section 11.4, "Configuring Delegating Monitors to Use Dye Filtering"

■ Section 11.5, "How Dye Masks Filter Requests to Pass to Monitors"

■ Section 11.6, "Using Throttling to Control the Volume of Instrumentation Events"

11.1 Contents, Life Cycle, and Configuration of a Diagnostic Context
A diagnostic context contains a unique Context ID and a 64-bit dye vector. The dye
vector contains flags which are set to identify the characteristics of the diagnostic
context associated with a request. Currently, 32 bits of the dye vector are used, one for
each available dye flag (see Table 11–1).

Contents, Life Cycle, and Configuration of a Diagnostic Context

11-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

11.1.1 Context Life Cycle and the Context ID
The diagnostic context for a request is created and initialized when the request enters
the system (for example, when a client makes an HTTP request). The diagnostic
context remains attached to the request, even as the request crosses thread boundaries
and Java Virtual Machine (JVM) boundaries. The diagnostic context lives for the
duration of the life cycle of the request.

Every diagnostic context is identified by a Context ID that is unique in the domain.
Because the Context ID travels with the request, it is possible to determine the events
and log entries associated with a given request as it flows through the system.

11.1.2 Dyes, Dye Flags, and Dye Vectors
Contextual information travels with a request as a 64-bit dye vector, where each bit is a
flag to identify the presence of a dye. Each dye represents one attribute of a request; for
example, an originating user, an originating client IP address, access protocol, and so
on.

When a dye flag for a given attribute is set, it indicates that the attribute is present.
When the flag is not set, it indicates the attribute is not present.

For example, consider a configuration where:

■ the flag ADDR1 is configured to indicate a request that originated from IP address
127.0.0.1.

■ the flag ADDR2 is configured to indicate a request that originated from IP address
127.0.0.2.

■ the flag USER1 is configured to indicate a request that originated from user
admin@avitek.com.

If a request from IP address 127.0.0.1 enters the system from a user other than
admin@avitek.com, the ADDR1 flag in the dye vector for the request is set. The
ADDR2 and USER1 dye flags remain unset.

If a request from admin@avitek.com enters the system from an IP address other than
127.0.0.1 or 127.0.0.2, the USER1 flag in the dye vector for the request is set. The
ADDR1 and ADDR2 dye flags remain unset.

If a request from admin@avitek.com from IP address 127.0.0.2 enters the system, both
the USER1 and ADDR2 flags in the dye vector for this request are set. The ADDR1 flag
remains unset.

Diagnostic and monitoring features that take advantage of the diagnostic context can
examine the dye vector to determine if one or more attributes are present (that is, the
associated flag is set). In the example above, you could configure a diagnostic monitor
to trace every request that is dyed with ADDR1, that is, that originated from IP
address 127.0.0.1. You could also configure a diagnostic monitor that traces every
request that is dyed with both ADDR1 and USER1, that is, the request originated from
user admin@avitek.com at IP address 127.0.0.1 (requests from other users at 127.0.0.1
would not be traced).

The dye vector also contains a THROTTLE dye, which is used to set how often
incoming requests are dyed. For more information about this special dye, see
Section 11.3.3, "THROTTLE Dye Flag".

For a list of the available dyes and the attributes they represent, see Section 11.3.1,
"Dyes Supported by the DyeInjection Monitor". The process of configuring dye vectors
and using them is discussed throughout the rest of this chapter.

Overview of the Process

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 11-3

11.1.3 Where Diagnostic Context Is Configured
Diagnostic context is configured as part of a diagnostic module. You use the
DyeInjection monitor at the server level to configure the diagnostic context. The
DyeInjection monitor is a standard diagnostic monitor, so you cannot modify its
behavior. The joinpoints where the DyeInjection monitor is woven into the code are
those locations where a request can enter the system.

The diagnostic action is to check every request against the DyeInjection monitor's
configuration, then create and attach a diagnostic context to the request, setting the
dye flags as appropriate. If the dye flags that are set for a request match the dye flags
that are configured for a downstream diagnostic monitor, an event with the request's
associated Context ID is added to the Event Archive. So, for example, if a request has
only the USER1 and ADDR1 dye flags set, and there is a diagnostic monitor
configured to trace requests with both the USER1 and ADDR1 flags set (but no other
flags set), an event is added to the Event Archive.

For information about diagnostic monitor types, pointcuts (which define the
joinpoints), and diagnostic actions, see Chapter 10, "Configuring Instrumentation."

11.2 Overview of the Process
This overview describes the configuration and use of context in a server-scoped
diagnostic module.

1. Configure a dye vector via the DyeInjection Module. See Section 11.3,
"Configuring the Dye Vector via the DyeInjection Monitor".

2. When any request enters the system, WLDF creates and instantiates a diagnostic
context for the request. The context includes a unique Context ID and a dye vector.

3. The DyeInjection monitor, if enabled at the server level within a WLDF diagnostic
module, examines the request to see if any of the configured dye values in the dye
vector match attributes of the request. For example, it checks to see if the request
originated from the user associated with USER1 or USER2, and it checks to see if
the request came from the IP address associated with ADDR1 or ADDR2.

4. For each dye value that matches a request attribute, the DyeInjection monitor sets
the associated dye bits within the diagnostic context. For example, if the
DyeInjection monitor is configured with USER1=weblogic,
USER2=admin@avitek.com, ADDR1=127.0.0.1, ADDR2=127.0.0.2, and the request
originated from user weblogic at IP address 127.0.0.2, it will set the USER1 and
ADDR2 dye bits within the dye vector.

5. As the request flows through the system, the diagnostic context (which includes
the dye vector) flows with it as well. This 64-bit dye vector contains only flags, not
values. So, in this example, the dye vector contains only two flags that are
explicitly set (USER1 and ADDR2). It does not contain the actual user name and IP
address associated with USER1 and ADDR2.

6. The administrator configures a diagnostic monitor (either application-scoped or
server-scoped) to be active within downstream code, setting the monitor's dye
mask as USER1 and ADDR2. See Section 11.4, "Configuring Delegating Monitors
to Use Dye Filtering" for more information.

Note: All dye vectors also contain one of the implicit PROTOCOL
dyes, as explained in Section 11.3, "Configuring the Dye Vector via the
DyeInjection Monitor"

Configuring the Dye Vector via the DyeInjection Monitor

11-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

7. The diagnostic monitor will perform its associated action(s) if the dye flags that are
set in the diagnostic context's dye vector match the dye mask of the diagnostic
monitor. See Section 11.5, "How Dye Masks Filter Requests to Pass to Monitors" for
more details. In this example, the monitor will perform its action(s) if the USER1
and ADDR2 flags are set in the dye vector. In addition, an event associated with
the request will be written to the Event Archive.

11.3 Configuring the Dye Vector via the DyeInjection Monitor
To create diagnostic contexts for all requests coming into the system, you must:

1. Create and enable a diagnostic module for the server (or servers) you want to
monitor.

2. Enable Instrumentation for the diagnostic module.

3. Configure and enable the DyeInjection monitor for the module. (Only one
DyeInjection monitor can be used with a diagnostic module at any one time.)

You configure the DyeInjection monitor by assigning values to dyes. The available dye
flags are described in Table 11–1.

For example, you could set the flags as follows: USER1=weblogic,
USER2=admin@avitek.com, ADDR1=127.0.0.1, ADDR2=127.0.0.2, and so forth. Basically,
you want to set the values of one or more flags to the user(s), IP address(es) whose
requests you want to monitor.

For example, to monitor all requests initiated by a user named admin@avitek from a
client at IP address 127.0.0.1, assign the value admin@avitek to USER1 and assign the
value 127.0.0.1 to ADDR1.

In the Administration Console, you assign values to dyes by typing them into the
Properties field of the Settings for DyeInjection page. For instructions, see "Configure
diagnostic monitors in a diagnostic system module" in the Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Help.

Figure 11–1 Setting Dye Values in the Administration Console

These settings appear in the descriptor file for the diagnostic module, as shown in the
following code listing.

Configuring the Dye Vector via the DyeInjection Monitor

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 11-5

Example 11–1 Sample DyeInjection Monitor Configuration, in DIAG_MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <enabled>true</enabled>
 <dye-mask xsi:nil="true"></dye-mask>
 <properties>ADDR1=127.0.0.1
 USER1=admin@avitek</properties>
 </wldf-instrumentation-monitor>
 <!-- Other elements to configure instrumentation -->
 <instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
<wldf-resource>

11.3.1 Dyes Supported by the DyeInjection Monitor
The dyes available in the dye vector are listed and explained in the following table.

Table 11–1 Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description

ADDR1

ADDR2

ADDR3

ADDR4

Use the ADDR1, ADDR2, ADDR3 and ADDR4 dyes to specify the IP
addresses of clients that originate requests. These dye flags are set in the
diagnostic context for a request if the request originated from an IP
address specified by the respective property (ADDR1, ADDR2, ADDR3,
ADDR4) of the DyeInjection monitor.

These dyes cannot be used to specify DNS names.

CONNECTOR1

CONNECTOR2

CONNECTOR3

CONNECTOR4

Use the CONNECTOR1, CONNECTOR2, CONNECTOR3 and
CONNECTOR4 dyes to identify characteristics of connector drivers.

These dye flags are set by the connector drivers to identify request
properties specific to their situations. You do not configure these directly
in the Administration Console or in the descriptor files. The connector
drivers can assign values to these dyes (using the Connector API), so
information about the connections can be carried in the diagnostic
context.

COOKIE1

COOKIE2

COOKIE3

COOKIE4

COOKIE1, COOKIE2, COOKIE3 and COOKIE4 are set in the diagnostic
context for an HTTP/S request, if the request contains the cookie named
weblogic.diagnostics.dye and its value is equal to the value of the
respective property (COOKIE1, COOKIE2, COOKIE3, COOKIE4) of the
DyeInjection monitor.

DYE_0

DYE_1

DYE_2

DYE_3

DYE_4

DYE_5

DYE_6

DYE_7

DYE_0 to DYE_7 are available only for use by application developers. See
Section 11.7, "Using weblogic.diagnostics.context".

Configuring the Dye Vector via the DyeInjection Monitor

11-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

11.3.2 PROTOCOL Dye Flags
You must explicitly set the values for the dye flags USERn, ADDRn, COOKIEn, and
CONNECTORn. in the DyeInjection monitor. However, the flags PROTOCOL_HTTP,
PROTOCOL_IIOP, ROTOCOL_JRMP, PROTOCOL_RMI, PROTOCOL_SOAP,
PROTOCOL_SSL, and PROTOCOL_T3 are set implicitly by WLDF. When the
DyeInjection monitor is enabled, every request is injected with the appropriate
protocol dye. For example, every request that arrives via HTTP is injected with the
PROTOCOL_HTTP dye.

11.3.3 THROTTLE Dye Flag
The THROTTLE dye flag can be used to control the volume of incoming requests that
are dyed. THROTTLE is configured differently from the other flags, and WLDF uses it
differently. See Section 11.6, "Using Throttling to Control the Volume of
Instrumentation Events" for more information.

11.3.4 When Diagnostic Contexts Are Created
When the DyeInjection monitor is enabled in a diagnostic module, a diagnostic context
is created for every incoming request. The DyeInjection monitor is enabled by default
when you enable instrumentation in a diagnostic module. This ensures that a
diagnostic Context ID is available so that events can be correlated. Even if no
properties are explicitly set in the DyeInjection monitor, the diagnostic context for
every request will contain a unique Context ID and a dye vector with one of the
implicit PROTOCOL dyes.

PROTOCOL_
HTTP

PROTOCOL_IIOP

PROTOCOL_JRMP

PROTOCOL_RMI

PROTOCOL_
SOAP

PROTOCOL_SSL

PROTOCOL_T3

The DyeInjection monitor implicitly identifies the protocol used for a
request and sets the appropriate dye(s) in the dye vector, according to the
protocol(s) used.

PROTOCOL_HTTP is set in the diagnostic context of a request if the
request uses HTTP or HTTPS protocol.

PROTOCOL_IIOP is set in the diagnostic context of a request if it uses
Internet Inter-ORB Protocol (IIOP).

PROTOCOL_JRMP is set in the diagnostic context of a request if it uses
the Java Remote Method Protocol (JRMP).

PROTOCOL_RMI is set in the diagnostic context of a request if it uses the
Java Remote Method Invocation (RMI) protocol.

PROTOCOL_SSL is set in the diagnostic context of a request if it uses the
Secure Sockets Layer (SSL) protocol.

PROTOCOL_T3 is set in the diagnostic context of a request if the request
uses T3 or T3s protocol

THROTTLE The THROTTLE dye is set in the diagnostic context of a request if it
satisfies requirements specified by THROTTLE_INTERVAL and/or
THROTTLE_RATE properties of the DyeInjection monitor.

USER1

USER2

USER3

USER4

Use the USER1, USER2, USER3 and USER4 dyes to specify the user
names of clients that originate requests. These dye flags are set in the
diagnostic context for a request if the request was originated by a user
specified by the respective property (USER1, USER2, USER3, USER4) of
the DyeInjection monitor.

Table 11–1 (Cont.) Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description

Configuring Delegating Monitors to Use Dye Filtering

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 11-7

If the DyeInjection monitor is disabled, no diagnostic contexts will be created for any
incoming requests.

11.4 Configuring Delegating Monitors to Use Dye Filtering

You can use the DyeInjection monitor as a mechanism to restrict when a delegating or
custom diagnostic monitor in the diagnostic module is triggered. This process is called
dye filtering.

Each monitor can have a dye mask, which specifies a selection of the dyes from the
DyeInjection monitor. When dye filtering is enabled for a diagnostic monitor, the
monitor's diagnostic action is triggered and a diagnostic event is generated only for
those requests that meet the criteria set by the mask.

Figure 11–2 shows an example of diagnostic events that were generated when a
configured diagnostic action was triggered. Notice that the Context ID is the same for
all of the events, indicating that they are related to the same request. You can use this
Context ID to query for log records that are associated with the request. Note that the
user ID associated with a request may not always be the same as the USER value you
configured in the DyeInjection monitor; as a request is processed through the system,
the user associated with the request may change to allow the system to perform certain
functions (for example, the User ID may change to kernel).

Figure 11–2 Example of Diagnostic Events Associated with a Request

Example configuration

Consider a Servlet_Around_Service application-scoped diagnostic monitor that has a
TraceElapsedTimeAction action attached to it. Without dye filtering, any request that is
handled by Servlet_Around_Service will trigger a TraceElapsedTimeAction. You

Note: For information on how to implement a diagnostic monitor for
an application (such as a web application), see Section 10.5.2,
"Overview of the Steps Required to Instrument an Application".

Configuring Delegating Monitors to Use Dye Filtering

11-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

could, however, use dye filtering to trigger TraceElapsedTimeAction only for requests
that originated from user admin@avitek.com at IP address 127.0.0.1.

1. Configure the DyeInjection monitor so that USER1=admin@avitek.com and
ADDR1=127.0.0.1, and enable the DyeInjection monitor. For instructions, see
"Configure diagnostic monitors in a diagnostic system module" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help.

2. Configure a dye mask and enable dye filtering for the Servlet_Before_Service
diagnostic monitor. In the Administration Console:

a. Add the Servlet_Around_Service monitor from the WLDF instrumentation
library to your application as described in "Configure instrumentation for
applications" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

b. After adding the monitor, click Save on the Settings for <application_name>
page.

c. Click the Servlet_Around_Service link to display the Settings for Servlet_
Around_Service page.

d. Select the Enabled check box to enable the monitor.

e. Under Actions, move TraceElapsedTimeAction from the Available list to the
Chosen list.

f. In the Dye Mask section, move USER1 and ADDR1 from the Available list to
the Chosen list.

g. Select the EnableDyeFiltering check box.

h. Click Save.

3. Redeploy the application.

Configurations added via the Administration Console are not persisted to the
weblogic-diagnostics.xml file in the application's META-INF directory or to the DIAG_
MODULE.xml file; they are saved in the application's deployment plan.

You can also manually update your DIAG_MODULE.xml file to add diagnostic
monitors, as shown in Example 11–2, but this is not recommended. It is better to
change the configuration via the Administration Console on a running server. Any
changes you make to DIAG_MODULE.xml will not take effect until you redeploy the
application.

Example 11–2 Sample Configuration for Using Dye Filtering in a Delegating Monitor, in
DIAG_MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <enabled>true</enabled>
 <properties>ADDR1=127.0.0.1 USER1=admin@avitek.com</properties>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>Servlet_Around_Service</name>
 <dye-mask>ADDR1 USER1</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceElapsedTimeAction</action>

How Dye Masks Filter Requests to Pass to Monitors

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 11-9

 </wldf-instrumentation-monitor>
 <!-- Other elements to configure instrumentation -->
 </instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
<wldf-resource>

With this configuration, the TraceElapsedTimeAction action will be triggered for the
Servlet_Around_Service diagnostic monitor only for those requests that originate from
IP address 127.0.0.1 and user admin@avitek.com.

The flags that are enabled in the diagnostic monitor must exactly match the bits set in
the request's dye vector for an action to be triggered and an event to be written to the
Event Archive. For example, if the diagnostic monitor has both the USER1 and ADDR1
flags enabled, and only the USER1 flag is set in the request's dye vector, no action will
be triggered and no event will be generated.

11.5 How Dye Masks Filter Requests to Pass to Monitors
A dye vector attached to a request can contain multiple dyes, and a dye mask attached
to a delegating monitor can contain multiple dyes. For a delegating monitor's dye
mask to allow a monitor to take action on a request, all of the following must be true:

■ Dye filtering for the delegating or custom diagnostic monitor is enabled in the
application's weblogic-diagnostics.xml descriptor, or is enabled via the
Administration Console.

■ The request's dye vector contains all of the dyes that are defined in the monitor's
dye mask. (The dye vector can also contain dyes that are not in the dye mask.)

11.5.1 Dye Filtering Example
Figure 11–3 illustrates how dye filtering works, using a diagnostic module with three
diagnostic monitors:

■ The DyeInjection monitor is configured as follows:

 ADDR1=127.0.0.1
 USER1=weblogic

■ The Servlet_Around_Service monitor is configured with a dye mask containing
only ADDR1.

■ The EJB_Around_SessionEjbBusinessMethods monitor is configured with a dye
mask containing USER1 only.

Note: When configuring a diagnostic monitor, do not enable
multiple flags of the same type. For example, don't enable both the
USER1 and USER2 flags, as the dye vector for a given request will
never have both the USER1 and USER2 flags set.

Using Throttling to Control the Volume of Instrumentation Events

11-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 11–3 Dye Filtering Example

1. A request initiated by user guest from IP address 127.0.0.1 enters the system. The
user guest does not match the value for USER1 in the DyeInjection monitor, so the
request is not dyed with the dye vector USER1. The originating IP address
(127.0.0.1) matches the value for ADDR1 defined in the DyeInjection monitor, so
the request is dyed with the dye vector ADDR1.

2. The request (dyed with ADDR1) enters the Servlet component, where the
diagnostic monitor Servlet_Around_Service is woven into the code. (Servlet_
Around_Service triggers diagnostic actions at the entry of and exit of certain
servlet and JSP methods.) Dye monitoring is enabled for the monitor, and the dye
mask is defined with the single value ADDR1.

3. When the request enters or exits a method instrumented with Servlet_Around_
Service, the diagnostic monitor checks the request for dye vector ADDR1, which it
finds. Therefore, the monitor triggers a diagnostic action, which generates a
diagnostic event, for example, writing data to the Events Archive.

4. The request enters the SessionEJB component, where the diagnostic monitor EJB_
Around_SessionEjbBusinessMethods is woven into the code. (EJB_Around_
SessionEjbBusinessMethods triggers diagnostic actions at the entry and exit of all
SessionBean methods). Dye monitoring is enabled for the monitor, and the dye
mask is defined with the single value USER1.

5. When the request enters or exits a SessionBean method (instrumented with EJB_
Around_SessionEjbBusinessMethods), the diagnostic monitor checks the request
for dye vector USER1, which it does not find. Therefore, the monitor does not
trigger a diagnostic action, and therefore does not generate a diagnostic event.

11.6 Using Throttling to Control the Volume of Instrumentation Events
Throttling is used to control the number of requests that are processed by the monitors
in a diagnostic module. Throttling is configured using the THROTTLE dye, which is
defined in the DyeInjection monitor.

Using Throttling to Control the Volume of Instrumentation Events

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 11-11

11.6.1 Configuring the THROTTLE Dye
Unlike other dyes in the dye vector, the THROTTLE dye is configured through two
properties.

■ THROTTLE_INTERVAL sets an interval (in milliseconds) after which a new
incoming request is dyed with the THROTTLE dye.

If the THROTTLE_INTERVAL is greater than 0, the DyeInjection monitor sets the
THROTTLE dye flag in the dye vector of an incoming request if the last request
dyed with THROTTLE arrived at least THROTTLE_INTERVAL before the new
request. For example, if THROTTLE_INTERVAL=3000, the DyeInjection monitor
waits at least 3000 milliseconds before it will dye an incoming request with
THROTTLE.

■ THROTTLE_RATE sets the rate (in terms of the number of incoming requests) by
which new incoming requests are dyed with the THROTTLE dye.

If THROTTLE_RATE is greater than 0, the DyeInjection monitor sets the
THROTTLE dye flag in the dye vector of an incoming request when the number of
requests since the last request dyed with THROTTLE equals THROTTLE_RATE.
For example, if THROTTLE_RATE = 6, every sixth request is dyed with
THROTTLE.

You can use THROTTLE_INTERVAL and THROTTLE_RATE together. If either
condition is satisfied, the request is dyed with the THROTTLE dye.

If you assign a value to either THROTTLE_INTERVAL or THROTTLE_RATE (or both,
or neither), you are configuring the THROTTLE dye. A THROTTLE configuration
setting in the Administration Console is shown in the following figure.

Figure 11–4 Configuring the THROTTLE Dye

Example 11–3 shows the resulting configuration in the descriptor file for the
diagnostics module.

Note: The USERn and ADDRn dyes allow inspection of requests
from specific users or IP addresses. However, they do not provide a
means to look at arbitrary user transactions. The THROTTLE dye
provides that functionality by allowing sampling of requests.

Using Throttling to Control the Volume of Instrumentation Events

11-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Example 11–3 Sample THROTTLE Configuration in the DyeInjection Monitor, in DIAG_
MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <properties>
 THROTTLE_INTERVAL=3000
 THROTTLE_RATE=6
 </properties>
 </wldf-instrumentation-monitor>
 </instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
</wldf-resource>

Example 11–4 shows the configuration for a JDBC_Before_Start_Internal delegating
monitor where the THROTTLE dye is set in the dye mask for the monitor.

Example 11–4 Sample Configuration for Setting THROTTLE in a Dye Mask of a
Delegating Monitor, in DIAG_MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <wldf-instrumentation-monitor>
 <name>JDBC_Before_Start_Internal</name>
 <enabled>true</enabled>
 <dye-mask>THROTTLE</dye-mask>
 </wldf-instrumentation-monitor>
 </instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
</wldf-resource>

11.6.2 How Throttling is Handled by Delegating and Custom Monitors
Dye masks and dye filtering provide a mechanism for restricting which requests are
passed to delegating and custom monitors for handling, based on properties of the
requests. The presence of a property in a request is indicated by the presence of a dye,
as discussed in Section 11.3, "Configuring the Dye Vector via the DyeInjection
Monitor". One of those dyes can be the THROTTLE dye, so that you can filter on
THROTTLE, just like any other dye.

The items in the following list explain how throttling is handled:

■ If dye filtering for a delegating or custom monitor is enabled and that monitor has
a dye mask, filtering is performed based on the dye mask. That mask may include
the THROTTLE dye, but it does not have to. If THROTTLE is included in a dye
mask, then THROTTLE must also be included in the request's dye vector for the
request to be passed to the monitor. However, if THROTTLE is not included in the
dye mask, all qualifying requests are passed to the monitor, whether their dye
vectors include THROTTLE or not.

■ If dye filtering for a delegating or custom monitor is not enabled and neither
THROTTLE property is set in the DyeInjection monitor, dye filtering will not take
place and throttling will not take place.

■ If dye filtering for a delegating or custom monitor is not enabled and THROTTLE
is configured in the DyeInjection monitor, delegating monitors ignore dye masks

Using weblogic.diagnostics.context

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts 11-13

but do check for the presence of the THROTTLE dye in all requests. Only those
requests dyed with THROTTLE are passed to the delegating monitors for
handling. Therefore, by setting a THROTTLE_RATE and/or THROTTLE_
INTERVAL in the DyeInjection monitor, you reduce the number of requests
handled by all delegating monitors. You do not have to configure dye masks for all
your delegating monitors to take advantage of throttling.

■ If dye filtering for a delegating or custom monitor is enabled and the only dye set
in a dye mask is THROTTLE, only those requests that are dyed with THROTTLE
are passed to the delegating monitor. This behavior is the same as when dye
filtering is not enabled and THROTTLE is configured in the DyeInjection monitor.

11.7 Using weblogic.diagnostics.context
The weblogic.diagnostics.context package provides applications with limited access to
a diagnostic context.

An application can use the weblogic.diagnostics.context.DiagnosticContextHelper
APIs to perform the following functions:

■ Inspect a diagnostics context's immutable context ID.

■ Inspect the settings of the dye flags in a context's dye vector.

■ Retrieve an array of valid dye flag names.

■ Set, or unset, the DYE_0 through DYE_7 flags in a context's dye vector. (Note that
there is no way to set these flag bits via XML. You can configure DyeInjection
monitor <properties> to set the non-application-specific flag bits via XML, but
setDye() is the only method for setting DYE_0 through DYE_7 in a dye vector.)

■ Attach a payload (a String) to a diagnostic context, or read an existing payload.

An application cannot:

■ Set any flags in a dye vector other than the eight flags reserved for applications.

■ Prevent another application from setting the same application flags in a dye vector.
A well-behaved application can test whether a dye flag is set before setting it.

■ Prevent another application from replacing a payload. A well-behaved application
can test for the presence of a payload before adding one.

A monitor, or another application, that is downstream from the point where an
application has set one or more of the DYE_0 through DYE_7 flags can set a dye mask
to check for those flags, and take an action when the flag(s) are present in a context's
dye vector. If a payload is attached to the diagnostics context, any action taken by that
monitor will result in the payload being archived, and thus available through the
accessor component.

Example 11–5 is a short example which (implicitly) creates a diagnostic context, prints
the context ID, checks the value of the DYE_0 flag, and then sets the DYE_0 flag.

Example 11–5 Example: DiagnosticContextExample.java

package weblogic.diagnostics.examples;
import weblogic.diagnostics.context.DiagnosticContextHelper;
public class DiagnosticContextExample {
public static void main(String args[]) throws Exception {
System.out.println("\nContextId=" +
DiagnosticContextHelper.getContextId());
System.out.println("isDyedWith(DYE_0)=" +

Using weblogic.diagnostics.context

11-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
DiagnosticContextHelper.setDye(DiagnosticContextHelper.DYE_0, true);
System.out.println("isDyedWith(DYE_0)=" +
DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));

}
}

12

Accessing Diagnostic Data With the Data Accessor 12-1

12Accessing Diagnostic Data With the Data
Accessor

You use the Data Accessor component of the WebLogic Diagnostic Framework
(WLDF) to access diagnostic data from various sources, including log records, data
events, and harvested metrics.

Using the Data Accessor, you can perform data lookups by type, component, and
attribute. You can perform time-based filtering and, when accessing events, filtering
by severity, source, and content. You can also access diagnostic data in tabular form.

The following sections describe the Data Accessor and describes how to use it online
(when a server is running) and offline (when a server is not running):

■ Section 12.1, "Data Stores Accessed by the Data Accessor"

■ Section 12.2, "Accessing Diagnostic Data Online"

■ Section 12.3, "Accessing Diagnostic Data Offline"

■ Section 12.5, "Resetting the System Clock Can Affect How Data Is Archived and
Retrieved"

12.1 Data Stores Accessed by the Data Accessor
The Data Accessor retrieves diagnostic information from other WLDF components.
Captured information is segregated into logical data stores that are separated by the
types of diagnostic data. For example, server logs, HTTP logs, and harvested metrics
are captured in separate data stores.

WLDF maintains diagnostic data on a per-server basis. Therefore, the Data Accessor
provides access to data stores for individual servers.

Data stores can be modeled as tabular data. Each record in the table represents one
item, and the columns describe characteristics of the item. Different data stores may
have different columns. However, most data stores have some of the same columns,
such as the time when the data was collected.

The Data Accessor can retrieve the following information about data stores used by
WLDF for a server:

■ A list of supported data store types, including:

– HTTP_LOG

– HARVESTED_DATA_ARCHIVE

– EVENTS_DATA_ARCHIVE

Accessing Diagnostic Data Online

12-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

– SERVER_LOG

– DOMAIN_LOG

– HTTP_ACCESS_LOG

– WEBAPP_LOG

– CONNECTOR_LOG

– JMS_MESSAGE_LOG

– CUSTOM_LOG

■ A list of available data store instances

■ The layout of each data store (information that describes the columns in the data
store)

You can use the WLDFAccessRuntimeMBean to discover such data stores, determine
the nature of the data they contain, and access their data selectively using a query.

For complete documentation about WebLogic logs, see Oracle Fusion Middleware
Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server.

12.2 Accessing Diagnostic Data Online
You access diagnostic data from a running server by using the Administration
Console, JMX APIs, or the WebLogic Scripting Tool (WLST).

12.2.1 Accessing Data Using the Administration Console
You do not use the Data Accessor explicitly in the Administration Console, but
information collected by the Accessor is displayed, for example, in the Summary of
Log Files page. See "View and Configure Logs" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

12.2.2 Accessing Data Programmatically Using Runtime MBeans
The Data Accessor provides the following runtime MBeans for discovering data stores
and retrieving data from them:

■ Use the WLDFAccessRuntimeMBean to do the following:

– Get the logical names of the available data stores on the server.

– Look up a WLDFDataAccessRuntimeMBean to access the data from a specific
data source, based on its logical name. The different data stores are uniquely
identified by their logical names.

See "WLDFAccessRuntimeMBean" in the Oracle Fusion Middleware Oracle WebLogic
Server MBean Reference.

■ Use the WLDFDataAccessRuntimeMBean to retrieve data stores based on a search
condition, or query. You can optionally specify a time interval with the query, to
retrieve data records within a specified time duration. This MBean provides
meta-data about the columns of the data set and the earliest and latest timestamp
of the records in the data store.

Data Accessor runtime Mbeans are currently created and registered lazily. So,
when a remote client attempts to access them, they may not be present and an
InstanceNotFoundException may be thrown.

Accessing Diagnostic Data Programmatically

Accessing Diagnostic Data With the Data Accessor 12-3

The client can retrieve the WLDFDataAccessRuntime’s attribute of the
WLDFAccessRuntime to cause all known data access runtimes to be created, for
example:

 ObjectName objName =
 new ObjectName("com.bea:ServerRuntime=" + serverName +
 ",Name=Accessor," +
 "Type=WLDFAccessRuntime," +
 "WLDFRuntime=WLDFRuntime");
 rmbs.getAttribute(objName, "WLDFDataAccessRuntimes");

See "WLDFDataAccessRuntimeMBean" in the Oracle Fusion Middleware Oracle
WebLogic Server MBean Reference.

12.2.3 Using WLST to Access Diagnostic Data Online
Use the WLST exportDiagnosticDataFromServer command to access diagnostic data
from a running server. For the syntax and examples of this command, see "Diagnostics
Commands" in the Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.

12.2.4 Using the WLDF Query Language with the Data Accessor
To query data from data stores, use the WLDF query language. For Data Accessor
query language syntax, see Appendix A, "WLDF Query Language."

12.3 Accessing Diagnostic Data Offline
Use the WLST exportDiagnosticData command to access historical diagnostic data
from an offline server. For the syntax and examples of this command, see "Diagnostics
Commands" in the Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.

12.4 Accessing Diagnostic Data Programmatically
Example 12–1 shows the source Java code for a utility that uses the Accessor to query
the different archive data stores.

Example 12–1 Sample Code to Use the WLDF Accessor

/*
 * WLAccessor.java
 *
 * Demonstration utility that allows query of the different ARCV data stores
 * via the WLDF Accessor.
 *
 */

 import javax.naming.Context;
 import weblogic.jndi.Environment;
 import java.util.Hashtable;
 import java.util.Iterator;
 import java.util.Properties;

Note: You can use exportDiagnosticData to access archived data only
from the machine on which the data is persisted.

You cannot discover data store instances using the offline mode of the
Data Accessor. You must already know what they are.

Accessing Diagnostic Data Programmatically

12-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 import weblogic.management.ManagementException;
 import weblogic.management.runtime.WLDFAccessRuntimeMBean;
 import weblogic.management.runtime.WLDFDataAccessRuntimeMBean;
 import weblogic.diagnostics.accessor.ColumnInfo;
 import weblogic.diagnostics.accessor.DataRecord;
 import java.io.File;
 import java.io.FileInputStream;
 import java.io.FileNotFoundException;
 import java.io.IOException;

 import javax.management.MBeanServerConnection;
 import javax.management.remote.JMXConnector;
 import javax.management.remote.JMXConnectorFactory;
 import javax.management.remote.JMXServiceURL;
 import javax.management.ObjectName;
 import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
 import weblogic.management.runtime.ServerRuntimeMBean;
 import weblogic.management.jmx.MBeanServerInvocationHandler;
 import weblogic.management.configuration.ServerMBean;

 /**
 * Demonstration utility that allows query of the different ARCV data stores
 * via the WLDF Accessor. The class looks up the appropriate accessor and
 * executes the query given the specified query parameters.
 *
 * To see information about it's usage, compile this file and run
 *
 * java WLAccessor usage
 */
public class WLAccessor {

 /** Creates a new instance of WLAccessor */
 public WLAccessor(Properties p) {
 initialize(p);
 }

 /**
 * Retrieve the specfied WLDFDataAccessRuntimeMBean instance for querying.
 */
 public WLDFDataAccessRuntimeMBean getAccessor(String accessorType)
 throws Throwable
 {
 // Get the runtime MBeanServerConnection
 MBeanServerConnection runtimeMBS = this.getRuntimeMBeanServerConnection();

 // Lookup the runtime service for the connected server
 ObjectName rtSvcObjName = new ObjectName(RuntimeServiceMBean.OBJECT_NAME);
 RuntimeServiceMBean rtService = null;

 rtService = (RuntimeServiceMBean)
 MBeanServerInvocationHandler.newProxyInstance(
 runtimeMBS, rtSvcObjName
);

 // Walk the Runtime tree to the desired accessor instance.
 ServerRuntimeMBean srt = rtService.getServerRuntime();

 WLDFDataAccessRuntimeMBean ddar =
 srt.getWLDFRuntime().getWLDFAccessRuntime().
 lookupWLDFDataAccessRuntime(accessorType);

Accessing Diagnostic Data Programmatically

Accessing Diagnostic Data With the Data Accessor 12-5

 return ddar;
 }

 /**
 * Execute the query using the given parameters, and display the formatted
 * records.
 */
 public void queryEventData() throws Throwable
 {
 String logicalName = "EventsDataArchive";
 WLDFDataAccessRuntimeMBean accessor = getAccessor(accessorType);

 ColumnInfo[] colinfo = accessor.getColumns();
 inform("Query string: " + queryString);

 int recordsFound = 0;
 Iterator actualIt =
 accessor.retrieveDataRecords(beginTime, endTime, queryString);
 while (actualIt.hasNext()) {
 DataRecord rec = (DataRecord)actualIt.next();
 inform("Record[" + recordsFound + "]: {");
 Object[] values = rec.getValues();
 for (int colno=0; colno < values.length; colno++) {
 inform("[" + colno + "] "
 + colinfo[colno].getColumnName() +
 " (" + colinfo[colno].getColumnTypeName() + "): " +
 values[colno]);
 }
 inform("}");
 inform("");
 recordsFound++;
 }
 inform("Found " + recordsFound + " results");
 }

 /**
 * Main method that implements the tool.
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 try {
 WLAccessor acsr = new WLAccessor(handleArgs(args));
 acsr.queryEventData();
 } catch (UsageException uex) {
 usage();
 } catch (Throwable t) {
 inform("Caught exception, " + t.getMessage(), t);
 inform("");
 usage();
 }
 }

 public static class UsageException extends Exception {}

 /**
 * Process the command line arguments, which are provided as name/value pairs.
 */
 public static Properties handleArgs(String[] args) throws Exception
 {

Accessing Diagnostic Data Programmatically

12-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 Properties p = checkForDefaults();
 for (int i = 0; i < args.length; i++) {
 if (args[i].equalsIgnoreCase("usage"))
 throw new UsageException();

 String[] nvpair = new String[2];
 int token = args[i].indexOf('=');
 if (token < 0)
 throw new Exception("Invalid argument, " + args[i]);
 nvpair[0] = args[i].substring(0,token);
 nvpair[1] = args[i].substring(token+1);
 p.put(nvpair[0], nvpair[1]);
 }
 return p;
 }

 /**
 * Look for a default properties file
 */
 public static Properties checkForDefaults() throws IOException {
 Properties defaults = new Properties();
 try {
 File defaultprops = new File("accessor-defaults.properties");
 FileInputStream defaultsIS = new FileInputStream(defaultprops);
 //inform("loading options from accessor-defaults.properties");
 defaults.load(defaultsIS);
 } catch (FileNotFoundException fnfex) {
 //inform("No accessor-defaults.properties found");
 }
 return defaults;
 }
 public static void inform(String s) {
 System.out.println(s);
 }
 public static void inform(String s, Throwable t) {
 System.out.println(s);
 t.printStackTrace();
 }

 private MBeanServerConnection getRuntimeMBeanServerConnection()
 throws IOException
 {
 // construct jmx service url

 // "service:jmx:[url]/jndi/[mbeanserver-jndi-name]"
 JMXServiceURL serviceURL =
 new JMXServiceURL(
 "service:jmx:" + getServerUrl() +
 "/jndi/" + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME
);

 // specify the user and pwd. Also specify weblogic provide package
 inform("user name [" + username + "]");
 inform("password [" + password + "]");
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 // get jmx connector

Accessing Diagnostic Data Programmatically

Accessing Diagnostic Data With the Data Accessor 12-7

 JMXConnector connector = JMXConnectorFactory.connect(serviceURL, h);

 inform("Using JMX Connector to connect to " + serviceURL);
 return connector.getMBeanServerConnection();
 }

 private void initialize(Properties p) {
 serverUrl = p.getProperty("url","t3://localhost:7001");
 username = p.getProperty("user","weblogic");
 password = p.getProperty("pass","weblogic");
 queryString = p.getProperty("query","SEVERITY IN
('Error','Warning','Critical','Emergency')");
 accessorType = p.getProperty("type","ServerLog");

 try {
 beginTime = Long.parseLong(p.getProperty("begin","0"));

 String end = p.getProperty("end");
 endTime = (end==null) ? Long.MAX_VALUE : Long.parseLong(end);
 } catch (NumberFormatException nfex) {
 throw new RuntimeException("Error formatting time bounds", nfex);
 }
 }

 private static void usage() {
 inform("");
 inform("");
 inform("Usage: ");
 inform("");
 inform(" java WLAccessor [options]");
 inform("");
 inform("where [options] can be any combination of the following: ");
 inform("");
 inform(" usage Prints this text and exits");
 inform(" url=<url> default: 't3://localhost:7001'");
 inform(" user=<username> default: 'weblogic'");
 inform(" pass=<password> default: 'weblogic'");
 inform(" begin=<begin-timestamp> default: 0");
 inform(" end=<end-timestamp> default: Long.MAX_VALUE");
 inform(" query=<query-string> default: \"SEVERITY IN
('Error','Warning','Critical','Emergency')\"");
 inform(" type=<accessor-type> default: 'ServerLog'");
 inform("");
 inform("Example:");
 inform("");
 inform(" java WLAccessor user=system pass=gumby1234 url=http://myhost:8000
\\");
 inform(" query=\"SEVERITY = 'Error'\" begin=1088011734496
type=ServerLog");
 inform("");
 inform("");
 inform("");
 inform("All properties (except \"usage\") can all be specified in a file ");
 inform("in the current working directory. The file must be named: ");
 inform("");
 inform(" \"accessor-defaults.properties\"");
 inform("");
 inform("Each property specified in the defaults file can still be ");
 inform("overridden on the command-line as shown above");
 inform("");

Resetting the System Clock Can Affect How Data Is Archived and Retrieved

12-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 }

 /** Getter for property serverUrl.
 * @return Value of property serverUrl.
 *
 */
 public java.lang.String getServerUrl() {
 return serverUrl;
 }

 /** Setter for property serverUrl.
 * @param serverUrl New value of property serverUrl.
 *
 */
 public void setServerUrl(java.lang.String serverUrl) {
 this.serverUrl = serverUrl;
 }

 protected String serverName = null;
 protected String username = null;
 protected String password = null;
 protected String queryString = "";
 private String serverUrl = "t3://localhost:7001";
 private String accessorType = null;

 private long endTime = Long.MAX_VALUE;
 private long beginTime = 0;

 private WLDFAccessRuntimeMBean dar = null;

}

12.5 Resetting the System Clock Can Affect How Data Is Archived and
Retrieved

Resetting the system clock to an earlier time while diagnostic data is being written to
the WLDF Archive or logs can cause unexpected results when you query that data
based on a timestamp. For example, consider the following sequence of events:

1. At 2:00 p.m., a diagnostic event is archived as RECORD_200, with a timestamp of
2:00:00 PM.

2. At 2:30 p.m., a diagnostic event is archived as RECORD_230, with a timestamp of
2:30:00 PM.

3. At 3:00 p.m., the system clock is reset to 2:00 p.m.

4. At 2:15 p.m. (after the clock was reset), a diagnostic event is archived as RECORD_
215, with a timestamp of 2:15:00 PM.

5. You issue a query to retrieve records generated between 2:00 and 2:20 p.m.

The query will not retrieve RECORD_215, because the 2:30:00 PM timestamp of
RECORD_230 ends the query.

13

Deploying WLDF Application Modules 13-1

13Deploying WLDF Application Modules

The only WebLogic Diagnostic Framework (WLDF) component you can use with
applications is Instrumentation. See Section 10.5, "Configuring Application-Scoped
Instrumentation."

You configure and manage instrumentation for an application as a diagnostics
application module, which is an application-scoped resource. The configuration is
persisted in a descriptor file which you deploy with the application. A diagnostic
module deployed in this way is available only to the enclosing application. Using
application-scoped resources ensures that an application always has access to required
resources and simplifies the process of deploying the application to new
environments.

You can deploy an application using a deployment plan, which permits dynamic
configuration updates.

The following sections describe how to deploy WLDF application modules:

■ Section 13.1, "Deploying a Diagnostic Module as an Application-Scoped Resource"

■ Section 13.2, "Using Deployment Plans to Dynamically Control Instrumentation
Configuration"

■ Section 13.3, "Using a Deployment Plan: Overview"

■ Section 13.4, "Creating a Deployment Plan Using weblogic.PlanGenerator"

■ Section 13.5, "Sample Deployment Plan for Diagnostics"

■ Section 13.6, "Enabling Hot-Swap Capabilities"

■ Section 13.7, "Deploying an Application with a Deployment Plan"

■ Section 13.8, "Updating an Application with a Modified Plan"

13.1 Deploying a Diagnostic Module as an Application-Scoped Resource
To deploy a diagnostic module as an application-scoped resource, you configure the
module in a descriptor file named weblogic-diagnostics.xml. You then package the

Note: For instrumentation to be available for an application,
instrumentation must be enabled on the server to which the
application is deployed. (Server-scoped instrumentation is enabled
and disabled in the <instrumentation> element of the diagnostics
descriptor for the server.)

Using Deployment Plans to Dynamically Control Instrumentation Configuration

13-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

descriptor file with the application archive in the ARCHIVE_PATH/META-INF
directory for the deployed application. For example:

D:\bea\wlserver_
10.3\samples\server\medrec\dist\standalone\exploded\medrec\META-INF\weblogic-diagn
ostics.xml

You can deploy the diagnostic module in both exploded and unexploded archives.

You can use any of the standard WebLogic Server tools provided for controlling
deployment, including the WebLogic Administrative Console or the WebLogic
Scripting Tool (WLST).

For information on creating modules and deploying applications, see Oracle Fusion
Middleware Deploying Applications to Oracle WebLogic Server.

Because of the different ways that diagnostic application modules and diagnostic
system modules are deployed, there are some differences in how you can reconfigure
them and when those changes take place, as shown in Table 13–2. The details of how
to work with diagnostic application modules is described throughout this section. See
Chapter 10, "Configuring Instrumentation" for information about working with
diagnostic system modules.

13.2 Using Deployment Plans to Dynamically Control Instrumentation
Configuration

WebLogic Server supports deployment plans, as specified in the J2EE Deployment
Specification API (JSR-88). With deployment plans, you can modify an application's
configuration after the application is built, without having to modify the application
archives. For complete documentation on using deployment plans in WebLogic Server,
see "Configuring Applications for Production Deployment" in Oracle Fusion Middleware
Deploying Applications to Oracle WebLogic Server.

Note: If the EAR archive contains WAR, RAR or EJB modules that
have the weblogic-diagnostics.xml descriptors in their META-INF
directory, those descriptors are ignored.

Table 13–1 Comparing System and Application Modules

Monitor Type

Add/Remove
Objects
Dynamically

Add/Remove
Objects with
Console

Modify with
JMX
Remotely

Modify with
JSR-88
(non-remote)

Modify with
Console

System
Module

Yes Yes Yes No Yes - via JMX

Application
Module

Yes, when hot
swap1 is
enabled

No, when hot
swap is not
enabled:
module must
be redeployed

1 See Section 13.2, "Using Deployment Plans to Dynamically Control Instrumentation Configuration" for
information about hot swap.

Yes No Yes Yes - via plan

Using a Deployment Plan: Overview

Deploying WLDF Application Modules 13-3

If you want to reconfigure an application that was deployed without a deployment
plan, you must undeploy, unarchive, reconfigure, re-archive, and then redeploy the
application. With a configuration plan, you can dynamically change many
configuration options simply by updating the plan, without modifying the application
archive.

If you enable a feature called "hot swap" (see Section 13.6, "Enabling Hot-Swap
Capabilities") before deploying your application with a deployment plan, you can
dynamically update all instrumentation settings without redeploying the application.
If you do not enable hot swap, or if you do not use a deployment plan, changes to
some instrumentation settings require redeployment, as shown in Table 13–2.

You can use a deployment plan to dynamically update configuration elements without
redeploying the application.

■ <enabled>

■ <dye-filtering-enabled>

■ <dye-mask>

■ <action>

13.3 Using a Deployment Plan: Overview
The general process for creating and using a deployment plan is as follows:

1. Create a well-formed weblogic-diagnostics.xml descriptor file for the application.

It is recommended that you create an empty descriptor. That provides full
flexibility for dynamically modifying the configuration. It is possible to create
monitors in the original descriptor file and then use a deployment plan to override
the settings. You will, however, be unable to completely remove monitors without
redeploying. If you add monitors using a deployment plan to an empty descriptor,
all such monitors can be removed. For information about configuring diagnostic
application modules, see Section 10.5, "Configuring Application-Scoped
Instrumentation."

The schema for weblogic-diagnostics.xml is available at
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/web
logic-diagnostics.xsd.

2. Place the descriptor file weblogic-diagnostics.xml, in the top-level META-INF
directory of the appropriate archive.

Table 13–2 When Application Instrumentation Configuration Changes Take Effect

Scenario / Settings to Use =>

Add and
remove
monitors

Attach and
detach actions

Enable and
disable monitors

Application deployed with a
deployment plan, hot swap enabled

Dynamic Dynamic Dynamic

Application deployed with a
deployment plan, hot swap not
enabled

Must redeploy
application1

1 If hot-swap is not enabled, you can "remove" a monitor, but that just disables it. The instrumentation code
is still woven into the application code. You cannot re-enable it through a modified plan.

Dynamic Dynamic

Application deployed without a
deployment plan

Must redeploy
application

Must redeploy
application

Must redeploy
application

Creating a Deployment Plan Using weblogic.PlanGenerator

13-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

3. Create a deployment plan, for example by using weblogic.PlanGenerator. See
Section 13.4, "Creating a Deployment Plan Using weblogic.PlanGenerator".

4. Start the server, optionally enabling "hot-swap" capability. See Section 13.6,
"Enabling Hot-Swap Capabilities".

5. Deploy the application using the deployment plan. See Section 13.7, "Deploying an
Application with a Deployment Plan").

6. When needed, edit the plan and update the application with the plan. See
Section 13.8, "Updating an Application with a Modified Plan".

13.4 Creating a Deployment Plan Using weblogic.PlanGenerator
You can use the weblogic.PlanGenerator tool to create an initial deployment plan, and
interactively override specific properties of the weblogic-diagnostics.xml descriptor.

The PlanGenerator tool inspects all J2EE deployment descriptors in the selected
application, and creates a deployment plan with null variables for all relevant
WebLogic Server deployment properties that configure external resources for the
application.

To create the plan, use the following syntax:

 java weblogic.PlanGenerator -plan output-plan.xml [options]
 application-path

For example:

 java weblogic.PlanGenerator -plan foo.plan -dynamics /test/apps/mywar

For more information about creating and using deployment plans, see "Configuring
Applications for Production Deployment" in Oracle Fusion Middleware Deploying
Applications to Oracle WebLogic Server.

For more information about using PlanGenerator, see weblogic.PlanGenerator
Command Line Reference" and "Exporting an Application for Deployment to New
Environments" in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic
Server

13.5 Sample Deployment Plan for Diagnostics
Example 13–1 shows a simple deployment plan generated using
weblogic.PlanGenerator. (For readability, some information has been removed.) The
plan enables the Servlet_Before_Service monitor and attaches to it the actions
DisplayArgumentsAction and StackDumpAction.

Example 13–1 Sample Deployment Plan

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
global-variables="false">
 <application-name>jsp_expr_root</application-name>

Note: The -dynamics options specifies that the plan should be
generated to include only those options that can be dynamically
updated.

Deploying an Application with a Deployment Plan

Deploying WLDF Application Modules 13-5

 <variable-definition>
 <!-- Add two additional actions to Servlet_Before_Service monitor -->
 <variable>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Actions_113050559713922</name>
 <value>"DisplayArgumentsAction","StackDumpAction"</value>
 </variable>
 <-- Enable the Servlet_Before_Service monitor -->
 <variable>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Enabled_113050559713927</name>
 <value>true</value>
 </variable>
 </variable-definition>

 <module-override>
 <module-name>jspExpressionWar</module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 <variable-assignment>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Actions_113050559713922</name>
 <xpath>/wldf-resource/instrumentation/wldf-instrumentation-monitor/[name="Servlet_Before_
Service"]/action</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Enabled_113050559713927</name>
 <xpath>/wldf-resource/instrumentation/wldf-instrumentation-monitor/[name="Servlet_Before_
Service"]/enabled</xpath>
 </variable-assignment>
 </module-descriptor>
 </module-override>
 <config-root xsi:nil="true"></config-root>
</deployment-plan>

For a list and documentation of diagnostic monitors and actions that you can specify
in the deployment plan, see Appendix B, "WLDF Instrumentation Library."

13.6 Enabling Hot-Swap Capabilities
To enable hot-swap capabilities, start the server with the following command line
switch:

 -javaagent:$WL_HOME/server/lib/diagnostics-agent.jar

13.7 Deploying an Application with a Deployment Plan
To take advantage of the dynamic control provided by a deployment plan, you must
deploy the application with the plan.

Updating an Application with a Modified Plan

13-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

You can use any of the standard WebLogic Server tools for controlling deployment,
including the Administration Console or the WebLogic Scripting Tool (WLST). For
example, the following WLST command deploys an application with a corresponding
deployment plan.

 wls:/mydomain/serverConfig> deploy('myApp', './myApp.ear', 'myserver',
 'nostage', './plan.xml')

After deployment, the effective diagnostic monitor configuration is a combination of
the original descriptor, combined with the overridden attribute values from the plan. If
the original descriptor did not include a monitor with the given name and the plan
overrides an attribute of such a monitor, the monitor is added to the set of monitors to
be used with the application. This way, if your application is built with an empty
weblogic-diagnostics.xml descriptor, you can add diagnostic monitors to the
application during or after the deployment process without having to modify the
application archive.

13.8 Updating an Application with a Modified Plan
You change configuration settings by modifying the deployment plan and then
updating or redeploying the application, depending on whether or not hot swap is
enabled. (See Table 13–2 to see when you can simply update the application and when
you must redeploy it.) You can use any of the standard WebLogic Server tools for
updating or redeploying, including the Administration Console or the WebLogic
Scripting Tool (WLST).

If you enabled hot-swap, you can update the configuration for the application with the
modified plan values by updating the application with the plan. For example, the
following WLST command updates an application with a plan:

 wls:/mydomain/serverConfig> updateApplication('BigApp',
 'c:/myapps/BigApp/newPlan/plan.xml', stageMode='STAGE',
 testMode='false')

If you did not enable hot-swap, you must redeploy the application for certain changes
to take effect. For example, the following WLST command redeploys an application
using a plan:

 wls:/mydomain/serverConfig> redeploy('myApp' 'c:/myapps/plan.xml')

14

Configuring and Using WLDF Programmatically 14-1

14Configuring and Using WLDF
Programmatically

As discussed in previous chapters, you can use the WebLogic Server Administration
Console to enable, configure, and monitor features of WebLogic Server, including the
WebLogic Diagnostic Framework (WLDF). You can do the same tasks
programmatically using the JMX API and the WebLogic Scripting Tool (WLST).

The following sections provide information about configuring WLDF
programmatically:

■ Section 14.1, "How WLDF Generates and Retrieves Data"

■ Section 14.2, "Mapping WLDF Components to Beans and Packages"

■ Section 14.3, "Programming Tools"

■ Section 14.4, "WLDF Packages"

■ Section 14.5, "Programming WLDF: Examples"

In addition to the information provided in those sections, use the information in the
following manuals to develop and deploy applications, and to use WLST:

■ Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server

■ Oracle Fusion Middleware Developing Manageable Applications With JMX for Oracle
WebLogic Server

■ Oracle Fusion Middleware Developing Custom Management Utilities With JMX for
Oracle WebLogic Server

■ Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server

■ Oracle Fusion Middleware Oracle WebLogic Scripting Tool

14.1 How WLDF Generates and Retrieves Data
In general, diagnostic data is generated and retrieved by WLDF components following
this process:

■ The WLDF XML descriptor file settings for the Harvester, Instrumentation, Image
Capture, and Watch and Notification components determine the type and amount
of diagnostic data generated while a server is running.

■ The diagnostic context and instrumentation settings filter and monitor this data as
it flows through the system. Data is harvested, actions are triggered, events are
generated, and configured notifications are sent.

■ The Archive component stores the data.

Mapping WLDF Components to Beans and Packages

14-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

■ The Accessor component retrieves the data.

Configuration is primarily an administrative task, accomplished either through the
Administration Console or through WLST scripts. Deployable descriptor modules,
XML configuration files, are the primary method for configuring diagnostic resources
at both the system level (servers and clusters) and at the application level. (For
information on configuring WLDF resources, see Chapter 3, "Understanding WLDF
Configuration.")

Output retrieval via the Accessor component can be either an administrative or a
programmatic task.

14.2 Mapping WLDF Components to Beans and Packages
When you create WLDF resources using the Administration Console or WLST,
WebLogic Server creates MBeans (managed beans=) for each resource. You can then
access these MBeans using JMX or WLST. Because weblogic.WLST is a JMX client; any
task you can perform using WLST you can also perform programmatically through
JMX.

Table 14–1 lists the beans and packages associated with WLDF and its components.
Figure 14–1 groups the beans by type.

Table 14–1 Mapping WLDF Components to Beans and Packages

Component Beans / Packages

WLDF WLDFServerDiagnosticMBean

WLDFSystemResourceMBean

WLDFBean (abstract)

WLDFResourceBean

WLDFRuntimeMBean

Diagnostic Image WLDFImageNotificationBean

WLDFImageCreationTaskRuntimeMBean

WLDFImageRuntimeMBean

Instrumentation WLDFInstrumentationBean

WLDFInstrumentationMonitorBean

WLDFInstrumentationRuntimeMBean

Diagnostic Context Package: weblogic.diagnostics.context

DiagnosticContextHelper

DiagnosticContextConstants

Harvester WLDFHarvesterBean

WLDFHarvestedTypeBean

WLDFHarvesterRuntimeMBean

Mapping WLDF Components to Beans and Packages

Configuring and Using WLDF Programmatically 14-3

Watch & Notification WLDFNotificationBean

WLDFWatchNotificationBean

WLDFJMSNotificationBean

WLDFJMXNotificationBean

WLDFSMTPNotificationBean

WLDFSNMPNotificationBean

WLDFWatchJMXNotificationRuntimeMBean

WLDFWatchNotificationRuntimeMBean

Package: weblogic.diagnostics.watch

JMXWatchNotification

WatchNotification

Archive WLDFArchiveRuntimeMBean

WLDFDbstoreArchiveRuntimeMBean

WLDFFileArchiveRuntimeMBean

WLDFWlstoreArchiveRuntimeMBean

Accessor WLDFAccessRuntimeMBean

WLDFDataAccessRuntimeMBean

Table 14–1 (Cont.) Mapping WLDF Components to Beans and Packages

Component Beans / Packages

Programming Tools

14-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Figure 14–1 WLDF Configuration MBeans, Runtime MBeans, and System Module Beans

14.3 Programming Tools
The WebLogic Diagnostic Framework enables you to perform the following tasks
programmatically:

■ Create and modify diagnostic descriptor files to configure the WLDF Harvester,
Instrumentation, and Watch and Notification components at the server level.

■ Use JMX to access WLDF operations and attributes.

■ Use JMX to create custom MBeans that contain harvestable data. You can then
configure the Harvester to collect that data and configure a watches and
notifications to monitor the values.

■ Write Java programs that perform the following tasks:

– Capture notifications using JMX listeners.

Programming Tools

Configuring and Using WLDF Programmatically 14-5

– Capture notifications using JMS.

– Retrieve archived data through the Accessor. (The Accessor, as are the other
components, is surfaced as JMX; you can use WLST or straight JMX
programming to retrieve diagnostic data.)

14.3.1 Configuration and Runtime APIs
The configuration and runtime APIs configure and monitor WLDF. Both the
configuration and runtime APIs are exposed as MBeans.

■ The configuration MBeans and system module Beans create and configure WLDF
resources, and determine their runtime behavior.

■ The runtime MBeans monitor the runtime state and the operations defined for the
different components.

You can use the APIs to configure, activate, and deactivate data collection; to configure
watches, notifications, alarms, and diagnostic image captures; and to access data.

14.3.1.1 Configuration APIs
The Configuration APIs define interfaces that are used to configure the following
WLDF components:

■ Data Collectors: You can use the configuration APIs to configure and control
Instrumentation, Harvesting, and Image Capture.

– For the Instrumentation component, you can enable, disable, create, and
destroy server-level instrumentation and instrumentation monitors.

– For the Harvester component, you can add and remove types to be harvested,
specify which attributes and instances of those types are to be harvested, and
set the sample period for the harvester.

– For the Diagnostic Image Capture component, you can set the name and path
of the directory in which the image capture is to be stored and the events
image capture interval, that is, the time interval during which recently
archived events are captured in the diagnostic image.

■ Watch and Notifications: You can use the configuration APIs to enable, disable,
create, and destroy watches and notifications. You can also use the configuration
APIs to:

– Set the rule type, watch-rule expressions, and severity for watches

– Set alarm type and alarm reset period for notifications

– Configure a watch to trigger a diagnostic image capture

– Add and remove notifications from watches

■ Archive: Set the archive type and the archive directory

Note: The configuration APIs do not support configuration of
application-level instrumentation. However, configuration changes for
application-level instrumentation can be effected using Java
Specification Request (JSR) 88 APIs.

WLDF Packages

14-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

14.3.1.2 Runtime APIs
The runtime APIs define interfaces that are used to monitor the runtime state of the
WLDF components. Instances of these APIs are instantiated on instances of
individually managed servers. These APIs are defined as runtime MBeans, so JMX
clients can easily access them.

The Runtime APIs encapsulate all other runtime interfaces for the individual WLDF
components. These APIs are included in the weblogic.management.runtime package.

You can use the runtime APIs to monitor the following WLDF components:

■ Data Collectors—You can use the runtime APIs to monitor the Instrumentation,
Harvester, and the Image Capture components.

– For the Instrumentation component, you can monitor joinpoint count
statistics, the number of classes inspected for instrumentation monitors, the
number of classes modified, and the time it takes to inspect a class for
instrumentation monitors.

– For the Harvester component, you can query the set of harvestable types,
harvestable attributes, and harvestable instances (that is, the instances that are
currently harvestable for specific types). And, you can also query which types,
attributes, and instances are currently configured for harvesting. The sampling
interval and various runtime statistics pertaining to the harvesting process are
also available.

– For the Image Capture component, you can specify the destination and
lockout period for diagnostic images and initiate image captures.

■ Watches and Notifications: You can use the runtime APIs to monitor the Watches
and Notifications and Archive components.

– For the Watches and Notifications component, you can reset watch alarms and
monitor statistics about watch-rule evaluations and watches triggered,
including information about the analysis of alarms, events, log records, and
harvested metrics.

■ Archive: You can monitor information about the archive, such as file name and
archive statistics.

■ Data Accessor—You can use the runtime APIs to retrieve the diagnostic data
persisted in the different archives. The runtime APIs also support data filtering by
allowing you to specify a query expression to search the data from the underlying
archive. You can monitor information about column type maps (a map relating
column names to the corresponding type names for the diagnostic data), statistics
about data record counts and timestamps, and cursors (cursors are used by clients
to fetch data records).

14.4 WLDF Packages
The following two packages are provided:

■ weblogic.diagnostics.context contains:

– DiagnosticContextConstants, which defines the indices of dye flags supported
by the WebLogic diagnostics system.

– DiagnosticContextHelper, which provides applications limited access to the
diagnostic context.

■ weblogic.diagnostics.watch contains:

Programming WLDF: Examples

Configuring and Using WLDF Programmatically 14-7

– JMXWatchNotification, an extended JMX notification object which includes
additional information about the notification. This information is contained in
the referenced WatchNotification object returned from method
getExtendedInfo.

– WatchNotification, which defines a notification for a watch rule.

14.5 Programming WLDF: Examples
The following examples use WLDF beans and packages to access and modify
information on a running server:

■ Section 14.5.1, "Example: DiagnosticContextExample.java"

■ Section 14.5.2, "Example: HarvesterMonitor.java"

■ Section 14.5.3, "Example: JMXAccessorExample.java"

In addition, see the WLST and JMX examples in Appendix D, "WebLogic Scripting
Tool Examples."

14.5.1 Example: DiagnosticContextExample.java
The following example uses the DiagnosticContextHelper class from the
weblogic.diagnostics.context package to get and set the value of the DYE_0 flag. (For
information on diagnostic contexts, see Chapter 11, "Configuring the DyeInjection
Monitor to Manage Diagnostic Contexts.")

To compile and run the program:

1. Copy the DiagnosticContextExample.java example (Example 14–2) to a directory
and compile it with:

javac -d . DiagnosticContextExample.java

This will create the ./weblogic/diagnostics/examples directory and populate it
with DiagnosticContextExample.class.

2. Run the program. The command syntax is:

java weblogic.diagnostics.examples.DiagnosticContextExample
Sample output is similar to:

java weblogic.diagnostics.examples.DiagnosticContextExample
ContextId=5b7898f93bf010ce:40305614:1048582efd4:-8000-0000000000000001
isDyedWith(DYE_0)=false
isDyedWith(DYE_0)=true

Example 14–1 Example: DiagnosticContextExample.java

package weblogic.diagnostics.examples;
import weblogic.diagnostics.context.DiagnosticContextHelper;
public class DiagnosticContextExample {
 public static void main(String args[]) throws Exception {
 System.out.println("ContextId=" +

 DiagnosticContextHelper.getContextId());
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
 DiagnosticContextHelper.setDye(DiagnosticContextHelper.DYE_0, true);
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));

Programming WLDF: Examples

14-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 }
}

14.5.2 Example: HarvesterMonitor.java
The HarvesterMonitor program uses the Harvester JMX notification to identify when a
harvest cycle has occurred. It then retrieves the new values using the Accessor. All
access is performed through JMX. This section includes a description of notification
listeners followed by the HarvesterMonitor.java code:

■ Section 14.5.2.1, "Notification Listeners"

■ Section 14.5.2.2, "HarvesterMonitor.java"

For information on the Harvester component, see Chapter 6, "Configuring the
Harvester for Metric Collection."

14.5.2.1 Notification Listeners
Notification listeners provide an appropriate implementation for a particular transport
medium. For example, SMTP notification listeners provide the mechanism to establish
an SMTP connection with a mail server and trigger an e-mail with the notification
instance that it receives. JMX, SNMP, JMS and other types of listeners provide their
respective implementations as well.

Table 14–2 describes each notification listener type that is provided with WebLogic
Server and the relevant configuration settings for each type.

By default, all notifications fired from watch rules are stored in the server log file in
addition to being fired through the configured medium.

Note: You can develop plug-ins that propagate events generated by
the WebLogic Diagnostic Framework using transport mediums other
than SMTP, JMX, SNMP, or JMS. One approach is to use the JMX
NotificationListener interface to implement an object, and then
propagate the notification according to the requirements of the
selected transport medium.

Table 14–2 Notification Listener Types

Notificatio
n Medium Description Configuration Parameter Requirements

JMS Propagated via JMS
Message queues or topics.

Required: Destination JNDI name.

Optional: Connection factory JNDI name (use the
default JMS connection factory if not present).

JMX Propagated via standard
JMX notifications.

None required. Uses predefined singleton for
posting the event.

SMTP Propagated via regular
e-mail.

Required: MailSession JNDI name and
Destination e-mail.

Optional: Subject and body (if not specified, use
default)

SNMP Propagated via SNMP traps
and the WebLogic Server
SNMP Agent.

None required, but the SNMPTrapDestination
MBean must be defined in the WebLogic SNMP
agent.

Programming WLDF: Examples

Configuring and Using WLDF Programmatically 14-9

14.5.2.2 HarvesterMonitor.java
To compile and run the HarvesterMonitor program:

1. Copy the HarvesterMonitor.java example (Example 14–2) to a directory and
compile it with:

javac -d . HarvesterMonitor.java
This will create the ./weblogic/diagnostics/examples directory and populate it
with HarvesterMonitor.class and HarvesterMonitor$HarvestCycleHandler.class.

2. Start the monitor. The command syntax is:

java HarvesterMonitor <server> <port> <uname> <pw> [<types>]
You will need access to a WebLogic Server instance, and will need to know the
server's name, port number, administrator's login name, and the administrator's
password.

You can provide an optional list of harvested type names. If provided, the
program will display only the values for those types. However, for each selected
type, the monitor displays the complete set of collected values; there is no way to
constrain the values that are displayed for a selected type.

Only values that are explicitly configured for harvesting are displayed. Values
collected solely to support watch rules (implicit values) are not displayed.

The following command requires that '.' is in the CLASSPATH variable, and that
you run the command from the directory where you compiled the program. The
command connects to the myserver server, at port 7001, as user weblogic, with a
password of weblogic:

java weblogic.diagnostics.examples.HarvesterMonitor myserver 7001
 weblogic weblogic
See Example 14–3 for an example of output from the HarvesterMonitor.

Example 14–2 Example: HarvesterMonitor.java

package weblogic.diagnostics.examples;
import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
import javax.management.*;
import javax.management.remote.*;
import javax.naming.Context;
import java.util.*;
public class HarvesterMonitor {

 private static String accessorRuntimeMBeanName;
private static ObjectName accessorRuntimeMBeanObjectName;

 private static String harvRuntimeMBeanName;
private static ObjectName harvRuntimeMBeanObjectName;

 private static MBeanServerConnection rmbs;
 private static ObjectName getObjectName(String objectNameStr) {

try { return new ObjectName(getCanonicalName(objectNameStr)); }
catch (RuntimeException x) { throw x; }
catch (Exception x) { x.printStackTrace(); throw new

RuntimeException(x); }
}

 private static String getCanonicalName(String objectNameStr) {
try { return new ObjectName(objectNameStr).getCanonicalName(); }
catch (RuntimeException x) { throw x; }
catch (Exception x) { x.printStackTrace(); throw new

RuntimeException(x); }
}

 private static String serverName;

Programming WLDF: Examples

14-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

private static int port;
private static String userName;
private static String password;

 private static ArrayList typesToMonitor = null;
 public static void main(String[] args) throws Exception {
 if (args.length < 4) {

System.out.println(
"Usage: java weblogic.diagnostics.harvester.HarvesterMonitor " +
"<serverName> <port> <userName> <password> [<types>]" +
weblogic.utils.PlatformConstants.EOL +
" where <types> (optional) is a comma-separated list " +
"of types to monitor.");

System.exit(1);
 }
 serverName = args[0];

port = Integer.parseInt(args[1]);
userName = args[2];
password = args[3];

 accessorRuntimeMBeanName = getCanonicalName(
"com.bea:ServerRuntime=" + serverName +

 ",Name=HarvestedDataArchive,Type=WLDFDataAccessRuntime" +
 ",WLDFAccessRuntime=Accessor,WLDFRuntime=WLDFRuntime");

accessorRuntimeMBeanObjectName =
getObjectName(accessorRuntimeMBeanName);

 harvRuntimeMBeanName = getCanonicalName(
 "com.bea:ServerRuntime=" + serverName +
 ",Name=WLDFHarvesterRuntime,Type=WLDFHarvesterRuntime" +
 ",WLDFRuntime=WLDFRuntime");
 harvRuntimeMBeanObjectName = getObjectName(harvRuntimeMBeanName);
 if (args.length > 4) {
 String typesStr = args[4];
 typesToMonitor = new ArrayList();
 int index;
 while ((index = typesStr.indexOf(",")) > 0) {
 String typeName = typesStr.substring(0,index).trim();
 typesToMonitor.add(typeName);
 typesStr = typesStr.substring(index+1);
 }
 typesToMonitor.add(typesStr.trim());
 }
 rmbs = getRuntimeMBeanServerConnection();
 new HarvesterMonitor().new HarvestCycleHandler();
 while(true) {Thread.sleep(100000);}
 }
 static protected String JNDI = "/jndi/";
 static public MBeanServerConnection getRuntimeMBeanServerConnection()
 throws Exception {
 JMXServiceURL serviceURL;
 serviceURL =
 new JMXServiceURL("t3",
 "localhost",
 port,
 JNDI + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME);
 System.out.println("ServerName=" + serverName);
 System.out.println("URL=" + serviceURL);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, userName);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");

Programming WLDF: Examples

Configuring and Using WLDF Programmatically 14-11

 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);
 return connector.getMBeanServerConnection();
 }
 class HarvestCycleHandler implements NotificationListener {
 // used to track harvest cycles
 private int timestampIndex;
 private int domainIndex;
 private int serverIndex;
 private int typeIndex;
 private int instNameIndex;
 private int attrNameIndex;
 private int attrTypeIndex;
 private int attrValueIndex;
 long lastSampleTime = System.currentTimeMillis();
 HarvestCycleHandler() throws Exception{
 System.out.println("Harvester monitor started...");
 try {
 setUpRecordIndices();
 rmbs.addNotificationListener(harvRuntimeMBeanObjectName,
 this, null, null);
 }
 catch (javax.management.InstanceNotFoundException x) {
 System.out.println("Cannot find JMX data. " +
 "Is the server name correct?");
 System.exit(1);
 }
 }
 private void setUpRecordIndices() throws Exception {
 Map columnIndexMap = (Map)rmbs.getAttribute(
 accessorRuntimeMBeanObjectName, "ColumnIndexMap");
 timestampIndex =

((Integer)columnIndexMap.get("TIMESTAMP")).intValue();
 domainIndex =

((Integer)columnIndexMap.get("DOMAIN")).intValue();
 serverIndex =

((Integer)columnIndexMap.get("SERVER")).intValue();
 typeIndex =

((Integer)columnIndexMap.get("TYPE")).intValue();
 instNameIndex =

((Integer)columnIndexMap.get("NAME")).intValue();
 attrNameIndex =

((Integer)columnIndexMap.get("ATTRNAME")).intValue();
 attrTypeIndex =

((Integer)columnIndexMap.get("ATTRTYPE")).intValue();
 attrValueIndex =

((Integer)columnIndexMap.get("ATTRVALUE")).intValue();
 }
 public synchronized void handleNotification(Notification notification,
 Object handback) {

System.out.println("\n--");
 long thisSampleTime = System.currentTimeMillis()+1;
 try {
 String lastTypeName = null;
 String lastInstName = null;
 String cursor = (String)rmbs.invoke(accessorRuntimeMBeanObjectName,
 "openCursor",
 new Object[]{new Long(lastSampleTime),
 new Long(thisSampleTime), null},
 new String[]{ "java.lang.Long",
 "java.lang.Long", "java.lang.String" });

Programming WLDF: Examples

14-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 while (((Boolean)rmbs.invoke(accessorRuntimeMBeanObjectName,
 "hasMoreData",
 new Object[]{cursor},
 new String[]{"java.lang.String"})).booleanValue()) {
 Object[] os = (Object[])rmbs.invoke(accessorRuntimeMBeanObjectName,
 "fetch",
 new Object[]{cursor},
 new String[]{"java.lang.String"});
 for (int i = 0; i < os.length; i++) {
 Object[] values = (Object[])os[i];
 String typeName = (String)values[typeIndex];
 String instName = (String)values[instNameIndex];
 String attrName = (String)values[attrNameIndex];
 if (!typeName.equals(lastTypeName)) {
 if (typesToMonitor != null &&
 !typesToMonitor.contains(typeName)) continue;
 System.out.println("\nType " + typeName);
 lastTypeName = typeName;
 }
 if (!instName.equals(lastInstName)) {
 System.out.println("\n Instance " + instName);
 lastInstName = instName;
 }
 Object attrValue = values[attrValueIndex];
 System.out.println(" - " + attrName + "=" + attrValue);
 }
 }
 lastSampleTime = thisSampleTime;
 }
 catch (Exception e) {e.printStackTrace();}
 }
 }
}

Example 14–3 contains sample output from the HarvesterMonitor program:

Example 14–3 Sample Output from HarvesterMonitor

ServerName=myserver
URL=service:jmx:t3://localhost:7001/jndi/weblogic.management.mbeanservers.runtime
Harvester monitor started...
--
Type weblogic.management.runtime.WLDFHarvesterRuntimeMBean
Instance com.bea:Name=WLDFHarvesterRuntime,ServerRuntime=myserver,Type=WLDFHarveste
rRuntime,WLDFRuntime=WLDFRuntime
 - TotalSamplingTime=202048863
 - CurrentSnapshotElapsedTime=1839619
Type weblogic.management.runtime.ServerRuntimeMBean
 Instance com.bea:Name=myserver,Type=ServerRuntime
 - RestartRequired=false
 - ListenPortEnabled=true
 - ActivationTime=1118319317071
 - ServerStartupTime=40671
 - ServerClasspath= [deleted long classpath listing]
 - CurrentMachine=
 - SocketsOpenedTotalCount=1
 - State=RUNNING
 - RestartsTotalCount=0
 - AdminServer=true
 - AdminServerListenPort=7001

Programming WLDF: Examples

Configuring and Using WLDF Programmatically 14-13

 - ClusterMaster=false
 - StateVal=2
 - CurrentDirectory=C:\testdomain\.
 - AdminServerHost=10.40.8.123
 - OpenSocketsCurrentCount=1
 - ShuttingDown=false
 - SSLListenPortEnabled=false
 - AdministrationPortEnabled=false
 - AdminServerListenPortSecure=false
 - Registered=true

14.5.3 Example: JMXAccessorExample.java
The following example program uses JMX to print log entries to standard out. All
access is performed through JMX. (For information on the Accessor component, see
Chapter 12, "Accessing Diagnostic Data With the Data Accessor.")

To compile and run the program:

1. Copy the JMXAccessorExample.java example (Example 14–4) to a directory and
compile it with:

javac -d . JMXAccessorExample.java

This will create the ./weblogic/diagnostics/examples directory and populate it
with JMXAccessorExample.class.

2. Start the program. The command syntax is:

java weblogic.diagnostics.example.JMXAccessor <logicalName> <query>

You will need access to a WebLogic Server instance, and will need to know the
server's name, port number, administrator's login name, and the administrator's
password.

The logicalName is the name of the log. Valid names are: HarvestedDataArchive,
EventsDataArchive, ServerLog, DomainLog, HTTPAccessLog,
ServletAccessorHelper.WEBAPP_LOG, RAUtil.CONNECTOR_LOG,
JMSMessageLog, and CUSTOM.

The query is constructed using the syntax described in Appendix A, "WLDF
Query Language." For the JMXAccessorExample program, an empty query (an
empty pair of double quotation marks, "") returns all entries in the log.

The following command requires that '.' is in the CLASSPATH variable, and that
you run the command from the directory where you compiled the program. The
program uses the IIOP (Internet Inter-ORB Protocol) protocol to connect to port
7001, as user weblogic, with a password of weblogic, and prints all entries in the
ServerLog to standard out:

java weblogic.diagnostics.examples.JMXAccessorExample ServerLog ""

You can modify the example to use a username/password combination for your
site.

Example 14–4 JMXAccessorExample.java

package weblogic.diagnostics.examples;
import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Hashtable;

Programming WLDF: Examples

14-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

import java.util.Iterator;
import javax.management.MBeanServerConnection;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;
public class JMXAccessorExample {
 private static final String JNDI = "/jndi/";
 public static void main(String[] args) {
 try {
 if (args.length != 2) {
 System.err.println("Incorrect invocation. Correct usage is:\n" +
 "java weblogic.diagnostics.examples.JMXAccessorExample " +
 "<logicalName> <query>");
 System.exit(1);
 }
 String logicalName = args[0];
 String query = args[1];
 MBeanServerConnection mbeanServerConnection =
 lookupMBeanServerConnection();
 ObjectName service = new

ObjectName(weblogic.management.mbeanservers.runtime.RuntimeServiceMBean.OB
JECT_NAME);
 ObjectName serverRuntime =
 (ObjectName) mbeanServerConnection.getAttribute(service,
 "ServerRuntime");
 ObjectName wldfRuntime =
 (ObjectName) mbeanServerConnection.getAttribute(serverRuntime,
 "WLDFRuntime");
 ObjectName wldfAccessRuntime =
 (ObjectName) mbeanServerConnection.getAttribute(wldfRuntime,
 "WLDFAccessRuntime");
 ObjectName wldfDataAccessRuntime =
 (ObjectName) mbeanServerConnection.invoke(wldfAccessRuntime,
 "lookupWLDFDataAccessRuntime", new Object[] {logicalName},
 new String[] {"java.lang.String"});
 String cursor =
 (String) mbeanServerConnection.invoke(wldfDataAccessRuntime,
 "openCursor", new Object[] {query},
 new String[] {"java.lang.String"});
 int fetchedCount = 0;
 do {
 Object[] rows =
 (Object[]) mbeanServerConnection.invoke(wldfDataAccessRuntime,
 "fetch", new Object[] {cursor},
 new String[] {"java.lang.String"});
 fetchedCount = rows.length;
 for (int i=0; i<rows.length; i++) {
 StringBuffer sb = new StringBuffer();
 Object[] cols = (Object[]) rows[i];
 for (int j=0; j<cols.length; j++) {
 sb.append("Index " + j + "=" + cols[j].toString() + " ");
 }
 System.out.println("Found row = " + sb.toString());
 }
 } while (fetchedCount > 0);
 mbeanServerConnection.invoke(wldfDataAccessRuntime,
 "closeCursor", new Object[] {cursor},

Programming WLDF: Examples

Configuring and Using WLDF Programmatically 14-15

 new String[] {"java.lang.String"});
 } catch(Throwable th) {
 th.printStackTrace();
 System.exit(1);
 }
 }

private static MBeanServerConnection lookupMBeanServerConnection ()
 throws Exception {
 // construct JMX service URL
 JMXServiceURL serviceURL;
 serviceURL = new JMXServiceURL("iiop", "localhost", 7001,
 JNDI + "weblogic.management.mbeanservers.runtime");
 // Specify the user, password, and WebLogic provider package
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL,"weblogic");
 h.put(Context.SECURITY_CREDENTIALS,"weblogic");
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 // Get jmx connector
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);
 // return MBean server connection class
 return connector.getMBeanServerConnection();
 } // End - lookupMBeanServerConnection
}

Programming WLDF: Examples

14-16 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

A

WLDF Query Language A-1

AWLDF Query Language

WLDF includes a query language for constructing watch rule expressions, Data
Accessor query expressions, and log filter expressions. The syntax is a small and
simplified subset of SQL syntax.

The language is described in the following sections:

■ Section A.1, "Components of a Query Expression"

■ Section A.2, "Supported Operators"

■ Section A.3, "Operator Precedence"

■ Section A.4, "Numeric Relational Operations Supported on String Column Types"

■ Section A.5, "Supported Numeric Constants and String Literals"

■ Section A.7, "Creating Watch Rule Expressions"

■ Section A.8, "Creating Data Accessor Queries"

■ Section A.9, "Creating Log Filter Expressions"

■ Section A.10, "Building Complex Expressions"

A.1 Components of a Query Expression
A query expression may include:

■ Operators. (See Section A.2, "Supported Operators".)

■ Literals. (See Section A.5, "Supported Numeric Constants and String Literals".)

■ Variables. The supported variables differ for each type of expression. (See
Section A.6, "About Variables in Expressions".)

The query language is case-sensitive.

A.2 Supported Operators
The query language supports the operators listed in Table A–1.

Table A–1 WLDF Query Language Operators

Operator
Operator
Type

Supported
Operand Types Definition

AND Logical binary Boolean Evaluates to true when both expressions are
true.

Operator Precedence

A-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

A.3 Operator Precedence
The following list shows the levels of precedence among operators, from the highest
precedence to the lowest. Operators listed on the same line have equivalent
precedence:

OR Logical binary Boolean Evaluates to true when either expression is
true.

NOT Logical unary Boolean Evaluates to true when the expression is not
true.

& Bitwise binary Numeric,

Dye flag

Performs the bitwise AND function on each
parallel pair of bits in each operand. If both
operand bits are 1, the & function sets the
resulting bit to 1. Otherwise, the resulting bit is
set to 0.

Examples of both the & and the | operators
are:

1010 & 0010 = 0010

1010 | 0001 = 1011

(1010 & (1100 | 1101)) = 1000

| Bitwise binary Numeric,

Dye flag

Performs the bitwise OR function on each
parallel pair of bits in each operand. If either
operand bit is 1, the | function sets the
resulting bit to 1. Otherwise, the resulting bit is
set to 0.

For examples, see the entry for the bitwise &
operator, above.

= Relational Numeric, String Equals

!= Relational Numeric Not equals

< Relational Numeric Less than

> Relational Numeric Greater than

<= Relational Numeric Less than or equals

>= Relational Numeric Greater than or equals

LIKE Match String Evaluates to true when a character string
matches a specified pattern that can include
wildcards.

LIKE supports two wildcard characters:

A percent sign (%) matches any string of zero
or more characters

A period (.) matches any single character

MATCHE
S

Match String Evaluates to true when a target string matches
the regular expression pattern in the operand
String.

IN Search String Evaluates to true when the value of a variable
exists in a predefined set, for example:

SUBSYSTEM IN ('A','B')

Table A–1 (Cont.) WLDF Query Language Operators

Operator
Operator
Type

Supported
Operand Types Definition

Supported Numeric Constants and String Literals

WLDF Query Language A-3

1. ()

2. NOT

3. &, |

4. =, !=, <, >, <=, >=, LIKE, MATCHES,IN

5. AND

6. OR

A.4 Numeric Relational Operations Supported on String Column Types
Numeric relational operations can be performed on String column types when they
hold numeric values. For example, if STATUS is a String type, while performing
relational operations with a numeric operand, the column value is treated as a numeric
value. For instance, in the following comparisons:

STATUS = 100

STATUS != 100

STATUS < 100

STATUS <= 100

STATUS > 100

STATUS >= 100

the query evaluator attempts to convert the string value to appropriate numeric value
before comparison. When the string value cannot be converted to a numeric value, the
query fails.

A.5 Supported Numeric Constants and String Literals
Rules for numeric constants are as follows:

■ Numeric literals can be integers or floating point numbers.

■ Numeric literals are specified the same as in Java. Some examples of numeric
literals are 2, 2.0, 12.856f, 2.1934E-4, 123456L and 2.0D.

Rules for string literals are as follows:

■ String literals must be enclosed in single quotes.

■ A percent character (%) can be used as a wildcard inside string literals.

■ An underscore character (_) can be used as a wildcard to stand for any single
character.

■ A backslash character (\) can be used to escape special characters, such as a quote
(') or a percent character (%).

■ For watch rule expressions, you can use comparison operators to specify threshold
values for String, Integer, Long, Double, Boolean literals.

■ The relational operators do a lexical comparison for Strings. For more information,
see the documentation for the java.lang.String.compareTo(String str) method.

About Variables in Expressions

A-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

A.6 About Variables in Expressions
Variables represent the dynamic portion of a query expression that is evaluated at
runtime. You must use variables that are appropriate for the type of expression you are
constructing, as documented in the following sections:

■ Section A.7, "Creating Watch Rule Expressions"

■ Section A.8, "Creating Data Accessor Queries"

■ Section A.9, "Creating Log Filter Expressions"

A.7 Creating Watch Rule Expressions
You can create watches based on log events, instrumentation events, and harvested
attributes. The variables supported for creating the expressions are different for each
type of watch, as described in the following sections:

■ Section A.7.1, "Creating Log Event Watch Rule Expressions"

■ Section A.7.2, "Creating Instrumentation Event Watch Rule Expressions"

■ Section A.7.3, "Creating Harvester Watch Rule Expressions"

For complete documentation about configuring and using WLDF watches, see:

■ Chapter 7, "Configuring Watches and Notifications"

■ Chapter 8, "Configuring Watches"

A.7.1 Creating Log Event Watch Rule Expressions
A log event watch rule expression is based upon the attributes of a log message from
the server log.

Variable names for log message attributes are listed and explained in Table A–2:

Table A–2 Variable Names for Log Event Watch Rule Expressions

Variable Description Data Type

CONTEXTID The request ID propagated with the request. String

DATE Date when the message was created. String

MACHINE Name of machine that generated the log message. String

MESSAGE Message content of the log message. String

MSGID ID of the log message (usually starts with "BEA="). String

RECORDID The number of the record in the log. Long

SERVER Name of server that generated the log message. String

SEVERITY Severity of log message. Values are ALERT,
CRITICAL, DEBUG, EMERGENCY, ERROR, INFO,
NOTICE, OFF, TRACE, and WARNING.

String

SUBSYTEM Name of subsystem emitting the log message. String

THREAD Name of thread that generated the log message. String

TIMESTAMP Timestamp when the log message was created. Long

TXID JTA transaction ID of thread that generated the log
message.

String

USERID ID of the user that generated the log message. String

Creating Watch Rule Expressions

WLDF Query Language A-5

An example log event watch rule expression is:

 (SEVERITY = 'Warning') AND (MSGID = 'BEA-320012')

A.7.2 Creating Instrumentation Event Watch Rule Expressions
An instrumentation event watch rule expression is based upon attributes of a data
record created by a diagnostic monitor action.

Variable names for instrumentation data record attributes are listed and explained in
Table A–3:

An example instrumentation event data rule expression is:

 (USERID = 'weblogic')

Table A–3 Variable Names for Instrumentation Event Rule Expressions

Variable Description Data Type

ARGUMENTS Arguments passed to the method that was
invoked.

String

CLASSNAME Class name of joinpoint. String

CONTEXTID Diagnostic context ID of instrumentation event. String

CTXPAYLOAD The context payload associated with this request. String

DOMAIN Name of domain. String

DYES Dyes associated with this request. Long

FILENAME Source file name. String

LINENUM Line number in source file. Integer

METHODNAME Method name of joinpoint. String

METHODDSC Method arguments of joinpoint. String

MODULE Name of the diagnostic module. String

MONITOR Name of the monitor. String

PAYLOAD Payload of instrumentation event. String

RECORDID The number of the record in the log. Long

RETVAL Return value of joinpoint. String

SCOPE Name of instrumentation scope. String

SERVER Name of server that created the instrumentation
event.

String

TIMESTAMP Timestamp when the instrumentation event was
created.

Long

TXID JTA transaction ID of thread that created the
instrumentation event.

String

TYPE Type of monitor. String

USERID ID of the user that created the instrumentation
event.

String

Creating Data Accessor Queries

A-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

A.7.3 Creating Harvester Watch Rule Expressions
A harvester watch rule expression is based upon one or more harvestable MBean
attributes. The expression can specify an MBean type, an instance, and/or an attribute.

Instance-based and type-based expressions can contain an optional namespace
component, which is the namespace of the metric being watched. It can be set to either
Server Runtime or DomainRuntime. If omitted, it defaults to ServerRuntime.

If included and set to DomainRuntime, you should limit the usage to monitoring only
DomainRuntime-specific MBeans, such as the ServerLifeCycleRuntimeMBean.
Monitoring remote managed server MBeans through the DomainRuntime
MBeanServer is possible, but is discouraged for performance reasons. It is a best
practice to use the resident watcher in each managed server to monitor metrics related
to that managed server instance.

You can also use wildcards in instance names in Harvester watch rule expressions, as
well as specify complex attributes in Harvester watch rule expressions. See
Appendix C, "Using Wildcards in Expressions."

The syntax for constructing a Harvester watch rule expression is as follows:

■ To specify an attribute of all instances of a type, use the following syntax:

 ${namespace//[type_name]//attribute_name}

■ To specify an attribute of an instance of a WebLogic type, use the following syntax:

 ${com.bea:namespace//instance_name//attribute_name}

■ To specify an attribute of an instance of a custom MBean type, use the following
syntax:

 ${domain_name:instance_name//attribute_name}

The expression must include the complete MBean object name, as shown in the
following example:

${com.bea:Name=HarvesterRuntime,Location=myserver,Type=HarvesterRuntime,
 ServerRuntime=myserver//TotalSamplingCycles} > 10

A.8 Creating Data Accessor Queries
Use the WLDF query language with the Data Accessor component to retrieve data
from data stores, including server logs, HTTP logs, and harvested metrics. The
variables used to build a Data Accessor query are based on the column names in the
data store from which you want to extract data.

A Data Accessor query contains the following:

■ The logical name of a data store, as described in Section A.8.1, "Data Store Logical
Names".

■ Optionally, the name(s) of one or more columns from which to retrieve data, as
described in Section A.8.2, "Data Store Column Names".

Note: The domain_name is not required for a WebLogic Server
domain name.

Creating Data Accessor Queries

WLDF Query Language A-7

When there is a match, all columns of matching rows are returned.

A.8.1 Data Store Logical Names
The logical name for a data store must be unique. It denotes a specific data store
available on the server. The logical name consists of a log type keyword followed by
zero or more identifiers separated by the forward-slash (/) delimiter. For example, the
logical name of the server log data store is simply ServerLog. However, other log types
may require additional identifiers, as shown in Table A–4.

A.8.2 Data Store Column Names
The column names included in a query are resolved for each row of data. A row is
added to the result set only if it satisfies the query conditions for all specified columns.
A query that omits column names returns all the entries in the log.

All column names from all WebLogic Server log types are listed in Table A–5.

Table A–4 Naming Conventions for Log Types

Log Type
Optional
Identifiers Example

ConnectorLog The JNDI
name of the
connection
factory

ConnectorLog/eis/
900eisaBlackBoxXATxConnectorJNDINAME

where

eis/900eisaBlackBoxXATxConnectorJNDINAME

is the JNDI name of the connection factory specified
in the weblogic-ra.xml deployment descriptor.

DomainLog None DomainLog

EventsDataArchive None EventsDataArchive

HarvestedDataArchive None HarvestedDataArchive

HTTPAccessLog Virtual host
name

HTTPAccessLog - For the default web server's
access log.

HTTPAccessLog/MyVirtualHost - For the Virtual
host named MyVirtualHost deployed to the current
server.

Note: In the case of HTTPAccessLog logs with
extended format, the number of columns are
user-defined.

JMSMessageLog The name of
the JMS
Server.

JMSMessageLog/MyJMSServer

ServerLog None ServerLog

WebAppLog Web server
name + Root
servlet
context name

WebAppLog/MyWebServer/MyRootServletContex
t

Table A–5 Column Names for Log Types

Log Type Column Names

ConnectorLog LINE, RECORDID

Creating Log Filter Expressions

A-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

An example of a Data Accessor query is:

(SUBSYSTEM = 'Deployer') AND (MESSAGE LIKE '%Failed%')

In this example, the Accessor retrieves all messages that include the string "Failed"
from the Deployer subsystem.

The following example shows an API method invocation. It includes a query for
harvested attributes of the JDBC connection pool named MyPool, within an interval
between a timeStampFrom (inclusive) and a timeStampTo (exclusive):

 WLDFDataAccessRuntimeMBean.retrieveDataRecords(timeStampFrom,
 timeStampTo, "TYPE='JDBCConnectionPoolRuntime' AND NAME='MyPool'")

For complete documentation about the WLDF Data Accessor, see Chapter 12,
"Accessing Diagnostic Data With the Data Accessor."

A.9 Creating Log Filter Expressions
The query language can be used to filter what is written to the server log. The
variables used to construct a log filter expression represent the columns in the log:

■ CONTEXTID

■ DATE

■ MACHINE

■ MESSAGE

■ MSGID

■ RECORDID

■ SEVERITY

DomainLog CONTEXTID, DATE, MACHINE, MESSAGE, MSGID,
RECORDID, SERVER, SEVERITY, SUBSYSTEM, THREAD,
TIMESTAMP, TXID, USERID

EventsDataArchive ARGUMENTS, CLASSNAME, CONTEXTID, CTXPAYLOAD,
DOMAIN, DYES, FILENAME, LINENUM, METHODNAME,
METHODDSC, MODULE, MONITOR, PAYLOAD, RECORDID,
RETVAL, SCOPE, SERVER, THREADNAME, TIMESTAMP, TXID,
TYPE, USERID

HarvestedDataArchive ATTRNAME, ATTRTYPE, ATTRVALUE, DOMAIN, NAME,
RECORDID, SERVER, TIMESTAMP, TYPE

HTTPAccessLog AUTHUSER, BYTECOUNT, HOST, RECORDID, REMOTEUSER,
REQUEST, STATUS, TIMESTAMP

JDBCLog Same as DomainLog

JMSMessageLog CONTEXTID, DATE, DESTINATION, EVENT,
JMSCORRELATIONID, JMSMESSAGEID, MESSAGE,
MESSAGECONSUMER, NANOTIMESTAMP, RECORDID,
SELECTOR, TIMESTAMP, TXID, USERID

ServerLog Same as DomainLog

WebAppLog Same as DomainLog

Table A–5 (Cont.) Column Names for Log Types

Log Type Column Names

Building Complex Expressions

WLDF Query Language A-9

■ SUBSYSTEM

■ SERVER

■ THREAD

■ TIMESTAMP

■ TXID

■ USERID

For complete documentation about the WebLogic Server logging services, see
"Filtering WebLogic Server Log Messages" in Oracle Fusion Middleware Configuring Log
Files and Filtering Log Messages for Oracle WebLogic Server.

A.10 Building Complex Expressions
You can build complex query expressions using sub-expressions containing variables,
binary comparisons, and other complex sub-expressions. There is no limit on levels of
nesting. The following rules apply:

■ Nest queries by surrounding sub-expressions within parentheses, for example:

 (SEVERITY = 'Warning') AND (MSGID = 'BEA-320012')

■ Enclose a variable name within ${} if it includes special characters, as in an MBean
object name. For example:

${mydomain:Name=myserver,
 Type=ServerRuntime//SocketsOpenedTotalCount} >= 1

Notice that the object name and the attribute name are separated by '//' in the
watch variable name.

Note: These are the same variables that you use to build a Data
Accessor query for retrieving historical diagnostic data from existing
server logs.

Building Complex Expressions

A-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

B

WLDF Instrumentation Library B-1

BWLDF Instrumentation Library

The WebLogic Diagnostic Framework Instrumentation Library contains diagnostic
monitors and diagnostic actions, as discussed in the following sections:

■ Section B.1, "Diagnostic Monitor Library"

■ Section B.2, "Diagnostic Action Library"

For information about using items from the Instrumentation Library, see Chapter 10,
"Configuring Instrumentation."

B.1 Diagnostic Monitor Library
Diagnostic monitors are broadly classified as server-scoped and application-scoped
monitors. The former can be used to instrument WebLogic Server classes. You use the
latter to instrument application classes. Except for the DyeInjection monitor, all
monitors are delegating monitors, that is, they do not have a built-in diagnostic action.
Instead, they delegate to actions attached to them to perform diagnostic activity.

All monitors are preconfigured with their respective pointcuts. However, the actual
locations affected by them may vary depending on the classes they instrument. For
example, the Servlet_Before_Service monitor adds diagnostic code at the entry of
servlet or java server page (JSP) service methods at different locations in different
servlet implementations.

For any delegating monitor, only compatible actions may be attached. The
compatibility is determined by the nature of the monitor.

The following table lists and describes the diagnostic monitors that can be used within
server scope, that is, in WebLogic Server classes. For the diagnostic actions that are
compatible with each monitor, see the Compatible Action Type column in the table.

Table B–1 Diagnostic Monitors for Use Within Server Scope

Monitor Name
Monitor
Type

Compatible
Action Type Pointcuts

Connector_Before_Inbound Before Stateless At entry of methods handling inbound
connections.

Connector_After_Inbound Server Stateless At exit of methods handling inbound connections.

Connector_Around_Inbound Around Around At entry and exit of methods handling inbound
connections.

Connector_Before_Outbound Before Stateless At entry of methods handling outbound
connections.

Diagnostic Monitor Library

B-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Table B–2 lists the diagnostic monitors that can be used within application scopes, that
is, in deployed applications. For the diagnostic actions that are compatible with each
monitor, see the Compatible Action Type column in the table.

Connector_After_Outbound After Stateless At exit of methods handling outbound
connections.

Connector_Around_Outbound Around Around At entry and exit of methods handling outbound
connections.

Connector_Before_Tx Before Stateless Entry of transaction register, unregister, start,
rollback and commit methods.

Connector_After_Tx After Stateless At exit of transaction register, unregister, start,
rollback and commit methods.

Connector_Around_Tx Around Around At entry and exit of transaction register, unregister,
start, rollback and commit methods.

Connector_Before_Work Before Stateless At entry of methods related to scheduling, starting
and executing connector work items.

Connector_After_Work After Stateless At exit of methods related to scheduling, starting
and executing connector work items.

Connector_Around_Work Around Around At entry and exit of methods related to scheduling,
starting and executing connector work items.

DyeInjection Before Built-in At points where requests enter the server.

JDBC_Before_Commit_Internal Before Stateless JDBC subsystem internal code

JDBC_After_Commit_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Connection_

Internal

Before Stateless Before calls to methods:

Driver.connect

DataSource.getConnection

JDBC_After_Connection_ Internal Before Stateless JDBC subsystem internal code

JDBC_Before_Rollback_ Internal Before Stateless JDBC subsystem internal code

JDBC_After_Rollback_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Start_Internal Before Stateless JDBC subsystem internal code

JDBC_After_Start_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Statement_

Internal

Before Stateless JDBC subsystem internal code

JDBC_After_Statement_

Internal

After Stateless JDBC subsystem internal code

JDBC_After_Reserve_Connection_
Internal

After Stateless After a JDBC connection is reserved from the
connection pool.

JDBC_After_Release_Connection_
Internal

After Stateless After a JDBC connection is released back to the
connection pool.

Table B–1 (Cont.) Diagnostic Monitors for Use Within Server Scope

Monitor Name
Monitor
Type

Compatible
Action Type Pointcuts

Diagnostic Monitor Library

WLDF Instrumentation Library B-3

Table B–2 Diagnostic Monitors for Use Within Application Scopes

Monitor Name
Monitor
Type

Compatible
Action
Type Pointcuts

EJB_After_EntityEjbBusiness Methods After Stateless At exits of all EntityBean methods, which are not
standard ejb methods.

EJB_Around_
EntityEjbBusinessMethods

Around Around At entry and exits of all EntityBean methods that
are not standard ejb methods.

EJB_After_EntityEjbMethods After Stateless At exits of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejbRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejbLoad

EnitityBean.ejbStore

EJB_Around_EntityEjbMethods Around Around At exits of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejbRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejbLoad

EnitityBean.ejbStore

EJB_After_EntityEjbSemantic Methods After Stateless At exits of methods:

EnitityBean.set*

EnitityBean.get*

EnitityBean.ejbFind*

EnitityBean.ejbHome*

EnitityBean.ejbSelect*

EnitityBean.ejbCreate*

EnitityBean.ejbPostCreate*

EJB_Around_
EntityEjbSemanticMethods

Around Around At entry and exits of methods:

EnitityBean.set*

EnitityBean.get*

EnitityBean.ejbFind*

EnitityBean.ejbHome*

EnitityBean.ejbSelect*

EnitityBean.ejbCreate*

EnitityBean.ejbPostCreate*

Diagnostic Monitor Library

B-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

EJB_After_SessionEjbMethods After Stateless At exits of methods:

SessionBean.setSessionContext

SessionBean.ejbRemove

SessionBean.ejbActivate

SessionBean.ejbPassivate

EJB_Around_SessionEjbMethods Around Around At entry and exits of methods:

SessionBean.setSessionContext

SessionBean.ejbRemove

SessionBean.ejbActivate

SessionBean.ejbPassivate

EJB_After_SessionEjbBusinessMethods After Stateless At exits of all SessionBean methods, which are
not standard ejb methods.

EJB_Around_SessionEjb

BusinessMethods

Around Around At entry and exits of all SessionBean methods,
which are not standard ejb methods.

EJB_After_
SessionEjbSemanticMethods

After Stateless At exits of methods:

SessionBean.ejbCreateSessionBean.ejbPostCreate

EJB_Around_SessionEjb

SemanticMethods

Around Around At entry and exits of methods:

SessionBean.ejbCreate

SessionBean.ejbPostCreate

EJB_Before_EntityEjbBusinessMethods Before Stateless At entry of all EntityBean methods, which are not
standard ejb methods.

EJB_Before_EntityEjbMethods Before Stateless At entry of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejbRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejbLoad

EnitityBean.ejbStore

EJB_Before_
EntityEjbSemanticMethods

Before Stateless At entry of methods:

EnitityBean.set*

EnitityBean.get*

EnitityBean.ejbFind*

EnitityBean.ejbHome*

EnitityBean.ejbSelect*

EnitityBean.ejbCreate*

EnitityBean.ejbPostCreate*

EJB_Before_SessionEjb

BusinessMethods

Before Stateless At entry of all SessionBean methods, which are
not standard ejb methods.

Table B–2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name
Monitor
Type

Compatible
Action
Type Pointcuts

Diagnostic Monitor Library

WLDF Instrumentation Library B-5

EJB_Before_SessionEjbMethods Before Stateless At entry of methods:

SessionBean.setSessionContext

SessionBean.ejbRemove

SessionBean.ejbActivate

SessionBean.ejbPassivate

EJB_Before_SessionEjb

SemanticMethods

Before Stateless At entry of methods:

SessionBean.ejbCreate

SessionBean.ejbPostCreate

HttpSessionDebug Around Built-in getSession - Inspects returned HTTP session

Before and after calls to methods:

getAttribute

setAttribute

removeAttribute

At inspection points, the approximate session
size is computed and stored as the payload of a
generated event. The size is computed by
flattening the session to a byte-array. If an error is
encountered while flattening the session, a
negative size is reported.

JDBC_Before_CloseConnection Before Stateless Before calls to methods:

Connection.close

JDBC_After_CloseConnection After Stateless After calls to methods:

Connection.close

JDBC_Around_CloseConnection Around Around Before and after calls to methods:

Connection.close

JDBC_Before_CommitRollback Before Stateless Before calls to methods:

Connection.commit

Connection.rollback

JDBC_After_CommitRollback After Stateless After calls to methods:

Connection.commit

Connection.rollback

JDBC_Around_CommitRollback Around Around Before and after calls to methods:

Connection.commit

Connection.rollback

JDBC_Before_Execute Before Stateless Before calls to methods:

Statement.execute*

PreparedStatement.execute*

JDBC_After_Execute After Stateless After calls to methods:

Statement.execute*

PreparedStatement.execute*

Table B–2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name
Monitor
Type

Compatible
Action
Type Pointcuts

Diagnostic Monitor Library

B-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

JDBC_Around_Execute Around Around Before and after calls to methods:

Statement.execute*

PreparedStatement.execute*

JDBC_Before_GetConnection Before Stateless Before calls to methods:

Driver.connect

DataSource.getConnection

JDBC_After_GetConnection After Stateless After calls to methods:

Driver.connect

DataSource.getConnection

JDBC_Around_GetConnection Around Around Before and after calls to methods:

Driver.connect

DataSource.getConnection

JDBC_Before_Statement Before Stateless Before calls to methods:

Connection.prepareStatement

Connection.prepareCall

Statement.addBatch

RowSet.setCommand

JDBC_After_Statement After Stateless After calls to methods:

Connection.prepareStatement

Connection.prepareCall

Statement.addBatch

RowSet.setCommand

JDBC_Around_Statement Around Around Before and after calls to methods:

Connection.prepareStatement

Connection.prepareCall

Statement.addBatch

RowSet.setCommand

JMS_Before_AsyncMessage

Received

Before Stateless At entry of methods:

MessageListener.onMessage

JMS_After_AsyncMessage

Received

After Stateless At exits of methods:

MessageListener.onMessage

JMS_Around_AsyncMessage

Received

Around Around At entry and exits of methods:

MessageListener.onMessage

JMS_Before_MessageSent Before Stateless Before call to methods:

QueSender send

JMS_After_MessageSent After Stateless After call to methods:

QueSender send

JMS_Around_MessageSent Around Around Before and after call to methods:

QueSender send

Table B–2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name
Monitor
Type

Compatible
Action
Type Pointcuts

Diagnostic Monitor Library

WLDF Instrumentation Library B-7

JMS_Before_SyncMessage

Received

Before Stateless Before calls to methods:

MessageConsumer.receive*

JMS_After_SyncMessage

Received

After Stateless After calls to methods:

MessageConsumer.receive*

JMS_Around_SyncMessage

Received

Around Around Before and after calls to methods:

MessageConsumer.receive*

JMS_Before_TopicPublished Before Stateless Before call to methods:

TopicPublisher.publish

JMS_After_TopicPublished After Stateless After call to methods:

TopicPublisher.publish

JMS_Around_TopicPublished Around Around Before and after call to methods:

TopicPublisher.publish

JNDI_Before_Lookup Before Stateless Before calls to javax.naming.Context lookup
methods

Context.lookup*

JNDI_After_Lookup After Stateless After calls to javax.naming.Context lookup
methods:

Context.lookup*

JNDI_Around_Lookup Around Around Before and after calls to javax.naming.Context
lookup methods

Context.lookup*

JTA_Before_Commit Before Stateless At entry of methods:

UserTransaction.commit

JTA_After_Commit After Stateless
advice

At exits of methods:

UserTransaction.commit

JTA_Around_Commit Around Around At entry and exits of methods:

UserTransaction.commit

JTA_Before_Rollback Before Stateless At entry of methods:

UserTransaction.rollback

JTA_After_Rollback After Stateless
advice

At exits of methods:

UserTransaction.rollback

JTA_Around_Rollback Around Around At entry and exits of methods:

UserTransaction.rollback

JTA_Before_Start Before Stateless At entry of methods:

UserTransaction.begin

JTA_After_Start After Stateless
advice

At exits of methods:

UserTransaction.begin

JTA_Around_Start Around Around At entry and exits of methods:

UserTransaction.begin

Table B–2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name
Monitor
Type

Compatible
Action
Type Pointcuts

Diagnostic Monitor Library

B-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

MDB_Before_MessageReceived Before Stateless At entry of methods:

MessageDrivenBean.onMessage

MDB_After_MessageReceived After Stateless At exits of methods:

MessageDrivenBean.onMessage

MDB_Around_MessageReceived Around Around At entry and exits of methods:

MessageDrivenBean.onMessage

MDB_Before_Remove Before Stateless At entry of methods:

MessageDrivenBean.ejbRemove

MDB_After_Remove After Stateless At exits of methods:

MessageDrivenBean.ejbRemove

MDB_Around_Remove Around Around At entry and exits of methods:

MessageDrivenBean.ejbRemove

MDB_Before_SetMessageDriven

Context

Before Stateless At entry of methods:

MessageDrivenBean.setMessage

DrivenContext

MDB_After_SetMessageDriven

Context

After Stateless At exits of methods:

MessageDrivenBean.setMessageDrivenContext

MDB_Around_SetMessageDriven

Context

Around Around At entry and exits of methods:

MessageDrivenBean.setMessageDrivenContext

Servlet_Before_Service Before Stateless At method entries of servlet/jsp methods:

HttpJspPage._jspService

Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Servlet_After_Service After Stateless At method exits of servlet/jsp methods:

HttpJspPage._jspService

Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Servlet_Around_Service Around Around At method entry and exits of servlet/jsp
methods:

HttpJspPage._jspService

Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Table B–2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name
Monitor
Type

Compatible
Action
Type Pointcuts

Diagnostic Action Library

WLDF Instrumentation Library B-9

B.2 Diagnostic Action Library
The Diagnostic Action Library includes the following actions:

Servlet_Before_Session Before Stateless Before calls to servlet methods:

HttpServletRequest.getSession

HttpSession.setAttribute/

putValue

HttpSession.getAttribute/

getValue

HttpSession.removeAttribute/

removeValue

HttpSession.invalidate

Servlet_Around_Session Around Around Before and after calls to servlet methods:

HttpServletRequest.getSession

HttpSession.setAttribute/

putValue

HttpSession.getAttribute/

getValue

HttpSession.removeAttribute/

removeValue

HttpSession.invalidate

Servlet_After_Session After Stateless After calls to servlet methods:

HttpServletRequest.getSession

HttpSession.setAttribute/

putValue

HttpSession.getAttribute/

getValue

HttpSession.removeAttribute/

removeValue

HttpSession.invalidate

Servlet_Before_Tags Before Stateless Before calls to jsp methods:

Tag.doStartTag

Tag.doEndTag

Servlet_After_Tags After Stateless After calls to jsp methods:

Tag.doStartTag

Tag.doEndTag

Servlet_Around_Tags Around Around Before and after calls to jsp methods:

Tag.doStartTag

Tag.doEndTag

Table B–2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name
Monitor
Type

Compatible
Action
Type Pointcuts

Diagnostic Action Library

B-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

■ TraceAction

■ DisplayArgumentsAction

■ TraceElapsedTimeAction

■ StackDumpAction

■ ThreadDumpAction

■ MethodInvocationStatisticsAction

These diagnostic actions can be used with the delegating monitors described in the
previous tables. They can also be used with custom monitors that you can define and
use within applications. Each diagnostic action can only be used with monitors with
which they are compatible, as indicated by the Compatible Monitor Type column.
Some actions (for example, TraceElapsedTimeAction) generate an event payload.

B.2.1 TraceAction
This action is a stateless action and is compatible with Before and After monitor types.

A TraceAction generates a trace event at the affected location in the program
execution. The following information is generated:

■ Timestamp

■ Context identifier from the diagnostic context which uniquely identifies the
request

■ Transaction identifier, if available

■ User identity

■ Action type, that is, TraceAction

■ Domain

■ Server name

■ Instrumentation scope name (for example, application name)

■ Diagnostic monitor name

■ Module name

■ Location in code from where the action was called, which consists of:

– Class name

– Method name

– Method signature

– Line number

– Thread name

■ Payload carried by the diagnostic context, if any

B.2.2 DisplayArgumentsAction
This action is a stateless action and is compatible with Before and After monitor types.

A DisplayArgumentsAction generates an instrumentation event at the affected
location in the program execution to capture method arguments or a return value.

Diagnostic Action Library

WLDF Instrumentation Library B-11

When executed, this action causes an instrumentation event that is dispatched to the
events archive. When attached to before monitors, the instrumentation event captures
input arguments to the joinpoint (for example, method arguments). When attached to
after monitors, the instrumentation event captures the return value from the joinpoint.
The event carries the following information:

■ Timestamp

■ Context identifier from the diagnostic context that uniquely identifies the request

■ Transaction identifier, if available

■ User identity

■ Action type, that is, DisplayArgumentsAction

■ Domain

■ Server name

■ Instrumentation scope name (for example, application name)

■ Diagnostic monitor name

■ Module name

■ Location in code from where the action was called, which consists of:

– Class name

– Method name

– Method signature

– Line number

– Thread name

■ Payload carried by the diagnostic context, if any

■ Input arguments, if any, when attached to before monitors

■ Return value, if any, when attached to after monitors

B.2.3 TraceElapsedTimeAction
This action is an Around action and is compatible with Around monitor types.

A TraceElapsedTimeAction generates two events: one before and one after the location
in the program execution.

When executed, this action captures the timestamps before and after the execution of
an associated joinpoint. It then computes the elapsed time by computing the
difference. It generates an instrumentation event which is dispatched to the events
archive. The elapsed time is stored as event payload. The event carries the following
information:

■ Timestamp

■ Context identifier from the diagnostic context that uniquely identifies the request

■ Transaction identifier, if available

■ User identity

■ Action type, that is, TraceElapsedTimeAction

■ Domain

Diagnostic Action Library

B-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

■ Server name

■ Instrumentation scope name (for example, application name)

■ Diagnostic monitor name

■ Module name

■ Location in code from where the action was called, which consists of:

– Class name

– Method name

– Method signature

– Line number

– Thread name

■ Payload carried by the diagnostic context, if any

■ Elapsed time processing the joinpoint, as event payload, in nanoseconds

B.2.4 StackDumpAction
This action is a stateless action and is compatible with Before and After monitor types.

A StackDumpAction generates an instrumentation event at the affected location in the
program execution to capture a stack dump.

When executed, this action generates an instrumentation event which is dispatched to
the events archive. It captures the stack trace as an event payload. The event carries
following information:

■ Timestamp

■ Context identifier from the diagnostic context that uniquely identifies the request

■ Transaction identifier, if available

■ User identity

■ Action type, that is, StackDumpAction

■ Domain

■ Server name

■ Instrumentation scope name (for example, application name)

■ Diagnostic monitor name

■ Module name

■ Location in code from where the action was called, which consists of:

– Class name

– Method name

– Method signature

– Line number

– Thread name

■ Payload carried by the diagnostic context, if any

■ Stack trace as an event payload

Diagnostic Action Library

WLDF Instrumentation Library B-13

B.2.5 ThreadDumpAction
This action is a stateless action and is compatible with Before and After monitor types.

A ThreadDumpAction generates an instrumentation event at the affected location in
the program execution to capture a thread dump, if the underlying VM supports it.
JDK 1.5 (Oracle JRockit and Sun) supports this action.

This action generates an instrumentation event which is dispatched to the events
archive. This action may be used only with the JRockit JVM. It is ignored when used
with other JVMs. It captures the thread dump as event payload. The event carries the
following information:

■ Timestamp

■ Context identifier from the diagnostic context that uniquely identifies the request

■ Transaction identifier, if available

■ User identity

■ Action type, that is, ThreadDumpAction

■ Domain

■ Server name

■ Instrumentation scope name (for example, application name)

■ Diagnostic monitor name

■ Module name

■ Location in code from where the action was called, which consists of:

– Class name

– Method name

– Method signature

– Line number

– Thread name

■ Payload carried by the diagnostic context, if any

■ Thread dump as an event payload

B.2.6 MethodInvocationStatisticsAction
This action is an Around action and is compatible with Around monitor types.

A MethodInvocationStatisticsAction computes method invocation statistics in memory
without persisting an event for each invocation. It makes the collected information
available through the InstrumentationRuntimeMBean. The collected information is
consumable by the Harvester and the Watch-Notifications components. This makes it
possible to create watch rules that can combine request information from the
instrumentation system and metric information from other runtime MBeans.

The WLDFInstrumentationRuntimeMBean instance for a given scope exposes the data
collected from the MethodInvocationStatisticsAction instances attached to the
configured Diagnostic Around monitors, using the MethodInvocationStatisics
attribute. This attribute returns a map with a nested structure that has the following
semantics:

 MethodInvocationStatistics::= Map<className, MethodMap>

Diagnostic Action Library

B-14 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 MethodMap::= Map<methodName, MethodParamsSignatureMap>
 MethodParamsSignatureMap::= Map<MethodParamsSignature, MethodDataMap>
 MethodDataMap::= <MetricName, Statistic>
 MetricName:= min | max | avg | count | sum | sum_of_squares | std_deviation

The first level of entries is keyed by the fully qualified class names. The next level
yields a map called MethodMap, whose keys are method names and values of another
nested map structure, MethodParamsSignatureMap. MethodParamsSignatureMap
contains entries that are keyed by a String representation of the method input
argument signature to return another map instance, MethodDataMap.
MethodDataMap has a fixed set of keys for the names of the different kinds of
supported metrics.

B.2.6.1 Configuring the Harvester to Collect MethodInvocationStatisticsAction Data
To configure the Harvester to collect data gathered by the
MethodInvocationStatisticsAction instances, you have to configure an instance of
WLDFHarvesterBean with:

Name=weblogic.management.runtime.WLDFInstrumentationRuntimeMBean

The scope is selected by the instance configuration.

The attribute specification defines the data that is collected by the Harvester. The
successive elements of the map are accessed by using the following notation:

MethodInvocationStatistics(className)(methodName)(methodParamSignature)
(metricName)

where:

■ className is the fully qualified Java class name. You can use the '*' wildcard in a
class name.

■ methodName selects a specific method from the given class. You can use the '*'
wildcard in a method name.

■ methodParamSignature is a string that is a comma-separated list of a method's
input argument types. Only the Java type names are included in the signature
specification without the argument names. As in the Java language, the order of
the parameters in the signature is significant.

This element also supports the '*' wildcard, so you do not have to specify the entire
list of input argument types for a method. '*' matches zero or more argument types
at the position following its occurrence in the methodParamSignature expression.

You can also use the '?' wildcard to match a single argument type at any given
position in the ordered list of parameter types.

Both of these wildcards can appear anywhere in the expression. See
"MethodInvocationStatistics Examples" on page B-14.

■ metricName indicates the statistics to harvest. You can use the '*' wildcard in this
key to harvest all of the supported metrics.

MethodInvocationStatistics Examples

Consider a class with the following overloaded methods:

package.com.foo;
public interface Bar {
 public void doIt();
 public void doIt(int a);

Diagnostic Action Library

WLDF Instrumentation Library B-15

 public void doit(int a, String s)
 public void doIt(Stringa, int b);
 public void doIt(String a, String b);
 public void doIt(String[] a);
 public void doNothing();
 public void doNothing(com.foo.Baz);
}

The following examples show how to use harvest various statistics:

MethodInvocationStatistics(com.foo.Bar)(*)(*)(*)

Harvests all statistics for all methods in the com.Foo.Bar class.

MethodInvocationStatistics(com.foo.Bar)(doIt)()(*)

Harvests all statistics for the doIt() method that has no input arguments.

MethodInvocationStatistics(com.foo.Bar)(doIt)(*)(*)

Harvests all statistics for all doIt() methods.

MethodInvocationStatistics(com.foo.Bar)(doIt)(int, *)(*)

Harvests all statistics for the doIt(int) and doIt(int, String) methods.

MethodInvocationStatistics(com.foo.Bar)(doIt)(String[])(*)

Harvests all statistics for the doIt(String[]) method. Array parameters use the [] pair
following the type name. Spaces are insignificant for the Harvester.

MethodInvocationStatistics(com.foo.Bar)(doIt)(String, ?)(*)

Harvest all statistics for the doIt methods with two input parameters and String as the
first argument type. Using the example class, this would match the doIt(String, int)
and doIt(String, String) methods.

MethodInvocationStatistics(com.foo.Bar)(doNothing)(com.foo.Baz)(min|max)

Harvest the min and max execution time for the doNothing() method with the single
input parameter of type com.foo.Baz.

B.2.6.2 Configuring Watch Rules Based on MethodInvocationStatistics Metrics
You can use the same syntax described in the previous sections to use
MethodInvocationStatistics metrics in a watch rule. You can create meaningful watch
rules that do not wildcard the MetricName element, and instead specify whether you

Note: Using a wildcard in the className can impact performance.

Diagnostic Action Library

B-16 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

are interested in the min, max, avg, count, sum, sum_of_squares, or std_deviation
variable for a given method.

B.2.6.3 Using JMX to Collect Data
When using straight JMX to collect data, you can potentially impact server
performance if you invoke the getAttribute("MethodInvocationStatistics") method on
the WLDFInstrumentationRuntimeMBean. This is because, depending on the
instrumented classes, the nested map structure can contain a lot of data that will
involve expensive serialization.

It is more advisable to use the getMethodInvocationStatisticsData(String) method
when using JMX to collect data.

C

Using Wildcards in Expressions C-1

CUsing Wildcards in Expressions

WLDF allows for the use of wildcards in instance names within the
<harvested-instance> element, and also provides drill-down and wildcard capabilities
in the attribute specification of the <harvested-attribute> element.

WLDF also allows the same wildcard capabilities for instance names in Harvester
watch rules, as well as specifying complex attributes in Harvester watch rules.

These capabilities are discussed in the following sections:

■ Section C.1, "Using Wildcards in Harvester Instance Names"

■ Section C.2, "Specifying Complex and Nested Harvester Attributes"

■ Section C.3, "Using the Accessor with Harvested Complex or Nested Attributes"

■ Section C.4, "Using Wildcards in Watch Rule Instance Names"

■ Section C.5, "Specifying Complex Attributes in Harvester Watch Rules"

C.1 Using Wildcards in Harvester Instance Names
When specifying instance names within the <harvested-instance> element, you can:

■ express the instance name in non-canonical form, allowing you to specify the
property list of the ObjectName out of order

■ express the ObjectName as a JMX ObjectName query pattern without concern as
to the order of the property list.

■ use zero or more '*' wildcards in any of the values in the property list of an
ObjectName, such as Name=*.

■ use zero or more '*' wildcards to replace any character sequence in a canonical
ObjectName string. In this case, you must ensure that any properties of the
ObjectName that are not wildcarded are in canonical form.

C.1.1 Examples
The instance specification in Example C–1 indicates that all instances of the
WorkManagerRuntimeMBean are to be harvested. This is equivalent to not providing
an instance-name qualification at all in the <harvested-type> declaration.

Example C–1 Harvesting All Instances of an MBean

<harvested-type>
 <name>weblogic.management.runtime.WorkManagerRuntimeMBean</name>
 <harvested-instance>*<harvested-instance>
 <known-type>true</known-type>

Specifying Complex and Nested Harvester Attributes

C-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 <harvested-attribute>PendingRequests</harvested-attribute>
</harvested-type>

The example in Example C–2 shows a JMX ObjectName pattern as the
<harvested-instance> value:

Example C–2 Using a JMX ObjectName Pattern

<harvested-type>
 <name>com.acme.CustomMBean</name>
 <harvested-instance>adomain:Type=MyType,*</harvested-instance>
 <known-type>false</known-type>
</harvested-type>

In the example shown in Example C–3, some of the values in the ObjectName property
list contain wildcards:

Example C–3 Using Wildcards in the Property List

<harvested-type>
 <name>com.acme.CustomMBean</name>
 <harvested-instance>adomain:Type=My*,Name=*,*</harvested-instance>
 <known-type>false</known-type>
</harvested-type>

The example in Example C–4 indicates that all harvestable attributes of all instances of
com.acme.CustomMBean are to be harvested, but only where the instance name
contains the string "Name=mybean".

Example C–4 Harvesting All Attributes of Multiple Instances

<harvested-type>
 <name>coma.acme.CustomMBean</name>
 <harvested-instance>*Name=mybean*</harvested-instance>
 <known-type>true</known-type>
</harvested-type>

C.2 Specifying Complex and Nested Harvester Attributes
The Harvester provides the ability to access metric values nested within complex
attributes of an MBean. A complex attribute can be a map or list object, a simple POJO,
or different nestings of these types of objects. For example:

■ anObject.anAttribute

■ arrayAttribute[1]

■ mapAttribute(akey)

■ aList[1](aKey)

In addition, wildcards can be used for list indexes and map keys to specify multiple
elements within a collection of those types. The following wildcards are available:

■ You can use '*' to specify all key values for Map attributes.

■ You can use '%' to replace parts of a Map key string and identify a group of keys
that match a particular pattern.

You can also specify a discrete set of key values by using a comma-separated list.

Specifying Complex and Nested Harvester Attributes

Using Wildcards in Expressions C-3

For example:

■ aList[1](partial%Key%)

■ aList[*](key1,key3,keyN)

■ aList*

In the last example, where the '*' wildcard is used for the index to a list and as the key
value to a nested map object, nested arrays of values are returned.

If you embed the '*' wildcard in a comma-separated list of map keys, such as:

 aList[*](key1,*,keyN)

it is equivalent to specifying all map keys:

 aList*

C.2.1 Examples
To use drill-down syntax to harvest the nested State property of the HealthState
attribute on the ServerRuntime MBean, you would use the following diagnostic
descriptor:

Example C–5 Using drill-down syntax

<harvester>
 <sample-period>10000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 <harvested-attribute>HealthState.State</harvested-attribute>
 </harvested-type>
</harvester>

To harvest the elements of an array or list, the Harvester supports a subscript notation
wherein a value is referred to by its index position in the array or list. For example, to
refer to the first element in the array attribute URLPatterns in the
ServletRuntimeMBean, specify URLPatterns[0]. If you want to reference all the
elements of URLPatterns using a wildcard:

Example C–6 Using a wildcard to reference all elements of an array

<harvester>
 <sample-period>10000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServletRuntimeMBean</name>
 <harvested-attribute>URLPatterns[*]</harvested-attribute>
 </harvested-type>
</harvester>

Note: Leading or trailing spaces will be stripped from a map key
unless the map key is enclosed within quotation marks.

Using a map key pattern can result in a large number of elements
being scanned and/or returned. The larger the number of elements in
a map, the bigger the impact there will be on performance.

The more complex the matching pattern is, the more processing time
will be required.

Using the Accessor with Harvested Complex or Nested Attributes

C-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

To harvest the elements of a map, each individual value is referenced by the key
enclosed in parentheses. Multiple keys can be specified as a comma-delimited list, in
which case the values corresponding to specified keys in the map will be harvested.

The following code example harvests the value from the map with key Foo:

<harvested-attribute>MyMap(Foo)</harvested-attribute>

The next example harvests the value from the map with keys Foo and Bar:

<harvested-attribute>MyMap(Foo,Bar)</harvested-attribute>

The next example uses the % character with a key specification to harvest all values
from the map if their keys start with Foo and end with Bar:

<harvested-attribute>MyMap(Foo%Bar)</harvested-attribute>

The next example harvests all values from a map by using the * character:

<harvested-attribute>MyMap(*)</harvested-attribute>

In the next example, the MBean has a JavaBean attribute MyBean which has a nested
map type attribute MyMap. This code example harvests this value from the map
whose key is Foo:

<harvested-attribute>MyBeanMyMap(Foo)</harvested-attribute>

C.3 Using the Accessor with Harvested Complex or Nested Attributes
While a large number of complex or nested attributes can be specified as a single
expression in terms of the Harvester and Watch and Notifications configuration, the
actual metrics are persisted in terms of each individually gathered metric.

For example, if the attribute specification:

 mymap(*).(a,b,c)
maps to the following actual nested attributes:

 mymap(key1).a
 mymap(key1).b
 mymap(key1).c
 mymap(key2).a
 mymap(key2).b
 mymap(key2).c

then each of these six metrics are stored in a separate record in the
HarvestedDataArchive, with the shown attribute names stored in the ATTRNAME
column in each corresponding record. The values in the ATTRNAME column are the
values you must use in Accessor queries when retrieving them from the archive.

Here are some example query strings:

 NAME="foo:Name=MyMBean" ATTRNAME="mymap(key1).a"
 NAME="foo"Name=MyBean" ATTRNAME LIKE "mymap(%).a"
 NAME="fooName=MyMBean" ATTRNAME MATCHES "mymap\((.*?)\).a"

Specifying Complex Attributes in Harvester Watch Rules

Using Wildcards in Expressions C-5

C.4 Using Wildcards in Watch Rule Instance Names
Within Harvester watch rules, you can use the '*' wildcard to specify portions of an
ObjectName, giving you the ability to watch for multiple instances of multiple types.

For example, to specify the OpenSocketsCurrentCount attribute for all instances of the
ServerRuntimeMBean that begin with the name managed, use the following syntax:

 ${com.bea:*Name=managed*Type=ServerRuntime*//OpenSocketCurrentCount}

Alternatively, you can use JMX ObjectName query patterns, as shown here:

 ${mydomain:Key1=MyMBean,*//simpleAttribute}

C.5 Specifying Complex Attributes in Harvester Watch Rules
You can specify complex attributes (a collection, an array type or an Object with nested
intrinsic attribute types) within Harvester watch rule expressions. There are several
ways to do this.

The following example shows a drill-down into a nested attribute in a complex type,
which is then checked to see if it is greater than 0:

${somedomain:name=MyMbean//complexAttribute.nestedAttribute} > 0

You can also use wildcards to specify multiple Map keys. The following wildcards are
available for specifying complex attributes:

■ You can use '*' to specify all key values for Map attributes.

■ You can use '%' to replace parts of a Map key string and identify a group of keys
that match a particular pattern.

In addition, you can use a comma-separated list to specify a discrete set of key values.

In this example:

${[com.bea.foo.BarClass]//aList[*].(some%partialKey%).(aValue,bValue)} > 0

the rule would examine all elements of the aList attribute on all instances of the
com.bea.foo.BarClass, drilling down into a nested map for all keys starting with the
text some and containing the text partialKey afterwards. The returned values are
assumed to be Map instances, from which values for the keys aValue and bValue will
be compared to see if they are greater than 0.

When using the MethodInvocationStatistics attribute on the
WLDFInstrumentationRuntime type, the system needs to determine the type from the
variable. If the system can't determine the type when validating the attribute
expression, the expression won't work. For example, the expression:

${ com.bea:Name=myScope, * //MethodInvocationStatistics.(...).(...)

Note: The ObjectName query pattern syntax supported by the
Harvester will be whatever is supported by the underlying JMX
implementation. The above example demonstrates syntax supported
by JDK 5 and later. Refer to the JavaDoc for
javax.management.ObjectName for the specific JDK version being
used to run the server for the full syntax that is supported.

Specifying Complex Attributes in Harvester Watch Rules

C-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

will not work. You must explicitly declare the type in this situation, as shown in this
code example, which drills down into the nested map structure:

$(com.bea:Name=hello,Type=WLDFInstrumentationRuntime,*//MethodInvocationStatistics
(*)(*)(*)(count)) >= 1

D

WebLogic Scripting Tool Examples D-1

DWebLogic Scripting Tool Examples

The following examples use WLST and JMX to interact with WLDF components:

■ Section D.1, "Example: Dynamically Creating DyeInjection Monitors"

■ Section D.2, "Example: Configuring a Watch and a JMX Notification"

■ Section D.3, "Example: Writing a JMXWatchNotificationListener Class"

■ Section D.4, "Example: Registering MBeans and Attributes For Harvesting"

For information on running WebLogic Scripting Tool (weblogic.WLST) scripts, see
"Running WLST from Ant" in Oracle Fusion Middleware Oracle WebLogic Scripting Tool.
For information on developing JMX applications, see Oracle Fusion Middleware
Developing Manageable Applications With JMX for Oracle WebLogic Server.

D.1 Example: Dynamically Creating DyeInjection Monitors
This demonstration script (see Example D–1) shows how to use the weblogic.WLST
tool to create a DyeInjection monitor dynamically. This script:

■ Connects to a server (boots the server first if necessary).

■ Looks up or creates a WLDF System Resource.

■ Creates the DyeInjection monitor.

■ Sets the dye criteria.

■ Enables the monitor.

■ Saves and activates the configuration.

■ Enables the Diagnostic Context feature via the ServerDiagnosticConfigMBean.

The demonstration script in Example D–1 only configures the dye monitor, which
injects dye values into the diagnostic context. To trigger events, you must implement
downstream diagnostic monitors that use dye filtering to trigger on the specified dye
criteria. An example downstream monitor artifact is shown in Example D–2. This must
be placed in a file named weblogic-diagnostics.xml and placed into the META-INF
directory of a application archive. It is also possible to create a monitor using a JSR-88
deployment plan. For more information on deploying applications, seeOracle Fusion
Middleware Deploying Applications to Oracle WebLogic Server.

Example D–1 Example: Using WLST to Dynamically Create DyeInjection Monitors
(demoDyeMonitorCreate.py)

Script name: demoDyeMonitorCreate.py
###
Demo script showing how to create a DyeInjectionMonitor dynamically

Example: Dynamically Creating DyeInjection Monitors

D-2 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

via WLST. This script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource
- Create the DyeInjection Monitor (DIM)
- Set the dye criteria
- Enable the monitor
- Save and activate
- Enable the Diagnostic Context functionality via the
ServerDiagnosticConfig MBean
Note: This will only configure the dye monitor, which will inject dye
values into the Diagnostic Context. To trigger events requires the
existence of "downstream" monitors set to trigger on the specified
dye criteria.
##
myDomainDirectory="domain"
url="t3://localhost:7001"
user="weblogic"
password="weblogic"
myServerName="myserver"
myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true,weblogic.RootDirectory="\

+myDomainDirectory
try:
 connect(user,password,url)
except:
 startServer(adminServerName=myServerName,domainName=myDomain,
 username=user,password=password,systemProperties=props,
 domainDir=myDomainDirectory,block="true")
 connect(user,password,url)
Start an edit session
edit()
startEdit()
cd ("/")
Look up or create the WLDF System resource.
wldfResourceName = "mywldf"
myWldfVar = cmo.lookupSystemResource(wldfResourceName)
if myWldfVar==None:
 print "Unable to find named resource,\

creating WLDF System Resource: " + wldfResourceName
 myWldfVar=cmo.createWLDFSystemResource(wldfResourceName)
Target the System Resource to the demo server.
wldfServer=cmo.lookupServer(serverName)
myWldfVar.addTarget(wldfServer)
create and set properties of the DyeInjection Monitor (DIM).
mywldfResource=myWldfVar.getWLDFResource()
mywldfInst=mywldfResource.getInstrumentation()
mywldfInst.setEnabled(1)
monitor=mywldfInst.createWLDFInstrumentationMonitor("DyeInjection")
monitor.setEnabled(1)
Need to include newlines when setting properties
on the DyeInjection monitor.
monitor.setProperties("\nUSER1=larry@celtics.com\

\nUSER2=brady@patriots.com\n")
monitor.setDyeFilteringEnabled(1)
Enable the diagnostic context functionality via the
ServerDiagnosticConfig.
cd("/Servers/"+serverName+"/ServerDiagnosticConfig/"+serverName)
cmo.setDiagnosticContextEnabled(1)
save and disconnect
save()

Example: Configuring a Watch and a JMX Notification

WebLogic Scripting Tool Examples D-3

activate()
disconnect()
exit()

Example D–2 Example: Downstream Monitor Artifact

<?xml version="1.0" encoding="UTF-8"?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <instrumentation>
 <enabled>true</enabled>
 <!-- Servlet Session Monitors -->
 <wldf-instrumentation-monitor>
 <name>Servlet_Before_Session</name>
 <enabled>true</enabled>
 <dye-mask>USER1</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceAction</action>
 <action>StackDumpAction</action>
 <action>DisplayArgumentsAction</action>
 <action>ThreadDumpAction</action>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>Servlet_After_Session</name>
 <enabled>true</enabled>
 <dye-mask>USER2</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceAction</action>
 <action>StackDumpAction</action>
 <action>DisplayArgumentsAction</action>
 <action>ThreadDumpAction</action>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

D.2 Example: Configuring a Watch and a JMX Notification
This demonstration script (see Example D–3) shows how to use the weblogic.WLST
tool to configure a watch and a JMX notification using the WLDF Watch and
Notification component. This script:

■ Connects to a server and boots the server first if necessary.

■ Looks up/creates a WLDF system resource.

■ Creates a watch and watch rule on the ServerRuntimeMBean for the
OpenSocketsCurrentCount attribute.

■ Configures the watch to use a JMXNotification medium.

This script can be used in conjunction with the following files and scripts:

■ The JMXWatchNotificationListener.java class (see Section D.3, "Example: Writing a
JMXWatchNotificationListener Class").

■ The demoHarvester.py script, which registers the OpenSocketsCurrentCount
attribute with the harvester for collection (see Section D.4, "Example: Registering
MBeans and Attributes For Harvesting").

To see these files work together, perform the following steps:

Example: Configuring a Watch and a JMX Notification

D-4 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

1. To run the watch configuration script (demoWatch.py), type:

 java weblogic.WLST demoWatch.py

2. To compile the JMXWatchNotificationListener.java source, type:

javac JMXWatchNotificationListener.java

3. To run the JMXWatchNotificationListener.class file, type:

java JMXWatchNotificationListener

4. To run the demoHarvester.py script, type:

 java weblogic.WLST demoHarvester.py

When the demoHarvester.py script runs, it triggers the JMXNotification for the watch
configured in step 1.

Example D–3 Example: Watch and JMXNotification (demoWatch.py)

Script name: demoWatch.py
##
Demo script showing how to configure a Watch and a JMXNotification
using the WLDF Watches and Notification framework.
The script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource
- Create a watch and watch rule on the ServerRuntimeMBean for the
"OpenSocketsCurrentCount" attribute
- Configure the watch to use a JMXNotification medium
#
This script can be used in conjunction with
- the JMXWatchNotificationListener.java class
- the demoHarvester.py script, which registers the
"OpenSocketsCurrentCount" attribute with the harvester for collection.
To see these work together:
1. Run the watch configuration script
java weblogic.WLST demoWatch.py
2. Compile and run the JMXWatchNotificationListener.java source code
javac JMXWatchNotificationListener.java
java JMXWatchNotificationListener
3. Run the demoHarvester.py script
java weblogic.WLST demoHarvester.py
When the demoHarvester.py script runs, it triggers the
JMXNotification for the watch configured in step 1.
###
myDomainDirectory="domain"
url="t3://localhost:7001"
user="weblogic"
myServerName="myserver"
myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true\
 weblogic.RootDirectory="+myDomainDirectory
try:
 connect(user,user,url)
except:

Note: Be sure the current directory is in your class path, so it will
find the class file you just created.

Example: Writing a JMXWatchNotificationListener Class

WebLogic Scripting Tool Examples D-5

 startServer(adminServerName=myServerName,domainName=myDomain,
 username=user,password=user,systemProperties=props,
 domainDir=myDomainDirectory,block="true")
 connect(user,user,url)
edit()
startEdit()
Look up or create the WLDF System resource
wldfResourceName = "mywldf"
myWldfVar = cmo.lookupSystemResource(wldfResourceName)
if myWldfVar==None:
 print "Unable to find named resource"
print "creating WLDF System Resource: " + wldfResourceName

 myWldfVar=cmo.createWLDFSystemResource(wldfResourceName)
Target the System Resource to the demo server
wldfServer=cmo.lookupServer(myServerName)
myWldfVar.addTarget(wldfServer)
cd("/WLDFSystemResources/mywldf/WLDFResource/mywldf/WatchNotification/mywldf")
watch=cmo.createWatch("mywatch")
watch.setEnabled(1)
jmxnot=cmo.createJMXNotification("myjmx")
watch.addNotification(jmxnot)
serverRuntime()
cd("/")
on=cmo.getObjectName().getCanonicalName()
watch.setRuleExpression("${"+on+"} > 1")
watch.getRuleExpression()
watch.setRuleExpression("${"+on+"//OpenSocketsCurrentCount} > 1")
watch.setAlarmResetPeriod(10000)
edit()
save()
activate()
disconnect()
exit()

D.3 Example: Writing a JMXWatchNotificationListener Class
Example D–4 shows how to write a JMXWatchNotificationListener.

Example D–4 Example: JMXWatchNotificationListener Class
(JMXWatchNotificationListener.java)

import javax.management.*;
import weblogic.diagnostics.watch.*;
import weblogic.diagnostics.watch.JMXWatchNotification;
import javax.management.Notification;
import javax.management.remote.JMXServiceURL;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXConnector;
import javax.naming.Context;
import java.util.Hashtable;
import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
public class JMXWatchNotificationListener implements NotificationListener,
Runnable {
 private MBeanServerConnection rmbs = null;
 private String notifName = "myjmx";
 private int notifCount = 0;
 private String serverName = "myserver";
 public JMXWatchNotificationListener(String serverName) {
}

Example: Writing a JMXWatchNotificationListener Class

D-6 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 public void register() throws Exception {
 rmbs = getRuntimeMBeanServerConnection();
 addNotificationHandler();
 }
 public void handleNotification(Notification notif, Object handback) {
 synchronized (this) {
 try {
 if (notif instanceof JMXWatchNotification) {
 WatchNotification wNotif =

((JMXWatchNotification)notif).getExtendedInfo();
 notifCount++;
System.out.println("===");

 System.out.println("Notification name: " +
 notifName + " called. Count= " + notifCount + ".");

 System.out.println("Watch severity: " +
wNotif.getWatchSeverityLevel());

 System.out.println("Watch time: " +
wNotif.getWatchTime());

 System.out.println("Watch ServerName: " +
wNotif.getWatchServerName());

 System.out.println("Watch RuleType: " +
wNotif.getWatchRuleType());

 System.out.println("Watch Rule: " +
wNotif.getWatchRule());

 System.out.println("Watch Name: " +
wNotif.getWatchName());

 System.out.println("Watch DomainName: " +
wNotif.getWatchDomainName());

 System.out.println("Watch AlarmType: " +
wNotif.getWatchAlarmType());

 System.out.println("Watch AlarmResetPeriod: " +
wNotif.getWatchAlarmResetPeriod());

System.out.println("===");
 }
 } catch (Throwable x) {
 System.out.println("Exception occurred processing JMX watch
 notification: " + notifName +"\n" + x);
 x.printStackTrace();
 }
 }
 }
 private void addNotificationHandler() throws Exception {

/*
* The JMX Watch notification listener registers with a Runtime MBean
* that matches the name of the corresponding watch bean.
* Each watch has its own Runtime MBean instance.
*/

 ObjectName oname =
 new ObjectName(
 "com.bea:ServerRuntime=" + serverName + ",Name=" +
 JMXWatchNotification.GLOBAL_JMX_NOTIFICATION_PRODUCER_NAME +
 ",Type=WLDFWatchJMXNotificationRuntime," +
 "WLDFWatchNotificationRuntime=WatchNotification," +
 "WLDFRuntime=WLDFRuntime"
);

System.out.println("Adding notification handler for: " +
oname.getCanonicalName());

 rmbs.addNotificationListener(oname, this, null, null);
 }
 private void removeNotificationHandler(String name,

Example: Writing a JMXWatchNotificationListener Class

WebLogic Scripting Tool Examples D-7

 NotificationListener list) throws Exception {
 ObjectName oname =
 new ObjectName(
 "com.bea:ServerRuntime=" + serverName + ",Name=" +
 JMXWatchNotification.GLOBAL_JMX_NOTIFICATION_PRODUCER_NAME +
 ",Type=WLDFWatchJMXNotificationRuntime," +
 "WLDFWatchNotificationRuntime=WatchNotification," +
 "WLDFRuntime=WLDFRuntime"
);
 System.out.println("Removing notification handler for: " +

oname.getCanonicalName());
 rmbs.removeNotificationListener(oname, list);
 }
 public void run() {
 try {
 System.out.println("VM shutdown, unregistering notification

listener");
 removeNotificationHandler(notifName, this);
 } catch (Throwable t) {
 System.out.println("Caught exception in shutdown hook");
 t.printStackTrace();
 }
 }
 private String user = "weblogic";
 private String password = "weblogic";
 public MBeanServerConnection getRuntimeMBeanServerConnection()
 throws Exception {
 String JNDI = "/jndi/";
 JMXServiceURL serviceURL;
 serviceURL =
 new JMXServiceURL("t3", "localhost", 7001,
 JNDI + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME);
 System.out.println("URL=" + serviceURL);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL,user);
 h.put(Context.SECURITY_CREDENTIALS,password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);
 return connector.getMBeanServerConnection();
 }
 public static void main(String[] args) {
 try {
 String serverName = "myserver";
 if (args.length > 0)
 serverName = args[0];
 JMXWatchNotificationListener listener =

 new JMXWatchNotificationListener(serverName);
 System.out.println("Adding shutdown hook");
 Runtime.getRuntime().addShutdownHook(new Thread(listener));
 listener.register();
 // Sleep waiting for notifications
 Thread.sleep(Long.MAX_VALUE);
 } catch (Throwable e) {
 e.printStackTrace();
 } // end of try-catch
 } // end of main()
}

Example: Registering MBeans and Attributes For Harvesting

D-8 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

D.4 Example: Registering MBeans and Attributes For Harvesting
This demonstration script shows how to use the weblogic.WLST tool to register
MBeans and attributes for collection by the WLDF Harvester. This script:

■ Connects to a server and boots the server first if necessary.

■ Looks up or creates a WLDF system resource.

■ Sets the sampling frequency.

■ Adds a type for collection.

■ Adds an attribute of a specific instance for collection.

■ Saves and activates the configuration.

■ Displays a few cycles of the harvested data.

Example D–5 Example: MBean Registration and Data Collection (demoHarvester.py)

Script name: demoHarvester.py
##
Demo script showing how register MBeans and attributes for collection
by the WLDF Harvester Service. This script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource
- Set the sampling frequency
- Add a type for collection
- Add an attribute of a specific instance for collection
- Save and activate
###
from java.util import Date
from java.text import SimpleDateFormat
from java.lang import Long
import jarray
###
Helper functions for adding types/attributes to the harvester
configuration
###
def findHarvestedType(harvester, typeName):
htypes=harvester.getHarvestedTypes()
for ht in (htypes):
if ht.getName() == typeName:
return ht

return None
def addType(harvester, mbeanInstance):
typeName = "weblogic.management.runtime."\

+ mbeanInstance.getType() + "MBean"
ht=findHarvestedType(harvester, typeName)
if ht == None:
print "Adding " + typeName + " to harvestables collection for "\

+ harvester.getName()
ht=harvester.createHarvestedType(typeName)

 return ht;
def addAttributeToHarvestedType(harvestedType, targetAttribute):
 currentAttributes = PyList()
 currentAttributes.extend(harvestedType.getHarvestedAttributes());
 print "Current attributes: " + str(currentAttributes)
 try:
 currentAttributes.index(targetAttribute)
 print "Attribute is already in set"
 return

Example: Registering MBeans and Attributes For Harvesting

WebLogic Scripting Tool Examples D-9

 except ValueError:
 print targetAttribute + " not in list, adding"
 currentAttributes.append(targetAttribute)
 newSet = jarray.array(currentAttributes, java.lang.String)
 print "New attributes for type "\
 + harvestedType.getName() + ": " + str(newSet)
 harvestedType.setHarvestedAttributes(newSet)
 return
def addTypeForInstance(harvester, mbeanInstance):
 typeName = "weblogic.management.runtime."\

 + mbeanInstance.getType() + "MBean"
 return addTypeByName(harvester, typeName, 1)
def addInstanceToHarvestedType(harvester, mbeanInstance):
 harvestedType = addTypeForInstance(harvester, mbeanInstance)
 currentInstances = PyList()
 currentInstances.extend(harvestedType.getHarvestedAttributes());
 on = mbeanInstance.getObjectName().getCanonicalName()
 print "Adding " + str(on) + " to set of harvested instances for type "\
 + harvestedType.getName()
 print "Current instances : " + str(currentInstances)
 for inst in currentInstances:
 if inst == on:
 print "Found " + on + " in existing set"
 return harvestedType
 # only get here if the target attribute is not in the set
 currentInstances.append(on)
 # convert the new list back to a Java String array
 newSet = jarray.array(currentInstances, java.lang.String)
 print "New instance set for type " + harvestedType.getName()\

+ ": " + str(newSet)
 harvestedType.setHarvestedInstances(newSet)
 return harvestedType
def addTypeByName(harvester, _typeName, knownType=0):
 ht=findHarvestedType(harvester, _typeName)
 if ht == None:
 print "Adding " + _typeName + " to harvestables collection for "\

 + harvester.getName()
 ht=harvester.createHarvestedType(_typeName)
 if knownType == 1:
 print "Setting known type attribute to true for " + _typeName
 ht.setKnownType(knownType)
 return ht;
def addAttributeForInstance(harvester, mbeanInstance, attributeName):
 typeName = mbeanInstance.getType() + "MBean"
 ht = addInstanceToHarvestedType(harvester, mbeanInstance)
 return addAttributeToHarvestedType(ht,attributeName)
###
Display the currently registered types for the specified harvester
###
def displayHarvestedTypes(harvester):
 harvestedTypes = harvester.getHarvestedTypes()
 print ""
 print "Harvested types:"
 print ""
 for ht in (harvestedTypes):
 print "Type: " + ht.getName()
 attributes = ht.getHarvestedAttributes()
 if attributes != None:
 print " Attributes: " + str(attributes)
 instances = ht.getHarvestedInstances()

Example: Registering MBeans and Attributes For Harvesting

D-10 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

 print " Instances: " + str(instances)
 print ""
 return
##
Main script flow -- create a WLDF System resource and add harvestables
##
myDomainDirectory="domain"
url="t3://localhost:7001"
user="weblogic"
myServerName="myserver"
myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true,weblogic.RootDirectory="\
 +myDomainDirectory
try:
 connect(user,user,url)
except:
 startServer(adminServerName=myServerName,domainName=myDomain,
 username=user,password=user,systemProperties=props,
 domainDir=myDomainDirectory,block="true")
 connect(user,user,url)
start an edit session
edit()
startEdit()
cd("/")
Look up or create the WLDF System resource
wldfResourceName = "mywldf"
systemResource = cmo.lookupSystemResource(wldfResourceName)
if systemResource==None:
 print "Unable to find named resource,\
 creating WLDF System Resource: " + wldfResourceName
 systemResource=cmo.createWLDFSystemResource(wldfResourceName
Obtain the harvester bean instance for configuration
print "Getting WLDF Resource Bean from " + str(wldfResourceName)
wldfResource = systemResource.getWLDFResource()
print "Getting Harvester Configuration Bean from " + wldfResourceName
harvester = wldfResource.getHarvester()
print "Harvester: " + harvester.getName()
Target the WLDF System Resource to the demo server
wldfServer=cmo.lookupServer(myServerName)
systemResource.addTarget(wldfServer)
The harvester Jython wrapper maintains refs to
the SystemResource objects
harvester.setSamplePeriod(5000)
harvester.setEnabled(1)
add an instance-based RT MBean attribute for collection
serverRuntime()
cd("/")
addAttributeForInstance(harvester, cmo, "OpenSocketsCurrentCount")
have to return to the edit tree to activate
edit()
add a RT MBean type, all instances and attributes,
with KnownType = "true"
addTypeByName(harvester,
 "weblogic.management.runtime.WLDFInstrumentationRuntimeMBean", 1)
addTypeByName(harvester,
 "weblogic.management.runtime.WLDFWatchNotificationRuntimeMBean", 1)
addTypeByName(harvester,
 "weblogic.management.runtime.WLDFHarvesterRuntimeMBean", 1)
try:
 save()

Example: Registering MBeans and Attributes For Harvesting

WebLogic Scripting Tool Examples D-11

 activate(block="true")
except:
 print "Error while trying to save and/or activate."
 dumpStack()
display the data
displayHarvestedTypes(harvester)
disconnect()
exit()

Example: Registering MBeans and Attributes For Harvesting

D-12 Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

Glossary-1

Glossary

Key terms that you will encounter throughout the diagnostic and monitoring
documentation include the following:

artifact

Any resulting physical entity, or data, generated and persisted to disk by the WebLogic
Diagnostic Framework that can be used later for diagnostic analysis. For example, the
diagnostic image file that is created when the server fails is an artifact. The diagnostic
image artifact is provided to support personnel for analysis to determine why the
server failed. The WebLogic Diagnostic Framework produces a number of different
artifacts.

context creation

If diagnostic monitoring is enabled, a diagnostic context is created, initialized, and
populated by WebLogic Server when a request enters the system. Upon request entry,
WebLogic Server determines whether a diagnostic context is included in the request. If
so, the request is propagated with the provided context. If not, WebLogic Server
creates a new context with a specific name (weblogic.management.DiagnosticContext).
The contextual data for the diagnostic context is stored in the diagnostic context
payload. Thus, within the scope of a request execution, existence of the diagnostic
context is guaranteed.

context payload

The actual contextual data for the diagnostic context is stored in the Context Payload.
See also context creation, diagnostic context, request dyeing.

data stores

Data stores are a collection of data, or records, represented in a tabular format. Each
record in the table represents a datum. Columns in the table describe various
characteristics of the datum. Different data stores may have different columns;
however, most data stores have some shared columns, such as the time when the data
item was collected.

In WebLogic Server, information captured by WebLogic Diagnostic Framework is
segregated into logical data stores, separated by the types of diagnostic data. For
example, Server logs, HTTP logs, and harvested metrics are captured in separate data
stores.

diagnostic action

Business logic or diagnostic code that is executed when a joinpoint defined by a
pointcut is reached. Diagnostic actions, which are associated with specific pointcuts,
specify the code to execute at a joinpoint. Put another way, a pointcut declares the

diagnostic context

Glossary-2

location and a diagnostic action declares what is to be done at the locations identified
by the pointcut.

Diagnostic actions provide visibility into a running server and applications. Diagnostic
actions specify the diagnostic activity that is to take place at locations, or pointcuts,
defined by the monitor in which it is implemented. Without a defined action, a
diagnostic monitor is useless.

Depending on the functionality of a diagnostic action, it may need a certain
environment to do its job. Such an environment must be provided by the monitor to
which the diagnostic action is attached; therefore, diagnostic actions can be used only
with compatible monitors. Hence, diagnostic actions are classified by type so that their
compatibility with monitors can be determined.

To facilitate the implementation of useful diagnostic monitors, a library of suitable
diagnostic actions is provided with the WebLogic Server product.

diagnostic context

The WebLogic Diagnostic Framework adds contextual information to all requests
when they enter the system. You can use this contextual information, referred to as the
diagnostic context, to reconstruct transactional events, as well correlate events based
on the timing of the occurrence or logical relationships. Using diagnostic context you
can reconstruct or piece together a thread of execution from request to response.

Various diagnostic components, for example, the logging services and diagnostic
monitors, use the diagnostic context to tag generated data events. Using the tags, the
diagnostic data can be collated, filtered and correlated by the WebLogic Diagnostic
Framework and third-party tools.

The diagnostic context also makes it possible to generate diagnostic information only
when contextual information in the diagnostic context satisfies certain criteria. This
capability enables you to keep the volume of generated information to manageable
levels and keep the overhead of generating such information relatively low. See also
context creation, context payload, request dyeing.

diagnostic image

An artifact containing key state from an instance of a server that is meant to serve as a
server-level state dump for the purposes of diagnosing significant failures. This artifact
can be used to diagnose and analyze problems even after the server has cycled.

diagnostic module

A diagnostic module is the definition the configuration settings that are to applied to
the WebLogic Diagnostic Framework. The configuration settings determine what data
is to be collected and processed, how the data is to be analyzed and archived, what
notifications and alarms are to be fired, and the operating parameters of the Diagnostic
Image Capture component. Once a diagnostic module has been defined, or configured,
it can be distributed to a running server where the data is collected.

diagnostic monitor

A diagnostic monitor is a unit of diagnostic code that defines 1) the locations in a
program where the diagnostic code will be added and 2) the diagnostic actions that
will be executed at those locations.

WebLogic Server provides a library of useful diagnostic monitors. Users can integrate
these monitors into server and application classes. Once integrated, the monitors take
effect at server startup for server classes and application deployment and
redeployment for application classes.

Harvester's configuration data set

Glossary-3

diagnostic notification

The action that occurs as a result of the successful evaluation of a watch rule. The
WebLogic Diagnostic Framework supports these types of diagnostic notifications: Java
Management Extensions (JMX), Java Message Service (JMS), Simple Mail Transfer
Protocol (SMTP), Simple Network Management Protocol (SNMP), and WLDF Image
Capture. See also diagnostic image.

dye filtering

The process of looking at the dye mask and making the decision as to whether or not a
diagnostic monitor should execute an action so as to generate a data event. Dye
filtering is dependent upon dye masks. You must define dye masks in order for dye
filtering to take place. See also dye mask, request dyeing.

dye mask

The entity that contains a predefined set of conditions that are used by dye filtering in
diagnostic monitors to determine whether or not a data event should be generated. See
also dye filtering, request dyeing.

harvestable entities

A harvestable entity is any entity that is available for data consumption via the
Harvester. Once an entity is identified as a harvestable resource, the Harvester can
engage the entity in the data collection process.

Harvestable entities provide access to the following information: harvestable
attributes, values of harvestable attributes, meta-data for harvestable attributes, and
the name of the harvestable entity. See also harvestable data, harvested data,
Harvester's configuration data set, MBean type discovery.

harvestable data

Harvestable data (types, instances, attributes) is the set of data that potentially could
be harvested when and if a harvestable entity is configured for harvesting. Therefore,
the set of harvestable data exists independent of what data is configured for
harvesting and of what data samples are taken.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data for users. For
a description of the information about harvestable data provided by this MBean, see
the description of the weblogic.management.runtime.WLDFHarvesterRuntimeMBean
in the Oracle Fusion Middleware Oracle WebLogic Server MBean Reference.

The WebLogic Diagnostic Framework only makes Runtime MBeans available as
harvestable. In order for an MBean to be harvestable, it must be registered in the local
WebLogic Server runtime MBean server. See also harvestable entities, harvested data,
Harvester's configuration data set, MBean type discovery.

harvested data

A type, instance, or attribute is called harvested data if that data is currently being
harvested. To meet these criteria the data must: 1) be configured to be harvested, 2) if
applicable, it must have been discovered, and 3) it must not throw exceptions while
being harvested.

See also harvestable entities, harvestable data, Harvester's configuration data set.

Harvester's configuration data set

The set of data to be harvested as defined by the Harvester's configuration. The
configured data set can contain items that are not harvestable and items that are not
currently being harvested.

joinpoint

Glossary-4

See also harvestable entities, harvestable data, Harvester's configuration data set.

joinpoint

A well defined point in the program flow where diagnostic code can be added. The
Instrumentation component allows identification of such diagnostic joinpoints with an
expression in a generic manner.

pointcut

A well defined set of joinpoints, typically identified by some generic expression.
Pointcuts identify joinpoints, which are well-defined points in the flow of execution,
such as a method call or method execution site. The Instrumentation component
provides a mechanism to allow execution of specific diagnostic code at such pointcuts.
The Instrumentation component adds such diagnostic code to the server and
application code.

MBean (Managed Bean)

A Java object that provides a management interface for an underlying resource. An
MBean is part of Java Management Extensions (JMX).

In the WebLogic Diagnostic Framework, MBean classes are used to configure the
service and to monitor its runtime state. MBeans are registered with the MBean server
that runs inside WebLogic Server. MBeans are implemented as standard MBeans
which means that each class implements its own MBean interface.

MBean type discovery

For WebLogic Server entities, the set of harvestable types is known at system startup,
but not the complete set of harvestable instances. For customer defined MBeans,
however, the set of types can grow dynamically, as more MBeans appear at runtime.
The process of detecting a new type based on the registration of a new MBean is called
type discovery. MBean type discovery is only applicable to customer MBeans.

MBean type meta-data

The set of harvestable attributes for a type (and its instances) is defined by the
meta-data for the type. Since the WebLogic Server model is MBeans, the meta-data is
provided through MBeanInfos. Since WebLogic type information is always available,
the set of harvestable attributes for WebLogic Server types (and existing and potential
instances) is always available as well. However, for customer types, knowledge of the
set of harvestable attributes is dependent on the existence of the type. And, the type
does not exist until at least one instance is created. So the list of harvestable attributes
on a user defined type is not known until at least one instance of the type is registered.

It is important to be aware of latencies in the availability of information for custom
MBeans. Due to latencies, the Administration Console cannot provide complete lists of
all harvestable data in its user selection lists for configuring the harvester. The set of
harvestable data for WebLogic Server entities is always complete, but the set of
harvestable data for customer entities (and even the set of entities itself) may not be
complete.

meta-data

Meta-data is information that describes the information the WebLogic Diagnostic
Framework collects. Because the service collects diagnostic information from different
sources, the consumers of this information need to know what diagnostic information
is collected and available. To satisfy this need, the Data Accessor provides
functionality to programmatically obtain this meta-data. The meta-data made
available by means of the Data Accessor includes: 1) a list of supported data store

weaving time

Glossary-5

types, for example, SERVER_LOG, HTTP_LOG, HARVESTED_DATA, 2) a list of
available data stores, and 3) the layout of each data store, that is, information about
columns in the data store.

metrics

Monitoring system operation and diagnosing problems depends on having data from
running systems. Metrics are measurements of system performance. From these
measurements, support personnel can determine whether the system is in good
working order or a problem is developing.

In general, metrics are exposed to the WebLogic Diagnostic Framework as attributes
on qualified MBeans. In WebLogic Server, metrics include performance measurements
for the operating system, the virtual machine, the system runtime, and applications
running on the server.

request dyeing

Requests can be dyed, or specially marked, to indicate that they are of special interest.
For example, in a running system, it may be desirable to send a specially marked test
request, which can be conditionally traced by the tracing monitors. This allows
creation of highly focused diagnostic information without slowing down other
requests.

Requests are typically marked when they enter the system by setting flags in the
diagnostic context. The diagnostic context provides a number of flags, 64 in all, that
can be independently set or reset.

See also context creation, context payload, diagnostic context.

system image capture

Whenever a system fails, there is need to know its state when it failed. Therefore, a
means of capturing system state upon failure is critical to failure diagnosis. A system
image capture does just that. It creates, in essence, a diagnostic snapshot, or dump,
from the system for the express purpose of diagnosing significant failures.

In WebLogic Server, you can configure the WebLogic Diagnostic Framework provides
the First-Failure Notification feature to trigger system image captures automatically
when the server experiences an abnormal shutdown. You can also implement watches
to automatically trigger diagnostic image captures when significant failures occur and
you can manually initiate diagnostic image captures on demand.

watch

A watch encapsulates all of the information for a watch rule. This includes the watch
rule expression, the alarm settings for the watch, and the various notification handlers
that will be fired once a watch rule expression evaluates to true.

weaving time

The time it takes to inspect server and application classes and insert the diagnostic
byte code at well-defined locations, if necessary at class load time. The diagnostic byte
code enables the WebLogic Diagnostic Framework to take diagnostic actions. Weaving
time affects both the load time for server-level instrumented classes and application
deployment time for application-level classes.

weaving time

Glossary-6

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 What Is the WebLogic Diagnostic Framework?
	1.2 Document Scope and Audience
	1.3 Guide to This Document
	1.4 Related Documentation
	1.5 Samples and Tutorials
	1.5.1 Avitek Medical Records Application (MedRec) and Tutorials

	1.6 New and Changed Features in this Release

	2 Overview of the WLDF Architecture
	2.1 Overview of the WebLogic Diagnostic Framework
	2.2 Data Creation, Collection, and Instrumentation
	2.3 Archive
	2.4 Watch and Notification
	2.5 Data Accessor
	2.6 Diagnostic Image Capture
	2.7 How It All Fits Together

	3 Understanding WLDF Configuration
	3.1 Configuration MBeans and XML
	3.2 Tools for Configuring WLDF
	3.3 How WLDF Configuration Is Partitioned
	3.3.1 Server-Level Configuration
	3.3.2 Application-Level Configuration

	3.4 Configuring Diagnostic Image Capture and Diagnostic Archives
	3.5 Configuring Diagnostic System Modules
	3.5.1 The Diagnostic System Module and Its Resource Descriptor
	3.5.2 Referencing the Diagnostics System Module from Config.xml
	3.5.3 The DIAG_MODULE.xml Resource Descriptor Configuration
	3.5.4 Managing Diagnostic System Modules
	3.5.5 More Information About Configuring Diagnostic System Resources

	3.6 Configuring Diagnostic Modules for Applications
	3.7 WLDF Configuration MBeans and Their Mappings to XML Elements

	4 Configuring and Capturing Diagnostic Images
	4.1 How to Initiate Image Captures
	4.2 Configuring Diagnostic Image Captures
	4.3 How Diagnostic Image Capture Is Persisted in the Server's Configuration
	4.4 Contents of the Captured Image File

	5 Configuring Diagnostic Archives
	5.1 Configuring the Archive
	5.2 Configuring a File-Based Store
	5.3 Configuring a JDBC-Based Store
	5.3.1 Creating WLDF Tables in the Database
	5.3.2 Configuring JDBC Resources for WLDF

	5.4 Retiring Data from the Archives
	5.4.1 Configuring Data Retirement at the Server Level
	5.4.2 Configuring Age-Based Data Retirement Policies for Diagnostic Archives
	5.4.3 Sample Configuration

	6 Configuring the Harvester for Metric Collection
	6.1 Harvesting, Harvestable Data, and Harvested Data
	6.2 Harvesting Data from the Different Harvestable Entities
	6.3 Configuring the Harvester
	6.3.1 Configuring the Harvester Sampling Period
	6.3.2 Configuring the Types of Data to Harvest
	6.3.3 Specifying Type Names for WebLogic Server MBeans and Custom MBeans
	6.3.4 Harvesting from the DomainRuntime MBeanServer
	6.3.5 When Configuration Settings Are Validated
	6.3.6 Sample Configurations for Different Harvestable Types

	7 Configuring Watches and Notifications
	7.1 Watches and Notifications
	7.2 Overview of Watch and Notification Configuration
	7.3 Sample Watch and Notification Configuration

	8 Configuring Watches
	8.1 Types of Watches
	8.2 Configuration Options Shared by All Types of Watches
	8.3 Configuring Harvester Watches
	8.4 Configuring Log Watches
	8.5 Configuring Instrumentation Watches
	8.6 Defining Watch Rule Expressions

	9 Configuring Notifications
	9.1 Types of Notifications
	9.2 Configuring JMX Notifications
	9.3 Configuring JMS Notifications
	9.4 Configuring SNMP Notifications
	9.5 Configuring SMTP Notifications
	9.6 Configuring Image Notifications

	10 Configuring Instrumentation
	10.1 Concepts and Terminology
	10.1.1 Instrumentation Scope
	10.1.2 Configuration and Deployment
	10.1.3 Joinpoints, Pointcuts, and Diagnostic Locations
	10.1.4 Diagnostic Monitor Types
	10.1.5 Diagnostic Actions

	10.2 Instrumentation Configuration Files
	10.3 XML Elements Used for Instrumentation
	10.3.1 <Instrumentation> XML Elements
	10.3.2 <wldf-instrumentation-monitor> XML Elements
	10.3.3 Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types

	10.4 Configuring Server-Scoped Instrumentation
	10.5 Configuring Application-Scoped Instrumentation
	10.5.1 Comparing System-Scoped to Application-Scoped Instrumentation
	10.5.2 Overview of the Steps Required to Instrument an Application
	10.5.3 Creating a Descriptor File for a Delegating Monitor
	10.5.4 Creating a Descriptor File for a Custom Monitor
	10.5.4.1 Defining Pointcuts for Custom Monitors
	10.5.4.2 Annotation-based Pointcuts

	11 Configuring the DyeInjection Monitor to Manage Diagnostic Contexts
	11.1 Contents, Life Cycle, and Configuration of a Diagnostic Context
	11.1.1 Context Life Cycle and the Context ID
	11.1.2 Dyes, Dye Flags, and Dye Vectors
	11.1.3 Where Diagnostic Context Is Configured

	11.2 Overview of the Process
	11.3 Configuring the Dye Vector via the DyeInjection Monitor
	11.3.1 Dyes Supported by the DyeInjection Monitor
	11.3.2 PROTOCOL Dye Flags
	11.3.3 THROTTLE Dye Flag
	11.3.4 When Diagnostic Contexts Are Created

	11.4 Configuring Delegating Monitors to Use Dye Filtering
	11.5 How Dye Masks Filter Requests to Pass to Monitors
	11.5.1 Dye Filtering Example

	11.6 Using Throttling to Control the Volume of Instrumentation Events
	11.6.1 Configuring the THROTTLE Dye
	11.6.2 How Throttling is Handled by Delegating and Custom Monitors

	11.7 Using weblogic.diagnostics.context

	12 Accessing Diagnostic Data With the Data Accessor
	12.1 Data Stores Accessed by the Data Accessor
	12.2 Accessing Diagnostic Data Online
	12.2.1 Accessing Data Using the Administration Console
	12.2.2 Accessing Data Programmatically Using Runtime MBeans
	12.2.3 Using WLST to Access Diagnostic Data Online
	12.2.4 Using the WLDF Query Language with the Data Accessor

	12.3 Accessing Diagnostic Data Offline
	12.4 Accessing Diagnostic Data Programmatically
	12.5 Resetting the System Clock Can Affect How Data Is Archived and Retrieved

	13 Deploying WLDF Application Modules
	13.1 Deploying a Diagnostic Module as an Application-Scoped Resource
	13.2 Using Deployment Plans to Dynamically Control Instrumentation Configuration
	13.3 Using a Deployment Plan: Overview
	13.4 Creating a Deployment Plan Using weblogic.PlanGenerator
	13.5 Sample Deployment Plan for Diagnostics
	13.6 Enabling Hot-Swap Capabilities
	13.7 Deploying an Application with a Deployment Plan
	13.8 Updating an Application with a Modified Plan

	14 Configuring and Using WLDF Programmatically
	14.1 How WLDF Generates and Retrieves Data
	14.2 Mapping WLDF Components to Beans and Packages
	14.3 Programming Tools
	14.3.1 Configuration and Runtime APIs
	14.3.1.1 Configuration APIs
	14.3.1.2 Runtime APIs

	14.4 WLDF Packages
	14.5 Programming WLDF: Examples
	14.5.1 Example: DiagnosticContextExample.java
	14.5.2 Example: HarvesterMonitor.java
	14.5.2.1 Notification Listeners
	14.5.2.2 HarvesterMonitor.java

	14.5.3 Example: JMXAccessorExample.java

	A WLDF Query Language
	A.1 Components of a Query Expression
	A.2 Supported Operators
	A.3 Operator Precedence
	A.4 Numeric Relational Operations Supported on String Column Types
	A.5 Supported Numeric Constants and String Literals
	A.6 About Variables in Expressions
	A.7 Creating Watch Rule Expressions
	A.7.1 Creating Log Event Watch Rule Expressions
	A.7.2 Creating Instrumentation Event Watch Rule Expressions
	A.7.3 Creating Harvester Watch Rule Expressions

	A.8 Creating Data Accessor Queries
	A.8.1 Data Store Logical Names
	A.8.2 Data Store Column Names

	A.9 Creating Log Filter Expressions
	A.10 Building Complex Expressions

	B WLDF Instrumentation Library
	B.1 Diagnostic Monitor Library
	B.2 Diagnostic Action Library
	B.2.1 TraceAction
	B.2.2 DisplayArgumentsAction
	B.2.3 TraceElapsedTimeAction
	B.2.4 StackDumpAction
	B.2.5 ThreadDumpAction
	B.2.6 MethodInvocationStatisticsAction
	B.2.6.1 Configuring the Harvester to Collect MethodInvocationStatisticsAction Data
	B.2.6.2 Configuring Watch Rules Based on MethodInvocationStatistics Metrics
	B.2.6.3 Using JMX to Collect Data

	C Using Wildcards in Expressions
	C.1 Using Wildcards in Harvester Instance Names
	C.1.1 Examples

	C.2 Specifying Complex and Nested Harvester Attributes
	C.2.1 Examples

	C.3 Using the Accessor with Harvested Complex or Nested Attributes
	C.4 Using Wildcards in Watch Rule Instance Names
	C.5 Specifying Complex Attributes in Harvester Watch Rules

	D WebLogic Scripting Tool Examples
	D.1 Example: Dynamically Creating DyeInjection Monitors
	D.2 Example: Configuring a Watch and a JMX Notification
	D.3 Example: Writing a JMXWatchNotificationListener Class
	D.4 Example: Registering MBeans and Attributes For Harvesting

	Glossary

