

Oracle® Fusion Middleware
Developer’s Guide for Content Server

11g Release 1 (11.1.1)

E10807-01

May 2010

Oracle Fusion Middleware Developer's Guide for Content Server, 11g Release 1 (11.1.1)

E10807-01

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: Karen Johnson

Contributing Author: Sandra Christiansen, Jean Wilson

Contributor: Eva Cordes, Daniel Lew, Rick Petty, Peter Walters, Sam White

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Document Organization... xi
Documentation Accessibility ... xi
Related Documents .. xii
Conventions .. xii

What's New.. xiii

New Features for 11g Release 1 (11.1.1) ... xiii
Changed Features for 11g Release 1 (11.1.1).. xiii

1 Introduction to Modifying Your Content Server

1.1 Customization Types.. 1-1
1.2 Customization Planning .. 1-1
1.3 Recommended Skills and Tools.. 1-2
1.4 Troubleshooting .. 1-3
1.4.1 Viewing Server Errors... 1-4
1.4.2 Viewing Page Data .. 1-4
1.4.3 Monitoring Resource Loading ... 1-4

2 Content Server Architecture

2.1 Content Server Directories and Files.. 2-1
2.1.1 Terminology for UCM Directories .. 2-1
2.1.2 bin Directory... 2-2
2.1.3 config Directory ... 2-3
2.1.4 components Directory... 2-4
2.1.5 resources/core Directory.. 2-4
2.1.6 weblayout Directory.. 2-5
2.2 Resources.. 2-5
2.3 Content Server Behavior .. 2-6
2.3.1 Startup Behavior .. 2-6
2.3.1.1 Effects of Configuration Loading... 2-8
2.3.2 Resource Caching .. 2-8
2.3.3 Content Server Requests... 2-9
2.3.3.1 Page Retrieval... 2-10

iv

2.3.3.2 Content Server Services .. 2-10
2.3.3.3 Search Services ... 2-10
2.3.4 Page Assembly .. 2-11
2.3.5 Database Interaction... 2-11
2.3.6 Resolving Localized Strings .. 2-12

3 Working with Components

3.1 Components Overview .. 3-1
3.1.1 Component Wizard ... 3-1
3.1.2 Advanced Component Manager ... 3-2
3.1.3 ComponentTool ... 3-4
3.1.4 Component Files Overview.. 3-4
3.1.5 Enabling and Disabling Components... 3-4
3.2 About Directories and Files ... 3-5
3.2.1 HDA Files.. 3-5
3.2.1.1 Elements in HDA Files... 3-6
3.2.1.2 The idc_components.hda File ... 3-8
3.2.1.3 Component Definition Files .. 3-8
3.2.2 Custom Resource Files .. 3-9
3.2.3 Data Binder .. 3-10
3.2.3.1 LocalData .. 3-10
3.2.3.2 Active or Non-active ResultsSets .. 3-10
3.2.3.3 Environment... 3-10
3.2.4 Manifest File .. 3-11
3.2.5 Other Files.. 3-12
3.2.5.1 Customized Site Files .. 3-12
3.2.5.2 Component Zip File .. 3-12
3.2.5.3 Custom Installation Parameter Files... 3-12
3.2.6 Typical Directory Structure... 3-12
3.3 Development Recommendations .. 3-13
3.3.1 Creating a Component... 3-13
3.3.2 Working with Component Files ... 3-13
3.3.3 Using a Development Instance ... 3-14
3.3.4 Component File Organization .. 3-14
3.3.5 Naming Conventions ... 3-15
3.4 Component File Detail .. 3-15
3.4.1 The idc_components.hda File ... 3-15
3.4.1.1 Components ResultSet.. 3-16
3.4.2 Component Definition (Glue) File.. 3-16
3.4.2.1 ResourceDefinition ResultSet .. 3-17
3.4.2.1.1 ResourceDefinition ResultSetColumns ... 3-18
3.4.2.2 MergeRules ResultSet ... 3-19
3.4.2.2.1 MergeRules Columns .. 3-19
3.4.2.3 Filters ResultSet.. 3-20
3.4.2.4 ClassAliases ResultSet .. 3-20
3.5 Resources Detail ... 3-20
3.5.1 HTML Include... 3-21

v

3.5.1.1 The Super Tag .. 3-21
3.5.1.2 Editing an HTML Include Resource ... 3-22
3.5.2 String... 3-22
3.5.2.1 String Parameters .. 3-23
3.5.2.2 Editing a String Resource ... 3-25
3.5.3 Dynamic Tables... 3-25
3.5.3.1 Editing a Dynamic Table Resource ... 3-25
3.5.4 Static Tables ... 3-26
3.5.4.1 Editing a Static Table Resource ... 3-26
3.5.5 Query .. 3-26
3.5.5.1 Editing a Query Resource... 3-28
3.5.6 Service... 3-28
3.5.6.1 Service Example... 3-30
3.5.6.1.1 Attributes... 3-31
3.5.6.1.2 Actions ... 3-32
3.5.6.2 Editing a Service Resource ... 3-35
3.5.7 Templates... 3-35
3.5.7.1 Template and Report Pages ... 3-38
3.5.7.1.1 Template Page Example .. 3-38
3.5.7.1.2 Report Page Example... 3-39
3.5.7.2 Editing a Template Resource ... 3-40
3.5.8 Environment.. 3-41
3.5.8.1 Editing an Environment Resource .. 3-42
3.6 Installing Components .. 3-42
3.6.1 Using Component Manager.. 3-43
3.6.2 Using Component Wizard... 3-43
3.6.3 Using ComponentTool... 3-44

4 Changing the Look and Navigation of the Content Server Interface

4.1 Modifying the Content Server Interface .. 4-1
4.1.1 Skins and Layouts.. 4-1
4.1.1.1 Types of Skins and Layouts .. 4-1
4.1.1.1.1 Skins .. 4-2
4.1.1.1.2 Layouts.. 4-2
4.1.1.2 Selecting Skins and Layouts.. 4-2
4.1.1.3 Configuration Entries... 4-2
4.1.1.4 Anonymous User Interface ... 4-3
4.1.2 Customizing the Interface .. 4-3
4.1.2.1 About Dynamic Publishing... 4-4
4.1.2.2 Creating New Layouts... 4-4
4.1.3 Optimizing the Use of Published Files ... 4-4
4.1.3.1 Bundling Files ... 4-5
4.1.3.2 Referencing Published Files .. 4-7
4.2 Using Dynamic Server Pages to Alter the Navigation of Web Pages 4-7
4.2.1 About Dynamic Server Pages .. 4-7
4.2.2 Page Types .. 4-9
4.2.2.1 IDOC File ... 4-9

vi

4.2.2.2 HCST File ... 4-9
4.2.2.3 HCSP File ... 4-9
4.2.2.4 HCSF File .. 4-10
4.2.3 Creating Dynamic Server Pages ... 4-10
4.2.4 Syntax ... 4-10
4.2.4.1 Idoc Script Tags.. 4-11
4.2.4.2 Comparison Operators ... 4-11
4.2.4.3 Special Characters.. 4-12
4.2.4.4 Referencing Metadata ... 4-12
4.2.5 Idoc Script Functions.. 4-13
4.2.5.1 docLoadResourceIncludes Function... 4-13
4.2.5.1.1 Parameters ... 4-13
4.2.5.2 executeService Function ... 4-14
4.2.6 HCSF Pages.. 4-14
4.2.7 Development Recommendations ... 4-14
4.2.7.1 General Tips ... 4-15
4.2.7.2 HCSF Tips... 4-15
4.2.8 HCSF Pages.. 4-16
4.2.8.1 Load Section ... 4-16
4.2.8.1.1 HTML Declaration ... 4-16
4.2.8.1.2 docLoadResourceIncludes Function ... 4-17
4.2.8.1.3 Meta Tag .. 4-17
4.2.8.1.4 Variables and Includes .. 4-17
4.2.8.2 Data Section.. 4-17
4.2.8.2.1 Data Section Structure ... 4-17
4.2.8.2.2 idcformrules Tag .. 4-18
4.2.8.2.3 Metadata Tags... 4-18
4.2.8.2.4 Nested Tags... 4-19
4.2.8.2.5 Referencing XML Tags .. 4-19
4.2.8.2.6 Form Elements .. 4-19
4.2.8.2.7 ResultSets... 4-20
4.2.8.3 Form Section... 4-22
4.2.8.3.1 Form Begin .. 4-22
4.2.8.3.2 Form Properties .. 4-22
4.2.8.3.3 Form Fields.. 4-23
4.2.8.3.4 Form Buttons... 4-23
4.2.8.3.5 Form End ... 4-24
4.2.9 Working with Dynamic Server Pages.. 4-24
4.2.9.1 Common Code for Forms... 4-29
4.2.9.1.1 Retrieving File Information... 4-29
4.2.9.1.2 Referencing the File Extension ... 4-29
4.2.9.1.3 Defining Form Information... 4-30
4.2.9.1.4 Defining Form Fields ... 4-30
4.2.9.1.5 Defining Hidden Fields ... 4-30
4.2.9.1.6 Submitting the Form .. 4-30

vii

5 Modifying System Functionality

5.1 Changing System Settings ... 5-1
5.2 Using Components ... 5-2
5.3 Changing Configuration Information.. 5-4
5.4 Customizing Services ... 5-5
5.5 Generating Action Menus.. 5-6
5.5.1 Creating Display Tables.. 5-6
5.5.1.1 Headline View Tables .. 5-6
5.5.1.2 Thumbnail View Tables... 5-8
5.5.2 Customizing Action Menus ... 5-8

6 Integration Methods

6.1 Overview of Integration Methods .. 6-1
6.2 IdcCommand Utility... 6-2
6.2.1 Overview of IdcCommand... 6-2
6.2.2 IdcCommand Setup and Execution .. 6-2
6.2.3 Command File .. 6-3
6.2.3.1 Command File Syntax.. 6-3
6.2.3.2 Precedence ... 6-4
6.2.3.3 Special Tags and Characters ... 6-4
6.2.4 Configuration Options .. 6-5
6.2.4.1 Command File... 6-5
6.2.4.2 User... 6-5
6.2.4.3 Log File... 6-5
6.2.4.4 Connection Mode ... 6-5
6.2.5 Running IdcCommand ... 6-6
6.2.6 Using the Launcher ... 6-6
6.2.6.1 Quoting .. 6-7
6.2.6.2 Computed Settings ... 6-7
6.2.6.3 Launcher Environment Variables .. 6-9
6.2.6.4 User Interface ... 6-10
6.2.6.5 Configuring the Launcher .. 6-11
6.2.6.6 Configuration File Example ... 6-11
6.2.7 Calling Services Remotely ... 6-13
6.3 COM Integration .. 6-14
6.3.1 ActiveX Interface... 6-14
6.3.1.1 Setting Up IdcCommandUX.. 6-15
6.3.1.2 Calling IdcCommandUX from a Visual Basic Environment............................... 6-15
6.3.1.3 Calling IdcCommandUX from a Visual C++ Environment 6-15
6.3.1.4 Executing Services ... 6-15
6.3.1.5 Calling IdcCommandUX from an Active Server Page (ASP) 6-16
6.3.1.6 Formatting with a Resource Include... 6-19
6.3.1.7 Connect to Content Server from a Remote System .. 6-20
6.3.2 IdcCommandUX Methods .. 6-23
6.3.2.1 addExtraheadersForCommand ... 6-23
6.3.2.2 closeServerConnections.. 6-24

viii

6.3.2.3 computeNativeFilePath .. 6-24
6.3.2.4 computeURL .. 6-26
6.3.2.5 computeWebFilePath.. 6-28
6.3.2.6 connectToServer .. 6-29
6.3.2.7 executeCommand.. 6-30
6.3.2.8 executeFileCommand ... 6-31
6.3.2.9 forwardRequest ... 6-31
6.3.2.10 getLastErrorMessage... 6-31
6.3.2.11 initRemote... 6-32
6.3.3 OCX Interface .. 6-32
6.3.4 IdcClientOCX Component .. 6-33
6.3.4.1 IdcClient OCX Description... 6-33
6.3.4.1.1 General Description ... 6-33
6.3.4.1.2 Events, Methods, and Properties ... 6-34
6.3.4.1.3 IdcClient OCX Interface .. 6-35
6.3.4.2 IdcClient OCX Control Setup .. 6-35
6.3.4.2.1 Component Setup... 6-35
6.3.4.2.2 Creating a Visual Interface.. 6-35
6.3.5 IdcClient Events .. 6-44
6.3.5.1 IIntradocBeforeDownload.. 6-44
6.3.5.2 IIntradocBrowserPost ... 6-45
6.3.5.3 IntradocBrowserStateChange .. 6-45
6.3.5.4 IIntradocRequestProgress .. 6-45
6.3.5.5 IntradocServerResponse ... 6-45
6.3.6 IdcClient Methods .. 6-45
6.3.6.1 AboutBox .. 6-46
6.3.6.2 Back.. 6-47
6.3.6.3 CancelRequest.. 6-47
6.3.6.4 DoCheckoutLatestRev .. 6-47
6.3.6.5 DownloadFile... 6-48
6.3.6.6 DownloadNativeFile... 6-48
6.3.6.7 Drag ... 6-49
6.3.6.8 EditDocInfoLatestRev... 6-49
6.3.6.9 Forward... 6-49
6.3.6.10 GoCheckinPage.. 6-50
6.3.6.11 Home ... 6-50
6.3.6.12 InitiateFileDownload .. 6-51
6.3.6.13 InitiatePostCommand ... 6-51
6.3.6.14 Move.. 6-52
6.3.6.15 Navigate.. 6-52
6.3.6.16 NavigateCgiPage ... 6-52
6.3.6.17 Refresh Browser... 6-52
6.3.6.18 SendCommand .. 6-53
6.3.6.19 SendPostCommand... 6-53
6.3.6.20 SetFocus .. 6-53
6.3.6.21 Show DMS .. 6-54
6.3.6.22 ShowDocInfoLatestRev .. 6-54

ix

6.3.6.23 ShowWhatsThis ... 6-54
6.3.6.24 StartSearch .. 6-54
6.3.6.25 Stop .. 6-55
6.3.6.26 UndoCheckout ... 6-55
6.3.6.27 ViewDocInfo... 6-55
6.3.6.28 ViewDocInfoLatestRev ... 6-56
6.3.6.29 ZOrder... 6-56
6.3.7 IdcClient Properties.. 6-57
6.3.7.1 ClientControlledContextValue.. 6-57
6.3.7.2 HostCgiUrl ... 6-57
6.3.7.3 Password... 6-57
6.3.7.4 UseBrowserLoginPrompt... 6-57
6.3.7.5 UseProgressDialog .. 6-57
6.3.7.6 UserName... 6-58
6.3.7.7 Working Directory... 6-58
6.3.8 ODMA Integration ... 6-58
6.3.8.1 ODMA Client ... 6-58
6.3.8.2 ODMA Interfaces... 6-59
6.4 RIDC Integration.. 6-59
6.5 JSP Integration.. 6-60
6.5.1 JSP Execution... 6-60
6.5.2 Tomcat .. 6-60
6.5.3 Features .. 6-61
6.5.4 Configuring JSP Support ... 6-61
6.5.5 Loading Example Pages... 6-62
6.6 Java 2 Enterprise Edition Integration (J2EE) .. 6-62
6.6.1 Content Integration Suite Architecture ... 6-62
6.6.2 Accessing the UCPM API .. 6-63
6.6.3 UCPM API Methodology .. 6-63
6.7 Web Services ... 6-63
6.7.1 Web Services Framework .. 6-63
6.7.2 Virtual Folders and WebDAV Integration.. 6-64
6.7.2.1 Virtual Folders ... 6-65
6.7.2.2 WebDAV Integration .. 6-65
6.7.2.2.1 WebDAV Clients .. 6-66
6.7.2.2.2 WebDAV Servers.. 6-66
6.7.2.2.3 WebDAV Architecture .. 6-66

7 Using Oracle UCM Web Services

7.1 Overview of Oracle UCM Web Services.. 7-1
7.2 Oracle UCM Web Services... 7-2
7.3 Installation and Configuration.. 7-3
7.4 Security ... 7-3
7.4.1 Configuring WS-Security through WS-Policy... 7-4
7.4.2 Configuring SAML Support... 7-4
7.4.2.1 Configuring a Keystore.. 7-4
7.4.2.2 Configuring Server JPS to Use the Keystore... 7-4

x

7.4.2.3 Creating a Client CSF... 7-5
7.4.2.4 Configuring a Java Client to Use the Keystore and CSF... 7-5

Index

xi

Preface

While Content Server is highly functional "out-of-the-box," there are many ways to
tailor it to your site requirements. This guide provides the background information
necessary to customize your content server instance.

Audience
This guide is intended for developers and administrators who want to customize
Content Server software to suit content management needs that are specific to their
business or organization.

Document Organization
This guide includes the following sections:

■ Chapter 1, "Introduction to Modifying Your Content Server" provides an
introduction to the methods and tools you can use to customize Content Server.

■ Chapter 2, "Content Server Architecture" describes the architecture of Content
Server and how that affects the customization you can make.

■ Chapter 3, "Working with Components" describes how to use components to
modify or add functionality to Content Server.

■ Chapter 4, "Changing the Look and Navigation of the Content Server Interface"
defines the items you can adjust to change the look and navigation of the Content
Server interface.

■ Chapter 5, "Modifying System Functionality" describes how you can change the
functionality of Content Server with system settings, components, and
configuration variables.

■ Chapter 6, "Integration Methods" provides information about integrating the
Content Server with enterprise applications such as application servers, catalog
solutions, and enterprise portals.

■ Chapter 7, "Using Oracle UCM Web Services" discusses using Web Services and
SOAP (Simple Object Access Protocol) to manage Content Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to

xii

facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Content Server 11g
Release 1 (11.1.1) documentation set:

■ Oracle Fusion Middleware System Administrator’s Guide for Content Server

■ Oracle Fusion Middleware Application Administrator’s Guide for Content Server

■ Oracle Fusion Middleware Idoc Script Reference Guide

■ Oracle Fusion Middleware Services Reference Guide for Oracle Universal Content
Management

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiii

What's New

This section introduces the new and changed features of Oracle Universal Content
Management (UCM) Content Server developer information covered in this guide.

New Features for 11g Release 1 (11.1.1)
11g Release 1 (11.1.1) includes the following new features in this guide:

■ This guide combines information that was previously contained in the following
Content Server release 10g documents:

– Getting Started with the Stellent SDK

– Modifying the Content Server Interface

– Working with Components

– Idc Command Reference Guide

– Dynamic Server Pages Guide

– Using WSDL Generator and SOAP

■ Web services: Oracle UCM uses Oracle WebLogic Server Web Services. See
Chapter 7, "Using Oracle UCM Web Services".

■ ComponentTool: The ComponentTool utility has been added to provide a
command-line tool for installing, enabling, and disabling components. See
Chapter 3, "Working with Components".

■ Content Server deployment: Content Server is deployed on an Oracle WebLogic
Server in the Oracle Enterprise Content Management Suite, which means changes
in configuring and administering Oracle UCM. For more information, see Oracle
Fusion Middleware System Administrator’s Guide for Content Server.

Changed Features for 11g Release 1 (11.1.1)
11g Release 1 (11.1.1) includes the following changes:

■ Oracle UCM Directories and Files: Oracle UCM 11g Release 1 (11.1.1) is provided
as part of a full media install (including Oracle Enterprise Content Management
Suite and Oracle WebLogic Server), and the deployed Oracle UCM directories and
files. The directory structure for an Oracle UCM 11g instance is different from a
10g Release instance.The following terms and pathnames are important to
understanding and working with the Oracle UCM structure:

■ IdcHomeDir: This variable is used to refer to the directory in ECM_ORACLE_
HOME where the Oracle UCM (ucm) server media is located. The server

xiv

media can run Content Server, Inbound Refinery, or Universal Records
Management.

■ DomainHome: This variable is used to refer to the user-specified directory
where an Oracle UCM server is deployed to run on an Oracle WebLogic
Server application server. The DomainHome/ucm/short-product-id/bin
directory contains the intradoc.cfg file and executables.

■ short-product-id: This variable is used to refer to the type of Oracle UCM server
deployed on an Oracle WebLogic Server. Possible values include:

* cs (Content Server)

* ibr (Inbound Refinery)

* urm (Universal Records Management)

■ IntradocDir: This variable is used to refer to the root directory for configuration
and data files specific to a Content Server instance deployed on an Oracle
UCM domain on an Oracle WebLogic Server. This Idoc Script variable is
configured for one type of Content Server instance: Content Server, or
Inbound Refinery, or Universal Records Management. This directory can be
located elsewhere, but the default location is
DomainHome/ucm/short-product-id/.

■ SOAP: SOAP is provided with Oracle WebLogic Server, not in Oracle UCM.

■ WSDL Generator: The WSDL Generator is not supported.

■ Web Form Editor: The Web Form Editor user interface and FCKEditor are not
supported.

1

Introduction to Modifying Your Content Server 1-1

1Introduction to Modifying Your Content
Server

This chapter provides an overview of Content Server customization and describes the
tools you need and the resources that are available. It includes the following sections:

■ "Customization Types" on page 1-1

■ "Customization Planning" on page 1-1

■ "Recommended Skills and Tools" on page 1-2

■ "Troubleshooting" on page 1-3

1.1 Customization Types
Three major types of alterations can be made to the core Content Server:

■ Altering the look and feel of the product: You can customize the look-and-feel of
the Content Server interface to meet your organization's specifications. Interface
modifications can be as simple as replacing the icons that appear on the standard
Content Server Web pages or as complex as a complete redesign of the interface.

■ Modifying the functionality of the product: By changing how the product
functions, you can tailor Content Server to the way your business or organization
functions. For example, you can change the default date and time stamp, or
change aspects of check-in behavior.

■ Integrating the product into your environment: You can use shell scripts, SOAP,
J2EE, JSP, and clusters to more fully integrate Content Server into your site's
current environment.

1.2 Customization Planning
Before approaching customization, it is important to clarify exactly why the
customization is being undertaken. For example, to add corporate branding, you can
use the Modify Layout Samples to do so. Or to change security features, you can use
components to modify the default security settings.

Customization often occurs to make the Content Server match the business practices of
an organization. Often, after evaluating your business processes, you may find that
sometimes it is more efficient to slightly alter your procedures before customizing the
Content Server.

There are six major stages in customization:

Recommended Skills and Tools

1-2 Oracle Fusion Middleware Developer's Guide for Content Server

1. Determine why you want to customize. Is there corporate personalization to be
done? Is there a better way to present navigation options or material? Depending
on what type of need you find, you can determine which tools are best to use.

Oftentimes the cosmetic details that you change are the ones that can most satisfy
your users; changing items such as layout, colors, and images often provide the
effect that users are looking for.

2. Plan the customization carefully, taking into account those aspects of the Content
Server environment that might be changed even peripherally by the
customization. All customization should be done in a test environment, separate
from the site's production environment.

3. Check to see if a solution may be available. The Samples on the Support Web site
contain many types of customization. It's possible that there may be an existing
component that can be used with just a little editing. A number of 'samples' are
provided on an as-is basis. These are components or files that demonstrate,
enhance or extend the functionality of your Content Server products.

4. Evaluate the problem and how essential it is to solve. Some problems may
require more effort to fix than will provide payback. Perhaps customization is not
needed, but simply a minor change in business practices.

5. Test the customization thoroughly in a separate environment. If possible, have
end users assist with the testing. When the testing has passed all criteria for
release, inform users about the changes and how to implement them.

6. Document the customization that you create. All alterations should be
documented as completely as possible, both within the actual customization (for
example, as a comment in a dynamic server page or in a component) and as a
separate README document. This provides an historical audit trail for others
who may need to add to the customization later.

1.3 Recommended Skills and Tools
Content Server brings together a wide variety of technologies to deliver advanced
functionality. To modify the system, certain experience and skills with some or all of
these technologies is required.

The technical skills required to customize your content management system can vary
depending on the complexity of the customization. For example, much customization
can be accomplished with knowledge of HTML and Idoc Script.

This list describes, in descending order of importance, the skills you may need to
modify the Content Server:

■ Content Server Architecture—You should thoroughly understand how the
Content Server works and how components and dynamic server pages function
before you begin customizing your system.

■ HTML/CSS—You'll need a good understanding of HTML and cascading style
sheets (CSS) to make changes to the Content Server Web page templates. The
templates are not complex in their use of HTML, but they make constant use of
HTML tables and frequent use of forms. The std_page.idoc and std_css.idoc files
include cascading style sheets to control the look-and-feel of the default templates,
including fonts and layout.

■ Idoc Script—Idoc Script is the custom server-side scripting language for Content
Server. Almost every Content Server Web page includes some Idoc Script, which
provides the methods for processing various page elements.

Troubleshooting

Introduction to Modifying Your Content Server 1-3

■ JavaScript—The internal content of most Content Server pages do not use
JavaScript, but the Search, Checkin, and Update pages are notable exceptions. You
must have an understanding of JavaScript before you create customization that is
called in place of these pages. Also, you must understand JavaScript to alter
layouts. Changing layouts relies heavily on JavaScript and cascading style sheets
for design and navigation.

■ SQL—The Content Server uses Structured Query Language to perform queries on
the database. Knowledge of SQL can help you understand the standard queries
and create your own custom queries.

■ Java Programming—The Content Server is implemented with Java classes. You
should have a thorough understanding of Java and the Content Server Java class
files before attempting to make any changes to the underlying functionality.
However, the product can be customized extensively without having to work with
Java.

■ Other programming—Experience with other tools such as Visual Basic, COM,
.Net, C++, VBScript, and so forth may be helpful if you are doing complex
customization or integrating your content management system with other
systems.

You may find the following tools useful when customizing the Content Server:

■ Text Editor—Most product customizing can be done with a normal text editor
such as Microsoft WordPad or vi.

■ HTML Editor—If you prefer to use a graphical HTML editor to work with HTML
pages, use caution—such programs often change the source HTML, and may
cause Idoc Script tags to be converted into a string of characters that are no longer
be recognized by the Content Server. If you use a graphical editor, make sure you
edit in a non-graphical mode.

■ Multiple Browsers—You should test customization on multiple versions of any
Web browsers that might be used to interface with the content management
system. Internet Explorer, Netscape, Mozilla, and Safari do not display content in
the same manner, and different versions of the same browser may exhibit different
behaviors.

■ JavaScript Debugger—A JavaScript debugger can ease the task of JavaScript
development. A number of JavaScript debuggers are available for download from
the Internet.

■ Integrated Development Environment (IDE) for Java—If your customization
requires the development of Java code, you need an appropriate Java
development environment.

1.4 Troubleshooting
Several troubleshooting aids are available to help evaluate Content Server pages as
they are used. This section discusses three broad types of troubleshooting aids:

■ "Viewing Server Errors" on page 1-4

■ "Viewing Page Data" on page 1-4

■ "Monitoring Resource Loading" on page 1-4

Troubleshooting

1-4 Oracle Fusion Middleware Developer's Guide for Content Server

1.4.1 Viewing Server Errors
Syntax errors and other mistakes in component files or dynamic server pages can
cause errors in the Content Server. If the Content Server fails, it reports the error in the
following locations:

■ If you run the Content Server from a command prompt, you can view the error in
the console window.

■ If you can log in to the Content Server and display the Admin Server page, you
can view the Content Server log by selecting the Content Server and then clicking
the View Server Output link.

■ You can view the Content Server log files in the
DomainHome/ucm/cs/weblayout/groups/secure/logs/ directory.

1.4.2 Viewing Page Data
The IsJava setting displays the local data of a Content Server Web page.

■ In a Web browser, add the following code in the Address box to the end of the
page's URL:

&IsJava=1

■ On a template page or in an include, use the following code:

<$IsJava=1$>

The IsDebugTrace setting displays a tree structure view of all includes being called on a
Content Server Web page. The debug trace appears at the bottom of the Web page.

■ In a Web browser, add the following code in the Address box to the end of the
page's URL:

&IsDebugTrace=1

■ On a template page or in an include, use the following code:

<$IsDebugTrace=1$>

■ To place a marker in the script debug trace, place the following code at the point
where you want to see a value or perform a step:

<$trace(marker code)$>

For example, you can use the following code to insert the current user name in the
debug trace (the eval function must be used to evaluate Idoc Script):

<$trace(eval("The user name is "<$UserName$>)$>

IsJava and IsDebugTrace are discussed in detail in the Oracle Fusion Middleware
Idoc Script Reference Guide.

1.4.3 Monitoring Resource Loading
Three configuration settings enable you to view the loading of resources when you
run the Content Server from a command line. Set any of these variables equal to 1 in
the IntradocDir/config/config.cfg file:

■ TraceResourceLoad logs all resources loaded, resource overrides, resource
conflicts, and resource merges.

Troubleshooting

Introduction to Modifying Your Content Server 1-5

■ TraceResourceOverride logs when a system resource is overridden by a
component resource or a component resource is loaded twice.

■ TraceResourceConflict logs when a system resource is overridden twice by
component resources.

These configuration settings are discussed in detail in the Oracle Fusion Middleware Idoc
Script Reference Guide.

The following is an example of the command line output when TraceResourceLoad=1.

Loading Java Resources
Loading ConflictTester Component
Loading ConflictTester2 Component
Loading Compression Component
Merging into Filters
MERGE [validateStandard, compression.ConversionParamsFilter, null, 1]
Loading Html Resources
Loading System Resource
c:/intradoc/shared/config/resources/upper_clmns_map.htm
ColumnTranslation
Loading System Resource
c:/intradoc/shared/config/resources/indexer.htm
IndexerQueryTable
IndexerStatesTable
IndexerTransitionsTable
DefaultIndexerCycles
Loading System Resource
c:/intradoc/shared/config/resources/std_page.idoc
std_html_head_declarations
std_definitions
std_html_head_definition_declarations
std_page_variable_definitions
…

Loading System Resource
c:/intradoc/shared/config/resources/std_docrefinery.htm
AdditionalRenditionsSource
DocumentConversions
ConversionSteps
Loading ConflictTester Component
c:/intradoc/custom/ConflictTester/resources/conflicttester_resource.htm
conflict_tester_include
ConflictTester_Table
Loading ConflictTester2 Component
c:/intradoc/custom/ConflictTester2/resources/conflicttester_resource.htm
OVERRIDE conflict_tester_include
CONFLICT ConflictTester_Table
Loading Compression Component
c:/intradoc/custom/Compression/Compression_resource.htm
OVERRIDE searchapi_result_definitions
OVERRIDE searchapi_thumbnail_result_doc_href_start
OVERRIDE searchapi_result_table_content_begin
compression_thumbnail_img
Loading Compression Component
c:/intradoc/custom/Compression/Compression_handlers.htm
CompressionHandlers
Merging ConflictTester_Templates into IntradocTemplates
MERGE HOME_PAGE
Merging ConflictTester_Templates into IntradocTemplates
MERGE HOME_PAGE

Troubleshooting

1-6 Oracle Fusion Middleware Developer's Guide for Content Server

Merging CompressionIntradocTemplates into IntradocTemplates
MERGE COMPRESSION_IMAGE_INFO
Merging CompressionHandlers into ServiceHandlers
MERGE [FileService, compression.CompressionFileServiceHandler, 100]
MERGE [FileService, DocCommonHandler, 100]
MERGE [DocService, compression.CompressionFileServiceHandler, 100]
…

2

Content Server Architecture 2-1

2Content Server Architecture

To create a customization efficiently and effectively, you should have an
understanding of how Content Server works. This chapter describes the architecture of
Content Server in the context of what you need to know before beginning a
customization project. It includes the following sections:

■ "Content Server Directories and Files" on page 2-1

■ "Resources" on page 2-5

■ "Content Server Behavior" on page 2-6

2.1 Content Server Directories and Files
When you create custom components or dynamic server pages, you work primarily
with files in certain directories. This section includes the following topics:

■ "Terminology for UCM Directories" on page 2-1

■ "bin Directory" on page 2-2

■ "config Directory" on page 2-3

■ "components Directory" on page 2-4

■ "resources/core Directory" on page 2-4

■ "weblayout Directory" on page 2-5

2.1.1 Terminology for UCM Directories
UCM documentation uses the following terms when referring to variables in the
directories associated with the UCM install configuration and deployment:

■ IdcHomeDir: The variable for the directory in $ORACLE_HOME where the Oracle
UCM (ucm) server media is located. The server media can run Content Server,
Inbound Refinery, or Universal Records Management.

■ DomainHome: The variable for the user-specified directory where the Oracle UCM
server is deployed to run inside the Oracle WebLogic Server application server.
The DomainHome/ucm/short-product-id/bin directory contains the intradoc.cfg file
and executables.

Caution: Modifying the default variables in these files can cause the
content server to malfunction. See the Oracle Fusion Middleware Idoc
Script Reference Guide for more information about configuration
variables.

Content Server Directories and Files

2-2 Oracle Fusion Middleware Developer's Guide for Content Server

■ short-product-id: An abbreviated name for the type of Oracle UCM server deployed
on an Oracle WebLogic Server, used as the context root (default
HttpRelativeWebRoot configuration value). Possible values are:

■ cs—Content Server

■ ibr—Inbound Refinery

■ urm—Records Manager

■ IntradocDir: The variable for the root directory for configuration and data files
specific to a Content Server instance. The default location for this directory is
DomainHome/ucm/short-product-id.

2.1.2 bin Directory
The bin directory is the root directory for content server startup files. It contains the
intradoc.cfg file and the executable files that run the content server services, applets,
and utilities. It is located at DomainHome/ucm/short-product-id/bin, where
short-product-id specifies whether it is for Content Server, Inbound Refinery, or Records
Manager.

The intradoc.cfg file is used to define system variables for the content server, including
directory, Internet, and refinery settings. Several of these variables can be set using the
content server's System Properties utility.

The following is a typical intradoc.cfg file:

<?cfg jcharset="Cp1252"?>
#Content Server Directory Variables
IntradocDir=C:/oracle/idcm1/
WebBrowserPath=C:/Program Files/Internet Explorer/iexplore.exe

Element Description

Executables Services

■ IdcServer

■ IdcServerNT

Applets

■ IntradocApp (launches all Admin tools)

Utilities

■ Batch Loader

■ Installer

■ IdcAnalyze

■ Component Wizard

■ System Properties

■ IdcCommand

intradoc.cfg file Configuration file that contains the settings for content server services,
applets, and utilities.

Note: If the content server is set up as an automatic service and you
attempt to start a content server service (IdcServer or IdcServerNT)
from the command line, you receive an error message: The port
could not be listened to and is already is use.

Content Server Directories and Files

Content Server Architecture 2-3

CLASSPATH=$COMPUTEDCLASSPATH;$SHAREDDIR/classes/jtds.jar

#Additional Variables
HTMLEditorPath=C:/Program Files/Windows XP/Accessories/wordpad.exe
JAVA_SERVICE_EXTRA_OPTIONS=-Xrs

2.1.3 config Directory
The config directory stores global content server configuration information. This
directory can be located elsewhere, but the default location is
DomainHome/ucm/short-product-id/config.

The config.cfg file is used to define global variables for the content server system.
Several of these variables can be set using the content server's System Properties utility
or by modifying the variables on the Admin Server General Configuration page.

The following is a typical config.cfg file:

<?cfg jcharset="Cp1252"?>
#Content Server System Properties
IDC_Name=idcm1
SystemLocale=English-US
InstanceMenuLabel=JeanWTestSystem
InstanceDescription=idcm1
SocketHostAddressSecurityFilter=127.0.0.1|10.10.1.14

#Database Variables
IsJdbc=true
JdbcDriver=com.internetcds.jdbc.tds.Driver
JdbcConnectionString=jdbc:freetds:sqlserver://jwilsonnote:1433/oracle1;charset=UTF
8;TDS=7.0
JdbcUser=sa
JdbcPassword=UADle/+jRz7Fi8D/VzTDaGUCwUaQgQjKOQQEtI0PAqA=
JdbcPasswordEncoding=Intradoc
DatabasePreserveCase=0

#Internet Variables
HttpServerAddress=jwilsonnote
MailServer=mail.company.com
SysAdminAddress=sysadmin@company.com
SmtpPort=25
HttpRelativeWebRoot=/oracle/
CgiFileName=idcplg
UseSSL=No
WebProxyAdminServer=true
NtlmSecurityEnabled=No
UseNtlm=Yes

#General Option Variables
EnableDocumentHighlight=true
EnterpriseSearchAsDefault=0
IsDynamicConverterEnabled=0
IsJspServerEnabled=0
JspEnabledGroups=

#IdcRefinery Variables

Element Description

config.cfg file Defines system configuration variables.

Content Server Directories and Files

2-4 Oracle Fusion Middleware Developer's Guide for Content Server

#Additional Variables
WebServer=iis
UseAccounts=true
IdcAdminServerPort=4440
SearchIndexerEngineName=DATABASE
VIPApproval:isRepromptLogin=true
Vdk4AppSignature=SF37-432B-222T-EE65-DKST
Vdk4AppName=INTRANET INTEGRATION GROUP
IntradocServerPort=4444

2.1.4 components Directory
The IntradocDir/data/components directory contains the files that the content server
uses to configure system components:

The following example file is a component.hda file that defines the configuration status
for a component called help.

<?hda version="11.1.1.2.0-dev idcprod1 (091209T125156)" jcharset=UTF8
encoding=utf-8?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
@end
@ResultSet Components
2
name
location
help
components/help/help.hda
@end

2.1.5 resources/core Directory
The IdcHomeDir/resources directory contains two directories: admin and core. The
resources/core directory contains files that the content server uses to assemble Web
pages:

Element Description

idcshort-product-id_
components.hda

Identifies components that have been added to the content server
system and whether they are enabled or disabled. Example: idccs_
components.hda.

component.hda Identifies the configuration status for a component.

Element Description

config Holds base config files for the content server.

idoc Holds IdocScript dynamichtml and dynamicdata definitions.

install Holds files used by the installer and related applications.

javascript Holds files which are processed by the publishing engine and end up in
the weblayout directory as raw javascript files.

jspserver Holds jspserver xml files.

lang Holds localized string definitions for the content server.

reports Holds templates for content server reports.

Resources

Content Server Architecture 2-5

The IdcHomeDir/resources/admin directory contains the following resource types:

2.1.6 weblayout Directory
The DomainHome/ucm/short-product-id/weblayout directory contains the files that are
available to the Web server for display on the various pages of the content server Web
site:

2.2 Resources
Resources are files that define and implement the actual customization you make to
the content server. They can be pieces of HTML code, dynamic page elements, queries
that gather data from the database, services that perform content server actions, or
special code to conditionally format information.

Resources are a critical part of the content server software, so you must be familiar
with them before you attempt to create a custom component or dynamic server page.
You can create, edit, or remove a resource file by using the Component Wizard. You
also can use the Component Wizard as a starting point for creating custom resources.

Resources fall into distinct categories, although the first four types listed in the
following table are also called Resource-type resources:

resources Holds resource definitions (queries, page resources, services, and other
resource data) for the content server.

tables Holds IdocScript resource table definitions.

templates Holds templates for all content server pages (except reports).

Element Description

idoc Holds IdocScript dynamichtml definitions.

tables Holds IdocScript resource table definitions.

templates Holds templates for all content server pages (except reports).

Element Description

groups Holds the web-viewable content items and dynamic server pages.

images Holds images, such as icons and home page graphics.

resources Holds layouts, skins, and schema information.

Resource
Type Description Example of Standard Resource

HTML Include Defines pieces of HTML markup and
Idoc Script code that are used on
multiple content server Web page.

IdcHomeDir/resources/core/idoc
/std_page.idoc

String Defines localized strings for the user
interface and error messages.

IdcHomeDir/resources/core/lang
/cs_strings.htm

Dynamic Table
(HDA format)

Provides dynamic (frequently changed)
content in table format to the content
server.

IdcHomeDir/resources/core/datas
toredesign/columnIndexdList.hda

Element Description

Content Server Behavior

2-6 Oracle Fusion Middleware Developer's Guide for Content Server

2.3 Content Server Behavior
This section describes how the content server behaves in the following situations:

■ "Startup Behavior" on page 2-6

■ "Resource Caching" on page 2-8

■ "Content Server Requests" on page 2-9

■ "Page Assembly" on page 2-11

■ "Database Interaction" on page 2-11

■ "Resolving Localized Strings" on page 2-12

2.3.1 Startup Behavior
The following steps occur during Content Server startup:

1. Internal initialization occurs.

2. Configuration variables load.

3. Standard templates, resources, and reports load.

4. Custom components load (templates, resources, configuration variables, and
reports).

These steps are discussed in more detail on the following pages.

Static Table
(HTML format)

Provides static (seldom changed)
content in table format to the content
server.

IdcHomeDir/resources/ core/std_
locale.htm

Query Defines database queries. IdcHomeDir/resources/
core/tables/query.htm

Service Defines scripts for services that can be
performed by the content server.

IdcHomeDir/resources/
core/tables/std_services.htm

Template Defines templates, which contain the
code that the content server uses to
assemble a particular Web page.

IdcHomeDir/resources/core/temp
lates/checkin_new.htm

Environment Defines configuration settings for the
content server.

IntradocDir/config/config.cfg

Resource
Type Description Example of Standard Resource

Content Server Behavior

Content Server Architecture 2-7

Figure 2–1 Content server startup behavior

1. Internal Initialization Occurs: When the content server initializes internally, the
Java class files from the content server are read and the Java Virtual Machine
(JVM) is invoked. Any variables in the
DomainHome/ucm/short-product-id/intradoc.cfg file initialize as well.

2. Configuration Variables Load: After initializing, the content server loads the
config.cfg file from the IntradocDir/config directory. This file stores the system
properties and configuration variables, which are defined by name/value pairs
(such as SystemLocale=English-US).

The default information contained within the configuration file was supplied
during the content server installation process, but you can modify this file in
several ways:

■ By using the Admin Server General Configuration page, accessible from the
Administration menu.

■ By using the System Properties option, which is available from the Start menu
(in Windows) or by running the SystemProperties script, located in the /bin
directory of your installation (on UNIX).

■ By editing the configuration files directly.

■ By using a custom component.

Any time changes are made to the config.cfg file, you must restart the content
server for the changes to take effect.

3. Standard Resources, Templates, and Reports Load: For the Content Server to
function properly, many standard resources, templates, and reports must be
loaded. After the configuration settings have been loaded, the Content Server
reads the entries in the IdcHomeDir/resources/core/templates/templates.hda file
and the IdcHomeDir/resources/core/reports/reports.hda file.

Content Server Behavior

2-8 Oracle Fusion Middleware Developer's Guide for Content Server

4. Custom Components Load: The content server loads custom components in the
order specified in the IntradocDir/custom/components.hda file. As each custom
component is loaded, any resources defined for that component override any
resources with the same name. For example, if two components are enabled that
both use a resource called my_resource.htm, the resource definition for the
component that is loaded last takes precedence.

2.3.1.1 Effects of Configuration Loading
It is important to understand the effect of the load order of the different configuration
files.

The IntradocDir/config/config.cfg file is loaded first, and the
IntradocDir/data/components/component_name/config.cfg file is loaded last.

Therefore, if a variable is set in more than file, the last variable loaded takes
precedence. Files are loaded in this order (not all files exist for each component):

1. IntradocDir/config/config.cfg.

2. DomainHome/ucm/short-product-id/custom/component_name/*_environment.cfg.
Some components may not have this file or it may be named environment.cfg.

3. IntradocDir/data/components/component_name/install.cfg.

4. IntradocDir/data/components/component_name/config.cfg.

5. DomainHome/ucm/short-product-id/bin/intradoc.cfg is reread at the end of startup
to allow overrides to other settings.

If, for example, a variable was set in each of the files listed previously, the variable in
component_name/config.cfg takes precedence.

To view the configuration, use the GET_SYSTEM_AUDIT_INFO service to show all
configuration entries and where they were set.

To change a component variable, use the Component Manager and select Update
Component Configuration. This displays values in the component_name/config.cfg file
that are editable. Make the desired changes, and click Update. You can also edit the
configuration file manually.

If a component is not displayed in the drop-down list or if the variables displayed
don't include the one to change, make the change directly in one of the configuration
files.

2.3.2 Resource Caching
■ When the content server loads template pages and resources, they are cached in

memory to accelerate page presentation.

■ If you change a template page, report page, or HTML include resource, or you
check in a revision to a dynamic server page, your changes go into effect
immediately—the next request for the associated Web page or refresh of the page
reflects the changes and the new information is cached. This occurs because pages
are assembled dynamically for each page request. You can disable this behavior to
improve performance by setting the config variable DisableSharedCacheChecking.

■ If you change any other component files (including services, queries, environment
variables, tables, components.hda file, and template.hda file), you must restart the
content server before the changes go into effect. This is because such changes
could cause the content server to malfunction if they were implemented
immediately. You do not need to restart the content server when changing strings,

Content Server Behavior

Content Server Architecture 2-9

however, you must republish the ww_strings.js files by selecting Publish dynamic
files from the Admin Actions page. For more information see Chapter 3, "Working
with Components".

2.3.3 Content Server Requests
When a Web browser client sends a Content Server request to the Web server, the
instructions are typically communicated through URLs or form fields. The Web server
routes the request to the content server, which then performs one or more of the
following actions:

■ Retrieves pages—See "Page Retrieval" on page 2-10.

■ Runs a content server service—See "Content Server Services" on page 2-10.

■ Runs a search engine service—See "Search Services" on page 2-10.

When a content server Web page is requested, all of the necessary information can be
sent to the content server through the URL. The following is a typical content server
URL; in this case, it is the URL for the Home page:

http://cs.company.com/instancename/idcplg?IdcService=GET_DOC_
PAGE&Action=GetTemplatePage&Page=HOME_PAGE

■ http://cs.company.com and instancename is the Web address of the
content server instance.

■ IdcService=GET_DOC_PAGE tells the content server to execute the GET_DOC_
PAGE service.

■ Action=GetTemplatePage tells the content server to return the results using a
specified template page.

■ Page=HOME_PAGE tells the content server which template page to use.

■ The question mark (?) indicates the end of the Web server path and the beginning
of content server instructions.

■ Ampersands (&) are used as separators between content server instructions.

■ You can include some Idoc Script variables in a URL to affect page display at the
time of the page request. This is useful for troubleshooting or for temporary. For
example, the following variables can be used for customization:

– &StdPageWidth=1000

– &dDocAuthor:isHidden

– &dDocType=HRForm

Necessary information can also be sent to the content server through form fields on the
page. The following is a typical Content Server form:

<form name=SubscriptionForm action="<$HttpCgiPath$>" Method="GET"">
<input type=hidden name=dID value="<dID>">
<input type=hidden name=dDocName value="<$dDocName$>">
<input type=hidden name=subscribeService value=SUBSCRIBE>
<input type=hidden name=exitUrl value="<$HttpCgiPath$>?IdcService=DOC_
INFO&dID=<dID>&dDocName=<$dDocName$>">

Note: Content Server uses the Web server provided by Oracle
WebLogic Server.

Content Server Behavior

2-10 Oracle Fusion Middleware Developer's Guide for Content Server

<input type=hidden name=title value="Subscriptions">
<input type=hidden name=unsubscribeService value=UNSUBSCRIBE>
<$if ClientControlled$>
<input type=hidden name=ClientControlled value="<$ClientControlled$>">
<$endif$>
<$if DocHasSubscription$>
<input type=hidden name=IdcService value="UNSUBSCRIBE_FORM">
<input type=submit value="<$lc("wwUnsubscribe")$>">
<$else$>
<input type=hidden name=IdcService value="SUBSCRIBE_FORM">
<input type=submit value="<$lc("wwSubscribe")$>">
<$endif$>
</form>

2.3.3.1 Page Retrieval
When a Web page is requested from the Content Server, one of the following page
types is returned:

■ static page: The content of a static Web page is pre-formatted, and does not
change from one request to the next. In some Content Server Web sites, the only
static page is the guest home page
(DomainHome/ucm/short-product-id/weblayout/portal.htm).

■ dynamic page: A dynamic Web page is assembled at the time of the Web server
request, using Content Server services and templates to determine the content and
formatting. For example, each user's portal design page is generated using a
content server service called GET_PORTAL_PAGE and a template called PNE_
PORTAL_DESIGN_PAGE.

2.3.3.2 Content Server Services
When a Web browser requests a dynamic page from the Content Server, the browser is
actually placing a request for a Content Server service.

For example:

1. When a user clicks the Administration link in the navigation area, a request for the
GET_ADMIN_PAGE service is sent to the Web server.

2. The Web server recognizes this request as a Content Server function, and sends
the specific request to the Content Server.

3. When the content server has processed the request, it passes the result back to the
Web server. In the case of the Administration link, the GET_ADMIN_PAGE
service:

■ Provides a login prompt if the user is not currently logged in.

■ Verifies that the user has admin permission.

■ Assembles the Administration page using the ADMIN_LINKS template.

■ Returns the assembled Web page to the Web server.

4. The Web server delivers the results of the Content Server service to the originating
Web browser client.

2.3.3.3 Search Services
A search request is a special kind of Content Server service. When the Content Server
receives a search request, it sends the request on to the search engine using a search
engine API. This allows different search engines to be used with the Content Server.

Content Server Behavior

Content Server Architecture 2-11

For example:

1. When a user clicks the Search button on the standard Search page, a request for
the GET_SEARCH_RESULTS service is sent to the Web server.

2. The Web server recognizes the request as a Content Server function, and sends the
specific request to the Content Server.

3. The Content Server passes the request to the search engine.

4. The search engine returns the search results to the Content Server.

5. Based on the user login and security permissions, the Content Server assembles
the search results page and returns it to the Web server.

6. The Web server delivers the results to the originating Web browser client.

2.3.4 Page Assembly
The Content Server uses information from the files in the IdcHomeDir/resources
directory to assemble dynamic Web pages.

■ The structure and format of a Web page is defined by a particular HTML template
file in either the /templates or /reports directory.

■ The template file references resources, which are located in .htm and .idoc files in
the /resources directory. Resources can include HTML and Idoc Script markup,
localized strings, queries to gather information from the database, and special
code to conditionally format the information.

As a rule, each Web page includes the following resources:

■ A standard page header

■ A standard page beginning

■ A standard page ending

Because all of the Content Server resources are cached in memory at startup, the
Content Server has a definition for the standard pieces that appear on the page. The
Content Server then combines the standard resources with the unique resources
specified in the template to create the Web page.

For dynamic server pages, the template page and custom resource files are checked
into the Content Server. When one of these pages is requested by a Web browser, the
Content Server recognizes the file extension as a dynamic server page, which allows
special processing to occur. At that point, the page assembly process is the essentially
the same as the standard process, except that the page can use both the standard
resources in the resources directory and the custom resources that are checked in to
the Content Server.

2.3.5 Database Interaction
Some databases, such as Oracle Database, return all column names as uppercase.
Therefore, when Content Server receives query results from these databases, column
names must be mapped from uppercase to the values used in the Content Server.

Because of this case mapping issue, custom components created for a Content Server
using one database might not work correctly on a Content Server using a different
database.

To map column names, the IdcHomeDir/resources/core/resources/upper_clmns_
map.htm file contains a mapping table named ColumnTranslation. Add the query

Content Server Behavior

2-12 Oracle Fusion Middleware Developer's Guide for Content Server

values to this file when you create a component that accesses non-content server
database fields (for example, if you create a component that accesses a custom table
within the Content Server database).

See "Modifying System Functionality" on page 5-1 for information about using the
upper_clmns_map.htm file.

2.3.6 Resolving Localized Strings
Localized strings are the means by which the user interface and error messages are
presented in the language specified by the user's locale. The Content Server loads the
string resource files for a base language and also loads resource files for every
supported language. Instead of presenting hard-coded text, the template pages,
applets, and error messages reference string IDs in these resource files, which are then
resolved using the ExecutionContext that contains the locale information for the user.

3

Working with Components 3-1

3Working with Components

This chapter describes the structure of components and how to work with
components, which are programs used to modify Content Server functionality. It
covers these topics:

■ "Components Overview" on page 3-1

■ "About Directories and Files" on page 3-5

■ "Development Recommendations" on page 3-13

■ "Component File Detail" on page 3-15

■ "Resources Detail" on page 3-20

■ "Installing Components" on page 3-42

3.1 Components Overview
Components are modular programs designed to interact with Content Server at run
time. Server components are included with Content Server to add or change the core
functionality of the standard content server instance. You can create and use custom
components to modify a Content Server instance without compromising the system
integrity. Custom components can alter defaults for your system, add new
functionality, or streamline repetitive functions.

This section provides an overview of component management and the files and
directory structure associated with components. It covers these topics:

■ "Component Wizard" on page 3-1

■ "Advanced Component Manager" on page 3-2

■ "ComponentTool" on page 3-4

■ "Component Files Overview" on page 3-4

■ "Enabling and Disabling Components" on page 3-4

3.1.1 Component Wizard
The Component Wizard utility automates the process of creating custom components,
including creating and editing all the files necessary for custom components. You can
also use the Component Wizard to modify existing components and to package and
unpackage components for use on Content Server instances.

The Component Wizard is discussed in more detail in the Oracle Fusion Middleware
System Administrator’s Guide for Content Server.

Components Overview

3-2 Oracle Fusion Middleware Developer's Guide for Content Server

Figure 3–1 Component Wizard interface

To access the Component Wizard
■ (Windows) From the Start menu click the instance name, then Utilities, then

Component Wizard. The Component Wizard main page is displayed.

■ (UNIX) Run ComponentWizard, stored in DomainHome/ucm/short-product-id/bin.
The Component Wizard main page is displayed.

3.1.2 Advanced Component Manager
The Advanced Component Manager provides a way to manage custom components in
the Content Server. By using the Advanced Component Manager, you can easily
enable or disable components, or add new components to the content server.

The Advanced Component Manager is discussed in more detail in the Oracle Fusion
Middleware System Administrator’s Guide for Content Server.

Components Overview

Working with Components 3-3

Figure 3–2 Advanced Component Manager page

Components Overview

3-4 Oracle Fusion Middleware Developer's Guide for Content Server

To use the Advanced Component Manager, click Administration on the portal
navigation tray for your Content Server, then click Admin Server. On the Admin
Server page, the Component Manager page is displayed. In the first paragraph of the
Component Manager page, which displays lists of enabled and disabled server
components, click advanced component manager. You can select individual
components in the tables to view details about each component and select categories
of components to view. You can enable and disable components on this page, plus
install and uninstall custom components.

3.1.3 ComponentTool
ComponentTool is a command-line utility for installing, enabling, and disabling
components in Content Server. After installing a component, ComponentTool
automatically enables it. ComponentTool is located in the DomainHome/ucm/cs/bin
directory.

3.1.4 Component Files Overview
When you define a custom component, you create or make changes to the following
files:

■ The idcshort-product-id_components.hda file, which tells the Content Server what
components are enabled and where to find the definition file for each component.

■ The component definition (or glue) file, which tells the Content Server where to
find the resources for the custom component.

■ Different custom resource files, which define your customization to standard
Content Server resources.

■ Template files, which define custom template pages.

■ Other files which contain customization to Content Server graphics, Java code,
help files, and so forth.

These files are all discussed in more detail in "About Directories and Files" on page 3-5.

Any type of file can be included in a component, but the following file formats are
used most often:

■ HDA

■ HTM

■ CFG

■ Java CLASS

If you build or unpackage components in the Component Wizard, or upload and
download components in the Component Manager, you work with the following files:

■ A compressed zip file used to deploy a component on other Content Servers.

■ A manifest.hda file that tells the Content Server where to place the files that are
unpackaged or uploaded from a component zip file.

3.1.5 Enabling and Disabling Components
By definition, a component is enabled when it is properly defined in the Components
ResultSet in the idc_components.hda file. A component is disabled if there is no entry
or the entry is not formatted correctly.

There are several ways to enable or disable a component:

About Directories and Files

Working with Components 3-5

■ Manual editing: In the IntradocDir/data/components/ directory, open the
idcshort-product-id_components.hda file in a text editor and add or delete the
two-line entry for the component. Alternately, you can change only the Enabled
or Disabled setting for the component and save the file.

■ ComponentTool: Run the
DomainHome/ucm/short-product-id/bin/ComponentTool to enable or disable a
component. For example, ComponentTool -enable component_name

■ Component Wizard: Select Enable or Disable from the Options menu. For
details, see the Oracle Fusion Middleware System Administrator’s Guide for Content
Server.

■ Component Manager: Select the check box next to a component name to enable a
server component specified on the Component Manager screen. Clear the check
box next to a component name to disable a server component on the Component
Manager screen. For details, see the Oracle Fusion Middleware System
Administrator’s Guide for Content Server.

■ Advanced Component Manager: Select a component name and click Disable to
disable the component on the Advanced Component Manager screen. Select a
component name and click Enable to enable the component on the Advanced
Component Manager screen.

3.2 About Directories and Files
This section provides information about the files used in component creation and the
directory structure used to store those files. It includes the following topics:

■ "HDA Files" on page 3-5

■ "Custom Resource Files" on page 3-9

■ "Data Binder" on page 3-10

■ "Manifest File" on page 3-11

■ "Other Files" on page 3-12

■ "Typical Directory Structure" on page 3-12

3.2.1 HDA Files
A HyperData File (HDA) is used to define properties and tabular data in a simple,
structured ASCII file format. It is a text file that is used by the Content Server to
determine which components are enabled and disabled and where to find the
definition files for that component.

The HDA file format is useful for data that changes frequently because the compact
size and simple format make data communication faster and easier for the Content
Server.

The HDA file type is used to define the following component files:

■ Components file (idc_components.hda)

■ Component definition file

■ Manifest file

■ Dynamic table resource file

■ Template resource file

About Directories and Files

3-6 Oracle Fusion Middleware Developer's Guide for Content Server

The following example file is an idccs_components.hda file that points to a component
called customhelp.

<?hda version="" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
@end
@ResultSet Components
2
name
location
customhelp
custom/customhelp/customhelp.hda
@end

3.2.1.1 Elements in HDA Files
Each HDA file contains a header line and one or more sections. The header line
identifies the Content Server version, character set, and Java encoding for the HDA
file. If an HDA file contains double-byte (Asian language) characters, the correct
character set and encoding must be specified so the Content Server can read the file
properly. The header line is not required for single-byte characters, but it is a good
practice to include it in your HDA files.

The Properties Section and ResultSet Section are the two section types that are relevant
to component development. These are used to define the Properties of the file (name,
location, and so on) and the ResultSet which defines a table or columns and rows of
data. ResultSets often represent the results of a query. All other sections tags are for
internal application use only.

Comments are not allowed within a section of an HDA file. However, you can place
comments in the HDA file before the first section, between sections, or after the last
section. Blank lines within a section of an HDA file are interpreted as a NULL value.
Blank lines before the first section, between sections, or after the last section are
ignored. None of the section types are mandatory in an HDA file, so unused sections
can be deleted.

■ The Properties section contains a group of name/value pairs. For a custom
component, the most common name for a Properties section is LocalData, which
means that the name/value pairs are valid only for the current HDA file.

You can also define global name/value pairs in a Properties section called
Environment, but this section type is rarely used. The recommended practice is to
define global environment variables in a configuration file in an Environment
resource.

The following is an example of a Properties section in an HDA file.

@Properties LocalData
PageLastChanged=952094472723
LocationInfo=Directory,Public,
IsJava=1
refreshSubMonikers=
PageUrl=/intradoc/groups/public/pages/index.htm
LastChanged=-1
TemplatePage=DIRECTORY_PAGE
IdcService=PAGE_HANDLER
LinkSelectedIndex=0
PageName=index
HeaderText=This is a sample page. The Page Name must remain index. The Page
Properties for this index page should be customized.

About Directories and Files

Working with Components 3-7

PageFunction=SavePage
dSecurityGroup=Public
restrictByGroup=1
PageType=Directory
PageTitle=Oracle Content Server Index Page
@end

■ Each ResultSet section of an HDA file defines a table, or columns and rows of data.
A ResultSet can be used to pass information to a database or to represent the
results of a database query. A ResultSet section has the following structure:

– The first line defines the name of the ResultSet table using the format
@ResultSet resultset_name.

– The second line defines the number of columns.

– The next n lines define the column names.

– The remaining lines define the values in each cell of the table.

– The last line of the section ends the table using the format @end.

The following example shows a ResultSet called Scores that has 4 columns and 3
rows.

@ResultSet Scores
4
name
match1
match2
match3
Margaret
68
67
72
Sylvia
70
66
70
Barb
72
71
69
@end

The following table shows the ResultSet data in a columnar form. A ResultSet can
be given any name.

The Content Server uses some predefined ResultSets, so the following names
should not be used for custom component tables:

name match1 match2 match3

Margaret 68 67 72

Sylvia 70 66 70

Barb 72 71 69

About Directories and Files

3-8 Oracle Fusion Middleware Developer's Guide for Content Server

3.2.1.2 The idc_components.hda File
The idc_components.hda file is a text file that tells the Content Server which
components are enabled and where to find the definition file for each component.

The idc_components.hda file is always stored in the IntradocDir/data/components/
directory. The Component Wizard, Component Manager, and ComponentTool can be
used to make changes to this file if needed.

The following is an example of an idccs_components.hda file, listing several enabled
components such as schema, configuration migration, and SOAP.

@properties LocalData
blDateFormat=M/d/yy
@end
@ResultSet Components
2
name
location
SchemaDCL
custom/SchemaDCL/SchemaDCL.hda
ConfigMigrationUtility
custom/ConfigMigrationUtility/Cmu.hda
Soap
custom/Soap/Soap.hda
@end

3.2.1.3 Component Definition Files
A component definition file points to the custom resources that you have defined.
This file specifies information about custom resources, ResultSets, and merge rules.
Because it serves as the "glue" that holds a component together, the component
definition file is sometimes called the glue file.

ResultSet Name Location Purpose

Components IntradocDir/data/components/idccuston-name_
components.hda

Defines the name and location of any
custom components you have
created. You must specify the custom
name.

IntradocReports IdcHomeDir/resources/core/reports/reports.hda Specifies the default report templates
for the Content Server.

IntradocTemplates IdcHomeDir/resources/core/templates/templates.hd
a

Specifies all of the default templates
for the Content Server (except for
search results and report templates).

ResourceDefinition DomainHome/ucm/short-product-id/custom/componen
t_name/component_name.hda

Defines resources for a custom
component.

SearchResultTempl
ates

IdcHomeDir/resources/core/templates/templates.hd
a

Specifies the default search results
templates for the Content Server.

Note: As of release 11gR1, the components.hda file and edit_
components.hda file have been combined into one file called
idcshort-product-name_components.hda. If the Admin Server does not
find the idcshort-product-name_components.hda file but does find the
legacy files, then it will migrate to the new format.

About Directories and Files

Working with Components 3-9

The definition file for a component is typically named component_name.hda, and is
located in the DomainHome/ucm/short-product-id/custom/component_name/ directory.
The Component Wizard can be used to create and make changes to a definition file.

The following example of a component definition file points to an environment
resource file called customhelp_environment.cfg.

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
blFieldTypes=
@end
@ResultSet ResourceDefinition
4
type
filename
tables
loadOrder
environment
customhelp_environment.cfg
null
1
@end

3.2.2 Custom Resource Files
Custom resource files define your Content Server customization. They are usually
HDA files but some are HTM files.

The custom resource files for a component are typically located in the
DomainHome/ucm/short-product-id/custom/component_name/ directory. Some
resource files may be placed in subdirectories such as /resources/core/templates.

The following table describes these resources:

These files are all discussed in detail in "Resources Detail" on page 3-20.

Note: Do not confuse the idcshort-product-name_components.hda file
with the component_name.hda file. The idcshort-product-name_
components.hda file is used to track all installed components. The
component_name.hda file contains information that is specific to a
single component.

Resource Type File Type Contents

HTML include HTM "Include" definitions

String HTM Localized string definitions

Dynamic table HDA Tables for data that changes often

Static table HTM Tables for data that seldom changes

Query HTM Tables that define queries

Service HTM Tables that define service scripts

Template HDA Tables that specify location and file name for template pages

Environment CFG Configuration variable name/value pairs

About Directories and Files

3-10 Oracle Fusion Middleware Developer's Guide for Content Server

In addition, a template.htm page is used by the Content Server to assemble web pages.
See "Templates" on page 3-35 for details about the template.hdm file.

A ResultSet HTM table file is used by other resources. A ResultSet table in an HTM file
is similar to the ResultSet of an HDA file, except that it uses HTML table tags to lay
out the data. Static table resources, service resources, and query resources all use this
table format.

A ResultSet table in an HTM file begins with <@table table_name@> and ends with
<@end@>. The markup between the start and end tags is an HTML table. Unlike a
ResultSet in an HDA file, the number of columns is implied by the table tags.

Any HTML syntax that does not define the data structure is ignored when the table is
loaded. Therefore, HTML comments are allowed within tables in an HTM file, and
HTML style attributes can be used to improve the presentation of the data in a web
browser.

3.2.3 Data Binder
The Content Server caches data (such as variable values and lookup keys) internally in
a DataBinder. All data in the DataBinder is categorized according to where it came
from and how it was created. When a value is required to fulfill a service request, the
data in the DataBinder is evaluated in the following default order:

1. LocalData

2. Active or Non-active ResultsSets

3. Environment

This precedence can be changed using Idoc Script functions. See the Oracle Fusion
Middleware Idoc Script Reference Guide for details.

3.2.3.1 LocalData
The @Properties LocalData section in an HDA file maps to the LocalData of the
DataBinder. The LocalData consists of name/value pairs.

The LocalData information is maintained only during the lifetime of the Content
Server request and response. Unlike information about the server environment, which
rarely changes, the LocalData information for each request is dynamic.

From the point of view of an HTTP request, the initial LocalData is collected from the
REQUEST_METHOD, CONTENT_LENGTH, and QUERY_STRING HTTP
environment variables. As the service request is processed, the LocalData values can
be added and changed.

3.2.3.2 Active or Non-active ResultsSets
Each @ResultSet section of an HDA file maps to a named result in the DataBinder.
A ResultSet becomes active when the ResultSet is looped on during page assembly.
The active ResultSet take precedence over any other ResultSets during a value search
of the DataBinder. When a service request requires data and the value is not found in
the LocalData or an active ResultSet, the non-active ResultSet values are searched next.

3.2.3.3 Environment
Environment values are placed in the DataBinder as name/value pairs, which are
defined in configuration files such as IntradocDir/config/config.cfg, intradoc.cfg, and
environment-type resource files.

About Directories and Files

Working with Components 3-11

3.2.4 Manifest File
Manifest files are used to upload or unpackage a component zip file on the Content
Server. This file tells the Content Server where to place the individual files that are
included in the component zip file. A manifest file is created automatically when you
build a component in the Component Wizard, or when you download a component
using the Admin Server Advanced Component Manager.

All manifest files must be called manifest.hda. The manifest.hda file is included in the
component zip file along with the other component files. It must be at the top level of
the zip file directory structure.

The manifest.hda file contains a ResultSet table called Manifest, which consists of
two columns:

■ The entryType column defines the type of entry in the manifest file.

■ The location column defines the directory where the files associated with the
entry are installed, and specifies the file name for some entry types.

– For a Component entry type, the location is the path and file name for the
definition file. The definition file then tells the Content Server which resource
files are included in the component.

– For other entry types, the location can be a path (to specify all files in a
particular subdirectory) or a path and file name (to specify an individual file).

– The location should be a path relative to the
DomainHome/ucm/short-product-id/custom/ directory. You can use an
absolute path, but then the component can only be installed on Content
Servers with the same installation directory path.

The following is an example of a manifest.hda file.

@ResultSet Manifest
2
entryType
location
component
MyComponent/MyComponent.hda
componentExtra
MyComponent/readme.txt

Entry Type Description Default Path

Classes Java class files DomainHome/ucm/short-product-id
/classes

Common Common files DomainHome/ucm/short-product-id/
weblayout/common

Component Component resource files DomainHome/ucm/short-product-id/
custom

ComponentExtra Associated files, such as a readme DomainHome/ucm/short-product-id/
custom

Help Online help files DomainHome/ucm/short-product-id/
weblayout/help

Images Graphics files DomainHome/ucm/short-product-id/
weblayout/images

Jsp Java Server Pages DomainHome/ucm/short-product-id/
weblayout/jsp

About Directories and Files

3-12 Oracle Fusion Middleware Developer's Guide for Content Server

images
MyComponent/
@end

3.2.5 Other Files
Your custom components can include any type of file that the Content Server uses for
functionality or to generate look-and-feel.

3.2.5.1 Customized Site Files
You can add customized files for your site to change the look or actions of the Content
Server. For example, the following types of files are often referenced in custom
resources:

■ Graphics: Replace the icons, backgrounds, and logos that constitute the standard
Content Server interface.

■ Help: With the assistance of Consulting Services, help files can be customized for
your content management system.

■ Classes: Java code can change or extend the functionality of the Content Server.
Java class files must be packaged into directories before placing them in the
DomainHome/ucm/short-product-id/classes/ directory.

3.2.5.2 Component Zip File
A component zip file contains all files that define a Content Server component. It can
be unpackaged to deploy the component on other Content Servers.

3.2.5.3 Custom Installation Parameter Files
When you define one or more custom installation parameters, several additional files
are created in addition to the files that compose the basic component file structure.

If installation parameters are created for the component, then during the component
installation process the component installer automatically places two files in the
component directory within the data/components directory. These files hold the
preference data as follows:

■ config.cfg: Contains the parameters that can be reconfigured after installation.

■ install.cfg: Contains the preference data definitions and prompt answers.

■ Backup zip file: A backup file that is created if the component is currently installed
and is being reinstalled.

3.2.6 Typical Directory Structure
If you use the Component Wizard to create custom components, your files are stored
in the appropriate directory.

Different component directories are established for each custom component in the
DomainHome/ucm/short-product-id/custom directory. Within each component
directory, separate subdirectories are established for reports, templates, and resources,
all named appropriately (for example, /Resources). The component_name.hda file (the
definition file) is stored in the /component_name directory.

Development Recommendations

Working with Components 3-13

3.3 Development Recommendations
This section provides some guidelines to assist you in developing custom components.
It covers these topics:

■ "Creating a Component" on page 3-13

■ "Working with Component Files" on page 3-13

■ "Using a Development Instance" on page 3-14

■ "Component File Organization" on page 3-14

■ "Naming Conventions" on page 3-15

See the Oracle Fusion Middleware System Administrator’s Guide for Content Server or
online help for detailed instructions on creating or modifying components.

3.3.1 Creating a Component
To create and enable a custom component, follow this basic procedure:

1. Create a definition file.

2. Add a reference to the definition file in the idcshort-product-id_components.hda file
to enable the component.

3. Restart the Content Server to apply the component.

4. Create resources and other files to define your customization. A good approach is
to copy, rename, and modify standard Content Server files to create your custom
resource files.

5. Test and revise your customization as necessary. You may need to restart the
Content Server to apply your changes.

6. If you want to package the component for later use or for deployment on other
Content Servers, build the component and create a component zip file.

3.3.2 Working with Component Files
There are two ways to work with component files:

■ Component Wizard: The Component Wizard is a Content Server utility that helps
you create and edit component files. You can also use the Component Wizard to
package, unpackage, enable, and disable components. For more information on
using this utility, see the Oracle Fusion Middleware System Administrator’s Guide for
Content Server..

■ Text editor: Because most component files are plain text files, you can create and
edit the files in your favorite text editor.

You should use the Component Wizard as much as possible when working with
custom components.

The Component Wizard does several tasks for you and minimizes the amount of work
you need to do in a text editor. Using the Component Wizard helps you follow the
recommended file structure and naming conventions. The Component Wizard
automatically adds a readme text file when you build a component, thus helping you to
document your customization. You should also include comments within your
component files.

For instructions on using the Component Wizard to create components, see the Oracle
Fusion Middleware System Administrator’s Guide for Content Server.

Development Recommendations

3-14 Oracle Fusion Middleware Developer's Guide for Content Server

3.3.3 Using a Development Instance
Whenever you are customizing the Content Server, you should isolate your
development efforts from your production system. Remember to include the same
custom metadata fields on your development instance as you have defined for your
production instance.

When you have successfully tested your modifications on a development instance, use
the Component Wizard to build a component zip file and then unpackage the
component on your production system.

Remember to restart the Content Server after enabling or disabling a component.

If you are having problems with your Content Server after you have installed a custom
component, disable the component and restart the Content Server. If this fixes the
problem, you probably need to troubleshoot your component. If the problem is not
fixed, you may need to remove the component completely using the Component
Wizard to see if there is a problem with the component or with the Content Server.

3.3.4 Component File Organization
To keep your custom components organized, follow these file structure guidelines. See
"Typical Directory Structure" on page 3-12 for more information.

Place each custom component in its own directory within a directory called
DomainHome/ucm/short-product-id/custom/. If your custom component includes
resource- or template-type resources, or both, the component directory should have
subdirectories that follow the structure of the IdcHomeDir/data/resources/core
directory:

■ resources/ to hold HTML include and table resource files

■ resources/lang/ to hold string resource files

■ templates/ to hold template files

■ reports/ to hold report files

Keep the following points in mind when considering files and their organization:

■ Place the definition file for each custom component at the top level of the
component’s directory.

■ When referring to other files within a component, use relative path names instead
of absolute path names. Using relative path names enables you to move the
component to a different location without having to edit all of the files in the
component.

■ The Content Server is a Java-based application, so forward slashes must be used in
all path names.

■ Custom components do not have to be stored on the same computer as the
Content Server, but all component files must be accessible to the Content Server.

■ Images and other objects that are referenced by Content Server Web pages must
reside somewhere in the DomainHome/ucm/short-product-id/weblayout/
directory (so they can be accessed by the Web server).

Note: If you use the Component Wizard, it creates component
directories for you and places the component files in the correct
directories.

Component File Detail

Working with Components 3-15

3.3.5 Naming Conventions
To keep your component files organized and ensure that the files work properly in the
Content Server, follow these naming conventions for directories, individual files, and
file contents.

■ You should give all of your component directories and files unique and
meaningful names. Keep in mind that as each component is loaded in the Content
Server, it overrides any resources with the same file names, so you should use
duplicate file names only if you want certain components to take precedence.

■ If you are copying a standard Content Server file, a common practice is to place
the prefix custom_ in front of the original file name. This ensures that you do not
overwrite any default templates, and your customization is easy to identify.

■ HTM file types should have a .htm extension, and HDA file types should have a
.hda extension.

■ If you are creating a new component file with a text editor like WordPad, place the
file name within quotation marks in the Save dialog box so the proper file
extension is assigned to it (for example, myfile.hda). Failure to use quotation
marks to define the file name may result in a file name such as myfile.hda.txt.

■ The Content Server is case sensitive even if your file system is not. For example,
when a file is named My_Template, the Content Server does not recognize case
variations such as my_template or MY_TEMPLATE.

■ For localized string resources, you must follow the standard file naming
conventions for the Content Server to recognize the strings. You should also use
the standard two-character prefix (cs, sy, ap, or ww) when naming your custom
strings. See "Resolving Localized Strings" on page 2-12.

3.4 Component File Detail
This section discusses the HDA file type and the component definition (glue) file in
more detail. The following topics are discussed:

■ "The idc_components.hda File" on page 3-15

■ "Component Definition (Glue) File" on page 3-16

The information in this chapter is intended as reference material and should not be
used to create files manually. You should always use the Component Wizard to create
your component files.

3.4.1 The idc_components.hda File
The idc_components.hda file tells the Content Server which components are enabled
and where to find the component definition (glue) file for each component. With 11g
Release 1 (11.1.1) this file has three forms, one for each of the UCM products: idccs_
components.hda (for Content Server), idcibr_components.hda (for Inbound Refinery),
and idcurm_components.hda (for Universal Records Management). The file is always
stored in the IntradocDir/data/components/ directory.

The file always includes a ResultSet called Components that defines the name and file
path of each definition file. You can use the Component Wizard or the Component
Manager to make changes to the components HDA file. See "Enabling and Disabling
Components" on page 3-4 for more information.

In the following example of an idccs_components.hda file, two components called "My
Component" and "CustomHelp" are enabled.

Component File Detail

3-16 Oracle Fusion Middleware Developer's Guide for Content Server

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
blFieldTypes=
@end
@ResultSet Components
2
name
location
MyComponent
custom/MultiCheckin/my_component.hda
CustomHelp
custom/customhelp/customhelp.hda
@end

3.4.1.1 Components ResultSet
The order that components are listed in the Components ResultSet determines the
order that components are loaded when you start the Content Server. If a component
listed later in the ResultSet has a resource with the same name as an earlier
component, the resource in the later component takes precedence.

A Components ResultSet has two columns:

■ The name column provides a descriptive name for each component, which is used
in the Component Wizard, Component Manager, and Content Server error
messages.

■ The location column defines the location of the definition file for each
component. The location can be an absolute path or can be a path relative to the
Content Server install directory.

3.4.2 Component Definition (Glue) File
A component definition file, or glue file, points to the custom resources that you have
defined. The definition file for a component is named component_name.hda, and is
typically located in the DomainHome/ucm/short-product-id/custom/component_name/
directory. The Component Wizard can be used to create and make changes to a
definition file.

A definition file includes a ResourceDefinition ResultSet, and may contain a
MergeRules ResultSet, a Filters ResultSet or a ClassAliases ResultSet or both.

The following example shows a typical component definition file.

@ResultSet ResourceDefinition
4
type
filename
tables
loadOrder
template
dcl_templates.hda
DCLCustomTemplates
1
resource
dcl_resource.htm
null

Note: Always use forward slashes in the location path.

Component File Detail

Working with Components 3-17

1
resource
dcl_upper_clmns_map.htm
DCLColumnTranslationTable
1
resource
dcl_data_sources.htm
dclDataSources
1
service
dcl_services.htm
CustomServices
1
query
dcl_query.htm
CustomQueryTable
1
resource
dcl_checkin_tables.hda
null
1
@end

@ResultSet MergeRules
3
fromTable
toTable
column
DCLCustomTemplates
IntradocTemplates
name
DCLColumnTranslationTable
ColumnTranslation
alias
DCLDataSources
DataSources
name
CustomDCLServiceQueries
ListBoxServiceQueries
dataSource
@end

@ResultSet Filters
4
type
location
parameter
loadOrder
loadMetaOptionsLists
intradoc.server.ExecuteSubServiceFilter
GET_CHOICE_LIST_SUB
1
@end

3.4.2.1 ResourceDefinition ResultSet
The ResourceDefinition ResultSet table defines the type, file name, table names,
classpath, library path, features, and load order of custom resources. The following
example shows the structure of a ResourceDefinition ResultSet.

@ResultSet ResourceDefinition

Component File Detail

3-18 Oracle Fusion Middleware Developer's Guide for Content Server

4
type
filename
tables
loadOrder
template
dcl_templates.hda
DCLCustomTemplates
1
resource
dcl_resource.htm
null
1
resource
dcl_upper_clmns_map.htm
DCLColumnTranslationTable
1
resource
dcl_data_sources.htm
dclDataSources
1
service
dcl_services.htm
CustomServices
1
query
dcl_query.htm
CustomQueryTable
1
resource
dcl_checkin_tables.hda
null
1
@end

3.4.2.1.1 ResourceDefinition ResultSetColumns A ResourceDefinition ResultSet
consists of four columns:

■ The type column defines the resource type, which must be one of the following
values:

– resource, which points to an HTML include (HTM), string (HTM), dynamic
table (HDA), or static table (HTM) resource file.

– environment, which points to an environment resource (CFG) file.

– template, which points to a template resource (HDA) file.

– query, which points to a query resource (HTM) file.

– service, which points to a service resource (HTM) file.

■ The filename column defines the path and file name of the custom resource file.
This can be an absolute path or a relative path. Relative paths are relative to the
DomainHome/ucm/short-product-id/custom/component_name/ directory.

■ The tables column defines the ResultSet tables to be loaded from the resource
file. ResultSet names are separated with a comma. If the resource file does not
include ResultSets, this value is null. For example, HTML include resources do not
include table definitions, so the value for the tables column is always null for an
HTML include file.

Component File Detail

Working with Components 3-19

■ The loadOrder column defines the order in which the resource is loaded.
Resources are loaded in ascending order, starting with resources that have a
loadOrder of 1. If multiple resources have the same loadOrder, the resources are
loaded in the order they are listed in the ResourceDefinition ResultSet. If there are
multiple resources with the same name, the last resource loaded is the one used by
the system. Normally, you should set the loadOrder to 1, unless there is a
particular reason to always load one resource after the others.

3.4.2.2 MergeRules ResultSet
The MergeRules ResultSet table identifies new tables that are defined in a custom
component, and specifies which existing tables the new data is loaded into.
MergeRules are required for custom template resources but are optional for custom
dynamic table and static table resources. MergeRules are not required for custom
service, query, HTML include, string, and environment resources.

The following example shows a MergeRules ResultSet.

@ResultSet MergeRules
4
fromTable
toTable
column
loadOrder
DCLCustomTemplates
IntradocTemplates
name
1
DCLColumnTranslationTable
ColumnTranslation
alias
1
DCLDataSources
DataSources
name
1
CustomDCLServiceQueries
ListBoxServiceQueries
dataSource
1
@end

3.4.2.2.1 MergeRules Columns A MergeRules ResultSet consists of three columns:

■ The fromTable column specifies a table that was loaded by a custom resource
and contains new data to be merged with the existing data. To properly perform a
merge, the fromTable must have the same number of columns and the same
column names as the toTable.

■ The toTable column specifies the name of the existing table into which the new
data is merged. Usually, the toTable value is one of the standard Content Server
tables, such as IntradocTemplates or QueryTable.

■ The column column is the name of the table column that the Content Server uses
to compare and update data.

– The Content Server compares the values of the specified column in the
fromTable and toTable. For each fromTable value that is identical to a
value currently in the toTable, the row in the toTable is replaced by the
row in the fromTable. For each fromTable value that is not identical to a

Resources Detail

3-20 Oracle Fusion Middleware Developer's Guide for Content Server

value currently in the toTable, a new row is added to the toTable and
populated with the data from the row of fromTable.

– The column value is usually name. Setting this value to null defaults to the
first column, which is generally a name column.

3.4.2.3 Filters ResultSet
The Filters ResultSet table defines filters, which are used to execute custom Java
code when certain Content Server events are triggered, such as when new content is
checked in or when the server first starts. The following example shows a typical
Filters ResultSet.

@ResultSet Filters
4
type
location
parameter
loadOrder
loadMetaOptionsLists
intradoc.server.ExecuteSubServiceFilter
GET_CHOICE_LIST_SUB
1
@end

3.4.2.4 ClassAliases ResultSet
The ClassAliases ResultSet table points to custom Java class files, which are used to
extend the functionality of an entire Content Server Java class. The following example
shows a typical ClassAliases ResultSet.

@ResultSet ClassAliases
2
classname
location
WorkflowDocImplementor
WorkflowCheck.CriteriaWorkflowImplementor
@end

3.5 Resources Detail
The information in this section is intended as reference material and should not be
used to create any resource files manually. You should always use the Component
Wizard to create your resource files.

Resources are the files that define and implement the actual customization you make
to the Content Server. Resources can be snippets of HTML code, dynamic page
elements, queries that gather data from the database, services that perform Content
Server actions, or special code to conditionally format information.

The custom resource files for a component are typically located in the
DomainHome/ucm/short-product-id/custom/component_name/ directory. If your
component has more than a few resources, it is easier to maintain the files if you place
them in sub-directories (such as /resources or /templates) within the component
directory.

There are two ways to create and edit a resource file:

■ Manual editing: Open the resource file in a text editor and edit the code manually.
This is not recommended.

Resources Detail

Working with Components 3-21

■ Component Wizard: You can add, edit, or remove a resource file from a
component using the Component Wizard. The Component Wizard provides code
for predefined resources that you can use as a starting point for creating custom
resources. You can also open resource files in a text editor from within the
Component Wizard. Each resource type described in this section includes
step-by-step instructions for using the Component Wizard to create and edit that
type of resource.

See the Oracle Fusion Middleware System Administrator’s Guide for Content Server or
online help for more information.

The following sections discuss these resource categories:

■ "HTML Include" on page 3-21

■ "String" on page 3-22

■ "Dynamic Tables" on page 3-25

■ "Static Tables" on page 3-26

■ "Query" on page 3-26

■ "Service" on page 3-28

■ "Templates" on page 3-35

■ "Environment" on page 3-41

3.5.1 HTML Include
An include is defined within <@dynamichtml name@> and <@end@> tags in an
HTM resource file. The include is then called using the syntax <$include name$>.

Includes can contain Idoc Script and valid HTML code, including JavaScript, Java
applets, cascading style sheets, and comments. Includes can be defined in the same file
as they are called from, or they can be defined in a separate HTM file. Standard HTML
includes are defined in the IdcHomeDir/resources/core/idoc files.

HTML includes, strings, and static tables can be present in the same HTM file. An
HTML include resource does not require merge rules.

3.5.1.1 The Super Tag
The super tag is used to define exceptions to an existing HTML include. The super
tag tells the include to start with an existing include and then add to it or modify using
the specified code.

The super tag is particularly useful when making a small customization to large
includes or when you customize standard code that is likely to change from one
software version to the next. When you upgrade to a new version of Content Server,
the super tag ensures that your components are using the most recent version of the
include, modifying only the specific code you need to customize your instance.

The super tag uses the following syntax:

<@dynamichtml my_resource@>
<$include super.my_resource$>
exception code

Note: You must restart the Content Server after changing a resource
file.

Resources Detail

3-22 Oracle Fusion Middleware Developer's Guide for Content Server

<@end@>

You can use the super tag to refer to a standard include or a custom include. The
super tag incorporates the include that was loaded last. You can also specify multiple
super tags to call an include that was loaded earlier than the last version.

Example 3–1 Super Tag

In this example, a component defines the my_resource include as follows:

<@dynamichtml my_resource@>
<$a = 1, b = 2$>

<@end@>

Another component that is loaded later enhances the my_resource include using the
super tag. The result of the following enhancement is that "a" is assigned the value 1
and "b" is assigned the value 3:

<@dynamichtml my_resource@>
<$include super.my_resource$>
<!--Change "b" but not "a" -->
<$b = 3$>

<@end@>

3.5.1.2 Editing an HTML Include Resource
Use the following procedure to edit an existing HTML include resource using the
Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. If the resource file contains multiple types of resource, select the Includes tab in
the right pane.

4. Modify the includes in the Custom HTML Includes list.

■ To edit an existing include, select the include and click Edit. Modify the code
and click OK.

■ To add an include to the resource file, click Add.

■ To remove an include, select the include and click Delete. Click Yes to
confirm.

3.5.2 String
A string resource defines locale-sensitive text strings that are used in error messages
and on Content Server Web pages and applets. Strings are resolved by the Content
Server each time a Web page is assembled, an applet is started, or an error message is
displayed.

A string is defined in an HTM file using the following format:

<@stringID=Text string@>

Caution: If you use multiple super tags in one include, ensure that
you know where the resources are loaded from and the order they are
loaded in.

Resources Detail

Working with Components 3-23

A string is called from an HTM template file using the following Idoc Script format:

<$lc("wwStringID")$>

Standard English strings are defined in the IdcHomeDir/resources/core/lang/
directory. Strings for other supported languages are provided by the Localization
component.

HTML includes, strings, and static tables can be present in the same HTM file. A
string resource does not require merge rules.

You must use HTML escape encoding to include the following special characters in a
string value:

You can specify strings for multiple languages in the same resource file using the
language identifier prefix, if the languages are all single-byte or all multibyte. For
example:

<@myString=Thank you@>
<@es.myString=Gracias@>
<@fr.myString=Merci@>
<@de.myString=Danke@>

If you are specifying multibyte strings in your custom string resource, ensure that the
character set specification on your HTML pages changes to the appropriate encoding.
Resource files should have a correct http-equiv charset tag so that Content Server
reads them correctly.

3.5.2.1 String Parameters
Text strings can contain variable parameters, which are specified by placing the
parameter argument inside curly braces (for example, {1}). When a string is localized,

Note: On Content Server Web pages, you should use only the strings
in the ww_strings.htm file.

Escape Sequence Character

&at; @

\&lf; line feed (ASCII 10)

\&cr; carriage return (ASCII 13)

\&tab; tab (ASCII 9)

\&eatws; Eats white space until the next non-white space character.

\< < (less than)

\> > (greater than)

\&sp; space (ASCII 32)

\&#xxx; ASCII character represented by decimal number xxx

Caution: Do not specify single-byte strings and multibyte strings in
the same resource file. You should create separate resource files for
single-byte and multibyte strings.

Resources Detail

3-24 Oracle Fusion Middleware Developer's Guide for Content Server

the arguments are passed along with the string ID and the ExecutionContext that
contains the locale information. The following table describes the syntax for
parameterized strings:

Syntax Meaning Examples

{{} Opening curly brace. (Note that only
the opening curly brace must be
expressed as a literal.)

{{}Text in braces}

{n} Substitute the nth argument. Content ID {1} not found

{ni} Substitute the nth argument, formatted
as an integer.

dID {1i} does not exist

{nx} Substitute the nth argument, formatted
as an integer in hexadecimal.

{nd} Substitute the nth argument, formatted
as a date.

The release date is {1d}

{nD} Substitute the nth argument, formatted
as a date. The argument should be
ODBC-formatted.

The release date is {1D}

{nt} Substitute the nth argument, formatted
as a date and time.

The release date is {1t}

{ne} Substitute the nth argument, formatted
as elapsed time.

{nT} Substitute the nth argument, formatted
as a date and time. The argument
should be ODBC-formatted.

The release date is {1T}

{nfm} Substitute the nth argument, formatted
as a float with m decimal places.

The distance is {1f3} miles.

{nk} Substitute a localized string using the
nth argument as the string ID.

Unable to find {1k} revision
of {2}

{nm} Localize the nth argument as if it were
a string-stack message. (For example,
the argument could include
concatenated text strings and localized
string IDs.)

Indexing internal error: {1m}

{nl} Substitute the nth argument as a list.
The argument must be a list with
commas (,) and carets (^) as the
separators.

Add-ons: {1l}

{nK} Takes a list of localization key names,
separated by commas, and localizes
each key into a list.

Unsupported byte feature(s):
{1K}

{nM} Takes a list of message strings and
localizes each message into a list.

{1q} component, version
{2q}, provides older versions
of features than are currently
enabled. {3M}

{nq} If the nth argument is non-null and
nonzero in length, substitute the
argument in quotation marks.
Otherwise, substitute the string
"syUndefined".

Content item {1q} was not
successfully checked in

Resources Detail

Working with Components 3-25

3.5.2.2 Editing a String Resource
Use the following procedure to edit an existing string resource using the Component
Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. If the resource file contains multiple types of resource, select the Strings tab in the
right pane.

4. Modify the strings in the Custom Strings list.

■ To edit an existing string, select the string and click Edit. Modify the string
text and click OK.

■ To add a string to the resource file, click Add.

■ To remove a string, select the string and click Delete. Click Yes to confirm.

3.5.3 Dynamic Tables
Dynamic table resources are defined in the HDA file format. See "Elements in HDA
Files" on page 3-6 for more information and an example of an HDA ResultSet table.
Merge rules are required for a dynamic table resource if data from the custom resource
replaces data in an existing table. Merge rules are not required if data from the custom
resource is to be placed in a new table.

3.5.3.1 Editing a Dynamic Table Resource
Use the following procedure to edit an existing dynamic table resource using the
Component Wizard.

{no} Performs ordinal substitution on the
nth argument. For example, 1st, 2nd,
3rd, and so on. The argument must be
an integer..

"I am {1o}." with the
argument 7 would localize
into "I am 7th."

{n?text} If the value of the nth argument is not
1, substitute the text.

{1} file{1?s} deleted

{n?text1:text2} ■ If the value of the nth argument is
not 1, substitute text1.

■ If the value of the nth argument is
1, substitute text2.

The (n?) function can be extended with
as many substitution variables as
required. The last variable in the list
always corresponds to a value of 1.

There {1?are:is} currently {1}
active search{1?es}.

{n?text1:text2:text3} ■ If the value of the nth argument is
not 1 or 2, substitute text1.

■ If the value of the nth argument is
2, substitute text2.

■ If the value of the nth argument is
1, substitute text3.

The (n?) function can be extended with
as many substitution variables as
required. The last variable in the list
always corresponds to a value of 1.

Contact {1?their:her:his}
supervisor.

Syntax Meaning Examples

Resources Detail

3-26 Oracle Fusion Middleware Developer's Guide for Content Server

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource file in the Custom Resource Definition list.

3. Click Launch Editor.

4. Modify the table in the text editor.

5. Save and close the resource file.

Changes are reflected in the right pane of the Resource Definition tab.

3.5.4 Static Tables
Static tables, HTML includes, and strings can be present in the same HTM file. Merge
rules are required for a static table resource if data from the custom resource replaces
data in an existing table. Merge rules are not required if data from the custom resource
is to be placed in a new table.

3.5.4.1 Editing a Static Table Resource
Use the following procedure to edit an existing static table resource using the
Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource file in the Custom Resource Definition list.

3. Click Launch Editor.

4. Modify the table in the text editor.

5. Save and close the resource file.

Changes are reflected in the Resource Tables list.

3.5.5 Query
A query resource defines SQL queries, which are used to manage information in the
Content Server database. Queries are used with service scripts to perform tasks such
as adding to, deleting, and retrieving data from the database.

The standard Content Server queries are defined in the QueryTable table in the
IdcHomeDir/resources/core/tables/query.htm file. You also find special-purpose
queries in the indexer.htm and workflow.htm files that are stored in the
IdcHomeDir/resources/core/tables/ directory. Merge rules are not required for a
query resource.

A query resource is defined in an HTM file using a ResultSet table with three columns:
name, queryStr, and parameters.

■ The name column defines the name for each query. To override an existing query,
use the same name for your custom query. To add a new query, use a unique
query name. When naming a new query, identify the type of query by starting the
name with one of the following characters:

First Character Query Type

D Delete

I Insert

Q Select

Resources Detail

Working with Components 3-27

■ The queryStr column defines the query expression. Query expressions are in
standard SQL syntax. If there are any parameter values to pass to the database,
their place is held with a question mark (?) as an escape character.

■ The parameters column defines the parameters that are passed to the query
from a service. A request from a web browser calls a service, which in turn calls
the query. It is the responsibility of the web browser to provide the values for the
query parameters, which are standard HTTP parameters The browser can pass
query parameters from the URL or from FORM elements in the web page. For
example, the QdocInfo query requires the dID (revision ID) to be passed as a
parameter, so the value is obtained from the service request URL.

The following example shows the standard QdocInfo query as defined in the <instance_
dir>/shared/config/resources/query.htm file. This query obtains the metadata
information to display on the DOC_INFO template page, which is the page displayed
when a user clicks the information icon on a search results page.

The parameter passed from the web browser URL is the dID, which is the unique
identification number for the content item revision. The query expression selects the
data for the primary revision from the Revisions, Documents, and DocMeta database
tables that matches the dID, if the revision does not have "Deleted" status.

Figure 3–3 Standard QDocInfo query

<HTML>
<HEAD>
<META HTTP-EQUIV='Content-Type' content='text/html; charset=iso-8859-1'>
<TITLE>Query Definition Resources</TITLE>
</HEAD>
<BODY>
<@table QueryTable@>
<table border=1><caption>Query Definition Table</caption>
<tr>

<td>name</td>
<td>queryStr</td>
<td>parameters</td>

</tr>
<tr>

<td>QdocInfo</td>
<td>SELECT Revisions.*, Documents.*, DocMeta.*
FROM Revisions, Documents, DocMeta
WHERE Revisions.dID=? AND Revisions.dID=Documents.dID AND DocMeta.dID =

Documents.dID AND Revisions.dStatus<>'DELETED' AND Documents.dIsPrimary<>0</td>
<td>dID int</td>

</tr>

U Update

First Character Query Type

Resources Detail

3-28 Oracle Fusion Middleware Developer's Guide for Content Server

</table>
<@end@>
</BODY>
</HTML>

3.5.5.1 Editing a Query Resource
Use the following procedure to edit a query resource using the Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. If there are multiple tables in the resource, select the query table to edit from the
Table Name list.

4. Modify the selected query table.

■ To add a query to the table, click Add.

■ To edit an existing query, select the query and click Edit. Modify the query
expression or parameters or both, and click OK.

■ To remove a query, select the query and click Delete. Click Yes to confirm.

3.5.6 Service
A service resource defines a function or procedure that is performed by the Content
Server. A service call can be performed from either the client or server side, so services
can be performed on behalf of the Web browser client or within the system itself. For
example:

■ Client-side request: When you click a "Search" link on a Content Server Web
page, the standard search page is delivered to your Web browser by the GET_
DOC_PAGE service using the following URL segment:

IdcService=GET_DOC_PAGE&Action=GetTemplatePage&Page=STANDARD_QUERY_PAGE

■ Server-side request: You can use the START_SEARCH_INDEX service to update
or rebuild the search index automatically in a background thread.

Services are the only way a client can communicate with the server or access the
database. Any program or HTML page can use services to request information from
the Content Server or perform a specified function.

The standard Content Server services are defined in the StandardServices table in the
IdcHomeDir/resources/core/tables/std_services.htm file. You can also find
special-purpose services in the workflow.htm file in the
IdcHomeDir/resources/core/tables/ directory.

Services depend on other resource definitions to perform their functions. Any service
that returns HTML requires a template to be specified. A common exception is the
PING_SERVER service, which does not return a page to the browser.

Important: This section provides an overview of custom service
resources. See the Oracle Fusion Middleware Services Reference Guide for
Universal Content Management for comprehensive information on
Content Server services.

Resources Detail

Working with Components 3-29

Most services use a query. A common exception is the SEARCH service, which sends a
request directly to the search collection. Merge rules are not required for a service
resource.

The following table row is an example of a service definition.

Figure 3–4 Service Definition Example

A service resource is defined in an HTM file using a ResultSet table with the following
three columns:

■ The Name column defines the name for each service. For client-side service
requests, this is the name called in the URL. To override an existing service, use
the same name for your custom service. To add a new service, use a unique service
name.

■ The Attributes column defines the following attributes for each service:

Attribute Description
Example (attributes from the DELETE_
DOC service)

Service class Determines, in part, what actions can be performed
by the service.

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Access level Assigns a user access level to the service. This
number is the sum of the following possible bit
flags:

READ_PRIVILEGE = 1

WRITE_PRIVILEGE = 2

DELETE_PRIVILEGE = 4

ADMIN_PRIVILEGE = 8

GLOBAL_PRIVILEGE = 16

SCRIPTABLE_SERVICE=32

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Template page Specifies the template that presents the results of the
service. If the results of the service do not require
presentation, this attribute is null.

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Service type If the service is to be executed inside another service,
this attribute is SubService; otherwise, this attribute is
null.

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Subjects
notified

Specifies the subjects (subsystems) to be notified by
the service. If no subjects are notified, this attribute
is null.

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Error message Defines the error message returned by the service if
no action error message overrides it. This can be
either an actual text string or a reference to a
locale-sensitive string (see Resolving Localized Strings
in Customizing Content Server for more
information).

DocService 4 MSG_PAGE null documents
!csUnableToDeleteItem(dDocName)

Resources Detail

3-30 Oracle Fusion Middleware Developer's Guide for Content Server

■ The Actions column defines the actions for each service. An action is an
operation to be performed as part of a service script. Actions can execute an SQL
statement, perform a query, run code, cache the results of a query, or load an
option list. Each service includes one or more actions, which specify what happens
upon execution.

The
 tags in the Actions column are for browser display purposes only, so
they are optional. However, the </td> tag must occur immediately after the
actions, without a line break in between. An action is defined using the following
format:

type:name:parameters:control mask:error message

3.5.6.1 Service Example
The DOC_INFO service provides a good example of how services, queries, and
templates work together. The following figures show the DOC_INFO service
definition from the <instance_dir>/config/resources/std_services.htm file.

Section Description
Example (first action from the
DELETE_DOC service)

Type Defines the type of action:

QUERY_TYPE = 1

EXECUTE_TYPE = 2

CODE_TYPE = 3

OPTION_TYPE = 4

CACHE_RESULT_TYPE = 5

5:QdocInfo:DOC_
INFO:6:!csUnableToDeleteItem(dDocNa
me)!csRevisionNoLongerExists

Name Specifies the name of the action. 5:QdocInfo:DOC_
INFO:6:!csUnableToDeleteItem(dDocNa
me)!csRevisionNoLongerExist

Parameters Specifies parameters required by the action. If no
parameters are required, leave this part empty (two
colons appear in a row).

5:QdocInfo:DOC_
INFO:6:!csUnableToDeleteItem(dDocNa
me)!csRevisionNoLongerExist

Control mask Controls the results of queries to the database. This
number is the sum of the following possible bit flags:

No control mask = 0

CONTROL_IGNORE_ERROR = 1

CONTROL_MUST_EXIST = 2

CONTROL_BEGIN_TRAN = 4

CONTROL_COMMIT_TRAN = 8

CONTROL_MUST_NOT_EXIST = 16

5:QdocInfo:DOC_
INFO:6:!csUnableToDeleteItem(dDocNa
me)!csRevisionNoLongerExist

Error
message

Defines the error message to be displayed by this action.
This error message overrides the error message provided
as an attribute of the service. This can be either an actual
text string or a reference to a locale-sensitive string (see
Resolving Localized Strings in Customizing Content Server
for more information).

5:QdocInfo:DOC_
INFO:6:!csUnableToDeleteItem(dDocNa
me)!csRevisionNoLongerExist

Resources Detail

Working with Components 3-31

Figure 3–5 DOC_INFO service

<HTML>
<HEAD>
<META HTTP-EQUIV='Content-Type' content='text/html; charset=iso-8859-1'>
<TITLE>Standard Scripted Services</TITLE>
</HEAD>
<BODY>
<@table StandardServices@>
<table border=1><caption>Scripts For Standard

Services</caption>
<tr>
<td>Name</td><td>Attributes</td><td>Actions</td>
</tr>
<tr>
<td>DOC_INFO</td>
<td>DocService

33
DOC_INFO
null
null

!csUnableToGetRevInfo</td>

<td>5:QdocInfo:DOC_INFO:2:!csItemNoLongerExists2
3:mapNamedResultSetValues:DOC_

INFO,dStatus,dStatus,dDocTitle,dDocTitle:0:null
3:checkSecurity:DOC_INFO:0:!csUnableToGetRevInfo2(dDocName)
3:getDocFormats:QdocFormats:0:null
3:getURLAbsolute::0:null
3:getUserMailAddress:dDocAuthor,AuthorAddress:0:null
3:getUserMailAddress:dCheckoutUser,CheckoutUserAddress:0:null
3:getWorkflowInfo:WF_INFO:0:null
3:getDocSubscriptionInfo:QisSubscribed:0:null
5:QrevHistory:REVISION_HISTORY:0:!csUnableToGetRevHistory(dDocName)</td>

</tr>
</table>
<@end@>
</BODY>
</HTML>

3.5.6.1.1 Attributes The following table describes the attributes of the DOC_INFO
service shown previously.

Attribute Value Description

Service class DocService This service is providing information about a
content item.

Access level 33 32 = This service can be executed with the
executeService Idoc Script function.

1 = The user requesting the service must have
Read privilege on the content item.

Resources Detail

3-32 Oracle Fusion Middleware Developer's Guide for Content Server

3.5.6.1.2 Actions The DOC_INFO service executes the following actions:

■ 5:QdocInfo:DOC_INFO:2:!csItemNoLongerExists2

■ 3:mapNamedResultSetValues:DOC_
INFO,dStatus,dStatus,dDocTitle,dDocTitle:0:null

■ 3:checkSecurity:DOC_INFO:0:!csUnableToGetRevInfo2(dDocName)

Template page DOC_INFO This service uses the DOC_INFO template (doc_
info.htm file). The results from the actions are
merged with this template and presented to the
user.

Service type null This service is not a subservice.

Subjects notified null No subjects are affected by this service.

Error Message !csUnableToGetRevInfo If this service fails on an English Content Server
system, it returns the error message string: Unable
to retrieve information about the revision

Action Definition Description

5 Cached query action that retrieves information from the database
using a query.

QDocInfo This action retrieves content item information using the QDocInfo
query in the query.htm file.

DOC_INFO The result of the query is assigned to the parameter DOC_INFO
and stored for later use.

2 The CONTROL_MUST_EXIST control mask specifies that the
query must return a record, or the action fails.

!csItemNoLongerExists2 If this action fails on an English Content Server system, it returns
the error message string: This content item no longer exists

Action Definition Description

3 Java method action specifying a module
that is a part of the Java class implementing
the service.

mapNamedResultSetValues This action retrieves the values of dStatus
and dDocTitle from the first row of the
DOC_INFO ResultSet and stores them in
the local data. (This increases speed and
ensures that the correct values are used.)

DOC_INFO,dStatus,dStatus,dDocTitle,dDocTitle Parameters required for the
mapNamedResultSetValues action.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

3 Java method action specifying a module that is a part
of the Java class implementing the service.

Attribute Value Description

Resources Detail

Working with Components 3-33

■ 3:getDocFormats:QdocFormats:0:null

■ 3:getURLAbsolute::0:null

■ 3:getUserMailAddress:dDocAuthor,AuthorAddress:0:null

checkSecurity This action retrieves the data assigned to the DOC_
INFO parameter and evaluates the assigned security
level to verify that the user is authorized to perform
this action.

DOC_INFO Parameter that contains the security information to be
evaluated by the checkSecurity action.

0 No control mask is specified.

!csUnableToGetRevInfo2(dDocName) If this action fails on an English Content Server
system, it returns the error message string: Unable to
retrieve information for ''{dDocName}."

Action Definition Description

3 Java method action specifying a module that is a part of the Java
class implementing the service.

getDocFormats This action retrieves the file formats for the content item using the
QdocFormats query in the query.htm file. A comma-delimited list of
the file formats is stored in the local data as dDocFormats.

QdocFormats Specifies the query used to retrieve the file formats.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

3 Java method action specifying a module that is a part of the Java
class implementing the service.

getURLAbsolute This action resolves the URL of the content item and stores it in
the local data as DocUrl.

blank This action takes no parameters.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

3 Java method action specifying a module that is a part of the Java
class implementing the service.

getUserMailAddress This action resolves the e-mail address of the content item
author.

dDocAuthor,AuthorAddres
s

This action passes dDocAuthor and AuthorAddress as parameters.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

Resources Detail

3-34 Oracle Fusion Middleware Developer's Guide for Content Server

■ 3:getUserMailAddress:dCheckoutUser,CheckoutUserAddress:0:null

■ 3:getWorkflowInfo:WF_INFO:0:null

■ 3:getDocSubscriptionInfo:QisSubscribed:0:null

■ 5:QrevHistory:REVISION_
HISTORY:0:!csUnableToGetRevHistory(dDocName)

Action Definition Description

3 Java method action specifying a module that is a part
of the Java class implementing the service.

getUserMailAddress This action resolves the e-mail address of the user
who has the content item checked out.

dCheckoutUser,CheckoutUserAddress This action passes dCheckoutUser and
CheckoutUserAddress as parameters.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

3 Java method action specifying a module that is a part of the Java
class implementing the service.

getWorkflowInfo This action evaluates whether the content item is part of a
workflow. If the WF_INFO ResultSet exists, then workflow
information is merged into the DOC_INFO template.

WF_INFO This action passes WF_INFO as a parameter.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

3 Java method action specifying a module that is a part of the Java
class implementing the service.

getDocSubscriptionInfo This action evaluates if the current user has subscribed to the
content item:

■ If the user is subscribed, an Unsubscribe button is displayed.

■ If the user is not subscribed, a Subscribe button is displayed.

QisSubscribed Specifies the query used to retrieve the subscription information.

0 No control mask is specified.

null No error message is specified.

Action Definition Description

5 Cached query action that retrieves information from the
database using a query.

QrevHistory This action retrieves revision history information using the
QrevHistory query in the query.htm file.

Resources Detail

Working with Components 3-35

3.5.6.2 Editing a Service Resource
Use the following procedure to edit a service resource using the Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. If there are multiple tables in the resource, select the service table to edit from the
Table Name list.

4. Modify the selected service table.

■ To add a service to the table, click Add.

■ To edit an existing service, select the service and click Edit. Modify the service
attributes or actions or both, and click OK.

■ To remove a service, select the service and click Delete. Click Yes to confirm.

3.5.7 Templates
A template resource defines the names, types, and locations of custom template files to
be loaded for the component.

The actual template pages (.htm files) are separate files that are referenced in the
template resource file. Template HTM files contain the code that the Content Server
uses to assemble web pages. HTML markup in a template file defines the basic layout
of the page, while Idoc Script in a template file generates additional HTML code for
the Web page at the time of the page request. Because HTM template files contain a
large amount of script that is not resolved by the Content Server until the final page is
assembled, these files are not viewable Web pages.

The template type of HTM file is used to define the following component files:

■ Template pages: Standard template pages are located in the
IdcHomeDir/resources/core/templates/ directory.

■ Report pages: Standard report pages are located in the
IdcHomeDir/resources/core/reports/ directory.

A template resource (templates.hda) is defined in the HDA file format. See "Elements
in HDA Files" on page 3-6 for more information and an example of an HDA ResultSet
table. The standard templates are defined in the
IdcHomeDir/resources/core/templates/templates.hda file.

Merge rules are required to merge the new template definition into the
IntradocTemplates table or the SearchResultTemplates table. Typically, the merge is
on the name column. The following is an example of a MergeRules ResultSet for a
template.

REVISION_HISTORY The result the query is assigned to the parameter
REVISION_HISTORY. The DOC_INFO template uses this
parameter in a loop to present information about each
revision.

0 No control mask is specified.

!csUnableToGetRevHistory(dDoc
Name)

If this action fails on an English Content Server system, it
returns the error message string:

Unable to retrieve revision history for ''{dDocName}.''

Action Definition Description

Resources Detail

3-36 Oracle Fusion Middleware Developer's Guide for Content Server

@ResultSet MergeRules
4
fromTable
toTable
column
loadOrder
MultiCheckinTemplates
IntradocTemplates
name
1
@end

The standard templates.hda file defines three ResultSet tables:

■ The IntradocTemplates ResultSet table defines the template pages for all
Content Server Web pages except search results pages. This table consists of five
columns:

– The name column defines the name for each template page. This name is how
the template is referenced in the Content Server CGI URLs and in code.

– The class column defines the general category of the template. The most
common class type is Document.

– The formtype column defines the specific type of functionality the page is
intended to achieve. The formtype is typically the same as the name of the
form, except in lowercase characters.

– The filename column defines the path and file name of the template file. The
location can be an absolute path or can be relative to the template resource file
when the template page is in the same directory as the template resource file.

– The description column defines a description of the template.

■ The Verify Template. The Content Server no longer uses the VerityTemplates
ResultSet table. However, this table remains in the templates.hda file as legacy
code for reverse compatibility.

■ The SearchResultTemplates table defines the template pages for search
results pages. SearchResultTemplates define how query results are displayed
on the search results pages in the Library. Query result pages are a special type of
search results page. This table consists of six columns:

– The name column defines the name for each template page. This name is how
the template is referenced in the Content Server CGI URLs, in code, and in the
Web Layout Editor utility.

– The formtype column defines the specific type of functionality the page is
intended to achieve. ResultsPage is the only form type currently supported for
search results pages.

Note: The StandardResults template (search_results.htm file) is
typically used as the global template for standard search results pages
and the query results pages in the Library. You can create a new
template or change the "flexdata" of the StandardResults template
through the Web Layout Editor, but these changes are saved in a
separate file (IntradocDir/data/results/custom_results.hda) rather
than in the SearchResultTemplates table in the templates.hda file.

Resources Detail

Working with Components 3-37

– The filename column defines the path and file name of the template file. The
location can be an absolute path or can be relative to the template resource file
when the template page is in the same directory as the template resource file.

– The outfilename column is for future use; the value is always null.

– The flexdata column defines the metadata to be displayed for each row on
the search results page. The format of text in the flexdata column is:

Text1 "text 1 contents"%<Tab>Text2 "text 2 contents"%

where Text1 contents appear on the first line, and Text2 contents appear on the
second line in each search results row. <Tab> represents a literal tab character.

Idoc Script can be used to define the contents in the flexdata field. You can
also change the flexdata of the StandardResults template through the
Web Layout Editor, but these changes are saved in a separate file
(IntradocDir/data/results/custom_results.hda) rather than in the
SearchResultTemplates table in the templates.hda file.

– The description column defines a description of the template.

The following example shows a custom template resource file that points to a custom
Content Management page (multicheckin_doc_man.htm) and a custom search results
page (MultiCheckin_search_results.htm).

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
blFieldTypes=
@end
@ResultSet MultiCheckinTemplates
5
name
class
formtype
filename
description
DOC_MANAGEMENT_LINKS
DocManagement
DocManagementLinks
multicheckin_doc_man.htm
Page containing links to various document management functions
@end
@ResultSet MultiCheckin_2
6
name
formtype
filename
outfilename
flexdata
description
StandardResults
SearchResultsPage
MultiCheckin_search_results.htm
null
Text2 <$dDocTitle$> <$dInDate$>%Text1 <$dDocName$>%
apStandardResultsDesc
@end

Resources Detail

3-38 Oracle Fusion Middleware Developer's Guide for Content Server

3.5.7.1 Template and Report Pages
Template pages and report pages are also called "presentation" pages, because the
Content Server uses them to assemble, format, and present the results of a web page
request.

The standard template pages are located in the IdcHomeDir/resources/core/templates
directory. The standard report pages are located in the
IdcHomeDir/resource/core/reports directory.

3.5.7.1.1 Template Page Example The following example shows the template file for the
standard Content Management page (doc_man.htm).

Resources Detail

Working with Components 3-39

Figure 3–6 Template Page Example

3.5.7.1.2 Report Page Example The following example shows the template file for the
standard Document Types report page (doc_types.htm).

Resources Detail

3-40 Oracle Fusion Middleware Developer's Guide for Content Server

Figure 3–7 Report Page Example

3.5.7.2 Editing a Template Resource
Use the following procedure to edit an existing template resource using the
Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource in the Custom Resource Definition list.

3. To remove a template definition table or edit a template definition manually, click
Launch Editor in the Custom Resource Definition pane.

4. If there are multiple tables in the resource, select the template table to edit from
the Table Name list.

5. Modify the selected template table.

■ To add a template definition to the table, click Add.

■ To edit an existing template definition, select the definition and click Edit.
Modify the parameters and click OK.

Resources Detail

Working with Components 3-41

■ To remove a template definition, select the definition and click Delete. Click
Yes to confirm.

3.5.8 Environment
An environment resource defines configuration variables, either by creating new
variable values or replacing existing values. Because custom resources are loaded after
the standard config.cfg file is loaded, the variable values defined in the custom
environment resource replace the original variable values.

An environment resource is defined in a CFG file using a name/value pair format:

variable_name=value

After defining a variable value, you can reference the variable in templates and other
resource files with the following Idoc Script tag:

<$variable_name$>

Environment resource files can include comment lines, which are designated with a #
symbol:

#Set this variable to true to enable the function.

Example 3–2 Environment

The following is an example of an environment resource file.

Use this to turn on or off alternate row coloring
nsUseColoredRows=0

These are the nested search field definitions.

nsFld1Caption=Document Text
nsFld1Name=
nsFld1Type=FullText
nsFld1OptionKey=
#
nsFld2Caption=Text
nsFld2Name=xtext
nsFld2Type=Text
nsFld2OptionKey=
#
nsFld3Caption=Date
nsFld3Name=xdate
nsFld3Type=Date
nsFld3OptionKey=
#
nsFld4Caption=Integer
nsFld4Name=xinteger
nsFld4Type=Int
nsFld4OptionKey=
#
nsFld5Caption=Option List
nsFld5Name=xoptionlist
nsFld5Type=OptionList
nsFld5OptionKey=optionlistList
#
nsFld6Caption=Info Topic
nsFld6Name=xwfsInfoTopic

Installing Components

3-42 Oracle Fusion Middleware Developer's Guide for Content Server

nsFld6Type=OptionList
nsFld6OptionKey=wfsInfoTopicList

The colored_search_resource.htm template resource file in the Nested Search
component references the nsUseColoredRows variable as follows:

<$if isTrue(#active.nsUseColoredRows)$>
<$useColoredRows=1, bkgHighlight=1$>

<$endif$>

Standard configuration variables are defined in the IntradocDir/config/config.cfg file.
See the Oracle Fusion Middleware Idoc Script Reference Guide for a complete list of
configuration variables.

3.5.8.1 Editing an Environment Resource
Use the following procedure to edit an existing environment resource using the
Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Select the resource file in the Custom Resource Definition list.

3. Click Launch Editor.

4. Modify the configuration variables in the text editor.

5. Save and close the resource file.

Changes are reflected in the Custom Environment Parameters list.

3.6 Installing Components
Server components for Content Server are installed by default, however, custom
components and components downloaded from Oracle Technology Network must be
installed and enabled before they can be used.

You can install components using one of several methods:

■ "Using Component Manager" on page 3-43

■ "Using Component Wizard" on page 3-43

■ "Using ComponentTool" on page 3-44

Before installing a component, you must first download it to your instance. A
component cannot be downloaded unless it meets the following requirements:

■ The component must exist outside of the IdcHomeDir/system directory (that is,
DomainHome/ucm/idc/system). This excludes all packaged components unless a
patch has been uploaded to a component.

Note: The configuration settings might not appear in the Custom
Environment Parameters list in the order they actually appear in the
resource file. It is recommended that you launch the text editor for
easier viewing.

Note: If you only need to enable or disable an installed component,
see "Enabling and Disabling Components" on page 3-4.

Installing Components

Working with Components 3-43

■ The compoment must have a zip file with the appropriate name and be located
inside the custom component or core component directory.

3.6.1 Using Component Manager
Follow these steps to install the component using the Component Manager:

1. Select Admin Server from the Administration Menu.

The Admin Server page is displayed with the Advanced Component Manager
screen.

2. Click the Browse button and find the zip file that was downloaded and saved.

3. Highlight the component name and click Open.

4. Click Install. A message is displayed, detailing what will be installed.

5. Click Continue to continue with installation or Cancel to stop installation.

6. If you select Continue, a message appears after successful installation. You can
choose one of two options:

■ To enable the component and restart the Content Server.

■ To return to the Component Manager, where you can continue adding
components. When done, highlight the components you want to enable and
click Enable. When finished enabling components, restart the server.

3.6.2 Using Component Wizard
Follow these steps to install the component using the Component Wizard:

1. Start the Component Wizard:

■ (Windows) Select Start, then Programs, then Oracle Content Server, then
your content server , then Utilities, then Component Wizard.

■ (UNIX) Run the ComponentWizard script in the /bin directory.

The Component Wizard main screen and the Component List screens are
displayed.

2. On the Component List screen, click Install.

The Install screen is displayed.

1. Click Select.

2. Navigate to the zip file that was downloaded and saved and select it.

3. Click Open.

The zip file contents are added to the Install screen list.

4. Click OK. You are prompted to enable the component.

5. Click Yes. The component is listed as enabled on the Component List screen.

6. Exit the Component Wizard.

7. Restart Content Server.

Depending on the component being installed, a new menu option appears in the
Administration tray or on the Admin Applet page. Some components simply extend
existing functionality and do not appear as separate new options. See the component's
documentation for details.

Installing Components

3-44 Oracle Fusion Middleware Developer's Guide for Content Server

3.6.3 Using ComponentTool
Run the ComponentTool utility and specify the zip file for the component to install
and enable:

DomainHome/ucm/cs/bin/ComponentTool/path_to_file/component.zip

4

Changing the Look and Navigation of the Content Server Interface 4-1

4Changing the Look and Navigation of the
Content Server Interface

This chapter provides information about the several different methods that you can
use to change the look and navigation of the Content Server interface. It covers these
topics:

■ "Modifying the Content Server Interface" on page 4-1

■ "Using Dynamic Server Pages to Alter the Navigation of Web Pages" on page 4-7

4.1 Modifying the Content Server Interface
This section describes how to modify the Content Server interface:

■ "Skins and Layouts" on page 4-1

■ "Customizing the Interface" on page 4-3

4.1.1 Skins and Layouts
This section provides information about available skins and layouts provided by
default with your Content Server. Skins and layouts provide alternate color schemes
and alternate navigation designs.

■ "Types of Skins and Layouts" on page 4-1

■ "Selecting Skins and Layouts" on page 4-2

■ "Configuration Entries" on page 4-2

■ "Anonymous User Interface" on page 4-3

4.1.1.1 Types of Skins and Layouts
Several skins and layouts are provided by default with the Content Server. In addition,
you can design custom skins and layouts. When users changes the skin or layout, they

Note: In addition to the methods discussed here, you can also alter
the metadata fields that are presented to users and modify the type of
presentation used for check-in pages, search pages, and other user
interfaces. See "Managing Repository Content" in the Oracle Fusion
Middleware Application Administrator’s Guide for Content Server for
details about creating and modifying metadata fields and creating
content profiles.

Modifying the Content Server Interface

4-2 Oracle Fusion Middleware Developer's Guide for Content Server

change the look and feel of the interface. They can select a skin and layout from the
options provided on the User Profile page.

The only skills required to create and modify skins or layouts is an understanding of
HTML, Cascading Style Sheets, and JavaScript. After altering the appearance, the
edited layouts and skins are published so that others in your environment can use
them.

4.1.1.1.1 Skins Skins define the color scheme and other aspects of appearance of the
layout such as graphics, fonts, or font size. (the default skin is Oracle). You can design
custom skins or modify the existing skins.

4.1.1.1.2 Layouts Layouts define the navigation hierarchy display (the default layout is
Trays) and custom layouts can be designed.

Custom layouts change behavior and the look-and-feel systemwide. If you want your
changes to apply only in limited situations, you might want to consider dynamic
server pages.These layouts are provided:

■ Trays-This layout with the standard Oracle skin is the default interface. High-level
navigation occurs through the navigation trays.

■ Top Menu-This layout provides an alternate look with top menus providing
navigation.

4.1.1.2 Selecting Skins and Layouts
The User Personalization settings available on the User Profile page allow users to
change the layouts of the Content Server or the skin.

To change the skin or layout, follow these steps:

1. On the Content Server Home page, click <your_user_name> in the top menu bar.
The User Profile page displays.

2. On the Content Server User Profile page, select the desired skin and layout.

3. Click Update and view the changes.

4.1.1.3 Configuration Entries
These values can be placed in the IntradocDir/config/config.cfg file to alter the default
behavior for the Content Server instance:

■ LmDefaultLayout: The name of the layout used by guests, and new users. The
default is Trays, but it can be set to Top Menus.

■ LmDefaultSkin: The name of the skin used by guests, and new users. The default
is Oracle.

Note: Only administrators can create and make new or custom skins.
See "Configuration Entries" on page 4-2 for additional information on
setting the default look and feel of the user interface.

Important: This personalization functionality works with Internet
Explorer 6+ or Mozilla Firefox 3+ and later versions.

Modifying the Content Server Interface

Changing the Look and Navigation of the Content Server Interface 4-3

4.1.1.4 Anonymous User Interface
The ExtranetLook component can be used to change the interface for users who log in
as anonymous random users. An example of this is when a Content Server-based Web
site must be available to external customers without a login, but you want employees
to be able to contribute content to that Web site.

When running Content Server on an Oracle WebLogic Server, this component alters
privileges for certain pages so that they require write privilege to access. The
component also makes small alterations to the static portal page to remove links that
anonymous random users should not see.

The ExtranetLook component is installed (disabled) with Content Server. To use the
component you must enable it with the Component Manager.

You can customize your Web pages to make it easy for customers to search for
content, and then give employees a login that permits them to see the interface on
login. To do the customization, modify the ExtranetLook.idoc file, which provides
dynamic resource includes that can be customized based on user login. The idoc file is
checked into the Content Server repository so it can be referenced by the Content
Server templates.

The following files in the IntradocDir/data/users directory can be altered:

■ prompt_login.htm

■ access_denied.htm

■ report_error.htm

Use the following procedure to update the look-and-feel of the Web site based on user
login:

1. Display the Web Layout Editor.

2. Select Options, then Update Portal.

3. Modify the portal page as you wish. You can use dynamic resource includes based
on user login to customize this page.

4. Click OK.

5. Customize the ExtranetLook.idoc file as desired.

6. Check the ExtranetLook content item out of the Content Server.

7. Check the revised ExtranetLook.idoc file back into the Content Server.

4.1.2 Customizing the Interface
The Top Menu and Trays layouts are included by default with the system. The two
layouts have two skin options (Oracle and Oracle2). The layouts are written in
JavaScript and the "look" of the skins is created using Cascading Style Sheets.

You can modify layouts and skins by altering the template files provided with the
Content Server or design new skins and layouts by creating components that can be
shared with other users.

This section provides an overview of this process. It includes these topics:

Note: The ExtranetLook component does not provide form-based
authentication for Oracle WebLogic Server or provide customizable
error pages.

Modifying the Content Server Interface

4-4 Oracle Fusion Middleware Developer's Guide for Content Server

■ "About Dynamic Publishing" on page 4-4

■ "Creating New Layouts" on page 4-4

4.1.2.1 About Dynamic Publishing
When the Content Server starts, or when the PUBLISH_WEBLAYOUT_FILES service is
run, the PublishedWeblayoutFiles table in the std_resource.htm file is used to publish
files to the /weblayout directory. To have your custom component use this publishing
mechanism, create a template then merge a custom row which uses that template into
the PublishedWeblayoutFiles table.

Other users who want to modify or customize your file can override your template or
your row in the PublishedWeblayoutFiles table. If your template uses any
resource includes, other users can override any of these includes or insert their own
Idoc Script code using the standard super notation. When your component is
disabled, the file is no longer published or modified and the Content Server returns to
its default state.

In addition to giving others an easy way to modify and add to your work, you can also
construct these former static files using Idoc Script. For example, you can have the files
change depending on the value of a custom configuration flag. You can use core
Content Server objects and functionality by writing custom Idoc Script functions and
referencing them from inside your template.

Because this Idoc Script is evaluated once during publishing, you cannot use Idoc
Script as you would normally do from the IdcHomeDir/resources/core/idoc/std_
page.idoc file. When a user requests that file, it has already been created, so the script
used to create it did not have any access to the current service’s DataBinder or any
information about the current user.

This does limit the type of Idoc Script you can write in these files, so if you are writing
CSS or JavaScript that needs information that dynamically changes with users or
services, consider having the pages that need this code include the code inline. This
increases the size of pages delivered by your Web server and thus increases the
amount of bandwidth used.

4.1.2.2 Creating New Layouts
This section describes the general steps needed to create and publish new layouts.

1. Merge a table into the LmLayouts table in
IdcHomeDir/resources/core/tables/std_resources.htm to define the new layout.
Define the layout ID, label, and whether it is enabled (set to 1) or not.

2. Merge a table into the PublishedWeblayoutFiles table in
IdcHomeDir/resources/core/tables/std_resources.htm. This new table describes
the files that are created from Content Server templates and then pushed out to the
/weblayout directory. Specify the necessary skin.css files to push out to each skin
directory.

3. Merge a table with the PublishStaticFiles table in std_resources.htm. This
lists the directories that contain files, such as images, that should be published to
the/weblayout directory.

4.1.3 Optimizing the Use of Published Files
You can direct Content Server to bundle published files so they can be delivered as
one, thus minimizing the number of page requests to the server. In addition, you can
optimize file use by referencing published pages using Idoc Script.

Modifying the Content Server Interface

Changing the Look and Navigation of the Content Server Interface 4-5

This section discusses the following topics:

■ "Bundling Files" on page 4-5

■ "Referencing Published Files" on page 4-7

4.1.3.1 Bundling Files
Static weblayout file contents are cached on client machines and on Web proxies,
significantly lowering the amount of server bandwidth they use. Therefore, best
practice indicates that these types of files should be used wherever possible.

However, each static weblayout file requested by the client’s browser requires a
round-trip to the server just to verify that the client has the most up-to-date version of
this file. This occurs even if the file is cached. Therefore, as the number of these files
grows, so does the number of pings to the server for each page request.

To help minimize the number of round-trips, Content Server can bundle multiple
published files so they are delivered as one. This feature can be disabled by setting the
following configuration in the server’s IntradocDir/config/config.cfg file:

BundlePublishedWeblayoutFiles=false

Bundling is accomplished using the PublishedWeblayoutBundles table in the std_
resources.htm file.

<@table PublishedWeblayoutBundles@>
<table border=1><caption>

<tr><td>class</td><td>bundlePath</td><td>loadOrder</td></tr>
<tr>

<td>javascript:common</td>
<td>resources/layouts/commonBundle.js</td>
<td>10</td>

</tr>
...

</table>
<@end@>

The columns in this table are as follows:

■ class: This refers to the same column in the PublishedWeblayoutFiles table
and is used to determine which files are placed in which bundle.

■ bundlePath: The eventual location where the bundle is published. This path is
relative to the /weblayout directory.

■ loadOrder: The order in which this bundle should be loaded on Content Server
pages. Bundles with a lower loadOrder are loaded first.

In the previous example, files of the javascript:common class are published to a
single bundle located at resources/layouts/commonBundle.js. The contents of
all bundled files that match this class are appended to form a single file to be stored at
that location.

The class column in the PublishedWeblayoutFiles and
PublishedWeblayoutBundles tables is a colon-separated classification. In the
following example, two different bundles overlap. food accounts for all three
published weblayout files, while food:fruit accounts for two of the three and
food:vegetable accounts for the third.

Any given weblayout file can only be published into a single bundle, so food:fruit
contains both APPLE and PEAR, while food picks up the leftover CARROT. The server

Modifying the Content Server Interface

4-6 Oracle Fusion Middleware Developer's Guide for Content Server

checks each file to be published then looks for the most specific bundle in which to
place it. If no bundle exists, it is published as a single file.

The order in which files are included in a bundle is determined through the
loadOrder column in the PublishedWeblayoutFiles table. Files with a lower
loadOrder are placed earlier in the bundle.

<@table PublishedWeblayoutFiles@>
<table border=1><caption>

<tr>
<td>path</td>
<td>template</td>
<td>class</td>
<td>loadOrder</td>
<td>doPublishScript</td>

</tr>
<tr>

<td>resources/apple</td>
<td>APPLE</td>
<td>food:fruit:apple</td>
<td>10</td>
<td><$doPublish = 1$></td>

</tr>
<tr>

<td>resources/pear</td>
<td>PEAR</td>
<td>food:fruit:pear</td>
<td>20</td>
<td><$doPublish = 1$></td>

</tr>
<tr>

<td>resources/carrot</td>
<td>CARROT</td>
<td>food:vegetable:carrot</td>
<td>10</td><td><$doPublish = 1$></td>

</tr>
</table>
<@end@>

<@table PublishedWeblayoutBundles@>
<table border=1><caption>

<tr>
<td>class</td>
<td>bundlePath</td>
<td>loadOrder</td>

</tr>
<tr>

<td>food:fruit</td>
<td>resources/fruit</td>
<td>20</td>

</tr>
<tr>

<td>food</td>
<td>resources/food</td>
<td>10</td>

</tr>
</table>
<@end@>

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Content Server Interface 4-7

4.1.3.2 Referencing Published Files
Most published files (both bundled and unbundled) must be directly referenced from
within HTML to be included in a page. It can therefore be difficult to know exactly
which files to include for a given situation, especially when bundling can be enabled
or disabled by server administrators. A simple Idoc Script method can be used to
easily and transparently include all of the files you need on a given page.

For example, if you write a page that includes all files associated with the
javascript:common bundle (as described previously), then do not write HTML that
includes all of the files mentioned in the first table in addition to the bundle mentioned
in the second, the server is asked for each file. This negates the purpose of bundling
because the server is pinged for each file whether it actually exists or not.

To correctly include these files on a page, use the following Idoc Script and include it
from somewhere within the HEAD of the page:

<$exec createPublishedResourcesList("javascript:common")$>
<$loop PublishedResources$>
<script language="JavaScript" src="<$HttpWebRoot$><$PublishedResources.path$>" />
</script>
<$endloop$>

This code fragment includes all javascript:common files even if bundling is
switched off. If javascript instead of javascript:common is passed, all files
whose class starts with javascript are included.

This PublishedResources result set is sorted by loadOrder so files and bundles
with the lowest loadOrder are included first. Files with a greater loadOrder can
override JavaScript methods or CSS styles that were declared earlier.

4.2 Using Dynamic Server Pages to Alter the Navigation of Web Pages
This section gives you an overview of the building blocks necessary to create dynamic
server pages. It includes the following sections:

■ "About Dynamic Server Pages" on page 4-7

■ "Page Types" on page 4-9

■ "Creating Dynamic Server Pages" on page 4-10

■ "Syntax" on page 4-10

■ "Idoc Script Functions" on page 4-13

■ "HCSF Pages" on page 4-14

■ "Development Recommendations" on page 4-14

4.2.1 About Dynamic Server Pages
Dynamic server pages are files that are checked into the Content Server and then used
to generate Web pages dynamically. Dynamic server pages are typically used to alter
the look-and-feel and navigation of Web pages. For example, dynamic server pages
can be used to:

■ Create Web pages to be published through Content Publisher

■ Implement HTML forms

■ Maintain a consistent look-and-feel throughout a Web site

Dynamic server pages include the following file formats:

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-8 Oracle Fusion Middleware Developer's Guide for Content Server

■ IDOC: A proprietary scripting language

■ HCST: Hyper Content Server Template, similar to a standard Content Server
template page stored in the IdcHomeDir/resources/core/templates directory.

■ HCSP: Hyper Content Server Page, an HTML-compliant version of the HCST
page, usually used for published content.

■ HCSF: Hyper Content Server Form, similar to HCSP and HCST pages, but
containing HTML form fields that can be filled out and submitted from a Web
browser

When you use dynamic server pages, the Content Server assembles Web pages
dynamically using a custom template (HCST, HCSP, or HCSF file) that you have
checked in to the Content Server. The template calls HTML includes from a text file
(IDOC file) you have also checked in to the Content Server.

To make changes to the look-and-feel or navigation on a Web page, you modify the
HCS* template page, or the IDOC file, or both, and then check in the revised files as
new revisions. Your changes are available immediately.

The advantages of using dynamic server pages with the Content Server include the
following:

■ You can introduce and test customizations quickly and easily. Simply checking
in a revision of a dynamic server page implements the changes immediately—you
do not have to restart the Content Server.

■ Your Web pages can make use of functionality not found in standard HTML.
For example, HTML forms can be submitted directly to the Content Server
without the need for CGI scripts. Also, Idoc Script enables you to work directly
with environment and state information about the Content Server.

■ You do not have to install or keep track of component files. It can be difficult to
maintain and troubleshoot components if they have a lot of files or your system is
highly customized. Dynamic server pages are easier to work with because you can
check in just a few content items that contain all of your customizations.

■ Customizations can be applied to individual pages. Dynamic server pages
enable you to apply customizations to a single page rather than globally, leaving
the standard Content Server page coding intact.

Keep the following constraints in mind when deciding whether to use dynamic server
pages:

■ Dynamic server pages cannot be used to modify core functionality of the
Content Server. Dynamic server pages are most useful for customizing your Web
design and form pages.

■ Frequent revisions to dynamic server pages can result in a large number of
obsolete content items. You should do as much work on a development system as
possible before deploying to a production instance, and you may need to delete
out-of-date pages regularly.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Content Server Interface 4-9

Figure 4–1 The dynamic server page process.

4.2.2 Page Types
There are four types of dynamic server pages, which are identified in the Content
Server by their four-character file name extensions:

4.2.2.1 IDOC File
An IDOC file is a text file containing HTML includes that are called by HCST, HCSP,
and HCSF pages.

4.2.2.2 HCST File
A Hypertext Content Server Template (HCST) file is a template page, similar to a
standard Content Server template page, that is used as a framework for assembling a
Web page.

■ HCST pages are typically used when the content of the page itself is dynamic or
where Content Server functionality is needed, such as on a search page, search
results page, or custom checkin page.

■ Because this type of page consists mostly of dynamically assembled code, HCST
files are not indexed in the Content Server.

4.2.2.3 HCSP File
A Hypertext Content Server Page (HCSP) file is a published Web page that displays
actual Web site content.

Note: See Chapter 3, "Working with Components" for detailed
information on includes.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-10 Oracle Fusion Middleware Developer's Guide for Content Server

■ HCSP files are typically created either by generating the Web page through
Content Publisher using an HCST page as a template, or by submittal of a form in
the Content Server through an HCSF page.

■ Because this type of page contains Web-viewable content, HCSP files are indexed
in the Content Server.

4.2.2.4 HCSF File
A Hypertext Content Server Form (HCSF) file is similar to an HCSP file, except that it
contains HTML form fields that can be filled out and submitted from a Web browser.

■ When a user fills out and submits a form from an HCSF page, an HCSP file is
checked in as a separate content item with metadata defined by XML tags in the
HCSF page.

■ Because this type of page contains Web-viewable content, HCSF files are indexed
in the Content Server.

4.2.3 Creating Dynamic Server Pages
Although dynamic server pages are implemented in the Content Server differently
than custom components, you must be familiar with Content Server component
architecture concepts, particularly Content Server templates and HTML includes. For
more information on these topics, see Chapter 3, "Working with Components".

Use the following basic procedure to customize your Content Server using dynamic
server pages:

1. Create an IDOC file with custom includes.

2. Check the IDOC file into the Content Server.

3. Create an HCST, HCSP, or HCSF file that references the IDOC file.

4. Check the HCS* file into the Content Server.

5. Display the HCS* file in your Web browser by searching for it in the Content
Server or linking to it from a published Web page.

4.2.4 Syntax
Because the different types of dynamic server pages are interpreted and displayed
differently, the Idoc Script in the files must be coded differently. The following table
summarizes these differences:

Note: See "HCSF File" on page 4-10 for more detail on HCSF pages.

Note: Using dynamic server pages with Content Publisher can be a
powerful tool for Web publishing. See the Content Publisher
documentation for more information.

File Type .idoc .hcst .hcsp .hcsf

Full Text Indexed? No No Yes Yes

Idoc Script Tags <$ … $> <$ … $> <!--$ … -->

[!--$ … --]

<!--$ … -->

[!--$ … --]

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Content Server Interface 4-11

4.2.4.1 Idoc Script Tags
For HCSP and HCSF pages, Idoc Script expressions are generally placed between
HTML comment tags. When viewed statically, this allows a Web browser to present
the page content while ignoring any dynamic code that is used to format the content.
This also enables the full-text indexing engine to successfully index the contents of
these pages.

For example:

■ IDOC or HCST file: <$include MyIdocTag$>

■ HCSP or HCSF file: <!--$include MyIdocTag-->

In some situations, you may want to control the opening and closing of the HTML
comment. In HCSP and HCSF files, this can be done by substituting other characters
for the dash (-) in the closing tag of an Idoc Script expression.

For example:

<!--$a="ab"##> HTML comment remains open
<a href="<!--$myUrlAsVariable##>">MyUrl Static view does not see this
<!--$dummy=""--> <!—Ended the comment area-->.

In the preceding example, the pound sign (#) is substituted for the dash (-).

Another option in HCSP and HCSF files is to substitute brackets ([]) for the opening
and closing tags (< >) in the standard HTML comment tags. This allows an XHTML
parser to properly identify all the script when viewed statically.

For example:

<!--$a="ab"--] HTML comment remains open
MyUrl Static view does not see this
[!--$dummy=""--> <!—Ended the comment area-->.

4.2.4.2 Comparison Operators
For HCSP and HCSF pages, the standard comparison operators (such as ==) cannot be
used because of their special meaning to HTML parsers. Use the following comparison
operators in dynamic server pages:

Comparison Operators Symbols (==) Symbols (==) Special operators
(eq)

Special operators
(eq)

Special Characters Symbols (&) Symbols (&) Escape sequence
(&)

Escape sequence
(&)

Referencing Metadata Required Required Required Required

Notes: Idoc uses standard HTML include coding. (See HTML
Includes in the Using Components.)

HCST uses standard Content Server template coding. (See Template
and Report Pages in the Using Components.)

Special coding is used with HCSP and HCSF to allow the page to be
rendered both statically and dynamically, and full-text indexed.

File Type .idoc .hcst .hcsp .hcsf

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-12 Oracle Fusion Middleware Developer's Guide for Content Server

For example, the following code evaluates whether the variable count is greater than
10:

4.2.4.3 Special Characters
For HCSP and HCSF pages, special characters such as the ampersand (&) cannot used
because of their special meaning to HTML parsers. You must use the standard
HTML/XML escape format (such as & or &).

For example, in Idoc Script, a quotation mark can be included in a string by preceding
it with a backslash escape character. However, in an HCSP or HCSF page, the
quotation mark character must be represented by an HTML escape character:

■ IDOC or HCST file: "Enter \"None\" in this field."

■ HCSP or HCSF file: "Enter "None" in this field."

In an HCST page, a line feed is inserted using \n. In an HCSP page, insert the line feed
directly in the file or encode it in the XML using the numeric ASCII number for a line
feed.

4.2.4.4 Referencing Metadata
For dynamic server pages, several metadata values are stored with a ref: prefix,
which makes them available to the page but does not replace ResultSet values. (This
prevents "pollution" of ResultSets by dynamic server pages.)

When you reference any of the following metadata values on a dynamic server page,
you must include the ref: prefix:

IDOC or HCST File HCSP or HCSF File Description

== eq Tests for equality.

!= ne Tests for inequality.

< lt Tests if less than.

> gt Test if greater than.

<= le Tests if less or equal than.

>= ge Tests if greater or equal than.

IDOC or HCST File HCSP or HCSF File

<$if count > 10$>
<$"Count is greater than"$>

<$endif$>

<!--$if count gt 10-->
<!--$"Count is greater than"-->

<!--$endif-->

Note: It is especially important to use the & escape character
when you call the docLoadResourceIncludes function from an HCSP or
HCSF page. See "docLoadResourceIncludes Function" on page 4-13.

Tip: You can now substitute the word join for the & string join
operator. For example, you can write [!--$a join b--] instead of [!--$a &
b--]. The first is accepted by an XML parser inside an attribute of a tag,
but the second is not.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Content Server Interface 4-13

■ hasDocInfo

■ dDocName

■ dExtension

■ dSecurityGroup

■ isLatestRevision

■ dDocType

For example, the following statement determines if the document type is Page:

<$if strEquals(ref:dDocType,"Page"))$>

4.2.5 Idoc Script Functions
Two special Idoc Script functions are required for dynamic server pages:

■ "docLoadResourceIncludes Function" on page 4-13

■ "executeService Function" on page 4-14

4.2.5.1 docLoadResourceIncludes Function
To be able to use the HTML includes in an IDOC file, an HCS* file must call the
docLoadResourceIncludes function. This function loads all the includes from the
specified IDOC file for use in assembling the current page.

For example:

HCST file:

<$docLoadResourceIncludes("dDocName=system_std_
page&RevisionSelectionMethod=Latest")$>

HCSP or HCSF file:

<!--$docLoadResourceIncludes("dDocName=system_std_
page&RevisionSelectionMethod=Latest")-->

■ The native file for the specified content item must have an .idoc extension.

■ The docLoadResourceIncludes call must be placed before the first include call
in the HCS* file. It is recommended that you place this function within the
<HEAD> section of the page.

■ You must use the correct ampersand character when you call the
docLoadResourceIncludes function from an HCS* page. See "Special
Characters" on page 4-12.

4.2.5.1.1 Parameters Use the following parameters with the
docLoadResourceIncludes function to specify which Idoc file to call.

■ You must define either a dDocName or a dID; do not use both parameters
together.

■ If you define a dDocName, you must define RevisionSelectionMethod to be
Latest or LatestReleased.

■ If you define a dID, do not define a RevisionSelectionMethod, or define the
RevisionSelectionMethod to be Specific.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-14 Oracle Fusion Middleware Developer's Guide for Content Server

4.2.5.2 executeService Function
The executeService function executes a Content Server service from within a
dynamic server page. For example:

HCST file: <$executeService("GET_SEARCH_RESULTS")$>

HCSP or HCSF file: <!--$executeService("GET_SEARCH_RESULTS")-->

■ Services that can be called with the executeService function must be
"scriptable", meaning that they do not require parameter input.

■ Scriptable services have an access level of 32 or more. See Chapter 6, "Integration
Methods" for more information.

■ For a list of standard Content Server services, see the
IdcHomeDir/resources/core/tables/std_services.htm file.

■ For more information on the executeService function, see the Oracle Fusion
Middleware Idoc Script Reference Guide.

■ For more information on services, see the Chapter 6, "Integration Methods".

4.2.6 HCSF Pages
In addition to following the standard formatting rules for Content Server templates
and HTML forms, HCSF pages require several special sections and tags that allow the
Content Server to process them. See "HCSF Pages" on page 4-16 for more information.

4.2.7 Development Recommendations
This section provides some guidelines to assist you in developing dynamic server
pages. It includes the following sections:

Parameter Description

dDocName Specifies the Content ID of the IDOC file.

This parameter should always be present when the Content ID is known. Error
messages assume that it is present, as do other features such as forms.

dID Specifies the unique ID number of a particular revision of the IDOC file.

RevisionSelectionMethod Specifies which revision of the IDOC file to use.

Latest—The latest checked in revision of the document is used (including revisions
in a workflow).

LatestReleased—The latest released revision of the document is used.

Specific—Use only with dID.

Rendition Specifies which rendition of the IDOC file to use.

Primary—The primary (native) file. This is the default if no Rendition is specified.

Web—The Web-viewable file.

Alternate—The alternate file.

Caution: Use services sparingly. Too many service calls on a page
can affect performance and limit scalability.

Note: See "HCSF File" on page 4-10 for an example of a complete
HCSF page.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Content Server Interface 4-15

■ "General Tips" on page 4-15

■ "HCSF Tips" on page 4-15

4.2.7.1 General Tips
The following recommendations apply to the development of all types of dynamic
server pages:

■ Keep templates as simple and free of code as possible. Strive to have only HTML
includes in your templates, with all code and conditionals in an IDOC file. This is
especially helpful for HCSF pages, where submitted forms also reflect changes
made to the IDOC file.

■ Whenever you are customizing the Content Server, you should isolate your
development efforts from your production system. Keep in mind that frequent
revisions to dynamic server pages can result in a large number of obsolete content
items. You should do as much work on a development system as possible before
deploying to a production instance, and you may need to delete out-of-date pages
regularly.

■ When you develop a Web site using dynamic server pages, think of the
development and contribution processes in terms of ownership:

– Structure, including site design and navigation, is owned by the Web master.
When you use dynamic server pages, structure is contained in and controlled
with includes that are defined in IDOC files.

– Content, that is, the actual text of the Web pages, is owned by the
contributors. When you use dynamic server pages, content is contained
primarily in HCSP files that make use of the includes in the IDOC files.

■ Using dynamic server pages with Content Publisher can be a powerful tool for
Web publishing. You can create content using Word documents or HCSF pages,
and then use Content Publisher to convert the documents to published HCSP files.
You can also use the "include before" and the "include after" options in the SCP
template to insert additional Idoc Script includes.

■ If you publish dynamic server pages with Content Publisher, use the prefix option
for easy identification of your documents.

■ Use a consistent naming convention. For example, for "system" level includes, you
could name your IDOC file system_std_page, and then name each include in
that file with the prefix system_. This makes locating the includes easier.

■ You may want to create a content type for each type of dynamic server page (such
as HCSF_templates or submitted_forms).

■ In accordance with good coding practices, you should always put comments in
dynamic server pages to document your customizations.

4.2.7.2 HCSF Tips
The following recommendations apply specifically to the development of HCSF pages:

■ When designing a form, consider how the template will be used:

– Will this template change depending on the role of the user submitting the
form?

– Will the submitted content enter into a criteria workflow?

– What default metadata values should be set?

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-16 Oracle Fusion Middleware Developer's Guide for Content Server

– Does the form contain ResultSets for multiple line entries?

■ To see the form parameters as they are passed from the Web browser to the Web
server, filtered through the Content Server, and then passed back to the Web
browser, change the METHOD attribute in the include code from a POST to a
GET:

<form name="<$formName$>" method="GET" action="<$HttpCgiPath$>">

■ If you add a form field called DataScript to a form being submitted, then any Idoc
Script for that value is evaluated by Content Server when the form is processed by
Content Server.

4.2.8 HCSF Pages
In addition to following the standard formatting rules for Content Server templates
and HTML forms, HCSF pages require several special sections and tags that allow the
Content Server to process them. These special sections appear in the following order in
a typical HCSF file:

■ "Load Section" on page 4-16

■ "Data Section" on page 4-17

■ "Form Section" on page 4-22

4.2.8.1 Load Section
The load section at the beginning of an HCSF page declares the file as an HTML file,
loads an IDOC file, and loads other information about the page. The following is a
typical load section:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head>
<!--$docLoadResourceIncludes("dDocName=my_idoc_
page&RevisionSelectionMethod=Latest")-->
<meta NAME="idctype" CONTENT="form; version=1.0">
<!--$defaultPageTitle="Department News Form"-->
<!--$include std_html_head_declarations-->
</head>

The load section includes the following:

■ HTML Declaration

■ docLoadResourceIncludes Function

■ Meta Tag

■ Variables and Includes

4.2.8.1.1 HTML Declaration The HTML declaration identifies the file as an HTML file
using the following syntax:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

Note: See "HCSF File" on page 4-10 for an example of a complete
HCSF page.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Content Server Interface 4-17

4.2.8.1.2 docLoadResourceIncludes Function The docLoadResourceIncludes function
loads all the includes from the specified IDOC file for use in assembling the current
page. See "docLoadResourceIncludes Function" on page 4-17 for more information.

4.2.8.1.3 Meta Tag The meta tag is used by Content Publisher to identify that this is a
special type of page.

■ This tag is not required if the form is not being published through Content
Publisher.

■ The meta tag must be placed inside the <HEAD> section of your HTML file.

■ Use the following syntax for the meta tag:

<meta NAME="idctype" CONTENT="form; version=1.0">

4.2.8.1.4 Variables and Includes The <HEAD> section of your HCSF page can contain
variable definitions and HTML includes as necessary. For example, the following lines
define the default page title and load the std_html_head_declarations code:

!--$defaultPageTitle="Department News Form"-->
<!--$include std_html_head_declarations-->

4.2.8.2 Data Section
The data section contains rules and metadata information that is used to process the
form. There is a close relationship between the information in the data section and the
presentation of the page:

■ Upon delivery of the HCSF page to the user, the information in the data section is
parsed into a DataBinder and merged into the Form Section.

■ Upon form submittal, the information in the data section is merged with the
request and written out again to the data section.

This section covers these topics:

■ "Data Section Structure" on page 4-17

■ "idcformrules Tag" on page 4-18

■ "Metadata Tags" on page 4-18

■ "Nested Tags" on page 4-19

■ "Referencing XML Tags" on page 4-19

■ "Form Elements" on page 4-19

■ "ResultSets" on page 4-20

4.2.8.2.1 Data Section Structure The data section consists of XML tags that are placed
between idcbegindata and idcenddata Idoc Script tags. For example:

<!--$idcbegindata-->
<idcformrules isFormFinished="0"/>
<model_number content="html">AB-123</model_number>
<revision>12</revision>
…
<!--$idcenddata-->

Note: See DataBinder and ResultSet Section in Chapter 3, "Working
with Components" for more information.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-18 Oracle Fusion Middleware Developer's Guide for Content Server

■ The data section must be placed inside the <BODY> section of your HTML file,
before the beginning of the form section.

■ You can place Idoc Script variable definitions and includes before or after the data
section, but not within it.

■ Two types of XML tags are used in the data section:

– idcformrules Tag

– Metadata Tags

■ You can also use the following types of formatting in the data section:

– Nested Tags

– Referencing XML Tags

– Form Elements

– ResultSets

4.2.8.2.2 idcformrules Tag The idcformrules tag defines Content Server-specific rules in
the data section. This tag requires one attribute, either the isFormFinished Attribute or
resultsets Attribute.

■ iIsFormFinished Attribute: The isFormFinished attribute indicates whether the
form can be submitted again or not.

– Use the following format to specify that the form can be submitted again:

<idcformrules isFormFinished="0"/>

– Use the following format to specify that the form cannot be submitted again.
This results in a read-only form:.

<idcformrules isFormFinished="1"/>

■ resultsets Attribute: The resultsets attribute indicates which XML tags in the data
section are interpreted as ResultSets.

– This attribute specifies one or more XML tag names separated by commas. For
example:

<idcformrules resultsets="volume,chapter">

– During delivery of an HCSF page to the user, the Content Server server reads
the resultsets attribute and, if necessary, places empty ResultSets with the
specified names into the DataBinder so they are available for merging.

– For more information on ResultSet formatting in the data section, see
"ResultSets" on page 4-20.

4.2.8.2.3 Metadata Tags Metadata tags specify the metadata values that appear in the
form fields when the form is displayed in a browser. For example:

<model_number>AB-123</model_number>

■ Content Attribute: Each metadata tag can be assigned a content attribute that
indicates which type of content the tag contains. For example:

<model_number content="html">AB-123</model_number>

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Content Server Interface 4-19

– The value of the content attribute can be either html or text: Text indicates
that the content of the tag should be interpreted strictly as text. HTML
indicates that the content of the tag should be interpreted as HTML code.

– If the content attribute is not specified for a metadata tag, it defaults to html.

– Content Publisher ignores all other attributes except the content attribute.

4.2.8.2.4 Nested Tags If you are not publishing HCSF pages through Content
Publisher, you can use nested XML tags (also called nodes) within the data section. In
the following example, the <section> tag is nested in the <chapter> tag:

<chapter title="Chapter 1">
This is the beginning of the chapter.
<section title="First Section">
This is the first section of the chapter.
</section>
</chapter>

4.2.8.2.5 Referencing XML Tags ■To refer to a nested tag, start with the root-level tag
and use an exclamation point (!) between tag levels. For example:

chapter!section

■ To refer to the attribute of any tag, use a colon (:) after the tag name. For example:

chapter!section:title

■ If you reference a tag in the data section, the tag value can be merged back into the
data section upon form submission only if one of the following are true:

– The root tag has already been referenced in the data area.

– The root tag is referenced in an ExtraRootNodes form element.

– A prefix part of the tag is referenced as a ResultSet in the resultsets form
element.

■ Default values can be specified by applying the :default suffix to a tag path.
Note that default elements may contain Idoc Script for further evaluation. For
example, to specify a default dDocTitle:

<input type=hidden name="dDocTitle:default" value="<$'MyTitle ' &
dateCurrent()$>">0

4.2.8.2.6 Form Elements ■The ExtraRootNodes form element enables you to add tags
by creating an Idoc Script variable and then appending the tag names to it, rather
than specifying the tags in the data section of the form. At the end of your form,
you can substitute a string value in place of the ExtraRootNodes value to be
merged back into the data section.

■ The resultsets form element enables you to add a tag as a ResultSet, rather than
specifying the ResultSet in the data section.

■ Both the ExtraRootNodes and resultset form elements take a comma-delimited list
of tags.

Note: Nested XML tags are not allowed in Content Publisher.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-20 Oracle Fusion Middleware Developer's Guide for Content Server

■ For example, the following form elements add the mychapters!chapter tag as
a valid ResultSet if it is not already defined in the idcformrules resultsets
attribute. It also adds, if necessary, the root tag mychapters.

<input type=hidden name="resultsets" value="mychapters!chapter">
<input type=hidden name="ExtraRootNodes" value="mychapters">

4.2.8.2.7 ResultSets You can define a ResultSet using XML tags within the data
section.

■ You must use the resultsets Attribute of the idcformrules tag to specify a
ResultSet.

■ The tags must be completely qualified and the full reference path from the root
node must be used.

■ The columns in the ResultSet are the tag content and the tag attributes.

■ See Example 4–2, "Repeated Tags in a ResultSet" and Example 4–3, "Nested Tags in
a ResultSet" for limitations on repeating and nesting XML tags in a ResultSet.

Example 4–1 Two ResultSets Defined by XML Tags

In the following example, two ResultSets named volume and chapter are defined by
XML tags:

<idcformrules resultsets="volume,chapter">
<volume title="First Volume">

Volume content here
</volume>
<chapter title="First Chapter">

Chapter content here
</chapter>

This evaluates into two ResultSets with two columns each

@ResultSet volume
2
volume
volume:title
Volume content here
First Volume
@end
@ResultSet chapter
2
chapter
chapter:title
Chapter content here
First Chapter
@end

Example 4–2 Repeated Tags in a ResultSet

If you are not publishing HCSF pages through Content Publisher, you can use
repeated tags within a ResultSet in the data section. Repeated tags are typically useful
for looping over code to create the ResultSet.

■ Repeated tags are not allowed unless they are part of a ResultSet.

■ Repeated XML tags are not allowed in Content Publisher.

In the following example, the chapter tag is repeated in the chapter ResultSet:

<idcformrules resultsets="chapter">

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Content Server Interface 4-21

<chapter title="First Chapter">
Some content here

</chapter>
<chapter title="Second Chapter">

More content here
</chapter>

This evaluates into a ResultSet with two columns and two rows:

@ResultSet chapter
2
chapter
chapter:title
Some content here
First Chapter
More content here
Second Chapter
@end

Example 4–3 Nested Tags in a ResultSet

A ResultSet can have nested tags, but the nested tags may not be repeated within a
parent tag. For example, an additional <section> tag would not be allowed within
the first <chapter> tag:

<idcformrules resultsets="chapter">
<chapter title="First Chapter">

Some content here
<section title="First Section of First Chapter">
Section content
</section>

</chapter>
<chapter title="Second Chapter">

More content here
</chapter>

This evaluates into a ResultSet with four columns and four rows (the last two cells are
blank):

@ResultSet chapter
4
chapter
chapter:title
chapter!section
chapter!section:title
Some content here
First Chapter
Section Content
First Section of First Chapter
More content here
Second Chapter

@end

Example 4–4 Editing a ResultSet

■ Updating a specific field in a ResultSet requires that you indicate the ResultSet
row number in the request parameter. The # character is used by the Content
Server to indicate a specific row. If you do not specify a row with the # character,

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-22 Oracle Fusion Middleware Developer's Guide for Content Server

then a row is appended. If you specify a row # that does not yet exist, then empty
rows are added sufficiently to provide a row to be edited.

For example, to update the first row (row 0) of the ResultSet, you might use the
following code:

<input type="text" name="comment#0"
value="new comment">

<input type="text" name="comment!title#0"
value="new title"

■ Insert new fields into a ResultSet by using the exclamation point character (!). For
example, to insert author and title fields into the comment ResultSet, name the
input fields comment!author and comment!title. If those fields are not in the
ResultSet, they are added when the form is submitted.

■ To delete a row in a ResultSet, empty all the values so they are blank. For example,
to delete the first row entirely:

<input type="hidden" name="comment#0" value="">
<input type="hidden" name="comment!title#0" value="">
<input type="hidden" name="comment!date#0" value="">
<input type="hidden" name="comment!author#0" value="">

Another method for deleting rows from a ResultSet is to set the DeleteRows form
element to a list of comma-delimited pairs of ResultSet name and row number. For
example, to delete row 2 from the comment ResultSet and row 5 from the book
ResultSet, the DeleteRows form element would be set to the following
comma-delimited pairs:

comment:2,book:5.

4.2.8.3 Form Section
The form section contains the code for presentation of the HTML form elements and
any other functionality that the page requires. The form properties, form fields, and
form buttons are placed in an HTML table to control the formatting of the assembled
Web page.

4.2.8.3.1 Form Begin The form section begins with the following Idoc Script:

<!--$formName="HTMLForm"-->
<!--$include std_html_form_submit_start-->

The std_html_form_submit_start include in the std_page.idoc resource file contains
the following code, which creates a standard HTML form using a POST method, sets
the IdcService to SUBMIT_HTML_FORM, and sets the dID variable to the value of the
current HCSF page:

<form name="<$formName$>" method="POST"action="<$HttpCgiPath$>">7
<input type=hidden name="IdcService"value="SUBMIT_HTML_FORM">
<input type=hidden name="dID" value="<$SourceID$>">

4.2.8.3.2 Form Properties The form table typically begins with the following property
definitions, which create the fields as form fields, allow the fields to be edited, and set
the size of the field caption area:

Note: See "Common Code for Forms" on page 4-29 for additional
code examples.

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Content Server Interface 4-23

<!--$isFormSubmit=1,isEditMode=1-->
<!--$captionFieldWidth=200, captionEntryWidth=80-->

4.2.8.3.3 Form Fields The following lines are typically used to create each input field:

<!--$eval("<$product_name:maxLength=250$>")-->
<!--$fieldName="model", fieldCaption="Model Number"-->
<!--$include std_display_field-->

■ DataScript: If you add a form field called DataScript to a form being submitted,
then any Idoc Script for that value is evaluated by Content Server when the form
is processed by Content Server.

Example 4–5 Changing a Value in a Specific Column and Row in a Second Table When
You Update a Row in the First Table

There are two tables (coming from the data island inside the hcsp form) with an entry
in one table that references entries in the other table. Your goal is to change a value in
a specific column and row in the second table when you update a row in the first table.
To accomplish this value change, you can write javascript to set the DataScript value
with Idoc script:

modifyRowAndColumn(row, column, value)
{
document.myform.DataScript = "<$setValue('#local', 'table2!'"+ column + "#'"+
row +
"','" + value + "')$>";
}

Then, when you call the function with column = "myColumn" and row="1" and
value = "Test" while submitting the update form, the resulting DataScript value
before submit would be the following:

DataScript.value = <$setValue('#local', 'table2!myColumn#1', 'Test')$>

The result would be the column table2!myColumn in row 1 of the table table2
would be updated with the value Test after the form was submitted.

Another way of saying this is that the DataScript can allow arbitrary edits of other
entries in the data island without having to actually create html form fields that
reference their names.

4.2.8.3.4 Form Buttons The following lines are typically used to create the form
submission and Reset buttons:

<input type=submit name=Submit value=" Submit ">
<input type=reset name=Reset value="Reset">

Tip: Some fields may require additional code for proper display. For
example, you might need to override the standard std_memo_entry
include to increase the size of text areas. You can do this by defining a
custom include in the IDOC file:

<@dynamicalhtml std_memo_entry@>
<textarea name="<$fieldName$>" rows=15 cols=50
wrap=virtual><$fieldValue$></textarea>
<@end@>

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-24 Oracle Fusion Middleware Developer's Guide for Content Server

4.2.8.3.5 Form End After all the form elements and default values have been defined,
the form must end with a </form> tag.

4.2.9 Working with Dynamic Server Pages
This section presents examples that show how the dynamic server pages work
together to modify Content Server behavior. It includes the following sections:

■ "HCST and HCSP Example" on page 4-24

■ "HCSF Example" on page 4-25

■ "Common Code for Forms" on page 4-29

Example 4–6 HCST and HCSP Example

This example shows you how to create a simple HCST page and HCSP page:

1. Create an IDOC file with a custom include.

Figure 4–2 Custom include

2. Save the file as helloworld.idoc.

3. Check the IDOC file into the Content Server with a Content ID of helloworld.
The IDOC file is now available to any HCS* pages that reference it.

4. Create an HCST file that references the HelloWorld include:

Figure 4–3 HCST file referencing custom include

5. Save the file as helloworld.hcst.

6. Check the HCST file into the Content Server.

7. Create an HCSP file that references the HelloWorld include:

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Content Server Interface 4-25

Figure 4–4 HCSP file referencing custom include

8. Save the file as helloworld.hcsp.

9. Check the HCSP file into the Content Server.

10. Search for the helloworld content items in the Content Server.

11. Display the HCST file and HCSP files in your Web browser. They should both
look like this:

Figure 4–5 HelloWorld content item displayed in a Web browser.

Example 4–7 HCSF Example

This example shows you a typical HCSF page and its associated IDOC file. This
example creates a form that users can fill out and submit to enter product descriptions
as content items.

1. Create an HCSF file that references an IDOC file named form_std_page:

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-26 Oracle Fusion Middleware Developer's Guide for Content Server

Figure 4–6 Product description form HCSF file.

2. Save the file as product_form.hcsf.

3. Check the HCSF file into the Content Server.

4. Create an IDOC file with custom includes:

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Content Server Interface 4-27

Figure 4–7 IDOC file with custom includes

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-28 Oracle Fusion Middleware Developer's Guide for Content Server

5. Save the file as form_std_page.idoc.

6. Check the IDOC file into the Content Server with a Content ID of form_std_
page. (This is the name that is referenced by the HCSF page.)

7. Search for the HCSF content item in the Content Server.

8. Click the link to display the HCSF page in your Web browser. It should look like
this:

Using Dynamic Server Pages to Alter the Navigation of Web Pages

Changing the Look and Navigation of the Content Server Interface 4-29

Figure 4–8 Sample form displayed in a Web browser.

9. Fill out the form with some sample values and click Submit.

A content item is created as an HCSP page.

10. Search for the HCSP page in the Content Server.

11. Click the link to display the HCSP page in your Web browser. It should look like
this:

Figure 4–9 Link displaying HCSP page

4.2.9.1 Common Code for Forms
This section describes some of the features that are commonly used in HCSF pages and
associated IDOC files.

4.2.9.1.1 Retrieving File Information Executing the service DOC_INFO_SIMPLE makes
metadata from a specific file available to the page. For example:

<$dID=SourceID$>
<$executeService("DOC_INFO_SIMPLE")$>

4.2.9.1.2 Referencing the File Extension Use the following statement to determine
whether the form is submitted (hcsp) or unsubmitted (hcsf):

<$if (strEquals(ref:dExtension,"hcsf"))$>

Using Dynamic Server Pages to Alter the Navigation of Web Pages

4-30 Oracle Fusion Middleware Developer's Guide for Content Server

<$isHcsf=1$>
<$else$>

<$isHcsp=1$>
<$endif$>

4.2.9.1.3 Defining Form Information The following code defines the form name and the
standard include to start an HTML form:

<$formName="HTMLForm"$>
<$include std_html_form_submit_start$>

The following is typical code that defines form properties:

<table border=0 width=100%>
<$isEditMode=1,isFormSubmit=1$>
<$captionFieldWidth="25%", captionEntryWidth="75%"$>

4.2.9.1.4 Defining Form Fields Use standard Idoc Script variables and the std_display_
field include to display the form fields. For example:

<$fieldName="news_
author",fieldDefault=dUser,fieldCaption="Author",isRequired=1,requiredMsg =
"Please specify the author."$>
<$include std_display_field$>

Some fields might require extra code to display the field correctly. For example, the
standard text area for a memo field is 3 rows by 40 columns, but you might need to
override the standard include to increase the size of the text area:

■ Standard std_memo_entry Include

<@dynamichtml std_memo_entry@>
<textarea name="<$fieldName$>" rows=3 cols=40 wrap=virtual> <$fieldValue$></textarea>

<@end@>

■ Custom std_memo_entry Include

<@dynamichtml std_memo_entry@>
<textarea name=<$fieldName$> rows=15 cols=50 wrap=virtual><$fieldValue$></textarea>

<@end@>

4.2.9.1.5 Defining Hidden Fields You can specify metadata for a submitted form (hcsp)
by defining a hidden field, which contributors cannot change. For example, use the
following code to assign the document type News_Forms to each submitted form:

<input type=hidden name="dDocType" value="News_Forms">

To specify the security group of the submitted forms:

<input type=hidden name="dSecurityGroup" value="Public">

4.2.9.1.6 Submitting the Form When a form is submitted, you may want to call a Java
function to perform additional validation or processing. For example:

<input type=button name=Submit value="Save" onClick="postCheckIn(this.form)">

Note: See "Referencing Metadata" on page 4-12 for information on
the ref: prefix.

5

Modifying System Functionality 5-1

5Modifying System Functionality

This chapter provides an overview of several methods for changing the basic
functionality of the Content Server. It includes these topics:

■ "Changing System Settings" on page 5-1

■ "Using Components" on page 5-2

■ "Changing Configuration Information" on page 5-4

■ "Customizing Services" on page 5-5

■ "Generating Action Menus" on page 5-6

5.1 Changing System Settings
Content Server has a number of features that you can set up to change features
systemwide according to your needs. For example, you can use the following
administration tools within the Content Server to customize your content management
system settings:

■ Admin Server: The Admin Server is a collection of Web pages that you can use to
configure systemwide settings for Content Server. To access these pages, click
Admin Server from the Administration tray in the portal navigation bar to display
the Admin Server main page. From this page you can check the status of the
server that is running, and you can check console output.

■ System Properties: System Properties is an administration application that is used
to configure systemwide Content Server settings for content security, internet
settings, localization, and other types of settings. Options on the application can:

– set optional functionality for the Content Server instance

– set options related to content item security

– set options related to the Internet and Web interaction

– set JDBC connectivity options

– set functionality such as time zones and IP filters

– set localization features

– set directory paths

Oracle WebLogic Server is the primary tool for setting system properties for
Oracle UCM, however, for some purposes you must use the System Properties
application. You do not need administrative-level permissions to set these options;
just access to the directory where the instance is installed.

Using Components

5-2 Oracle Fusion Middleware Developer's Guide for Content Server

■ Web Layout Editor: The Web Layout Editor is used to customize the Library and
system home (portal) page. To access this editor, select Web Layout Editor from
the Admin Applets page. With the Web Layout Editor, you can change the
organization of local Web pages in the Library and build new portal pages for
your site. You can create links to Web sites outside your local site. For detailed
information, see the Oracle Fusion Middleware Application Administrator’s Guide for
Content Server.

■ User Administration: You can define security groups, aliases, roles, and accounts
for the users at your site using the User Admin function. To access this screen,
click Configuration Manager from the Admin Applets, then select User Admin
from the Apps menu. Options on this screen are used to create aliases, set
permissions for security groups, establish roles and permissions associated with
those roles, and customize information that is stored about users.

■ Other Administration Customizations: In addition to the system settings that are
discussed here, other settings can be changed to match your site's needs:

– Workflows can be designed, customized, and implemented using the
Workflow Admin tool available from the Admin Applets menu

– New custom metadata fields can be created and default values set using the
Configuration Manager

– Customized action screens (such as check-in, search, and check-out) can be
created using Content Profiles

5.2 Using Components
Components are modular programs that are designed to interact with the Content
Server at run time. The component architecture model is derived from object-oriented
technologies, and encourages the use of small modules to customize the Content
Server as necessary, rather than creation of a huge, all-inclusive (but cumbersome)
application.

Any type of file can be included in a component, but the following file formats are
used most often:

■ HDA

■ HTM

■ CFG

■ Java CLASS

Components are typically used to alter the core functionality of the Content Server.
For example, a component could be used to:

■ Modify the standard security features

■ Change the way search results are requested and returned

■ Allow the Content Server to work with a particular system (such as a Macintosh
client or a proprietary CAD program)

Note: You can create custom components by manually creating the
necessary files and resources. However, the Component Wizard has
no limitations compared to the manual method and using it prevents
many common mistakes.

Using Components

Modifying System Functionality 5-3

The advantages of using component architecture with the Content Server include the
following:

■ You can modify source code without compromising the integrity of the product.
The Content Server loads many of its resources from external text files, so you can
view the files to analyze how the system works, and then copy and modify the
files to your requirements.

■ You can use a custom component on multiple instances across multiple
platforms. When you have created a custom component, you can package it as a
zip file and load it on other Content Server instances. Many custom components
can work on Content Server platforms other than the original development
platform.

■ You can turn individual components on and off for troubleshooting purposes.
You can group customizations so that each component customizes a specific
Content Server function or area. If you have problems, disabling components one
at a time can help you quickly isolate the trouble.

■ You can reinstall or upgrade a Content Server without compromising
customizations. Custom components override existing product resources rather
than replace them. Replacing the standard Content Server files might not affect
your customizations.

Keep the following constraints in mind when deciding whether to use custom
components:

■ Custom components change behavior and look-and-feel systemwide. If you
want your changes to apply only in limited situations, you might want to consider
dynamic server pages.

■ Custom components can be affected by changes to Content Server core
functionality. Because new functionality may change the way your components
behave, customizations are not guaranteed to work for future Content Server
releases. Whenever you upgrade, you should review and test your custom
components.

■ A component may not be necessary for simple customizations. A large number
of simple components could become difficult to manage.

Components must be installed and enabled to be used by Content Server. Components
provided with Content Server are automatically installed, and they are enabled or
disabled by default. Custom components must be installed and enabled to be usable.
Several tools are available for working with components:

■ The Component Wizard automates the process of creating custom components.
You can use the Component Wizard to create new components, modify existing
components, and package components for use on other Content Server instances.
For details see "Component Wizard" on page 3-1.

■ The Advanced Component Manager provides a way to manage custom
components in the Content Server. By using the Advanced Component Manager,
you can add new components and enable or disable components on the Content
Server. For details see "Advanced Component Manager" on page 3-2.

■ The ComponentTool is a command-line utility for installing, enabling, and
disabling components in Content Server.

For information on component architecture and creation, see Chapter 3, "Working with
Components."

Changing Configuration Information

5-4 Oracle Fusion Middleware Developer's Guide for Content Server

5.3 Changing Configuration Information
For advanced customizations and integration with other business systems, Content
Server supports several development tools and technologies, such as the following:

■ VBScript

■ ASP

■ J++

■ JavaScript

■ ASP+

■ J2EE

■ Java

■ JSP

■ COM

■ Visual Basic

■ DreamWeaver

■ .Net

■ C++

■ Visual InterDev

In addition to these tools, the proprietary Idoc Script is a server-side custom scripting
language for Content Server. It is used to reference variables, to conditionally include
content in HTML pages, and to loop over results returned from queries.

Because Idoc Script is evaluated on the server side (rather than the client side), page
elements are processed after the browser has made a request, but before the requested
page is returned to the client.

Idoc Script is primarily used in the following situations:

■ for include code. An include defines pieces of code used to build Content Server
Web pages. They are defined once in a resource file then referenced by template
files as necessary. Includes are used on almost every page of the Content Server
Web site.

A super tag can also be used, which defines exceptions to an existing include. The
super tag tells the include to start with an existing include and add to it or modify
it using the specified code.

■ for variables. You can use variables to customize the Content Server behavior.
Variable values can be stored in an environment resource, such as the config.cfg
file and many are predefined in the Content Server. You can also define your own
custom variables.

■ for functions. Many built-in global functions are used in the Content Server. These
perform actions such as date formatting or string comparisons. Some functions
return results and some are used for personalization functions, such as those
found on the My Profile page.

■ for conditionals. You can use conditionals to test code and include or exclude the
code from an assembled Web page.

Customizing Services

Modifying System Functionality 5-5

■ for looping. Two types of looping are available using Idoc Script: ResultSet
looping, in which a set of code is repeated for each row in a ResultSet that is
returned from a query and while looping, which is a conditional loop.

■ in Administration areas, such as Workflow customization, web layouts, archiver
and search expressions.

See the Oracle Fusion Middleware Idoc Script Reference Guide for details on usage and for
syntax and configuration variable information.

5.4 Customizing Services
Content Server services are functions or procedures performed by the Content Server.
Calling a Content Server service (making a service request) is the only way to
communicate with the Content Server or to access the database.

Any service can be called externally (from outside the Content Server) or internally
(from within the Content Server). Client services are usually called externally while
administrative services are called internally. The service uses its own attributes and
actions to execute the request, based on any parameters passed to the service.

The standard Content Server services are defined in the StandardServices table in
DomainHome/resources/core/tables/std_services.htm. A service definition contains
three main elements:

■ The service name.

■ The service attributes. The attributes define the following aspects of the service:

– the service class, which specifies which Java class the service has access to.
This determines what actions can be performed by the service.

– the access level, which assigns a user permission level to the service.

– a template page that specifies the template that displays the results of the
service.

– the service type which specifies if the service is to be executed as a sub-service
inside another service

– subjects notified, which specifies the subsystems to be notified by the service.

– the error message that is returned by the service if no action error message
overrides it.

■ The service action, which is a colon-separated list that defines the following
aspects of the action:

– action type

– action name

– action parameters

– action control mask

– action error message

Understanding and using services is an integral part of creating components and thus
customizing the Content Server. See the Chapter 6, "Integration Methods" for more
details.

Generating Action Menus

5-6 Oracle Fusion Middleware Developer's Guide for Content Server

5.5 Generating Action Menus
In previous versions of Content Server, when a component writer wanted to create an
HTML table like those used on the search results page, HTML code had to be copied
and pasted. The information in the tables was mixed with the HTML, with no
separation between data and display.

The same issue was true for action menus. Data and display for the tables and menus
were tightly coupled, making it impossible to perform global changes to all tables in
the Content Server except for those changes done with CSS modifications. It was also
difficult for components to target and modify specific aspects of both the tables and
the menus.

To customize a page's action menu, a developer can override one of the following
include files then modify the PageMenusData resultset. These includes are all defined
in the DomainHome/resources/core/resources/std_page.idoc file:

■ custom_searchapi_result_menus_setup

■ custom_docinfo_menus_setup

■ custom_query_page_menus_setup

■ custom_audit_info_menus_setup

In addition, tables like the one used on the search results page can be created by
setting up result sets of data then calling specific resource includes which use that data
to display the page. Result sets can also be used to create action menus like those
found on the Workflow In Queue and Search Results pages.

The action menu and HTML table display frameworks allow developers to create
quick and flexible Web pages that match the look and feel of the rest of the system.
They also allow component writers to easily extend, add to, and override any or all of
the Headline View, or Thumbnail View tables on the server, and any of the action
menus.

5.5.1 Creating Display Tables
Different display tables are used for the search results page for each display type
(Headline, or Thumbnail) with an API for each. Each type is discussed in the follow
sections:

■ "Headline View Tables" on page 5-6

■ "Thumbnail View Tables" on page 5-8

One of the first steps in any table setup is to retrieve documents to display, as in this
example:

<$QueryText = "dDocAuthor <matches> `sysadmin`"$>
<$executeService("GET_SEARCH_RESULTS")$>

5.5.1.1 Headline View Tables
The following example shows how to create a Headline View table. The concepts
discussed here are also used to create the other table types.

The initial step in this process is to create a result set that describes the columns of the
table, as in this example:

<$exec rsCreateResultSet("ColumnProperties",
"id,width,headerLabel,rowAlign")$>

Generating Action Menus

Modifying System Functionality 5-7

<$exec rsAppendNewRow("ColumnProperties")$>
<$ColumnProperties.id = "dDocName"$>
<$ColumnProperties.width = "150px"$>
<$ColumnProperties.headerLabel = lc("wwDocNameTag")$>
<$ColumnProperties.rowAlign = "center"$>

<$exec rsAppendNewRow("ColumnProperties")$>
<$ColumnProperties.id = "dDocTitle"$>
<$ColumnProperties.width = "auto"$>
<$ColumnProperties.headerLabel = lc("wwTitle")$>
<$ColumnProperties.rowAlign = "left"$>

<$exec rsAppendNewRow("ColumnProperties")$>
<$ColumnProperties.id = "actions"$>
<$ColumnProperties.width = "75px"$>
<$ColumnProperties.headerLabel = lc("wwActions")$>
<$ColumnProperties.rowAlign = "center"$>

A result set called ColumnProperties is created. Each row in the table corresponds
to a column on the table to be created. Each column can have several attributes
associated with it. Some of the more common attributes are:

■ id: This is a mandatory attribute. Each column in the table being created must
have an ID associated with it. The ID is used later to determine what will be
displayed in every row.

■ width: The width of the column. This can be any CSS width declaration such as
100px, 15em, or auto, which causes the column to auto-size, filling as much of
the table as possible.

■ headerLabel: The text to be displayed in the header of this column.

■ rowAlign: An indication of whether the contents should be left, right, or center
aligned.

■ headerURL: Used to link the column header text to a URL.

The next step is to determine what data will be displayed in each row of the table.

<$exec rsCreateResultSet("RowData","dDocName,dDocTitle,actions")$>
<$exec rsAppendNewRow("RowData")$>
<$RowData.dDocName = "<$dDocName$>"$>
<$RowData.dDocTitle = "<$dDocTitle$>"$>
<$RowData.actions = "<$include doc_info_action_image$>"$>

The ColumnProperties result set technically has a row for each column in the table,
while in RowData, there is only one row. Data entered into this result set is of the
following form:

<$RowData.%COLUMN_ID% = "%IDOCSCRIPT%"$>

Each column in the RowData result set refers to an actual column that will appear in
the final table. Each column in this result set has a corresponding "ID" in the
ColumnProperties result set declared earlier. An IdocScript expression is assigned
to each cell in this result set. It will then be evaluated during the display of each row as
it is written to the HTML document.

Next the resource include must be created to display each row in the table.

<$include create_slim_table_row_include$>

Generating Action Menus

5-8 Oracle Fusion Middleware Developer's Guide for Content Server

Calling this resource include creates the slim_table_row_include resource
include. Instead of parsing and evaluating the RowData result set for each row in the
table, it is done once.

Use the following steps to set multiple row includes (for example, for a single table
which displays different rows for different types of items):

1. Delete and re-create the RowData result set.

2. Set rowIncludeName to the name of the resource include to create.

3. Include create_slim_table_row_include again.

The following code displays the table:

<$include slim_table_header$>
<$loop SearchResults$>
<$include slim_table_row_include$>

<$endloop$>
<$include slim_table_footer$>

To make the table look like the table on the search results page, set the following in the
script:

<$UseRowHighlighting = true$>

One special customization with the Headline View table allows any component writer
or administrator to easily override how the data in any column is presented. For
example, a custom include similar to the following can be declared from in a
component:

<@dynamichtml slim_table_title@>
<$dDocTitle$>

<@end@>

If dDocTitle:slimTableCellInclude=slim_table_title is added to the
IntradocDir/config/config.cfg file or set from within a script, all Headline View tables
with a column ID of dDocTitle are displayed using the defined custom include. This
overrides the RowData for these columns.

5.5.1.2 Thumbnail View Tables
The table for the Thumbnail View is created differently. The ColumnProperties or
RowData result sets are not constructed. Instead, the number of columns are set and
an IdocScript include name is used to "paint" each cell. This is less easy to customize
and less data-driven than the other methods, but this type of table is also much less
structured.

<$numDamColumns = 4$>
<$damCellIncludeName = "my_sample_dam_cell"$>
<$include dam_table_header$>
<$loop SearchResults$>
<$include dam_table_item$>

<$endloop$>
<$include dam_table_footer$>

5.5.2 Customizing Action Menus
The first step in customization is to add the action menu icon to the actions column.
The following example incorporates an action menu into each row of the Headline
View sample table used previously.

Generating Action Menus

Modifying System Functionality 5-9

<$RowData.actions = "<$include action_popup_image$>" &
" <$include doc_info_action_image$>"$>

This inserts the action image into the appropriate column. However, clicking it does
nothing because the actual menu is not written to the HTML page.

The following code creates the data to be used to construct this menu:

<$exec rsCreateResultSet("PopupProps",
"label,onClick,function,class,id,ifClause")$>

<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwCheckOut")$>
<$PopupProps.function = "<$HttpCgiPath$>?IdcService=CHECKOUT" &
"&dID=<dID>&dDocName=<$url(dDocName)$>" &
"&dDocTitle=<$url(dDocTitle)$>"$>

<$PopupProps.class = "document"$>
<$PopupProps.id = "checkout"$>

<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwGetNativeFile")$>
<$PopupProps.function = "<$HttpCgiPath$>?IdcService=GET_FILE" &
"&dID=<dID>&dDocName=<$url(dDocName)$>" &
"&allowInterrupt=1"$>

<$PopupProps.ifClause = "showNativeFileLink"$>
<$PopupProps.class = "document"$>
<$PopupProps.id = "getNativeFile"$>

<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwTest")$>
<$PopupProps.function = "javascript:alert('<$js(dDocName)$>');"$>
<$PopupProps.ifClause = "showTestAction"$>
<$PopupProps.class = "debug"$>
<$PopupProps.id = "alertDocName"$>

This code creates a result set called PopupProps, where each row corresponds to an
action in the menu being created. Each action can have several attributes associated
with it. Some of the more common attributes are:

■ label: A string displayed as the label for the action.

■ function: The URL or JavaScript method to be associated with this action.

■ class: A classification for this action. It can be something as simple as "search",
"document", "workflow", or even the name of your component. It places the action
into a group so it can be quickly enabled or disabled with the rest of the actions
within that same group.

■ id: Another method of classification, much more specific than "class". This
method should be unique to the application, and you can use it to hide certain
actions from appearing within the menus.

■ ifClause: An optional attribute evaluated every time that action is about to be
written to the HTML document. If the clause evaluates to FALSE, the action is not
displayed.

■ isDisabled: If set to 1, the action is never displayed.

■ linkTarget: Used to make this link open a page in a different window. This
attribute points to any anchor tag target.

After the data is set, it can be used to create an IdocScript resource that writes this
action menu.

Generating Action Menus

5-10 Oracle Fusion Middleware Developer's Guide for Content Server

<$include create_action_popup_container_include$>

This resource works like create_slim_table_row_include. It constructs a new
IdocScript resource called action_popup_container_include. To rename it, set
set <$actionPopupContainerIncludeName = new_include_name$> in the
script.

Use the following code to have this include called for each row of the Headline View
table.

<$exec rsCreateResultSet("PopupData", "actions")$>
<$exec rsAppendNewRow("PopupData")$>
<$PopupData.actions="<$include action_popup_container_include$>"$>

This code creates a PopupData result set similar to the RowData result set. It is
structured in the same way, and is used as a location to print the action menu
containers which are hidden until a user clicks on the action image.

The table created now has action menus, similar to those normally seen on the search
results page whenever the appropriate image is clicked.

Editing these actions is done by adding and deleting rows from the PopupProps
result set or editing rows that already exist. In addition to this type of customization,
actions can be hidden by setting the disabledActionPopupClasses and
disabledActionPopupIds variables. These can be set in the config/config.cfg file
or in the Idoc Script itself. For example:

<$disabledActionPopupClasses = "workflow,folders"$>
<$disabledActionPopupIds = "getNativeFile,alertDocName"$>

Setting these variables causes any actions whose class is either workflow or folders,
or whose ID is getNativeFile or alertDocName, to always be hidden. Using these
variables enable Content Server administrators and component writers to hide specific
actions either globally or for specific pages.

Component writers also can override a number of Idoc Script resource includes to
modify functionality in this area on either a global or targeted scale. The following
includes are just a few of the available resource includes:

■ custom_add_to_action_popup_data

■ custom_modify_action_popup_data

■ classic_table_row_pre_display

■ slim_table_row_pre_display

■ custom_row_pre_display

6

Integration Methods 6-1

6Integration Methods

This chapter describes options for integrating Content Server with enterprise
applications. It covers the following topics:

■ "Overview of Integration Methods" on page 6-1

■ "IdcCommand Utility" on page 6-2

■ "COM Integration" on page 6-14

■ "RIDC Integration" on page 6-59

■ "JSP Integration" on page 6-60

■ "Java 2 Enterprise Edition Integration (J2EE)" on page 6-62

■ "Web Services" on page 6-63

6.1 Overview of Integration Methods
Several easy, flexible methods are available for integrating Content Server with
enterprise applications such as application servers, catalog solutions, personalization
applications, and enterprise portals, and client-side software.

Content Server not only serves as a content management solution for content-centric
Web sites, but also provides a scalable content management infrastructure that
supports multiple enterprise applications in many diverse environments and
platforms. The integration solutions enable other enterprise applications to access
content managed by the content management system and provides these applications
with critical content management capabilities such as full-text and metadata searching,
library services, workflow, subscription notifications and content conversion
capabilities through a wide array of integration methods.

In general, these integration methodologies serve to translate or pass methods and
associated parameters with the goal of executing content server services. The various
Content Server services are the "window" for accessing the content and content
management functions within Content Server. For example, one simple integration
option is to reference content that is managed within Oracle UCM by persistent URL.
Other integration options are to use the Java API, the COM integrations, or the
ActiveX control.

The focus of this chapter is to present the available integration options, suggest an
approach, (like IdcCommand X, or persistent URL, or SOAP), and provide information
about where to get the detailed documentation on that approach. Specifically, this
chapter provides basic conceptual information about the integration of Content Server
within network system environments using various protocols, interfaces, and
mapping services.

IdcCommand Utility

6-2 Oracle Fusion Middleware Developer's Guide for Content Server

6.2 IdcCommand Utility
This section provides information on using the IdcCommand utility to access content
server services from other applications. It covers these topics:

■ "Overview of IdcCommand" on page 6-2

■ "IdcCommand Setup and Execution" on page 6-2

■ "Command File" on page 6-3

■ "Configuration Options" on page 6-5

■ "Running IdcCommand" on page 6-6

■ "Using the Launcher" on page 6-6

■ "Calling Services Remotely" on page 6-13

6.2.1 Overview of IdcCommand
The IdcCommand utility is a standalone Java application that executes Content Server
services. Almost any action you can perform from the content server browser interface
or administration applets can be executed from IdcCommand.

The program reads a Command File, which contains service commands and
parameters, and then calls the specified services. A log file can record the time that the
call was executed, whether the service was successfully executed, and if there were
execution errors.

To run the IdcCommand utility, the following parameters must be specified on the
command line or in the intradoc.cfg configuration file:

■ A command file containing the service commands and parameters.

■ A content server user name. This user must have permission to execute the
services being called.

■ A path and file name for a log file.

■ The connection mode (auto, server, or standalone).

There are certain commands that cannot be executed in standalone mode. In general,
these commands are performed asynchronously by the server in a background thread.
This happens in the update or rebuild of the search index.

For information on using services in custom components, see the Oracle Fusion
Middleware Services Reference Guide for Universal Content Management and Chapter 3,
"Working with Components".

6.2.2 IdcCommand Setup and Execution
To set up IdcCommand, you must specify the following two things:

■ A Command File, which specifies the services to be executed and any service
parameters.

Note: The IdcCommand utility returns only information about the
success or failure of the command. To retrieve information from the
Content Server in an interactive session, use the Java COM wrapper
IdcCommandX, available on Microsoft Windows platforms. See
"IdcCommand Utility" on page 6-2 for additional information.

IdcCommand Utility

Integration Methods 6-3

■ Configuration Options, which specify the command file and other IdcCommand
information. You can set IdcCommand configuration options in two places:

– In a configuration file, using name/value pairs such as:

IdcCommandFile=newfile.hda
IdcCommandUserName=sysadmin
IdcCommandLog=C:/domain/newlog.txt
ConnectionMode=server

– On the command line when running IdcCommand, specifying option flags
such as:

-f newfile.hda -u admin -l C:/domain/newlog.txt -c server

IdcCommand is run from a command line. You can specify the Configuration Options
either from the command line or in a configuration file. See "Running IdcCommand"
on page 6-6 for more information.

6.2.3 Command File
The command file defines the service commands and parameters that are executed by
the IdcCommand utility. The command file follows these rules:

■ Command File Syntax

■ Precedence

■ Special Tags and Characters

6.2.3.1 Command File Syntax
The command file uses the HDA (hyperdata file) syntax to define service commands.

■ Each service to be executed, along with its parameters, is specified in a
@Properties LocalData section.

■ For some services, a @ResultSet section is used to specify additional
information.

■ Data from one section of the command file is not carried over to the next section.
Each section must contain a complete set of data for the command.

■ Service names and parameters are case sensitive.

■ For example, the following command file executes the ADD_USER service and
defines attributes for two new users:

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
Add users
@Properties LocalData

IdcService=ADD_USER
dName=jsmith
dUserAuthType=Local
dFullName=Jennifer Smith
dPassword=password
dEmail=email@email.com
@end

Note: Command-line configuration options override the settings in
the configuration file.

IdcCommand Utility

6-4 Oracle Fusion Middleware Developer's Guide for Content Server

@ResultSet UserAttribInfo
2
dUserName
AttributeInfo
jsmith
role,contributor,15
@end
<<EOD>>
@Properties LocalData
IdcService=ADD_USER
dName=pwallek
dUserAuthType=Local
dFullName=Peter Wallek
dPassword=password
dEmail=email@email.com
@end
@ResultSet UserAttribInfo
2
dUserName
AttributeInfo
pwallek
role,contributor,15,account,marketing,7
@end
<<EOD>>

6.2.3.2 Precedence
IdcCommand uses precedence to resolve conflicts among the name/value pairs within
the LocalData section of the command file. When normal name/value pairs are
parsed, they are assumed to be within the @Properties LocalData tag. If the
section contains HDA tags, the normal name/value pairs take precedence over
name/value pairs within the @Properties LocalData tag.

For example, if foo=x is in a normal name/value pair and foo=y is within the
@Properties LocalData tag, the name/value pair foo=x takes precedence
because it is outside the tag.

6.2.3.3 Special Tags and Characters
These special tags and characters can be used in a command file:

Special Character Description

IdcService=service_name Each section of the command file must specify the name of the
service it is calling.

<<EOD>> The end of data marker. The command file can include one or
more sections separated with an end of data marker. See
"Command File Syntax" on page 6-3 for an example.

The pound character placed at the beginning of a line indicates
that the line is a comment.

\ The backslash is an escape character.

@Include filename This tag enables you to include content from another file at the
spot where the @Include tag is placed. This tag can be used to
include a complete HDA file or to include shared name/value
pairs. This inclusion takes the exact content of the specified file
and places it in the location of the @Include tag. A file can be
included as many times as desired and an included file may
include other files. However, circular inclusions are not allowed.

IdcCommand Utility

Integration Methods 6-5

6.2.4 Configuration Options
To run the IdcCommand utility, specify the following on the command line or in the
DomainHome/ucm/cs/bin/intradoc.cfg configuration file:

6.2.4.1 Command File
You must specify the name of the command file that contains the service commands
and parameters. The command file parameter can specify a full path (such as
C:/command_files/command.txt), or it can specify a relative path. See "Command File" on
page 6-3 for more information.

6.2.4.2 User
You must specify a Content Server user name. This user must have permission to
execute the services being called.

6.2.4.3 Log File
You can specify a path and file name for an IdcCommand log file. As each command is
executed, a message is sent to the log file, which records the time the command was
executed and its success or failure status. If the log file already exists, it is overwritten
with the new message. The log file can be used to display processing information to
the user.

■ If the action performed is successful, a "success" message is written to the log file.

■ If the action performed is not successful, an error message is written to the log file.

■ If no log file is specified, information is logged only to the screen.

6.2.4.4 Connection Mode
You can specify the connection mode for executing the IdcCommand services.

Parameter Required? Command Line Syntax Configuration File Syntax

Command File Yes -f name.txt IdcCommandFile=name.txt

User Yes -u sysadmin IdcCommandUserName=sysadmin

Log File No -l C:/logs/log.txt IdcCommandLog=C:/logs/log.txt

Connection Mode No -c auto ConnectionMode=auto

Note: Command-line configuration options override the settings in
the configuration file.

Connection Mode Description

auto IdcCommand attempts to connect to the Content Server
instance. If this fails, services are executed in standalone mode.

This is the default connection mode.

server IdcCommand executes services only through the content server.

standalone IdcCommand executes services in a standalone session.

There are certain services that cannot be executed in standalone
mode. In general, these services are performed asynchronously
by the server in a background thread. For example, this happens
during update or rebuild of the search index.

IdcCommand Utility

6-6 Oracle Fusion Middleware Developer's Guide for Content Server

6.2.5 Running IdcCommand
To run IdcCommand:

1. Create a new IdcCommand working directory.

Use this directory for your command file and configuration file.

2. Create a Command File in the working directory to specify the desired service
commands.

3. Copy the intradoc.cfg configuration file from the DomainHome/ucm/cs/bin
directory into the working directory.

4. Add IdcCommand options to the intradoc.cfg file in the working directory. See
Configuration Options for more information.

IdcCommandFile=newfile.hda
IdcCommandUserName=sysadmin
IdcCommandLog=C:/domain/newlog.txt

5. Run the IdcCommand stored in the DomainHome/ucm/cs/bin directory:

IdcCommand.exe

6.2.6 Using the Launcher
The Launcher is a native C++ application used to manage services in Windows
environments and to construct command line arguments and environment settings for
the Java VM.

The main operation of the Launcher is to find and read its configuration files, compute
any special values, then launch an executable with a command line that it constructs.
Configuration files support Bourne Shell-like substitutions, all of which start with the
dollar sign ($) followed by an alphanumeric identifier or expression inside braces ({ }
).

The Launcher executable is installed in
DomainHome/ucm/native/platform/bin/Launcher. On UNIX systems, symlinks are
created in the bin/ directory to Launcher.sh, a Bourne Shell wrapper which executes
the Launcher executable. The purpose of this wrapper is to locate the correct binary
Launcher executable for the platform. The term Launcher is used here to refer to the
native Launcher executable or to the Launcher.sh Bourne Shell script.

The Launcher or the symlink to the Launcher.sh must reside in a directory with a valid
intradoc.cfg configuration file and must have the same name as the Java class file to be
launched (case sensitive). The Launcher uses this name to set the environment variable
STARTUP_CLASS.

On Windows this name is computed by calling GetModuleFileName(). On UNIX
systems, it is computed by inspecting argv[0]. The PLATFORM variable is set to the
Content Server identifier for the platform. The variable BIN_DIR is set to the directory
where the Launcher is located.

The Launcher reads a file named intradoc.cfg from BIN_DIR. This file should contain
a value for IntradocDir. The IntradocDir is used as the base directory for
resolving relative paths. Any unqualified path in this document should be taken as

Important: Do not delete the IntradocDir or WebBrowserPath
information.

IdcCommand Utility

Integration Methods 6-7

relative to the IntradocDir. Future releases of Content Server may change or
remove these variable names.

If the intradoc.cfg file does not contain a value for IdcHomeDir, the Launcher sets
IdcHomeDir to be $IntradocDir/resources. If the Launcher is starting a
Windows service, it sets IS_SERVICE to 1. If it is unset, the Launcher also sets PATH_
SEPARATOR to the correct character for the platform.

The Launcher reads the intradoc.cfg file first to find the locations of configuration files,
then reads all available configuration files in this order:

1. $IdcResourcesDir/core/config/launcher.cfg

2. $BIN_DIR/../config/config.cfg

3. $IntradocDir/config/config.cfg

4. $IntradocDir/config/config-$PLATFORM.cfg

5. $IntradocDir/config/state.cfg

6. $IdcResourcesDir/core/config/launcher-$PLATFORM.cfg

7. $IdcResourcesDir/core/config/launcher-local.cfg

8. $BIN_DIR/intradoc.cfg

9. $BIN_DIR/intradoc-$PLATFORM.cfg

10. All files specified on the command line, using the -cfg option.

6.2.6.1 Quoting
The Launcher uses Bourne Shell-like quoting rules. A string can be quoted inside
double quotes (") to escape spaces. A backslash (\) can precede any character to
provide that character. After a final command line is computed, the Launcher
separates it into non-quoted spaces. Each string is then unquoted and used as an entry
in the argv array for the command.

6.2.6.2 Computed Settings
After reading the configuration files, the Launcher processes variable substitutions.
Some variables can have extra computations to validate directories or files, build
command-line argument lists, or construct PATH-like variables.

These special computations are performed for variables based on their type. To set a
type for a variable, set TYPE_variable_name=typename in any of the configuration
files listed previously.

The following list describes Launcher variable types:

■ file

– Examples:

TYPE_PASSWD_FILE=file
PASSWD_FILE_sys5=/etc/passwd
PASSWD_FILE_bsd=/etc/master.passwd

The type looks for a file. If the value of variable_name is a path to an existing
file, it is kept. If not, every variable beginning with variable_name_ is checked.

Note: You can assign variable values directly on the command line
by using the -cfg option NAME=VALUE.

IdcCommand Utility

6-8 Oracle Fusion Middleware Developer's Guide for Content Server

The last value, which is a path to an existing file, is used for the new value of
variable_name.

In this example PASSWD_FILE is set to /etc/master if /etc/master.passwd
exists, or it is set to /etc/passwd if /etc/passwd exists. Otherwise,
PASSWD_FILE is undefined.

■ directory

– Examples:

TYPE_JDK=directory
JDK_java_home=$JAVA_HOME
OS_DIR=$IdcHomeDir/native
DEFAULT_JDK_DIR=$OS_DIR/$PLATFORM
JDK_legacy142=$DEFAULT_JDK_DIR/j2sdk1.4.2_04
JDK_default=$DEFAULT_JDK_DIR/jdk1.5.0_07

In this example JDK id set to the same value as the last of the JDK_ variables that
is a directory. Typically this would point at the JDK installed with Content Server.
Note that JDK_java_home references $JAVA_HOME; if a variable is not defined in
any configuration file but is in the environment, the environment value is used.

■ executable

– Examples:

TYPE_JAVA_EXE=executable
JAVA_EXE_default=java$EXE_SUFFIX
JAVA_EXE_jdk_default=$JDK/bin/java$EXE_SUFFIX

The executable type looks for an executable. It works very much like the file type,
but looks through every directory in $PATH for each candidate value. In this
example JAVA_EXE is set to the java executable in the JDK if it exists. Otherwise it
is set to the first java executable in the PATH.

■ list

– Examples:

TYPE_JAVA_OPTIONS=list
JAVA_MAX_HEAP_SIZE=384
DEFINE_PREFIX=-D
JAVA_OPTIONS_BIN_DIR=${DEFINE_PREFIX}idc.bin.dir=$BIN_DIR
JAVA_OPTIONS_maxheap=${JAVA_MAX_HEAP_SIZE+-Xmx${JAVA_MAX_HEAP_SIZE\}m}
JAVA_OPTIONS_service=${IS_SERVICE+$JAVA_SERVICE_EXTRA_OPTIONS}

The list type computes a list of options for an executable. Each value that begins
with variable_name_ becomes a quoted option, and variable_name is set to
the entire list. In this example, JAVA_OPTIONS is set to the string:

"-Didc.bin.dir=/intradocdir/bin/" "-Xmx384m"

■ path

– Examples:

IdcResourcesDir=$(IdcResourcesDir-$IdcHomeDir/resources)
BASE_JAVA_CLASSPATH_source=$IdcResourcesDir/classes
BASE_JAVA_CLASSPATH_serverlegacy=$SharedDir/classes/server.zip
BASE_JAVA_CLASSPATH_server=$JLIB_DIR/idcserver.jar

The classpath type computes a path-like value.The value of each variable starting
with variable_name_ is appended to the value of variable_name separated

IdcCommand Utility

Integration Methods 6-9

by the value of PATH_SEPARATOR. In this example JAVA_CLASSPATH is set to a
very long classpath.

■ lookupstring

– Examples:

TYPE_VDK_PLATFORM=lookupstring
PARAMETER_VDK_PLATFORM=${PLATFORM}_${UseVdkLegacySearch+vdk27}
VDK_PLATFORM_aix_vdk27=_rs6k41
VDK_PLATFORM_aix_=_rs6k43
VDK_PLATFORM_hpux_vdk27=_hpux11
VDK_PLATFORM_hpux_=_hpux11
VDK_PLATFORM_freebsd_vdk27=_ilnx21
VDK_PLATFORM_freebsd_=_ilnx21
VDK_PLATFORM_linux_vdk27=_ilnx21
VDK_PLATFORM_linux_=_ilnx21
VDK_PLATFORM_solaris_vdk27=_ssol26
VDK_PLATFORM_solaris_=_ssol26
VDK_PLATFORM_win32_vdk27=_nti40
VDK_PLATFORM_win32_=_nti40

The lookupstring uses a second parameter to construct a lookup key for the
final value. The second parameter is the value of $PARAMETER_variable_name.
If this value is undefined, the current value of variable_name is used as the
lookup key. In this example, PARAMETER_VDK_PLATFORM has the value of
${PLATFORM}_ or ${PLATFORM}_vdk27 depending on the value of
UseVdkLegacySearch.

This value is then used to look up the value of the variable VDK_PLATFORM_
${PARAMETER_VDK_PLATFORM} which is then quoted and assigned to VDK_
PLATFORM.

■ lookuplist

– Examples:

TYPE_STARTUP_CLASS=lookuplist
STARTUP_CLASS_version=Installer --version
STARTUP_CLASS_installer=Installer
STARTUP_CLASS_WebLayoutEditor=IntradocApp WebLayout
STARTUP_CLASS_UserAdmin=IntradocApp UserAdmin
STARTUP_CLASS_RepositoryManager=IntradocApp RepositoryManager
STARTUP_CLASS_Archiver=IntradocApp Archiver
STARTUP_CLASS_WorkflowAdmin=IntradocApp Workflow
STARTUP_CLASS_ConfigurationManager=IntradocApp ConfigMan

The lookuplist uses a second parameter to construct a lookup key for the final
value. The second parameter is the value of $PARAMETER_variable_name. If
this value is undefined, the current value of variable_name is used as the
lookup key.

Unlike lookupstring, lookuplist does not quote the final value. In this
example, assume the current value of STARTUP_CLASS is version. STARTUP_
CLASS is replaced with the value Installer --version.

6.2.6.3 Launcher Environment Variables
After processing the computed settings, the Launcher iterates over all variables that
begin with the string EXPORT_. The value of each variable is used as an environment
variable name, which has the value of the second half of the EXPORT_ variable

IdcCommand Utility

6-10 Oracle Fusion Middleware Developer's Guide for Content Server

assigned. For example, EXPORT_IDC_LIBRARY_PATH=LD_LIBRARY_PATH exports
the value of the IDC_LIBRARY_PATH variable with the name LD_LIBRARY_PATH.

The variable JAVA_COMMAND_LINE is used to get the command line. Any command
line arguments to the Launcher that have not been consumed are appended to the
command line. On UNIX systems, the command line is parsed and quoting is undone
and then execv is called. On Windows, a shutdown mutex is created and
CreateProcess is called with the command line. Care should be taken because
CreateProcess does not undo backslash-quoting.

The principal mechanism for debugging the Launcher is to add the flag -debug before
any arguments for the final command. You can also create a file named $BIN_
DIR/debug.log which triggers debug mode and contain the debug output.

The Launcher has knowledge of the following configuration entries, which it either
sets or uses to control its behavior. Note that these configuration variables may change
or be removed in future releases of Content Server:

■ IDC_SERVICE_NAME: the name of the win32 service used for service registration,
unregistration, startup, and shutdown.

■ IDC_SERVICE_DISPLAY_NAME: the display name of the win32 used for service
registration.

■ IntradocDir: the base directory for relative path names.

■ IdcBaseDir: an alternate name for IntradocDir.

■ IdcResourcesDir: set to $IdcHomeDir/resources if otherwise undefined.

■ IdcNativeDir: defaults to $IdcHomeDir/native if otherwise unset.

■ PATH_SEPARATOR: set to either colon (:) or semi-colon (;) if otherwise unset.

■ STARTUP_CLASS: set to the name of the Launcher executable.

■ MUTEX_NAME: the name used to create a shutdown mutex on win32.

■ BEFORE_WIN_SERVICE_START_CMD: if set, is a command line that is executed
before a win32 service starts.

■ UseRedirectedOutput: if set tells the Launcher on win32 to redirect the output
from the Java VM to a file.

■ ServiceStartupTimeout: the timeout used for waiting for a Java process to
successfully start on win32.

6.2.6.4 User Interface
The UI for the Launcher is the same as the application it launches. For example, if the
Launcher is renamed to IntradocApp, the following command line arguments are
given to launch the Web Layout Editor:

IntradocApp WebLayout

This launches the Web Layout Editor as a standalone application.

Tip: By using the Launcher.exe, changing the status.dat file, and
altering the value of the JVM command line, you could theoretically
run any Java program as a Windows service. This is not
recommended for normal use, but it does explain the many ways you
could configure the Launcher.

IdcCommand Utility

Integration Methods 6-11

By default, the application is launched without console output. However, when
launching IdcServer, IdcAdmin, IdcCommandX, or the Installer, Java output is printed
to the screen. In all other cases, the output is suppressed for a cleaner interface.

For some applications, such as the Batch Loader and the Repository Manager, it is
desirable to view the Java output from the application. To force the Launcher to dump
the Java output to the screen, use the -console flag in this manner:

IntradocApp RepMan -console

The output is now written to the console from which the Repository Manager was
launched.

If the Launcher is renamed IdcServer, BatchLoader, SystemProperties, or any other
Java class that requires no additional parameters, it can be launched with a simple
double-click. In other cases, a shortcut can be used to launch them by double-clicking.

6.2.6.5 Configuring the Launcher
To use the Launcher, you must first rename the Launcher.exe file to an executable with
the same name as the class file to be launched. Typical examples include
IdcServer.exe or IntradocApp.exe.

6.2.6.6 Configuration File Example
Configuration file example entries:

<?cfg jcharset="Cp1252"?>
#Content Server Directory Variables
IntradocDir=C:/domain/idcm1/
BASE_JAVA_CLASSPATH_source=$IdcResourcesDir/classes
BASE_JAVA_CLASSPATH_serverlegacy=$SharedDir/classes/server.zip
BASE_JAVA_CLASSPATH_server=$JLIB_DIR/idcserver.jar

This is sufficient to launch nearly all Content Server applications. Others, such as the
Inbound Refinery, require additional classes in the classpath. This file can also be
modified to enable Content Server to be run with different Java Virtual Machines.

The CLASSPATH is designed to look for class files in order of the listed entries. In other
words, the Launcher will search the entire DomainHome/ucm/idc/native/ directory
before it looks in the resources/ directory or server.zip file. This is desirable if the
users want to overload Java classes without patching the Zip file.

Additionally, the Launcher can be used to install, uninstall, and run Java applications
as Windows Services, if they follow the correct API for communicating back to the
Launcher. See the source code for IdcServer.java or IdcAdmin.java for more
details on how to make any Java application run as a Windows service with the
Launcher.

The COMPUTEDCLASSPATH is used to add class files to the CLASSPATH that the
Launcher uses. To add class files, override this flag.

Note: If you want to make a custom application, you must create the
custom directory, and rename the Launcher.exe file to the service that
is to be launched. A valid intradoc.cfg file must be in the same
directory as the executable. The only required parameter is
IntradocDir; however, other entries can be included to alter the
way the Java application is launched.

IdcCommand Utility

6-12 Oracle Fusion Middleware Developer's Guide for Content Server

For example, to run Content Server with IBM's virtual machine on a Windows system,
the command line would look like:

#customized for running IBM's VM
JAVA_EXE=full path

When using a custom JVM, use the full path to the Java executable file to be used.

If you choose to change which JVM you are using, and if that VM has all the standard
Sun SDK jar files, then it is better to use the J2SDK configuration entry to relocate the
root directory of the SDK directory rather than use JAVA_EXE to specify the location
of the Java executable (this is not applicable for the IBM VM).

The J2SDK variable changes the directory where the Sun SDK libraries are found
(such as tools.jar). If you change this entry without setting the JAVA_EXE entry then
Java executables are assumed to be in the \bin directory of the path in J2SDK. The
default value for J2SDK is ...\shared\os\win32\j2sdk1.4.2_04.

To add a value to $JAVA_OPTIONS, use $JAVA_OPTIONS=-server or another
similar value.

The following are commonly used command line options. Those options noted with
an asterisk (*) are available on Windows platforms only. Unmarked options are
available for Windows or UNIX platforms:

Note: The intradoc.cfg file is usually altered to include JDBC drivers
for their particular database upon install. If you want to use alternate
JDBC drivers, place them outside of the Content Server’s
IdcHomeDir, and alter the JDBC_JAVA_CLASSPATH_customjdbc
entry in the intradoc.cfg file with the location of the driver.

Caution: It is recommended that you not override the JVM
command line. If you do so, start with the
$IdcHomeDir/resources/core/config/launcher.cfg file.
Customization is more complicated because of the custom classloader.

Option Description

-console * Forces the Launcher to keep a Windows console window
open so that the Java output and error streams are printed to the
console.

-debug Shows paths and variables in use at startup, and startup errors.
Also enables Java debugging in Content Server; when repeated
this increases verbosity.

-fileDebug Similar to the -debug option but this option dumps debug data
to the debug.log file. It is usually only set in JAVA_OPTIONS or
JAVA_SERVICE_EXTRA_OPTIONS in the intradoc.cfg file to
debug Windows services.

-install * Used to install the Java application referred to by the
Launcher as a Windows Service.

-install_autostart * Similar to the -install option but this option installs the
application to start when the server starts.

-uninstall * Used to uninstall the Java application referred to by the
Launcher as a Windows Service.

IdcCommand Utility

Integration Methods 6-13

If you want to load custom .dlls, you should put them in the
IdcHomeDir/native/win32/lib/ directory.

6.2.7 Calling Services Remotely
To use services remotely, you must have these files on the remote system:

■ DomainHome/ucm/cs/bin/IdcCommand.exe

■ DomainHome/ucm/cs/bin/intradoc.cfg (same file as on Content Server).

■ IntradocDir/config/config.cfg

-remove * Same as -uninstall.

-dependent service-name * Makes the Windows service dependent on whether the
service service-name is also running.

This command is useful when you want to make a dependent
call for each service.

For example, if you want to launch a database before starting the
content server, you can specify the content server startup to be
dependent on the database startup.

-dependent user password * Used with -install, installs the service with the credentials
of the user specified by user with password password.

This command will check the user regardless of the credentials,
but may not install the service. The credentials of the user need
to extend to the service for the auto-start to run the service
automatically.

For certain services, such as the Inbound Refinery, the last flag is
required so the service can run with higher permissions. The
user name must be in the typical Microsoft format
DOMAIN\User. Once users change passwords, the service will
not be able to log in, and therefore will not run.

-help Provides verbose output on Launcher use.

-version Displays the version number for the Launcher and exits.

-asuser user password * Used during an install to install a service as a specified user
with a specific password.

-exec path _name Overrides the argv[0] setting. Used by the Launcher.sh to specify
the target path_name because the target of the symlink does not
know its source.

-cfg configfilename Specifies additional config files to read before determining
computed settings.

-idcServiceName
servicename

* Specifies the name of the Windows service. This can used
with -remove to uninstall another Content Server service
without using that Content Server's Launcher (for example, if an
entire installation directory has been removed).

Tip: To customize the classpath to alter the system path to load
Oracle .dll files, you can set teh pathway to:

IDC_LIBRARY_PATH_customfiles=/path-to-customfiles

Custom shared objects and .dll files must not be installed into
IdcHomeDir.

Option Description

COM Integration

6-14 Oracle Fusion Middleware Developer's Guide for Content Server

In addition, the following configuration entries must be defined in the #Additional
Variables section of the config.cfg file on the remote system:

■ IntradocServerPort=4444

■ IntradocServerHostName=IP or DNS

6.3 COM Integration
Content Server utilizes a Component Object Model-based API which provides the
capability to call functionality from within a Microsoft Component Object Model
(COM) environment.

You can use a COM interface to integrate Content Management with Microsoft
environments and applications. An ActiveX control and an OCX component are
provided as interface options to gain access to the content and content management
functions within Content Server. Additionally, you can communicate with
ODMA-aware applications through a COM interface.

This section covers these topics:

■ "ActiveX Interface" on page 6-14

■ "OCX Interface" on page 6-32

■ "ODMA Integration" on page 6-58

6.3.1 ActiveX Interface
The IdcCommandUX ActiveX Command Utility is an ActiveX control that allows a
program to execute Content Server services and retrieve file path information. The
control serves as a COM wrapper for the standard IdcCommand services used by
Content Server. IdcCommandUX works with multibyte languages.

When executing services using the IdcCommandUX ActiveX Command Utility keep
these items in mind:

■ IdcCommandUX must be initialized with a valid user and the intradoc.cfg
directory. Outside of the init and connection managing methods, all methods
use the serialized HDA format for communication.

■ IdcCommandUX attempts to establish a connection to a running server. If a
connection is not made it fails.

■ The returned serialized HDA format string contains information about the success
or failure of the command. The StatusCode will be negative if a failure occurs,
and StatusMessage will indicate the error.

The following sections cover these topics:

Tip: Calling services from a command line on the local server using
the IdcCommandUX ActiveX Command Utility provides faster
execution of commands than calling services remotely using the
IntradocClient OCX component.

Note: A Visual Basic or Visual C++ development environment is
required to use IdcCommandUX.

COM Integration

Integration Methods 6-15

■ "Setting Up IdcCommandUX" on page 6-15

■ "Calling IdcCommandUX from a Visual Basic Environment" on page 6-15

■ "Calling IdcCommandUX from a Visual C++ Environment" on page 6-15

■ "Executing Services" on page 6-15

■ "Calling IdcCommandUX from an Active Server Page (ASP)" on page 6-16

■ "Connect to Content Server from a Remote System" on page 6-20

6.3.1.1 Setting Up IdcCommandUX
To set up IdcCommandUX, run the IdcCommandUX setup file, which is stored in
extras/IdcCommandUX/setup.exe in the media.

6.3.1.2 Calling IdcCommandUX from a Visual Basic Environment
To call IdcCommandUX from a Visual Basic environment:

1. Add IdcCommandUX as a control to the Visual Basic project.

2. Create the control as follows:

Set idcCmd=CreateObject("Idc.CommandUX")

3. Define and initialize the connection by calling the init (deprecated) function and
defining the UserName and DomainDir parameters:

Dim idcCmd
idcCmd.init("UserName", "DomainDir")

■ The UserName parameter specifies a user that has permission to execute the
services being called by IdcCommandUX.

■ The DomainDir parameter specifies the complete path to the content server
directory that contains the intradoc.cfg configuration file.

Example:

Dim idcCmd
idcCmd.initRemote("sysadmin", "c:\domain\bin")

6.3.1.3 Calling IdcCommandUX from a Visual C++ Environment
To call IdcCommandUX from a Visual C++ environment:

1. Add the IdcCommandUX control to the project.

2. Call the desired IdcCommandUX class.

6.3.1.4 Executing Services
When executing services using IdcCommandUX, keep these points in mind:

■ IdcCommandUX must be initialized with a valid user name and the location of the
intradoc.cfg file.

■ Functions that must use HDA format for communication include
computeWebFilePath, computeNativeFilePath and computeURL. For more
information on HDA formats, see Chapter 3, "Working with Components".

■ executeCommand can take HDA format or SOAP commands. To use SOAP, you
must use the initRemote function instead of the init (deprecated) function.

COM Integration

6-16 Oracle Fusion Middleware Developer's Guide for Content Server

■ IdcCommandUX attempts to establish a connection to a running content server. If
a connection is not made, it fails.

■ The returned HDA-format string contains information about the success or failure
of the command, using the StatusCode and StatusMessage variables.

– If the command is successful, StatusCode is zero (0), and StatusMessage
is a login message ("You are logged in as sysadmin").

– If the command fails, StatusCode is negative (-1), and StatusMessage is
an error message.

See the Oracle Fusion Middleware Idoc Script Reference Guide for more information.

See "Using the Launcher" on page 6-6 for information on using the Launcher (a
native C++ application that allows a Java program to start as a Windows service).

6.3.1.5 Calling IdcCommandUX from an Active Server Page (ASP)
Calling IdcCommandUX from an Active Server Page (ASP) consists of these steps:

1. "Creating the COM Object" on page 6-17

2. "Initializing the Connection" on page 6-17

3. "Defining Services and Parameters" on page 6-18

4. "Referencing Custom Resources" on page 6-18

5. "Executing the Service" on page 6-18

6. "Retrieving Results" on page 6-19

Example 6–1 SOAP Example

In this SOAP sample:

■ The GET_SEARCH_RESULTS service is called.

■ The parameters for the service are defined using field/value pairs:

– The ResultCount parameter sets the number of returned results to 5.

– The SortField parameter sorts the returned results by release date.

– The SortOrder parameter orders the returned results in descending order.

– The QueryText parameter defines the query expression as "Content Type
matches research."

The initRemote function must be used and isSOAP must be set to TRUE for a
SOAP-formatted request, which is shown in the following example.

' Create COM object
Set idcCmd = CreateObject("Idc.CommandUX")
' Initialize the connection to the server
x = idcCmd.initRemote("/domain/ ", "sysadmin",
"socket:localhost:4444", true)
' Create the SOAP envelope
cmd = cmd & "<?xml version='1.0' ecoding='UTF-8'?>" + Chr(10)
cmd = cmd & "<SOAP-ENV:Envelope xmlns:SOAP-ENV=""http://
schemas.xmlsoap.org/soap/envelope/"">" + Chr(10)
cmd = cmd & "<SOAP-ENV:Body>" + Chr(10)
' Define the service
cmd = cmd & "<idc:service xmlns:idc=""http://www.oracle.com/
IdcService/""" + Chr(10)
cmd = cmd & "IdcService=""GET_SEARCH_RESULTS"">" + Chr(10)

COM Integration

Integration Methods 6-17

' Define the service parameters
cmd = cmd & "<idc:document>" + Chr(10)
cmd = cmd & "<idc:field name=""NoHttpHeaders"">1</idc:field>" +
Chr(10)
cmd = cmd & "<idc:field name=""ClientEncoding"">UTF8</idc:field>"
+ Chr(10)
cmd = cmd & "<idc:field name=""QueryText"">dDocType
<matches> research</idc:field>" + Chr(10)
cmd = cmd & "<idc:field name=""ResultCount"">5</idc:field>" +
Chr(10)
cmd = cmd & "<idc:field name=""SortOrder"">Desc</idc:field>" +
Chr(10)
cmd = cmd & "<idc:field name=""SortField"">dInDate</idc:field>" +
Chr(10)
cmd = cmd & "</idc:document>" + Chr(10)
cmd = cmd & "</idc:service>" + Chr(10)
cmd = cmd & "</SOAP-ENV:Body>" + Chr(10)
cmd = cmd & "</SOAP-ENV:Envelope>" + Chr(10)
' End SOAP envelope and execute the command
results= idcCmd.executeCommand(cmd)
' Retrieve results
Response.Write(results)

Example 6–2 HDA Sample

' Create COM object
Set idcCmd = CreateObject("Idc.CommandUX")
' Initialize the connection to the server
x = idcCmd.initRemote("/domain/", "socket:localhost:4444", "sysadmin", true)
' Define the service
cmd = "@Properties LocalData" + Chr(10)
cmd = cmd + "IdcService=GET_SEARCH_RESULTS" + Chr(10)
' Define the service parameters
cmd = cmd + "ResultCount=5" + Chr(10)
cmd = cmd + "SortField=dInDate" + Chr(10)
cmd = cmd + "SortOrder=Desc" + Chr(10)
cmd = cmd + "QueryText=dDocType=research" + Chr(10)
' Reference a custom component
cmd = cmd + "MergeInclude=ASP_SearchResults" + Chr(10)
cmd = cmd + "ClassStyle=home-spotlight" + Chr(10)
cmd = cmd + "@end" + Chr(10)
' Execute the command
results = idcCmd.executeCommand(cmd)
' Retrieve results
Response.Write(results)

' Create COM object
Set idcCmd = CreateObject("Idc.CommandUX")

Example 6–3 Creating the COM Object

The first line of code creates the COM object:

' Create COM object
Set idcCmd = CreateObject("Idc.CommandUX")

Example 6–4 Initializing the Connection

To initialize the connection to the Content Server, call the initRemote function (see
"initRemote" on page 6-32 for details about all parameters). In this example:

COM Integration

6-18 Oracle Fusion Middleware Developer's Guide for Content Server

■ The HttpWebRoot parameter specifies a value for the Web root as defined in the
config/config.cfg file.

■ The idcReference parameter specifics a string containing information on
connection to the Content Server instance. This is specified as "socket" followed by
the IntradocServerHostName and the IntradocServer Port address.

■ The idcUser is the user you are connecting as.

■ The isSoap parameter is a Boolean value indicating if the request is in SOAP
XML format or HDA format. In this case it is FALSE because it is in HDA format.

' Initialize the connection to the server
x = idcCmd.initRemote("/domain/", "socket:localhost:4444", "sysadmin", false)

Example 6–5 Defining Services and Parameters

To define the service and parameters, build an HDA-formatted string that contains
with the following lines:

@Properties LocalData
service
parameters
@end

The required and optional parameters vary depending on the service being called. For
more information, see the Oracle Fusion Middleware Services Reference Guide for Universal
Content Management.

In this example, the @end string is created after the optional custom component
reference. See "Formatting with a Resource Include" on page 6-19.

Example 6–6 Referencing Custom Resources

You can reference custom resources and pass parameters to a resource include from
your ASP as follows:

■ To reference a custom resource include, set the MergeInclude parameter to the
name of the include.

In this example, the ASP_SearchResults include is used to format the output as
HTML rather than a ResultSet. See "Formatting with a Resource Include" on
page 6-19 for more information.

■ To pass a parameter to a resource include, set the variable as name/value pair.

In this example, the ClassStyle variable with a value of home-spotlight is
available to the ASP_SearchResults include.

' Reference a custom component
cmd = cmd + "MergeInclude=ASP_SearchResults" + Chr(10)
cmd = cmd + "ClassStyle=home-spotlight" + Chr(10)
cmd = cmd + "@end" + Chr(10)

Example 6–7 Executing the Service

To execute the service, call the executeCommand method.

Note: The @end code is required to close the @Properties
LocalData section in an HDA-formatted string. See "Defining
Services and Parameters" on page 6-18.

COM Integration

Integration Methods 6-19

After executing the service, you could use the closeServerConnections method to make
sure that the connection is closed.

' Execute the service
results = idcCmd.executeCommand(cmd)

Example 6–8 Retrieving Results

The results can either be formatted HTML or a ResultSet.

In this example, the result of the service call is formatted HTML.

' Retrieve results
Response.Write(results)

6.3.1.6 Formatting with a Resource Include
This section provides an example of a custom resource include that is used to format
the output of a service executed by IdcCommandUX.

In the example described in "Calling IdcCommandUX from an Active Server Page
(ASP)" on page 6-16, the ASP_SearchResults resource include is used to format the
output of a search function and return HTML rather than a ResultSet:

<@dynamichtml ASP_SearchResults@>
<table border=0>

<$loop SearchResults$>
<tr class="site-default">
<td class="<$ClassStyle$>">
<a href="<URL>" target=new><$dDocTitle$>

<$xAbstract$>
</td>
</tr>
<$endloop$>

</table>
<@end@>

■ The <@dynamichtml ASP_SearchResults@> entry defines the name of the
resource include. The <@end@> entry ends the resource definition.

■ The code defined between the <$loop SearchResults$> and <$endloop$>
entries is executed for each content item in the SearchResults ResultSet, which
includes all documents that matched the query defined for the GET_SEARCH_
RESULTS service.

■ The <td class="<$ClassStyle$>"> entry displays the value of the
<$ClassStyle$> Idoc Script variable. In this example, the ClassStyle value
was passed in on the API call.

■ The <a href="<URL>" target=new><$dDocTitle$> entry displays
the Title of the current content item as a link to the file.

■ The <$xAbstract$> entry displays the Abstract value for the current content
item.

The HTML generated and returned to the Active Server Page from this resource
include would have this format:

<table border=0>
<tr class="site-default">
<td class="home-spotlight">
Article 1

This is the abstract for Article 1

COM Integration

6-20 Oracle Fusion Middleware Developer's Guide for Content Server

</td>
<td class="home-spotlight">
Article 2

This is the abstract for Article 2
</td>
<td class="home-spotlight">
Article 3

This is the abstract for Article 3
</td>
<td class="home-spotlight">
Article 4

This is the abstract for Article 4
</td>
<td class="home-spotlight">
Article 5

This is the abstract for Article 5
</td>
</tr>
</table>

Displaying this HTML page in a browser would look like this:

6.3.1.7 Connect to Content Server from a Remote System
This section describes how to establish a connection to the Content Server instance
from a remote system using IdcCommandUX from an Active Server Page. These steps
are required:

1. "Creating Variables" on page 6-21

2. "Creating a COM Object" on page 6-21

3. "Initializing the Connection" on page 6-21

4. "Returning the Connection Status" on page 6-22

5. "Defining the Service and Parameters" on page 6-22

6. "Executing the Service" on page 6-23

7. "Retrieving Results" on page 6-23

Example 6–9 Coding the ASP Page

This example calls the CHECKIN_UNIVERSAL service to provide a checkin function
from a remote system. This code does not check for an error condition.

' Create variables
Dim idccommand, sConnect, str
' Create COM object
Set idccommand = Server.CreateObject("idc.CommandUX")
' Initialize the connection to the server
x = idccommand.initRemote ("/domain/ ", "sysadmin", "socket:localhost:4444",
false)
' Return connection status (optional)
sConnect = idccommand.connectToServer
if sConnect then
Response.Write "Connected"

COM Integration

Integration Methods 6-21

else
Response.Write "Not Connected"
end if
str = "@Properties LocalData" & vbcrlf
' Define the service
str = str + "IdcService=" & "CHECKIN_UNIVERSAL" & vbcrlf
' Define the service parameters
str = str + "doFileCopy=1" & vbcrlf
str = str + "dDocName=RemoteTestCheckin23" & vbcrlf
str = str + "dDocTitle=Test1" & vbcrlf
str = str + "dDocType=ADACCT" & vbcrlf
str = str + "dSecurityGroup=Public" & vbcrlf
str = str + "dDocAuthor=sysadmin" & vbcrlf
str = str + "dDocAccount=" & vbcrlf
str = str + "primaryFile:path=C:/inetpub/Scripts/query2.asp" & vbcrlf
str = str + "@end" & vbcrlf
' Execute the command
res=idccommand.executeCommand(str)
' Return connection status
sClosed = idcCmd.closeServerConnection
if sClosed then
Response.Write "Server connection closed"
else
Response.Write "Failed to close server connection"
end if
' Retrieve results
Response.Write(res)

Example 6–10 Creating Variables

The following variables must be created:

■ idccommand: The name of the COM object.

■ sConnect: The status of the connection to the Content Server instance.

■ str: The HDA-formatted string that defines the service and its parameters.

' Create variables
Dim idccommand, sConnect, str

Example 6–11 Creating a COM Object

The following variables must be created:

■ idccommand: The name of the COM object.

■ sConnect: The status of the connection to the Content Server instance.

■ str: The HDA-formatted string that defines the service and its parameters.

' Create variables
Dim idccommand, sConnect, str

Example 6–12 Initializing the Connection

Initialize the connection to the Content Server instance.

' Initialize the connection to the server
x = idccommand.initRemote ("/domain/ ", "sysadmin", "socket:localhost:4444", false)

COM Integration

6-22 Oracle Fusion Middleware Developer's Guide for Content Server

Example 6–13 Returning the Connection Status

In this example, the connectToServer and closeServerConnections methods are used to
return connection status information before and after the service is executed.

' Return connection status
sConnect = idccommand.connectToServer
if sConnect then
Response.Write "Connected"
else
Response.Write "Not Connected"
end if
...
' Return connection status
sClosed = idcCmd.closeServerConnection
if sClosed then
Response.Write "Server connection closed"
else
Response.Write "Failed to close server connection"
end if

Example 6–14 Defining the Service and Parameters

To define the service and parameters, build an HDA-formatted string that contains the
following lines:

@Properties LocalData
service
parameters
@end

The required and optional parameters vary depending on the service being called. For
more information, see the Oracle Fusion Middleware Services Reference Guide for Universal
Content Management.

In this example:

■ The CHECKIN_UNIVERSAL service is called.

■ The parameters for the service are defined using field/value pairs:

– The doFileCopy parameter is set to TRUE (1), so the file will not be deleted
from hard drive after successful check in.

– The dDocName parameter defines the Content ID.

– The dDocTitle parameter defines the Title.

– The dDocType parameter defines the Type.

– The dSecurityGroup parameter defines the Security Group.

– The dDocAuthor parameter defines the Author.

– The dDocAccount parameter defines the security account. (If accounts are
enabled, this parameter is required.)

– The primaryFile parameter defines original name for the file and the
absolute path to the location of the file as seen from the server.

Important: The required parameters vary depending on the service
called. See the Oracle Fusion Middleware Services Reference Guide for
Universal Content Management for additional information.

COM Integration

Integration Methods 6-23

str = "@Properties LocalData" & vbcrlf
' Define the service
str = str + "IdcService=" & "CHECKIN_UNIVERSAL" & vbcrlf
' Define the service parameters
str = str + "doFileCopy=1" & vbcrlf
str = str + "dDocName=RemoteTestCheckin23" & vbcrlf
str = str + "dDocTitle=Test1" & vbcrlf
str = str + "dDocType=ADACCT" & vbcrlf
str = str + "dSecurityGroup=Public" & vbcrlf
str = str + "dDocAuthor=sysadmin" & vbcrlf
str = str + "dDocAccount=" & vbcrlf
str = str + "primaryFile:path=C:/inetpub/Scripts/query2.asp" & vbcrlf
str = str + "@end" & vbcrlf

Example 6–15 Executing the Service

To execute the service, call the executeCommand method.

' Execute the service
res=idccommand.executeCommand(str)

Example 6–16 Retrieving Results

In this example, the result of the CHECKIN_UNIVERSAL service call is formatted
HTML.

' Retrieve results
Response.Write(res)

6.3.2 IdcCommandUX Methods
This section describes the following IdcCommandUX methods:

■ "addExtraheadersForCommand" on page 6-23

■ "closeServerConnections" on page 6-24

■ "computeNativeFilePath" on page 6-24

■ "computeURL" on page 6-26

■ "computeWebFilePath" on page 6-28

■ "connectToServer" on page 6-29

■ "executeCommand" on page 6-30

■ "executeFileCommand" on page 6-31

■ "forwardRequest" on page 6-31

■ "getLastErrorMessage" on page 6-31

■ "initRemote" on page 6-32

6.3.2.1 addExtraheadersForCommand
This command adds extra HTTP-like headers to a command.

■ For security reasons, some parameters can only be passed in the headers.

Important: All parameters are required unless otherwise indicated.

COM Integration

6-24 Oracle Fusion Middleware Developer's Guide for Content Server

■ The most common use for this command is to set the values for EXTERNAL_ROLES
and EXTERNAL_ACCOUNTS in a request.

■ Values must be all on one string and separated by a carriage return and a line
feed.

Example
The following is an ASP example:

extraHeaders = "EXTERNAL_ROLES=contributor" _
+ vbcrlf _
+ "EXTERNAL_ACCOUNTS=my_account"

idcCmd.addExtraHeadersForCommand(extraHeaders)

6.3.2.2 closeServerConnections
Public Sub closeServerConnection()

Description
Closes the server connection.

■ This method does not have to be called, because the executeCommand method
automatically closes a connection after executing a service. It is provided only as a
convenience for managing the state of the connection.

Parameters
None

Output
■ Returns TRUE if the connection is closed.

■ Returns FALSE if the connection failed to close.

Example
This ASP example passes the result of the closeServerConnection method to a variable
and uses an if/else statement to return a connection status message:

sClosed = idcCmd.closeServerConnection
if sClosed then
Response.Write "Server connection closed"
else
Response.Write "Failed to close server connection"
end if

6.3.2.3 computeNativeFilePath
Public Function computeURL(Data As String, IsAbsolute As Boolean) As String

Description
HDA-only function.

Returns the URL of a content item as a string.

■ A relative or absolute URL can be supplied to the Content Server.

– When a relative URL is defined, the function evaluates the URL as a location
valid on the local server.

– For example:

COM Integration

Integration Methods 6-25

/domain/groups/Public/documents/FILE/doc.txt

– When an absolute URL is defined, the function returns the absolute URL path.

– For example:

http://server/domain/groups/Public/documents/FILE/doc.txt

■ To determine the values for the Content Server parameters (HttpRelativeWebRoot
and HttpServerAddress), you can reference the properties data returned from a
GET_DOC_CONFIG_INFO service call.

■ To determine the values for the required content item parameters (such as
dSecurityGroup and dDocType), you can reference the ResultSet returned from a
DOC_INFO or SEARCH_RESULTS service call.

– The DOC_INFO service can be used to specify previous revisions (DOC_INFO
returns a list of previous revision labels).

– The SEARCH_RESULTS service returns only enough data to specify the most
recent revision of a content item.

■ To return the URL for a specific revision and rendition, use the content item
revision label (dRevLabel) and the file extension (dWebExtension) entries. For
example:

dDocName=test10
dRevLabel=2
dWebExtension=pdf

■ To return the URL for the most recent revision, the content item revision label
(dRevLabel) entry can be omitted. For example, defining just the Content ID
(dDocName) and the file extension (dWebExtension) returns the most recent
revision:

dDocName=test11
dWebExtension=html

Parameters
■ Data: An HDA-formatted string that defines the content item:

– HttpRelativeWebRoot: The Web root directory as a relative path, such as
/stellent/. This entry is required for a relative URL, and is optional for an
absolute URL.

– HttpServerAddress: The domain name of the Content Server, such as
testserver17 or mycomputer.com. (The server address is specified as a partial
URL such as mycomputer.com rather than a full address such as
http://www.mycomputer.com/). This entry is required for an absolute URL, and
is optional for a relative URL.

– dSecurityGroup: The security group, such as Public or Secure.

– dDocType: The Type, such as ADACCT or FILES.

– dDocName: The Content ID, such as test10 or hr_0005467.

– dWebExtension: The file extension of the Web-viewable file, such as xml, html,
or txt.

– dDocAccount: The account for the content item. If accounts are enabled, this
parameter must be defined.

COM Integration

6-26 Oracle Fusion Middleware Developer's Guide for Content Server

– dRevLabel (optional): The revision label for the content item. If defined, the
specific revision will be referenced.

■ IsAbsolute: Set to TRUE (1) to define an absolute URL address.

Output
■ Returns a string that defines URL as the value of the string passed in as a

parameter. For example:

URL=http://server/domain/groups/public/documents/FILE/doc.txt

■ Returns an HDA string containing StatusCode and StatusMessage.

– If the command is successful, StatusCode is zero (0), and StatusMessage
is a login message ("You are logged in as sysadmin").

– If the command fails, StatusCode is negative (-1), and StatusMessage is
an error message.

– Returns FALSE if there is a connection failure.

Example
This is an example of an HDA-formatted string:

String str = "@Properties LocalData\n"+
"HttpServerAddress=testserver17\n"+
"HttpRelativeWebRoot=/domain/\n"+
"dDocAccount=mainaccount\n"+
"dSecurityGroup=Public\n"+
"dDocType=ADACCT\n"+
"dDocName=test11\n"+
"dWebExtension=html\n"+
"@end\n";

6.3.2.4 computeURL
Public Function computeURL(Data As String, IsAbsolute As Boolean) As String

Description
HDA-only function.

Returns the URL of a content item as a string.

■ A relative or absolute URL can be supplied to the Content Server.

– When a relative URL is defined, the function evaluates the URL as a location
valid on the local server.

– For example:

/domain/groups/Public/documents/FILE/doc.txt

– When an absolute URL is defined, the function returns the absolute URL path.

– For example:

http://server/domain/groups/Public/documents/FILE/doc.txt

Note: Do not confuse the Content ID (dDocName) with the internal
content item revision identifier (dID). The dID is a generated reference
to a specific revision of a content item.

COM Integration

Integration Methods 6-27

■ To determine the values for the Content Server parameters (HttpRelativeWebRoot
and HttpServerAddress), you can reference the properties data returned from a
GET_DOC_CONFIG_INFO service call.

■ To determine the values for the required content item parameters (such as
dSecurityGroup and dDocType), you can reference the ResultSet returned from a
DOC_INFO or SEARCH_RESULTS service call.

– The DOC_INFO service can be used to specify previous revisions (DOC_INFO
returns a list of previous revision labels).

– The SEARCH_RESULTS service returns only enough data to specify the most
recent revision of a content item.

■ To return the URL for a specific revision and rendition, use the content item
revision label (dRevLabel) and the file extension (dWebExtension) entries. For
example:

dDocName=test10
dRevLabel=2
dWebExtension=pdf

■ To return the URL for the most recent revision, the content item revision label
(dRevLabel) entry can be omitted. For example, defining just the Content ID
(dDocName) and the file extension (dWebExtension) returns the most recent
revision:

dDocName=test11
dWebExtension=html

Parameters
■ Data: An HDA-formatted string that defines the content item:

– HttpRelativeWebRoot: The Web root directory as a relative path, such as
/stellent/. This entry is required for a relative URL, and is optional for an
absolute URL.

– HttpServerAddress: The domain name of the Content Server, such as
testserver17 or mycomputer.com. (The server address is specified as a partial
URL such as mycomputer.com rather than a full address such as
http://www.mycomputer.com/). This entry is required for an absolute URL, and
is optional for a relative URL.

– dSecurityGroup: The security group, such as Public or Secure.

– dDocType: The Type, such as ADACCT or FILES.

– dDocName: The Content ID, such as test10 or hr_0005467.

– dWebExtension: The file extension of the Web-viewable file, such as xml, html,
or txt.

– dDocAccount: The account for the content item. If accounts are enabled, this
parameter must be defined.

– dRevLabel (optional): The revision label for the content item. If defined, the
specific revision will be referenced.

■ IsAbsolute: Set to TRUE (1) to define an absolute URL address.

COM Integration

6-28 Oracle Fusion Middleware Developer's Guide for Content Server

Output
■ Returns a string that defines URL as the value of the string passed in as a

parameter. For example:

URL=http://server/domain/groups/public/documents/FILE/doc.txt

■ Returns an HDA string containing StatusCode and StatusMessage.

– If the command is successful, StatusCode is zero (0), and StatusMessage
is a login message ("You are logged in as sysadmin").

– If the command fails, StatusCode is negative (-1), and StatusMessage is
an error message.

– Returns FALSE if there is a connection failure.

Example
This is an example of an HDA-formatted string:

String str = "@Properties LocalData\n"+
"HttpServerAddress=testserver17\n"+
"HttpRelativeWebRoot=/domain/\n"+
"dDocAccount=mainaccount\n"+
"dSecurityGroup=Public\n"+
"dDocType=ADACCT\n"+
"dDocName=test11\n"+
"dWebExtension=html\n"+
"@end\n";

6.3.2.5 computeWebFilePath
Public Function computeWebFilePath(Data As String) As String

Description
HDA-only function.

Returns the path of a Web-viewable file as a string.

■ This function is generally used for processing Web-viewable text files (such as
XML) to perform actions such as bulk file loading or retrieval.

■ Using computeWebFilePath instead of computeNativeFilePath provides the
advantage of needing only the Content ID (dDocName) rather than the specific
revision ID (dID) to return the most recent revision.

■ To determine the values for the required parameters (such as dSecurityGroup and
dDocType), you can reference the ResultSet returned from a DOC_INFO or
SEARCH_RESULTS service call.

– The DOC_INFO service can be used to specify previous revisions (DOC_INFO
returns a list of previous revision labels).

– The SEARCH_RESULTS service returns only enough data to specify the most
recent revision of a content item.

Note: Do not confuse the Content ID (dDocName) with the internal
content item revision identifier (dID). The dID is a generated reference
to a specific revision of a content item.

COM Integration

Integration Methods 6-29

Parameters
■ Data: An HDA-formatted string that defines the content item:

– dSecurityGroup: The security group, such as Public or Secure.

– dDocType: The content item Type, such as ADACCT or FILES.

– dDocName: The Content ID, such as test10 or hr_0005467.

– dWebExtension: The file extension of the Web-viewable file, such as xml, html,
or txt.

– dDocAccount: The account for the content item. If accounts are enabled, this
parameter must be defined.

Output
■ Returns a string that defines WebFilePath as the value of the string passed in as a

parameter. For example:

WebFilePath=http:\\testserver17.oracle.com\domain\groups\main\documents\test.xml

■ Returns an HDA string containing StatusCode and StatusMessage.

– If the command is successful, StatusCode is zero (0), and StatusMessage
is a login message ("You are logged in as sysadmin").

– If the command fails, StatusCode is negative (-1), and StatusMessage is
an error message.

– Returns FALSE if there is a connection failure.

Example
This is an example of an HDA-formatted string:

String str = "@Properties LocalData\n"+
"dDocAccount=mainaccount\n"+
"dSecurityGroup=Public\n"+
"dDocType=ADACCT\n"+
"dDocName=test11\n"+
"dWebExtension=xml\n"+
"@end\n";

6.3.2.6 connectToServer
Public Function connectToServer() As Boolean

Description
Establishes a connection to the server.

■ The connection is held open until a command is executed. After a command is
executed, the connection is closed automatically.

■ This method does not have to be called, because the executeCommand method
automatically opens a connection to execute a service. It is provided only as a
convenience for managing the state of the connection.

Note: Do not confuse the Content ID (dDocName) with the internal
content item revision identifier (dID). The dID is a generated reference
to a specific revision of a content item.

COM Integration

6-30 Oracle Fusion Middleware Developer's Guide for Content Server

Parameters
None

Output
■ Returns TRUE if the connection is opened.

■ Returns FALSE if there is a connection failure.

Example
This ASP example passes the result of the connectToServer method to a variable and
uses an if/else statement to return a connection status message:

sConnect = idcCmd.connectToServer
if sConnect then
Response.Write "Connected"
else
Response.Write "Not Connected"
end if

6.3.2.7 executeCommand
Public Sub executeCommand(Data As String)

Description
Executes a Content Server service.

■ This method evaluates whether a connection has already been established with a
connectToServer call. If a connection exists, it will use the open connection. If a
connection does not exist, it will establish a connection.

■ On completion of the command, the connection will be closed.

Parameters
■ Data: An HDA-formatted string that defines the IdcService command and any

service parameters. For example:

@Properties LocalData
IdcService=GET_SEARCH_RESULTS
ResultCount=5
SortField=dInDate
SortOrder=Desc
QueryText=dDocType=research
@end@

This can also be a SOAP-formatted message as shown in the previous example
("SOAP Example" on page 6-16). See also "initRemote" on page 6-32.

Output
■ Returns a string representing an HDA file that holds the original request and the

results.

■ Returns an HDA string containing StatusCode and StatusMessage.

– If the command is successful, StatusCode is zero (0), and StatusMessage
is a login message ("You are logged in as sysadmin").

– If the command fails, StatusCode is negative (-1), and StatusMessage is
an error message.

– Returns FALSE if there is a connection failure.

COM Integration

Integration Methods 6-31

■ The return string is SOAP-formatted XML if a SOAP request was sent.

Example
This ASP example executes the command specified in the data string defined by the
cmd variable:

results = idcCmd.executeCommand(cmd)

6.3.2.8 executeFileCommand
executeFileCommand (requestString)

Description
This function is used to execute a service request, then pipe the raw response to the
client. This command is identical to executeCommand but can only be called on an
Active Server Page (ASP).

■ The response from the Content Server is redirected back to the client's browser
(this is different from the response through executeCommand, in which the
response is given as a string which can then be manipulated on the ASP).

■ This is useful for GET_FILE and similar services in which you need to transfer
binary files from the Content Server to a client browser through an ASP.

■ This function returns extra headers unless the request parameters are passed as
environment variables.

■ requestString is the name of the service request.

■ See "executeCommand" on page 6-30 for more information.

Parameters
None

6.3.2.9 forwardRequest
forwardRequest()

Description
This function is used to forward a multipart form post to the Content Server. This is
useful for executing checkins.

Parameters
None

6.3.2.10 getLastErrorMessage
getLastErrorMessage()

Description
This method retrieves the specific error details for a communication or configuration
error. For example, if you do not put in the correct host name for making a connection,
this method returns the connection error. It does not return a value if the error is
returned by the Content Server as part of the return value for a request.

Parameters
None

COM Integration

6-32 Oracle Fusion Middleware Developer's Guide for Content Server

Example
This example creates an object and initializes a connection to the server.

Set idcCmd = Server.CreateObject("Idc.CommandUX")

x = idcCmd.init("sysadmin", "c:\domain\bin")
If x = false Then
y = idcCmd.getLastErrorMessage()
Response.Write(y)
End If

6.3.2.11 initRemote
initRemote(HttpWebRoot, idcReference, idcUser, isSoap)

Description
This function initializes the module to connect to a Content Server. Note that you must
first declare idcCmd.

Required Parameters
■ HttpWebRoot: The IdocScript value for HttpWebRoot.

■ idcReference: A string containing information on how to connect to the Content
Server in the form socket:hostname:port. This is typically
socket:localhost:4444. The hostname should be identical to
IntradocServerHostName and port identical to IntradocServerPort.

■ idcUser: The user you are connecting as.

■ isSoap: A Boolean value indicating if the request is in SOAP XML format or HDA
format. If this is set to TRUE, it indicates the SOAP XML format.

Example
Dim idcCmd
idcCmd.initRemote("domain", "socket:test204:4444", "sysadmin", "false")

6.3.3 OCX Interface
The IntradocClient OCX component is used within a Windows Visual Basic
development environment to gain access to the content and content management
functions within Content Server. The OCX integration is designed to call services in a
visual development environment, or to connect to a remote Content Server.

The IntradocClient OCX component provides functionality that you can access with a
method call. Methods perform actions and often return results. Information is passed to
methods using parameters. Some functions do not take parameters; some functions
take one parameter; some take several.

The IntradocClient OCX component requires a username and password to execute the
commands. The user must have the appropriate permissions to execute the
commands. Some commands will require an administrative access level, other
commands may require only write permission.

Outside of the init and connection managing methods, all methods use the
serialized HDA format for communication. The returned serialized HDA format string
contains information about the success or failure of the command. The StatusCode
will be negative if a failure occurs, and StatusMessage indicates the error.

COM Integration

Integration Methods 6-33

See the Oracle Fusion Middleware Services Reference Guide for Universal Content
Management for additional information. This guide also contains information about the
IntradocClient OCX API specifications listing the properties, methods, and events.

6.3.4 IdcClientOCX Component
An Object Linking and Embedding Control Extension (OCX) control is provided for
connecting to a remote Content Server.and executing Content Server services. The
IdcClient OCX control is used within a Windows Visual Basic development
environment to gain access to the content and content management functions within
Content Server.

This section provides a description of the IdcClient OCX control, setup instructions,
and lists the events, methods, and properties. The IdcClient.ocx control is used to
connect to a remote Content Server and perform typical server functions.

 This section covers the following topics:

■ "IdcClient OCX Description" on page 6-33

■ "IdcClient OCX Control Setup" on page 6-35

■ "Events, Methods, and Properties" on page 6-34

6.3.4.1 IdcClient OCX Description
This section provides a general description of the IdcClient OCX control and basic
information on events, methods, and properties. The IdcClient OCX interface is also
discussed.

6.3.4.1.1 General Description IdcClient is an ActiveX control that allows a program to
perform actions such as executing a service and retrieving file path information. The
IdcClient control is also a wrapper for the Microsoft Internet Explorer browser.

The IdcClient OCX control is designed to use the Unicode standard and in most cases
exchanges data with the Content Server in UTF-8 format. Unicode uses two bytes (16
bits) of storage per character and can represent characters used in a wide range of
languages (for example, English, Japanese, Arabic). Since English language ASCII
(American Standard Code for Information Interchange) characters only require one
byte (8 bits), when an ASCII character is represented the upper byte of each Unicode
character is zero.

See the Unicode Consortium on the Web for additional information about the Unicode
standard at http://www.unicode.org/.

In most cases, the methods use the serialized HDA format for communication. A
serialized HDA format is a Java method used for communication. The returned

Note: A Visual Basic or Visual C++ development environment is
required to use the IdcClient OCX component.

Important: IdcClient OCX is built atop the Microsoft Layer for
Unicode, which allows Unicode applications to run on Win9x
platforms. When distributing the IdcClient OCX Control on 9x
platforms, the "unicows.dll" must also be distributed. This companion
DLL cannot be distributed on Windows-based systems.

COM Integration

6-34 Oracle Fusion Middleware Developer's Guide for Content Server

serialized HDA format string contains information about the success or failure of the
command.

The IdcClient OCX control provides functionality that can be performed with a
method call. Methods perform actions and often return results. Information is passed
to methods using parameters. Some functions do not take parameters; some functions
take one parameter; some take several. For example, a function with two parameters
passed as strings would use this format:

Function(Parameter As String, Parameter As String) As String

■ IdcClient OCX enables users to write client applications to execute services. The
OCX control takes name/value pairs containing commands and parameters and
calls the specified services. Execution results are passed back to the calling
program.

■ IdcClient OCX requires a username and password to execute the commands. The
user must have the appropriate permissions to execute the commands. Some
commands will require an administrative access level, other commands may
require only write permission.

For more information, see Oracle Fusion Middleware Services Reference Guide for
Universal Content Management.

6.3.4.1.2 Events, Methods, and Properties The IdcClient OCX control is used to connect to
a remote Content Server and perform server functions. This section provides a basic
overview on Visual Basic events, methods, and properties.

OCX Events
Events are executed when the user or server performs an action.

For example:

■ The IntradocBrowserPost event executes every time a user submits a form
from within a browser.

■ The IntradocServerResponse event executes after the server completes a
requested action.

See "Events, Methods, and Properties" on page 6-34 for additional information.

Example 6–17 OCX Methods

The Visual Basic Standard Controls provide methods that are common to every Visual
Basic development environment. In addition, the IdcClient OCX control provides
methods that are private and unique to this specific control. These methods are used to
perform or initiate an action rather than setting a characteristic.

For example:

■ The AboutBox() method launches the About box containing product version
information.

■ The GoCheckinPage method checks in a new content item or a content item
revision.

See "Events, Methods, and Properties" on page 6-34 for additional information.

Example 6–18 OCX Properties

COM Integration

Integration Methods 6-35

Properties describe or format an object and can be modified with code or by using the
property window in the Visual Basic development environment. Properties describe
the basic characteristic of an object.

For example:

■ The UserName property provides the assigned user name.

■ The WorkingDir property specifies the location where downloaded files are
placed.

See "Events, Methods, and Properties" on page 6-34 for additional information.

6.3.4.1.3 IdcClient OCX Interface The IdcClient OCX control is used within a Windows
Visual Basic development environment to gain access to the content and content
management functions within Content Server. The OCX integration is designed to call
services in a visual development environment, or to connect to a remote Content
Server.

In most cases, methods use the serialized HDA format for communication. The
returned serialized HDA format string contains information about the success or
failure of the command. The StatusCode will be negative if a failure occurs, and
StatusMessage will indicate the error. If the returned HDA does not contain a
StatusCode parameter, the service call succeeded.

6.3.4.2 IdcClient OCX Control Setup
This section provides a the steps required to setup the IdcClient OCX component and
also provides information on creating a visual interface in the Microsoft Visual Basic
development environment.

6.3.4.2.1 Component Setup Follow these steps to set up the IdcClient OCX component
in the Microsoft Visual Basic development environment:

1. Create a new project.

2. Select Project then select Components.

3. Browse to the IdcClient.ocx file on your system and click Open.

The IdcClient module is added to the Component Controls list.

4. Ensure that the check box for IdcClient ActiveX Control module is enabled and click
OK.

The IdcClient OCX control is placed in the list of controls.

5. (Optional) You can use the Visual Basic development environment to build your
own visual interface or follow the steps provided in "Creating a Visual Interface"
on page 6-35 to build a basic visual interface.

6.3.4.2.2 Creating a Visual Interface

Follow these steps to build a basic visual interface:

Note: It is assumed that a Visual Basic project has been created and
the IdcClient OCX control has been placed in the list of controls. See
"Component Setup" on page 6-35 for additional information.

COM Integration

6-36 Oracle Fusion Middleware Developer's Guide for Content Server

Figure 6–1 OCX control drawn on a Visual Basic form

1. Select the control and draw it on the Visual Basic form.

2. From the drop-down list of the Properties Window, select the IdcClient OCX
control (if the Properties Window is not currently displayed select View then
select Properties Window from the main menu).

3. Rename the IdcClient OCX control IdcClientCtrl.

4. Define the HostCgiUrl to reference the iss_idc_cgi.dll for your particular instance.

For example:

http://testserver/intradoc-cgi/iss_idc_cgi.dll

COM Integration

Integration Methods 6-37

Figure 6–2 Edited IdcClient Properties

5. On the form, draw a textbox and name it CgiUrl.

6. For the Text field, enter the HostCgiUrl value as the text to be displayed.

For example:

http://testserver/intradoc-cgi/iss_idc_cgi.dll

COM Integration

6-38 Oracle Fusion Middleware Developer's Guide for Content Server

Figure 6–3 Edited CgiUrl TextBox properties

7. On the form, draw a textbox and name it Command.

8. Clear the entry for the Text field (leave blank) and set MultiLine to true.

Figure 6–4 Edited Command TextBox properties

9. On the form, draw a textbox and name it Response.

COM Integration

Integration Methods 6-39

10. Clear the entry for the Text field (leave blank).

Figure 6–5 Edited Response TextBox properties

11. On the form, draw a button and name it SendPostCommand.

12. For the Caption field, enter "Send Post Command" as the text to be displayed.

COM Integration

6-40 Oracle Fusion Middleware Developer's Guide for Content Server

Figure 6–6 Edited SendPostCommand CommandButton properties.

13. On the form, select View then select Code.

14. Select SendPostCommand and then click from the drop-down lists and modify
the code to perform these actions.

■ Set the Host Cgi Url

■ Issue the command

■ (Optional) Replace LF with CRLF to make the presentation in the edit control
more readable.

■ Display the response

For example:

Dim R As String
IdcClientCtrl.HostCgiUrl = CgiUrl.Text
R = IdcClientCtrl.1.SendPostCommand(Command.Text)
R = Replace(R, vbLf, vbCrLf
Response.Text = R

COM Integration

Integration Methods 6-41

Figure 6–7 Edited SendPostCommand_Click code

15. Select Form and then Load from the drop-down lists and add the following lines
to set the login prompt for the Content Server:

IdcClientCtrl.UseBrowserLoginPrompt = True
IdcClientCtrl.UseProgressDialog = True

Figure 6–8 Edited Form_Load code

16. (Optional) Add appropriate descriptive labels such as Cgi Url, Command, and
Response.

COM Integration

6-42 Oracle Fusion Middleware Developer's Guide for Content Server

Figure 6–9 Visual interface with descriptive label

17. Select Run then select Start to test the visual interface.

Figure 6–10 Completed visual interface

18. Enter a formatted command in the Command field.

For example, this command adds a user:

COM Integration

Integration Methods 6-43

@Properties LocalData
IdcService=ADD_USER
dName=user99
dUserAuthType=Local
@end

See the Oracle Fusion Middleware Services References Guide for additional
information about the ADD_USER service.

Figure 6–11 Visual interface with defined command.

19. Click the Send Post Command button to execute the command. The returned
results are displayed in the Response field.

COM Integration

6-44 Oracle Fusion Middleware Developer's Guide for Content Server

Figure 6–12 Visual interface with returned results

Verify the Command
1. In a Web browser, login to the Content Server as the administrator.

2. Select Administration then select Admin Applets.

3. Click the User Admin link. The applet launches and displays the added user (for
example, user99).

6.3.5 IdcClient Events
Events are executed when the user or server performs an action. The following are
IdcClient OCX Events:

■ "IIntradocBeforeDownload" on page 6-44

■ "IIntradocBrowserPost" on page 6-45

■ "IntradocBrowserStateChange" on page 6-45

■ "IIntradocRequestProgress" on page 6-45

■ "IntradocServerResponse" on page 6-45

6.3.5.1 IIntradocBeforeDownload
Executes before a file is downloaded.

■ Initiates the server actions and updates required before a download.

Parameters
The event passes these parameters:

■ ByVal params As String

■ cancelDownload As Boolean

COM Integration

Integration Methods 6-45

6.3.5.2 IIntradocBrowserPost
Executes every time a form is submitted from within a browser.

Parameters
The event passes these parameters:

■ ByVal url As String

■ ByVal params As String

■ cancelPost As Boolean

6.3.5.3 IntradocBrowserStateChange
Executes whenever the browser state changes.

Parameters
The event passes these parameters:

■ ByVal browserStateItem As String

■ ByVal enabled As Boolean

6.3.5.4 IIntradocRequestProgress
Executes a request for a progress report to be sent from the server. This event only
occurs after a method has been called.

Parameters
The event passes these parameters:

■ ByVal statusData As String

■ ByVal isDone As Boolean

6.3.5.5 IntradocServerResponse
Executes after the server completes a requested action. For example, after a file has
been downloaded. This event handles HDA encoded data that is a response from the
server. This event only occurs when an action is performed in the browser.

Parameters
The event passes one parameter:

■ ByVal response As String

6.3.6 IdcClient Methods
The following IdcClient OCX Methods are available:

■ "AboutBox" on page 6-46

■ "Back" on page 6-47

■ "CancelRequest" on page 6-47*

■ "DoCheckoutLatestRev" on page 6-47

■ "DownloadFile" on page 6-48

■ "DownloadNativeFile" on page 6-48

COM Integration

6-46 Oracle Fusion Middleware Developer's Guide for Content Server

■ "Drag" on page 6-49

■ "EditDocInfoLatestRev" on page 6-49

■ "Forward" on page 6-49

■ "GoCheckinPage" on page 6-50

■ "Home" on page 6-50

■ "InitiateFileDownload" on page 6-51*

■ "InitiatePostCommand" on page 6-51*

■ "Move" on page 6-52

■ "Navigate" on page 6-52

■ "NavigateCgiPage" on page 6-52

■ "Refresh Browser" on page 6-52

■ "SendCommand" on page 6-53*

■ "SendPostCommand" on page 6-53*

■ "SetFocus" on page 6-53

■ "Show DMS" on page 6-54

■ "ShowDocInfoLatestRev" on page 6-54

■ "ShowWhatsThis" on page 6-54

■ "StartSearch" on page 6-54

■ "Stop" on page 6-55

■ "UndoCheckout" on page 6-55

■ "ViewDocInfo" on page 6-55

■ "ViewDocInfoLatestRev" on page 6-56

■ "ZOrder" on page 6-56

Methods marked with an asterisk (*) are ones which are not related to browser activity
and which return a value.

6.3.6.1 AboutBox
Sub AboutBox()

Description
Launches the About box containing product version information.

■ This method displays the product About box.

■ The method returns FALSE if the call cannot be executed.

Parameters
None

Important: All parameters are required unless otherwise indicated.

COM Integration

Integration Methods 6-47

6.3.6.2 Back
Sub Back()

Description
Displays the previous HTML page.

■ Returns the user to the previous screen.

■ The method retrieves the previous HTML page from cached information for
display to the user.

Parameters
None

6.3.6.3 CancelRequest
Function CancelRequest() As Boolean

Description
This method cancels the currently active request. Returns FALSE if the function is
unable to cancel the request or if there is no request currently active.

Parameters
None

Output
Returns a Boolean value:

■ Returns TRUE if request is canceled.

■ Returns FALSE if the cancel request is not performed.

6.3.6.4 DoCheckoutLatestRev
Sub DoCheckoutLatestRev(docName As String, curID As String)

Description
Checks out or locks the latest content item revision.

■ Given a content item name and the version label, the method checks out the latest
content item revision.

■ Executes the IntradocServerResponse event. The event is executed before the
method occurs. See "IdcClient Events" on page 6-44 for details.

This function returns the following:

■ Serialized HDA containing dID and dDocName.

■ FALSE if the latest revision cannot be checked out or cannot be found in the
system.

■ The data that was passed in as parameters.

Note: The curID is the content item version label, not the generated
content item revision ID.

COM Integration

6-48 Oracle Fusion Middleware Developer's Guide for Content Server

Parameters
■ docName: The user-assigned content item name.

■ curID: The unique identifier for the latest revision. Optional.

6.3.6.5 DownloadFile
Function DownloadFile(command As String, filename As String) As String

Description
Downloads the defined file.

■ Given a currently-associated command and the file type, this method performs a
file download of the post-conversion file (compare DownloadNativeFile).

■ Executes the IntradocBeforeDownload event. The event is executed before the
method occurs. See "IdcClient Events" on page 6-44 for details.

This function returns the following:

■ Serialized HDA containing the status code and status method.

■ The data that was passed in as parameters.

■ FALSE if it is unable to download the specified file.

Parameters
■ command: The currently-associated command.

■ filename: The file format. This is the file type such as PDF, HTM, or other
supported format.

6.3.6.6 DownloadNativeFile
Function DownloadNativeFile(id As String, docName As String, filename As String) As String

Description
Downloads the defined native file.

■ Given a content item revision ID, a content item name, and a file type, this method
performs a file download of the native file (compare DownloadFile).

■ Executes the IntradocBeforeDownload event. The event is executed before the
method occurs. See "IdcClient Events" on page 6-44 for details.

This function returns the following:

■ Serialized HDA containing dID and dDocName.

■ The data that was passed in as parameters.

■ FALSE if it is unable to download the specified file.

Parameters
■ id: The unique identifier for the latest revision.

■ docName: The user-assigned content item name.

Note: The id is the generated content item revision ID, not the
content item version label.

COM Integration

Integration Methods 6-49

■ filename: The file format. This is the file type such as DOC, RTF, or any other
supported format.

6.3.6.7 Drag
Sub Drag([nAction])

Description
Begins, ends, or cancels a drag operation.

■ The Drag method is handled the same as a Standard Control implementation.

■ Refer to a Visual Basic API reference for additional information.

Parameters
■ nAction: Indicates the action to perform. If you omit nAction, nAction is set to

1.

The settings for the Drag method are:

■ 0: Cancel drag operation; restore original position of control.

■ 1: (Default) Begin dragging the control.

■ 2: End dragging, that is, drop the control.

6.3.6.8 EditDocInfoLatestRev
Sub EditDocInfoLatestRev(docName As String, curID As String, activateAction As String)

Description
Edits the content item information for the latest revision.

■ ODMA related.

■ Given a content item name, the version label, and the currently-active requested
action, the method edits the content item information for the latest revision.

■ The function returns FALSE if the content item information for the latest revision
cannot be edited or cannot be found in the system.

Parameters
■ curID: The unique identifier for the latest revision.

■ activateAction: Passed to ODMActivate. This can be used as Idoc Script. Optional.

■ docName: The user-assigned content item name. Optional.

6.3.6.9 Forward
Sub Forward()

Description
Displays the next HTML page.

■ Moves the user to the next screen.

Note: The curID is the content item version label, not the generated
content item revision ID.

COM Integration

6-50 Oracle Fusion Middleware Developer's Guide for Content Server

■ This method retrieves cached information for the next HTML page for display to
the user.

Parameters
None

6.3.6.10 GoCheckinPage
Sub GoCheckinPage(id As String, docName As String, isNew As Boolean, params As String)

Description
Checks in a new content item or a content item revision.

■ Given the content item revision ID and the content item name, the function checks
in a new content item or a content item revision.

■ This method opens the content item check-in page and enters the unique content
item identifier, user-assigned content item name, and any assigned content item
parameters into the associated text fields. It is also specified whether this is a new
content item or a revision.

Output
This function returns the following:

■ FALSE if it is unable to check in the specified file.

■ Serialized HDA containing dID and dDocName.

■ The data that was passed in as parameters.

Parameters (all optional)
■ id: The unique identifier for the latest revision.

■ docName: The user-assigned content item name.

■ IsNew: Defines whether the content item to be checked in is a new content item or
a revision.

– If TRUE, a new unique content item version label is assigned.

– Default is TRUE.

■ params: The parameters that pre-fill the Check In page.

6.3.6.11 Home
Sub Home()

Description
Returns the user to the defined home page.

■ Moves the user to the home screen.

■ Executes an HTML page request and displays the defined home page to the user.

Note: The id is the generated content item revision ID, not the
content item version label.

COM Integration

Integration Methods 6-51

Parameters
None

6.3.6.12 InitiateFileDownload
Function InitiateFileDownload(command As String, filename As String) As String

Description
Initiates a file download.

■ Given the currently-associated command and the file type, the function initiates a
file download. This method initiates a file download of a specific rendition of a
content item, the latest revision, or the latest released revision.

■ Executes the IntradocServerResponse event. The event is executed before the
method occurs.

■ See "IdcClient Events" on page 6-44 for details.

Parameters
■ command: The currently-associated command.

■ filename: The file format. This is the file type such as PDF, HTM, or other
supported format.

Output
■ Returns serialized HDA containing the requested information.

■ Returns the data that was passed in as parameters.

6.3.6.13 InitiatePostCommand
Function InitiatePostCommand(postData As String) As String

Description
Initiates a post command.

■ Initiates a service call. Given assigned post data, this method initiates a post
command.

■ Executes the IntradocServerResponse event. The event is executed before the
method occurs. See "IdcClient Events" on page 6-44 for details.

Parameters
■ postData: The serialized HDA containing the service command and any necessary

service parameters.

Output
■ Returns serialized HDA containing the requested information.

■ Returns StatusCode and StatusMessage.

– The StatusCode will be negative if a failure occurs, and StatusMessage will
indicate the error.

– If the returned HDA does not contain a StatusCode parameter, the service call
succeeded.

COM Integration

6-52 Oracle Fusion Middleware Developer's Guide for Content Server

6.3.6.14 Move
Sub Move(Left As Single, [Top], [Width], [Height])

Description
Moves an object.

■ The Move method is handled the same as a Standard Control implementation.

■ Refer to a Visual Basic API reference for additional information.

Parameters
■ nLeft: Specifies the horizontal coordinate for the left edge of the object. This is a

single-precision value.

■ nTop: Specifies the vertical coordinate for the top edge of the object. This is a
single-precision value.

■ nWidth: Specifies the new width of the object. This is a single-precision value.

■ nHeight: Specifies the new height of the object. This is a single-precision value.

6.3.6.15 Navigate
Sub Navigate(url As String

Description
Computes the URL path.

■ Given a complete URL, this method computes the URL from the serialized HDA
and returns the value as a string.

This function returns the following:

■ Serialized HDA containing the requested information.

■ The data that was passed in as parameters.

Parameters
■ url: The complete URL path.

6.3.6.16 NavigateCgiPage
Sub NavigateCgiPage(params As String)

Description
Computes the CGI path.

■ Given defined content item parameters, this method computes the CGI path from
the serialized HDA and returns the value as a string.

Parameters
■ params: The assigned content item parameters.

6.3.6.17 Refresh Browser

Description
Refreshes the browser.

■ This method refreshes the Web browser and updates dynamic information.

COM Integration

Integration Methods 6-53

Parameters
None

6.3.6.18 SendCommand
Function SendCommand(params As String) As String

Description
Issues a service request to the Content Server.

■ Given defined content item parameters, the function executes a service from the
Content Server related to content item handling.

Parameters
■ params: The CGI URL encoded parameters.

Output
■ Returns serialized HDA containing the requested information.

■ Returns the data that was passed in as parameters.

6.3.6.19 SendPostCommand
Function SendPostCommand(postData As String) As String

Description
Sends a post command.

■ Executes a service call.

■ Executes the IntradocBrowserPost event. The event is executed before the
method occurs. See "IdcClient Events" on page 6-44 for details.

Parameters
■ postData: The serialized HDA containing the service command and any necessary

service parameters.

Output
■ Returns serialized HDA containing the requested information.

■ Returns StatusCode and StatusMessage.

– The StatusCode will be negative if a failure occurs, and StatusMessage
will indicate the error.

– If the returned HDA does not contain a StatusCode parameter, the service call
succeeded.

6.3.6.20 SetFocus
Sub SetFocus()

Description
Assigns the focus to a control.

■ The SetFocus method is handled the same as a Standard Control
implementation.

■ Refer to a Visual Basic API reference for additional information.

COM Integration

6-54 Oracle Fusion Middleware Developer's Guide for Content Server

Parameters
None

6.3.6.21 Show DMS
Sub ShowDMS()

Description
Opens the HTML page associated with the Content Manager.

■ ODMA related.

■ Displays the Content Manager access page in a browser.

Parameters
None

6.3.6.22 ShowDocInfoLatestRev
Sub ShowDocInfoLatestRev(docName As String, curID As String, activateAction As String)

Description
Displays the content item information for the latest revision.

Parameters
■ docName: The user-assigned content item name.

■ curID: The unique identifier for the latest revision. Optional.

■ activateAction: The currently-active requested action. Optional.

6.3.6.23 ShowWhatsThis
Sub ShowWhatsThis()

Description
Displays the What's This Help topic specified for an object with the WhatsThisHelpID
property.

■ The ShowWhatsThis method is handled the same as a Standard Control
implementation.

■ Refer to a Visual Basic API reference for additional information.

Parameters
■ Object: Specifies the object for which the What's This Help topic is displayed.

6.3.6.24 StartSearch
Sub StartSearch()

Description
Displays the query page in the browser control.

Note: The curID is the content item version label, not the generated
content item revision ID.

COM Integration

Integration Methods 6-55

■ Preforms browser manipulation.

Parameters
None

6.3.6.25 Stop
Sub Stop()

Description
Stops the browser.

■ This method stops or cancels the loading of information in the browser.

Parameters
None

6.3.6.26 UndoCheckout
Sub UndoCheckout(docName As String, curID As String)

Description
This service reverses a content item checkout.

■ Given a content item name and a version label, this service attempts to locate the
content item in the system and undo the check out. The service fails if the content
item does not exist in the system, if the content item is not checked out or the user
does not have sufficient privilege to undo the checkout.

■ Executes the IntradocServerResponse event. The event is executed before
the method occurs.

■ See "IdcClient Events" on page 6-44 for details.

Parameters
■ curID: The unique identifier for the latest revision.

■ docName: The user-assigned content item name. Optional.

6.3.6.27 ViewDocInfo
Sub ViewDocInfo(id As String)

Description
Navigates to the content item information page and displays content item information
in a browser.

■ Performs browser manipulation.

■ Given a content item revision ID, the method displays content item information in
a browser.

Note: The curID is the content item version label, not the generated
content item revision ID.

COM Integration

6-56 Oracle Fusion Middleware Developer's Guide for Content Server

Parameters
■ id: The unique identifier for the latest revision.

6.3.6.28 ViewDocInfoLatestRev
Sub ViewDocInfoLatestRev(docName As String, curID As String)

Description
Navigates to the content item information page and displays content item information
for the latest revision.

■ Given a content item name and a version label, the method displays the content
item information for the latest revision.

This function returns the following:

■ Serialized HDA containing dID and dDocName.

■ The data that was passed in as parameters.

Parameters
■ docName: The user assigned content item name.

■ curID: The unique identifier for the latest revision.

6.3.6.29 ZOrder
Sub ZOrder([Position])

Description
Places a specified form or control at the front or back of the z-order within its
graphical level.

■ The ZOrder method is handled the same as a Standard Control implementation.

■ Refer to a Visual Basic API reference for additional information.

Parameters
■ nOrder: Specifies an integer indicating the position of the object relative to other

objects. If you omit nOrder, the setting is 0.

The settings for the ZOrder method are:

■ 0: (Default) The object is positioned at the front of the z-order.

■ 1: The object is positioned at the back of the z-order.

Note: The id is the generated content item revision ID, not the
content item version label.

Note: The curID is the content item version label, not the generated
content item revision ID.

COM Integration

Integration Methods 6-57

6.3.7 IdcClient Properties
Each data item or "attribute" is implemented as a "Property" in Visual Basic. Properties
are exposed through the Public Interface of an object within the Visual Basic
development environment. These attributes can be used to further describe elements.

These are the IdcClient OCX Properties:

■ "ClientControlledContextValue" on page 6-57

■ "HostCgiUrl" on page 6-57

■ "Password" on page 6-57

■ "UseBrowserLoginPrompt" on page 6-57

■ "UseProgressDialog" on page 6-57

■ "UserName" on page 6-58

■ "Working Directory" on page 6-58

6.3.7.1 ClientControlledContextValue
Provides the user-supplied context value. This value becomes available to Idoc Script
as the variable ClientControlled in any Web page delivered by the Content
Server.

■ Returns the value as a string.

■ Takes no parameters.

6.3.7.2 HostCgiUrl
Provides the complete URL path of the host CGI bin.

■ Returns the value as a string.

■ Takes no parameters.

6.3.7.3 Password
Provides the assigned user password.

■ Returns the value as a string.

■ Takes no parameters.

6.3.7.4 UseBrowserLoginPrompt
Allows the use of a browser login prompt. Defines whether a dialog box for user
authentication will display.

■ If set to TRUE, control will open a dialog box for user authentication

■ Default is TRUE.

Returns a Boolean value:

■ Returns TRUE if the login was successful.

■ Returns FALSE if the login was denied.

6.3.7.5 UseProgressDialog
Allows the use of a user progress dialog. Defines whether a dialog box for user
authentication will display.

COM Integration

6-58 Oracle Fusion Middleware Developer's Guide for Content Server

■ If set to TRUE, control will open a dialog box for user progress.

■ Default is TRUE.

Returns a Boolean value:

■ Returns TRUE if the action was completed.

■ Returns FALSE if the action failed.

6.3.7.6 UserName
Provides the assigned user name.

Returns the value as a string.

Takes no parameters.

6.3.7.7 Working Directory
Specifies the working directory as a full path. This is the location where downloaded
files are placed.

■ Returns the value as a string.

■ Takes no parameters.

6.3.8 ODMA Integration
The Open Document Management Application (ODMA) is a standard API used to
interface between desktop applications and file management software. The ODMA
integration for Content Server is available with Desktop, a separate product. Use the
ODMA-integration products to gain access to the content and content management
functions within Content Server (for ODMA-compliant desktop applications).

You can publish files to your Web repository directly from any ODMA-compliant
application, such as Microsoft Word, Corel WordPerfect, and Adobe FrameMaker.
With the Web centric adoption of ODMA, you can check in and publish information
directly to the Web. This is a significant advancement over traditional ODMA
client/server implementations, where information is published first to a server and is
not immediately available on the Web for consumption.

For more information, refer to the ODMA or ODMA/FrameMaker online help.

6.3.8.1 ODMA Client
The ODMA Client is a separate product and does not ship with the core product. It is
used to check in and publish information directly to the Web from your desktop
applications. ODMA Client surpasses traditional ODMA client–server models, which
publish information to a server and not immediately to the Web for consumption. You
can use ODMA Client from within your desktop application to perform many tasks
which interact with Content Server, for example:

■ Save a file and immediately check it into the Content Server.

■ Save a file to check in later.

■ Check a file out of the Content Server.

■ Update a file's metadata (content information).

■ Save the file to your local file system and bypass the ODMA Client system.

RIDC Integration

Integration Methods 6-59

6.3.8.2 ODMA Interfaces
These ODMA Interfaces are available:

■ ODMA Client Interface: The Select Document screen with the Recent Files option
selected displays a list of files that you recently used through ODMA. This screen
is displayed instead of the typical Open dialog box. If a file does not display on
this screen, you can search for it in the Content Server or the local file system.

■ ODMA Desktop Shell Interface: The Client Desktop Shell provides "drag and
drop" check-in functionality, and access to the ODMA Client - Select Document
screen from outside of your desktop application. Through the Desktop Shell, you
can:

– Select a file from your desktop or a Windows Explorer window and drag it to
the Desktop Shell to check it into the Content Server.

– Select and open a file from the Recent Files list or from the Content Server.

■ Content Server Interface with ODMA: You can open and check out an ODMA
file directly from the Content Server Content Information page. When you open a
file from the Content Server, it opens in its native application so you can edit it
and quickly check the file back into the Content Server.

6.4 RIDC Integration
Remote Intradoc Client (RIDC) provides a thin communication API for
communication with Content Server. This API removes data abstractions to the
content server while still providing a wrapper to handle connection pooling, security,
and protocol specifics. If you want to use a native Java API, then RIDC is
recommended.

Key features of RIDC include:

■ Support is provided for Intradoc socket-based communication and the HTTP
protocol.

■ Client configuration parameters include setting the socket timeouts, connection
pool size, and so forth.

■ All calls to RIDC require some user identity for authentication. For Intradoc URLs,
no credentials are required because the request is trusted between the content
server and the client. For HTTP URLs, the context requires credentials.

■ To invoke a service, use the ServiceRequest object, which can be obtained from the
client.

■ The RIDC client pools connections, which requires that the caller of the code close
resources when done with a response.

■ Streams are sent to the content server via the TransferStream interface.

■ The RIDC objects follow the standard Java Collection paradigms, which makes
them extremely easy to consume from a JSP/JSPX page.

■ Binders can be reused among multiple requests.

Note: You can also open and check out a file from within an
ODMA-compliant application, and you can open a copy of a file
instead of checking it out. See the ODMA Online Help for more
information.

JSP Integration

6-60 Oracle Fusion Middleware Developer's Guide for Content Server

■ RIDC allows Secure Socket Layer (SSL) communication with Content Server.

For details, see Oracle Fusion Middleware Developer's Guide for Remote Intradoc Client for
Oracle Enterprise Content Management Suite.

6.5 JSP Integration
You can access Content Server core functionality from a Java Server Page to deliver
forms and custom pages using any of these methods:

■ Through the JSP page execution functionality using the built in Apache Jakarta
Tomcat Server.

■ Through a separate product, Content Integration Suite. For more information, see
"Java 2 Enterprise Edition Integration (J2EE)" on page 6-62.

This section covers the following topics:

■ "JSP Execution" on page 6-60

■ "Tomcat" on page 6-60

■ "Features" on page 6-61

■ "Configuring JSP Support" on page 6-61

6.5.1 JSP Execution
The JSP Execution functionality uses the built-in Apache Jakarta Tomcat Servlet/JSP
Server to access the content and content management functions within Content Server.

The Apache Jakarta Tomcat Server is a free, open-source server of Java Servlet and
Java Server Pages that is run inside of Content Server when the feature is enabled. The
integration of Tomcat Server with Content Server provides the benefit of increased
performance for content delivery.

Using JSP Execution functionality enables developers to access and modify Content
Server content, ResultsSets, personalization and security definitions, and predefined
variables and configuration settings through Java Server Pages rather than through
standard component architecture. Services and Idoc Script functions can also be
executed from JSP pages which reside as executable content in the Content Server.

6.5.2 Tomcat
Capability for JSP to call services is provided by integrating the Tomcat 5.025 server
with Content Server core functionality.

■ Tomcat is a free, open-source server of Java Server and Java Server Pages; version
5.025 complies with Servlet 2.4 and JSP 2.0 specifications.

Important: JSP pages can execute Idoc Script functions only when
the JSP page is being served on the Content Server as part of the JSP
Execution functionality. JSP pages served on a separate JSP server do
not have this functionality. In those cases, checking a JSP page into the
Content Server provides revision control but does not provide
dynamic execution of IdocScript functions on the presentation tier
(JSP server).

JSP Integration

Integration Methods 6-61

■ The main benefit of integrating Tomcat into Content Server is the increase in
performance of delivering content. The direct integration eliminates the need for a
socket-based interface and enables use of all Content Server core capabilities.

■ Although Tomcat is embedded in content server, you can use server.xml as the
configuration file to modify the internal Tomcat engine to suit your needs.

6.5.3 Features
With JSP support enabled, custom components can include JSP pages of type jsp and
jspx.

■ The DomainHome/ucm/cs/weblayout/jsp/ directory is able to host JSP pages by
default.

■ The Content Server distribution media also includes the current Java 2 SDK.

6.5.4 Configuring JSP Support
Use the following procedure to enable and configure JSP support.

1. In Content Server, create a new security group to be used for JSP pages (called jsp
in the subsequent steps). This security group should be restricted to developers.
This step is not required but it is recommended for developer convenience. Any
security groups to be enabled for JSP must be specified in step 5.

a. Display the User Admin screen.

b. Select Security, Permissions by Group.

c. Click Add Group.

d. Enter jsp as the group name, enter a description, and click OK.

e. Assign Admin permission to the admin role and any developer roles.

f. Assign Read permission to all non-admin roles.

g. Click Close.

2. If you run on AIX, HP-UX, or Linux s390, the Java 2 SDK, which is required for the
JSP integration, is not installed on your system automatically, nor is it provided on
the distribution media. To get the internal JSP engine to run on these, a 1.5 JDK
must be present on the server and the CLASSPATH in the intradoc.cfg file must be
modified to include the path to the "tools.jar" file. For example, for a default 1.5
install on AIX, this file should be in /usr/java15/lib.

3. Select one of the following:

■ From the Admin Server, select the General Configuration page.

■ From the System Properties utility, select the Server tab.

4. Enable the JSP prompt:

■ For the Admin Server: click Enable Java Server Page (JSP)

■ For System Properties: click Execute Java Server Page (JSP)

5. Enter the security groups to be enabled for JSP (including the security group you
created in step 1).

Note: This product includes software developed by the Apache
Software Foundation (http://www.apache.org/).

Java 2 Enterprise Edition Integration (J2EE)

6-62 Oracle Fusion Middleware Developer's Guide for Content Server

6. Save the settings, and restart the Content Server.

6.5.5 Loading Example Pages
Use either of the following procedures to load example pages into the Content Server:

■ Check in the .war file in the JSP security group. Make sure to check in other
content to the JSP security group before checking in the war file.

■ Start the JSP Server Web App Admin from the Administration page.

6.6 Java 2 Enterprise Edition Integration (J2EE)
The J2EE integration for Content Server is available with Content Integration Suite, a
separate product.

 Content Integration Suite (CIS) enables communication with Content Server and is
deployable on a number of J2EE application servers, in addition to working in
non-J2EE environments. A supported version of Content Server is required.

This section covers these topics

■ "Content Integration Suite Architecture" on page 6-62

■ "Accessing the UCPM API" on page 6-63

■ "UCPM API Methodology" on page 6-63

See the Content Integration Suite documentation set for additional information.

6.6.1 Content Integration Suite Architecture
CIS has a layered architecture that allows for its deployment in a number of different
configurations. The architecture, at its core, is based on the standard J2EE Command
Design Pattern. The layers on top of the commands provide the APIs that are exposed
to the end user.

CIS uses the Universal Content and Process Management API (UCPM API) which uses
the SCS API for communication to the Content Server. The SCS API wraps
communication from the Content Server into an object model that allows access to the
individual object metadata.

The UCPM API enables application developers to focus on presentation issues rather
than being concerned with how to access Content Server services (IdcCommand
services). The UCPM API comprises a set of command objects that encapsulate distinct
actions that are passed to the UCPM API and then mapped to the Content Server.
These commands include common functions such as search, checkout, and workflow
approval. Each command is tied to one or more service calls. The UCPM API
command objects have been developed in accordance with the J2EE Command Design
Pattern.

This infrastructure is deployable in any J2EE-compliant application server or
stand-alone JVM application. When deployed, the UCPM API will leverage the
features in the environment, whether this is a J2EE application server or non-J2EE.

The UCPM API encapsulates Content Server business logic and validates the
parameters of the incoming calls. The UCPM API handles communication to the
Content Server, encapsulates socket communication logic (opening, validating, and
streaming bits through the socket), and provides a strongly typed API to the available
services.

Web Services

Integration Methods 6-63

6.6.2 Accessing the UCPM API
The Universal Content and Process Management API (UCPM API) offers access to
servers by exposing their services and data in a unified object model. The UCPM API
is modeled into a set of Services APIs, which are API calls that communicate with the
target server, and into ICISObject objects, which are the value objects returned from
the server.

The UCPM API is available on the ICISApplication class via the getUCPMAPI()
method. The getUCPMAPI() method returns a reference to the IUCPMAPI object,
allowing access to all UCPM API objects. Public interface IUCPMAPI is the locator for
the getActiveAPI object; getActiveAPI() returns a reference to the SCSActiveAPI
object. The SCS API classes communicate with and handle content stored on the
Content Server.

6.6.3 UCPM API Methodology
The Universal Content and Process Management API (UCPM API) is stateless; all
method calls pass in the necessary state to the method. You can share the reference to
the CISApplication class across threads.

■ ISCSContext for the SCS API. The interface ISCSContext is the context object used
when communicating with the Content Server.

■ ICISCommonContext for calling some of the CIS APIs. The interface
ICISCommonContext identifies which adapters to query and what user
information to use.

The first parameter for all methods is an IContext bean. The IContext bean holds
context information, such as username and session ID, that is used in the underlying
service APIs to identify the user invoking the given command.

The UCPM API is a service-oriented API that returns value objects, implemented as
ICISObject objects (name changed from the 7.6 API). However, calling methods on the
value objects themselves do not modify content on the server; one must call the UCPM
API and pass in the value object as a parameter before the changes can be applied.

6.7 Web Services
This section provides an overview of Web services, and general information on the
SOAP protocol. In addition, several basic implementation architectures are described.

This section contains these topics:

■ "Web Services Framework" on page 6-63

■ "Virtual Folders and WebDAV Integration" on page 6-64

6.7.1 Web Services Framework
Web services reside as a layer on top of existing software systems such as application
servers, .NET servers, and the Content Server. Web services can be used as a bridge to
dissimilar operating systems or programming languages.

Web services are adapted to the Internet as the model for communication and rely on
the HyperText Transfer Protocol (HTTP) as the default network protocol. Thus, using
Web services, you can build applications using a combination of components.

Web Services

6-64 Oracle Fusion Middleware Developer's Guide for Content Server

Oracle WebLogic Server provides SOAP capabilities, and Content Server supports
several SOAP requests through Oracle WebLogic Server. For more information, see
Chapter 7, "Using Oracle UCM Web Services".

The core enabling technologies for Web services are XML, WSDL, SOAP, and UDDL:

■ XML: Data: The eXtensible Markup Language (XML) is a bundle of specifications
that provides the foundation of all Web services technologies. Using the XML
structure and syntax as the foundation allows for the exchange of data between
differing programming languages, middleware, and database management
systems.

■ SOAP: Communication: The Simple Object Access Protocol (SOAP) Content
Servers communication for Web services interfaces to communicate to each other
over a network. SOAP is an XML-based communication protocol used to access
Web services. Web services receive requests and return responses using SOAP
packets encapsulated within an XML document.

■ UDDI: Registry: The Universal Description Discovery and Integration (UDDI)
service provides registry and repository services for storing and retrieving Web
services interfaces. UDDI is a public or private XML-based directory for
registration and lookup of Web services.

Public or private UDDI sources are not published. However this does not prevent
users from integrating Content Server with other applications using Web services.

The XML, WSDL, SOAP, and UDDI technologies work together as layers on the Web
services protocol stack. The Web services protocol stack consists of these layers:

■ The service transport layer between applications (HTTP). While several protocols
are available as a transport layer (for example, HTTP, SMTP, FTP, BEEP), the HTTP
protocol is most commonly used.

■ The messaging layer that provides a common communication method (XML and
SOAP).

■ The service description layer that describes the public interface to a specific Web
service (WSDL).

■ The service discovery layer that provides registry and repository services for
storing and retrieving Web services interfaces (UDDI).

6.7.2 Virtual Folders and WebDAV Integration
The Folders/WebDAV component is available as an extra component for download
from the support site. You can use the Folders component to set up an interface to the
Content Server in the form of virtual folders that enables you to create a multilevel
folder structure and also use the WebDAV component to remotely author and manage
your content using clients that support the WebDAV protocol.

■ The Folders component provides a hierarchical folder interface to content in
Content Server. The component is required for WebDAV functionality, and the
WebDAV Client product.

■ The WebDAV component enables WebDAV (Web-Based Distributed Authoring
and Versioning) functionality to remotely author and manage your content using
clients that support the WebDAV protocol. For example, you can use Microsoft
Windows Explorer to check in, check out, and modify content in the repository
rather than using a Web browser interface.

Web Services

Integration Methods 6-65

The option to install the WebDAV component is provided during the
Folders/WebDAV installation process. See the Oracle Fusion Middleware Application
Administrator’s Guide for Content Server for additional information.

6.7.2.1 Virtual Folders
The Folders component sets up an interface to the Content Server in the form of virtual
folders (also called hierarchical folders). Virtual folders enable you to create a multilevel
folder structure.

Virtual folders provide two main benefits:

■ Users can find content by drilling down through a familiar folder-type interface.

■ Users can apply default metadata to content items by checking them in through a
particular folder.

The following structure is used for the Folders component:

■ Each Content Server instance has a common set of virtual folders. Any change to
the folders is applied systemwide.

■ There is one default system-level folder, called Content Server Folders. If you are
using a custom folders interface, folders for these products may also appear at the
system level of the Folders hierarchy.

■ The system administrator can change the name of a system-level folder, but cannot
delete it or add a custom system-level folder except through changes to the
database. (Deleting a system-level folder disables it, but does not remove it from
the system.)

■ Each folder in the hierarchy contains content items that have the same numeric
Folder value, which is assigned automatically upon creation of the folder.
Changing the value of the Folder field for a content item places it in a different
folder.

■ The number of folders and number of files in each folder can be limited by the
system administrator so that virtual folder functions do not affect system
performance.

6.7.2.2 WebDAV Integration
WebDAV (Web-Based Distributed Authoring and Versioning) provides a way to
remotely author and manage your content using clients that support the WebDAV
protocol. For example, you can use Microsoft Windows Explorer to check in, check
out, and modify content in the repository rather than using a Web browser interface.

WebDAV is an extension to the HTTP/1.1 protocol that allows clients to perform
remote Web content authoring operations. The WebDAV protocol is specified by RFC
2518.0.

See the WebDAV Resources Page at http://www.webdav.org for more information

WebDAV provides support for the following authoring and versioning functions:

■ Version management

■ Locking for overwrite protection

■ Web page properties

■ Collections of Web resources

■ Name space management (copy/move pages on a Web server)

Web Services

6-66 Oracle Fusion Middleware Developer's Guide for Content Server

■ Access control

When WebDAV is used with a content management system such as Content Server,
the WebDAV client serves as an alternate user interface to the native files in the
content repository. The same versioning and security controls apply, whether an
author uses the Content Server Web browser interface or a WebDAV client.

In Content Server, the WebDAV interface is based on the hierarchical Folders
interface. See "Virtual Folders" on page 6-65 for additional information.

6.7.2.2.1 WebDAV Clients A WebDAV client is an application that can send requests
and receive responses using a WebDAV protocol (for example, Microsoft Windows
Explorer, Word, Excel, and PowerPoint). Check the current WebDAV Client
documentation for specific versions supported. This is not the same as the Content
Server WebDAV Client, which is a product that enhances the WebDAV interface to the
Content Server.

You can use WebDAV virtual folders in Windows Explorer to manage files that were
created in a non-WebDAV client, but you cannot use the native application to check
content in and out of the Content Server repository.

The Desktop software package also includes a WebDAV Client component and a
Check Out and Open component.

6.7.2.2.2 WebDAV Servers A WebDAV server is a server that can receive requests and
send responses using WebDAV protocol and can provide authoring and versioning
capabilities. Because WebDAV requests are sent over HTTP protocol, a WebDAV
server typically is built as an add-on component to a standard Web server.

In Content Server, the WebDAV server is used only as an interpreter between clients
and the Content Server.

6.7.2.2.3 WebDAV Architecture WebDAV is implemented in the Content Server by the
WebDAV component. The architecture of a WebDAV request follows these steps:

1. The WebDAV client makes a request to the Content Server.

2. The message is processed by the Web Server (through a DLL in IIS).

3. On the Content Server, the WebDAV component performs these functions:

■ Recognizes the client request as WebDAV.

■ Maps the client request to the appropriate WebDAV service call on the
Content Server.

■ Converts the client request from a WebDAV request to the appropriate
Content Server request.

■ Connects to the core Content Server and executes the Content Server request.

4. The WebDAV component converts the Content Server response into a WebDAV
response and returns it to the WebDAV client.

7

Using Oracle UCM Web Services 7-1

7Using Oracle UCM Web Services

This chapter describes using Oracle Universal Content Management (Oracle UCM)
Web services with Oracle WebLogic Server Web services to manage Content Server. It
covers these topics:

■ "Overview of Oracle UCM Web Services" on page 7-1

■ "Oracle UCM Web Services" on page 7-2

■ "Installation and Configuration" on page 7-3

■ "Security" on page 7-3

7.1 Overview of Oracle UCM Web Services
Web services reside as a layer on top of existing software systems such as application
servers, .NET servers, Oracle WebLogic Server, and the Content Server. Web services
can be used as a bridge to dissimilar operating systems or programming languages.
Web services are adapted to the Internet as the model for communication and rely on
the HyperText Transfer Protocol (HTTP) as the default network protocol. Thus, using
web services, you can build applications using a combination of components.

Oracle Universal Content Management (UCM) Web services work with Oracle
WebLogic Server Web services to perform management functions for Content Server
installed on Oracle WebLogic Server. Oracle WebLogic Server Web services provide
SOAP capabilities, and Oracle UCM Web services include several built-in SOAP
requests. Oracle UCM Web services are automatically installed with an Oracle UCM
instance, but they require additional configuration to set up security.

Core enabling technologies for Oracle UCM Web services include:

■ SOAP (Simple Object Access Protocol) is a lightweight XML-based messaging
protocol used to encode the information in Web service request and response
messages before sending them over a network. SOAP requests are sent by the
Oracle UCM Web services to the Oracle WebLogic Server Web services for
implementation. For more information about SOAP, see Simple Object Access
Protocol (SOAP) at http://www.w3.org/TR/soap12.

■ Web Services Security (WS-Security) is a standard set of SOAP extensions for
securing Web services for confidentiality, integrity, and authentication. For Oracle
UCM Web services, WS-Security is used for authentication, either for a client to
connect to the server as a particular user or for one server to talk to another as a
user. For more information, see the OASIS Web Service Security Web page at
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.

■ Web Service Policy (WS-Policy) is a standard for attaching policies to Web
services. For Oracle UCM Web services, policies are used for applying

http://www.w3.org/TR/soap12
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Oracle UCM Web Services

7-2 Oracle Fusion Middleware Developer's Guide for Content Server

WS-Security to Web services. The two supported policies are username-token
security and Security Assertion Markup Language (SAML) security.

Historically, Oracle used Oracle Web Services Manager (OWSM) to secure its Web
services and Oracle WebLogic Server used Web Services Security Policy
(WS-SecurityPolicy) to secure its Web services. Because Web services security is
partially standardized, some WSM and WS-SecurityPolicy policies can work with
each other.

The generic Oracle UCM Web Services are JAX-WS based and can be assigned
OWSM policies and managed by OWSM. The native Oracle UCM Web Services
are SOAP based and can only support WS-Policy policies managed through the
Oracle WebLogic Administration Console.

For more information about OWSM, see the Oracle Fusion Middleware Security and
Administrator’s Guide for Web Services.

A subset of WebLogic Web service policies interoperate with Oracle OWSM
policies. For more information, see "Interoperability with WebLogic Web Service
Policies" in Oracle Fusion Middleware Security and Administrator's Guide for Web
Services.

Web Services Security Policy (WS-SecurityPolicy) is a set of security policy
assertions for use with the WS-Policy framework. For more information, see Web
Services Security Policy (WS-SecurityPolicy) specification at
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1
.2-spec-os.html.

■ SAML is an XML standard for exchanging authentication and authorization
between different security domains. For more information, see the Security
Assertion Markup Language (SAML) specification at
http://docs.oasis-open.org/security/saml/v2.0/.

■ WebLogic Scripting Tool (WLST) is a command-line tool for managing Oracle
WebLogic Server. For more information, see Oracle Fusion Middleware WebLogic
Scripting Tool Command Reference.

7.2 Oracle UCM Web Services
Oracle UCM provides two types of Web services: a general (generic) JAX-WS based
Web service, and a native SOAP based Web service. The two types of Web services
reside in two different context roots. The context root is the primary identifier in the
URL for accessing the Web services.

The context roots are:

■ /idcws/ - Use this context root for general access to a Oracle UCM Content
Server instance through any regular Web services client.

■ /idcnativews/ - The Remote IDC client (RIDC) uses the native Web services. . It
is recommended that you do not develop custom client against these services.

The following table describes the Oracle UCM Web service in the /idcws/ context
root.

Note: It is recommended that you use OWSM policies over Oracle
WebLogic Web services whenever possible. You cannot mix your use
of OWSM and Oracle WebLogic Web service policies on the same
Web service.

http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/security/saml/v2.0/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html

Security

Using Oracle UCM Web Services 7-3

The following table describes the Oracle UCM Web services in the /idcnativews/
context root.

7.3 Installation and Configuration
The Oracle UCM Web services are installed and ready to use by default with the
Oracle UCM EAR. However, unless you configure WS-Security on any of the Oracle
UCM Web services, all connections to the Oracle UCM content server will use the
“anonymous” user. Additional configuration is required to enable authentication.

7.4 Security
The following topics covers security configuration for Oracle UCM Web services.

■ "Configuring WS-Security through WS-Policy" on page 7-4

■ "Configuring SAML Support" on page 7-4

Oracle UCM Web Service Descriptions

GenericSoapService This service uses a generic format similar to HDA for its SOAP
format. It is almost identical to the generic SOAP calls that you
can make to the Oracle UCM Content Server when you set
IsSoap=1. Details of the format can be found in the published
WSDL at /idcws/GenericSoapPort?WSDL.

You can apply WS-Security to GenericSoapService through
WS-Policy. The Content Server supports Oracle Web Services
Manager (OWSM) policies for Security Assertion Markup
Language (SAML) and username-token.

As a result of allowing WS-Security policies to be applied to this
service, streaming Message Transmission Optimization
Mechanism (MTOM) is not available for use with this service.
Very large files (greater than the memory of the client or the
server) cannot be uploaded or downloaded.

Oracle UCM Web
Services Descriptions

IdcWebRequestService This is the general Oracle UCM service. Essentially it is a normal
socket request to the Oracle UCM Content Server, wrapped in a
SOAP request. Requests are sent to the Content Server using
streaming Message Transmission Optimization Mechanism
(MTOM) in order to support large files.

Streaming MTOM and WS-Security do not mix. As a result, do
not apply WS-Security to this service, because it will break the
streaming file support. In order to achieve security, you must first
log in using the IdcWebLoginService, then use the same
JSESSIONID received from that service in the next call to
IdcWebRequestService as a cookie.

IdcWebLoginService This service is solely for adding security to IdcWebRequestService
calls. There are no parameters for this service; it simply creates a
session. The important field to retrieve is the JSESSIONID for
future calls to IdcWebRequestService.

If you want to use WS-Security with IdcWebRequestService, then
apply it here. The Content Server supports Oracle Web Services
Manager (OWSM) policies for Security Assertion Markup
Language (SAML) and username-token.

Security

7-4 Oracle Fusion Middleware Developer's Guide for Content Server

7.4.1 Configuring WS-Security through WS-Policy
Web service security (WS-Security) is set through the use of Web service policies
(WS-Policy). Security policies can be set to Web services in order to define their
security protocol. In particular, the Oracle UCM Web services support OWSM policies.

Two general classes of policies are supported: username-token, and SAML. The
following is a list of supported OWSM policies:

■ oracle/wss11_saml_token_with_message_protection_service_policy

■ oracle/wss11_username_token_with_message_protection_service_policy

To set WS-Policy
1. Access the Oracle WebLogic Server administration console.

2. Select Deployments from the side panel, then expand either the Oracle UCM
native Web services or the Oracle UCM generic Web services.

3. Click IdcWebLogicService or GenericSoapService, then select the Configuration
tab, then the WS-Policy tab.

4. Click the main service. From here you can choose which OWSM policies to add.

5. When you have finished adding OWSM policies, you must update the Oracle
UCM native Web services or the Oracle UCM generic Web services.

7.4.2 Configuring SAML Support
To provide SAML support so that the client can be the identity provider (that is, assert
credentials) then additional steps must be taken to configure a keystore, configure a
JPS provider to use the keystore, create a client credential store (CSF), and configure a
Java client to use the keystore and CSF.

7.4.2.1 Configuring a Keystore
Both the server and client need a copy of a keystore. The server uses the keystore to
authenticate the credentials passed by the client. A self-signed certificate can work for
this situation, because the keystore is used only as a shared secret.

You can use the keytool to generate a self-signed certificate. Note: many of the values
used in the following example are the defaults for the domain’s
config/fmwconfig/jps-config.xml (explained in the next section):

$ keytool -genkey -alias orakey -keyalg RSA -keystore default-keystore.jks
-keypass welcome -storepass welcome

Any relevant data can be entered within the keytool, but the specifics do not matter
except for the password for the keystore and the certificate, which the client uses.

7.4.2.2 Configuring Server JPS to Use the Keystore
Configuring the keystore on the Oracle WebLogic Server domain involves editing the
$domain/config/fmwconfig/jps-config.xml file.

A provider must be defined in <serviceProviders>. A provider should be defined by
default.

<serviceProvider type="KEY_STORE" name="keystore.provider"
 class="oracle.security.jps.internal.keystore.KeyStoreProvider">
 <description>PKI Based Keystore Provider</description>
 <property name="provider.property.name" value="owsm"/>

Security

Using Oracle UCM Web Services 7-5

</serviceProvider>

When you have verified the provider, or created or modified a provider, a keystore
instance must be defined in <serviceInstances>. A keystore instance should be defined
by default.

<serviceInstance name="keystore" provider="keystore.provider"
 location="./default-keystore.jks">
 <description>Default JPS Keystore Service</description>
 <property name="keystore.type" value="JKS"/>
 <property name="keystore.csf.map" value="oracle.wsm.security"/>
 <property name="keystore.pass.csf.key" value="keystore-csf-key"/>
 <property name="keystore.sig.csf.key" value="sign-csf-key"/>
 <property name="keystore.enc.csf.key" value="enc-csf-key"/>
</serviceInstance>

The location of the keystore instance must be set to the same location as when you
created the keystore.

Additionally, the keystore must be added to the <jpsContexts>. This setting should be
in the jps-config.xml file by default.

<jpsContext name="default">
 <serviceInstanceRef ref="credstore"/>
 <serviceInstanceRef ref="keystore"/>
 <serviceInstanceRef ref="policystore.xml"/>
 <serviceInstanceRef ref="audit"/>
 <serviceInstanceRef ref="idstore.ldap"/>
</jpsContext>

7.4.2.3 Creating a Client CSF
On the client, there must be a credential store to store the keys to unlock the keystore.
A Credential Store Framework (CSF) can be made in a variety of ways, but one way is
to use the Oracle WebLogic Server Scripting Tool (WLST). You must use the wlst
command from the EM interface.

In order to use WLST to create a credential, you must be connected to the Oracle
WebLogic Server domain. Note that the resulting wallet can only be used on the client.

$./wlst.sh

$ connect()

$ createCred(map="oracle.wsm.security", key="keystore-csf-key", user="keystore",
password="welcome")
$ createCred(map="oracle.wsm.security", key="sign-csf-key", user="orakey", password="welcome")
$ createCred(map="oracle.wsm.security", key="enc-csf-key", user="orakey", password="welcome")

The preceding example creates a CSF wallet at
$domain/config/fmwconfig/cwallet.sso that must be given to the client. You need to
change the values from the example to match the alias and passwords from the
keystore you created.

7.4.2.4 Configuring a Java Client to Use the Keystore and CSF
In order to configure a Java client to use the keystore and CSF, there are two
requirements:

■ The Java client must have a copy of both the keystore and the CSF wallet.

Security

7-6 Oracle Fusion Middleware Developer's Guide for Content Server

■ There must be a client version of the jps-config.xml file. This file must contain
entries for locating the keystore as well as the CSF wallet. To configure security,
the Java system property “oracle.security.jps.config” must point towards the
jps-config.xml file. This can be set during execution in the client.

System.setProperty("oracle.security.jps.config", “jps-config.xml”);

The following example shows a jps-config.xml file for clients based on the
configuration provided in previous examples.

<jpsConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="jps-config.xsd">
 <serviceProviders>
 <serviceProvider name="credstoressp"
class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider">
 <description>SecretStore-based CSF Provider</description>
 </serviceProvider>

 <serviceProvider type="KEY_STORE" name="keystore.provider"
class="oracle.security.jps.internal.keystore.KeyStoreProvider">
 <description>PKI Based Keystore Provider</description>
 <property name="provider.property.name" value="owsm"/>
 </serviceProvider>
 </serviceProviders>

 <serviceInstances>
 <serviceInstance name="credstore" provider="credstoressp" location="./">
 <description>File Based Credential Store Service Instance</description>
 </serviceInstance>

 <serviceInstance name="keystore" provider="keystore.provider"
location="./default-keystore.jks">
 <description>Default JPS Keystore Service</description>
 <property name="keystore.type" value="JKS"/>
 <property name="keystore.csf.map" value="oracle.wsm.security"/>
 <property name="keystore.pass.csf.key" value="keystore-csf-key"/>
 <property name="keystore.sig.csf.key" value="sign-csf-key"/>
 <property name="keystore.enc.csf.key" value="enc-csf-key"/>
 </serviceInstance>
 </serviceInstances>

 <jpsContexts default="default">
 <jpsContext name="default">
 <serviceInstanceRef ref="credstore"/>
 <serviceInstanceRef ref="keystore"/>
 </jpsContext>
 </jpsContexts>
</jpsConfig>

Index-1

Index

A
AboutBox, 6-46
access level attribute, 3-29
action format, 3-30
action popup menus, 5-6
actions

control mask, 3-30
error message, 3-30
name, 3-30
parameters, 3-30
service resource, 3-32
type, 3-30

Actions column
service ResultSet, 3-30

ActiveX Command Utility, 6-14
ActiveX command utility, See methods, 6-23
ActiveX Interface, 6-14
anonymous user interface, 4-3
Apache Jakarta Tomcat Server, 6-60
applets, 2-2
architecture overview, 2-1
architecture, WebDAV, 6-66
Asian language, 3-6
assembling

pages, 2-11
Attributes

ClientControlledContextValue, 6-57
HostCgiUrl, 6-57
Password, 6-57
UseBrowserLoginPrompt, 6-57
UseProgressDialog, 6-57
UserName, 6-58
WorkingDir, 6-58

attributes
service resources, 3-31

B
Back, 6-47
Batch Loader, 2-2
begin form section, 4-22
behavior, content server, 2-6
bin directory, 2-2
browser

requests, 2-9

browsers, 1-3
bundled files

example, 4-5
order of, 4-6

BundlePublishedWeblayoutFiles, 4-5
bundling files, 4-4
buttons, form, 4-23

C
-c connection_mode

auto, 6-5
server, 6-5
standalone, 6-5

caching
resources, 2-8

calling services remotely, 6-6
CancelRequest, 6-47
CFG file, 3-41
changing

component files, 2-8
resources, 2-8

class column, 4-5
ClassAliases ResultSet, 3-20
ClientControlledContextValue, 6-57
clients, WebDAV, 6-66
closeServerConnection(), 6-24
COM interface, 6-14
command file syntax, 6-3

precedence, 6-4
special characters

, 6-4
#, 6-4
EOD, 6-4

special tags
IdcService=, 6-4

command line options, 6-3
common code

forms, 4-29
comparison operators

dynamic server pages, 4-11
component definition file, 3-8
component directories, 3-5, 3-13
component files, 3-5, 3-13

changing, 2-8
overview, 3-4

Index-2

component functionality, 5-2
component limitations, 5-3
Component Manager, 3-2, 3-5, 5-3
component manager, 3-43
component overview, 3-1
Component Wizard, 2-2, 3-1, 3-5, 3-13, 5-3

creating a dynamic table, 3-25
description of, 3-1
editing dynamic tables, 3-25
editing environment resources, 3-42
editing HTML includes, 3-22, 3-25
editing service resources, 3-35
editing static tables, 3-26
editing template resources, 3-40
working with resources, 3-21

component wizard, 3-43
component Zip file, 3-12
components

creating, 3-13
loading, 2-8
naming conventions, 3-15
working with files, 3-13

components HDA file, 3-12, 3-15
Components ResultSet, 3-8, 3-16
components.hda file, 3-12, 3-15
computeNativeFilePath(Data As String) as

string, 6-24
config

directory, 2-4
config directory, 2-3
configuration files, 3-41
configuration variables

loading, 2-7
content attribute, 4-18
Content Integration Suite

J2EE standards, 6-62
Content Publisher, 4-15

dynamic server pages, 4-10
nested tags, 4-19
repeated ResultSet tags, 4-20

content server
behavior, 2-6
development instance, 3-14
directories, 2-1
files, 2-1
internal initialization, 2-7
loading configuration variables, 2-7
loading custom components, 2-8
loading reports, 2-7
loading resources, 2-7
loading templates, 2-7
requests, 2-9
services, 2-10
startup, 2-6

Content Server Folders, 6-65
Content Server Interface, 6-14, 6-59
Content Server JavaBean, 6-60
content server URLs, 2-9
context roots, 7-2
control mask, 3-30

conventions
naming, 3-15, 4-15

creating
component, 3-13
dynamic server pages, 4-10
dynamic tables, 3-25
HCSF page, 4-25
HCSP page, 4-24
HCST page, 4-24
HTML includes, 3-25
IDOC page, 4-24, 4-25

creating and executing IdcCommand
parameters, 6-6

CSS, 1-2
custom components

loading, 2-8
understanding, 3-5, 3-13

custom resource files, 3-12
customization

system settings, 5-1
customization stages, 1-1
customization tips, 1-1
customization types, 1-1
customizing popup menus, 5-8

D
data section, 4-17

structure, 4-17
database interaction, 2-11
DataBinder, 3-10
dDocName parameter, 4-14
debug trace, 1-4

default suffix, 4-19
defining

form fields, 4-30
form information, 4-30
hidden fields, 4-30

definition file, 3-8
development

dynamic server pages, 4-14
HCSF pages, 4-15
instance, 3-14

dID parameter, 4-14
directories, 2-1

bin, 2-2
config, 2-3
groups, 2-5
images, 2-5
naming conventions, 3-15
organization, 3-14
reports, 2-4
resources, 2-5
shared/config, 2-4
templates, 2-5
weblayout, 2-5

DOC_INFO_SIMPLE service, 4-29
DoCheckoutLatestRev, 6-47
docLoadResourceIncludes function, 4-13

Index-3

HCSF pages, 4-17
parameters, 4-13

double-byte characters, 3-6
DownloadFile, 6-48
DownloadNativeFile, 6-48
Drag, 6-49
dynamic server pages

comparison operators, 4-11
Content Publisher, 4-10
creating, 4-10
development recommendations, 4-14
docLoadResourceIncludes function, 4-13
examples, 4-24
general tips, 4-15
Idoc Script functions, 4-13
Idoc Script tags, 4-10, 4-11
naming conventions, 4-15
overview, 4-7
page types, 4-9
process, 4-9
referencing metadata, 4-11, 4-12
special characters, 4-11, 4-12
syntax, 4-10

dynamic table resource, 3-25
overview, 2-5

dynamic tables
creating, 3-25
editing, 3-25

E
EditDocInfoLatestRev, 6-49
editing

dynamic table, 3-25
environment resource, 3-42
HTML includes, 3-22, 3-25
service resource, 3-35
static table, 3-26
template resource, 3-40

end of form, 4-24
environment, 3-10
environment resources, 3-41

editing, 3-42
example, 3-41
overview, 2-6

EOD, 6-4
error message, 3-30
error message attribute, 3-29
Events

IntradocBeforeDownload, 6-44
IntradocBrowserPost, 6-45
IntradocBrowserStateChange, 6-45
IntradocRequestProgress, 6-45
IntradocServerResponse, 6-45

examples
ClassAliases ResultSet, 3-20
code for HCSF pages, 4-29
component definition file, 3-9, 3-16
components HDA file, 3-15
dynamic server pages, 4-24

environment resource, 3-41
Filters ResultSet, 3-20
form fields, 4-30
glue file, 3-9, 3-16
HCSF pages, 4-25
HCSP page, 4-24
HCST page, 4-24
HDA file, 2-4, 3-6
HTML includes, 3-21
IDOC pages, 4-24, 4-25
LocalData section, 3-6
MergeRules ResultSet, 3-19, 3-35
Properties section, 3-6
report page, 3-39
ResourceDefinition ResultSet, 3-17
ResultSet section, 3-7
service actions, 3-32
service attributes, 3-31
service resource, 3-29, 3-30
super tag, 3-22
template page, 3-38

executing services, 6-14
ExtranetLook component, 4-3
ExtraRootNodes form element, 4-19

F
file extension

referencing, 4-29
file information

retrieving, 4-29
file types, 3-4
file usage, 4-7
files

component definition, 3-8
component Zip, 3-12
components HDA, 3-12, 3-15
configuration, 3-41
content server, 2-1
custom resource, 3-12
environment, 3-41
glue, 3-8
HCSF, 4-10
HCSP, 4-9
HCST, 4-9
HDA, 3-5
IDOC, 4-9
manifest, 3-11
naming conventions, 3-15
organization, 3-14
search_results.htm, 3-36
working with in components, 3-13

Filters ResultSet, 3-20
Folders, 6-65

benefits, 6-65
folders

structure, 6-65
form buttons, 4-23
form elements, 4-19
form end, 4-24

Index-4

form fields, 2-9
defining, 4-30

form properties, 4-22
form section, 4-22

begin, 4-22
form buttons, 4-23
form end, 4-24
properties, 4-22

format
action, 3-30

forms
common code, 4-29
defining form information, 4-30
properties, 4-30
submitting, 4-30

Forward, 6-49
functions

docLoadResourceIncludes, 4-13
Idoc Script, 4-13

G
GenericSoapService, 7-3
glue file, 3-8
GoCheckinPage, 6-50
groups directory, 2-5

H
.hcsf file, 4-10

syntax, 4-10
HCSF pages, 4-14

common code, 4-29
content attribute, 4-18
data section, 4-17
defining form fields, 4-30
defining form information, 4-30
defining hidden fields, 4-30
docLoadResourceIncludes function, 4-17
example, 4-25
form buttons, 4-23
form elements, 4-19
form end, 4-24
form properties, 4-22
form section, 4-22
HTML declaration, 4-16
HTML includes, 4-17
isFormFinished attribute, 4-18
load section, 4-16
meta tag, 4-17
metadata tags, 4-18
nested tags, 4-19
referencing file extensions, 4-29
referencing XML tags, 4-19
ResultSets, 4-20
resultsets attribute, 4-18
retrieving file information, 4-29
submitting forms, 4-30
tips, 4-15
variables, 4-17

.hcsp file, 4-9
syntax, 4-10

HCSP pages
examples, 4-24

.hcst file, 4-9
syntax, 4-10

HCST pages
examples, 4-24

HDA files, 3-5
components HDA, 3-15
example, 2-4, 3-6
ResultSet section, 3-7

section, 4-17
hidden fields

defining, 4-30
hierarchical folders, 6-65
HostCgiUrl, 6-57
HTML, 1-2
HTML declaration

HCSF pages, 4-16
HTML editor, 1-3
HTML includes, 3-21

creating, 3-25
editing, 3-22, 3-25
example, 3-21
HCSF pages, 4-17
overview, 2-5
standard, 3-21, 3-23
super tag, 3-21

I
idc_components.hda file, 2-4
IdcAnalyze, 2-2
idcbegindata tag, 4-17
IdcClient ActiveX Control, 6-35
IdcClient Events, 6-44
IdcClient Methods, 6-45
IdcClient Properties, 6-57
IdcCommand, 2-2

repository server Command Utility, 6-6
calling services remotely, 6-6
command file syntax, 6-3
command line options, 6-3
using the launcher, 6-13

IdcCommand setup, 6-15
IdcCommandX-repository server ActiveX Command

Utility
methods, 6-23

idcenddata tag, 4-17
IdcServer service, 2-2
IdcServerNT service, 2-2
IdcService= (command file syntax tag), 6-4
IdcWebLoginService, 7-3
IdcWebRequestService, 7-3
idoc

directory, 2-4, 2-5
.idoc file, 4-9

syntax, 4-10
IDOC pages

Index-5

examples, 4-24, 4-25
Idoc Script, 1-2
Idoc Script functions

dynamic server pages, 4-13
Idoc Script tags

dynamic server pages, 4-10, 4-11
images directory, 2-5
InitiateFileDownload, 6-51
InitiatePostCommand, 6-51
install

directory, 2-4
installation

component manager, 3-43
component wizard, 3-43

Installer, 2-2
Integrated Development Environment (IDE), 1-3
interface customization overview, 4-1
internal initialization, 2-7
IntradocApp applet, 2-2
IntradocBeforeDownload, 6-44
IntradocBrowserPost, 6-45
IntradocBrowserStateChange, 6-45
IntradocClient OCX component, 6-32
IntradocReports ResultSet, 3-8
IntradocRequestProgress, 6-45
IntradocServerResponse, 6-45
IntradocTemplates ResultSet, 3-8
isEditMode variable, 4-30
isFormFinished attribute, 4-18
isFormSubmit variable, 4-30
IsJava setting, 1-4

J
Java Server Page, 6-60
JavaScript, 1-3
javascript

directory, 2-4
JavaScript debugger, 1-3
JSP Execution, 6-60
jspserver

directory, 2-4

L
lang

directory, 2-4
Layouts, 4-2

Top Menu, 4-2
Trays, 4-2

load section, 4-16
loading

configuration variables, 2-7
custom components, 2-8
monitoring resources, 1-4
standard reports, 2-7
standard resources, 2-7
standard templates, 2-7

LocalData, 3-10
LocalData section, 3-6

localization
resolving strings, 2-12

M
manifest file, 3-11
Manifest ResultSet, 3-11
manifest.hda file, 3-11
marker, trace, 1-4
MergeRules ResultSet, 3-19

template resource, 3-35
toTable column, 3-19

meta tag, 4-17
metadata

referencing, 4-11, 4-12
tags, 4-18

Methods
AboutBox, 6-46
Back, 6-47
CancelRequest, 6-47
DoCheckoutLatestRev, 6-47
DownloadFile, 6-48
DownloadNativeFile, 6-48
Drag, 6-49
EditDocInfoLatestRev, 6-49
Forward, 6-49
GoCheckinPage, 6-50
InitiateFileDownload, 6-51
InitiatePostCommand, 6-51
Move, 6-52
Navigate, 6-52
NavigateCgiPage, 6-52
RefreshBrowser, 6-52
SendCommand, 6-53
SendPostCommand, 6-53
SetFocus, 6-53
ShowDocInfoLatestRev, 6-54
ShowWhatsThis, 6-54
StartSearch, 6-54
Stop, 6-55
UndoCheckout, 6-55
ViewDocInfo, 6-55
ViewDocInfoLatestRev, 6-56
Zorder, 6-56

methods (ActiveX command utility), 6-23
closeServerConnection(), 6-24
computeNativeFilePath(Data As String) as

string, 6-24
Microsoft Visual Basic, 6-35
monitoring

resource loading, 1-4
Move, 6-52

N
name/value pair, 3-41
naming conventions, 3-15

dynamic server pages, 4-15
Navigate, 6-52
NavigateCgiPage, 6-52

Index-6

nested tags, 4-19
non-active ResultSets, 3-10

O
OCX Component, 6-33
ODMA Client, 6-58
ODMA Client Interface, 6-59
ODMA Desktop Shell Interface, 6-59
ODMA Interfaces, 6-59
operators

dynamic server pages, 4-11
Oracle Web Services Manager, 7-2
organization

component files, 3-14

P
page assembly, 2-11
page retrieval, 2-10
page types

dynamic server pages, 4-9
pages

HCSF, 4-14
report, 3-35, 3-38
template, 3-35, 3-38

parameters
action, 3-30
docLoadResourceIncludes function, 4-13

Password, 6-57
popup menus

customizing, 5-8
precedence, 6-4
predefined ResultSets, 3-7
programming

Java, 1-3
other, 1-3

properties
forms, 4-22, 4-30

PublishedResources, 4-7

Q
query resources, 3-26

overview, 2-6

R
recommended skills, 1-2
ref

prefix, 4-12, 4-29
referencing

file extension, 4-29
XML tags, 4-19

referencing metadata
dynamic server pages, 4-11, 4-12

RefreshBrowser, 6-52
Rendition parameter, 4-14
report pages, 3-35, 3-38

example, 3-39
reports

directory, 2-4
loading, 2-7

requests
browser, 2-9
content server, 2-9

resource categories, 3-21
resource loading

monitoring, 1-4
ResourceDefinition ResultSet, 3-8, 3-17

columns, 3-18
resources, 3-20

caching, 2-8
changing, 2-8
custom, 3-12
directory, 2-5
dynamic table, 3-25
environment, 3-41
overview, 2-5
query, 3-26
service, 3-28
standard, 2-5
static table, 3-26
string, 3-22

resources directory, 2-5
ResultSet section, 3-7
ResultSets, 3-10

ClassAliases, 3-20
Components, 3-8, 3-16
Filters, 3-20
IntradocReports, 3-8
IntradocTemplates, 3-8
Manifest, 3-11
MergeRules, 3-19
non-active, 3-10
predefined, 3-7
ResourceDefinition, 3-8, 3-17
SearchResultTemplates, 3-8
XML tags, 4-20

resultsets attribute, 4-18
resultsets form element, 4-19
retrieving

file information, 4-29
pages, 2-10

RevisionSelectionMethod parameter, 4-14

S
scriptable services, 4-14
search services, 2-10
search_results.htm file, 3-36
SearchResultTemplates ResultSet, 3-8
sections

data, 4-17
form, 4-22
, 4-17
Load, 4-16
LocalData, 3-6
ResultSet, 3-7

Security Assertion Markup Language (SAML), 7-2
SendCommand, 6-53

Index-7

SendPostCommand, 6-53
servers, WebDAV, 6-66
service attributes

access level, 3-29
error message, 3-29
service class, 3-29
service type, 3-29
subjects notified, 3-29
template page, 3-29

service class attribute, 3-29
service definition table, 3-29
service resource

attributes, 3-31
service resources, 3-28

actions, 3-32
editing, 3-35
example, 3-29, 3-30
overview, 2-6

service ResultSet
Actions column, 3-30

service type attribute, 3-29
services, 2-2

actions, 3-30
content server, 2-10
DOC_INFO_SIMPLE, 4-29
scriptable, 4-14
search, 2-10

SetFocus, 6-53
settings

IsJava, 1-4
TraceResourceConflict, 1-5
TraceResourceOverride, 1-5

shared/config directory, 2-4
ShowDocInfoLatestRev, 6-54
ShowWhatsThis, 6-54
Simple Object Access Protocol, 7-1
Skins, 4-2
SOAP Communication, 6-64
special characters

dynamic server pages, 4-11, 4-12
in strings, 3-23

standard page beginning, 2-11
standard page ending, 2-11
standard page header, 2-11
standard report pages, 3-38
standard resources, 2-5

loading, 2-7
standard template pages, 3-38
StandardResults template, 3-36
StartSearch, 6-54
startup, content server, 2-6
static table resource

overview, 2-6
static tables, 3-26

editing, 3-26
Stop, 6-55
strings

overview, 2-5
resolving, 2-12
resource files, 3-22

special characters, 3-23
structure, 3-22

structure
files and directories, 3-14

subjects notified attribute, 3-29
submitting

forms, 4-30
super tag, 3-21
syntax

dynamic server pages, 4-10
HCSF file, 4-10
HCSP file, 4-10
HCST file, 4-10
IDOC file, 4-10
service action, 3-30

System Properties, 2-2, 5-1
system settings, 5-1

T
tables

directory, 2-5
tags

Idoc Script, 4-10
template page attribute, 3-29
template pages, 3-35, 3-38

example, 3-38
template resources, 3-35

editing, 3-40
MergeRules ResultSet, 3-35
overview, 2-6

templates
directory, 2-5
loading, 2-7

text editor, 1-3, 3-13
tips

dynamic server pages, 4-15
HCSF pages, 4-15

Tomcat Server, 6-60
toTable column, 3-19
trace marker, 1-4
TraceResourceConflict setting, 1-5
TraceResourceOverride setting, 1-5
troubleshooting, 1-3
types of customization, 1-1
Types of skins and layouts, 4-1

U
UDDI Registry, 6-64
understanding

custom components, 3-5, 3-13
UndoCheckout, 6-55
UseBrowserLoginPrompt, 6-57
User Administration, 5-2
user personalization settings, 4-2
user profile

personalization settings, 4-2
UserName, 6-58
using the Launcher, 6-13

Index-8

utilities, 2-2

V
variables

configuration, 3-41
environment, 3-41
HCSF pages, 4-17

ViewDocInfo, 6-55
ViewDocInfoLatestRev, 6-56
virtual folders, 6-65
Visual Basic, 6-35

W
web browser

requests, 2-9
Web Layout Editor, 3-37
web resource publishing, 4-4
Web Service Policy, 7-1
Web services

context roots, 7-2
GenericSoapService, 7-3
IdcWebLoginService, 7-3
IdcWebRequestService, 7-3
overview, 7-1
OWSM, 7-2
SAML, 7-2
SOAP, 7-1
WS-Policy, 7-1
WS-Security, 7-1

Web Services Framework, 6-63
SOAP Communication, 6-64
UDDI Registry, 6-64
XML Data, 6-64

Web Services Security, 7-1
WebDAV

architecture, 6-66
clients, 6-66
functions, 6-65
servers, 6-66

WebDAV Client, 6-66
WebDAV component, 6-64
WebDAV Integration, 6-64
weblayout directory, 2-5
working with component files, 3-13

X
XML Data, 6-64
XML tags, 4-18

referencing, 4-19

Z
Zip file, 3-12
ZOrder, 6-56

	Contents
	Preface
	Audience
	Document Organization
	Documentation Accessibility
	Related Documents
	Conventions

	What's New
	New Features for 11g Release 1 (11.1.1)
	Changed Features for 11g Release 1 (11.1.1)

	1 Introduction to Modifying Your Content Server
	1.1 Customization Types
	1.2 Customization Planning
	1.3 Recommended Skills and Tools
	1.4 Troubleshooting
	1.4.1 Viewing Server Errors
	1.4.2 Viewing Page Data
	1.4.3 Monitoring Resource Loading

	2 Content Server Architecture
	2.1 Content Server Directories and Files
	2.1.1 Terminology for UCM Directories
	2.1.2 bin Directory
	2.1.3 config Directory
	2.1.4 components Directory
	2.1.5 resources/core Directory
	2.1.6 weblayout Directory

	2.2 Resources
	2.3 Content Server Behavior
	2.3.1 Startup Behavior
	2.3.1.1 Effects of Configuration Loading

	2.3.2 Resource Caching
	2.3.3 Content Server Requests
	2.3.3.1 Page Retrieval
	2.3.3.2 Content Server Services
	2.3.3.3 Search Services

	2.3.4 Page Assembly
	2.3.5 Database Interaction
	2.3.6 Resolving Localized Strings

	3 Working with Components
	3.1 Components Overview
	3.1.1 Component Wizard
	3.1.2 Advanced Component Manager
	3.1.3 ComponentTool
	3.1.4 Component Files Overview
	3.1.5 Enabling and Disabling Components

	3.2 About Directories and Files
	3.2.1 HDA Files
	3.2.1.1 Elements in HDA Files
	3.2.1.2 The idc_components.hda File
	3.2.1.3 Component Definition Files

	3.2.2 Custom Resource Files
	3.2.3 Data Binder
	3.2.3.1 LocalData
	3.2.3.2 Active or Non-active ResultsSets
	3.2.3.3 Environment

	3.2.4 Manifest File
	3.2.5 Other Files
	3.2.5.1 Customized Site Files
	3.2.5.2 Component Zip File
	3.2.5.3 Custom Installation Parameter Files

	3.2.6 Typical Directory Structure

	3.3 Development Recommendations
	3.3.1 Creating a Component
	3.3.2 Working with Component Files
	3.3.3 Using a Development Instance
	3.3.4 Component File Organization
	3.3.5 Naming Conventions

	3.4 Component File Detail
	3.4.1 The idc_components.hda File
	3.4.1.1 Components ResultSet

	3.4.2 Component Definition (Glue) File
	3.4.2.1 ResourceDefinition ResultSet
	3.4.2.2 MergeRules ResultSet
	3.4.2.3 Filters ResultSet
	3.4.2.4 ClassAliases ResultSet

	3.5 Resources Detail
	3.5.1 HTML Include
	3.5.1.1 The Super Tag
	3.5.1.2 Editing an HTML Include Resource

	3.5.2 String
	3.5.2.1 String Parameters
	3.5.2.2 Editing a String Resource

	3.5.3 Dynamic Tables
	3.5.3.1 Editing a Dynamic Table Resource

	3.5.4 Static Tables
	3.5.4.1 Editing a Static Table Resource

	3.5.5 Query
	3.5.5.1 Editing a Query Resource

	3.5.6 Service
	3.5.6.1 Service Example
	3.5.6.2 Editing a Service Resource

	3.5.7 Templates
	3.5.7.1 Template and Report Pages
	3.5.7.2 Editing a Template Resource

	3.5.8 Environment
	3.5.8.1 Editing an Environment Resource

	3.6 Installing Components
	3.6.1 Using Component Manager
	3.6.2 Using Component Wizard
	3.6.3 Using ComponentTool

	4 Changing the Look and Navigation of the Content Server Interface
	4.1 Modifying the Content Server Interface
	4.1.1 Skins and Layouts
	4.1.1.1 Types of Skins and Layouts
	4.1.1.2 Selecting Skins and Layouts
	4.1.1.3 Configuration Entries
	4.1.1.4 Anonymous User Interface

	4.1.2 Customizing the Interface
	4.1.2.1 About Dynamic Publishing
	4.1.2.2 Creating New Layouts

	4.1.3 Optimizing the Use of Published Files
	4.1.3.1 Bundling Files
	4.1.3.2 Referencing Published Files

	4.2 Using Dynamic Server Pages to Alter the Navigation of Web Pages
	4.2.1 About Dynamic Server Pages
	4.2.2 Page Types
	4.2.2.1 IDOC File
	4.2.2.2 HCST File
	4.2.2.3 HCSP File
	4.2.2.4 HCSF File

	4.2.3 Creating Dynamic Server Pages
	4.2.4 Syntax
	4.2.4.1 Idoc Script Tags
	4.2.4.2 Comparison Operators
	4.2.4.3 Special Characters
	4.2.4.4 Referencing Metadata

	4.2.5 Idoc Script Functions
	4.2.5.1 docLoadResourceIncludes Function
	4.2.5.2 executeService Function

	4.2.6 HCSF Pages
	4.2.7 Development Recommendations
	4.2.7.1 General Tips
	4.2.7.2 HCSF Tips

	4.2.8 HCSF Pages
	4.2.8.1 Load Section
	4.2.8.2 Data Section
	4.2.8.3 Form Section

	4.2.9 Working with Dynamic Server Pages
	4.2.9.1 Common Code for Forms

	5 Modifying System Functionality
	5.1 Changing System Settings
	5.2 Using Components
	5.3 Changing Configuration Information
	5.4 Customizing Services
	5.5 Generating Action Menus
	5.5.1 Creating Display Tables
	5.5.1.1 Headline View Tables
	5.5.1.2 Thumbnail View Tables

	5.5.2 Customizing Action Menus

	6 Integration Methods
	6.1 Overview of Integration Methods
	6.2 IdcCommand Utility
	6.2.1 Overview of IdcCommand
	6.2.2 IdcCommand Setup and Execution
	6.2.3 Command File
	6.2.3.1 Command File Syntax
	6.2.3.2 Precedence
	6.2.3.3 Special Tags and Characters

	6.2.4 Configuration Options
	6.2.4.1 Command File
	6.2.4.2 User
	6.2.4.3 Log File
	6.2.4.4 Connection Mode

	6.2.5 Running IdcCommand
	6.2.6 Using the Launcher
	6.2.6.1 Quoting
	6.2.6.2 Computed Settings
	6.2.6.3 Launcher Environment Variables
	6.2.6.4 User Interface
	6.2.6.5 Configuring the Launcher
	6.2.6.6 Configuration File Example

	6.2.7 Calling Services Remotely

	6.3 COM Integration
	6.3.1 ActiveX Interface
	6.3.1.1 Setting Up IdcCommandUX
	6.3.1.2 Calling IdcCommandUX from a Visual Basic Environment
	6.3.1.3 Calling IdcCommandUX from a Visual C++ Environment
	6.3.1.4 Executing Services
	6.3.1.5 Calling IdcCommandUX from an Active Server Page (ASP)
	6.3.1.6 Formatting with a Resource Include
	6.3.1.7 Connect to Content Server from a Remote System

	6.3.2 IdcCommandUX Methods
	6.3.2.1 addExtraheadersForCommand
	6.3.2.2 closeServerConnections
	6.3.2.3 computeNativeFilePath
	6.3.2.4 computeURL
	6.3.2.5 computeWebFilePath
	6.3.2.6 connectToServer
	6.3.2.7 executeCommand
	6.3.2.8 executeFileCommand
	6.3.2.9 forwardRequest
	6.3.2.10 getLastErrorMessage
	6.3.2.11 initRemote

	6.3.3 OCX Interface
	6.3.4 IdcClientOCX Component
	6.3.4.1 IdcClient OCX Description
	6.3.4.2 IdcClient OCX Control Setup

	6.3.5 IdcClient Events
	6.3.5.1 IIntradocBeforeDownload
	6.3.5.2 IIntradocBrowserPost
	6.3.5.3 IntradocBrowserStateChange
	6.3.5.4 IIntradocRequestProgress
	6.3.5.5 IntradocServerResponse

	6.3.6 IdcClient Methods
	6.3.6.1 AboutBox
	6.3.6.2 Back
	6.3.6.3 CancelRequest
	6.3.6.4 DoCheckoutLatestRev
	6.3.6.5 DownloadFile
	6.3.6.6 DownloadNativeFile
	6.3.6.7 Drag
	6.3.6.8 EditDocInfoLatestRev
	6.3.6.9 Forward
	6.3.6.10 GoCheckinPage
	6.3.6.11 Home
	6.3.6.12 InitiateFileDownload
	6.3.6.13 InitiatePostCommand
	6.3.6.14 Move
	6.3.6.15 Navigate
	6.3.6.16 NavigateCgiPage
	6.3.6.17 Refresh Browser
	6.3.6.18 SendCommand
	6.3.6.19 SendPostCommand
	6.3.6.20 SetFocus
	6.3.6.21 Show DMS
	6.3.6.22 ShowDocInfoLatestRev
	6.3.6.23 ShowWhatsThis
	6.3.6.24 StartSearch
	6.3.6.25 Stop
	6.3.6.26 UndoCheckout
	6.3.6.27 ViewDocInfo
	6.3.6.28 ViewDocInfoLatestRev
	6.3.6.29 ZOrder

	6.3.7 IdcClient Properties
	6.3.7.1 ClientControlledContextValue
	6.3.7.2 HostCgiUrl
	6.3.7.3 Password
	6.3.7.4 UseBrowserLoginPrompt
	6.3.7.5 UseProgressDialog
	6.3.7.6 UserName
	6.3.7.7 Working Directory

	6.3.8 ODMA Integration
	6.3.8.1 ODMA Client
	6.3.8.2 ODMA Interfaces

	6.4 RIDC Integration
	6.5 JSP Integration
	6.5.1 JSP Execution
	6.5.2 Tomcat
	6.5.3 Features
	6.5.4 Configuring JSP Support
	6.5.5 Loading Example Pages

	6.6 Java 2 Enterprise Edition Integration (J2EE)
	6.6.1 Content Integration Suite Architecture
	6.6.2 Accessing the UCPM API
	6.6.3 UCPM API Methodology

	6.7 Web Services
	6.7.1 Web Services Framework
	6.7.2 Virtual Folders and WebDAV Integration
	6.7.2.1 Virtual Folders
	6.7.2.2 WebDAV Integration

	7 Using Oracle UCM Web Services
	7.1 Overview of Oracle UCM Web Services
	7.2 Oracle UCM Web Services
	7.3 Installation and Configuration
	7.4 Security
	7.4.1 Configuring WS-Security through WS-Policy
	7.4.2 Configuring SAML Support
	7.4.2.1 Configuring a Keystore
	7.4.2.2 Configuring Server JPS to Use the Keystore
	7.4.2.3 Creating a Client CSF
	7.4.2.4 Configuring a Java Client to Use the Keystore and CSF

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

