

Oracle® Fusion Middleware
Developer's Guide for Site Studio for External Applications

11g Release 1 (11.1.1)

E13650-01

May 2010

Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications, 11g Release 1 (11.1.1)

E13650-01

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: Will Harris

Contributor: Adam Stuenkel, David Wyman, David Truckenmiller, Sean Cearley, Ron van de Crommert

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents ... viii
Conventions ... viii

1 About Site Studio for External Applications

1.1 Understanding the Site Studio Project Structure ... 1-1
1.2 Understanding Site Studio Site Files.. 1-2
1.3 Understanding the Site URL Format.. 1-2
1.4 Understanding Site Studio JSP/JSPX Templates ... 1-3
1.5 Understanding Security and Contributor Authentication.. 1-3
1.6 Understanding Content Caching.. 1-5
1.7 Understanding Service Caching with the Site Studio Tag Library...................................... 1-5

2 Understanding Site Studio Web Sites

2.1 Separation of Site Presentation and Content .. 2-1
2.2 Site Asset Storage.. 2-3
2.3 Site Roles .. 2-4
2.4 Presentation Model... 2-5
2.5 Contribution Model .. 2-6
2.6 Site Object Hierarchy.. 2-7
2.7 Reusing Site Assets .. 2-10
2.8 Elements and Element Definitions .. 2-11
2.9 Region Templates and Region Definitions... 2-13
2.10 Placeholders and Placeholder Definitions.. 2-15
2.11 Subtemplates... 2-17
2.12 Page Templates... 2-18
2.13 Contributor Data Files and Native Documents... 2-20
2.14 Primary and Secondary Pages ... 2-21

3 Planning Your Web Site

3.1 Why is Planning Important? ... 3-1
3.2 Planning Your Site Hierarchy ... 3-3
3.3 Planning Your Contribution Model ... 3-5

iv

3.4 Planning and Naming Your Site Assets .. 3-6
3.5 Creating Your Site Assets .. 3-7
3.5.1 Step One: Create Your Element Definitions .. 3-7
3.5.2 Step Two: Create Your Region Definitions .. 3-8
3.5.3 Step Three: Create Your Region Templates ... 3-8
3.5.4 Step Four: Create Your Subtemplates... 3-9
3.5.5 Step Five: Create Your Placeholder Definitions ... 3-10
3.5.6 Step Six: Create Your Page Templates... 3-10

4 Building a Site Studio Web Site Tutorial

4.1 Creating a Site Studio Project and Connection... 4-1
4.1.1 Step 1: Creating a New Application and Project... 4-1
4.1.2 Step 2: Creating a Content Server Connection .. 4-2
4.1.3 Step 3: Adding the Connection to the Project.. 4-2
4.2 Creating a Sample Web Site .. 4-3
4.2.1 Step 1: Creating a New Web Site in the Content Server .. 4-3
4.2.2 Step 2: Specifying User Credentials for Contribution Mode... 4-3
4.2.3 Step 3: Editing the Web Application Deployment Descriptor 4-4
4.2.4 Step 4: Creating the Home Page .. 4-4
4.2.5 Step 5: Associating the Page Template with the Site .. 4-5
4.2.6 Step 6: Running the Site and Viewing the Home Page .. 4-5
4.2.7 Step 7: Creating Site Fragments... 4-6
4.2.8 Step 8: Creating the Element Definitions ... 4-9
4.2.9 Step 9: Creating a Region Definition... 4-9
4.2.10 Step 10: Creating a Region Template ... 4-10
4.2.11 Step 11: Creating a Placeholder Definition ... 4-10
4.2.12 Step 12: Adding a Placeholder to the Home Page ... 4-11
4.2.13 Step 13: Assigning Content to the Placeholder .. 4-11
4.3 Creating Sidebar Links.. 4-12
4.3.1 Step 1: Creating a Static List Element Definition ... 4-12
4.3.2 Step 2: Creating a Sidebar Region Definition ... 4-13
4.3.3 Step 3: Creating Static List Data File .. 4-13
4.3.4 Step 4: Creating a Region Template ... 4-13
4.3.5 Step 5: Updating the Sidebar Fragment .. 4-14
4.3.6 Step 6: Creating a Sidebar Content Region Definition .. 4-15
4.3.7 Step 7: Creating a Sidebar Content Region Template ... 4-15
4.3.8 Step 8: Creating a Sidebar Content Placeholder Definition.. 4-16
4.3.9 Step 9: Adding a Sidebar Placeholder Mapping to the Site.. 4-16
4.3.10 Step 10: Assigning Content to the Sidebar .. 4-16
4.4 Creating A Dynamic Conversion Page... 4-17
4.4.1 Step 1: Creating a Conversions Definition .. 4-17
4.4.2 Step 2: Creating a Page Template for the Native Document...................................... 4-18
4.4.3 Step 3: Creating a New Section for the Native Document.. 4-19
4.4.4 Step 4: Creating a Region Definition for the Native Document................................. 4-19
4.4.5 Step 5: Creating a Region Template for the Native Document.................................. 4-20
4.4.6 Step 6: Creating a Placeholder Definition for the Native Document 4-20
4.4.7 Step 7: Adding the Placeholder to the Native Document Page 4-21

v

4.4.8 Step 8: Assigning Content to the Placeholder on the Native Document Page 4-21

5 Site Studio Application Components and Technology

5.1 Site Studio Application Components... 5-1
5.2 Site Studio Technologies .. 5-2
5.2.1 Site Studio Servlets .. 5-2
5.2.2 Site Studio Filters ... 5-2
5.3 Using Site Studio Technologies in Your Integration.. 5-3

6 Site Studio Tag Library and Helper Methods

6.1 Site Studio Tag Library .. 6-1
6.1.1 Site Studio Tag Descriptions .. 6-1
6.1.2 Site Studio <wcm:context> Tag ... 6-2
6.1.3 Site Studio <wcm:dataFile> Tag.. 6-3
6.1.4 Site Studio <wcm:dynamicConversion> Tag .. 6-4
6.1.5 Site Studio <wcm:dynamicList> Tag.. 6-4
6.1.6 Site Studio <wcm:idcParameter> Tag .. 6-5
6.1.7 Site Studio <wcm:idcService> Tag.. 6-6
6.1.8 Site Studio <wcm:metadata> Tag.. 6-7
6.1.9 Site Studio <wcm:placeholder> Tag ... 6-7
6.1.10 Site Studio <wcm:staticPlaceholder> Tag.. 6-8
6.1.11 Site Studio <wcm:url> Tag... 6-8
6.2 Site Studio Helper Methods .. 6-9
6.2.1 Site Studio <filterSections> Method .. 6-10
6.2.2 Site Studio <listSectionsForRows> Method.. 6-10
6.2.3 Site Studio <isNodeInNavigationPath> Method .. 6-11
6.2.4 Site Studio <lookupSection> Method .. 6-12

Index

vi

vii

Preface

The Developer's Guide for Site Studio for External Applications contains information
to assist individuals who are responsible for the design and development of Web sites
using Site Studio for External Applications and managed by Oracle Content Server.

Audience
This document is intended for those people identified in the organization who are
responsible for designing an organization's Web site managed by Site Studio.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

viii

Related Documents
For more information on Oracle Site Studio for External Applications and associated
technologies, see the following documents:

■ Oracle Fusion Middleware Site Studio for External Applications Java API Reference

■ Oracle Fusion Middleware Services Reference Guide for Universal Content Management

■ Oracle Fusion Middleware Remote Intradoc Client (RIDC) Java API Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

About Site Studio for External Applications 1-1

1About Site Studio for External Applications

Site Studio for External Applications is a powerful, flexible web development tool that
offers a comprehensive approach to designing, building, and maintaining
enterprise-scale Web sites in an Application Server environment. Web site
development and template creation is performed in the JDeveloper environment. Site
assets, such as files and graphics, are stored and managed in the content server. Page
templates, region templates, and subtemplates (which are typically JSP or JSPX pages)
are located in the WAR file of the web application associated with your JDeveloper
project.

Site Studio for External Applications dramatically improves productivity and allows
organizations to maintain accurate, timely, and current web content with consistent
branding and presentation across all corporate sites. With Site Studio, you can
centralize control of site architecture and presentation, while distributing content
development and ongoing maintenance to business units or other teams. Additionally,
Site Studio for External Applications can be integrated with third-party applications
servers.

This section covers the following topics:

■ "Understanding the Site Studio Project Structure" on page 1-1

■ "Understanding Site Studio Site Files" on page 1-2

■ "Understanding the Site URL Format" on page 1-2

■ "Understanding Site Studio JSP/JSPX Templates" on page 1-3

■ "Understanding Security and Contributor Authentication" on page 1-3

■ "Understanding Content Caching" on page 1-5

■ "Understanding Service Caching with the Site Studio Tag Library" on page 1-5

1.1 Understanding the Site Studio Project Structure
This is the basic structure of a Site Studio project:

+ Site Files
 + templates
 + page
 + region
 + subtemplates
+ Web Content
 + wcm
 + WEB-INF
 + sites
 - wcm-config.xml

Understanding Site Studio Site Files

1-2 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

 - web.xml
 - weblogic.xml

Please note the following nodes and files:

■ Site Files: This is a virtual node that points to the Web Content/wcm node.

■ Web Content/wcm: This node contains the page templates, region templates, and
subtemplates for this project.

■ Web Content/WEB-INF: This node contains the XML descriptor files and
configuration files.

■ WEB-INF/sites: This node contains the XML files that store the data and
configuration information for the Site Studio site. See "Understanding Site Studio
Site Files" on page 1-2 for more information.

■ WEB-INF/wcm-config.xml: The Site Studio configuration file.

■ WEB-INF/web.xml: The web-app XML descriptor file.

■ WEB-INF/weblogic.xml: The Oracle WebLogic deployment descriptor file.

1.2 Understanding Site Studio Site Files
In JDeveloper, Site Studio site files are located in the sites directory of your Site
Studio project (from the main menu, select View then Application Navigator then
Projects then expand Web Content then expand WEB_INF then sites). Site Studio site
files are XML files that store the data and configuration information for the Site Studio
site. The XML file is maintained on JDeveloper, but all content resides on the content
server.

The site files contain site-related information including:

■ The site hierarchy.

■ Properties of each site section (including associated page templates, region
templates, and content files, and custom section properties).

■ Explicit data file associations (for example, which content files are used and their
location in the site).

■ Mappings of placeholder names to placeholder definitions.

■ Items in the asset pane (including how they are categorized).

1.3 Understanding the Site URL Format
The site URLs are hierarchical, allowing navigation through a given project file. They
have the following general format:

/[Site Identifier]/[Section 1]/[Section 2]/.../[content].html

■ Site Identifier: The path that identifies a site, the URL pattern listed in the
wcm-config.xml file.

■ Section: A list of sections, identified by the either the urlDirName attribute or the
label attribute in the project file.

■ Content: Can be the content ID (dDocName) of an item on Oracle Content Server,
or index to refer to the primary page.

Understanding Security and Contributor Authentication

About Site Studio for External Applications 1-3

For example, a path to the primary page of the About section:

/mysite/About/index.html

A path to a piece of content to display in the Products section:

/mysite/Products/new_product.html

1.4 Understanding Site Studio JSP/JSPX Templates
Templates (page templates, region templates, and subtemplates) in Site Studio are
typically JSP or JSPX pages. The templates are located in the WAR file of the Web
application, typically as a subdirectory of the /wcm/templates directory. Any
template type can contain any valid JSP syntax. However, it is assumed that the
templates will have the following structure:

■ Page Template: Contains wcm:placeholder tags that create areas in a page for
assignable content.

■ Region Template: For modeling data file content. Typically contains either a
wcm:dataFile tag or wcm:dynamicConversion tag to retrieve the assigned
content. It does not contain wcm:placeholder tags.

■ Subtemplate: Like a page template, but is typically responsible for a portion of a
page after being assigned to a placeholder. May contain other wcm:placeholder
tags.

Template Registration
Templates are registered with a unique identifier in the wcm-config.xml file. This
identifier is used to identify the template throughout the Site Studio application. The
identifiers are used in the project file to identify page templates (either primary or
secondary) and are used in placeholder definitions, to identify a region template or
subtemplate.

This template maps the name homepage to the path /wcm/templates/page/
homepage.jspx. When the homepage identifier is encountered, the
RequestDispatcher is invoked to include the path.

<mappings>
 <pageTemplates>
 <mapping path="/wcm/templates/page/homepage.jspx" id="homepage"/>
 </pageTemplates>
</mappings>

There is no requirement that the template has to point to a JSP or JSPX file. The
mapping can point to any valid web application resource. For example, a section could
point to another servlet for processing:

<mappings>
 <pageTemplates>
 <mapping path="/servlets/reserveMeetingRoom.do" id="reserveMeeting"/>
 </pageTemplates>
</mappings>

1.5 Understanding Security and Contributor Authentication
Communication with the content server is through the IntradocPort, typically port
4444 on the content server. This allows Site Studio to assume the role of any user. All
placeholder content is therefore retrieved as the user specified in the wcm-config.xml

Understanding Security and Contributor Authentication

1-4 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

file, on the contentServer element as the adminUser. Subsequently, all content
displayed in a placeholder (data files, native documents, etc.) and all content retrieved
through the proxy servlet perform a security check for read access.

Security Settings
In the wcm-config.xml file, the security element defines how security is handled. If
the enabled attribute is set to false, no security checks are performed in consumption
mode and all content displayed through the placeholder will be readable. Requests
through the proxy servlet will still be validated.

Depending on your content server configuration, you can also specify the level of
security using the securityType attribute (each level is in addition to the previous
level):

■ groups: Check security based on the content server security group.

■ accounts: After checking the group, check the security accounts.

■ acl: After checking the accounts, validate against any access control lists (ACLs).

Contribution & Design Mode Authentication
Contribution and design modes require authentication to the application server
running the site. This is done using the security settings in the web.xml file:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>ContributionMode</web-resource-name>
 <url-pattern>/wcm-contrib/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>WCMContributor</role-name>
 </auth-constraint>
</security-constraint>

<login-config>
 <auth-method>FORM</auth-method>
 <realm-name>OpenWCM</realm-name>
 <form-login-config>
 <form-login-page>/wcm/support/login/wcm-login.jsp</form-login-page>
 <form-error-page>/wcm/support/login/wcm-login.jsp</form-error-page>
 </form-login-config>
</login-config>

<security-role>
 <role-name>WCMContributor</role-name>
</security-role>

Upon selecting Ctrl+Shift+F5 on a page with placeholder content, the page is
refreshed to a URL with /wcm-contrib as the first segment. The application server
then validates that the user has the appropriate application role assigned to them via
the application server. The role name, as described in the web.xml, is
WCMContributor. If the user does not have this role, a login screen is presented and
the application server denies access until the credentials are validated and the role
condition is met.

The default login page can be customized by changing the web.xml to point at a
customized JAAS login page or by adding a local copy of the file
/wcm/support/login/wcm-login.jsp to your web application. This page will
then be used instead of the shared default version.

Understanding Service Caching with the Site Studio Tag Library

About Site Studio for External Applications 1-5

Once in contribution mode or design mode, the user ID is now used to validate
security and all placeholder content is retrieved live from the content server.
Additionally, the rendition is switched from Latest Released to Latest so the contributor
user can view content in workflow or otherwise not yet released.

1.6 Understanding Content Caching
Content is cached in a temporary location on the application server. This can be
customized to a particular location using the stagingDir attribute on the staging
element in the wcm-config.xml file. The content cache stores a local copy of all files,
associated metadata, and any associated conversions or renditions.

Any request for content first checks the local cache. If not found, the content server is
contacted and the content is placed into the cache. Note that no security information is
cached; all security calls go to the content server. Additionally, only Latest Released
content is cached; content retrieved during contributor or design modes (Latest
Rendition) is not put into the cache.

A background thread, controlled by the contentServer element using the
pollerInterval attribute, pings the content server at regular intervals to keep the
cache content up to date. A content server administrator can, using cache information,
request all caches be refreshed by visiting the Cache Administration page on the
content server at this URL (example):

http://localhost:16200/cs/idcplg?IdcService=SSXA_GET_ADMIN_PAGE

1.7 Understanding Service Caching with the Site Studio Tag Library
The caching facilities in Site Studio allow for the caching of service calls. Any service
call can be cached to the same location that content and metadata is currently cached.
The caching facility is defined using DataBinder properties:

1. Specify a special parameter to enable caching.

2. Determine the cache key using one of the following methods:

■ Specify a custom cache key.

■ Specify the local data fields to use to generate a key.

■ Allow the system to calculate the cache key by using a hash of all local data.

Caching Properties
All caching is controlled using properties set in the DataBinder. For JSP/JSPX, these
properties can be added with the wcm:idcParameter tag to either a
wcm:idcService call or a wcm:dynamicList call.

Parameters:

■ __ssxaCacheEnabled: Set to true to enable caching.

■ __ssxaCacheKey: Specify a cache key to use for this request. Optional.

■ __ssxaCacheFields: Specify a CSV list of fields to use to generate the cache key
(if not specified, all local data is used). Optional.

■ __ssxaCacheTTL: Specify a time to live value, in milliseconds, for the cached
data. If not specified, the default value of 5 minutes is used. If specified a value of
0 or less, the cache item will live indefinitely (no timeout). Optional.

Understanding Service Caching with the Site Studio Tag Library

1-6 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

Example of caching a dynamic list, with the value being refreshed every 60 seconds:

<wcm:dynamicList var="searchResponse" element="nativedocs">
 <wcm:idcParameter name="__ssxaCacheEnabled" value="true" />
 <wcm:idcParameter name="__ssxaCacheTTL" value="60000" />
</wcm:dynamicList>

Example of caching a GET_SEARCH_RESULTS service call:

<wcm:idcService var="dataBinder" service="GET_SEARCH_RESULTS">
 <wcm:idcParameter name="QueryText" value="" />
 <wcm:idcParameter name="__ssxaCacheEnabled" value="true" />
</wcm:dynamicList>

Cache Details
Service calls are staged into the cache directory, alongside the content, metadata and
project files. The directory /idc-service is created with this directory structure:

 /idc-service/service_name/user_name/cacheID.hda

This example shows a cache directory for a search results:

+- idc-service/
 +- ssxa_get_dynamic_list_results/
 +- anonymous/
 +- 3164744485.hda
 +- get_search_results/
 +- anonymous/
 +- 2452981209.hda

2

Understanding Site Studio Web Sites 2-1

2Understanding Site Studio Web Sites

Site Studio provides a powerful set of tools that can allows you to design, build, and
maintain Web sites efficiently. To get the most out of these tools, it is useful to
understand some basic concepts about Site Studio Web sites.

This section covers the following topics:

■ "Separation of Site Presentation and Content" on page 2-1

■ "Site Asset Storage" on page 2-3

■ "Site Roles" on page 2-4

■ "Presentation Model" on page 2-5

■ "Contribution Model" on page 2-6

■ "Site Object Hierarchy" on page 2-7

■ "Reusing Site Assets" on page 2-10

■ "Elements and Element Definitions" on page 2-11

■ "Region Templates and Region Definitions" on page 2-13

■ "Placeholders and Placeholder Definitions" on page 2-15

■ "Subtemplates" on page 2-17

■ "Page Templates" on page 2-18

■ "Contributor Data Files and Native Documents" on page 2-20

■ "Primary and Secondary Pages" on page 2-21

2.1 Separation of Site Presentation and Content
One thing that makes Site Studio a valuable tool is that it allows Web site content to be
completely separate from Web site presentation. This way, different people can
manage and be responsible for the information on a Web site without inadvertently
affecting the layout, design, or look-and-feel of the site. In addition, the people
assigned to manage the site content can make changes as necessary without having to
send them to someone else to complete the task. This removes an important bottleneck
that exists in many site management scenarios, where all site changes must be handled
by a very limited number of site administrators.

Separation of Site Presentation and Content

2-2 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

With separation of site presentation and content in mind, the files associated with a
Web site can be divided into three main categories:

■ Site Presentation Files

■ Site Content Files

■ Site Control and Configuration Files

Site Presentation Files
A number of the files associated with a Site Studio Web site are used to define what the
site looks like in terms of page layout and formatting. They provide the design
framework within which the site content is displayed. Any changes to these files
typically affect the entire site (or large portions of it), and they are usually created and
managed by dedicated site designers.

Site Studio uses the following files for site presentation:

■ Page templates: Fully-formed HTML files that define the layout and high-level
look-and-feel of web pages, including the placement of contribution regions (that
is, editable areas on the page), navigation aids (in the form of fragments) and
site-wide images (banners and the like). Page templates are the highest-level site
design object. See "Page Templates" on page 2-18 for more information.

■ Region templates: Partial HTML files (that is, without head and body sections)
that define the layout and look-and-feel of the data in contribution regions within
web pages. See "Region Templates and Region Definitions" on page 2-13 for more
information.

■ Subtemplates: Partial HTML files (that is, without head and body sections) that
can be inserted into placeholders on page templates to divide them into further
smaller, reusable areas with their own placeholders and contribution regions. See
"Subtemplates" on page 2-17 for more information.

In addition to these files, which directly affect the site presentation, there are also
several files configuration files that have an impact on Web site presentation. See "Site
Control and Configuration Files" on page 2-3 for more information.

Site Content Files
The site content (that is, the actual information on the site) is stored in separately
managed files, separate from the presentation context in which they appear. This
enables them to be managed separately and reused within a Web site, or even between
Web sites (providing these sites are all managed using the same content server).

Site Studio uses the following files for site content:

■ Contributor data files: Content files in XML format that are generated by Site
Studio. Contributor data files are edited using the Site Studio Contributor
application. See "Contributor Data Files and Native Documents" on page 2-20 for
more information.

■ Native documents: Content files created using familiar third-party applications
such as Microsoft Word. Native documents are converted to HTML format using
Dynamic Converter, and they are edited using their associated application. See
"Contributor Data Files and Native Documents" on page 2-20 for more
information.

■ Images: Graphic files (JPG, GIF, PNG) that are included in content files or page
templates (for example, corporate banners or product images).

Site Asset Storage

Understanding Site Studio Web Sites 2-3

■ Other media: Any other media files that could be used on a Web site, such as
Flash animations, video files, audio files, and so on.

Site Control and Configuration Files
In addition to the files that directly affect site presentation, there are several
configuration files that also have an impact on Web site presentation.

Site Studio uses the following files for site control and configuration:

■ Element definitions: Files that define the editing experience for element types.
Specifically, they specify what a contributor can do when editing an element. See
"Elements and Element Definitions" on page 2-11 for more information.

■ Region definitions: Files that define the type of content that elements of a
particular type consists of. They also specify the content creation and switching
options available to contributors for contribution regions, and set default metadata
for content files associated with these regions. See "Region Templates and Region
Definitions" on page 2-13 for more information.

■ Placeholder definitions: Files that define what region definitions, region
templates, and subtemplates are allowed for the associated placeholders. They
also specify what contributor actions are allowed for the placeholders. See
"Placeholders and Placeholder Definitions" on page 2-15 for more information.

■ Validation scripts: JavaScript files that define the validation rules for element data
to determine that the data meets the requirements (for example, it does not exceed
a certain maximum length or contain some illegal characters).

■ Conversion definitions: Files that specify the conversion rules for native
documents on a Web site.

■ Custom configuration scripts: JavaScript files that override the default
Contributor editor configuration to provide contributors with a customized
editing experience.

■ Custom element forms: HTML files that define custom forms for use in elements
(for example, selection forms for specific file types). Site Studio comes with several
predefined custom element forms. (These forms are also checked into the content
server when the Site Studio component is installed.)

2.2 Site Asset Storage
All files associated with a Site Studio Web site are stored and managed using Oracle
Content Server. A number of custom metadata fields specific to Site Studio are used to
specify where and how the files are used.

Site Roles

2-4 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

Figure 2–1 Site Studio Metadata Fields on Content Information Page of Site Asset

Site Studio uses the following metadata fields for all site-related files:

■ Web Site Object Type: Specifies the type of file for the Web site (for example,
“Data File,” Stylesheet,” “Region Template,” and “Placeholder Definition”).

■ Web Sites: Lists the Web site(s) that the file is associated with. This means that the
file can be used on the listed site(s), although it is not necessary. A file may be
associated with multiple Web sites, which means it can be reused between sites.
This makes multi-site management more efficient.

■ Exclude From Lists: Lists the Web site(s) for which a contributor has specified that
a particular content file (a contributor data file or native document) should not
display in dynamic lists on the Web site.

■ Web Site Section: Specifies where a content file is displayed by default on a Web
site (unless a target section is explicitly specified in the original hyperlink).

■ Region Definition: Specifies the region definition that a region template or
content file (contributor data file or native document) is associated with. This
determines how the file displays on the site and what contributors are allowed to
do. A region template and content file can be associated with only one region
definition, but a region definition may have many region templates and content
files associated with it.

Please note that some fields are automatically set as the file is created and checked into
the content server. Also, not all metadata fields are used for all site assets, since they
may not be relevant. For example, the xRegionDefinition metadata field is not used for
page template, since these are not associated with region definitions.

You can change the values of these fields on the content information page of a file, but
be carefully when doing that, since this may affect the way the file is used on a site.

2.3 Site Roles
When the various roles for Web site creation and management within the organization
are determined, each can focus on specific tasks in making the Web site work.

Designers focus on how the Web site looks. That is, the structure of the pages, the way
the pages are laid out, the design, and the corporate identity.

Presentation Model

Understanding Site Studio Web Sites 2-5

Contributors are then able to place the content on the page without having to code the
pages. Contributors can then update and edit the content without affecting how the
page is displayed, and without having to make multiple changes to multiple areas of
the Web site. The designer, for the most part, does not control the content.
Contributors, for the most part, do not control how the content displays on the site.

2.4 Presentation Model
Site Studio completely separates the presentation layer from the content layer of a Web
site, as shown in Figure 2–2.

Figure 2–2 Presentation Model for Site Studio Web Sites

Page templates are used to define the site framework within which content is
displayed. They contain standard HTML layout and formatting code, along with Site
Studio tags to specify where fragments and/or placeholders go. Placeholders specify
where the contribution regions (that is, editable areas) are on the page. Please note that
they do not specify anything about what goes in these regions, both in terms of content
and visual presentation. That is handled by region templates (with their associated
region definitions).

Region templates define the layout and look-and-feel of the data in a contribution
region (marked on a page template using a placeholder tag). They are separately
managed site assets, which makes them easy to reuse within Web sites, or even
between Web sites. (Please note that in Site Studio releases prior to 10gR4 region
presentation was not separately managed, but included within page templates, or
'layout pages' as they were called in these previous releases.)

Contribution Model

2-6 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

The content of contribution regions is stored in data files, which are also separately
managed site assets. When it is time to generate a web page, Site Studio looks at the
placeholder on the page template, takes its associated region template and data file,
and merges these two to create HTML code that is inserted into the page template at
the position of the placeholder tag. This creates the final web page, which all content in
place, presented and formatted in accordance with the site and page settings.

2.5 Contribution Model
As with the presentation model, the contribution side of Site Studio Web sites
separates site content from presentation, as shown in Figure 2–3.

Figure 2–3 Contribution Model for Site Studio Web Sites

When site contributors decide that they want to edit the contents of a web page, they
press a key combination to reload the page in contribution mode. (The default key
combination is Ctrl+Shift+F5, but this may be modified.)

After a page is in contribution mode, all contribution regions (that is, editable areas) on
a web page are marked and underlying code has been added to the page to identify
what placeholder is associated with the contribution region. Based on this information,
Site Studio can establish what placeholder definition and region definition are used for
the placeholder. The region definition identifies the structure of the content in the
contribution region in terms of its constituent data segments (elements). Each element

Site Object Hierarchy

Understanding Site Studio Web Sites 2-7

has an element definition, which defines what editing options are available to
contributors for the element.

When the contributor decides to edit the content in a contribution region, its associated
contributor data file is checked out of the content server. The structure of the data file
matches that of its associated region definition in terms of number and types of
elements. The data is loaded from the data file and presented in the Contributor editor.
Each element in the data file is presented as an editable element in the editor, with the
editing features as defined in the element definition for the element type.

When the contributor is done editing and clicks the save icon in the Contributor editor,
the data file is updated and checked into the content server again. The web page is
then updated in accordance with the site update schedule.

Please note that the Contributor editor always shows all elements in the region
definition (and hence, data file) associated with a contribution region, even if they are
not used in that particular region. The other elements may be used elsewhere on the
Web site, so editing that information may affect other pages on the site.

2.6 Site Object Hierarchy
Figure 2–4 shows the hierarchy of site objects that are used to create and manage a Site
Studio Web site.

Figure 2–4 Object Hierarchy of Web Sites

Page templates are at the top of the hierarchy. They provide the framework for the
pages in a Web site within which the site content is displayed. In addition to standard
HTML layout and formatting code, they contain site-wide images and other assets,

Site Object Hierarchy

2-8 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

and tags for fragments and/or placeholders. Page templates are stored and managed
on the content server. See "Page Templates" on page 2-18 for more information.

A placeholder is an insertion point on a page template to identify where there is a
contribution region (that is, editable area) on the web page. What that contribution
region contains and what it looks like is defined using region templates and region
definitions. A page template may contain multiple placeholders. There are no files
associated with placeholders. Placeholders are controlled by placeholder definitions,
which specify what content can go in the contribution region and how it is displayed,
as well the actions available to contributors (for example, switching content or
modifying metadata). A placeholder contains either one subtemplate or one region
template. See "Placeholders and Placeholder Definitions" on page 2-15 for more
information.

A subtemplate is a partial HTML file (that is, without a head and body section) that
provides a mechanism to divide a placeholder on a page template into further smaller,
reusable areas with their own placeholder(s). There is a circular relationship between
placeholders and subtemplate; that is, a placeholder may contain a subtemplate,
which, in turn, may include one or more placeholders. Subtemplates are stored and
managed on the content server. See "Subtemplates" on page 2-17 for more information.

A region template is a partial HTML file (that is, without a head and body section)
that defines the layout and look-and-feel of the data in a contribution region (marked
on a page template using a placeholder tag). Region templates are controlled by region
definitions, which define what kind of content can go in the region template. They also
specify the content creation and switching options available to contributors for the
contribution region, and set default metadata for content files associated with the
region. Both region templates and region definitions are stored and managed as
separate assets on the content server. A region template may have one or more
references to elements. See "Region Templates and Region Definitions" on page 2-13
for more information.

Elements are the smallest chunks of reusable information in a Site Studio Web site.
They are referenced in region templates, which causes their data to be pulled into the
region template using the layout and presentation defined in the template. A region
template may contain multiple element references. There are no files associated with
elements. Groups of elements are arranged in region definitions, which specify site
content types. Elements are controlled by element definitions, which specify the editing
experience available to contributors for an element type. Specifically, they set the
available editing features in the Contributor editor when a contributor is editing
elements in a contributor data file. See "Elements and Element Definitions" on
page 2-11 for more information.

Figure 2–5 shows an example of a site object hierarchy.

Site Object Hierarchy

Understanding Site Studio Web Sites 2-9

Figure 2–5 Example of Site Object Hierarchy

In Figure 2–5, there is a placeholder (that is, an editable contribution region on a page
template) that has two region templates available to it (as specified in the placeholder
definition). Region template A shows a limited data view, with just the title and a brief
introductory text. Region template B presents a more elaborate data view, with the
title, subtitle, body text, and an image. Either can be used for the placeholder,
depending on the site context. Both region templates are associated with a region
definition that has elements for each of the reusable chunks of information (Title,
Subtitle, Intro_Text, Body_Text, and Image). Each of these elements is associated with
an element definition.

The Title and Subtitle elements are of the same type (text only), but they have different
element definitions, which means that the editing features available to contributors are
different. The Intro_Text and Body_Text elements are both WYSIWYG elements, which
typically means that contributors have a broad array of editing options available to
them when editing these elements (for example, the ability to add tables or use
advanced text formatting). The editing experience for contributors is the same for
these elements.

One or more contributor data files are associated with the region definition, and
ultimately with the contribution region. Their structure matches that of the region
definition. They contain the same elements: Title, Subtitle, Intro_Text, Body_Text, and
Image. When a contributor decides to edit the content in a contribution region, its
associated contributor data file is loaded into the Contributor editor, which provides
one editing area for each element in the data file. The editing features available in each
area are set by the element definition.

Reusing Site Assets

2-10 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

2.7 Reusing Site Assets
One of Site Studio's most useful and powerful features is the ability to reuse site assets
within a Web site and even across multiple sites (providing these sites are all managed
on the same content server). When an asset is changed once, it is changed everywhere
that asset is used. It is no longer necessary to keep track of all instances of a piece of
data to ensure that all of the web pages are updated. This applies both to files
associated with site presentation and site content (see "Separation of Site Presentation
and Content" on page 2-1). Page templates, region templates, elements, and the like are
most efficiently used when they are used multiple times. Similarly, the same content
files can be displayed in different locations on a site, either completely or partially
(different segments), to suit the context.

Figure 2–6 and Figure 2–7 show an example of site content being reused. In Figure 2–6,
you can see a list of items consisting of a title, image, and subtitle. This information is
taken from separate contributor data files. Each of these list items could be
hyperlinked to open the full page as shown in Figure 2–7. In fact, this is the type of
design that you see on many sites. That is, information is displayed on a primary page,
and the full information is shown on a subsequent page when you click a link.

Figure 2–6 Web Page With Introductory Content

Elements and Element Definitions

Understanding Site Studio Web Sites 2-11

Figure 2–7 Web Page With Full Content

The web page in Figure 2–7 displays many of the same pieces of information. That is
because the same data file is being used on both the region template in Figure 2–6 and
the page in Figure 2–7. The elements are the same as well. An image-only element
would be used to present the image, for instance, and a text-only element to present
the title, with WYSIWYG possibly being the element type used to display the
remaining information. There are few elements, typically, necessary in creating a Web
site, as one WYSIWYG element can be used anywhere on the Web site where you may
want that style of editing for the contributor.

Because site assets are intended to be reused across the Web site, it is particularly
important that the Web site is fully planned out before the designer creates anything in
the Web site. See Chapter 3, "Planning Your Web Site" for more information.

2.8 Elements and Element Definitions
Elements are the smallest chunks of reusable information in a Site Studio Web site (for
example, a title, a product image, or the body text of a press release). Since element
data can be reused within (or even between) Web sites, you, as the site designer,
should carefully consider how the site content should be broken up into segments.
This may take some work up front, but maximizes reusability of site content and also
makes managing the site content more efficient in the long run.

Each defined element is of a particular type: WYSIWYG, text only, image only, static
list, dynamic list, or custom. These types characterize what the element content
consists of, and, through element definitions, what editing options are available to
contributors. For example, the title of a press release could be set up as a text-only

Elements and Element Definitions

2-12 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

element (which typically provides only limited editing options to contributors),
whereas the actual press release text could be a WYSIWYG element (which typically
gives contributors much more editing control, such as the capability to add images or
tables).

Elements are controlled by element definitions. An element is basically an instantiation
of its associated element definition, which specifies the editing experience available to
contributors for the element on the web page (specifically, what editing features are
available in the Contributor editor). Element definitions are individually managed site
assets, which means that they can be reused within a Web site, or even across Web sites
(providing all sites are managed on the same content server). As shown in Figure 2–8,
elements of the same type (Title and Subtitle) may have different element definitions
associated with them to provide different editing environments for contributors
depending on the context in which the element is used. Similarly, multiple elements
(Intro_Text and Body_Text) may share the same element definition, providing the
same editing experience to contributors for each of the elements.

Figure 2–8 Elements and Element Definitions

Individual elements are not separately managed site asset. Groups of elements are
arranged in region definitions, which specify site content types. As shown in
Figure 2–8, there could be a region definition called “Press_Release,” which consists of
the elements Title, Subtitle, Intro_Text, Body_Text, and Image. A region definition
could thus be thought of as a 'content class'.

Element data is stored in contributor data files associated with region definitions. Each
contributor data file contains an instance of each element from its associated region
definition. In the example of Figure 2–8, the contributor data files would have five
elements called Title, Subtitle, Intro_Text, Body_Text, and Image. Contributors can edit
the element data in the contributor data files using the editing features available to
them for each element, as set in the associated element definitions.

Region Templates and Region Definitions

Understanding Site Studio Web Sites 2-13

2.9 Region Templates and Region Definitions
Region definitions define the types of content used on a Web site. They could be
thought of as 'content classes'. They are essentially groups of individual elements
which define the various chunks of reusable information for a particular site content
type. For example, as shown in Figure 2–8 on page 2-12, there could be a region
definition ('content class') called “Press_Release,” which consists of the elements Title,
Subtitle, Intro_Text, Body_Text, and Image. Contributor data files are associated with a
region definition to store the data for each element in the region definition. (What a
contributor can do with the data is controlled by element definitions; see "Elements
and Element Definitions" on page 2-11.)

In addition to defining site content types in terms of its constituent parts (elements),
region definitions also specify the content creation and switching options available to
contributors for its associated contribution region(s). For example, if a contribution
region is set up to allow contributors to switch the content of that region, they might
be allowed to use existing contributor data files on the server only (not native
documents or new contributor data files). (Please note that placeholder definitions
control whether contributors can actually switch content in contribution regions.)
Finally, region definitions also set the default metadata for content in contribution
regions as it is checked into the content server.

Region templates define the layout and look-and-feel of the data in contribution
regions within web pages. They are partial HTML files in that they do not have a head
and body section. This allows them to be inserted into other HTML code as the web
pages are generated for the Site Studio site.

Region templates consist of layout and formatting code, along with Site Studio tags to
specify where elements (from contributor data files) or dynamic conversions (of native
documents) are placed. Some elements from contributor data files may be displayed in
some region templates, but not in others, which allows the information to be reused
across different pages (as shown in Figure 2–5 on page 2-9).

The site designer will probably create region templates more than any other site asset.
Region templates allow you to present the information in contributor data files or
native documents differently in various contexts of the Web site. As with elements, it is
worthwhile spending time considering how the information on your site should be
presented through region templates. Judicious use of region templates maximizes the
reusability of site content, and also makes site content management more efficient.

In short, region definitions specify what contribution regions on a web page contain,
whereas region templates define what contribution regions look like. In other words,
region definitions specify the structure (and attributes) of site content, and region
templates define the visual presentation of that content on a web page.

There can be multiple region templates for each region definition. This allows site
content to be displayed differently depending on the context within the site. If there
are multiple region templates for a region definition, then the default region template
is used unless a different one was specifically set to be used.

Region templates can be used to display information in multiple places in different
layouts, while using data from the same data files. A common example of this is a list
of items showing, for example, a title, a brief subtitle, and a small image. An example
of this is shown in Figure 2–9, which represents a region template (with sample
content) that shows these three elements arranged with the image on the left and the
title and subtitle on the right.

Region Templates and Region Definitions

2-14 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

Figure 2–9 Region Template With Limited Element Set From Region Definition

The content in Figure 2–9 could be hyperlinked to open a new page with a different
region template that shows the same data, but now with more elements from the data
file. Figure 2–10 shows an example of such a region template (with sample content),
with a title at the top and a subtitle, introductory text, and body text below it. The
region template also includes the image (although sized and positioned differently).
All content is taken from the same data file as used in Figure 2–9.

Figure 2–10 Region Template With Full Element Set From Region Definition

In the case of Figure 2–9 and Figure 2–10, the contribution regions could be set up to
allow contributors to edit the data on either page, but they would be editing the same
data file and any changes would be reflected in all places where the data file is used.
Please note that if contributors edited the data file from the region template showing
the limited element set (Figure 2–9), they would see all elements of the data file in the
Contributor editor, even though not all elements are being used in that particular
context.

Placeholders and Placeholder Definitions

Understanding Site Studio Web Sites 2-15

2.10 Placeholders and Placeholder Definitions
A Placeholder is an insertion point (a tag) on a page template (see "Page Templates" on
page 2-18) to identify where there is a contribution region (that is, editable area) on the
web page. A placeholder is represented by a simple tag:

<!--$wcmPlaceholder("Name")-->

What the contribution region identified by the placeholder contains, and how it looks
on the site, is defined using region templates and region definitions (see "Region
Templates and Region Definitions" on page 2-13). A page template may contain
multiple placeholders, each of which representing a contribution region on the page.
There are no files associated with placeholders.Figure 2–11 shows a representation of a
web page that contains one placeholder, marked with a dotted line (with sample
content).

Figure 2–11 Placeholder on Web Page (With Sample Content)

When you insert a placeholder in a page template, all you are doing is marking a
named position in the template where content may be inserted. To control how content
is handled at that position, you must associate the placeholder name with a placeholder
definition. Placeholder definitions specify what content can go in the contribution
region and how it is displayed, and the actions available to contributors. For example,
a placeholder may be set up to allow contributors to update the metadata of content
displayed in the contribution region, or they may be allowed to switch the content of
contribution regions. (Please note that region definitions control what kind of content
contributors can switch to.)

Placeholders and Placeholder Definitions

2-16 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

Associating a placeholder with a placeholder definition (also called 'mapping') can be
done in several ways:

■ At the site level (using global mappings): You can set up default placeholder
mappings that apply to the entire site unless any section-level or placeholder-level
overrides are specified. You do this in Designer by opening the Tools menu and
then choosing Define Placeholder Definition Mappings. This enables you to
associate placeholder names with placeholder definitions for primary and
secondary pages. The placeholder names are subsequently referenced in page
templates. Placeholder names may be used on multiple templates in multiple
sections and the mappings still apply.

■ At the section level (using a section property): You can also set a specific
placeholder definition mapping for the primary and/or secondary page of a site
section. If you establish the mapping in this way, then it replaces any mapping that
may have existed at the site-wide (global) level. Please note that the section where
you do this now uses different mapping from any other section where the same
placeholder is used.

■ At the placeholder level (using a parameter in the placeholder tag): You can also
set a specific placeholder definition for a specific placeholder. You do this by
adding the placeholderDefinitionDocName=[NAME] to the placeholder tag
(in source view). If you establish the mapping here, then this overrides all
section-level and site-wide (global) mappings. It also means that this template uses
this definition everywhere it used. The template then always uses the specified
definition regardless of where in the site it is used. Also note that the only way to
change this is to modify the template in source view. This would be considered the
least flexible way of specifying a definition mapping as it is hard-coded, but this
method can be used if desired.

■ As a catch-all (using Web site properties): You can set up a default placeholder
definition that is used if none of the three other methods above apply. You do this
by setting the Default Placeholder Definition property in the Web site properties
category of a site.

You can also set up a default placeholder definition, which serves as a catch-all
placeholder (if no other applies).

Placeholder definitions specify what content can go in a contribution region (as
marked by a placeholder tag) and how this content is displayed, as well the actions
available to contributors. For example, a placeholder may be set up to allow
contributors to update the metadata of content displayed in the contribution region, or
they may be allowed to switch the content of contribution regions. (Please note that
region definitions control what kind of content contributors can switch to.)

Placeholder definitions also specify what region definitions, region templates, and
subtemplates are available for the associated placeholder (that is, contribution region)
on the web page. Take, for example, a placeholder definition that allows three region
definitions: REGION_DEFINITION_1, REGION_DEFINITION_2, and REGION_
DEFINITION_3.

Region definition 1 has three associated region templates: A, B, and C, with region
template A being the default one. This means that region template A is applied to all
content files (contributor data files or native documents) associated with region
definition 1 unless a different region template was specifically set. You generally
associate a region definition with a content file when you create that file, although you
can always change this association on the content information page (see "Site Asset
Storage" on page 2-3).

Subtemplates

Understanding Site Studio Web Sites 2-17

2.11 Subtemplates
Subtemplates are the same as page templates, but do not have <HTML>, <HEAD>,
and <BODY> sections. As such, they are essentially chunks of HTML code that can be
inserted in page templates. Subtemplates may contain very simple HTML code, but
they can also be quite complex, with their own scripts and the like. The code in a
subtemplate is treated exactly as it would be when placed directly in a page template.

As shown in the site object hierarchy (Figure 2–4 on page 2-7), subtemplates can only
be placed within placeholders, and subtemplates may contain their own
placeholder(s). Subtemplates are typically used as a method of dividing a placeholder
(that is, contribution region) on a page template into further smaller, reusable areas
with their own placeholders, as shown in Figure 2–12. A placeholder can contain a
subtemplate that contains one of more other placeholders, each with their own
subtemplate or region template.

Figure 2–12 Subtemplate in a Placeholder

Please note that a good site design does not necessarily need subtemplates, and many
Web sites do not use them at all, since the addition of a subtemplate does mean that
the designer has an additional type of site asset to manage.

Subtemplates can be used to help reduce the number of page templates used in a Web
site. This would be done by creating one main page template that can be used as
broadly as possible for ease of reuse, and then in certain cases using subtemplates to
change a placeholder on the main page template into multiple placeholders using
subtemplates. This further allows reusability. A site designer can create a large area
with one placeholder, which can then be used and reused with a placeholder
containing a subtemplate with multiple placeholders in different layouts.

Page Templates

2-18 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

2.12 Page Templates
Page templates define the layout and high-level look-and-feel of web pages, including
the placement of contribution regions (that is, editable areas on the page), navigation
aids (in the form of fragments) and site-wide images (banners and the like). They
provide the framework within which site content is displayed.

Page templates consist of layout and formatting code, along with Site Studio tags to
specify where placeholders go. As such, they are typically light-weight in that they
only contain high-level references to where contribution regions go on the page; they
do not specify anything about what goes in these regions, both in terms of content and
visual presentation (see "Region Templates and Region Definitions" on page 2-13).
Page templates typically include site-wide graphics, such as corporate banners or page
layout images, and recurring, non-editable content, such as navigation aids or
standard page content (footers and the like).

The number of page templates required for a Web site depends on the site complexity,
but usually only a very limited number should be necessary. For example, it could be
sufficient to use one page template for the home page, and another page template for
all other pages. The variations of content displayed on the various Web site pages
could then be handled using region templates (and region definitions) within the
placeholders on the page templates. With fewer page templates, a Web site is easier to
maintain. This does require more work up front; that is, more thought must be put into
the design of a Web site, how the materials are laid out, and what information appears
in which sections of the Web site, and so forth. This also means that the site designer
should carefully consider what information contributors are allowed to change, and
what should remain fixed.

Figure 2–13 shows a generic page template that is often used for the homepage of a
Web site. It shows a banner image at the top, a navigation fragment on the left, a footer
fragment at the bottom, and several small placeholders in the center, each of which
representing some content. Placeholders do not delineate any page areas. They are no
more than insertion points that specify the location of a contribution region. What goes
in these regions and how it is presented is handled by region templates and region
definitions. Site visitors can then click this content to see the content in full. This full
content could be displayed in a page template that could potentially be used for all site
pages other than the homepage. Figure 2–14 shows a generic example of such a page
template. The template is basically same as for the homepage (Figure 2–13), but the
content area is now a single placeholder to show page content in full.

Page Templates

Understanding Site Studio Web Sites 2-19

Figure 2–13 Generic Page Template for the Home Page of a Web Site

Contributor Data Files and Native Documents

2-20 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

Figure 2–14 Generic Page Template for All Other Pages of a Web Site

2.13 Contributor Data Files and Native Documents
The content of Site Studio Web sites is stored in either of two file types: contributor
data files or native documents. These content files are stored on the content server, and
they are the files that contributors interact with when adding or editing Web site
content. You, as the site designer, decide which of these (or both) are used for a
particular Web site.

The content files for a Web site (contributor data files or native documents) are initially
selected or created by the designer or contributor, and modified by the contributor.
Contributors may be able to switch the content file associated with a contribution
region if the designer has specifically allowed this in the placeholder definition
associated with that region.

When a web page displays site content in a contribution region, it displays the content
through a region template and region definition, which define where and how each
named part of a content file displays within the page. You can assign a unique
contributor data file or native document to contribution regions, or assign the same file
many times, depending on whether you want to reuse specific content on your site.
You choose the name and metadata for the content file when you first create it and
check it into the content server. The names that you use for content files may be useful
when managing these files on your site. Also, the names that you choose may depend
on how often you are reusing content. See "Planning and Naming Your Site Assets" on
page 3-6 for more information.

Primary and Secondary Pages

Understanding Site Studio Web Sites 2-21

Contributor Data Files
Contributor data files are XML files that are created by Site Studio. Each contributor
data file is associated with one (and only one) region definition that defines its 'content
class' in terms of its constituent elements (see "Region Templates and Region
Definitions" on page 2-13). For example, if a region definition comprises four elements
called Title, Subtitle, Body_Text, and Image, then all contributor data files associated
with that region definition contain these same four elements. Each element in the
contributor data file can be edited in accordance with the element definition associated
with that element in the region definition (see "Elements and Element Definitions" on
page 2-11). The element definitions specify the editing options that are available to
contributors when they edit an element in a contributor data file. Some elements may
be set up to be plain text only with very limited formatting capability, while others
might be WYSIWYG (What You See Is What You Get), which generally offers a much
broader editing experience.

The content of contributor data files can easily be reused on a Web site; that is, it can be
displayed in different locations on a site, either completely or partially (different
elements), depending on where it is used. It is worth noting that when contributors
edit a contributor data file, they see all its elements in the Contributor editor, even if
only some elements are actually displayed in the contribution region being edited. The
other elements may be used elsewhere on the Web site, so editing that information
may affect other pages on the site.

Native Documents
Native documents are files that are created using familiar third-party applications such
as Microsoft Word. They are converted to HTML format using Dynamic Converter so
that they are viewable on the Web site. Dynamic Converter uses conversion rules and
templates to decide how to convert a native document. Native documents are edited
using their associated application (for example, Microsoft Word for '.doc' files).

The content of native documents can also be reused on a Web site, although native
documents are generally not as flexible in their reusability as contributor data files.
Judicious use of styles and other formatting features in Microsoft Word may overcome
some reusability drawbacks of native documents. One important benefit of using
native documents is that most contributors are already quite familiar with, say,
Microsoft Word, which makes this application an easy and convenient editing
environment for the site content.

2.14 Primary and Secondary Pages
The primary page of a site section is the page that is displayed when a visitor first
enters that section. Sections in the site hierarchy usually have a primary page assigned
to them, but this is not required. For example, a search results page, which you do not
want users to browse to directly, may only have a secondary page. You assign a page
template as the primary page of a site section.

The information on a primary page is statically linked. Contributors can change the
contributor data file on the primary page using the Contributor editor, and native
documents using their associated third-party application.

Secondary pages are optional for site sections, and they are typically used to
dynamically present content on a Web site. A secondary page can have static content,
but what makes secondary pages useful is their ability to have dynamically placed and
replaceable content. As such, they are used to create multiple versions of the pages
within a site section; they provide a different content view for a site section. Secondary

Primary and Secondary Pages

2-22 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

pages allow you to handle large sites without needing to physically create thousands
of pages.

A secondary page basically serves as the backdrop for content added to the site by a
contributor. Secondary pages are required if you allow contributors to add new
contributor data files or native documents (both of which amount to new web pages)
to the Web site. These files are made available to the site when they are picked up by a
dynamic list, a search, or the target of a link. Page templates can be configured as
secondary pages.

You can create a site comprised entirely of primary pages, but then you must create
sections with new primary pages in order for the site to grow. By using secondary
pages, your site can grow on its own from additional content submitted by
contributors, and you, the designer, do not have to do anything. Your site becomes
much more scalable with secondary pages.

One common use of secondary pages is with dynamic lists of hyperlinked items (for
example, press release titles, as shown in Figure 2–15), each of which, when clicked,
opens in full on a secondary page. More specifically, the target of the link opens in the
replaceable region on the secondary page of the same section (by default).

Figure 2–15 Dynamic List With Press Releases

3

Planning Your Web Site 3-1

3Planning Your Web Site

Planning is key to building a successful Web site with Site Studio. Before you begin
inserting text, graphics, and scripts into your page templates, you should ask “What is
the function or role of the site?” Is it a department-level site, a company-wide site, an
internal site, an external site? How many users will visit the site? How many users will
contribute to the site? Will there be different security access levels for each contributor?
Do you plan to replicate or publish the site? Is the site expected to grow over time?

These are all important questions to ask before you begin. We cannot predict your
particular needs, but we can suggest some key points that you should consider before
developing your site:

■ "Why is Planning Important?" on page 3-1

■ "Planning Your Site Hierarchy" on page 3-3

■ "Planning Your Contribution Model" on page 3-5

■ "Creating Your Site Assets" on page 3-7

3.1 Why is Planning Important?
Proper planning of the Web site helps determine how to maximize reusability of the
Web site through appropriate use and reuse of page templates, subtemplates, and
region templates.

It is important to understand that the more time spent on the planning process, the
easier the Web site and the site assets are to create and manage. You might think that
there is more time required to plan a managed Web site using Site Studio, but the
result is much less time spent managing the assets.

Proper planning is vital to making the site easier to run. In the beginning stages, it
might seem as if more time is being spent before any pages are complete compared to
older methods of creating a Web site. But the results of time spent properly planning
the Web site makes the construction of it through the site assets much easier, and the
maintenance of the Web site, especially when making later changes when the Web site
is live.

What Parts of the Site Will Be Reused?
When you consider the Web site, you should look at all content and all of the structure
and consider what is reusable, and what should be used only once. When considering
this, it could be thinking of simply the layout of the page, or it could be simply what
data is displayed, or it could be a consideration of a certain piece of data displaying in
a certain way.

Why is Planning Important?

3-2 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

Because there are so many ways of arranging and reusing the different parts of the site,
it may be helpful to look at these examples of organization and reuse to think about
while you consider your own Web site.

In a typical Web site, there is the navigation on the left, the banner graphic on top, and
a large central area with the information on the page itself. We would expect that the
banner and the navigation should be on all pages, so this would be placed on the page
template itself. But the information in the middle will obviously be different from page
to page. This is where the considerations are most important.

The way the information is organized is the most important consideration. When you
look at one page, it may have objects arranged in one column, or in an array, or broken
up with images. It's possible to arrange everything in one placeholder, but there is the
other aspect, where you can create smaller sections, each with its own smaller
contributor data file.

Consider a page on your Web site that would list open employment positions. You
could create the page such that it is one placeholder, listing all internal positions and
all external positions. Or you could create a subtemplate within that placeholder
(which would then contain separate placeholders and region templates, and so forth),
so that the external positions would be stored separately from the internal positions.
Each could be maintained in a separate contributor data file, so that the external Web
site would contain only the external announcements, and the internal Web site would
contain both the contributor data file with external announcements and the one with
internal announcements.

Another use would be where each department in the company could list their own job
openings; then, on one central page, you could collect all of those individual openings
and display them all. In these instances, you can use a subtemplate to easily manage
the differing numbers of placeholders.

Other considerations for how you lay the data out on the page, and how to organize
the placement of the data within the Web site, needs this kind of consideration on a
page by page basis.

You should consider these questions: Would it be best to use one placeholder on the
page template, then use a subtemplate to break that placeholder up into parts? Or
would it be better to have a few more page templates to allow for different placeholder
arrangements?

Another example would be an instance where you have a small piece of information
that does not necessarily need a separate page, but you would definitely want to reuse.
An example of this could be stockholder contact information, or possibly job
application information, separate from typical corporate contact information. The
information is not enough to necessarily warrant its own page.

In all of these cases, the page template would be the same. It would have the banner,
the navigation, a footer, and then in the middle, the placeholder representing the area
that can be replaced and filled with any information you need, structured exactly as
you need it. It was the consideration of how to use a subtemplate to further use a
placeholder or multiple placeholders within that template that enables you to keep the
single look that you need for all pages.

It would also be possible to achieve this layout with different page templates on each
page. Again, it depends on how you plan your site.

As you can see, the most important part of the site creation is to figure out how each
portion of the Web site, both in terms of structure and content, is displayed. With Site
Studio, the more time you invest in planning before you create, the less time you
spend creating the hundreds and even thousands of pages your Web site delivers.

Planning Your Site Hierarchy

Planning Your Web Site 3-3

3.2 Planning Your Site Hierarchy
The site hierarchy is the framework of your Web site. You should give yourself plenty
of time to plan the hierarchy before you start creating web pages. The site hierarchy
not only helps you organize and manage content on your site, but it is also used by
Site Studio to automate certain tasks.

How Deep Should the Hierarchy Be?
A deep hierarchy places information at multiple levels where information is heavily
categorized. This works well for large organizations or any organization that
anticipates growth on the Web site.

When planning the Web site, a lot of care should be taken in considering the hierarchy
of the web pages within the site. The Web site hierarchy can be as deep as you want,
and as deep as you want. You can create as many different sections from the home
page as needed, and a section can contain as many sections as needed as well.
However, the thing that should be kept in mind while designing the hierarchy is that
while the structure can be as wide as needed (that is, sections can be nested to any
depth), that this can create unwieldy URLs. The wider a section is nested in a Web site,
then the longer the URL is to retrieve that information. Usually this is a trivial
consideration, but for some designers this can be a major point.

Each section listed in the site hierarchy can have a primary page, and a secondary
page. Since secondary pages are the pages that have replaceable content, the secondary
pages are used to create multiple versions of the pages within a section. The primary
page within a section is the page that opens for that section, it could be considered the
landing page for that section.

How Will The User Navigate the Site?
While you use your site hierarchy to manage your site, visitors use your hierarchy to
browse to and locate content. In Site Studio, when you add a navigation fragment to a
page template, the fragment reads your site hierarchy and generates links that
comprise the overall site navigation. You can easily add, remove, and rename sections
of your site, and these changes are seen in your site navigation. You should think
carefully about the visitor's experience as you construct this hierarchy.

How Should the Sections Be Named?
Your site hierarchy has individual sections with names such as Products, Services, and
About Us. These names are important. They not only help you organize content on
your site, but they display in the navigation on the site, where visitors see it. It is a
good idea to revisit these names regularly to ensure that they reflect the content of the
sections they represent.

Another thing to consider as you assemble your site hierarchy is the Web site address
that contributors and site visitors see in their web browser address bar. By default, Site
Studio uses the names (labels) that you give to the sections in your site hierarchy.

You can override these values, if you like, by specifying a different path name and
page name for each section. It is best to plan this ahead of time to minimize any late
changes to the site address or paths used in the address, which could result in broken
links or missing shortcuts for contributors and site visitors.

How Reusable Should The Page Templates Be?
As you plan your site, you can create new page templates for each section, or you can
reuse page templates that are already being used in other sections. When you design to

Planning Your Site Hierarchy

3-4 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

use a small number of page templates, you then have fewer assets to manage, which
makes the entire Web site easier to manage.

By reusing page templates, you can maintain the look and feel of your Web site in one
or just a handful of page templates, and the changes are seen immediately across the
site.

By creating new and unique page templates in each section, you might have more
flexibility in the design of the site layout as a whole. You can create a unique design or
slightly modify a different page template to accommodate the content that display
there. However, if you make significant global changes to the site, then you have to
modify multiple page templates. This might become a repetitive task that lends itself
to mistakes and inconsistency.

If you choose multiple page templates, you should try to reuse fragments with
referenced snippets as much as possible so that you can make global changes to just
one or a handful of fragments.

However, through thoughtful use of subtemplates with the placeholders, it is typically
possible to reduce the number of page templates.

Should There Be Both Primary and Secondary Pages?
There are several ways to handle page templates. You can assign one primary page
and one secondary page for every section of your site hierarchy.

The primary page is the web page that users see when they go to that section on the
Web site (similar to the default page on a conventional Web site). The information on
the page is statically linked. Contributors can change the contributor data file or the
native document on the primary page, or the information in the data file through the
contributor interface.

The secondary page is a page that can have its content dynamically placed. A
secondary page can have static content, but what makes secondary pages useful is
their ability to have dynamically-placed content.

You can create a site comprised entirely of primary pages, but then you'll have to
create new sections with new primary pages in order for the site to grow. By using
secondary pages, your site can grow on its own from additional content submitted by
contributors, and you, the designer, do not have to do anything. Your site becomes
much more scalable with secondary pages.

Primary and secondary pages can have the same page template. The page template is
not related to whether the page using the template is primary or secondary.

How Will Content Be Reused?
You can share and reuse contributor data files and native documents across a single
Web site and even multiple Web sites in the content server. When you add these items
to your site, you specify a specific location, or multiple locations by reusing associated
site assets, where you would like them to appear.

You can even add content to your site that is not currently associated with any Web
site in the content server. You can show the same document on different sites, each
with its own look and feel, without having to create multiple versions of that same
document.

If you choose to do this, however, you must ensure that the content is appropriate for
the Web site and for public viewing. Workflows are good to implement to ensure this.
You also must ensure that you have a secondary page with a replaceable region
template in each section where the content appears.

Planning Your Contribution Model

Planning Your Web Site 3-5

Will A Manager Be Necessary?
You can create and manage the site hierarchy yourself, or you can hand this
responsibility over to a site manager. The site manager can create sections, modify
sections, and more.

These changes can significantly change the appearance and behavior of the site. You
should think about these changes and how they affect the structure of the site,
workflow, replication, the role of contributors, and much more.

3.3 Planning Your Contribution Model
As you plan the site hierarchy and prepare the assets for the Web site, you must think
about your contribution model. That is, how content gets placed on the site by users
(contributors and managers).

How Much of the Site Will be Provided by the User?
There are some things that the designer must add to the site, such as the background
color, positioning devices (HTML tables or CSS), site navigation, and custom scripts.
But much of the content for each web page (that is, the actual information on the page)
can be created and edited by a contributor.

To really harness the power of Site Studio, you should open up as much of the Web
site as possible to these users. This way, your Web site can be continuously updated
without the bottlenecks or delays typically associated with a Web site.

How Much Control Will the User Have?
On every page template, you can have one large contribution region or several small
contribution regions. Within a region template, you can have one or several elements,
each one appearing as a field where users (contributors) add and edit content.

There are different types of elements that can be used for specific purposes, like
adding and editing text, graphics, and updating lists. You can turn on or off certain
formatting attributes, such as the choice of typeface, font size, images, tables, and
custom properties. These choices depend on how much control you want the
contributor to have over a given web page. You can also enforce what content is added
using the validation feature or your own validation scripts.

Will There Be Different Security Access for Each User?
You should know your users, their role in the organization, and their knowledge of
web publishing before you give them access to the site. You may want to provide
equal access to all contribution regions on the Web site for all users, or you may want
to limit access for some and grant full access to others.

For example, you may want to provide full access to the entire web page for members
of the marketing department and access to only a portion of that page to all other
departments. To do this, you would set up different users on the content server, assign
a different contributor data file or native document to each region, and assign unique
security metadata (using the metadata framework on the content server) to those files.

As a result, only the files that a particular contributor has permission to edit will
display a contribution graphic (Figure 3–1) on them on the web page when in
contribution mode.

Planning and Naming Your Site Assets

3-6 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

Figure 3–1 Contribution Graphic

Sections of the Web site can also be marked so that only certain users can view them.
This is handled in the section settings within the Web site hierarchy. After the section
has limited access, the section is available for viewing (and editing, if you want) to
only those users that you want to have access.

Will Contributors Submit Native Documents?
In addition to adding and editing content stored in Site Studio data files, contributors
can also add native documents (created from applications like Microsoft Word, Excel,
or PowerPoint) to the site. These documents can be converted into web-viewable
renditions using dynamic converter component on the content server.

Contributors can add new and existing native documents directly to the Web site (for
example, by assigning one to a region, using the link wizard, or adding one to a
dynamic list).

If you allow contributors to submit native documents to the Web site (and again, you
control this in a contribution region, an element, and a list fragment), you should
educate them on how they should use the native document and any style guidelines
you may be enforcing.

How Will the Contribution Process Be Coordinated?
If you are the designer, manager, and contributor of your Web site, you know when
and where the site must be updated. If, as the designer, you are working with a single
contributor or manager, you must communicate the required updates for the site.
Specifically, you should inform them of certain changes to the site. The contributor,
however, may also alert you when content has been added.

If you are working with multiple users, communication can quickly become complex.
You must include some kind of communication process between users. One solution is
to introduce a formal review process using workflows. This means that various
persons review and approve site changes before they become live.

3.4 Planning and Naming Your Site Assets
Site assets in Site Studio are intended to be reused. Since the asset itself can be used in
not only different areas of a Web site, but also in different Web sites that you are
designing, the naming of each asset is important. With a good naming scheme, assets
can be more easily managed and more easily deployed in one or many areas of a Web
site, and one or many Web sites.

The best way to name an asset is to describe what it does and how it functions, rather
than by using a name based on where an asset is used in a Web site.

The first thought of many designers is to put the name of the Web site in the name of
each asset. This would group them when listing the contents of the content server. But
the difficulty here is when you run multiple Web sites, since all of the assets are
reusable. Rather than create an entirely new set of assets and definitions for a certain
section in your Web site, you can easily import the other assets you've already created.
In doing so, though, when the assets have the name of the other Web site in the name,
this can cause some issues of continuity, understanding, and even some confusion
regarding why some assets are present.

Creating Your Site Assets

Planning Your Web Site 3-7

Names of the assets should also avoid the place of the asset within the Web site as you
may run into some issues when reusing assets. For example, by naming a page
template originally intended to be the primary page template as primary_template,
there may be some confusion when that same template also ends up being used on the
secondary pages. Proper planning would have eliminated this issue, giving the
template a name such as page_template_with_2_placeholders.

Consider these two different methods of naming the site assets in your project:

Future updates are much easier to handle when the assets are named to describe what
they do, allowing you to place them as needed. This also means you do not have to
look in all managed Web sites for an asset that you have already created.

3.5 Creating Your Site Assets
After the Web site has been planned, the assets used to construct the Web site should
be created. For the most efficient use, it is recommended that you create these assets in
a particular order.

The most efficient method of asset creation for most Web sites is to build the assets
from the bottom up, starting with your element definitions.

■ "Step One: Create Your Element Definitions" on page 3-7

■ "Step Two: Create Your Region Definitions" on page 3-8

■ "Step Three: Create Your Region Templates" on page 3-8

■ "Step Four: Create Your Subtemplates" on page 3-9

■ "Step Five: Create Your Placeholder Definitions" on page 3-10

■ "Step Six: Create Your Page Templates" on page 3-10

It is not required that you create the assets in this order. However, your Web site can be
quickly and efficiently assembled if you follow this order.

3.5.1 Step One: Create Your Element Definitions
The most efficient assets to define first are the elements. Elements are the assets that
define the editing interface that the contributor uses. The specific use of each one is
handled through element definitions. By creating an element definition, you are
defining how the contributors work with the data files by defining the editing regions
and the toolbars accessible to the contributors.

In the element definition you can control exactly which editing features are available
to the contributor in the toolbar. For instance, you might not want the contributor to be

Naming convention with little planning
toward maintenance:

Naming convention with considered planning
toward maintenance

placeholder_def_1

p_def_2

default_definition

front_page_template

subtemplate_up

element_title

region_replace

element_def_WYSIWYG_fulledit

element_def_imageonly_minedit

placeholderdef_subtemplate_newslist

regiondef_customform

regiontemplate_title_and_body

pagetemplate_home

pagetemplate_errorhandler

Creating Your Site Assets

3-8 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

able to change the font size or color, but still be able to use bold and italics. Generally
you define at least one of each kind of element (WYSIWYG, text only, image only,
static list, dynamic list, and custom) and usually, you define two or more of each type
of element to allow for the different toolbars in Contributor.

The element definition is used to control the toolbar that the contributors can access to
edit the pages. However, it might be that you want to have several different definitions
for each element so that you can have multiple options of toolbars for the contributors,
rather than one or two. It is important to consider the role of the contributor and how
much they contribute on different pages.

It is highly recommended that you name the element definitions carefully, as naming
the elements with respect to place on the page or with the name of the site in them can
make reusing them less intuitive. It is not recommended that you name the element in
terms of its place on the page, within the Web site, or even by using the name in the
Web site within the element definition. The optimal method for naming an element
definition is to list a relative amount of access in the toolbar, such as element_
WYSIWYG_fulledit or element_text_undo_only.

Notice that the element definitions were named starting with the word element. That is
to make all elements appear together when searching for them in the content server.
Using other naming conventions such as including the name of the Web site would
also group the assets in the web server, but this would make the definitions less
intuitive to manage if you use the same definitions for multiple Web sites.

3.5.2 Step Two: Create Your Region Definitions
You should create region definitions before you create region templates. A definition
(region definition, placeholder definition, element definition) controls which data is
displayed and how the contributor interacts with the data. The template (region
template, subtemplate) control how the data is displayed. The region definition,
specifically, controls which elements (WYSIWYG, Image only, and so forth) open in
Contributor. The region template is used to arrange the placement of the elements and
how that particular data is displayed on the web page.

As you create a region template, you are asked to associate it with a region definition.
If the definition is not already defined, the region template is not easily associated with
the definition afterward.

The typical region definition contains multiple elements, and various combinations of
these elements are used on several different region templates. That is, the region
definitions are as broad and encompassing as possible. This allows multiple region
templates to access the same grouping of elements (but it does not have to be the same
data file) and arranging them in different ways.

Because the region definitions limit the availability of elements in the contribution
model, it is especially important to follow good naming conventions for region
definitions. This helps you sort out which definitions are best suited for the different
region templates you create.

3.5.3 Step Three: Create Your Region Templates
Region templates are the assets that format the data files into HTML. You use region
templates to place the content, such as text, images, or other simple items, that would
not be inside of an element, and the elements. The region templates are used to
arrange the elements (limited by the region definition) into the layout desired to be
reused as you see fit in the different places in your Web site.

Creating Your Site Assets

Planning Your Web Site 3-9

The region template has available to it only those elements that have element
definitions listed in the region definition for the template. However, the region
template does not have to use all elements listed in the definition. This allows for a
great deal of variety in the different templates available.

It is likely that region templates are the largest number of assets you create for the Web
site. Because of this, the naming convention you use in creating the region templates is
important. The name should help define what the template does, not where on the
page it is used or where in the Web site. A name such as regtem_titlebodyview or rt_
bodynoimage would likely be a more useful name when maintaining the site than
would, say regiontemplate14 or RT_SupportForum.

Since region templates can contain HTML and images and other assets (for example, a
region template-specific CSS) that are not part of the data file that is passed through
the elements, the templates can be used to incorporate some information and text that
is not editable by the contributor. However, it is important to understand that any of
that information is not part of the contributor data file that the contributor edits. This
means that as you reuse a region template, the data associated with it displays in the
same manner regardless of what data is associated with that region template. It also
means that the designer is the only person who would be able to modify that
particular data. The contributor would be able to create and edit any data that is
assigned to the elements in the region template through the placeholder, but anything
that is placed outside of the elements, but still within the region template, would be
static.

3.5.4 Step Four: Create Your Subtemplates
Subtemplates are major portions of HTML that can contain placeholders. This makes
them very useful as a way to reduce several page templates while still maintaining
several different ways the pages in the Web site can appear.

Subtemplates can only appear in a placeholder. Subtemplates can only contain a
placeholder, or static content such as HTML or an image. A subtemplate can also
reference a CSS file.

Is a Subtemplate Necessary for the Site?
One of the benefits of using a subtemplate is that you can reduce the number of page
templates used in a Web site. Through a subtemplate, you can have the same page
template used for both primary and secondary pages.

This is one reason why planning is essential. While a subtemplate can reduce the
number of page templates, it also means that you have a subtemplate to manage for
the Web site. Fewer page templates means that site-wide changes are easier to make.
Subtemplates can also add a level of static information because you can add HTML,
images, and other similar static site assets to a page that you may want placed on a
certain number of pages (such as the secondary pages) that would otherwise have to
be managed separately from the subtemplate.

The subtemplate can also help you place multiple placeholders within a single
placeholder. Since a placeholder can contain a subtemplate, and a subtemplate can
contain a placeholders, then it could be that you want the subtemplate present for
future Web site expansion that is still to be determined.

Creating Your Site Assets

3-10 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

3.5.5 Step Five: Create Your Placeholder Definitions
Placeholder definitions are what connect each placeholder to the content and other
assets associated with that placeholder to display.

How Will The Placeholder Function On The Page?
The placeholder, not to be confused with the placeholder definition, is simply a mark
on the page in the application to identify where there is a contribution region (that is,
editable area) on the web page. Placeholders are simply conceptual boundaries. The
actual amount of space that a placeholder uses on a web page is determined by the
size of the content placed in it.

The data associated with the placeholder depends on which page the placeholder is
on, which happens after the site structure is complete and you begin to place content
in the sections of the Web site.

It is the placeholder definition that determines how the placeholder functions, and
what the placeholder contains. This means that you should view the placeholder as an
available section for you to use and reuse content in broad areas. It is common to have
a page template, for instance, with only the navigation and the header image and
nothing but a placeholder in between. This placeholder would then be easily replaced
on any number of pages with the content specific to those pages. The content can be
broken down into smaller placeholders if your design planning has led you to create a
site based on a minimal number of page templates and using multiple placeholders
and subtemplates in different ways.

What Will The Placeholder Definition Control?
The placeholder is little more than a tag that is meant to define an area on the page
where the content is shown. The placeholder definition lists which region definitions
(and their associated region templates) and which subtemplates are available to pass
information through.

You can also control other details on a placeholder-by-placeholder basis through the
placeholder definition. Some of these items include workflow, whether the contributor
can edit the data displayed through the placeholder, whether the contributor can edit
the metadata, ability to view Web site usage reports, and the ability to view content
tracker reports.

3.5.6 Step Six: Create Your Page Templates
A large number of Web sites can be reduced to two simple page templates: the home
page, and then all other pages. It is not uncommon for a Web site to have a home page
that is distinct in terms of layout and design compared to the other pages in the Web
site.

It may be the case that there are multiple templates for your site. It is also possible to
make an entire Web site work with one page template. If you do design the Web site
with several page templates, you should possibly consider the use of subtemplates to
reduce the number of page templates. Fewer page templates on a Web site makes
site-wide changes much easier.

Will Primary and Secondary Pages Require Different Templates?
Primary and secondary pages can both use the same page templates. However, since
secondary pages are the only pages that can have dynamically placed content, you
should consider the effect on how you view your page templates (and even your
placeholders and placeholder definitions) with respect to the advantages of
dynamically placed content.

Creating Your Site Assets

Planning Your Web Site 3-11

A secondary page serves as the backdrop for content added to the site by a contributor.
Secondary pages are required if you allow contributors to add contributor data files or
native documents (both of which amount to new web pages) to the Web site. These
files are made available to the site when they are picked up by a dynamic list, a search,
or the target of a link.

It may be that you first build your site with just primary pages, saving secondary
pages until after you set up contribution regions on the primary pages and know
exactly what type of content contributors submit to the site. Then, you could add the
secondary pages to handle this content.

Regardless of whether you use the same or different page templates for the primary
and secondary pages in your Web site, it is important that you name the page
templates appropriately. This is the same for all other site assets in Site Studio. Say, a
page template is used for both the primary and secondary pages. If the name of that
page template was based on where it was initially placed in the site, the template
name could lead to confusion when the site is expanded and the page template is
being reused for secondary pages as well.

The most efficient naming of site assets, including page templates, should be based on
how the page template is used. Naming conventions based on where the asset is used
in a Web site (for instance, page_template_primarypage) or based on in the order of
creation (for instance, pagetemplate3) can make the assets harder to manage.

Creating Your Site Assets

3-12 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

4

Building a Site Studio Web Site Tutorial 4-1

4Building a Site Studio Web Site Tutorial

This section describes the steps for creating a Site Studio Web site in the JDeveloper
environment. This tutorial demonstrates how to create a simple Web site with
navigation. It covers the following topics:

■ "Creating a Site Studio Project and Connection" on page 4-1

■ "Creating a Sample Web Site" on page 4-3

■ "Creating Sidebar Links" on page 4-12

■ "Creating A Dynamic Conversion Page" on page 4-17

4.1 Creating a Site Studio Project and Connection
These are the steps for creating a Site Studio project and content server connection:

■ "Step 1: Creating a New Application and Project" on page 4-1

■ "Step 2: Creating a Content Server Connection" on page 4-2

■ "Step 3: Adding the Connection to the Project" on page 4-2

4.1.1 Step 1: Creating a New Application and Project
Follow these steps to create a new application and new site studio project:

1. From the JDeveloper main menu, select File, and then New.

The New Gallery opens.

2. In the Categories list, select General, and then Applications.

3. In the Items list, select Generic Application.

4. Click OK.

The Create Generic Application wizard appears.

5. In the Name Your Application step:

■ For Application Name, enter SiteStudioDemo.

■ For Application Package Prefix, enter demo.SiteStudioDemo.

6. Click Next.

7. In the Name Your Project step:

■ For Project Name, enter SiteStudioDemo.

Creating a Site Studio Project and Connection

4-2 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

■ From the Available Technologies list, select Site Studio Technology and click
the shuttle button to transfer the selection to the Selected Technologies list.

8. Click Finish.

9. From the JDeveloper main menu, select File, and then Save All.

4.1.2 Step 2: Creating a Content Server Connection
Follow these steps to create a connection to the content server and add it to your Site
Studio project:

1. If the Application Navigator is not already open, select View, and then
Application Navigator.

2. Select the Application Resources panel.

3. Right-click Connections, select New Connection, and then Site Studio.

4. In the Create Content Server Connection dialog:

■ Application Resources: If not already selected, enable this option.

■ Connection Name: Enter the hostname of your content server (for example,
developmentserver2 or developmentserver2.mycompany.com).

■ Design Time URL: This field is auto-filled based on the connection name you
provided. If you are not using default settings on your server you may need to
edit this field.

■ Run Time URL: This field is auto-filled based on the connection name you
provided. If you are not using default settings on your server you may need to
edit this field.

■ Specify credentials for this JDeveloper session: Enable this option.

■ Username: Enter your content server administrative username.

■ Password: Enter your content server administrative password.

5. Click Test Connection and Login.

If the connection fails, verify that you have the correct connection name and URL
for the content server and have supplied valid login credentials.

6. Click OK.

4.1.3 Step 3: Adding the Connection to the Project
Follow these steps to add a content server connection to your Site Studio project.

1. In the Application Navigator, select the Applications Resources panel.

2. Expand Connections, and then expand Site Studio.

3. Right-click the new content server connection, and select Add to Project.

4. In the Select Project dialog, select SiteStudioDemo.jpr from the list.

5. Click OK.

6. From the JDeveloper main menu, select File, and then Save All.

Creating a Sample Web Site

Building a Site Studio Web Site Tutorial 4-3

4.2 Creating a Sample Web Site
These are the steps for creating a sample Web site:

■ "Step 1: Creating a New Web Site in the Content Server" on page 4-3

■ "Step 2: Specifying User Credentials for Contribution Mode" on page 4-3

■ "Step 3: Editing the Web Application Deployment Descriptor" on page 4-4

■ "Step 4: Creating the Home Page" on page 4-4

■ "Step 5: Associating the Page Template with the Site" on page 4-5

■ "Step 6: Running the Site and Viewing the Home Page" on page 4-5

■ "Step 7: Creating Site Fragments" on page 4-6

■ "Step 8: Creating the Element Definitions" on page 4-9

■ "Step 9: Creating a Region Definition" on page 4-9

■ "Step 10: Creating a Region Template" on page 4-10

■ "Step 11: Creating a Placeholder Definition" on page 4-10

■ "Step 12: Adding a Placeholder to the Home Page" on page 4-11

■ "Step 13: Assigning Content to the Placeholder" on page 4-11

4.2.1 Step 1: Creating a New Web Site in the Content Server
Follow these steps to create a new Web site in the content server.

1. In the Application Navigator, select the Projects panel.

2. Expand your Site Studio project (SiteStudioDemo).

3. Expand Web Content, and then expand WEB-INF.

4. Right-click wcm-config.xml and select Open.

5. Select the Server tab, and then expand Sites.

6. Click the Create Sites button.

7. In the Create New Site dialog, enter SiteStudioDemo for both the Name and ID
fields.

8. Click OK.

9. From the main menu, select File, and then Save All.

4.2.2 Step 2: Specifying User Credentials for Contribution Mode
Follow these steps to specify user credentials for contribution mode:

1. In the Application Navigator, select the Projects panel.

2. Expand your Site Studio project (SiteStudioDemo).

3. Expand Web Content, and then expand WEB-INF.

4. Right-click weblogic.xml and select Open.

5. Select Security and expand Security Role Assignments.

6. Click the Create Security Role Assignment button.

7. For Role Name, enter WCMContributor .

Creating a Sample Web Site

4-4 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

8. In the Principal section, click the Create Principal Name button.

For the newly created security role name add a principle (a user) that matches a
principle that exists in your content server. For this tutorial we will use the
weblogic principle.

9. For Principal Name, enter weblogic.

10. From the main menu, select File, and then Save All.

4.2.3 Step 3: Editing the Web Application Deployment Descriptor
Follow these steps to edit the Web application to process JSPF files:

1. In the Application Navigator, select the Projects panel.

2. Expand your Site Studio project (SiteStudioDemo).

3. Expand Web Content, and then expand WEB-INF.

4. Right-click web.xml and select Open.

5. Select Pages and expand the JSP Property Group.

6. Click the Create JSP Property Group button.

7. In the new JSP Property Group, select the General tab:

■ For Display Name, enter Fragments.

■ For Page Encoding, enter UTF-8.

■ Enable the Is XML option.

8. Select the URL Patterns tab.

9. Click the Create URL Pattern button.

10. Enter *.jspf as a new URL pattern.

11. From the main menu, select File, and then Save All.

4.2.4 Step 4: Creating the Home Page
Follow these steps to create a simple home page for your application:

1. In the Application Navigator, select the Projects panel.

2. Expand your Site Studio project (SiteStudioDemo).

3. Expand Site Files, and then expand templates.

4. Right-click page and select New.

5. In the New Gallery dialog, expand Web Tier, and select JSP.

6. Select JSP in the Items section.

7. Click OK.

8. In the Create JSP dialog:

■ For File Name, enter home.jspx.

■ Enable the Create as XML Document option.

■ Enable the Register Site File option.

■ For Asset Type, select Page Template from the list.

Creating a Sample Web Site

Building a Site Studio Web Site Tutorial 4-5

■ For Site File ID, enter ssd-home-pt.

■ For Description, enter Homepage for the SiteStudioDemo site.

9. Click OK.

10. The new page template opens in the editor. Select the Source tab.

11. The page template should have content similar to this:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1">
<jsp:output omit-xml-declaration="true" doctype-root-element="HTML"
doctype-system="http://www.w3.org/TR/html4/loose.dtd"
doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>
<jsp:directive.page contentType="text/html;charset=UTF-8"/>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>SiteStudioDemo Site</title>
 <link type="text/css" rel="stylesheet"
 href="../wcm/support/css/template.css"/>
 </head>
 <body>
 <jsp:include page="/wcm/templates/fragments/header.jspf"/>
 <div id="container">
 <jsp:include page="/wcm/templates/fragments/menu.jspf"/>
 <jsp:include page="/wcm/templates/fragments/sidebar.jspf"/>
 <!--
 Add content below.
 -->
 <jsp:include page="/wcm/templates/fragments/footer.jspf"/>
 </div>
 </body>
 </html>
 </jsp:root>

4.2.5 Step 5: Associating the Page Template with the Site
Follow these steps to associate the newly created home.jspx page template with your
SiteStudioDemo site.

1. In the Application Navigator, select the Projects panel.

2. Expand your Site Studio project (SiteStudioDemo).

3. Expand Web Content, then WEB-INF, and then sites.

4. Right-click SiteStudioDemo.xml and select Open.

The Site Structure editor displays.

5. Right-click Home and select Select Primary Page Template.

The Select a Page Template dialog displays.

6. Select the SiteStudioDemo-home page template.

7. Click OK.

4.2.6 Step 6: Running the Site and Viewing the Home Page
Followed these steps to view the Home page:

1. In the Application Navigator, select the Projects panel.

Creating a Sample Web Site

4-6 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

2. Expand your Site Studio project (SiteStudioDemo).

3. Expand Web Content.

4. Right-click startSiteStudioDemo.jspx and select Run.

5. The integrated WebLogic Server launches and displays startup information in the
Log panel. After the application has started, a browser window will open and
display the SiteStudioDemo home page.

4.2.7 Step 7: Creating Site Fragments
Follow these steps to add JSP segments for the header, footer, sidebar, and menu:

1. In the Application Navigator, select the Projects panel.

2. Expand your Site Studio project (SiteStudioDemo).

3. Expand Site Files.

4. Right-click Templates and select New.

The New Gallery dialog displays.

5. From the Categories list, select All Items.

6. From the Items list, select Folder (General).

7. Click OK.

The Create Folder dialog displays.

8. For Folder Name, enter fragments.

9. Click OK.

Create a JSP Segment (Header)
10. Right-click the new fragment folder and select New.

The New Gallery dialog displays.

11. From the Categories list, expand Web Tier and select JSP.

12. From the Items list, select JSP Segment.

13. Click OK.

The Create JSP Segment dialog displays.

14. For File Name, enter header.jspf.

15. Click OK.

16. Right-click the header.jspf page and select Open.

17. Select the Source tab.

18. Add the following content:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1">
 <div id="top">

 SiteStudioDemo Demo

 </div>
</jsp:root>

Creating a Sample Web Site

Building a Site Studio Web Site Tutorial 4-7

Create a Second JSP Segment (Footer)
1. Right-click the new fragment folder and select New.

The New Gallery dialog displays.

2. From the Categories list, expand Web Tier and select JSP.

3. From the Items list, select JSP Segment.

4. Click OK.

The Create JSP Segment dialog displays.

5. For File Name, enter footer.jspf.

6. Click OK.

7. Right-click the footer.jspf page and select Open.

8. Select the Source tab.

9. Add the following content:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1">
 <div id="footer">
 <p align="center">
 Copyright © 2010 | SiteStudioDemo
 </p>
 </div>
</jsp:root>

Create a Third JSP Segment (Sidebar)
1. Right-click the new fragment folder and select New.

The New Gallery dialog displays.

2. From the Categories list, expand Web Tier and select JSP.

3. From the Items list, select JSP Segment.

4. Click OK.

The Create JSP Segment dialog displays.

5. For File Name, enter sidebar.jspf.

6. Click OK.

7. Right-click the sidebar.jspf page and select Open.

8. Select the Source tab.

9. Add the following content:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1">
<div id="sidebar">
 <h1 class="first">The Sidebar</h1>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 In sit amet lacus sed lacus egestas fringilla eu sit amet leo.
 In hac habitasse platea dictumst.
 </p>
 <h1>Linkroll</h1>
 <ul class="linkroll">

Creating a Sample Web Site

4-8 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

 Link 1

 Link 2

 Link 3

 Link 4

</div>
</jsp:root>

Create a Fourth JSP Segment (Menu)
1. Right-click the new fragment folder and select New.

The New Gallery dialog displays.

2. From the Categories list, expand Web Tier and select JSP.

3. From the Items list, select JSP Segment.

4. Click OK.

The Create JSP Segment dialog displays.

5. For File Name, enter menu.jspf.

6. Click OK.

7. Right-click the menu.jspf page and select Open.

8. Select the Source tab.

9. Add the following content:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:wcm="http://www.oracle.com/jsp/wcm"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:fn="http://java.sun.com/jsp/jstl/functions">
 <div id="menu">
 <ul id="nav">

 <wcm:url var="root" type="node"
 url="${wcmContext.project.structure.rootSection.ID}"/>

 ${wcmContext.project.structure.rootSection.properties.label}

 <c:set var="sections"
 value="${wcmContext.project.structure.rootSection.activeChildren}"/>

 <!-- Iterate through the site structure nodes and add them to the menu -->
 <c:forEach var="section" items="${sections}">
 <wcm:url var="sectionUrl" type="node" url="${section.ID}"/>

 ${fn:substring(section.properties.label, 0, 1)}

 ${fn:substring(section.properties.label, 1, -1)}

Creating a Sample Web Site

Building a Site Studio Web Site Tutorial 4-9

 </c:forEach>

 <br class="clear"/>
 </div>
</jsp:root>

4.2.8 Step 8: Creating the Element Definitions
Follow these steps to create two element definition files in the content server.

1. From the main menu, select View, then Site Studio, and then Site Assets.

2. From the Project drop-down list (top left), select the SiteStudioDemo project.

Note: If your project is not listed, it means you are not logged in to your
connection (from the Application Resources panel, expand Connections, then Site
Studio, right-click the connection, and select Login.)

3. From the Asset Type drop-down list (top right), select Element Definition.

4. Click the Create New Asset Type button and select New Plain Text Element
Definition.

5. For both Title and Content ID, enter ssd-plaintext-ed.

6. Click the Create New Asset Type button again and select New WYSIWYG
Element Definition.

7. For both Title and Content ID, enter ssd-wysiwyg-ed.

4.2.9 Step 9: Creating a Region Definition
Follow these steps to create a region definition:

1. From the Asset Type drop-down list (top right), select Region Definition.

2. Click the Create New Asset Type button and select New Region Definition.

3. For both Title and Content ID, enter ssd-content-rd.

4. Right-click the ssd-content_rd asset and select Edit.

5. Click Add.

6. In the Element Instance dialog:

■ For both Name and Label, enter content.

■ For location, click Browse button and select the ssd-plaintext-ed element
definition.

7. Click OK.

8. Click Add.

9. In the Element Instance dialog:

■ For both Name and Label, enter content.

■ For location, click Browse button and select the ssd-wysiwyg-ed element
definition.

10. Click OK.

11. Save the ssd-content-rd file and check it in.

Creating a Sample Web Site

4-10 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

4.2.10 Step 10: Creating a Region Template
Follow these steps to create a region template that uses a region definition file.

1. In the Application Navigator, select the Projects panel.

2. Expand your Site Studio project (SiteStudioDemo).

3. Expand Site Files then Templates.

4. Right-click region and select New.

The New Gallery dialog displays.

5. From the Categories list, expand Web Tier and select JSP.

6. From the Items list, select JSP.

7. Click OK

8. In the Create JSP dialog:

■ For File Name, enter content.jspx.

■ Select the Create as XML Document option.

■ Select the Register Site File option.

■ Select Region Template from the Asset Type drop-down list.

■ For Site File ID, enter ssd-content-rt.

■ For Description, enter Content Region Template.

■ For Region Definition, click Browse and select the ssd-content-rd region
definition.

9. Click OK.

10. The new content.jspx file should have content similar to this:

<?xml version='1.0' encoding='UTF-8'?>
 <jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:wcm="http://www.oracle.com/jsp/wcm">
 <wcm:dataFile var="dataFile"/>
 <div id="content">
 <h1>${dataFile.title}</h1>
 <p>${dataFile.content}</p>
 </div>
 </jsp:root>

4.2.11 Step 11: Creating a Placeholder Definition
Follow these steps to create a placeholder definition that uses the new region template
and new region definition:

1. From the Asset Type drop-down list (top right), select Placeholder Definition.

2. Click the Create New Asset Type button and select New Placeholder Definition.

3. For both Title and Content ID, enter ssd-content-phd.

4. Right-click the ssd-content-phd asset and select Edit.

5. For the Region Definition table, click Add and enter ssd-content-rd.

6. For the Region Template table, click Add and enter ssd-content-rt.

7. Select all the Allowed Actions options.

Creating a Sample Web Site

Building a Site Studio Web Site Tutorial 4-11

8. Save, check-in, and close the Placeholder Definition.

4.2.12 Step 12: Adding a Placeholder to the Home Page
Follow these steps to add a placeholder to home.jspx:

1. From the main menu, select View, and then Component Palette.

2. On the Component Palette, select Site Studio from the drop-down list.

3. Drag the Placeholder tag below the Add Content Below comment.

4. In the Insert Placeholder dialog:

■ For Name, enter content.

■ Enable the Add Name to Placeholder Definition Mappings option.

■ Select SiteStudioDemo from the drop-down list.

5. Expand your Site Studio project (SiteStudioDemo).

6. Expand Web Content, then WEB-INF, and then sites.

7. Right-click SiteStudioDemo.xml and select Open.

The Site Structure editor displays.

8. Expand the Web Site (SiteStudioDemo) node.

9. Click the Switch Placeholder Definition Role value, and select the admin security
role from the drop-down list.

10. Click the Design Mode Role value, and select the admin security role from the
drop-down list.

11. Click the Placeholder Definition Mappings button.

12. From the list, select content and click Edit.

The Edit Placeholder Definition Mapping dialog displays.

13. For Primary Definition ID, click Search.

14. Select ssd-content-phd and click OK.

15. Click OK again.

4.2.13 Step 13: Assigning Content to the Placeholder
Follow these steps to enter contribution mode and add content to the placeholder on
the homepage:

1. Expand your Site Studio project (SiteStudioDemo) and expand Web Content.

2. Right-click startSiteStudioDemo.jspx and select Run.

3. Once the application is loaded, use Ctrl+Shift+F5 to enter contribution mode.

4. Click the Assign Content button on the content placeholder.

5. From Switch Content, select New Contributor Data File.

6. Click Next.

7. In the check-in content page:

■ For Content ID, enter ssd-home-pt-df.

Creating Sidebar Links

4-12 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

■ For Web Sites, make sure that SiteStudioDemo is selected (this should be
done automatically).

■ For Region Definition, make sure that ssd-content-rd is selected (this should
be done automatically.).

8. Click Finish.

9. Click the Edit Region Content button for the content placeholder.

10. For Title, enter Introduction.

11. In the content editor add some text.

12. Click Save and Close.

13. Exit contribution mode using Ctrl+Shift+F5.

4.3 Creating Sidebar Links
This section builds on the previous sections. Follow these steps to create a static
placeholder and display several links on the site sidebar:

■ "Step 1: Creating a Static List Element Definition" on page 4-12

■ "Step 2: Creating a Sidebar Region Definition" on page 4-13

■ "Step 3: Creating Static List Data File" on page 4-13

■ "Step 4: Creating a Region Template" on page 4-13

■ "Step 5: Updating the Sidebar Fragment" on page 4-14

■ "Step 6: Creating a Sidebar Content Region Definition" on page 4-15

■ "Step 7: Creating a Sidebar Content Region Template" on page 4-15

■ "Step 8: Creating a Sidebar Content Placeholder Definition" on page 4-16

■ "Step 9: Adding a Sidebar Placeholder Mapping to the Site" on page 4-16

■ "Step 10: Assigning Content to the Sidebar" on page 4-16

4.3.1 Step 1: Creating a Static List Element Definition
Follow these steps to create a static list element definition:

1. From the main menu, select View, then Site Studio, and then Site Assets.

2. From the Project drop-down list (top left), select the SiteStudioDemo project.

3. From the Asset Type drop-down list (top right), select Element Definition.

4. Click the Create New Asset Type button and select New Static List Element
Definition.

5. For both Title and Content ID, enter ssd-links-staticlist-ed.

6. Right-click the ssd-links-rd asset and select Edit.

7. Click Elements and add two elements.

8. First Element:

■ For both Name and Label, enter label.

■ For Location, click Browse button and select the ssd-plaintext-ed element
definition.

Creating Sidebar Links

Building a Site Studio Web Site Tutorial 4-13

9. Click OK.

10. Second Element:

■ For both Name and Label, enter url.

■ For Location, click Browse button and select the ssd-plaintext-ed element
definition

11. Click OK and then click OK again.

12. From the main menu, select File then Save All.

4.3.2 Step 2: Creating a Sidebar Region Definition
Follow these steps to create a sidebar region definition:

1. From the Asset Type drop-down list (top right), select Region Definition.

2. Click the Create New Asset Type button and select New Region Definition.

3. For both Title and Content ID, enter ssd-links-rd.

4. Right-click the ssd-links-rd asset and select Edit.

5. Click Add and enter these values in the Element Instance dialog:

■ For both Name and Label, enter links.

■ For Location, click Browse button and select the ssd-links-staticlist-ed
element definition.

6. Click OK.

7. Save the ssd-links-rd file and check it in.

4.3.3 Step 3: Creating Static List Data File
Follow these steps to create a static list data file:

1. From the Asset Type drop-down list (top right), select Data File.

2. Click the Create New Asset Type button and select New Contributor Data File.

3. For both Title and Content ID, enter ssd-sidebarlinks-df.

4. For Region Definition, click Browse snd select the ssd-links-rd region definition.

5. Click OK.

4.3.4 Step 4: Creating a Region Template
Follow these steps to create a region file that uses a region template:

1. Expand Site Files, and then expand templates.

2. Right-click the region node and select New.

The New Gallery dialog displays.

3. From the Categories list, expand Web Tier and select JSP.

4. From the Items list, select JSP.

5. Click OK.

6. In the Create JSP dialog:

■ For File Name, enter links.jspx.

Creating Sidebar Links

4-14 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

■ Select the Create as XML Document option.

■ Select the Register Site File option.

■ Select Region Template from the Asset Type drop-down list.

■ For Site File ID, enter ssd-links-rt.

■ For Description, enter Sidebar Region Template.

■ For Region Definition, click Browse and select the ssd-links-rd region
definition.

7. Click OK.

8. The links.jspx file should have content similar to this:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:wcm="http://www.oracle.com/jsp/wcm"
 xmlns:c="http://java.sun.com/jsp/jstl/core">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <wcm:dataFile var="dataFile"/>
 <ul class="linkroll">
 <c:forEach var="row" items="${dataFile.links.rows}">

 ${row.label}

 </c:forEach>

</jsp:root>

In the above sidebar region template, note how we are using the new
ssd-sidebarlinks-df data file and referencing the properties to format the data.

4.3.5 Step 5: Updating the Sidebar Fragment
Follow these steps to update the sidebar fragment:

1. Expand Site Files, then templates, and then fragments.

2. Right-click the sidebar.jspf fragment and select Open.

3. The file should have content similar to this:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:wcm="http://www.oracle.com/jsp/wcm"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:fn="http://java.sun.com/jsp/jstl/functions">
 <div id="sidebar">
 <h1 class="first">Sidebar</h1>
 <p>
 <wcm:placeholder name="sidebar"/>
 </p>
 <h1>Linkroll</h1>

 <wcm:staticPlaceholder dataFile="XABLOG_SIDEBAR_DF"
 template="@ssd-sidebarlinks-df"/>
 </div>
</jsp:root>

In the above sidebar region template note how we are using a data file and referencing
the properties of the data file.

Creating Sidebar Links

Building a Site Studio Web Site Tutorial 4-15

4.3.6 Step 6: Creating a Sidebar Content Region Definition
Follow these steps to create a sidebar content region definition:

1. From the Asset Type drop-down list (top right), select Region Definition.

2. Click the Create New Asset Type button and select New Region Definition.

3. For both Title and Content ID, enter ssd-text-rd.

4. Right-click the ssd-content-rd asset and select Edit.

5. Click Add and enter these values in the Element Instance dialog:

■ For both Name and Label, enter text.

■ For Location, click Browse button and select the ssd-wysiwyg-ed element
definition.

6. Click OK.

7. Save the ssd-text-rd file and check it in.

4.3.7 Step 7: Creating a Sidebar Content Region Template
Follow these steps to create a sidebar content region template file:

1. Expand Site Files, and then expand templates.

2. Right-click the region node and select New.

The New Gallery dialog displays.

3. From the Categories list, expand Web Tier and select JSP.

4. From the Items list, select JSP.

5. Click OK.

6. In the Create JSP dialog:

■ For File Name, enter simple.jspx.

■ Select the Create as XML Document option.

■ Select the Register Site File option.

■ Select Region Template from the Asset Type drop-down list.

■ For Site File ID, enter ssd-simple-rt.

■ For Description, enter Text Region Template.

■ For Region Definition, click Browse and select the ssd-text-rd region
definition.

7. Click OK.

8. The new simple.jspx file should have content similar to this:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:wcm="http://www.oracle.com/jsp/wcm"
 xmlns:c="http://java.sun.com/jsp/jstl/core">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <wcm:dataFile var="dataFile"/>
 <p>${dataFile.text}</p>
</jsp:root>

Creating Sidebar Links

4-16 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

4.3.8 Step 8: Creating a Sidebar Content Placeholder Definition
Follow these steps to create a sidebar content placeholder definition:

1. From the Asset Type drop-down list (top right), select Placeholder Definition.

2. Click the Create New Asset Type button and select New Placeholder Definition.

3. For both Title and Content ID, enter ssd-simple-phd.

4. Right-click the ssd-simple-phd asset and select Edit.

5. For the Region Definition table, click Add, and select ssd-text-rd.

6. For the Region Template table, click Add, and select ssd-text-rt.

7. Select all Allowed Actions options.

8. Save, check-in, and close the placeholder definition.

4.3.9 Step 9: Adding a Sidebar Placeholder Mapping to the Site
Follow these steps to add a sidebar placeholder mapping to the site:

1. Expand Wed Content, then WEB_INF, and then sites.

2. Right-click SiteStudioDemo.xml and select Open.

3. Click the Placeholder Definition Mappings button.

4. Click Add to add a new Placeholder Definition mapping.

5. For Name, enter sidebar.

6. For Primary Definition ID, click Search and select ssd-simple-phd.

7. Click OK.

8. Click OK again.

4.3.10 Step 10: Assigning Content to the Sidebar
Follow these steps to enter contribution mode and add content to the placeholders on
the sidebar:

1. Expand your Site Studio project (SiteStudioDemo) and expand Web Content.

2. Right-click startSiteStudioDemo.jspx and select Run.

3. Once the application is loaded, use Ctrl+Shift+F5 to enter contribution mode.

4. Click the Assign Content button on the sidebar placeholder.

5. From Switch Content, select New Contributor Data File.

6. Click Next

7. On the check-in content page, enter ssd-sidebarcontent-df for Content ID.

8. For Web Sites, select SiteStudioDemo.

9. For Region Definition, select ssd-text-rd.

10. Click Finish.

11. Return to contribution mode by clicking the Switch to Contribution Mode button.

12. For the sidebar placeholder, click the Edit Region Definition button.

13. In the text enter, enter the title Messages.

Creating A Dynamic Conversion Page

Building a Site Studio Web Site Tutorial 4-17

14. Click Save and Close.

Next we will assign content to the ssd-sidebar-df static placeholder.

15. Switch to contribution mode using Ctrl+Shift+F5.

16. For the ssd-sidebar-df placeholder, click the Edit Region Content button.

17. In the links editor add the following link rows:

Link 1:

■ For Label, enter Google.

■ For URL, enter http://www.google.com.

Link 2:

■ For Label, enter Yahoo!.

■ For URL, enter http://www.yahoo.com.

Link 3:

■ For Label, enter Bing.

■ For URL, enter http://www.bing.com.

18. Click Save and Close.

19. Exit contribution mode using Ctrl+Shift+F5.

4.4 Creating A Dynamic Conversion Page
This section builds on the previous sections. This section adds a dynamic conversion
page that demonstrates the use of native documents in the application. Before you
proceed make sure the DynamicConverter component for the content server is enabled
and configured properly.

■ "Step 1: Creating a Conversions Definition" on page 4-17

■ "Step 2: Creating a Page Template for the Native Document" on page 4-18

■ "Step 3: Creating a New Section for the Native Document" on page 4-19

■ "Step 4: Creating a Region Definition for the Native Document" on page 4-19

■ "Step 5: Creating a Region Template for the Native Document" on page 4-20

■ "Step 6: Creating a Placeholder Definition for the Native Document" on page 4-20

■ "Step 7: Adding the Placeholder to the Native Document Page" on page 4-21

■ "Step 8: Assigning Content to the Placeholder on the Native Document Page" on
page 4-21

4.4.1 Step 1: Creating a Conversions Definition
Follow these steps to create a conversions definition:

1. From the Asset Type drop-down list (top right), select Conversions Definition.

2. Click the Create New Asset Type button and select New Conversions Definition.

3. For both Title and Content ID, enter ssd-default-cd.

4. Right-click the ssd-default-cd asset and select Edit.

5. Click Add to add a dynamic conversion rule to the definition.

Creating A Dynamic Conversion Page

4-18 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

6. In the Native Document Conversion Settings dialog:

■ For Name, enter simple

■ For Options, enable Use simple inline dynamic conversion.

7. Click OK.

8. Save the ssd-default-sd file and check it in.

9. Expand Wed Content, then WEB_INF, and then sites.

10. Right-click SiteStudioDemo.xml and select Open.

11. Expand the Web Site (SiteStudioDemo) node.

12. Double-click the Conversions Definition value to display the Select a Conversions
Definition Dialog. Select the ssd-default-cd conversion definition.

13. Click OK.

4.4.2 Step 2: Creating a Page Template for the Native Document
Follow these steps to create a page template for the native document:

1. Expand your Site Studio project (SiteStudioDemo).

2. Expand Site Files, and then expand templates.

3. Right-click the page node and select New.

4. In the New Gallery dialog, expand Web Tier and select JSP.

5. Select JSP in the Items section.

6. Click OK.

7. In the Create JSP dialog:

■ For File Name, enter native.jspx.

■ Enable the Create as XML Document option.

■ Enable the Register Site File option.

■ For Asset Type, select Page Template from the list.

■ For Site File ID, enter ssd-native-pt.

■ For Description, enter Native Documents Page for the
SiteStudioDemo site.

8. Click OK.

9. The new page template should have content similar to this:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:wcm="http://www.oracle.com/jsp/wcm">
 <jsp:output omit-xml-declaration="true" doctype-root-element="HTML"
 doctype-system="http://www.w3.org/TR/html4/loose.dtd"
 doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>SiteStudioDemo - Demo Blog</title>
 <link type="text/css" rel="stylesheet"
 href="../wcm/support/css/template.css"/>

Creating A Dynamic Conversion Page

Building a Site Studio Web Site Tutorial 4-19

 </head>
 <body>
 <jsp:include page="/wcm/templates/fragments/header.jspf"/>
 <div id="container">
 <jsp:include page="/wcm/templates/fragments/menu.jspf"/>

 <jsp:include page="/wcm/templates/fragments/sidebar.jspf"/>
 <!--
 Add content below.
 -->
 <jsp:include page="/wcm/templates/fragments/footer.jspf"/>
 </div>
 </body>
 </html>
</jsp:root>

4.4.3 Step 3: Creating a New Section for the Native Document
Follow these steps to associate the new page template with your site:

1. Expand Wed Content, then WEB_INF, and then sites.

2. Right-click SiteStudioDemo.xml and select Open.

3. Expand the Web Site (SiteStudioDemo) node.

4. Right-click Home and select Add New Section.

5. In the Add New Section dialog:

■ For Label, enter About.

■ For URL, enter About.

6. Click OK.

7. Right-click on the new About section node and select Include Section in
Navigation.

8. Right-click on the About section node and select Select Primary Page Template.

9. In the Select a Page Template dialog, select the ssd-native-pt page template.

10. Click OK.

4.4.4 Step 4: Creating a Region Definition for the Native Document
Follow these steps to create a region definition:

1. From the Asset Type drop-down list (top right), select Region Definition.

2. Click the Create New button and select New Region Definition.

3. For both Title and Content ID, enter ssd-native-rd.

4. Click OK.

5. Refresh the list.

6. Right-click ssd-native-rd and select Edit to open the file in the editor.

7. Select an element from the table and click Switch Region Content.

8. In the Region Content Options dialog, enable the Create new native document
option.

9. For Document Types, click Select.

Creating A Dynamic Conversion Page

4-20 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

10. Choose any document type from the list and click OK.

11. From the main menu, click File then Save All.

4.4.5 Step 5: Creating a Region Template for the Native Document
Follow these steps to create a region template file that uses a region definition file:

1. Expand your Site Studio project (SiteStudioDemo).

2. Expand Site Files, and then expand templates.

3. Right-click the region node and select New.

4. In the New Gallery dialog, expand Web Tier and select JSP.

5. Select JSP in the Items section.

6. Click OK.

7. In the Create JSP dialog:

■ For File Name, enter conversion.jspx.

■ Enable the Create as XML Document option.

■ Enable the Register Site File option.

■ For Asset Type, select Region Template from the list.

■ For Site File ID, enter ssd-conversion-rt.

■ For Description, enter Native File Region Template.

■ For Region Definition, click Browse and select the ssd-native-rd region
definition.

8. Click OK.

9. The new conversion.jspx file should have content similar to this:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
 xmlns:wcm="http://www.oracle.com/jsp/wcm">
 <div id="content">
 <wcm:dynamicConversion rule="simple"/>
 </div>
</jsp:root>

4.4.6 Step 6: Creating a Placeholder Definition for the Native Document
Follow these steps to create a placeholder definition that utilizes the newly created
region template and region definition:

1. From the Asset Type drop-down list (top right), select Placeholder Definition.

2. Click the Create New Asset Type button and select New Placeholder Definition.

3. For both Title and Content ID, enter ssd-native-phd.

4. Right-click the ssd-content-phd asset and select Edit.

5. For the Region Definition table, click Add, and select ssd-native-rd.

6. For the Region Template table, click Add, and select ssd-conversion-rt.

7. Select all the Allowed Actions options.

8. Save, check-in, and close the placeholder definition.

Creating A Dynamic Conversion Page

Building a Site Studio Web Site Tutorial 4-21

4.4.7 Step 7: Adding the Placeholder to the Native Document Page
Follow these steps to add a placeholder to the native.jspx file:

1. From the Component Palette, select Site Studio.

2. Drag the Placeholder tag below the Add Content Below comment.

3. In the Insert Placeholder dialog:

■ For Name, enter native.

■ Select the Add Name to Placeholder Definition Mappings option.

■ Select SiteStudioDemo as the site.

4. Click OK.

5. Expand Wed Content, then WEB_INF, and then sites.

6. Right-click SiteStudioDemo.xml and select Open.

7. Click the Placeholder Definition Mappings button.

8. Right-click the native Placeholder Definition Mapping and select Edit. The Edit
Placeholder Definition Mapping dialog displays.

The Edit Placeholder Definition Mapping dialog displays.

9. For Primary Definition ID, click Search and select ssd-native-phd.

10. Click OK.

11. Click OK again.

4.4.8 Step 8: Assigning Content to the Placeholder on the Native Document Page
Follow these steps to enter contribution mode and assign content to the placeholder on
the native document page.

1. Expand your Site Studio project (SiteStudioDemo) and expand Web Content.

2. Right-click startSiteStudioDemo.jsp and select Run.

3. On the About page, use Ctrl+Shift+F5 to enter contribution mode.

4. Click the Assign Content button on the native placeholder.

5. For Switch Content, select the ssd-native-rd region definition.

6. Click Next.

7. On the Choose Content File wizard page, select the Existing Local File association.

8. Click Next.

9. On the check-in content page, enter ssd-about-native-df for both Title and
Content ID.

10. Browse to the primary file, and select it.

11. For Web Sites, select SiteStudioDemo.

12. For Region Definition, select ssd-native-rd.

13. Click Finish.

14. Use Ctrl+Shift+F5 to exit contribution mode.

15. The content of ssd-about-native-df.doc is displayed on the About page.

Creating A Dynamic Conversion Page

4-22 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

5

Site Studio Application Components and Technology 5-1

5Site Studio Application Components and
Technology

This section covers the following topics:

■ "Site Studio Application Components" on page 5-1

■ "Site Studio Technologies" on page 5-2

■ "Using Site Studio Technologies in Your Integration" on page 5-3

5.1 Site Studio Application Components
A Site Studio application is an EAR file, containing multiple WAR files that deliver Site
Studio Web sites.

JavaEE EAR File
The examples in this section uses a Site Studio application called MyApplication with a
web project called MySites. The structure of the EAR file is as follows:

 +-- MyApplication.ear
 +-- MySites.war
 +-- adf/META-INF/
 +-- connections.xml
 +-- META-INF/
 +-- application.xml
 +-- weblogic-application.xml

MySites.war: This is the war file that references a single content server and delivers
sites from that content server. See "JavaEE WAR File" on page 5-1 for more
information.

adf/META-INF/connections.xml: The ADF connections file that holds the definition of
which content server is being queried at runtime.

META-INF/weblogic-application.xml: The Weblogic-specific application file that
holds a reference to the Site Studio (and RIDC) shared EAR libraries.

JavaEE WAR File
Site Studio Web sites are delivered via a WAR file. The Site Studio libraries can
communicate with a single Oracle Content Server instance per WAR file. The structure
of the WAR file is as follows:

 +-- MySites.war
 +-- wcm/templates/
 +-- WEB-INF/

Site Studio Technologies

5-2 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

 +-- web.xml
 +-- wcm-config.xml
 +-- weblogic.xml

wcm/templates: Directory containing all local templates (JSP/JSPX files) that are
registered in the wcm-config.xml file.

WEB-INF/wcm-config.xml: The main Site Studio configuration file, which lists the
available sites, connection name, and other configuration settings.

WEB-INF/weblogic.xml: Weblogic-specific file that holds the reference to the shared
Site Studio WAR library.

WEB-INF/web.xml: The standard JavaEE configuration file that lists out the servlets,
filters and security settings for the application.

5.2 Site Studio Technologies
Site Studio technology uses servlets, filters and tag libraries to deliver Site Studio sites
via the deployed web application.

The examples in this section describe the default configuration for a single Site Studio
site using the site ID MySite and is delivered via a Site Studio application called
MyApplication:

■ Site Studio Servlets

■ Site Studio Filters

5.2.1 Site Studio Servlets
These are the available Site Studio servlets:

■ SiteStudio Proxy Servlet: Proxies the content from Oracle Content Server to your
local application; allows the content server to be treated as a local resource within
the domain, allows for single sign-on via identity propagation.

■ Initialization Servlet: Initializes the Site Studio libraries; does not handle any web
requests.

5.2.2 Site Studio Filters
These are the available Site Studio filters:

■ Mode Filter: Handles the determination of the mode of the current request. The
mode will either be Consumption, Contribution, or Design.

■ Site Filter: Delivers Site Studio Web pages using the Site Studio URL syntax, based
on the associated project file in Oracle Content Server.

■ Proxy Filter: Proxies the content server content to allow for the content server UI
to be served from the local web application.

Mode Filter
The mode filter listens for URLs which map to the contribution mode root
(/wcm-contrib/*) or the design mode root (/wcm-design/*). If the first segment
of the URL matches either of these URLs, the mode is set for the request and the
resource is then forwarded, without the first segment, to the web application for
processing.

Using Site Studio Technologies in Your Integration

Site Studio Application Components and Technology 5-3

Site Filter
The site filter allows for the processing of Site Studio URLs. Site Studio URLs are
hierarchical, based on the structure of the a project file. A typical Site Studio URL looks
like /mysite/about/index.html. For more information see "Understanding the
Site URL Format" on page 1-2.

Site Studio control flow:

1. Site URL via the browser is requested: /mysite/about/index.html

2. Determine the current site ID and section.

■ Matches against urlPath in the wcm-config.xml file.

■ The site ID is set to mysite and site path set to /about/index.html

3. Instantiate a new SiteContext object and place it in the HttpServletRequest as
an attribute named wcmContext.

4. Determine the Page Template ID. In this case, page template is primary via the
index.html file name.

5. Lookup the template ID in the wcm-config.xml file to find the local JSP/JSPX
resource.

6. Invoke RequestDispatcher to include and render the associated JSP/JSPX page

Proxy Filter
The proxy filter proxies the content server content, using the local user ID, to enable
the Oracle Content Server user interface to be served from the local web application.
This allows the web application to be integrated with Site Studio Contributor and the
Oracle Content Server user interface pages, which reside in the content server domain.

5.3 Using Site Studio Technologies in Your Integration
This section provides notes on the various Site Studio technologies that can used to
provide web content management functionality in external applications by integrating
with other technologies and frameworks.

Site Studio technologies, including the Site Studio tag library, Site Studio helper
methods and various Site Studio filters and servlets can be integrated with other
technologies and frameworks, such as ADF components, to deliver web content
management functionality to an existing application.

Using Links
When using placeholder tags in externally managed pages or applications, the
customer is entirely responsible for the validity of any links in the data file or
generated by the region template. The conventional Site Studio section and content
links are not relevant to an unmanaged site or application.

Using Site Studio Tags
Context, Datafile, and Template tags are used in conjunction with
Placeholder tags, and can be used in externally managed applications.

See "Site Studio Tag Library" on page 6-1.

Using Site Studio Helper Methods
Site Studio helper methods are available for scripting templates.

Using Site Studio Technologies in Your Integration

5-4 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

See "Site Studio Helper Methods" on page 6-9.

Integrating with Other Technologies or Frameworks
Site Studio tags can be added to other technologies (such as an ADF application or JSF
page on a Web site). When used in an integration, all URL management must be
handled by the application or application server. Site Studio does not manage the
application structure, perform the URL mapping, or the page templating.

Site Studio content can be combined with other components or task flows by adding
either a static placeholder or dynamic placeholder to page or application.

■ A static placeholder is a placeholder with an explicitly assigned dDocName
(content ID). In other words, the static placeholder is associated with the backing
data file (and, optionally, region display template) at design time.

■ A dynamic placeholder is a placeholder that stores its backing data file dDocName
(and, optionally, region template) in a project file. A dynamic placeholder is
associated with a backing data file by business users using the switch region
content functionality that is part of the contribution process. A context tag must to
be included to define where in the project file the switch content action will write
the values generated by the switch content wizard.

6

Site Studio Tag Library and Helper Methods 6-1

6Site Studio Tag Library and Helper Methods

This section provides information on the Site Studio tag library and the Site Studio
helper methods. It covers the following topics:

■ "Site Studio Tag Library" on page 6-1

■ "Site Studio Helper Methods" on page 6-9

6.1 Site Studio Tag Library
This topic provides information on the Site Studio tag library and provides
descriptions and details for each tag.

■ "Site Studio Tag Descriptions" on page 6-1

■ "Site Studio <wcm:context> Tag" on page 6-2

■ "Site Studio <wcm:dataFile> Tag" on page 6-3

■ "Site Studio <wcm:dynamicConversion> Tag" on page 6-4

■ "Site Studio <wcm:dynamicList> Tag" on page 6-4

■ "Site Studio <wcm:idcParameter> Tag" on page 6-5

■ "Site Studio <wcm:idcService> Tag" on page 6-6

■ "Site Studio <wcm:metadata> Tag" on page 6-7

■ "Site Studio <wcm:placeholder> Tag" on page 6-7

■ "Site Studio <wcm:staticPlaceholder> Tag" on page 6-8

■ "Site Studio <wcm:url> Tag" on page 6-8

6.1.1 Site Studio Tag Descriptions
This section lists each Site Studio tag and provides a brief description. See the specific
tag for additional details.

Note: Site Studio tags and helper methods are subject to change with
each release of Site Studio. For information on tag library service
caching see "Understanding Service Caching with the Site Studio Tag
Library" on page 1-5.

Site Studio Tag Library

6-2 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

6.1.2 Site Studio <wcm:context> Tag
The Context tag creates a new SiteContext object and sets it on the current
HttpServletRequest. This overrides any existing SiteContext already present.
Subsequent calls to any Site Studio API or tag will use this context.

If the context is not initialized from the current path (initFromPath is false or not
specified), then the new SiteContext will have the same site ID and same URL (unless
specified) as the existing SiteContext, if available.

Parameters
■ siteID: The site identifier. Required.

■ url: The site path. This is a portion of path minus the site ID (for example,
/about/index.html. Required.

■ initFromPath: Set to true to initialize the context from the current
HttpServletRequest path (the url parameter is then ignored).

Example
Initialize a new context to the primary page of the about section for site ID "mysite":

Tag Description

wcm:context The Context tag creates a new SiteContext object and sets it
on the current HttpServletRequest. This overrides any
existing SiteContext already present. Subsequent calls to any
Site Studio API or tag will use this context.

wcm:dataFile The Data File tag loads content from the content server and
parses it into a DataFile object. The object is then exposed as a
variable to be used by the Expression Language (EL) to access
the individual components of the data file.

wcm:dynamicConversion The Dynamic Conversion tag is used to specify the
conversion rule to use when creating a dynamic conversion of
a native document.

wcm:dynamicList The Dynamic List tag executes the query from the dynamic
list element specified that is in the region definition, and
makes the results available in the variable var.

wcm:idcParameter The Idc Parameter tag is used in combination with the Idc
Service tag to execute a IDC service call on the content server.
Takes a name/value pair.

wcm:idcService The Idc Service tag is used in combination with the Idc
Parameter tag to execute a IDC service call on the content
server.

wcm:metadata The Metadata tag performs a DOC_INFO service call for the
content item, and makes the resulting DataBinder available
containing the document information about the given content
item.

wcm:placeholder The Placeholder tag is used to specify where an item will be
inserted in a template. This will typically be content, but it
can also be navigation, code, subtemplates, etc.

wcm:staticPlaceholder The Static Placeholder tag can be used to add a placeholder
with a fixed data file. This is useful for content that does not
change, such as headers and footers.

wcm:url The URL tag renders either hierarchical links into the site
structure or links to content server content.

Site Studio Tag Library

Site Studio Tag Library and Helper Methods 6-3

<wcm:context siteID="mysite" url="/about/index.html" />

Reset the current SiteContext to a new URL, without specifying the site ID:

<wcm:context url="/index.html" />

6.1.3 Site Studio <wcm:dataFile> Tag
The Data File tag loads content from the content server and parses it into a DataFile
object. The object is then exposed as a variable to be used by the Expression Language
(EL) to access the individual components of the data file. Typically the wcm:dataFile
tag is used on a region template, to load the assigned DataFile for display.

The DataFile object implements the Map interface, allowing access to all members by
the element name. There are two types of elements that can be retrieved:

■ TextElement: The text content.

■ ListElement: The static list content. The ListElement implements the List
interface, which each member of the list a map of TextElements.

Parameters
■ var: The variable name of the resulting DataFile object. Required.

■ dataFile: The content ID of the data file. If not specified, it uses the currently
assigned ID for the current placeholder if called from within a wcm:placeholder
tag. Optional.

Example
Assume the data file, with a content ID of AWARDS has the following shape:

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns="http://www.stellent.com/wcm-data/ns/8.0.0" version="8.0.0.0">
 <element name="title">Awards</wcm:element>
 <list name="list">
 <row>
 <element name="name">2007 Outstanding Organization Award</element>
 </row>
 <row>
 <element name="name">2006 Top 50 Company</element>
 </row>
 </list>
</root

From a region template, load the assigned data file:

<wcm:dataFile var="dataFile" />

Alternatively, load the data file by specifying the content ID:

<wcm:dataFile var="dataFile" contentID="" />

Model the data into some HTML:

<h2>${title}</h2>

<c:forEach var="row" items="${dataFile.list}">
 ${row.name}
</c:forEach>

Site Studio Tag Library

6-4 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

6.1.4 Site Studio <wcm:dynamicConversion> Tag
The Dynamic Conversion tag is used to specify the conversion rule to use when
creating a dynamic conversion of a native document.

Parameter
■ rule: The name of the dynamic conversion rule as defined in the

ConversionsDefinition file. Required.

From View > Property Inspector > Rule > Edit you can select a rule for the
dynamic conversion tag. If a rule is not selected, the default rule is used.

■ page: The page number to display. Optional.

■ var: Variable to assign the output of the dynamic conversion. If not specified, the
output of the conversion will be written to the page directly. Optional.

■ dataFile: The dDocName (content ID) of the item to convert. If not specified, the
data file assigned to the current placeholder will be used. Optional.

Example
Convert the current data file using the rule ruleName:

<wcm:dynamicConversion rule="ruleName" />

Convert the data file MY_WORD_DOC using the rule ruleName:

<wcm:dynamiConversion dataFile="MY_WORD_DOC" rule="ruleName" />

6.1.5 Site Studio <wcm:dynamicList> Tag
The Dynamic List tag executes the query from the dynamic list element specified that
is in the region definition, and makes the results available in the variable var.

Parameters
■ element: Name of the element within the list used to construct the list element.

Required.

■ var: A dynamic list variable. Required.

■ dataFile: The data file assigned to the placeholder rendering this dynamic list.
Optional.

■ placeholder: The name of the placeholder rendering this dynamic list. Optional.

Example
Query using the assigned data file in a region template:

<wcm:dynamicList element="example" var="example"/>

Model the results:

<c:forEach var="row" items="${example.resultSets.SearchResults.rows}">
 ${row.dDocName} - ${row.dDocTitle}
</c:forEach>

Site Studio Tag Library

Site Studio Tag Library and Helper Methods 6-5

6.1.6 Site Studio <wcm:idcParameter> Tag
The Idc Parameter tag is used in combination with the Idc Service tag to execute a IDC
Service call on the content server. Takes a name/value pair.

Important: Parameters will vary depending on the service called. Refer to the Oracle
Fusion Middleware Services Reference Guide for Universal Content Management for the list
of service calls and parameters.

Parameters
■ name: The IDC Parameter. Enter the parameter for the IDC Service call made on

the content server. Use the Site Studio IdcService Tag to define the IDC Service call
to be executed on the content server. Required.

■ value: An Idc Parameter variable. Enter a valid value for this parameter.
Required.

■ file: If true, the value parameter specifies a path (either a local file path or a
relative file path in this web application) and will be added to the DataBinder as a
file object. Optional.

Example
This example used both the Idc Service tag and Idc Parameter tag. In this example, the
CHECKIN_UNIVERSAL service is called and the parameters for the service are
defined using name/value pairs.

■ The doFileCopy parameter is set to TRUE (1), so the file will not be deleted from
hard drive after successful check in.

■ The dDocName parameter defines the Content ID.

■ The dDocTitle parameter defines the Title.

■ The dDocType parameter defines the Type.

■ The dSecurityGroup parameter defines the Security Group.

■ The dDocAuthor parameter defines the Author.

■ The primaryFile parameter defines original name for the file and the absolute
path to the location of the file as seen from the server.

<wcm:idcservice service="CHECKIN_UNIVERSAL" var="callStatus"
 <wcm:idcparameter name="doFileCopy" value="1"/>
 <wcm:idcparameter name="dDocName" value="RemoteTestCheckin23"/>
 <wcm:idcparameter name="dDocTitle" value="Test1"/>
 <wcm:idcparameter name="dDocType" value="ADACCT"/>
 <wcm:idcparameter name="dSecurityGroup" value="Public"/>
 <wcm:idcparameter name="dDocAuthor" value="sysadmin"/>
 <wcm:idcparameter name="primaryFile" value="C:/inetpub/Scripts/query2.asp"/>
/>

This example shows how to get data back from the service call:

<wcm:idcService service="DOC_INFO_BY_NAME" var="docinfo">
 <wcm:idcParameter name="dDocName" value="DATAFILE1234" />
 <wcm:idcParameter name="RevisionSelectionMethod" value="LatestReleased" />
</wcm:idcService>
<c:forEach var="row" items="${docinfo.resultSets.DOC_INFO.rows}">
 <p>The content item ${row.dDocName} is a
 <u>${row.xWebsiteObjectType}</u></p>
</c:forEach>

Site Studio Tag Library

6-6 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

6.1.7 Site Studio <wcm:idcService> Tag
The Idc Service tag is used in combination with the Idc Parameter tag to execute a IDC
service call on the content server.

Important: Parameters will vary depending on the service called. Refer to the Oracle
Fusion Middleware Services Reference Guide for Universal Content Management for the list
of service calls and parameters.

Parameters
■ service: The Idc Service. Enter the IDC Service call to be executed on the content

server. The service call returns a data binder. Use the Site Studio IdcParameter tag
to set parameters for the service call. Required.

■ var: An Idc Service variable. Enter a name for the variable that will hold the
results of the returned response from the content server. Required.

■ type: If set to stream, the response from the content server is an InputStream
object. By default, the response is a oracle.stellent.ridc.model.DataBinder.
Optional.

Example
This example used both the Idc Service tag and Idc Parameter tag. In this example, the
CHECKIN_UNIVERSAL service is called and the parameters for the service are
defined using field/value pairs

■ The doFileCopy parameter is set to TRUE (1), so the file will not be deleted from
hard drive after successful check in.

■ The dDocName parameter defines the Content ID.

■ The dDocTitle parameter defines the Title.

■ The dDocType parameter defines the Type.

■ The dSecurityGroup parameter defines the Security Group.

■ The dDocAuthor parameter defines the Author.

■ The primaryFile parameter defines original name for the file and the absolute
path to the location of the file as seen from the server.

<wcm:idcservice service="CHECKIN_UNIVERSAL" var="callStatus"
 <wcm:idcparameter name="doFileCopy" value="1"/>
 <wcm:idcparameter name="dDocName" value="RemoteTestCheckin23"/>
 <wcm:idcparameter name="dDocTitle" value="Test1"/>
 <wcm:idcparameter name="dDocType" value="ADACCT"/>
 <wcm:idcparameter name="dSecurityGroup" value="Public"/>
 <wcm:idcparameter name="dDocAuthor" value="sysadmin"/>
 <wcm:idcparameter name="primaryFile" value="C:/inetpub/Scripts/query2.asp"/>
/>

This example shows how to get data back from the service call:

<wcm:idcService service="DOC_INFO_BY_NAME" var="docinfo">
 <wcm:idcParameter name="dDocName" value="DATAFILE1234" />
 <wcm:idcParameter name="RevisionSelectionMethod" value="LatestReleased" />
</wcm:idcService>
<c:forEach var="row" items="${docinfo.resultSets.DOC_INFO.rows}">
 <p>The content item ${row.dDocName} is a
 <u>${row.xWebsiteObjectType}</u></p>
</c:forEach>

Site Studio Tag Library

Site Studio Tag Library and Helper Methods 6-7

6.1.8 Site Studio <wcm:metadata> Tag
The Metadata tag performs a DOC_INFO service call for the content item, and makes
the resulting DataBinder available containing the document information about the
given content item.

Parameters
■ contentID: The content ID. Required.

■ var: The metadata variable. Required.

Example
<wcm:metadata contentID="DATAFILE1234" var="metadata"/>
<c:forEach var="metadatarow" items="${metadata.resultSets.DOC_INFO.rows}">
 <p>The content item ${metadatarow.dDocName} is a
 <u>${metadatarow.xWebsiteObjectType}</u></p>
</c:forEach>

You can also use the data file on a region template rather than a fixed ID, for example:

<wcm:metadata contentID="${wcmContext.placeholder.dataFile}" var="meta"/>

6.1.9 Site Studio <wcm:placeholder> Tag
The Placeholder tag is used to specify where an item will be inserted in a template.
This will typically be content, but it can also be navigation, code, subtemplates, etc.

Parameters
■ name: the name of the placeholder. Required.

■ location: The location on the template. Optional.

■ definition: Specifies the mapping to a placeholder definition, which overrides
any mappings specified in other ways. Optional.

■ template: The region template to use to render the Data File. Optional.

■ dataFile: The dDocName of the data file to assign to this placeholder. Optional.

■ regionDefinition: The dDocName region definition to use, instead of the
xRegionDefinition on the data file. Optional.

■ actions: The allowed actions of the placeholder definition. Any number of
actions can be set. If you use parameters that do not work together (for example,
specifying a subtemplate as well as a region definition), then the tag will execute
based on the order of parameters listed above. Optional.

■ Update [E]: Allows contributor update.

■ Approve [A]: Allows workflow approval.

■ Document Information [I]: Allows viewing document information.

■ Switch Data File [S]: Allows switching the data file.

■ View Usage Report [U]: Allows viewing the web usage report.

■ View tracker Report [T]: Allows viewing the web tracker report.

■ Document Information Update [M]: Allows updating the content
information.

Site Studio Tag Library

6-8 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

■ Switch Region Template [V]: Allows switching the region template.

■ Remove Content [N]: Allows content removal by the contributor.

Example
<wcm:placeholder name="yourplaceholdername" actions="E"/>
<wcm:placeholder name="yourplaceholdername" actions="EPRISUTMVN"/>

6.1.10 Site Studio <wcm:staticPlaceholder> Tag
The Static Placeholder tag can be used to add a placeholder with a fixed data file. This
is useful for content that does not change, such as headers and footers.

Parameters
■ dataFile : The dDocName (content ID) of the data file to assign to this static

placeholder. Required.

■ name: the name of the static placeholder. Optional.

■ template: The region template to use to render the data file. Optional.

■ actions: The allowed actions of the placeholder definition. Any number of
actions can be set. If you use parameters that do not work together (for example,
specifying a subtemplate as well as a region definition), then the tag will execute
based on the order of parameters listed above. Optional.

■ Update [E]: Allows contributor update.

■ Approve [A]: Allows workflow approval.

■ Document Information [I]: Allows viewing document information.

■ Switch Data File [S]: Allows switching the data file.

■ View Usage Report [U]: Allows viewing the web usage report.

■ View tracker Report [T]: Allows viewing the web tracker report.

■ Document Information Update [M]: Allows updating the content
information.

■ Switch Region Template [V]: Allows switching the region template.

■ Remove Content [N]: Allows content removal by the contributor.

Example
<wcm:staticPlaceholder datafile="yourdatafile" actions="E"/>
<wcm:staticPlaceholder datafile="yourdatafile" actions="EPRISUTMVN"/>

6.1.11 Site Studio <wcm:url> Tag
The URL tag renders either hierarchical links into the site structure or links to content
server content.

Parameters
■ var: The variable name to store the link result.

■ type: The type of link. Required.

■ node: Defines a URL for a node.

Site Studio Helper Methods

Site Studio Tag Library and Helper Methods 6-9

■ dcresource: Defines a URL for a dynamic conversion resource. Only valid
inside a placeholder tag.

■ dcpage : Defines a URL for a dynamic conversion page. Only valid inside a
placeholder tag.

■ rendition: Defines a URL for a rendition.

■ resource: Defines a URL for a resource. Used to link to weblayout static
resources, such as images.

■ Link : Used to create links to content.

■ url: The link parameter (format dependent on the type). Required.

■ node: Format of nodeId|nodePath.

■ dcresource: Format of dcResourcePath.

■ dcpage: Format of dcPageNum.

■ rendition: Format of dDocName/renditionName.

■ resource: Format of dDocName or webLayoutPath.

■ Link : Format of dDocName or (nodeId|nodePath)/dDocName.

■ siteID: The site identifier for the link target. This consists of the section ID and
the content ID for a site content item. For example, a section ID of 56 and content
ID of TEST_ITEM.

Example
Create a link to the /About section (which has a section ID of 20):

<wcm:url var="url" type="node" url="/About" />
<wcm:url var="url" type="node" url="20" />

Create a link to a piece of content in the content server:

<wcm:url var="url" type="resource"
 url="/groups/public/documents/document/news_article.doc" />

Url to a rendition of a content item::

<!--$wcmUrl("resource","dDocName")-->
<!--$wcmUrl("resource","groups/public/documents/adacct/mydocname.jpg")-->

Create a link to a piece of content to display inside a node (optionally specifying the
section):

<wcm:url var="url" type="link" url="NEWS_ARTICLE" />
<wcm:url var="url" type="link" url="20/NEWS_ARTICLE" />

6.2 Site Studio Helper Methods
These Site Studio Helper Methods are available for scripting templates:

■ "Site Studio <filterSections> Method" on page 6-10

■ "Site Studio <listSectionsForRows> Method" on page 6-10

■ "Site Studio <isNodeInNavigationPath> Method" on page 6-11

■ "Site Studio <lookupSection> Method" on page 6-12

Site Studio Helper Methods

6-10 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

6.2.1 Site Studio <filterSections> Method
Filter a section list to remove inactive sections and contributor-only sections if not in
contribution mode.

public static List<SectionNode> filterSections (SiteContext siteContext, List
sections) { }

Parameters
■ siteContext: the site context

■ sections: a list of {@link SectionNode} objects

■ stopLevel: the level to stop (inclusive)

■ includeHome: true to include the home section

Returns
■ sectionList: return a list rows (represented as a list of sections)

Code
public static List<SectionNode> filterSections (SiteContext siteContext, List
sections) {
 if (sections == null) {
 return null;
 }

 List<SectionNode> sectionList = new ArrayList<SectionNode> (sections.size ());
 for (Object sectionObj : sections) {
 SectionNode section = (SectionNode)sectionObj;
 if (!Boolean.parseBoolean (section.getModel ().getActive ())) {
 continue;
 }
 if (Boolean.parseBoolean (section.getModel ().getContributorOnly ())
 && !siteContext.isContributorMode ()) {
 continue;
 }

 //add the section to the list
 sectionList.add (section);
 }

 return sectionList;
}

6.2.2 Site Studio <listSectionsForRows> Method
Create a list of sections matching the given parameters. Each row in the list will
contain all sections at that level.

public static List listSectionsForRows (SiteContext siteContext, int startLevel,
int stopLevel, boolean includeHome) { }

Parameters
■ siteContext: the site context

■ startLevel: the level to start (inclusive)

■ stopLevel: the level to stop (inclusive)

■ includeHome: true to include the home section

Site Studio Helper Methods

Site Studio Tag Library and Helper Methods 6-11

Returns
■ rows: return a list rows (represented as a list of sections)

Code
 public static List listSectionsForRows (SiteContext siteContext, int
startLevel, int stopLevel, boolean includeHome) {
 List<List<SectionNode>> rows = new ArrayList<List<SectionNode>> ();
 //get the first level
 if (startLevel < 1) {
 startLevel = 1;
 }
 if (stopLevel < 1) {
 stopLevel = 1;
 }
 Project project = siteContext.getProject ();
 for (int i = startLevel; i <= stopLevel; i++) {
 List<SectionNode> sections = project.getStructure
().getSectionsAtLevel (i);
 if (sections.isEmpty ()) {
 //no more sections so we can end here
 break;
 }
 rows.add (sections);
 }
 if (startLevel == 1 && includeHome) {
 List<SectionNode> nodes = null;
 if (rows.size () >= 1) {
 nodes = rows.get (0);
 } else {
 nodes = new ArrayList<SectionNode> ();
 rows.add (nodes);
 }
 nodes.add (0, project.getStructure ().getRootSection ());
 }
 return rows;
 }

6.2.3 Site Studio <isNodeInNavigationPath> Method
Look to see if the current node is in the navigation path.

public static boolean isNodeInNavigationPath (SiteContext siteContext, String
nodeID, boolean includeHome) { }

Parameters
■ siteContext: the site context

■ nodeID: the node ID

■ includeHome: true to include the home section in this check, false to exclude

Returns
■ isInNavPath: returns true if the node ID is part of the current navigation path

Code
 public static boolean isNodeInNavigationPath (SiteContext siteContext, String
nodeID, boolean includeHome) {
 if (nodeID == null) {

Site Studio Helper Methods

6-12 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

 return false;
 }

 boolean isInNavPath = false;
 SectionNode section = siteContext.getSection ();
 if (section != null) {
 isInNavPath = (section.getID ().equals (nodeID));
 if (!isInNavPath) {
 for (SectionNode parent : section.getAncestors ()) {
 if (parent.getParent () == null && !includeHome) {
 continue;
 }
 isInNavPath = (parent.getID ().equals (nodeID));
 if (isInNavPath) {
 break;
 }
 }
 }
 }

 return isInNavPath;
 }

6.2.4 Site Studio <lookupSection> Method
Look up a section by path or ID.

public static SectionNode lookupSection (SiteContext siteContext, String id) { }

Parameters
■ siteContext: the site context

■ id: the section path or ID

Returns
■ section: return the section or null if not found

Code
public static SectionNode lookupSection (SiteContext siteContext, String id) {
 //see if this is a number
 SectionNode section = null;
 boolean isNumber = false;
 try {
 Integer.parseInt (id);
 isNumber = true;
 } catch (NumberFormatException exp) {
 //ignored
 }

 if (isNumber) {
 section = siteContext.getProject ().getStructure ().getSectionByID
(id);
 } else {
 //fix up path
 id = PathHelper.ensureForwardSlashes (id);
 //handle relative
 if (!id.startsWith ("/")) {
 //get the current section
 SectionNode current = siteContext.getSection ();

Site Studio Helper Methods

Site Studio Tag Library and Helper Methods 6-13

 if (current != null) {
 id = current.getUrlPath () + "/" + id;
 }
 }
 section = siteContext.getProject ().getStructure ().getSectionByPath
(id);
 }

 return section;
 }

Site Studio Helper Methods

6-14 Oracle Fusion Middleware Developer's Guide for Site Studio for External Applications

Index-1

Index

Symbols
__ssxaCacheEnabled, 1-5
__ssxaCacheFields, 1-5
__ssxaCacheKey, 1-5
__ssxaCacheTTL, 1-5

A
access control lists, 1-4
application components, 5-1
assets

contributor data files, 2-2, 2-9, 2-20, 2-21
conversion definitions, 2-3
custom configuration scripts, 2-3
custom element forms, 2-3
element definitions, 2-3, 2-8, 2-9, 2-12
elements, 2-8, 2-9, 2-11
hierarchy, 2-7
images, 2-2
native documents, 2-2, 2-20, 2-21
other media, 2-3
page templates, 2-2, 2-7, 2-18
placeholder definitions, 2-3, 2-8, 2-15, 2-16
placeholders, 2-8, 2-15
region definitions, 2-3, 2-8, 2-9, 2-13
region templates, 2-2, 2-8, 2-9, 2-13
reusing, 2-10, 2-21
storage, 2-3
subtemplates, 2-2, 2-8, 2-17
validation scripts, 2-3

authentication
contribution mode, 1-4
design mode, 1-4

C
catch-all placeholder definition, 2-16
configuration files, 2-3
configuration scripts, 2-3
connections.xml, 5-1
content

separation of presentation and content, 2-1
content caching, 1-5
content files, 2-2, 2-20

reusing, 2-10, 2-21

content information fields for site assets, 2-4
content information page, 2-3
content server

security model, 3-5
context tag, 6-2
contribution

access levels, 3-5
contribution graphic, 3-5
contribution mode, 1-4, 2-6
contribution mode authentication, 1-4
contribution model, 2-6
contribution region

security model, 3-5
contributor

as content provider, 3-5
levels of contribution, 3-5
role, 3-5

contributor athentication, 1-3
contributor data file, 3-2

and secondary pages, 3-11
sharing across web sites, 3-4

contributor data files, 2-2, 2-9, 2-20, 2-21
contributors, 2-5, 2-20
control files, 2-3
conversion definitions, 2-3
custom configuration scripts, 2-3
custom element forms, 2-3

D
data files, 2-2, 2-20, 2-21
dataFile tag, 6-3
default placeholder definition, 2-16
definitions

conversions, 2-3
element, 2-3, 2-12
placeholder, 2-3, 2-15, 2-16
region, 2-3, 2-13

design mode, 1-4
design mode authentication, 1-4
designers, 2-4

role of, 3-5
dynamic lists

and secondary pages, 2-22
dynamicConversion tag, 6-4
dynamicList tag, 6-4

Index-2

E
element definitions, 2-3, 2-8, 2-9, 2-12

naming conventions, 3-8
site planning, 3-5, 3-7, 3-8, 3-9, 3-10

element forms, 2-3
elements, 2-8, 2-9, 2-11
Exclude From Lists (metadata), 2-4

F
files

content, 2-2, 2-20
contributor data files, 2-2, 2-20, 2-21
control and configuration, 2-3
conversion definitions, 2-3
custom configuration scripts, 2-3
custom element forms, 2-3
element definitions, 2-3
images, 2-2
media, 2-3
native documents, 2-2, 2-20, 2-21
page templates, 2-2, 2-18
placeholder definitions, 2-3
presentation, 2-2
region definitions, 2-3
region templates, 2-2
subtemplates, 2-2, 2-17
validation scripts, 2-3

filters
mode, 5-2
proxy filter, 5-2
site filter, 5-2

filterSections method, 6-10
forms for elements, 2-3

G
global placeholder mapping, 2-16

H
helper methods

filterSections, 6-10
isNodeInNavigationPath, 6-11
listSectionsForRows, 6-10
lookupSection, 6-12

hierarchy of site objects, 2-7

I
idcParameter tag, 6-5
idcService tag, 6-6
images, 2-2
Initialization servlet, 5-2
isNodeInNavigationPath method, 6-11

J
JavaEE EAR file, 5-1
JavaEE WAR file, 5-1

jsp/jspx templates, 1-3

L
layout

and site planning, 3-1
Link wizard, 3-6
lists

dynamic, 2-22
listSectionsForRows method, 6-10
lookupSection method, 6-12

M
mapping placeholders with placeholder

definitions, 2-16
media files, 2-3
metadata

and site planning, 3-5
site planning, 3-10
xRegionDefinition, 2-4

metadata fields
Exclude From Lists, 2-4
region definition, 2-4
web site object type, 2-4
web site section, 2-4
web sites, 2-4
xRegionDefinition, 2-4

metadata for site assets, 2-4
metadata tag, 6-7
mode filter, 5-2
model for contribution, 2-6
model for presentation, 2-5

N
naming conventions

element definitions, 3-8
page templates, 3-7
region definitions, 3-8
region templates, 3-9
sections, 3-3
site assets, 3-6
site planning, 3-11

native documents, 2-2, 2-20, 2-21, 3-6
sharing across web sites, 3-4
submitting to a site, 3-6

navigating the site, 3-3

O
other media, 2-3

P
page templates, 1-3, 2-2, 2-7, 2-18

advantage of multiple, 3-3
and subtemplates, 3-9
explained, 3-4
multiple versus reusable, 3-3
primary pages, 3-11

Index-3

secondary pages, 3-11
site planning, 3-4, 3-9, 3-10

pages
primary, 2-21
secondary, 2-21

placeholder definitions, 2-3, 2-8, 2-15, 2-16, 3-10
catch-all, 2-16
default, 2-16

placeholder tag, 6-7
placeholderDefinitionDocName, 2-16
placeholders, 2-8, 2-15

mapping, 2-16
planning a web site, 3-1
planning the site hierarchy, 3-3
presentation files, 2-2
presentation model, 2-5
presentation, separation from content, 2-1
primary pages, 2-21

explained, 3-4
site planning, 3-4, 3-10

project structure, 1-1
proxy filter, 5-2, 5-3

R
region content

adding content not associated with a web site, 3-4
region definition (metadata), 2-4
region definitions, 2-3, 2-4, 2-8, 2-9, 2-13

naming conventions, 3-8
site planning, 3-8

region templates, 1-3, 2-2, 2-8, 2-9, 2-13
naming conventions, 3-9
site planning, 3-4, 3-8

registering templates, 1-3
reusable page templates, 3-3
reusing site assets, 2-10, 2-21
roles

contributors, 2-5
designers, 2-4

roles for web sites, 2-4

S
scripts

custom configuration scripts, 2-3
validation, 2-3

secondary pages, 2-21
and contributor data files, 3-11
dynamic lists, 2-22
explained, 3-4
site planning, 3-4, 3-10

sections
name, 3-3
naming conventions, 3-3
placeholder mapping, 2-16
primary pages, 2-21
secondary pages, 2-21
site hierarchy, 3-3

security, 1-3

security model, 3-5
security settings

access control lists, 1-4
accounts, 1-4
groups, 1-4

separation of presentation and content, 2-1
servelets

Initialization, 5-2
servelets SiteStudio proxy, 5-2
service caching, 1-5
service caching parameters

__ssxaCacheEnabled, 1-5
__ssxaCacheFields, 1-5
__ssxaCacheKey, 1-5
__ssxaCacheTTL, 1-5

site assets, 3-6
contributor data files, 2-2, 2-9, 2-20, 2-21
conversion definitions, 2-3
custom configuration scripts, 2-3
custom element forms, 2-3
element definitions, 2-3, 2-8, 2-9, 2-12
elements, 2-8, 2-9, 2-11
hierarchy, 2-7
images, 2-2
management, 3-6
naming, 3-6
native documents, 2-2, 2-20, 2-21
order of creation, 3-7
other media, 2-3
page templates, 2-2, 2-7, 2-18
placeholder definitions, 2-3, 2-8, 2-15, 2-16
placeholders, 2-8, 2-15
region definitions, 2-3, 2-8, 2-9, 2-13
region templates, 2-2, 2-8, 2-9, 2-13
reusing, 2-10, 2-21
storage, 2-3
subtemplates, 2-2, 2-8, 2-17
validation scripts, 2-3

site configuration files, 2-3
site content files, 2-2
site control files, 2-3
site files, 1-2
site filter, 5-2, 5-3
site hierarchy

contribution model, 3-5
depth of, 3-3
planning, 3-3
purpose of, 3-3
section name, 3-3
sections, 3-3
site planning, 3-6, 3-11

site identifier, 1-2
site navigation

planning, 3-5
role of sections, 3-3

site object hierarchy, 2-7
site planning, 3-1, 3-5

and page templates, 3-1, 3-7
and region templates, 3-1
and subtemplates, 3-1

Index-4

arranging data, 3-2
asset creation, 3-7
communication, 3-6
construction, 3-1
content, 3-1, 3-2
contributor data file, 3-2
contributor role, 3-5, 3-6
designer role, 3-6
element definitions, 3-5, 3-7, 3-8, 3-9, 3-10
examples

page templates, 3-2
placeholder, 3-2
subtemplates, 3-2

importance of, 3-1
layout, 3-1
manager role, 3-6
metadata, 3-5, 3-10
multiple contributors, 3-6
naming conventions, 3-11
organization, 3-2
page templates, 3-4, 3-9, 3-10
placeholder definitions, 3-10
primary pages, 3-4, 3-10
region definitions, 3-8
region templates, 3-4, 3-8
secondary pages, 3-4, 3-10
sections, 3-3
site hierarchy, 3-3, 3-6, 3-11
site navigation, 3-5
site updates, 3-7
structure, 3-2
subtemplates, 3-9, 3-10
user access, 3-5
workflow, 3-4, 3-6, 3-10

site presentation files, 2-2
site studio

contribution model, 2-6
metadata fields, 2-4
presentation model, 2-5
site object hierarchy, 2-7

site studio site files, 1-2
site studio technologies, 5-2
site URL format

content, 1-2
section, 1-2
site identifier, 1-2

SiteStudio proxy servlet, 5-2
staticPlaceholder tag, 6-8
storage of site assets, 2-3
structure of a site studio project

, 1-1
subtemplates, 1-3, 2-8

and page templates, 3-9, 3-10
site planning, 3-9, 3-10
templates

subtemplates, 2-2, 2-17

T
tag for placeholders, 2-15

tag library
context, 6-2
dataFile, 6-3
dynamicConversion, 6-4
dynamicList, 6-4
idcParameter, 6-5
idcService, 6-6
metadata, 6-7
placeholder, 6-7
staticPlaceholder, 6-8
url, 6-8

template registration, 1-3
templates

page, 2-2, 2-18
page templates, 1-3
region, 2-2, 2-13
region templates, 1-3
subtmplates, 1-3

third-party applications, 2-21

U
urltag, 6-8
users

contributors, 2-5
designers, 2-4

V
validation scripts, 2-3

W
wcm-config.xml, 1-2, 5-2
web site

access by contributors, 3-5
adding content not currently associated, 3-4
content files, 2-2
control and configuration files, 2-3
planning, 3-1
presentation files, 2-2
reusing site assets, 2-10, 2-21
roles, 2-4
separation of presentation and content, 2-1
sharing a contributor data file, 3-4
sharing a native document, 3-4
submitting native documents, 3-6
updating, 3-5

web site object type (metadata), 2-4
web site properties

default placeholder definition, 2-16
web site section (metadata), 2-4
web sites (metadata), 2-4
weblogic-application.xml, 5-1
weblogic.xml, 1-2, 5-2
web.xml, 1-2, 5-2
wizard

link, 3-6
workflows

site planning, 3-4, 3-6, 3-10

Index-5

X
XML, 2-21
xRegionDefinition, 2-4

Index-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 About Site Studio for External Applications
	1.1 Understanding the Site Studio Project Structure
	1.2 Understanding Site Studio Site Files
	1.3 Understanding the Site URL Format
	1.4 Understanding Site Studio JSP/JSPX Templates
	1.5 Understanding Security and Contributor Authentication
	1.6 Understanding Content Caching
	1.7 Understanding Service Caching with the Site Studio Tag Library

	2 Understanding Site Studio Web Sites
	2.1 Separation of Site Presentation and Content
	2.2 Site Asset Storage
	2.3 Site Roles
	2.4 Presentation Model
	2.5 Contribution Model
	2.6 Site Object Hierarchy
	2.7 Reusing Site Assets
	2.8 Elements and Element Definitions
	2.9 Region Templates and Region Definitions
	2.10 Placeholders and Placeholder Definitions
	2.11 Subtemplates
	2.12 Page Templates
	2.13 Contributor Data Files and Native Documents
	2.14 Primary and Secondary Pages

	3 Planning Your Web Site
	3.1 Why is Planning Important?
	3.2 Planning Your Site Hierarchy
	3.3 Planning Your Contribution Model
	3.4 Planning and Naming Your Site Assets
	3.5 Creating Your Site Assets
	3.5.1 Step One: Create Your Element Definitions
	3.5.2 Step Two: Create Your Region Definitions
	3.5.3 Step Three: Create Your Region Templates
	3.5.4 Step Four: Create Your Subtemplates
	3.5.5 Step Five: Create Your Placeholder Definitions
	3.5.6 Step Six: Create Your Page Templates

	4 Building a Site Studio Web Site Tutorial
	4.1 Creating a Site Studio Project and Connection
	4.1.1 Step 1: Creating a New Application and Project
	4.1.2 Step 2: Creating a Content Server Connection
	4.1.3 Step 3: Adding the Connection to the Project

	4.2 Creating a Sample Web Site
	4.2.1 Step 1: Creating a New Web Site in the Content Server
	4.2.2 Step 2: Specifying User Credentials for Contribution Mode
	4.2.3 Step 3: Editing the Web Application Deployment Descriptor
	4.2.4 Step 4: Creating the Home Page
	4.2.5 Step 5: Associating the Page Template with the Site
	4.2.6 Step 6: Running the Site and Viewing the Home Page
	4.2.7 Step 7: Creating Site Fragments
	4.2.8 Step 8: Creating the Element Definitions
	4.2.9 Step 9: Creating a Region Definition
	4.2.10 Step 10: Creating a Region Template
	4.2.11 Step 11: Creating a Placeholder Definition
	4.2.12 Step 12: Adding a Placeholder to the Home Page
	4.2.13 Step 13: Assigning Content to the Placeholder

	4.3 Creating Sidebar Links
	4.3.1 Step 1: Creating a Static List Element Definition
	4.3.2 Step 2: Creating a Sidebar Region Definition
	4.3.3 Step 3: Creating Static List Data File
	4.3.4 Step 4: Creating a Region Template
	4.3.5 Step 5: Updating the Sidebar Fragment
	4.3.6 Step 6: Creating a Sidebar Content Region Definition
	4.3.7 Step 7: Creating a Sidebar Content Region Template
	4.3.8 Step 8: Creating a Sidebar Content Placeholder Definition
	4.3.9 Step 9: Adding a Sidebar Placeholder Mapping to the Site
	4.3.10 Step 10: Assigning Content to the Sidebar

	4.4 Creating A Dynamic Conversion Page
	4.4.1 Step 1: Creating a Conversions Definition
	4.4.2 Step 2: Creating a Page Template for the Native Document
	4.4.3 Step 3: Creating a New Section for the Native Document
	4.4.4 Step 4: Creating a Region Definition for the Native Document
	4.4.5 Step 5: Creating a Region Template for the Native Document
	4.4.6 Step 6: Creating a Placeholder Definition for the Native Document
	4.4.7 Step 7: Adding the Placeholder to the Native Document Page
	4.4.8 Step 8: Assigning Content to the Placeholder on the Native Document Page

	5 Site Studio Application Components and Technology
	5.1 Site Studio Application Components
	5.2 Site Studio Technologies
	5.2.1 Site Studio Servlets
	5.2.2 Site Studio Filters

	5.3 Using Site Studio Technologies in Your Integration

	6 Site Studio Tag Library and Helper Methods
	6.1 Site Studio Tag Library
	6.1.1 Site Studio Tag Descriptions
	6.1.2 Site Studio <wcm:context> Tag
	6.1.3 Site Studio <wcm:dataFile> Tag
	6.1.4 Site Studio <wcm:dynamicConversion> Tag
	6.1.5 Site Studio <wcm:dynamicList> Tag
	6.1.6 Site Studio <wcm:idcParameter> Tag
	6.1.7 Site Studio <wcm:idcService> Tag
	6.1.8 Site Studio <wcm:metadata> Tag
	6.1.9 Site Studio <wcm:placeholder> Tag
	6.1.10 Site Studio <wcm:staticPlaceholder> Tag
	6.1.11 Site Studio <wcm:url> Tag

	6.2 Site Studio Helper Methods
	6.2.1 Site Studio <filterSections> Method
	6.2.2 Site Studio <listSectionsForRows> Method
	6.2.3 Site Studio <isNodeInNavigationPath> Method
	6.2.4 Site Studio <lookupSection> Method

	Index
	Symbols
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

