

Oracle® Fusion Middleware
Connectivity and Knowledge Modules Guide for Oracle Data
Integrator

11g Release 1 (11.1.1)

E12644-03

October 2010

Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator, 11g
Release 1 (11.1.1)

E12644-03

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: Laura Hofman Miquel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xv

Audience... xv
Documentation Accessibility ... xv
Related Documents ... xvi
Conventions ... xvi

1 Introduction

1.1 Terminology... 1-1
1.2 Using This Guide .. 1-2

Part I Databases, Files, and XML

2 Oracle Database

2.1 Introduction ... 2-1
2.1.1 Concepts.. 2-1
2.1.2 Knowledge Modules ... 2-1
2.2 Installation and Configuration.. 2-3
2.2.1 System Requirements and Certifications ... 2-3
2.2.2 Technology Specific Requirements ... 2-3
2.2.3 Connectivity Requirements.. 2-5
2.3 Setting up the Topology... 2-6
2.3.1 Creating an Oracle Data Server ... 2-6
2.3.2 Creating an Oracle Physical Schema... 2-6
2.4 Setting Up an Integration Project ... 2-7
2.5 Creating and Reverse-Engineering an Oracle Model .. 2-7
2.5.1 Create an Oracle Model .. 2-7
2.5.2 Reverse-engineer an Oracle Model ... 2-7
2.6 Setting up Changed Data Capture ... 2-8
2.7 Setting up Data Quality ... 2-9
2.8 Designing an Interface ... 2-9
2.8.1 Loading Data from and to Oracle... 2-10
2.8.2 Integrating Data in Oracle ... 2-10
2.8.3 Designing an ETL-Style Interface... 2-12
2.9 Troubleshooting ... 2-15
2.9.1 Troubleshooting Oracle Database Errors .. 2-15

iv

2.9.2 Common Problems and Solutions.. 2-15

3 Files

3.1 Introduction ... 3-1
3.1.1 Concepts.. 3-1
3.1.2 Knowledge Modules ... 3-1
3.2 Installation and Configuration.. 3-2
3.2.1 System Requirements and Certifications ... 3-2
3.2.2 Technology Specific Requirements ... 3-2
3.2.3 Connectivity Requirements.. 3-3
3.3 Setting up the Topology... 3-3
3.3.1 Creating a File Data Server... 3-3
3.3.2 Creating a File Physical Schema .. 3-4
3.4 Setting Up an Integration Project ... 3-4
3.5 Creating and Reverse-Engineering a File Model ... 3-5
3.5.1 Create a File Model.. 3-5
3.5.2 Reverse-engineer a File Model... 3-5
3.6 Designing an Interface.. 3-9
3.6.1 Loading Data From Files .. 3-9
3.6.2 Integrating Data in Files .. 3-11

4 Generic SQL

4.1 Introduction ... 4-1
4.1.1 Concepts.. 4-1
4.1.2 Knowledge Modules ... 4-2
4.2 Installation and Configuration.. 4-4
4.2.1 System Requirements and Certifications ... 4-4
4.2.2 Technology-Specific Requirements... 4-4
4.2.3 Connectivity Requirements.. 4-5
4.3 Setting up the Topology... 4-5
4.3.1 Creating a Data Server .. 4-5
4.3.2 Creating a Physical Schema ... 4-5
4.4 Setting up an Integration Project .. 4-5
4.5 Creating and Reverse-Engineering a Model ... 4-5
4.5.1 Create a Data Model.. 4-6
4.5.2 Reverse-engineer a Data Model... 4-6
4.6 Setting up Changed Data Capture ... 4-6
4.7 Setting up Data Quality.. 4-6
4.8 Designing an Interface ... 4-7
4.8.1 Loading Data From and to an ANSI SQL-92 Compliant Technology 4-7
4.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology....................................... 4-8
4.8.3 Designing an ETL-Style Interface.. 4-8

5 XML Files

5.1 Introduction ... 5-1
5.1.1 Concepts.. 5-1

v

5.1.2 Knowledge Modules ... 5-2
5.2 Installation and Configuration.. 5-2
5.2.1 System Requirements.. 5-2
5.2.2 Technologic Specific Requirements .. 5-2
5.2.3 Connectivity Requirements.. 5-2
5.3 Setting up the Topology... 5-2
5.3.1 Creating an XML Data Server .. 5-3
5.3.2 Creating a Physical Schema for XML ... 5-4
5.4 Setting Up an Integration Project ... 5-4
5.5 Creating and Reverse-Engineering a XML File .. 5-4
5.5.1 Create an XML Model ... 5-5
5.5.2 Reverse-Engineering an XML Model.. 5-5
5.6 Designing an Interface ... 5-5
5.6.1 Notes about XML Interfaces... 5-5
5.6.2 Loading Data from and to XML .. 5-6
5.6.3 Integrating Data in XML... 5-7
5.7 Troubleshooting .. 5-8
5.7.1 Detect the Errors Coming from XML.. 5-8
5.7.2 Common Errors.. 5-8

6 Microsoft SQL Server

6.1 Introduction ... 6-1
6.1.1 Concepts.. 6-1
6.1.2 Knowledge Modules ... 6-1
6.2 Installation and Configuration.. 6-2
6.2.1 System Requirements and Certifications ... 6-2
6.2.2 Technology Specific Requirements ... 6-3
6.2.3 Connectivity Requirements.. 6-4
6.3 Setting up the Topology... 6-4
6.3.1 Creating a Microsoft SQL Server Data Server ... 6-4
6.3.2 Creating a Microsoft SQL Server Physical Schema .. 6-5
6.4 Setting Up an Integration Project ... 6-5
6.5 Creating and Reverse-Engineering a Microsoft SQL Server Model 6-5
6.5.1 Create a Microsoft SQL Server Model .. 6-5
6.5.2 Reverse-engineer a Microsoft SQL Server Model ... 6-6
6.6 Setting up Changed Data Capture ... 6-6
6.7 Setting up Data Quality ... 6-7
6.8 Designing an Interface ... 6-7
6.8.1 Loading Data from and to Microsoft SQL Server ... 6-7
6.8.2 Integrating Data in Microsoft SQL Server.. 6-9

7 Microsoft Excel

7.1 Introduction ... 7-1
7.1.1 Concepts.. 7-1
7.1.2 Knowledge Modules ... 7-1
7.2 Installation and Configuration.. 7-2

vi

7.2.1 System Requirements and Certifications ... 7-2
7.2.2 Technology Specific Requirements ... 7-2
7.2.3 Connectivity Requirements.. 7-2
7.3 Setting up the Topology... 7-3
7.3.1 Creating a Microsoft Excel Data Server.. 7-3
7.3.2 Creating a Microsoft Excel Physical Schema ... 7-3
7.4 Setting Up an Integration Project ... 7-4
7.5 Creating and Reverse-Engineering a Microsoft Excel Model... 7-4
7.5.1 Create a Microsoft Excel Model... 7-4
7.5.2 Reverse-engineer a Microsoft Excel Model.. 7-4
7.6 Designing an Interface.. 7-5
7.6.1 Loading Data From and to Microsoft Excel ... 7-5
7.6.2 Integrating Data in Microsoft Excel .. 7-6
7.7 Troubleshooting .. 7-6
7.7.1 Decoding Error Messages... 7-6
7.7.2 Common Problems and Solutions... 7-6

8 Microsoft Access

8.1 Introduction ... 8-1
8.2 Concepts ... 8-1
8.3 Knowledge Modules .. 8-1
8.4 Specific Requirements .. 8-2

9 Netezza

9.1 Introduction ... 9-1
9.1.1 Concepts.. 9-1
9.1.2 Knowledge Modules ... 9-1
9.2 Installation and Configuration.. 9-2
9.2.1 System Requirements and Certifications ... 9-2
9.2.2 Technology Specific Requirements ... 9-2
9.2.3 Connectivity Requirements.. 9-3
9.3 Setting up the Topology... 9-3
9.3.1 Creating a Netezza Data Server... 9-3
9.3.2 Creating a Netezza Physical Schema .. 9-3
9.4 Setting Up an Integration Project ... 9-4
9.5 Creating and Reverse-Engineering a Netezza Model ... 9-4
9.5.1 Create a Netezza Model.. 9-4
9.5.2 Reverse-engineer a Netezza Model... 9-4
9.6 Setting up Data Quality.. 9-5
9.7 Designing an Interface.. 9-5
9.7.1 Loading Data from and to Netezza... 9-5
9.7.2 Integrating Data in Netezza ... 9-6

10 Teradata

10.1 Introduction .. 10-1
10.1.1 Concepts... 10-1

vii

10.1.2 Knowledge Modules .. 10-1
10.2 Installation and Configuration... 10-2
10.2.1 System Requirements and Certifications .. 10-2
10.2.2 Technology Specific Requirements .. 10-3
10.2.3 Connectivity Requirements... 10-3
10.3 Setting up the Topology.. 10-3
10.3.1 Creating a Teradata Data Server .. 10-4
10.3.2 Creating a Teradata Physical Schema.. 10-4
10.4 Setting Up an Integration Project .. 10-4
10.5 Creating and Reverse-Engineering a Teradata Model ... 10-5
10.5.1 Create a Teradata Model.. 10-5
10.5.2 Reverse-engineer a Teradata Model .. 10-5
10.6 Setting up Data Quality .. 10-6
10.7 Designing an Interface .. 10-6
10.7.1 Loading Data from and to Teradata .. 10-6
10.7.2 Integrating Data in Teradata ... 10-8
10.7.3 Designing an ETL-Style Interface... 10-12
10.8 KM Optimizations for Teradata... 10-15
10.8.1 Primary Indexes and Statistics.. 10-15
10.8.2 Support for Teradata Utilities ... 10-16
10.8.3 Support for Named Pipes .. 10-16
10.8.4 Optimized Management of Temporary Tables ... 10-17

11 Hypersonic SQL

11.1 Introduction .. 11-1
11.1.1 Concepts... 11-1
11.1.2 Knowledge Modules .. 11-1
11.2 Installation and Configuration... 11-2
11.2.1 System Requirements and Certifications .. 11-2
11.2.2 Technology Specific Requirements .. 11-2
11.2.3 Connectivity Requirements... 11-2
11.3 Setting up the Topology.. 11-2
11.3.1 Creating a Hypersonic SQL Data Server... 11-3
11.3.2 Creating a Hypersonic SQL Physical Schema .. 11-3
11.4 Setting Up an Integration Project .. 11-3
11.5 Creating and Reverse-Engineering a Hypersonic SQL Model.. 11-3
11.5.1 Create a Hypersonic SQL Model .. 11-4
11.5.2 Reverse-engineer a Hypersonic SQL Model... 11-4
11.6 Setting up Changed Data Capture .. 11-4
11.7 Setting up Data Quality .. 11-4
11.8 Designing an Interface .. 11-5

12 IBM Informix

12.1 Introduction .. 12-1
12.2 Concepts .. 12-1
12.3 Knowledge Modules ... 12-1

viii

12.4 Specific Requirements ... 12-2

13 IBM DB2 for iSeries

13.1 Introduction .. 13-1
13.1.1 Concepts... 13-1
13.1.2 Knowledge Modules .. 13-2
13.2 Installation and Configuration... 13-2
13.2.1 System Requirements and Certifications .. 13-2
13.2.2 Technology Specific Requirements .. 13-3
13.2.3 Connectivity Requirements... 13-3
13.3 Setting up the Topology.. 13-3
13.3.1 Creating a DB2/400 Data Server .. 13-3
13.3.2 Creating a DB2/400 Physical Schema.. 13-4
13.4 Setting Up an Integration Project .. 13-4
13.5 Creating and Reverse-Engineering an IBM DB2/400 Model .. 13-4
13.5.1 Create an IBM DB2/400 Model .. 13-5
13.5.2 Reverse-engineer an IBM DB2/400 Model ... 13-5
13.6 Setting up Changed Data Capture .. 13-5
13.6.1 Setting up Trigger-Based CDC ... 13-5
13.6.2 Setting up Log-Based CDC.. 13-6
13.7 Setting up Data Quality... 13-9
13.8 Designing an Interface... 13-9
13.8.1 Loading Data from and to IBM DB2 for iSeries .. 13-10
13.8.2 Integrating Data in IBM DB2 for iSeries ... 13-11
13.9 Specific Considerations with DB2 for iSeries... 13-11
13.9.1 Installing the Run-Time Agent on iSeries ... 13-11
13.9.2 Alternative Connectivity Methods for iSeries .. 13-11
13.10 Troubleshooting ... 13-12
13.10.1 Troubleshooting Error messages.. 13-12
13.10.2 Common Problems and Solutions.. 13-13

14 IBM DB2 UDB

14.1 Introduction .. 14-1
14.2 Concepts .. 14-1
14.3 Knowledge Modules ... 14-1
14.4 Specific Requirements ... 14-3

15 Sybase AS Enterprise

15.1 Introduction .. 15-1
15.2 Concepts .. 15-1
15.3 Knowledge Modules ... 15-1
15.4 Specific Requirements ... 15-3

16 Sybase IQ

16.1 Introduction .. 16-1
16.2 Concepts .. 16-1

ix

16.3 Knowledge Modules ... 16-1
16.4 Specific Requirements ... 16-2

Part II Business Intelligence

17 Oracle Business Intelligence Enterprise Edition

17.1 Introduction .. 17-1
17.1.1 Concepts... 17-1
17.1.2 Knowledge Modules .. 17-1
17.2 Installation and Configuration... 17-2
17.2.1 System Requirements and Certifications .. 17-2
17.2.2 Technology Specific Requirements .. 17-2
17.2.3 Connectivity Requirements... 17-2
17.3 Setting up the Topology.. 17-2
17.3.1 Creating an Oracle BI Data Server ... 17-3
17.3.2 Creating an Oracle BI Physical Schema... 17-3
17.4 Setting Up an Integration Project .. 17-4
17.5 Creating and Reverse-Engineering an Oracle BI Model .. 17-4
17.5.1 Create an Oracle BI Model... 17-4
17.5.2 Reverse-engineer an Oracle BI Model ... 17-4
17.6 Setting up Data Quality .. 17-4
17.7 Designing an Interface .. 17-5
17.7.1 Loading Data from and to Oracle BI.. 17-5
17.7.2 Integrating Data in Oracle BI .. 17-5

18 Oracle Hyperion Essbase

18.1 Introduction .. 18-1
18.1.1 Integration Process ... 18-1
18.1.2 Knowledge Modules .. 18-2
18.2 Installation and Configuration... 18-2
18.2.1 System Requirements and Certifications .. 18-2
18.2.2 Technology Specific Requirements .. 18-2
18.2.3 Connectivity Requirements... 18-2
18.3 Setting up the Topology.. 18-2
18.3.1 Creating an Hyperion Essbase Data Server .. 18-3
18.3.2 Creating an Hyperion Essbase Physical Schema ... 18-3
18.4 Creating and Reverse-Engineering an Essbase Model ... 18-3
18.4.1 Create an Essbase Model ... 18-3
18.4.2 Reverse-engineer an Essbase Model .. 18-4
18.5 Designing an Interface .. 18-5
18.5.1 Loading Metadata... 18-6
18.5.2 Loading Data ... 18-8
18.5.3 Extracting Data.. 18-11

19 Oracle Hyperion Financial Management

19.1 Introduction .. 19-1

x

19.1.1 Integration Process ... 19-1
19.1.2 Knowledge Modules .. 19-2
19.2 Installation and Configuration... 19-2
19.2.1 System Requirements and Certifications .. 19-2
19.2.2 Technology Specific Requirements .. 19-3
19.2.3 Connectivity Requirements... 19-3
19.3 Setting up the Topology.. 19-3
19.3.1 Creating an Hyperion Financial Management Data Server 19-3
19.3.2 Creating an Hyperion Financial Management Physical Schema............................... 19-3
19.4 Creating and Reverse-Engineering a Financial Management Model 19-3
19.4.1 Create an Financial Management Model .. 19-4
19.4.2 Reverse-Engineer an Financial Management Model... 19-4
19.5 Designing an Interface... 19-4
19.5.1 Loading Metadata... 19-5
19.5.2 Loading Data ... 19-5
19.5.3 Extracting Data.. 19-7
19.6 Data Store Tables.. 19-9

20 Oracle Hyperion Planning

20.1 Introduction .. 20-1
20.1.1 Integration Process ... 20-1
20.1.2 Knowledge Modules .. 20-1
20.2 Installation and Configuration... 20-2
20.2.1 System Requirements and Certifications .. 20-2
20.2.2 Technology Specific Requirements .. 20-2
20.2.3 Connectivity Requirements... 20-2
20.3 Setting up the Topology.. 20-2
20.3.1 Creating an Hyperion Planning Data Server.. 20-3
20.3.2 Creating an Hyperion Planning Physical Schema ... 20-3
20.4 Creating and Reverse-Engineering a Planning Model ... 20-3
20.4.1 Create a Planning Model ... 20-3
20.4.2 Reverse-engineer a Planning Model .. 20-3
20.5 Designing an Interface... 20-4
20.5.1 Loading Metadata... 20-4
20.5.2 Loading Data ... 20-5
20.5.3 Load Options ... 20-5
20.6 Datastore Tables and Data Load Columns... 20-7
20.6.1 Accounts... 20-7
20.6.2 Employee ... 20-14
20.6.3 Entities .. 20-20
20.6.4 User-Defined Dimensions ... 20-25
20.6.5 Attribute Dimensions... 20-31
20.6.6 UDA.. 20-33
20.6.7 Data Load Columns.. 20-34

21 Oracle OLAP

21.1 Introduction .. 21-1

xi

21.1.1 Concepts... 21-1
21.1.2 Knowledge Modules .. 21-2
21.2 Installation and Configuration... 21-2
21.2.1 System Requirements and Certifications .. 21-2
21.2.2 Technology Specific Requirements .. 21-2
21.2.3 Connectivity Requirements... 21-3
21.3 Setting up the Topology.. 21-3
21.3.1 Creating an Oracle Data Server .. 21-3
21.3.2 Creating an Oracle Physical Schema.. 21-3
21.4 Setting Up an Integration Project .. 21-3
21.5 Creating and Reverse-Engineering an Oracle Model ... 21-3
21.5.1 Create an Oracle Model ... 21-4
21.5.2 Reverse-engineer an Oracle OLAP Cube .. 21-4
21.6 Working with Oracle OLAP KMs in Integration Interfaces .. 21-4
21.6.1 Using Oracle OLAP as a Source in an Integration Interface 21-4
21.6.2 Using Oracle ROLAP as a Target in an Integration Interface 21-5
21.6.3 Using Oracle MOLAP as a Target in an Integration Interface 21-5

Part III Other Technologies

22 JMS

22.1 Introduction .. 22-1
22.1.1 Concepts... 22-1
22.1.2 Knowledge Modules .. 22-3
22.2 Installation and Configuration... 22-3
22.2.1 System Requirements and Certifications .. 22-4
22.2.2 Technology Specific Requirements .. 22-4
22.2.3 Connectivity Requirements... 22-4
22.3 Setting up the Topology.. 22-4
22.3.1 Creating a JMS Data Server ... 22-4
22.3.2 Creating a JMS Physical Schema .. 22-5
22.4 Setting Up an Integration Project .. 22-5
22.5 Creating and Defining a JMS Model ... 22-5
22.5.1 Create a JMS Model .. 22-6
22.5.2 Defining the JMS Datastores ... 22-6
22.6 Designing an Interface .. 22-7
22.6.1 Loading Data from a JMS Source ... 22-7
22.6.2 Integrating Data in a JMS Target .. 22-7
22.7 JMS Standard Properties ... 22-9
22.7.1 Using JMS Properties ... 22-10

23 JMS XML

23.1 Introduction .. 23-1
23.1.1 Concepts... 23-1
23.1.2 Knowledge Modules .. 23-3
23.2 Installation and Configuration... 23-3

xii

23.2.1 System Requirements and Certifications .. 23-3
23.2.2 Technology Specific Requirements .. 23-3
23.2.3 Connectivity Requirements... 23-3
23.3 Setting up the Topology.. 23-4
23.3.1 Creating a JMS XML Data Server ... 23-4
23.3.2 Creating a JMS XML Physical Schema .. 23-6
23.4 Setting Up an Integration Project .. 23-6
23.5 Creating and Reverse-Engineering a JMS XML Model.. 23-6
23.5.1 Create a JMS XML Model .. 23-6
23.5.2 Reverse-Engineering a JMS XML Model... 23-6
23.6 Designing an Interface... 23-7
23.6.1 Loading Data from a JMS XML Source ... 23-7
23.6.2 Integrating Data in a JMS XML Target .. 23-7

24 LDAP Directories

24.1 Introduction .. 24-1
24.1.1 Concepts... 24-1
24.1.2 Knowledge Modules .. 24-1
24.2 Installation and Configuration... 24-2
24.2.1 System Requirements... 24-2
24.2.2 Technologic Specific Requirements ... 24-2
24.2.3 Connectivity Requirements... 24-2
24.3 Setting up the Topology.. 24-2
24.3.1 Creating an LDAP Data Server... 24-3
24.3.2 Creating a Physical Schema for LDAP .. 24-4
24.4 Setting Up an Integration Project .. 24-4
24.5 Creating and Reverse-Engineering an LDAP Directory .. 24-4
24.5.1 Create an LDAP Model.. 24-4
24.5.2 Reverse-Engineering an LDAP Model .. 24-4
24.6 Designing an Interface... 24-5
24.6.1 Loading Data from and to LDAP ... 24-5
24.6.2 Integrating Data in an LDAP Directory .. 24-5
24.7 Troubleshooting ... 24-6

25 Oracle Changed Data Capture Adapters

25.1 Introduction .. 25-1
25.1.1 Concepts... 25-1
25.1.2 Knowledge Modules .. 25-2
25.2 Installation and Configuration... 25-2
25.2.1 System Requirements... 25-2
25.2.2 Technology Specific Requirements .. 25-2
25.2.3 Connectivity Requirements... 25-3
25.3 Setting up the Topology.. 25-3
25.3.1 Creating an Attunity Stream Data Server ... 25-3
25.3.2 Creating an Attunity Stream Physical Schema... 25-4
25.4 Setting Up an Integration Project .. 25-4
25.5 Creating and Reverse-Engineering an Attunity Stream Model .. 25-4

xiii

25.5.1 Create an Attunity Stream Model .. 25-4
25.5.2 Reverse-engineer an Attunity Stream Model ... 25-4
25.6 Designing an Interface Using the LKM Attunity to SQL... 25-5

26 Oracle GoldenGate

26.1 Introduction .. 26-1
26.1.1 Overview of the GoldeGate CDC Process... 26-1
26.1.2 Knowledge Modules .. 26-2
26.2 Installation and Configuration... 26-2
26.2.1 System Requirements and Certifications .. 26-3
26.2.2 Technology Specific Requirements .. 26-3
26.2.3 Connectivity Requirements... 26-3
26.3 Working with the Oracle GoldenGate JKMs ... 26-3
26.3.1 Define the Topology... 26-4
26.3.2 Create the Replicated Tables ... 26-5
26.3.3 Set Up an Integration Project .. 26-5
26.3.4 Configure CDC for the Replicated Tables... 26-6
26.3.5 Configure and Start Oracle GoldenGate Processes ... 26-7
26.3.6 Design Interfaces Using Replicated Data .. 26-8
26.4 Advanced Configuration .. 26-8
26.4.1 Initial Load Method.. 26-8
26.4.2 Tuning Replication Performances .. 26-8
26.4.3 One Source Multiple Staging Configuration .. 26-8

27 Oracle Enterprise Service Bus

27.1 Introduction .. 27-1
27.1.1 Concepts... 27-1
27.1.2 Knowledge Modules .. 27-2
27.1.3 Overview of the XREF KM Process.. 27-2
27.2 Installation and Configuration... 27-3
27.2.1 System Requirements and Certifications .. 27-3
27.2.2 Technology Specific Requirements .. 27-3
27.2.3 Connectivity Requirements... 27-3
27.3 Working with XREF using the ESB Cross-References KMs... 27-3
27.3.1 Defining the Topology ... 27-4
27.3.2 Setting up the Project ... 27-4
27.3.3 Designing an Interface with the ESB Cross-References KMs..................................... 27-4
27.4 Knowledge Module Options Reference.. 27-6

A Oracle Data Integrator Driver for LDAP Reference

A.1 Introduction to Oracle Data Integrator Driver for LDAP .. A-1
A.2 LDAP Processing Overview... A-1
A.2.1 LDAP to Relational Mapping.. A-2
A.2.2 Managing Relational Schemas .. A-5
A.3 Installation and Configuration .. A-6
A.3.1 Driver Configuration.. A-6

xiv

A.3.2 Using Property Bundles... A-11
A.3.3 Table Aliases Configuration.. A-13
A.4 SQL Syntax.. A-14
A.4.1 SQL Statements ... A-15
A.4.2 SQL FUNCTIONS... A-17
A.5 JDBC API Implemented Features .. A-20

B Oracle Data Integrator Driver for XML Reference

B.1 Introduction to Oracle Data Integrator Driver for XML .. B-1
B.2 XML Processing Overview ... B-2
B.2.1 XML to SQL Mapping.. B-2
B.2.2 XML Namespaces ... B-3
B.2.3 Managing Schemas... B-3
B.2.4 Locking... B-5
B.2.5 XML Schema (XSD) Support... B-5
B.3 Installation and Configuration... B-5
B.3.1 Driver Configuration.. B-5
B.3.2 Automatically Create Multiple Schemas... B-10
B.3.3 Using an External Database to Store the Data.. B-10
B.4 Detailed Driver Commands ... B-14
B.4.1 CREATE FILE.. B-15
B.4.2 CREATE XMLFILE... B-16
B.4.3 CREATE FOREIGNKEYS .. B-16
B.4.4 CREATE SCHEMA... B-17
B.4.5 DROP FOREIGNKEYS... B-17
B.4.6 DROP SCHEMA ... B-18
B.4.7 LOAD FILE .. B-18
B.4.8 SET SCHEMA.. B-19
B.4.9 SYNCHRONIZE ... B-19
B.4.10 UNLOCK FILE .. B-19
B.4.11 TRUNCATE SCHEMA .. B-20
B.4.12 VALIDATE .. B-20
B.5 SQL Syntax.. B-20
B.5.1 SQL Statements ... B-20
B.5.2 SQL FUNCTIONS... B-23
B.6 JDBC API Implemented Features .. B-26
B.7 XML Schema Supported Features ... B-27
B.7.1 Datatypes ... B-27
B.7.2 Supported Elements ... B-27
B.7.3 Unsupported Features ... B-33

xv

Preface

This book describes how work with different technologies in Oracle Data Integrator.

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This document is intended for developers who want to work with Knowledge
Modules for their integration processes in Oracle Data Integrator.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

xvi

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see the following Oracle resources:

■ Oracle Fusion Middleware Getting Started with Oracle Data Integrator

■ Oracle Fusion Middleware Installation Guide for Oracle Data Integrator

■ Oracle Fusion Middleware Upgrade Guide for Oracle Data Integrator

■ Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator

■ Oracle Fusion Middleware Knowledge Module Developer's Guide for Oracle Data
Integrator

■ Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator

■ Oracle Data Integrator 11g Online Help

■ Oracle Data Integrator 11g Release Notes, included with your Oracle Data Integrator 11g
installation and on Oracle Technology Network

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

This book describes how work with different technologies in Oracle Data Integrator.
This book contains the following parts:

■ Part I, "Databases, Files, and XML"

■ Part II, "Business Intelligence"

■ Part III, "Other Technologies"

Application Adapters are covered in a separate guide. See the Oracle Fusion Middleware
Application Adapters Guide for Oracle Data Integrator for more information.

This chapter provides an introduction to the terminology used in the Oracle Data
Integrator documentation and describes the basic steps of how to use Knowledge
Modules in Oracle Data Integrator.

This chapter contains the following sections:

■ Section 1.1, "Terminology"

■ Section 1.2, "Using This Guide"

1.1 Terminology
This section defines some common terms that are used in this document and
throughout the related documents mentioned in the Preface.

Knowledge Module
Knowledge Modules (KMs) are components of Oracle Data Integrator that are used to
generate the code to perform specific actions against certain technologies.

Combined with a connectivity layer such as, for example, JDBC, JMS, or JCA,
Knowledge Modules allow running defined tasks against a technology, such as
connecting to this technology, extracting data from it, transforming the data, checking
it, integrating it, etc.

Application Adapter
Oracle Application Adapters for Data Integration provide specific software components
for integrating enterprise applications data. Enterprise applications suported by Oracle
Data Integrator include Oracle E-Business Suite, Siebel, SAP, etc.

An adapter is a group of Knowledge Modules. In some cases, this group also contains
an attached technology definition for Oracle Data Integrator.

Application Adapters are covered in a separate guide. See the Oracle Fusion Middleware
Application Adapters Guide for Oracle Data Integrator for more information.

Using This Guide

1-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

1.2 Using This Guide
This guide provides conceptual information and processes for working with
knowledge modules and technologies supported in Oracle Data Integrator.

Each chapter explains how to configure a given technology, set up a project and use
the technology-specific knowledge modules to perform integration operations.

Some knowledge modules are not technology-specific and require a technology that
support an industry standard. These knowledge modules are referred to as Generic
knowledge modules. For example the knowledge modules listed in Chapter 4,
"Generic SQL" and in Chapter 22, "JMS" are designed to work respectively with any
ANSI SQL-92 compliant database and any JMS compliant message provider.

When these generic knowledge module can be used with a technology, the technology
chapter will mention it. However, we recommend using technology-specific
knowledge modules for better performances and enhanced technology-specific feature
coverage.

Before using a knowledge module, it is recommended to review the knowledge
module description in Oracle Data Integrator Studio for usage details, limitations and
requirements. In addition, although knowledge modules options are pre-configured
with default values to work out of the box, it is also recommended to review these
options and their description.

The chapters in this guide will provide you with the important usage, options,
limitation and requirement information attached to the technologies and knowledge
modules.

Part I
Part I Databases, Files, and XML

This part describes how to work with databases, files, and XML files in Oracle Data
Integrator.

Part I contains the following chapters:

■ Chapter 2, "Oracle Database"

■ Chapter 3, "Files"

■ Chapter 4, "Generic SQL"

■ Chapter 5, "XML Files"

■ Chapter 6, "Microsoft SQL Server"

■ Chapter 7, "Microsoft Excel"

■ Chapter 8, "Microsoft Access"

■ Chapter 9, "Netezza"

■ Chapter 10, "Teradata"

■ Chapter 11, "Hypersonic SQL"

■ Chapter 12, "IBM Informix"

■ Chapter 13, "IBM DB2 for iSeries"

■ Chapter 14, "IBM DB2 UDB"

■ Chapter 15, "Sybase AS Enterprise"

■ Chapter 16, "Sybase IQ"

2

Oracle Database 2-1

2 Oracle Database

This chapter describes how to work with Oracle Database in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 2.1, "Introduction"

■ Section 2.2, "Installation and Configuration"

■ Section 2.4, "Setting Up an Integration Project"

■ Section 2.5, "Creating and Reverse-Engineering an Oracle Model"

■ Section 2.6, "Setting up Changed Data Capture"

■ Section 2.7, "Setting up Data Quality"

■ Section 2.8, "Designing an Interface"

■ Section 2.9, "Troubleshooting"

2.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an Oracle Database. All
Oracle Data Integrator features are designed to work best with the Oracle Database
engine, including reverse-engineering, changed data capture, data quality, and
integration interfaces.

2.1.1 Concepts
The Oracle Database concepts map the Oracle Data Integrator concepts as follows: An
Oracle Instance corresponds to a data server in Oracle Data Integrator. Within this
instance, a schema maps to an Oracle Data Integrator physical schema. A set of related
objects within one schema corresponds to a data model, and each table, view or
synonym will appear as an ODI datastore, with its attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Oracle
database instance.

2.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 2–1 for
handling Oracle data. The KMs use Oracle specific features. It is also possible to use
the generic SQL KMs with the Oracle Database. See Chapter 4, "Generic SQL" for more
information.

Introduction

2-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 2–1 Oracle Database Knowledge Modules

Knowledge Module Description

RKM Oracle Reverse-engineers tables, views, columns, primary keys, non unique
indexes and foreign keys.

JKM Oracle 10g Consistent (Streams) Creates the journalizing infrastructure for consistent set journalizing
on Oracle 10g tables, using Oracle Streams.

JKM Oracle 11g Consistent (Streams) Creates the journalizing infrastructure for consistent set journalizing
on Oracle 11g tables, using Oracle Streams.

JKM Oracle Consistent Creates the journalizing infrastructure for consistent set journalizing
on Oracle tables using triggers.

JKM Oracle Consistent (Update Date) Creates the journalizing infrastructure for consistent set journalizing
on Oracle tables using triggers based on a Last Update Date column on
the source tables.

JKM Oracle Simple Creates the journalizing infrastructure for simple journalizing on
Oracle tables using triggers.

JKM Oracle to Oracle Consistent (OGG) Creates and manages the ODI CDC framework infrastructure when
using Oracle GoldenGate for CDC. See Chapter 26, "Oracle
GoldenGate" for more information.

CKM Oracle Checks data integrity against constraints defined on an Oracle table.

LKM File to Oracle (EXTERNAL TABLE) Loads data from a file to an Oracle staging area using the
EXTERNAL TABLE SQL Command.

LKM File to Oracle (SQLLDR) Loads data from a file to an Oracle staging area using the
SQL*Loader command line utility.

LKM MSSQL to Oracle (BCP SQLLDR) Loads data from a Microsoft SQL Server to Oracle database (staging
area) using the BCP and SQL*Loader utilities.

LKM Oracle BI to Oracle (DBLINK) Loads data from any Oracle BI physical layer to an Oracle target
database using database links. See Chapter 17, "Oracle Business
Intelligence Enterprise Edition" for more information.

LKM Oracle to Oracle (DBLINK) Loads data from an Oracle source database to an Oracle staging area
database using database links.

LKM Oracle to Oracle (datapump) Loads data from an Oracle source database to an Oracle staging area
database using external tables in the datapump format.

LKM SQL to Oracle Loads data from any ANSI SQL-92 source database to an Oracle
staging area.

LKM SAP BW to Oracle (SQLLDR) Loads data from SAP BW systems to an Oracle staging using
SQL*Loader utilities. See the Oracle Fusion Middleware Application
Adapters Guide for Oracle Data Integrator for more information.

LKM SAP ERP to Oracle (SQLLDR) Loads data from SAP ERP systems to an Oracle staging using
SQL*Loader utilities. See the Oracle Fusion Middleware Application
Adapters Guide for Oracle Data Integrator for more information.

IKM Oracle AW Incremental Update Integrates data in an Oracle target table in incremental update mode
and is able to refresh a Cube in an Analytical Workspace. See
Chapter 21, "Oracle OLAP" for more information.

IKM Oracle Incremental Update Integrates data in an Oracle target table in incremental update mode.

IKM Oracle Incremental Update (MERGE) Integrates data in an Oracle target table in incremental update mode,
using a MERGE statement.

IKM Oracle Incremental Update (PL SQL) Integrates data in an Oracle target table in incremental update mode
using PL/SQL.

Installation and Configuration

Oracle Database 2-3

2.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
Oracle Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

2.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

2.2.2 Technology Specific Requirements
Some of the Knowledge Modules for Oracle use specific features of this database. This
section lists the requirements related to these features.

2.2.2.1 Using the SQL*Loader Utility
This section describes the requirements that must be met before using the SQL*Loader
utility with Oracle database.

■ The Oracle Client and the SQL*Loader utility must be installed on the machine
running the Oracle Data Integrator Agent.

■ The server names defined in the Topology must match the Oracle TNS name used
to access the Oracle instances.

IKM Oracle Multi Table Insert Integrates data from one source into one or many Oracle target tables
in append mode, using a multi-table insert statement (MTI).

IKM Oracle Slowly Changing Dimension Integrates data in an Oracle target table used as a Type II Slowly
Changing Dimension.

IKM Oracle Spatial Incremental Update Integrates data into an Oracle (9i or above) target table in incremental
update mode using the MERGE DML statement. This module
supports the SDO_GEOMETRY datatype.

IKM Oracle to Oracle Control Append
(DBLINK)

Integrates data from one Oracle instance into an Oracle target table
on another Oracle instance in control append mode.

This IKM is typically used for ETL configurations: source and target
tables are on different Oracle instances and the interface's staging
area is set to the logical schema of the source tables or a third schema.

SKM Oracle Generates data access Web services for Oracle databases. See
"Working with Data Services" in the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator for information about how
to use this SKM.

Table 2–1 (Cont.) Oracle Database Knowledge Modules

Knowledge Module Description

Installation and Configuration

2-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ A specific log file is created by SQL*Loader. We recommend looking at this file in
case of error. Control Files (CTL), Log files (LOG), Discard Files (DSC) and Bad
files (BAD) are placed in the work directory defined in the physical schema of the
source files.

■ Using the DIRECT mode requires that Oracle Data integrator Agent run on the
target Oracle server machine. The source file must also be on that machine.

2.2.2.2 Using External Tables
This section describes the requirements that must be met before using external tables
in Oracle database.

■ The file to be loaded by the External Table command needs to be accessible from
the Oracle instance. This file must be located on the file system of the server
machine or reachable from a Unique Naming Convention path (UNC path) or
stored locally.

■ For performance reasons, it is recommended to install the Oracle Data Integrator
Agent on the target server machine.

2.2.2.3 Using Oracle Streams
This section describes the requirements for using Oracle Streams Journalizing
knowledge modules.

The following requirements must be met before setting up changed data capture using
Oracle Streams:

■ Oracle Streams must be installed on the Oracle Database.

■ The Oracle database must run using a SPFILE (only required for AUTO_
CONFIGURATION option).

■ The AQ_TM_PROCESSES option must be either left to the default value, or set to
a value different from 0 and 10.

■ The COMPATIBLE option should be set to 10.1 or higher.

■ The database must run in ARCHIVELOG mode.

■ PARALLEL_MAX_SERVERS must be increased in order to take into count the
number of Apply and Capture processes. It should be increased at least by 6 for
Standalone configuration, 9 for Low-Activity and 21 for High-Activity.

■ UNDO_RETENTION must be set to 3600 at least.

■ STREAMS_POOL_SIZE must be increased by 100MB for Standalone
configuration, 236MB for Low-Activity and 548MB for High-Activity.

■ All the columns of the primary key defined in the ODI Model must be part of a
SUPPLEMENTAL LOG GROUP.

■ When using the AUTO_CONFIGURATION knowledge module option, all the
above requirements are checked and set-up automatically, except some actions
that must be set manually. See "Using the Streams JKMs" for more information.

Note: It is recommended to review first the "Changed Data Capture"
chapter in the Oracle Database Data Warehousing Guide, which contains
the comprehensive list of requirements for Oracle Streams.

Installation and Configuration

Oracle Database 2-5

In order to run this KM without AUTO_CONFIGURATION knowledge module
option, the following system privileges must be granted:

■ DBA role to the connection user

■ Streams Administrator to the connection user

■ RESOURCE role to the work schema

■ SELECT ANY TABLE to the work schema

■ Asynchronous mode gives the best performance on the journalized system, but
this requires extra Oracle Database initialization configuration and additional
privileges for configuration.

■ Asynchronous mode requires the journalized database to be in ARCHIVELOG.
Before turning this option on, you should first understand the concept of
asynchronous AutoLog publishing. See the Oracle Database Administrator's
Guide for information about running a database in ARCHIVELOG mode. See
"Asynchronous Change Data Capture" in the Oracle Database Data Warehousing
Guide for more information on supplemental logging. This will help you to
correctly manage the archives and avoid common issues, such as hanging the
Oracle instance if the archive files are not removed regularly from the archive
repository.

■ When using asynchronous mode, the user connecting to the instance must be
granted admin authorization on Oracle Streams. This is done using the DMBS_
STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE procedure when logged in with
a user already having this privilege (for example the SYSTEM user).

■ The work schema must be granted the SELECT ANY TABLE privilege to be able to
create views referring to tables stored in other schemas.

For detailed information on all other prerequisites, see the "Change Data Capture"
chapter in the Oracle Database Data Warehousing Guide.

2.2.3 Connectivity Requirements
This section lists the requirements for connecting to an Oracle Database.

JDBC Driver
Oracle Data Integrator is installed with a default version of the Oracle Type 4 JDBC
driver. This drivers directly uses the TCP/IP network layer and requires no other
installed component or configuration.

It is possible to connect an Oracle Server through the Oracle JDBC OCI Driver, or even
using ODBC. For performance reasons, it is recommended to use the Type 4 driver.

Connection Information
You must ask the Oracle DBA the following information:

■ Network Name or IP address of the machine hosting the Oracle Database.

■ Listening port of the Oracle listener.

■ Name of the Oracle Instance (SID).

■ TNS alias of the connected instance.

■ Login and password of an Oracle User.

Setting up the Topology

2-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

2.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating an Oracle Data Server

2. Creating an Oracle Physical Schema

2.3.1 Creating an Oracle Data Server
An Oracle data server corresponds to an Oracle Database Instance connected with a
specific Oracle user account. This user will have access to several schemas in this
instance, corresponding to the physical schemas in Oracle Data Integrator created
under the data server.

2.3.1.1 Creation of the Data Server
Create a data server for the Oracle technology using the standard procedure, as
described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide
for Oracle Data Integrator. This section details only the fields required or specific for
defining an Oracle data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator.

■ Instance/dblink: TNS Alias used for this Oracle instance. It will be used to
identify the Oracle instance when using database links and SQL*Loader.

■ User/Password: Oracle user (with its password), having select privileges on
the source schemas, select/insert privileges on the target schemas and
select/insert/object creation privileges on the work schemas that will be
indicated in the Oracle physical schemas created under this data server.

2. In the JDBC tab:

■ JDBC Driver: oracle.jdbc.driver.OracleDriver

■ JDBC URL: jdbc:oracle:thin:@<network name or ip address of
the Oracle machine>:<port of the Oracle listener
(1521)>:<name of the Oracle instance>

To connect an Oracle RAC instance with the Oracle JDBC thin driver, use an
Oracle RAC database URL as shown in the following example:

jdbc:oracle:thin:@(DESCRIPTION=(LOAD_BALANCE=on)
(ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=host2) (PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=service)))

2.3.2 Creating an Oracle Physical Schema
Create an Oracle physical schema using the standard procedure, as described in
"Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

Creating and Reverse-Engineering an Oracle Model

Oracle Database 2-7

2.4 Setting Up an Integration Project
Setting up a project using the Oracle Database follows the standard procedure. See
"Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Oracle Database:

■ RKM Oracle

■ CKM Oracle

■ LKM SQL to Oracle

■ LKM File to Oracle (SQLLDR)

■ LKM File to Oracle (EXTERNAL TABLE)

■ IKM Oracle Incremental Update

2.5 Creating and Reverse-Engineering an Oracle Model
This section contains the following topics:

■ Create an Oracle Model

■ Reverse-engineer an Oracle Model

2.5.1 Create an Oracle Model
Create an Oracle Model using the standard procedure, as described in "Creating a
Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.

2.5.2 Reverse-engineer an Oracle Model
Oracle supports both Standard reverse-engineering - which uses only the abilities of
the JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve
the structure of the objects directly from the Oracle dictionary.

In most of the cases, consider using the standard JDBC reverse engineering for
starting. Standard reverse-engineering with Oracle retrieves tables, views, columns,
primary keys, and references.

Consider switching to customized reverse-engineering for retrieving more metadata.
Oracle customized reverse-engineering retrieves the table and view structures,
including columns, primary keys, alternate keys, indexes, check constraints,
synonyms, and references.

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on Oracle use the usual procedure, as
described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on Oracle with a RKM, use the usual
procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator. This section details only the
fields specific to the Oracle technology:

Setting up Changed Data Capture

2-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

In the Reverse tab of the Oracle Model, select the KM: RKM Oracle.<project
name>.

2.6 Setting up Changed Data Capture
The ODI Oracle Knowledge Modules support the Changed Data Capture feature. See
Chapter "Working with Changed Data Capture" of the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator for details on how to set up journalizing and
how to use captured changes.

Oracle Journalizing Knowledge Modules support Simple Journalizing and Consistent
Set Journalizing. The Oracle JKMs use either triggers or Oracle Streams to capture data
changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 2–2 for
journalizing Oracle tables.

Note that it is also possible to use Oracle GoldenGate to consume changed records
from an Oracle database. See Chapter 26, "Oracle GoldenGate" for more information.

Using the Streams JKMs
The Streams KMs work with the default values. The following are the recommended
settings:

■ By default, the AUTO_CONFIGURATION KM option is set to Yes. If set to Yes, the
KM provides automatic configuration of the Oracle database and ensures that all
prerequisites are met. As this option automatically changes the database
initialization parameters, it is not recommended to use it in a production
environment. You should check the Create Journal step in the Oracle Data
Integrator execution log to detect configurations tasks that have not been
performed correctly (Warning status).

■ By default, the CONFIGURATION_TYPE option is set to Low Activity. Leave
this option if your database is having a low transactional activity.

 Set this option to Standalone for installation on a standalone database such as a
development database or on a laptop.

Set this option to High Activity if the database is intensively used for
transactional processing.

Table 2–2 Oracle Journalizing Knowledge Modules

KM Notes

JKM Oracle 10g Consistent (Streams) Creates the journalizing infrastructure for consistent
set journalizing on Oracle 10g tables, using Oracle
Streams.

JKM Oracle 11g Consistent (Streams) Creates the journalizing infrastructure for consistent
set journalizing on Oracle 11g tables, using Oracle
Streams.

JKM Oracle Consistent Creates the journalizing infrastructure for consistent
set journalizing on Oracle tables using triggers.

JKM Oracle Consistent (Update Date) Creates the journalizing infrastructure for consistent
set journalizing on Oracle tables using triggers based
on a Last Update Date column on the source tables.

JKM Oracle Simple Creates the journalizing infrastructure for simple
journalizing on Oracle tables using triggers.

Designing an Interface

Oracle Database 2-9

■ By default, the STREAMS_OBJECT_GROUP option is set to CDC. The value
entered is used to generate object names that can be shared across multiple CDC
sets journalized with this JKM. If the value of this option is CDC, the naming rules
listed in Table 2–3 will be applied.

Note that this option can only take upper case ASCII characters and must not
exceed 15 characters.

■ VALIDATE enables extra steps to validate the correct use of the KM. This option
checks various requirements without configuring anything (for configuration
steps, please see AUTO_CONFIGURATION option). When a requirement is not
met, an error message is written to the log and the execution of the JKM is stopped
in error.

By default, this option is set to Yes in order to provide an easier use of this
complex KM out of the box

Using the Update Date JKM
This JKM assumes that a column containing the last update date exists in all the
journalized tables. This column name is provided in the UPDATE_DATE_COL_
NAME knowledge module option.

2.7 Setting up Data Quality
Oracle Data Integrator provides the CKM Oracle for checking data integrity against
constraints defined on an Oracle table. See "Set up Flow Control and Post-Integration
Control" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for
details.

Oracle Data Integrator provides the Knowledge Module listed in Table 2–4 to perform
a check on Oracle. It is also possible to use the generic SQL KMs. See Chapter 4,
"Generic SQL" for more information.

2.8 Designing an Interface
You can use Oracle as a source, staging area or a target of an integration interface. It is
also possible to create ETL-style integration interfaces based on the Oracle technology.

The KM choice for an interface or a check determines the abilities and performance of
this interface or check. The recommendations in this section help in the selection of the
KM for different situations concerning an Oracle data server.

Table 2–3 Naming Rules Example for the CDC Group Name

Capture Process ODI_CDC_C

Queue ODI_CDC_Q

Queue Table ODI_CDC_QT

Apply Process ODI_CDC_A

Table 2–4 Check Knowledge Modules for Oracle Database

Recommended KM Notes

CKM Oracle Uses Oracle's Rowid to identify records

Designing an Interface

2-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

2.8.1 Loading Data from and to Oracle
Oracle can be used as a source, target or staging area of an interface. The LKM choice
in the Interface Flow tab to load data between Oracle and another type of data server
is essential for the performance of an interface.

2.8.1.1 Loading Data from Oracle
The following KMs implement optimized methods for loading data from an Oracle
database to a target or staging area database. In addition to these KMs, you can also
use the Generic SQL KMs or the KMs specific to the other technology involved.

2.8.1.2 Loading Data to Oracle
The following KMs implement optimized methods for loading data from a source or
staging area into an Oracle database. In addition to these KMs, you can also use the
Generic SQL KMs or the KMs specific to the other technology involved.

2.8.2 Integrating Data in Oracle
The data integration strategies in Oracle are numerous and cover several modes. The
IKM choice in the Interface Flow tab determines the performances and possibilities for
integrating.

Target or Staging Area Technology KM Notes

Oracle LKM Oracle to Oracle (dblink) Creates a view on the source server,
and synonyms on this view on the
target server.

Oracle LKM Oracle to Oracle (datapump) Uses external tables in the datapump
format.

Source or Staging Area Technology KM Notes

Oracle LKM Oracle to Oracle (dblink) Views created on the source server,
synonyms on the target

SAP BW LKM SAP BW to Oracle (SQLLDR) Uses Oracle's bulk loader. File
cannot be Staging Area.

SAP ERP LKM SAP ERP to Oracle (SQLLDR) Uses Oracle's bulk loader. File
cannot be Staging Area.

Files LKM File to Oracle (EXTERNAL
TABLE)

Loads file data using external tables.

Files LKM File to Oracle (SQLLDR) Uses Oracle’s bulk loader. File
cannot be Staging Area.

Oracle LKM Oracle to Oracle (datapump) Uses external tables in the datapump
format.

Oracle BI LKM Oracle BI to Oracle (DBLINK) Creates synonyms for the target
staging table and uses the OBIEE
populate command.

MSSQL LKM MSSQL to Oracle
(BCP/SQLLDR)

Unloads data from SQL Server using
BCP, loads data into Oracle using
SQL*Loader.

All LKM SQL to Oracle Faster than the Generic LKM (Uses
Statistics)

Designing an Interface

Oracle Database 2-11

The following KMs implement optimized methods for integrating data into an Oracle
target. In addition to these KMs, you can also use the Generic SQL KMs.

Using Slowly Changing Dimensions
For using slowly changing dimensions, make sure to set the Slowly Changing Dimension
value for each column of the Target datastore. This value is used by the IKM Oracle
Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or
Insert Column, Current Record Flag and Start/End Timestamps columns.

Using Multi Table Insert
The IKM Oracle Multi Table Insert is used to integrate data from one source into one to
many Oracle target tables with a multi-table insert statement. This IKM must be used
in integration interfaces that are sequenced in a Package. This Package must meet the
following conditions:

■ The first interface of the Package must have a temporary target and the KM option
DEFINE_QUERY set to YES.

This first interface defines the structure of the SELECT clause of the multi-table
insert statement (that is the source flow).

■ Subsequent integration interfaces must source from this temporary datastore and
have the KM option IS_TARGET_TABLE set to YES.

■ The last interface of the Package must have the KM option EXECUTE set to YES in
order to run the multi-table insert statement.

■ Do not set Use Temporary Interface as Derived Table (Sub-Select) to true on any of the
interfaces.

If large amounts of data are appended, consider to set the KM option OPTIMIZER_
HINT to /*+ APPEND */.

Using Spatial Datatypes
To perform incremental update operations on Oracle Spatial datatypes, you need to
declare the SDO_GEOMETRY datatype in the Topology and use the IKM Oracle
Spatial Incremental Update. When comparing two columns of SDO_GEOMETREY
datatype, the GEOMETRY_TOLERANCE option is used to define the error margin
inside which the geometries are considered to be equal.

See the Oracle Spatial User's Guide and Reference for more information.

Mode KM Note

Update IKM Oracle Incremental Update Optimized for Oracle.

Update IKM Oracle Spatial Incremental Update Supports SDO_GEOMETRY datatypes

Update IKM Oracle Incremental Update (MERGE) Recommended for very large volumes of data because of
bulk set-based MERGE feature.

Update IKM Oracle Incremental Update (PL SQL) Use PL/SQL and supports long and blobs in incremental
update mode.

Specific IKM Oracle Slowly Changing Dimension Supports type 2 Slowly Changing Dimensions

Specific IKM Oracle Multi Table Insert Supports multi-table insert statements.

Append IKM Oracle to Oracle Control Append
(DBLINK)

Optimized for Oracle using DB*Links

Designing an Interface

2-12 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

2.8.3 Designing an ETL-Style Interface
See "Working with Integration Interface" in the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator for generic information on how to design integration
interfaces. This section describes how to design an ETL-style interface where the
staging area is Oracle database or any ANSI-92 compliant database and the target on
Oracle database.

In an ETL-style interface, ODI processes the data in a staging area, which is different
from the target. Oracle Data Integrator provides two ways for loading the data from an
Oracle staging area to an Oracle target:

■ Using a Multi-connection IKM

■ Using an LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.

Using a Multi-connection IKM
A multi-connection IKM allows updating a target where the staging area and sources
are on different data servers.

Oracle Data Integrator provides the following multi-connection IKM for handling
Oracle data: IKM Oracle to Oracle Control Append (DBLINK). You can also use the
generic SQL multi-connection IKMs. See Chapter 4, "Generic SQL" for more
information.

See Table 2–5 for more information on when to use a multi-connection IKM.

To use a multi-connection IKM in an ETL-style interface:

1. Create an integration interface with the staging area on Oracle or an ANSI-92
compliant technology and the target on Oracle using the standard procedure as
described in "Creating an Interface" in the Oracle Fusion Middleware Developer’s
Guide for Oracle Data Integrator. This section describes only the ETL-style specific
steps.

2. In the Definition tab of the Interface Editor, select Staging Area different from
Target and select the logical schema of the source tables or a third schema.

3. In the Flow tab, select one of the Source Sets, by clicking its title. The Property
Inspector opens for this object.

4. Select an LKM from the LKM Selector list to load from the source(s) to the staging
area. See Table 2–5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Flow tab, select the Target by clicking its title. The Property Inspector opens
for this object.

In the Property Inspector, select an ETL multi-connection IKM from the IKM
Selector list to load the data from the staging area to the target. See Table 2–5 to
determine the IKM you can use.

Note the following when setting the KM options:

■ For IKM Oracle to Oracle Control Append (DBLINK)

■ If large amounts of data are appended, set the KM option OPTIMIZER_HINT
to /*+ APPEND */.

Designing an Interface

Oracle Database 2-13

■ Set AUTO_CREATE_DB_LINK to true to create automatically db link on the
target schema. If AUTO_CREATE_DB_LINK is set to false (default), the link
with this name should exist in the target schema.

■ If you set the options FLOW_CONTROL and STATIC_CONTROL to Yes,
select a CKM in the Controls tab. If FLOW_CONTROL is set to Yes, the flow
table is created on the target.

Using an LKM and a mono-connection IKM
If there is no dedicated multi-connection IKM, use a standard exporting LKM in
combination with a standard mono-connection IKM. The exporting LKM is used to
load the flow table from the staging area to the target. The mono-connection IKM is
used to integrate the data flow into the target table.

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a
source of an ETL-style interface. Staging area and the target are Oracle.

See Table 2–5 for more information on when to use the combination of a standard
exporting LKM and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style interface:

1. Create an integration interface with the staging area and target on Oracle using the
standard procedure as described in "Creating an Interface" in the Oracle Fusion
Middleware Developer’s Guide for Oracle Data Integrator. This section describes only
the ETL-style specific steps.

2. In the Definition tab of the Interface Editor, select Staging Area different from
Target and select the logical schema of the source tables or a third schema.

3. In the Flow tab, select one of the Source Sets.

4. In the Property Inspector, select an LKM from the LKM Selector list to load from
the source(s) to the staging area. See Table 2–5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. Select the Staging Area. In the Property Inspector, select an LKM from the LKM
Selector list to load from the staging area to the target. See Table 2–5 to determine
the LKM you can use.

7. Optionally, modify the options.

8. Select the Target by clicking its title. The Property Inspector opens for this object.

In the Property Inspector, select a standard mono-connection IKM from the IKM
Selector list to update the target. See Table 2–5 to determine the IKM you can use.

Designing an Interface

2-14 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 2–5 KM Guidelines for ETL-Style Interfaces with Oracle Data

Source Staging Area Target
Exporting
LKM IKM KM Strategy Comment

ANSI
SQL-92
standard
compliant

Oracle Oracle NA IKM Oracle to Oracle
Control Append
(DBLINK)

Multi-connect
ion IKM

Use this KM
strategy to:

■ Perform
control
append

■ Use
DB*Links for
performance
reasons

Supports flow
and static
control.

ANSI
SQL-92
standard
compliant

Oracle or any
ANSI SQL-92
standard
compliant
database

Oracle or
any
ANSI
SQL-92
standard
complia
nt
database

NA IKM SQL to SQL
Incremental Update

Multi-connect
ion IKM

Allows an
incremental
update strategy
with no
temporary
target-side
objects. Use this
KM if it is not
possible to create
temporary
objects in the
target server.

The application
updates are
made without
temporary
objects on the
target, the
updates are
made directly
from source to
target. The
configuration
where the flow
table is created
on the staging
area and not in
the target should
be used only for
small volumes of
data.

Supports flow
and static control

Oracle Oracle Oracle LKM to Oracle
to Oracle
(DBLINK)

IKM Oracle Slowly
Changing Dimension

LKM +
standard IKM

Oracle Oracle Oracle LKM to Oracle
to Oracle
(DBLINK)

IKM Oracle
Incremental Update

LKM +
standard IKM

Oracle Oracle Oracle LKM to Oracle
to Oracle
(DBLINK)

IKM Oracle
Incremental Update
(MERGE)

LKM +
standard IKM

Troubleshooting

Oracle Database 2-15

2.9 Troubleshooting
This section provides information on how to troubleshoot problems that you might
encounter when using Oracle Knowledge Modules. It contains the following topics:

■ Troubleshooting Oracle Database Errors

■ Common Problems and Solutions

2.9.1 Troubleshooting Oracle Database Errors
Errors appear often in Oracle Data Integrator in the following way:

java.sql.SQLException: ORA-01017: invalid username/password; logon denied
at ...
at ...
...

the java.sql.SQLExceptioncode simply indicates that a query was made to the
database through the JDBC driver, which has returned an error. This error is frequently
a database or driver error, and must be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the
Oracle documentation. If its contains an error code specific to Oracle, like here (in red),
the error can be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL
code send to the database to find the source of the error. The code is displayed in the
description tab of the erroneous task.

2.9.2 Common Problems and Solutions
This section describes common problems and solutions.

■ ORA-12154 TNS:could not resolve service name

TNS alias resolution. This problem may occur when using the OCI driver, or a KM
using database links. Check the configuration of the TNS aliases on the machines.

■ ORA-02019 connection description for remote database not
found

You use a KM using non existing database links. Check the KM options for
creating the database links.

■ ORA-00900 invalid SQL statement

ORA-00923 FROM Keyword not found where expected

The code generated by the interface, or typed in a procedure is invalid for Oracle.
This is usually related to an input error in the mapping, filter of join. The typical
case is a missing quote or an unclosed bracket.

A frequent cause is also the call made to a non SQL syntax, like the call to an
Oracle stored procedure using the syntax

EXECUTE SCHEMA.PACKAGE.PROC(PARAM1, PARAM2).

The valid SQL call for a stored procedure is:

BEGIN
SCHEMA.PACKAGE.PROC(PARAM1, PARAM2);
END;

Troubleshooting

2-16 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The syntax EXECUTE SCHEMA.PACKAGE.PROC(PARAM1, PARAM2) is specific to
SQL*PLUS, and do not work with JDBC.

■ ORA-00904 invalid column name

Keying error in a mapping/join/filter. A string which is not a column name is
interpreted as a column name, or a column name is misspelled.

This error may also appear when accessing an error table associated to a datastore
with a recently modified structure. It is necessary to impact in the error table the
modification, or drop the error tables and let Oracle Data Integrator recreate it in
the next execution.

■ ORA-00903 invalid table name

The table used (source or target) does not exist in the Oracle schema. Check the
mapping logical/physical schema for the context, and check that the table
physically exists on the schema accessed for this context.

■ ORA-00972 Identifier is too Long

There is a limit in the object identifier in Oracle (usually 30 characters). When
going over this limit, this error appears. A table created during the execution of
the interface went over this limit. and caused this error (see the execution log for
more details).

Check in the topology for the oracle technology, that the maximum lengths for the
object names (tables and columns) correspond to your Oracle configuration.

■ ORA-01790 expression must have same datatype as corresponding
expression

You are trying to connect two different values that can not be implicitly converted
(in a mapping, a join...). Use the explicit conversion functions on these values.

3

Files 3-1

3Files

This chapter describes how to work with Files in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 3.1, "Introduction"

■ Section 3.2, "Installation and Configuration"

■ Section 3.3, "Setting up the Topology"

■ Section 3.4, "Setting Up an Integration Project"

■ Section 3.5, "Creating and Reverse-Engineering a File Model"

■ Section 3.6, "Designing an Interface"

3.1 Introduction
Oracle Data Integrator supports fixed or delimited files containing ASCII or EBCDIC
data.

3.1.1 Concepts
The File technology concepts map the Oracle Data Integrator concepts as follows: A
File server corresponds to an Oracle Data Integrator data server. In this File server, a
directory containing files corresponds to a physical schema. A group of flat files within
a directory corresponds to an Oracle Data Integrator model, in which each file
corresponds to a datastore. The fields in the files correspond to the datastore columns.

Oracle Data Integrator provides a built-in driver for Files and knowledge modules for
integrating Files using this driver, using the metadata declared in the File data model
and in the topology.

Most technologies also have specific features for interacting with flat files, such as
database loaders, utilities, and external tables. Oracle Data Integrator can also benefit
from these features by using technology-specific Knowledge Modules. In terms of
performance, it is most of the time recommended to use database utilities when
handling flat files.

Note that the File technology concerns flat files (fixed and delimited). XML files are
covered in Chapter 5, "XML Files".

3.1.2 Knowledge Modules
Oracle Data Integrator provides the knowledge modules (KM) listed in this section for
handling File data using the File driver.

Installation and Configuration

3-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Note that the KMs listed in Table 3–1 are generic and can be used with any
technology. Technology-specific KMs, using features such as loaders or external tables,
are listed in the corresponding technology chapter.

3.2 Installation and Configuration
Make sure you have read the information in this section before you start working with
the File technology:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

3.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

3.2.2 Technology Specific Requirements
Some of the knowledge modules for File data use specific features of the database.
This section lists the requirements related to these features.

Database Utilities
Most database technologies have their own utilities for interacting with flat files. All
require that the database client software is accessible from the Agent that runs the
interface that is using the utility. Some examples are:

■ Oracle: SQL*Loader

■ Microsoft SQL Server: bcp

■ Teradata: FastLoad, MultiLoad, TPump, FastExport

You can benefit from these utilities in Oracle Data Integrator by using the
technology-specific knowledge modules. See the technology-specific chapter in this
guide for more information about the knowledge modules and the requirements for
using the database utilities.

Table 3–1 Knowledge Modules to read from a File

Knowledge Module Description

LKM File to SQL Loads data from an ASCII or EBCDIC File to any ANSI SQL-92
compliant database used as a staging area.

IKM SQL to File Append Integrates data in a target file from any ANSI SQL-92 compliant
staging area in replace mode.

RKM File (FROM EXCEL) Retrieves file metadata from a Microsoft Excel spreadsheet. Consider
using this KM if you plan to maintain the definition of your files
structure in a dedicated Excel spreadsheet.

Setting up the Topology

Files 3-3

3.2.3 Connectivity Requirements
This section lists the requirements for connecting to flat files.

JDBC Driver
Oracle Data Integrator includes a built-in driver for flat files. This driver is installed
with Oracle Data Integrator and does not require additional configuration.

3.3 Setting up the Topology
Setting up the topology consists in:

1. Creating a File Data Server

2. Creating a File Physical Schema

3.3.1 Creating a File Data Server
A File data server is a container for a set of file folders (each file folder corresponding
to a physical schema).

Oracle Data Integrator provides the default FILE_GENERIC data server. This data
server suits most of the needs. In most cases, it is not required to create a File data
server, and you only need to create a physical schema under the FILE_GENERIC data
server.

3.3.1.1 Creation of the Data Server
Create a data server for the File technology using the standard procedure, as described
in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle
Data Integrator. This section details only the fields required or specific for defining a
File data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator.

■ User/Password: These fields are not used for File data servers.

2. In the JDBC tab, enter the following values:

■ JDBC Driver: com.sunopsis.jdbc.driver.file.FileDriver

■ JDBC URL:
jdbc:snps:dbfile?<property=value>&<property=value>&...

You can use in the URL the properties listed in Table 3–2.

Table 3–2 JDBC File Driver Properties

Property Value Description

ENCODING <encoding_code> File encoding. The list of supported
encoding is available at
http://java.sun.com/j2se/1.4.2/d
ocs/guide/intl/encoding.doc.html
. The default encoding value is ISO8859_
1.

TRUNC_FIXED_STRINGS TRUE|FALSE Truncates strings to the field size for fixed
files. Default value is FALSE.

TRUNC_DEL_STRINGS TRUE|FALSE Truncates strings to the field size for
delimited files. Default value is FALSE.

Setting Up an Integration Project

3-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

JDBC URL example:

jdbc:snps:dbfile?ENCODING=ISO8859_1&TRUNC_FIXED_
STRINGS=FALSE&OPT=TRUE

3.3.2 Creating a File Physical Schema
Create a File physical schema using the standard procedure, as described in "Creating
a physical schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data
Integrator.

In your physical schema, you must set a pair of directories:

■ The Directory (Schema), where Oracle Data Integrator will look for the source and
target files and create error files for invalid records detected in the source files.

■ A Directory (Work Schema), where Oracle Data Integrator may create temporary
files associated to the sources and targets contained in the Data Schema.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

3.4 Setting Up an Integration Project
Setting up a project using the File database follows the standard procedure. See
"Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started:

■ LKM File to SQL

OPT TRUE|FALSE Optimizes file access on multiprocessor
machines for better performance. Using
this option on single processor machines
may actually decrease performance.
Default value is FALSE.

Notes:

■ Data and Work schemas each correspond to a directory. This
directory must be accessible to the component that will access the
files. The directory can be an absolute path
(m:/public/data/files) or relative to the runtime agent or
Studio startup directory (../demo/files). It is strongly advised
to use a path that is independent from the execution location.

■ In UNIX in particular, the agent must have read/write permission
on both these directories.

■ Keep in mind that file paths are different in Windows than they
are in UNIX. Take the platform used by the agent into account
when setting up this information.

Table 3–2 (Cont.) JDBC File Driver Properties

Property Value Description

Creating and Reverse-Engineering a File Model

Files 3-5

■ IKM SQL to File Append

■ RKM File (FROM EXCEL)

In addition to these knowledge modules, you can also import file knowledge modules
specific to the other technologies involved in your product.

3.5 Creating and Reverse-Engineering a File Model
This section contains the following topics:

■ Create a File Model

■ Reverse-engineer a File Model

3.5.1 Create a File Model
An File model is a set of datastores, corresponding to files stored in a directory. A
model is always based on a logical schema. In a given context, the logical schema
corresponds to one physical schema. The data schema of this physical schema is the
directory containing all the files (eventually in sub-directories) described in the model.

Create a File model using the standard procedure, as described in "Creating a Model"
of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.

3.5.2 Reverse-engineer a File Model
Oracle Data Integrator provides specific methods for reverse-engineering files. File
database supports four types of reverse-engineering:

■ Delimited Files Reverse-Engineering is performed per file datastore.

■ Fixed Files Reverse-engineering using the Wizard is performed per file datastore.

■ COBOL Copybook reverse-engineering, which is available for fixed files, if a
copybook describing the file is provided. It is performed per file datastore.

■ Customized Reverse-Engineering, which uses a RKM (Reverse Knowledge
Module) to get the structure of all of the files of the model from a Microsoft Excel
spreadsheet. Note that if you use the RKM, you do not need to define manually
the datastores by typing in each column definition because the RKM automatically
defines the column definitions in the spreadsheet.

3.5.2.1 Delimited Files Reverse-Engineering
To perform a delimited file reverse-engineering:

Note: The built-in file driver uses metadata from the Oracle Data
Integrator models (field data type or length, number of header rows,
etc.). Driver-specific tags are generated by Oracle Data Integrator and
passed to the driver along with regular SQL commands. These tags
control how the driver reads or writes the file.

Similarly, when Oracle Data Integrator uses database loaders and
utilities, it uses the model metadata to control these loaders and
utilities.

It is important to pay close attention to the file definition after a
reverse-engineering process, as discrepancy between the file
definition and file content is a source of issues at run-time.

Creating and Reverse-Engineering a File Model

3-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

1. In the Models accordion, right click your File Model and select New Datastore.
The Datastore Editor opens.

2. In the Definition Tab, enter the following fields:

■ Name: Name of this datastore

■ Resource Name: Sub-directory (if needed) and name of the file. You can
browse for the file using the (...) button

3. Go to the Files tab to describe the type of file. Set the fields as follows:

■ File Format: Delimited

■ Header (Number of Lines): Enter the number of lines of the header. Note that
if there is a header, the first line of the header will be used by Oracle Data
Integrator to name the columns in the file.

■ Select a Record Separator.

■ Select or enter the character used as a Field Separator.

■ Enter a Text Delimiter if your file uses one.

■ Enter a Decimal Separator if your file contains decimals.

4. From the File main menu, select Save.

5. In the Datastore Editor, go to the Columns tab.

6. In the editor toolbar, click Reverse-Engineer.

7. Verify the datatype and length for the reverse engineered columns. Oracle Data
Integrator infers the fields datatypes and lengths from the file content, but may set
default values (for example 50 for the strings field length) or incorrect data types
in this process.

8. From the File main menu, select Save.

3.5.2.2 Fixed Files Reverse-engineering using the Wizard
Oracle Data Integrator provides a wizard to graphically define the columns of a fixed
file.

To reverse-engineer a fixed file using the wizard:

1. In the Models accordion, right click your File Model and select New Datastore.
The Datastore Editor opens.

2. In the Definition Tab, enter the following fields:

■ Name: Name of this datastore

■ Resource Name: Sub-directory (if needed) and name of the file. You can
browse for the file using the (...) button

3. Go to the Files tab to describe the type of file. Set the fields as follows:

■ File Format: Fixed

■ Header (Number of Lines): Enter the number of lines of the header.

■ Select a Record Separator.

4. From the File main menu, select Save.

5. In the Datastore Editor, go to the Columns tab.

Creating and Reverse-Engineering a File Model

Files 3-7

6. In the editor toolbar, click Reverse-Engineer.The Columns Setup Wizard is
launched. The Columns Setup Wizard displays the first records of your file.

7. Click on the ruler (above the file contents) to create markers delimiting the
columns. You can right-click within the ruler to delete a marker.

8. Columns are created with pre-generated names (C1, C2, and so on). You can edit
the column name by clicking in the column header line (below the ruler).

9. In the properties panel (on the right), you can edit all the parameters of the
selected column. You should set at least the Column Name, Datatype, and Length
for each column.

10. Click OK when the columns definition is complete.

11. From the File main menu, select Save.

3.5.2.3 COBOL Copybook reverse-engineering
COBOL Copybook reverse-engineering allows you to retrieve a legacy file structure
from its description contained in a COBOL Copybook file.

To reverse-engineer a fixed file using a COBOL Copybook:

1. In the Models accordion, right click your File Model and select New Datastore.
The Datastore Editor opens.

2. In the Definition Tab, enter the following fields:

■ Name: Name of this datastore

■ Resource Name: Sub-directory (if needed) and name of the file. You can
browse for the file using the (...) button

3. Go to the Files tab to describe the type of file. Set the fields as follows:

■ File Format: Fixed

■ Header (Number of Lines): Enter the number of lines of the header.

■ Select a Record Separator.

4. From the File main menu, select Save.

5. In the Datastore Editor, go to the Columns tab.

6. Create or open a File datastore that has a fixed format.

7. In the Datastore Editor, go to the Columns tab.

8. In the toolbar menu, click Reverse Engineer COBOL CopyBook.

9. In the Reverse Engineer Cobol CopyBook Dialog, enter the following fields:

■ File: Location of the Copybook file

■ Character set: Copybook file charset.

■ Description format (EBCDIC | ASCII): Copybook file format

■ Data format (EBCDIC | ASCII): Data file format

10. Click OK.

The columns described in the Copybook are reverse-engineered and appear in the
column list.

Creating and Reverse-Engineering a File Model

3-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

3.5.2.4 Customized Reverse-Engineering
In this reverse-engineering method, Oracle Data Integrator uses a Microsoft Excel
spreadsheet that contains the description of the group of files. This file has a specific
format. A sample file (file_repository.xls) is provided in the Oracle Data
Integrator demo in the /demo/excel sub-directory.

The following steps assume that you have modified this file with the description of the
structure of your flat files.

To perform a customized reverse-engineering, perform the following steps:

1. Create an ODBC Datasource for the Excel Spreadsheet corresponding to the Excel
Spreadsheet containing the files description.

2. Define the Data Server, Physical and Logical Schema for the Microsoft Excel
Spreadsheet

3. Run the customized reverse-engineering using the RKM File from Excel RKM.

Create an ODBC Datasource for the Excel Spreadsheet
1. Launch the Microsoft ODBC Administrator.

2. Add a System Datasource.

3. Select the Microsoft Excel Driver (*.xls) driver.

4. Name the data source: ODI_EXCEL_FILE_REPO and select the file
/demo/excel/file_repository.xls.

Define the Data Server, Physical and Logical Schema for the Microsoft Excel
Spreadsheet
1. In Topology Navigator, add a Microsoft Excel data server with the following

parameters:

■ Name: EXCEL_FILE_REPOSITORY

■ JDBC Driver: sun.jdbc.odbc.JdbcOdbcDriver

■ JDBC URL: jdbc:odbc:ODI_EXCEL_FILE_REPO

2. From the File main menu, select Save.

3. Add a physical schema to this data server. Leave the default values in the
Definition tab.

1. In the Context tab of the physical schema, click Add.

2. In the new line, select the context that will be used for reverse engineering and
enter in the logical schema column EXCEL_FILE_REPOSITORY. This name is
mandatory.

3. From the File main menu, select Save.

Run the customized reverse-engineering
1. In Designer Navigator, import the RKM File From Excel Knowledge Module into

your project.

Note: If a field has a data type declared in the Copybook with no
corresponding datatype in Oracle Data Integrator File technology,
then this column will appear with no data type.

Designing an Interface

Files 3-9

2. In the Models accordion, double-click the File Model. The Model Editor opens.

3. In the Reverse-Engineer Tab, set the following parameters:

■ Select Customized

■ Context: Reverse Context

■ Knowledge Module: RKM File from Excel

4. In the toolbar menu, click Reverse-Engineer.

5. You can follow the reverse-engineering process in the execution log

3.6 Designing an Interface
You can use a file as a source or a target of an integration interface, but NOT as a
staging area.

The KM choice for an interface or a check determines the abilities and performances of
this interface or check. The recommendations below help in the selection of the KM for
different situations concerning a File data server.

3.6.1 Loading Data From Files
Files can be used as a source of an interface. The LKM choice in the Interface Flow tab
to load a File to the staging area is essential for the interface performance.

The LKM File to SQL uses the built-in file driver for loading data from a File database
to a staging area. In addition to this KM, you can also use KMs that are specific to the
technology of the staging area or target. Such KMs support technology-specific
optimizations and use methods such as loaders or external tables.

This knowledge module, as well as other KMs relying on the built-in driver, support
the following two features attached to the driver:

■ Erroneous Records Handling

■ Multi-Record Files Support

Erroneous Records Handling
Oracle Data Integrator built-in driver provides error handling at column level for the
File technology. When loading a File, Oracle Data Integrator performs several controls.
One of them verifies if the data in the file is consistent with the datastore definition. If
one value from the row is inconsistent with the column description, the On Error
option - on the Control tab of the Column Editor - defines the action to perform. The
On Error option can take the following values:

■ Reject Error: The row containing the error is moved to a .BAD file, and a reason of
the error is written to a .ERROR file.

Note:

■ A Microsoft Excel logical schema must be defined. It must be
named EXCEL_FILE_REPOSITORY and point to the file file_
repository.xls or another file with a similar structure.

■ The Microsoft Excel file file_repository.xls should be
closed before running the reverse engineering.

Designing an Interface

3-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The .BAD and .ERROR files are located in the same directory as the file being read
and are named after this file, with a .BAD and .ERROR extension.

■ Null if error (inactive trace): The row is kept in the flow and the erroneous value
is replaced by null.

■ Null if error (active trace): The row is kept in the flow, the erroneous value is
replaced by null, and an reason of the error is written to the .ERROR file.

Multi-Record Files Support
Oracle Data Integrator is able to handle files that contain multiple record formats. For
example, a file may contain records representing orders (these records have 5 columns)
and other records representing order lines (these records having 8 columns with
different datatypes).

The approach in Oracle Data Integrator consists in considering each specific record
format as a different datastore.

Example 3–1 Multi Record File

This example uses the multi record file orders.txt. It contains two different record
types: orders and order lines.

Order records have the following format:

REC_CODE,ORDER_ID,CUSTOMER_ID,ORDER_DATE

Order lines records have the following format

REC_CODE,ORDER_ID,LINE_ID,PRODUCT_ID,QTY

Order records are identified by REC_CODE=ORD

Order lines are identified by REC_CODE=LIN

To handle multi record files as a source interface of an integration interface:

1. Create a File Model using a logical schema that points to the directory containing
the source file.

2. Identify the different record formats and structures of the flat file. In Example 3–1
two record formats can be identified: one for the orders and one for the order lines.

3. For each record format identified, do the following:

1. Create a datastore in the File Model for each type of record.

For Example 3–1 create two datastores.

2. In the Definition tab of the Datastore Editor, enter a unique name in the Name
field and enter the flat file name in the Resource Name field. Note that the
resource name is identical for all datastores of this model.

For Example 3–1 you can use ORDERS and ORDER_LINES as the name of your
datastores. Enter orders.txt in the Resource Name field for both datastores.

3. In the Files tab, select, depending on the format of your flat file, Fixed or
Delimited from the File Format list and specify the record and field
separators.

4. In the Columns tab, enter the column definitions for this record type.

5. One or more columns can be used to identify the record type. The record code
is the field value content that is used as distinguishing element to be found in
the file. The record code must be unique and allows files with several record

Designing an Interface

Files 3-11

patterns to be processed. In the Record Codes field, you can specify several
values separated by the semicolon (;) character.

In the Column Editor, assign a record code for each record type in the Record
Codes field.

In Example 3–1, enter ORD in the Record Codes field of the CODE_REC
column of the ORDERS datastore and enter LIN in the Record Codes field of
the CODE_REC column of the ORDER_LINES datastore.

With such definition, when reading data from the ORDERS datastore, the file driver
will filter only those of the records where the first column contains the value ORD. The
same applies to the ORDER_LINES datastore (only the records with the first column
containing the value LIN will be returned).

3.6.2 Integrating Data in Files
Files can be used as a target of an interface. The data integration strategies in Files
concern loading from the staging area to Files. The IKM choice in the Interface Flow
tab determines the performances and possibilities for integrating.

The IKM SQL to File Append uses the file driver for integrating data into a Files target
from a staging area in truncate-insert mode.

This KM has the following options:

■ INSERT automatically attempts to insert data into the target datastore of the
interface.

■ CREATE_TARG_TABLE creates the target table.

■ TRUNCATE deletes the content of the target file and creates it if it does not exist.

■ GENERATE_HEADER creates the header row for a delimited file.

In addition to this KM, you can also use IKMs that are specific to the technology of the
staging area. Such KMs support technology-specific optimizations and use methods
such as loaders or external tables.

Designing an Interface

3-12 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

4

Generic SQL 4-1

4Generic SQL

This chapter describes how to work with technologies supporting the ANSI SQL-92
syntax in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 4.1, "Introduction"

■ Section 4.2, "Installation and Configuration"

■ Section 4.3, "Setting up the Topology"

■ Section 4.4, "Setting up an Integration Project"

■ Section 4.5, "Creating and Reverse-Engineering a Model"

■ Section 4.6, "Setting up Changed Data Capture"

■ Section 4.7, "Setting up Data Quality"

■ Section 4.8, "Designing an Interface"

4.1 Introduction
Oracle Data Integrator supports ANSI SQL-92 standard compliant technologies.

4.1.1 Concepts
The mapping of the concepts that are used in ANSI SQL-92 standard compliant
technologies and the Oracle Data Integrator concepts are as follows: a data server in
Oracle Data Integrator corresponds to a data processing resource that stores and
serves data in the form of tables. Depending on the technology, this resource can be
named for example, database, instance, server and so forth. Within this resource, a
sub-division maps to an Oracle Data Integrator physical schema. This sub-division can
be named schema, database, catalog, library and so forth. A set of related objects

Note: This is a generic chapter. The information described in this
chapter can be applied to technologies supporting the ANSI SQL-92
syntax, including Oracle, Microsoft SQL Server, Sybase ASE, IBM
DB2, Teradata, PostgreSQL, MySQL, Derby and so forth.

Some of the ANSI SQL-92 compliant technologies are covered in a
separate chapter in this guide. Refer to the dedicated technology
chapter for specific information on how to leverage the ODI
optimizations and database utilities of the given technology.

Introduction

4-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

within one schema corresponds to a data model, and each table, view or synonym will
appear as an ODI datastore, with its attributes, columns, and constraints

4.1.2 Knowledge Modules
Oracle Data Integrator provides a wide range of Knowledge Modules for handling
data stored in ANSI SQL-92 standard compliant technologies. The Knowledge
Modules listed in Table 4–1 are generic SQL Knowledge Modules and apply to the
most popular ANSI SQL-92 standard compliant databases.

Oracle Data Integrator also provides specific Knowledge Modules for some particular
databases to leverage the specific utilities. Technology-specific KMs, using features
such as loaders or external tables, are listed in the corresponding technology chapter.

Table 4–1 Generic SQL Knowledge Modules

Knowledge Module Description

CKM SQL Checks data integrity against constraints defined on a Datastore. Rejects invalid
records in the error table created dynamically. Can be used for static controls as
well as for flow controls.

Consider using this KM if you plan to check data integrity on an ANSI SQL-92
compliant database. Use specific CKMs instead if available for your database.

IKM SQL Control Append Integrates data in an ANSI SQL-92 compliant target table in replace/append
mode. When flow data needs to be checked using a CKM, this IKM creates a
temporary staging table before invoking the CKM.

Consider using this IKM if you plan to load your SQL compliant target table in
replace mode, with or without data integrity check.

To use this IKM, the staging area must be on the same data server as the target.

IKM SQL Incremental Update Integrates data in an ANSI SQL-92 compliant target table in incremental update
mode. This KM creates a temporary staging table to stage the data flow. It then
compares its content to the target table to idetinfythe records to insert and the
records to update. It also allows performing data integrity check by invoking the
CKM. This KM is therefore not recommended for large volumes of data.

Consider using this KM if you plan to load your ANSI SQL-92 compliant target
table to insert missing records and to update existing ones. Use
technology-specific incremental update IKMs whenever possible as they are
more optimized for performance.

To use this IKM, the staging area must be on the same data server as the target.

IKM SQL to File Append Integrates data in a target file from an ANSI SQL-92 compliant staging area in
replace mode.

Consider using this IKM if you plan to transform and export data to a target file.
If your source datastores are located on the same data server, we recommend
using this data server as staging area to avoid extra loading phases (LKMs)

To use this IKM, the staging area must be different from the target.

 IKM SQL to SQL Control
Append

Integrates data into a ANSI-SQL92 target database from any ANSI-SQL92
compliant staging area.

This IKM is typically used for ETL configurations: source and target tables are on
different databases and the interface's staging area is set to the logical schema of
the source tables or a third schema.

IKM SQL to SQL Incremental
Update

Integrates data from any AINSI-SQL92 compliant database into any any
AINSI-SQL92 compliant database target table in incremental update mode.

This IKM is typically used for ETL configurations: source and target tables are on
different databases and the interface's staging area is set to the logical schema of
the source tables or a third schema.

Introduction

Generic SQL 4-3

LKM File to SQL Loads data from an ASCII or EBCDIC File to an ANSI SQL-92 compliant
database used as a staging area. This LKM uses the Agent to read selected data
from the source file and write the result in the staging temporary table created
dynamically.

Consider using this LKM if one of your source datastores is an ASCII or EBCDIC
file. Use technology-specific LKMs for your target staging area whenever
possible as they are more optimized for performance. For example, if you are
loading to an Oracle database, use the LKM File to Oracle (SQLLDR) or the LKM
File to Oracle (EXTERNAL TABLE) instead.

LKM SQL to SQL Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92
compliant staging area. This LKM uses the Agent to read selected data from the
source database and write the result into the staging temporary table created
dynamically.

Consider using this LKM if your source datastores are located on a SQL
compliant database different from your staging area. Use technology-specific
LKMs for your source and target staging area whenever possible as they are
more optimized for performance. For example, if you are loading from an Oracle
source server to an Oracle staging area, use the LKM Oracle to Oracle (dblink)
instead.

LKM SQL to SQL (row by row) Loads data from any ISO-92 database to any ISO-92 compliant target database.
This LKM uses a Jython script to read selected data from the database and write
the result into the target temporary table, which is created dynamically. It loads
data from a staging area to a target and indicates the state of each processed row.

The following options are used for the logging mechanism:

■ LOG_LEVEL: This option is used to set the granularity of the data logged.

The following log levels can be set:

■ 0: nothing to log

■ 1: any JDBC action will be indicated such as
‘select action’, ‘delete action’, ‘insert action’…

■ 2: in addition to level 1, all records that
generate an error will be logged

■ 3: in addition to level 2, all processed records
will be logged

■ LOG_FILE_NAME: Full path to the log file used.

■ MAX_ERRORS:Specify the maximum number of errors.

The LKM process stops when the maximum number of errors specified in
this option is reached.

This Knowledge Module is NOT RECOMMENDED when using LARGE
VOLUMES. Other specific modules using Bulk utilities (SQL*LOADER, BULK
INSERT...) or direct links (DBLINKS, Linked Servers...) are usually more
efficient.

Table 4–1 (Cont.) Generic SQL Knowledge Modules

Knowledge Module Description

Installation and Configuration

4-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

4.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
generic SQL Knowledge Modules:

■ System Requirements and Certifications

■ Technology-Specific Requirements

■ Connectivity Requirements

4.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

4.2.2 Technology-Specific Requirements
See the Technology Specific Requirements section of the specific technology chapter
for more information.

LKM SQL to SQL (JYTHON) Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92
compliant staging area. This LKM uses Jython scripting to read selected data
from the source database and write the result into the staging temporary table
created dynamically. This LKM allows you to modify the default JDBC data type
binding between the source database and the target staging area by editing the
underlying Jython code provided.

Consider using this LKM if your source datastores are located on an ANSI
SQL-92 compliant database different from your staging area and if you plan to
specify your own data type binding method.

Use technology-specific LKMs for your source and target staging area whenever
possible as they are more optimized for performance. For example, if you are
loading from an Oracle source server to an Oracle staging area, use the LKM
Oracle to Oracle (dblink) instead.

RKM SQL (JYTHON) Retrieves JDBC metadata for tables, views, system tables and columns from an
ANSI SQL-92 compliant database. This RKM may be used to specify your own
strategy to convert JDBC metadata into Oracle Data Integrator metadata.

Consider using this RKM if you encounter problems with the standard JDBC
reverse-engineering process due to some specificities of your JDBC driver. This
RKM allows you to edit the underlying Jython code to make it match the
specificities of your JDBC driver.

SKM SQL Generates data access Web services for ANSI SQL-92 compliant databases. Data
access services include data manipulation operations such as adding, removing,
updating or filtering records as well as changed data capture operations such as
retrieving changed data. Data manipulation operations are subject to integrity
check as defined by the constraints of your datastores.

Consider using this SKM if you plan to generate and deploy data manipulation
or changed data capture web services to your Service Oriented Architecture
infrastructure. Use specific SKMs instead if available for your database

Table 4–1 (Cont.) Generic SQL Knowledge Modules

Knowledge Module Description

Creating and Reverse-Engineering a Model

Generic SQL 4-5

If your technology does not have a dedicated chapter in this guide, see the
documentation of your technology for any technology-specific requirements.

4.2.3 Connectivity Requirements
See the Connectivity Requirements section of the specific technology chapter for more
information.

The Java Database Connectivity (JDBC) is the standard for connecting to a database
and other data sources. If your technology does not have a dedicated chapter in this
guide, see the documentation of your technology for the JDBC configuration
information, including the required driver files, the driver name, and the JDBC URL
format.

4.3 Setting up the Topology
Setting up the Topology consists in:

1. Creating a Data Server

2. Creating a Physical Schema

4.3.1 Creating a Data Server
Create a data server under the ANSI SQL-92 compliant technology listed in the
Physical Architecture accordion using the standard procedure, as described in
"Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle
Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more
information. For other technologies, see the documentation of your technology for the
JDBC driver name and JDBC URL format.

4.3.2 Creating a Physical Schema
Create a Physical Schema using the standard procedure, as described in "Creating a
Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data
Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more
information.

4.4 Setting up an Integration Project
Setting up a Project using an ANSI SQL-92 compliant database follows the standard
procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator.

The recommended knowledge modules to import into your project for getting started
depend on the corresponding technology. If your technology has a dedicated chapter
in this guide, see this chapter for more information.

4.5 Creating and Reverse-Engineering a Model
This section contains the following topics:

■ Create a Data Model

Setting up Changed Data Capture

4-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ Reverse-engineer a Data Model

4.5.1 Create a Data Model
Create a data model based on the ANSI SQL-92 compliant technology using the
standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more
information.

4.5.2 Reverse-engineer a Data Model
ANSI SQL-92 standard compliant technologies support both types of
reverse-engineering, the Standard reverse-engineering, which uses only the abilities of
the JDBC driver, and the Customized reverse-engineering, which uses a RKM which
provides logging features.

In most of the cases, consider using the standard JDBC reverse engineering instead of
the RKM SQL (Jython). However, you can use this RKM as a starter if you plan to
enhance it by adding your own metadata reverse-engineering behavior.

Standard Reverse-Engineering
To perform a Standard Reverse- Engineering on ANSI SQL-92 technologies use the
usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator.

If your technology has a dedicated chapter in this guide, see this chapter for more
information.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on ANSI SQL-92 technologies with a
RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the
Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details
only the fields specific to the usage of the RKM SQL (Jython):

This RKM provides two logging options:

■ USE_LOG: Set to Yes if you want the reverse-engineering to process log details in
a log file.

■ LOG_FILE_NAME: Enter the name for the log file.

4.6 Setting up Changed Data Capture
Oracle Data Integrator does not provide journalizing Knowledge Modules for ANSI
SQL-92 compliant technologies.

4.7 Setting up Data Quality
Oracle Data Integrator provides the CKM SQL for checking data integrity against
constraints defined on an ANSI SQL-92 compliant table. See "Set up Flow Control and
Post-Integration Control" in the Oracle Fusion Middleware Developer's Guide for Oracle
Data Integrator for details.

Designing an Interface

Generic SQL 4-7

4.8 Designing an Interface
You can use ANSI SQL-92 compliant technologies as a source, staging area or a target
of an integration interface. It is also possible to create ETL-style integration interfaces
based on an ANSI SQL-92 compliant technology.

The KM choice for an interface or a check determines the abilities and performances of
this interface or check. The recommendations below help in the selection of the KM for
different situations concerning a data server based on an ANSI SQL-92 compliant
technology.

4.8.1 Loading Data From and to an ANSI SQL-92 Compliant Technology
ANSI SQL-92 compliant technologies can be used as a source, target or staging area of
an interface. The LKM choice in the Interface Flow tab to load data between an ANSI
SQL-92 compliant technology and another type of data server is essential for the
performance of an interface.

4.8.1.1 Loading Data from an ANSI SQL-92 Compliant Technology
The generic KMs that are listed in Table 4–2 implement methods for loading data from
an ANSI SQL-92 compliant database to a target or staging area database. In addition to
these KMS, Oracle Data Integrator provides KMs specific to the target or staging area
database. If your technology has a dedicated chapter in this guide, see this chapter for
more information.

4.8.1.2 Loading Data to an ANSI SQL-92 Compliant Technology
The generic KMs that are listed in Table 4–3 implement methods for loading data from
a source or staging area into an ANSI SQL-92 compliant database. In addition to these
KMs, Oracle Data Integrator provides KMs specific to the source or staging area
database. If your technology has a dedicated chapter in this guide, see this chapter for
more information.

Table 4–2 KMs to Load from an ANSI SQL-92 Compliant Technology

Source or Staging Area KM Notes

ANSI SQL-92 compliant
technology

LKM SQL to SQL Standard KM for SQL-92 to SQL-92
transfers

ANSI SQL-92 compliant
technology

LMK SQL to SQL (Jython) This LKM uses Jython scripting to
read selected data from the source
database and write the result into
the staging temporary table created
dynamically. This LKM allows you
to modify the default JDBC data
types binding between the source
database and the target staging area
by editing the underlying Jython
code provided.

ANSI SQL-92 compliant
technology

LMK SQL to SQL (row by
row)

This LKM uses row by row logging.

Table 4–3 KMs to Load to an ANSI SQL-92 Compliant Technology

Source or Staging Area KM Notes

File LKM File to SQL Standard KM

ANSI SQL-92 compliant
technology

LKM SQL to SQL Standard KM

Designing an Interface

4-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

4.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology
An ANSI SQL-92 compliant technology can be used as a target of an interface. The
IKM choice in the Interface Flow tab determines the performance and possibilities for
integrating.

The KMs listed in Table 4–4 implement methods for integrating data into an ANSI
SQL-92 compliant target. In addition to these KMs, Oracle Data Integrator provides
KMs specific to the source or staging area database. See the corresponding technology
chapter for more information.

4.8.3 Designing an ETL-Style Interface
See "Working with Integration Interface" in the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator for generic information on how to design integration
interfaces. This section describes how to design an ETL-style interface where the
staging area and target are ANSI SQL-92 compliant.

In an ETL-style interface, ODI processes the data in a staging area, which is different
from the target. Oracle Data Integrator provides two ways for loading the data from an
ANSI SQL-92 compliant staging area to an ANSI SQL-92 compliant target:

■ Using a Multi-connection IKM

■ Using a LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.

ANSI SQL-92 compliant
technology

LMK SQL to SQL (Jython) This LKM uses Jython scripting to
read selected data from the source
database and write the result into
the staging temporary table created
dynamically. This LKM allows you
to modify the default JDBC data
types binding between the source
database and the target staging area
by editing the underlying Jython
code provided.

ANSI SQL-92 compliant
technology

LMK SQL to SQL (row by
row)

This LKM uses row by row logging.

Table 4–4 KMs to Integrate Data in an ANSI SQL-92 Compliant Technology

Source or Staging Area KM Notes

ANSI SQL-92 compliant
technology

IKM SQL Control Append Uses Bulk data movement inside
data server

ANSI SQL-92 compliant
technology

IKM SQL Incremental
Update

Uses Bulk data movement inside
data server

ANSI SQL-92 compliant
technology

IKM SQL to File Append Uses agent for data movement

ANSI SQL-92 compliant
technology

IKM SQL to SQL Incremental
Update

Uses agent or JYTHON for data
movement

ANSI SQL-92 compliant
technology

IKM SQL to SQL Control
Append

Uses agent for control append
strategies

Table 4–3 (Cont.) KMs to Load to an ANSI SQL-92 Compliant Technology

Source or Staging Area KM Notes

Designing an Interface

Generic SQL 4-9

Using a Multi-connection IKM
A multi-connection IKM allows updating a target where the staging area and sources
are on different data servers.

Oracle Data Integrator provides the following multi-connection IKMs for ANSI SQL-92
compliant technologies: IKM SQL to SQL Incremental Update and IKM SQL to SQL
Control Append.

See Table 4–5 for more information on when to use a multi-connection IKM.

To use a multi-connection IKM in an ETL-style interface:

1. Create an integration interface with an ANSI SQL-92 compliant staging area and
target using the standard procedure as described in "Creating an Interface" in the
Oracle Fusion Middleware Developer’s Guide for Oracle Data Integrator. This section
describes only the ETL-style specific steps.

2. In the Definition tab of the Interface Editor, select Staging Area different from
Target and select the logical schema of the source tables or a third schema.

3. In the Flow tab, select one of the Source Sets, by clicking its title. The Property
Inspector opens for this object.

4. Select an LKM from the LKM Selector list to load from the source(s) to the staging
area. See Table 4–5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Flow tab, select the Target by clicking its title. The Property Inspector opens
for this object.

In the Property Inspector, select an ETL multi-connection IKM from the IKM
Selector list to load the data from the staging area to the target. See Table 4–5 to
determine the IKM you can use.

Note the following when setting the KM options:

■ For IKM SQL to SQL Incremental Update

■ If you do not want to create any tables on the target system, set FLOW_
CONTROL=false and FLOW_TABLE_LOCATION=STAGING.

Please note that this will lead to row-by-row processing and therefore
significantly lower performance.

■ If you set the options FLOW_CONTROL or STATIC_CONTROL to true,
select a CKM in the Controls tab. Note that if FLOW_CONTROL is set to
true, the flow table is created on the target, regardless of the value of FLOW_
TABLE_LOCATION.

■ The FLOW_TABLE_LOCATION option can take the following values:

Value Description Comment

TARGET Objects are created on the
target.

Default value.

STAGING Objects are created only on
the staging area, not on the
target.

Cannot be used with flow control. Leads to to
row-by-row processing and therefore loss of
performance.

NONE No objects are created on
staging area nor target.

Cannot be used with flow control. Leads to to
row-by-row processing and therefore loss of
performance. Requires to read source data
twice in case of journalized data sources

Designing an Interface

4-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Using a LKM and a mono-connection IKM
If there is no dedicated multi-connection IKM, use a standard exporting LKM in
combination with a standard mono-connection IKM. The exporting LKM is used to
load the flow table from the staging area to the target. The mono-connection IKM is
used to integrate the data flow into the target table.

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a
source, staging area, and target of an ETL-style interface.

See Table 4–5 for more information on when to use the combionation of a standard
LKM and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style interface:

1. Create an integration interface with an ANSI SQL-92 compliant staging area and
target using the standard procedure as described in "Creating an Interface" in the
Oracle Fusion Middleware Developer’s Guide for Oracle Data Integrator. This section
describes only the ETL-style specific steps.

2. In the Definition tab of the Interface Editor, select Staging Area different from
Target and select the logical schema of the source tables or a third schema.

3. In the Flow tab, select one of the Source Sets.

4. In the Property Inspector, select an LKM from the LKM Selector list to load from
the source(s) to the staging area. See Table 4–5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. Select the Staging Area. In the Property Inspector, select an LKM from the LKM
Selector list to load from the staging area to the target. See Table 4–5 to determine
the LKM you can use.

7. Optionally, modify the options.

8. Select the Target by clicking its title. The Property Inspector opens for this object.

In the Property Inspector, select a standard mono-connection IKM from the IKM
Selector list to update the target. See Table 4–5 to determine the IKM you can use.

Designing an Interface

Generic SQL 4-11

Table 4–5 KM Guidelines for ETL-Style Interfaces based on an ANSI SQL-92 standard compliant
technology

Source Staging Area Target
Exporting
LKM IKM KM Strategy Comment

ANSI
SQL-92
standard
compliant

ANSI SQL-92
standard
compliant
database

ANSI
SQL-92
standard
complia
nt
database

NA IKM SQL to SQL
Incremental Update

Multi-connect
ion IKM

Allows an
incremental
update strategy
with no
temporary
target-side
objects. Use this
KM if it is not
possible to create
temporary
objects in the
target server.

The application
updates are
made without
temporary
objects on the
target, the
updates are
made directly
from source to
target. The
configuration
where the flow
table is created
on the staging
area and not in
the target should
be used only for
small volumes of
data.

Supports flow
and static control

ANSI
SQL-92
standard
compliant

ANSI SQL-92
standard
compliant
database

ANSI
SQL-92
standard
complia
nt
database

NA IKM SQL to SQL
Control Append

Multi-connect
ion IKM

Use this KM
strategy to
perform control
append.

Supports flow
and static
control.

ANSI
SQL-92
standard
compliant

ANSI SQL-92
standard
compliant
database

ANSI
SQL-92
standard
complia
nt
database

any standard
KM loading
from an ANSI
SQL-92
standard
compliant
technology to
an ANSI
SQL-92
standard
compliant
technology

IKM SQL Incremetal
Update

Mono-connec
tion IKM

Allows an
incremental
update strategy

Designing an Interface

4-12 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

5

XML Files 5-1

5XML Files

This chapter describes how to work with XML files in Oracle Data Integrator.

This chapter includes the following sections:

■ Introduction

■ Installation and Configuration

■ Setting up the Topology

■ Setting Up an Integration Project

■ Creating and Reverse-Engineering a XML File

■ Designing an Interface

■ Troubleshooting

5.1 Introduction
Oracle Data Integrator supports XML files integration through the Oracle Data
Integrator Driver for XML.

5.1.1 Concepts
The XML concepts map the Oracle Data Integrator concepts as follows: An XML file
corresponds to a data server in Oracle Data Integrator. Within this data server, a single
schema maps the content of the XML file.

The Oracle Data Integrator Driver for XML (XML driver) loads the hierarchical
structure of the XML file into a relational schema. This relational schema is a set of
tables located in the schema that can be queried or modified using SQL. The XML
driver is also able to unload the relational schema back in the XML file.

The relational schema is reverse-engineered as a data model in ODI, with tables,
columns, and constraints. This model is used like a normal relational data model in
ODI. If the modified data within the relational schema needs to be written back to the
XML file, the XML driver provides the capability to synchronize the relational schema
into the file.

See Appendix B, "Oracle Data Integrator Driver for XML Reference" for more
information on this driver.

Installation and Configuration

5-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

5.1.2 Knowledge Modules
Oracle Data Integrator provides the IKM XML Control Append for handling XML
data. This Knowledge Module is a specific XML Knowledge Module. It has a specific
option to synchronize the data from the relational schema to the file.

In addition to this KM, you can also use an XML data server as any SQL data server.
XML data servers support both the technology-specific KMs sourcing or targeting SQL
data servers, as well as the generic KMs. See Chapter 4, "Generic SQL" or the
technology chapters for more information on these KMs.

5.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
XML Knowledge Module:

■ System Requirements

■ Technologic Specific Requirements

■ Connectivity Requirements

5.2.1 System Requirements
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

5.2.2 Technologic Specific Requirements
There are no technology-specific requirements for using XML Files in Oracle Data
Integrator.

5.2.3 Connectivity Requirements
This section lists the requirements for connecting to XML database.

Oracle Data Integrator Driver for XML
XML files are accessed through the Oracle Data Integrator Driver for XML. This JDBC
driver is installed with Oracle Data Integrator and requires no other installed
component or configuration.

You must ask the system administrator for the following connection information:

■ The location of the DTD or XSD file associated with your XML file

■ The location of the XML file

5.3 Setting up the Topology
Setting up the topology consists in:

1. Creating an XML Data Server

Setting up the Topology

XML Files 5-3

2. Creating a Physical Schema for XML

5.3.1 Creating an XML Data Server
An XML data server corresponds to one XML file that is accessible to Oracle Data
Integrator.

5.3.1.1 Creation of the Data Server
Create a data server for the XML technology using the standard procedure, as
described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide
for Oracle Data Integrator. This section details only the fields required or specific for
defining a File data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator.

■ User/Password: These fields are not used for XML data servers.

2. In the JDBC tab, enter the values according to the driver used:

■ JDBC Driver: com.sunopsis.jdbc.driver.xml.SnpsXmlDriver

■ JDBC URL: jdbc:snps:xml?[property=value&property=value...]

Table 5–1 lists the key properties of the Oracle Data Integrator Driver for XML.
These properties can be specified in the JDBC URL.

See Appendix B, "Oracle Data Integrator Driver for XML Reference" for a detailed
description of these properties and for a comprehensive list of all properties.

Table 5–1 JDBC Driver Properties

Property Value Notes

f <XML File location> XML file name. Use slash "/" in the path name instead of
back slash "\". It is possible to use an HTTP, FTP or File
URL to locate the file. Files located by URL are read-only.

d <DTD/XSD File
location>

Description file: This file may be a DTD or XSD file. It is
possible to use an HTTP, FTP or File URL to locate the
file. Files located by URL are read-only.

Note that when no DTD or XSD file is present, the
relational schema is built using only the XML file
content. It is not recommended to reverse-engineer the
data model from such a structure as one XML file
instance may not contain all the possible elements
described in the DTD or XSD, and data model may be
incomplete.

re <Root element> Name of the element to take as the root table of the
schema. This value is case sensitive. This property can be
used for reverse-engineering for example a specific
message definition from a WSDL file, or when several
possible root elements exist in a XSD file.

ro true | false If true, the XML file is opened in read only mode.

s <schema name> Name of the relational schema where the XML file will
be loaded. If this property is missing, a schema named
after the five first letters of the XML file name will
automatically be created.

This schema will be selected when creating the physical
schema under the XML data server.

Setting Up an Integration Project

5-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The following examples illustrate these properties:

Connects to the PROD20100125_001.xml file described by products.xsd in
the PRODUCTS schema.

jdbc:snps:xml?f=/xml/PROD20100125_001.xml&d=/xml/products.xsd&s=PRODUCTS

Connects in read-only mode to the staff_internal.xml file described by
staff_internal.dtd in read-only mode. The schema name will be staff.

jdbc:snps:xml?f=/demo/xml/staff_internal.xml&d=/demo/xml/staff_
internal.dtd&ro=true&s=staff

5.3.2 Creating a Physical Schema for XML
Create an XML physical schema using the standard procedure, as described in
"Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

The schema name that you have set on the URL will be preset. Select this schema for
both the Data Schema and Work Schema.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

5.4 Setting Up an Integration Project
Setting up a Project using the XML database follows the standard procedure. See
"Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

The recommended knowledge modules to import into your project for getting started
with XML are the following:

■ LKM SQL to SQL

■ LKM File to SQL

■ IKM XML Control Append

5.5 Creating and Reverse-Engineering a XML File
This section contains the following topics:

■ Create an XML Model

■ Reverse-Engineering an XML Model

cs true | false Load the XML file in case sensitive or insensitive mode.
For case insensitive mode, all element names in the DTD
file should be distinct (For example: Abc and abc in the
same file will result in name collisions).

Table 5–1 (Cont.) JDBC Driver Properties

Property Value Notes

Designing an Interface

XML Files 5-5

5.5.1 Create an XML Model
An XML file model groups a set of datastores. Each datastore typically represents an
element in the XML file.

Create an XML Model using the standard procedure, as described in "Creating a
Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Select the XML technology and the XML logical schema created when configuring the
topology.

5.5.2 Reverse-Engineering an XML Model
XML supports standard reverse-engineering, which uses only the abilities of the XML
driver.

It is recommended to reference a DTD or XSD file in the dtd or d parameters of the
URL to reverse-engineer the structure from a generic description of the XML file
structure. Reverse-engineering can use an XML instance file if no XSD or DTD is
available. In this case, the relational schema structure will be inferred from the data
contained in the XML file.

Standard Reverse-Engineering
To perform a Standard Reverse- Engineering on XML use the usual procedure, as
described in "Reverse-engineering a Model" of the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator.

The standard reverse-engineering process will automatically reverse-engineer the
table from the relational schema generated by the XML driver. Note that these tables
automatically include:

■ Primary keys (PK columns) to preserve parent-child elements relationships

■ Foreign keys (FK columns) to preserve parent-child elements relationships

■ Order identifier (ORDER columns) to preserve the order of elements in the XML
file

These extra columns enable the mapping of the hierarchical XML structure into the
relational schema. See XML to SQL Mapping in the Appendix B, "Oracle Data
Integrator Driver for XML Reference" for more information.

5.6 Designing an Interface
You can use XML as a source or a target of an integration interface.

The KM choice for an interface or a check determines the abilities and performances of
this interface or check. The recommendations in this section help in the selection of the
KM for different situations concerning an XML data server.

5.6.1 Notes about XML Interfaces
Read carefully these notes before working with XML in integration interfaces.

5.6.1.1 Targeting an XML Structure
When using a datastore of an XML model as a target of an interface, you must make
sure to load the driver-generated columns that are used for preserving the
parent-child relationships and the order in the XML hierarchy. For example, if filling
records for the region element into an XML structure as shown in Example 5–1, that
correspond to a REGION table in the relational schema, you should load the columns

Designing an Interface

5-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

REGION_ID and REGION_NAME of the REGION table. These two columns
correspond to XML attributes.

Example 5–1 XML Structure

<country COUNTRY_ID="6" COUNTRY_NAME="Australia">
 <region REGION_ID="72" REGION_NAME="Queensland">
</country>

In Example 5–1 you must also load the following additional columns that are
automatically created by the XML Driver in the REGION table:

■ REGIONPK: This column enables you to identify each <region> element.

■ REGIONORDER: This column enables you to order the <region> elements in
the XML file (records are not ordered in a relational schema, whereas XML
elements are ordered).

■ COUNTRYFK: This columns enables you to put the <region> element in
relation with the <country> parent element. This value is equal to the
COUNTRY.COUNTRYPK value for the Australia record in the COUNTRY table.

5.6.1.2 Synchronizing XML File and Schema
To ensure a perfect synchronization of the data in an XML file and the data in the XML
schema, the following commands have to be called:

■ Before using the tables of an XML model, either to read or update data, it is
recommended that you use the SYNCHRONIZE FROM FILE command on the
XML logical schema. This operation reloads the XML hierarchical data in the
relational XML schema. The schema is loaded in the built-in or external database
storage when first accessed. Subsequent changes made to the file are not
automatically synchronized into the schema unless you issue this command.

■ After performing changes in the relational schema, you must unload this schema
into the XML hierarchical data by calling the SYNCHRONIZE ALL or
SYNCHRONIZE FROM DATABASE commands on the XML Logical Schema. The
IKM XML Control Append implements this synchronize command.

These commands must be executed in procedures in the packages before (and after)
the interfaces and procedures manipulating the XML schema.

See Appendix B, "Oracle Data Integrator Driver for XML Reference" for more
information on these commands.

5.6.1.3 Handling Large XML Files
Large XML files can be handled with high performance with Oracle Data Integrator.

The default driver configuration stores the relational schema in a built-in engine in
memory. It is recommended to consider the use of external database storage for
handling large XML files.

See Section B.2.3.1, "Schema Storage" for more information on these commands.

5.6.2 Loading Data from and to XML
An XML file can be used as an interface's source or target. The LKM choice in the
Interface Flow tab that is used to load data between XML files and other types of data
servers is essential for the performance of the interface.

Designing an Interface

XML Files 5-7

5.6.2.1 Loading Data from an XML Schema
Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from an XML database to a target or staging area database.

Table 5–2 lists some examples of KMs that you can use to load from an XML source to
a staging area:

5.6.2.2 Loading Data to an XML Schema
It is not advised to use an XML schema as a staging area, except if XML is the target of
the interface and you wish to use the target as a staging area. In this case, it might be
required to load data to an XML schema.

Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from a source or staging area into an XML schema.

Table 5–3 lists some examples of KMs that you can use to load from a source to an
XML staging area.

5.6.3 Integrating Data in XML
XML can be used as a target of an interface. The data integration strategies in XML
concern loading from the staging area to XML. The IKM choice in the Interface Flow
tab determines the performances and possibilities for integrating.

The IKM XML Control Append integrates data into the XML schema and has an
option to synchronize the data to the file. In addition to this KM, you can also use the
Generic SQL KMs or the KMs specific to the other technology involved. Note that if
using generic or technology-specific KMs, you must manually perform the
synchronize operation to write the changes made in the schema to the XML file.

Table 5–4 lists some examples of KMs that you can use to integrate data:

■ From a staging area to an XML target

■ From an XML staging area to an XML target. Note that in this case the staging area
is on the XML target.

Table 5–2 KMs to Load from XML to a Staging Area

Staging Area KM Notes

Microsoft SQL
Server

LKM SQL to MSSQL (BULK) Uses SQL Server's bulk loader.

Oracle LKM SQL to Oracle Faster than the Generic LKM (Uses
Statistics)

Sybase LKM SQL to Sybase ASE (BCP) Uses Sybase's bulk loader.

All LKM SQL to SQL Generic KM to load data between
an ANSI SQL-92 source and an
ANSI SQL-92 staging area.

Table 5–3 KMs to Load to an XML Schema

Source KM Notes

File LKM File to SQL Generic KM to load a file in a ANSI
SQL-92 staging area.

All LKM SQL to SQL Generic KM to load data between an
ANSI SQL-92 source and an ANSI
SQL-92 staging area.

Troubleshooting

5-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

5.7 Troubleshooting
This section provides information on how to troubleshoot problems that you might
encounter when using XML in Oracle Data Integrator. It contains the following topics:

■ Detect the Errors Coming from XML

■ Common Errors

5.7.1 Detect the Errors Coming from XML
Errors appear often in Oracle Data Integrator in the following way:

java.sql.SQLException: No suitable driver
at ...
at ...
...

the java.sql.SQLExceptioncode simply indicates that a query was made
through the JDBC driver, which has returned an error. This error is frequently a
database or driver error, and must be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the
XML driver documentation. If it contains a specific error code, like here, the error can
be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL
code send to the database to find the source of the error. The code is displayed in the
description tab of the task in error.

5.7.2 Common Errors
This section describes the most common errors with XML along with the principal
causes. It contains the following topics:

■ No suitable driver

The JDBC URL is incorrect. Check that the URL syntax is valid.

■ File <XML file> is already locked by another instance of the
XML driver.

The XML file is locked by another user/application. Close all application that
might be using the XML file. If such an application has crashed, then remove the
.lck file remaining in the XML file's directory.

■ The DTD file "xxxxxxx.dtd" doesn't exist

This exception may occur when trying to load an XML file by the command
LOAD FILE. The error message can have two causes:

■ The path of the DTD file is incorrect.

Table 5–4 KMs to Integrate Data in an XML File

Mode Staging Area KM Notes

Update XML IKM SQL Incremental Update Generic KM

Append XML IKM SQL Control Append Generic KM

Append All RDBMS IKM SQL to SQL Append Generic KM

Troubleshooting

XML Files 5-9

■ The corresponding XML file was already opened by another schema (during
connection for instance).

■ Table not found: S0002 Table not found: <table name> in
statement [<SQL statement>]

The table you are trying to access does not exist in the schema.

■ Column not found: S0022 Column not found: <column name> in
statement [<SQL statement>]

The column you are trying to access does not exist in the tables specified in the
statement.

Troubleshooting

5-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

6

Microsoft SQL Server 6-1

6Microsoft SQL Server

This chapter describes how to work with Microsoft SQL Server in Oracle Data
Integrator.

This chapter includes the following sections:

■ Section 6.1, "Introduction"

■ Section 6.2, "Installation and Configuration"

■ Section 6.3, "Setting up the Topology"

■ Section 6.4, "Setting Up an Integration Project"

■ Section 6.5, "Creating and Reverse-Engineering a Microsoft SQL Server Model"

■ Section 6.6, "Setting up Changed Data Capture"

■ Section 6.7, "Setting up Data Quality"

■ Section 6.8, "Designing an Interface"

6.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in Microsoft SQL Server.
Oracle Data Integrator features are designed to work best with Microsoft SQL Server,
including reverse-engineering, changed data capture, data integrity check, and
integration interfaces.

6.1.1 Concepts
The Microsoft SQL Server concepts map the Oracle Data Integrator concepts as
follows: A Microsoft SQL Server server corresponds to a data server in Oracle Data
Integrator. Within this server, a database/owner pair maps to an Oracle Data
Integrator physical schema. A set of related objects within one database corresponds to
a data model, and each table, view or synonym will appear as an ODI datastore, with
its attributes, columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Microsoft
SQL Server.

6.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 6–1 for
handling Microsoft SQL Server data. In addition to these specific Microsoft SQL Server
Knowledge Modules, it is also possible to use the generic SQL KMs with Microsoft
SQL Server. See Chapter 4, "Generic SQL" for more information.

Installation and Configuration

6-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

6.2 Installation and Configuration
Make sure you have read the information in this section before you start working with
the Microsoft SQL Server technology:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

6.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

Table 6–1 Microsoft SQL Server Knowledge Modules

Knowledge Module Description

IKM MSSQL Incremental Update Integrates data in a Microsoft SQL Server target table in incremental
update mode.

IKM MSSQL Slowly Changing Dimension Integrates data in a Microsoft SQL Server target table used as a Type
II Slowly Changing Dimension in your Data Warehouse.

JKM MSSQL Consistent Creates the journalizing infrastructure for consistent journalizing on
Microsoft SQL Server tables using triggers.

JKM MSSQL Simple Creates the journalizing infrastructure for simple journalizing on
Microsoft SQL Server tables using triggers.

LKM File to MSSQL (BULK) Loads data from a File to a Microsoft SQL Server staging area
database using the BULK INSERT SQL command.

LKM MSSQL to MSSQL (BCP) Loads data from a Microsoft SQL Server source database to a
Microsoft SQL Server staging area database using the native BCP
out/BCP in commands.

LKM MSSQL to MSSQL (LINKED
SERVERS)

Loads data from a Microsoft SQL Server source database to a
Microsoft SQL Server staging area database using the native linked
servers feature.

LKM MSSQL to ORACLE (BCP SQLLDR) Loads data from a Microsoft SQL Server to an Oracle database
(staging area) using the BCP and SQLLDR utilities.

LKM SQL to MSSQL (BULK) Loads data from any ANSI SQL-92 source database to a Microsoft
SQL Server staging area database using the native BULK INSERT
SQL command.

LKM SQL to MSSQL Loads data from any ANSI SQL-92 source database to a Microsoft
SQL Server staging area. This LKM is similar to the standard LKM
SQL to SQL described in Chapter 4, "Generic SQL" except that you
can specify some additional specific Microsoft SQL Server
parameters.

RKM MSSQL Retrieves metadata for Microsoft SQL Server objects: tables, views
and synonyms, as well as columns and constraints.

Installation and Configuration

Microsoft SQL Server 6-3

6.2.2 Technology Specific Requirements
Some of the Knowledge Modules for Microsoft SQL Server use specific features of this
database. The following restrictions apply when using these Knowledge Modules. See
the Microsoft SQL Server documentation for additional information on these topics.

6.2.2.1 Using the BULK INSERT Command
This section describes the requirements that must be met before using the BULK
INSERT command with Microsoft SQL Server:

■ The file to be loaded by the BULK INSERT command needs to be accessible from
the Microsoft SQL Server instance machine. It could be located on the file system
of the server or reachable from a UNC (Unique Naming Convention) path.

■ UNC file paths are supported but not recommended as they may decrease
performance.

■ For performance reasons, it is often recommended to install Oracle Data Integrator
Agent on the target server machine.

6.2.2.2 Using the BCP Command
This section describes the requirements that must be met before using the BCP
command with Microsoft SQL Server:

■ The BCP utility as well as the Microsoft SQL Server Client Network Utility must
be installed on the machine running the Oracle Data Integrator Agent.

■ The server names defined in the Topology must match the Microsoft SQL Server
Client connect strings used for these servers.

■ White spaces in server names defined in the Client Utility are not supported.

■ UNC file paths are supported but not recommended as they may decrease
performance.

■ The target staging area database must have the option select into/bulk copy.

■ Execution can remain pending if the file generated by the BCP program is empty.

■ For performance reasons, it is often recommended to install Oracle Data Integrator
Agent on the target server machine.

6.2.2.3 Using Linked Servers
This section describes the requirements that must be met before using linked servers
with Microsoft SQL Server:

■ The user defined in the Topology to connect to the Microsoft SQL Server instances
must have the following privileges:

■ The user must be the db_owner of the staging area databases

■ The user must have db_ddladmin role

■ For automatic link server creation, the user must have sysdamin privileges

■ The MSDTC Service must be started on both SQL Server instances (source and
target). The following hints may help you configure this service:

■ The Log On As account for the MSDTC Service is a Network Service account
(and not the 'LocalSystem' account).

■ MSDTC should be enabled for network transactions.

Setting up the Topology

6-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ Windows Firewall should be configured to allow the MSDTC service on the
network. By default, the Windows Firewall blocks the MSDTC program.

■ The Microsoft SQL Server must be started after MSDTC has completed its
startup.

See the following links for more information about configuring the MSDTC
Service:

■ http://support.microsoft.com/?kbid=816701

■ http://support.microsoft.com/?kbid=839279

6.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Microsoft SQL Server database.

JDBC Driver
Oracle Data Integrator is installed with a default Microsoft SQL Server Datadirect
Driver. This drivers directly uses the TCP/IP network layer and requires no other
installed component or configuration. You can alternatively use the drivers provided
by Microsoft for SQL Server.

6.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a Microsoft SQL Server Data Server

2. Creating a Microsoft SQL Server Physical Schema

6.3.1 Creating a Microsoft SQL Server Data Server
A Microsoft SQL Server data server corresponds to a Microsoft SQL Server server
connected with a specific user account. This user will have access to several databases
in this server, corresponding to the physical schemas in Oracle Data Integrator created
under the data server.

6.3.1.1 Creation of the Data Server
Create a data server for the Microsoft SQL Server technology using the standard
procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator. This section details only the fields required
or specific for defining a Microsoft SQL data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator

■ Server: Physical name of the data server

■ User/Password: Microsoft SQLServer user with its password

2. In the JDBC tab:

■ JDBC Driver: weblogic.jdbc.sqlserver.SQLServerDriver

■ JDBC URL: jdbc:weblogic:sqlserver://hostname:port[;property=value[;...]]

Creating and Reverse-Engineering a Microsoft SQL Server Model

Microsoft SQL Server 6-5

6.3.2 Creating a Microsoft SQL Server Physical Schema
Create a Microsoft SQL Server physical schema using the standard procedure, as
described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator.

The work schema and data schema in this physical schema correspond each to a
database/owner pair. The work schema should point to a temporary database and the
data schema should point to the database hosting the data to integrate.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

6.4 Setting Up an Integration Project
Setting up a project using the Microsoft SQL Server database follows the standard
procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Microsoft SQL Server:

■ IKM MSSQL Incremental Update

■ IKM MSSQL Slowly Changing Dimension

■ JKM MSSQL Consistent

■ JKM MSSQL Simple

■ LKM File to MSSQL (BULK)

■ LKM MSSQL to MSSQL (BCP)

■ LKM MSSQL to MSSQL (LINKED SERVERS)

■ LKM MSSQL to ORACLE (BCP SQLLDR)

■ LKM SQL to MSSQL (BULK)

■ LKM SQL to MSSQL

■ CKM SQL. This generic KM is used for performing integrity check for SQL Server.

■ RKM MSSQL

6.5 Creating and Reverse-Engineering a Microsoft SQL Server Model
This section contains the following topics:

■ Create a Microsoft SQL Server Model

■ Reverse-engineer a Microsoft SQL Server Model

6.5.1 Create a Microsoft SQL Server Model
Create a Microsoft SQL Server Model using the standard procedure, as described in
"Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data
Integrator.

Setting up Changed Data Capture

6-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

6.5.2 Reverse-engineer a Microsoft SQL Server Model
Microsoft SQL Server supports both Standard reverse-engineering - which uses only
the abilities of the JDBC driver - and Customized reverse-engineering, which uses a
RKM to retrieve the metadata.

In most of the cases, consider using the standard JDBC reverse engineering for
starting. Standard reverse-engineering with Microsoft SQL Server retrieves tables,
views, and columns.

Consider switching to customized reverse-engineering for retrieving more metadata.
Microsoft SQL Server customized reverse-engineering retrieves the tables, views, and
synonyms. The RKM MSSQL also reverse-engineers columns that have a user defined
data type and translates the user defined data type to the native data type.

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on Microsoft SQL Server use the usual
procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on Microsoft SQL Server with a RKM,
use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle
Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only
the fields specific to the Microsoft SQL Server technology:

1. In the Reverse tab of the Microsoft SQL Server Model, select the KM: RKM
MSSQL.<project name>.

2. In the COMPATIBLE option, enter the Microsoft SQL Server version. This option
decides whether to enable reverse synonyms. Note that only Microsoft SQLServer
version 2005 and above support synonyms.

Note the following information when using this RKM:

■ The connection user must have SELECT privileges on any INFORMATION_
SCHEMA views.

■ Only native data type will be saved for the column with user defined data type in
the repository and model.

■ User defined data types implemented through a class of assembly in the Microsoft
.NET Framework common language runtime (CLR) will not be reversed.

6.6 Setting up Changed Data Capture
The ODI Microsoft SQL Server Knowledge Modules support the Changed Data
Capture feature. See Chapter "Working with Changed Data Capture" of the Oracle
Fusion Middleware Developer's Guide for Oracle Data Integrator for details on how to set
up journalizing and how to use captured changes.

Microsoft SQL Server Journalizing Knowledge Modules support Simple Journalizing
and Consistent Set Journalizing. The Microsoft SQL Server JKMs use triggers to
capture data changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 6–2 for
journalizing Microsoft SQL Server tables.

Designing an Interface

Microsoft SQL Server 6-7

Log-based changed data capture is possible with Microsoft SQL Server using the
Oracle Changed Data Capture Adapters. See Chapter 25, "Oracle Changed Data
Capture Adapters" for more information.

6.7 Setting up Data Quality
Oracle Data Integrator provides the generic CKM SQL for checking data integrity
against constraints defined on a Microsoft SQL Server table. See "Set up Flow Control
and Post-Integration Control" in the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator for details.

See Chapter 4, "Generic SQL" for more information.

6.8 Designing an Interface
You can use Microsoft SQL Server as a source, staging area or a target of an integration
interface.

The KM choice for an interface or a check determines the abilities and performance of
this interface or check. The recommendations in this section help in the selection of the
KM for different situations concerning a Microsoft SQL Server data server.

6.8.1 Loading Data from and to Microsoft SQL Server
Microsoft SQL Server can be used as a source, target or staging area of an interface.
The LKM choice in the Interface Flow tab to load data between Microsoft SQL Server
and another type of data server is essential for the performance of an interface.

6.8.1.1 Loading Data from Microsoft SQL Server
Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from Microsoft SQL Server to a target or staging area
database. These optimized Microsoft SQL Server KMs are listed in Table 6–3.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to
the other technology involved to load data from Microsoft SQL Server to a target or
staging area database.

Table 6–2 Microsoft SQL Server Journalizing Knowledge Modules

KM Notes

JKM MSSQL Consistent Creates the journalizing infrastructure for consistent
journalizing on Microsoft SQL Server tables using
triggers.

JKM MSSQL Simple Creates the journalizing infrastructure for simple
journalizing on Microsoft SQL Server tables using
triggers.

Designing an Interface

6-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

6.8.1.2 Loading Data to Microsoft SQL Server
Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into a Microsoft SQL Server
database. These optimized Microsoft SQL Server KMs are listed in Table 6–4.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to
the other technology involved.

Table 6–3 KMs for loading data from Microsoft SQL Server

Source or Staging Area
Technology KM Notes

Microsoft SQL Server LKM MSSQL to MSSQL
(BCP)

Loads data from a
Microsoft SQL Server
source database to a
Microsoft SQL Server
staging area database
using the native BCP
out/BCP in commands.

Microsoft SQL Server LKM MSSQL to MSSQL
(LINKED SERVERS)

Loads data from a
Microsoft SQL Server
source database to a
Microsoft SQL Server
staging area database
using the native linked
servers feature.

Oracle LKM MSSQL to ORACLE
(BCP SQLLDR)

Loads data from a
Microsoft SQL Server to an
Oracle database (staging
area) using the BCP and
SQLLDR utilities.

Table 6–4 KMs for loading data to Microsoft SQL Server

Source or Staging Area
Technology KM Notes

File LKM File to MSSQL (BULK) Loads data from a File to a
Microsoft SQL Server
staging area database
using the BULK INSERT
SQL command.

Microsoft SQL Server LKM MSSQL to MSSQL
(BCP)

Loads data from a
Microsoft SQL Server
source database to a
Microsoft SQL Server
staging area database
using the native BCP
out/BCP in commands.

Microsoft SQL Server LKM MSSQL to MSSQL
(LINKED SERVERS)

Loads data from a
Microsoft SQL Server
source database to a
Microsoft SQL Server
staging area database
using the native linked
servers feature.

Designing an Interface

Microsoft SQL Server 6-9

6.8.2 Integrating Data in Microsoft SQL Server
Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for Microsoft SQL Server. These optimized Microsoft SQL Server
KMs are listed in Table 6–5. I

In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Interface Flow tab determines the performances and
possibilities for integrating.

Using Slowly Changing Dimensions
For using slowly changing dimensions, make sure to set the Slowly Changing Dimension
value for each column of the target datastore. This value is used by the IKM MSSQL
Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or
Insert Column, Current Record Flag and Start/End Timestamps columns.

SQL LKM SQL to MSSQL (BULK) Loads data from any ANSI
SQL-92 source database to
a Microsoft SQL Server
staging area database
using the native BULK
INSERT SQL command.

SQL LKM SQL to MSSQL Loads data from any ANSI
SQL-92 source database to
a Microsoft SQL Server
staging area.

Table 6–5 KMs for integrating data to Microsoft SQL Server

KM Notes

IKM MSSQL Incremental Update Integrates data in a Microsoft SQL Server target table in
incremental update mode.

IKM MSSQL Slowly Changing
Dimension

Integrates data in a Microsoft SQL Server target table used
as a Type II Slowly Changing Dimension in your Data
Warehouse

Table 6–4 (Cont.) KMs for loading data to Microsoft SQL Server

Source or Staging Area
Technology KM Notes

Designing an Interface

6-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

7

Microsoft Excel 7-1

7Microsoft Excel

This chapter describes how to work with Microsoft Excel in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 7.1, "Introduction"

■ Section 7.2, "Installation and Configuration"

■ Section 7.3, "Setting up the Topology"

■ Section 7.4, "Setting Up an Integration Project"

■ Section 7.5, "Creating and Reverse-Engineering a Microsoft Excel Model"

■ Section 7.6, "Designing an Interface"

■ Section 7.7, "Troubleshooting"

7.1 Introduction
Oracle Data Integrator (ODI) integrates data stored into Microsoft Excel workbooks. It
allows reverse-engineering as well as read and write operations on spreadsheets.

Oracle Data Integrator uses Open Database Connectivity (ODBC) to connect to a
Microsoft Excel data server. See Section 7.2.3, "Connectivity Requirements" for more
details.

7.1.1 Concepts
A Microsoft Excel data server corresponds to one Microsoft Excel workbook (.xls
file) that is accessible through your local network. A single physical schema is created
under this data server.

Within this schema, a spreadsheet or a given named zone of the workbook appears as
a datastore in Oracle Data Integrator.

7.1.2 Knowledge Modules
Oracle Data Integrator provides no Knowledge Module (KM) specific to the Microsoft
Excel technology. You can use the generic SQL KMs to perform the data integration
and transformation operations of Microsoft Excel data. See Chapter 4, "Generic SQL"
for more information.

Installation and Configuration

7-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

7.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
Microsoft Excel Knowledge Module:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

7.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

7.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Microsoft Excel files in Oracle
Data Integrator.

7.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Microsoft Excel workbook.

To be able to access Microsoft Excel data, you need to:

■ Install the Microsoft Excel ODBC Driver

■ Declare a Microsoft Excel ODBC Data Source

Install the Microsoft Excel ODBC Driver
Microsoft Excel workbooks can only be accessed through ODBC connectivity. The
ODBC Driver for Excel must be installed on your system.

Note: Excel technology cannot be used as the staging area, does not
support incremental update or flow/static check. As a consequence,
the following KMs will not work with the Excel technology:

■ RKM SQL (JYTHON)

■ LKM File to SQL

■ CKM SQL

■ IKM SQL Incremental Update

■ IKM SQL Control Append

■ LKM SQL to SQL (JYTHON)

Setting up the Topology

Microsoft Excel 7-3

Declare a Microsoft Excel ODBC Data Source
An ODBC data source must be defined for each Microsoft Excel workbook (.xls file)
that will be accessed from ODI. ODBC datasources are created with the Microsoft
ODBC Data Source Administrator. Refer to your Microsoft Windows operating system
documentation for more information on datasource creation.

7.3 Setting up the Topology
Setting up the Topology consists in:

1. Creating a Microsoft Excel Data Server

2. Creating a Microsoft Excel Physical Schema

7.3.1 Creating a Microsoft Excel Data Server
A Microsoft Excel data server corresponds to one Microsoft Excel workbook (.xls
file) that is accessible through your local network.

Create a data server for the Microsoft Excel technology using the standard procedure,
as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator. This section details only the fields required or specific
for defining a Microsoft Excel Data Server:

1. In the Definition tab:

■ Array Fetch Size: 1

■ Batch Update Size: 1

2. In the JDBC tab:

■ JDBC Driver: sun.jdbc.odbc.JdbcOdbcDriver

■ JDBC URL: jdbc:odbc:<odbc_dsn_alias>

where <odbc_dsn_alias> is the name of your ODBC data source.

7.3.2 Creating a Microsoft Excel Physical Schema
Create a Microsoft Excel Physical Schema using the standard procedure, as described
in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

Note that Oracle Data Integrator needs only one physical schema for each Microsoft
Excel data server. If you wish to connect a different workbook, a different data server
must be created to connect a ODBC datasource corresponding to this other workbook.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator and associate it in a given context.

WARNING: To access a Microsoft Excel workbook via ODBC, you
must first ensure that this workbook is not currently open in a
Microsoft Excel session. This can lead to unexpected results.

Note: An Excel physical schema only has a data schema, and no
work schema. Microsoft Excel cannot be used as the staging area of an
interface.

Setting Up an Integration Project

7-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

7.4 Setting Up an Integration Project
Setting up a Project using the Microsoft Excel follows the standard procedure. See
"Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

Import the following generic SQL KMs into your project for getting started with
Microsoft Excel:

■ LKM SQL to SQL

■ IKM SQL to SQL Append

See Chapter 4, "Generic SQL" for more information about these KMs.

7.5 Creating and Reverse-Engineering a Microsoft Excel Model
This section contains the following topics:

■ Create a Microsoft Excel Model

■ Reverse-engineer a Microsoft Excel Model

7.5.1 Create a Microsoft Excel Model
A Microsoft Excel Model is a set of datastores that correspond to the tables contained
in a Microsoft Excel workbook.

Create a Microsoft Excel Model using the standard procedure, as described in
"Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data
Integrator.

7.5.2 Reverse-engineer a Microsoft Excel Model
Microsoft Excel supports only the Standard reverse-engineering, which uses only the
abilities of the ODBC driver.

Oracle Data Integrator reverse-engineers:

■ Spreadsheets: Spreadsheets appear as system tables. Such a table is named after the
spreadsheet name, followed with a dollar sign ($). This table’s columns are named
after the first line of the spreadsheet. Note that new records are added at the end
of the spreadsheet.

■ Named Cell Ranges in a spreadsheet. These will appear as tables named after the cell
range name. Depending on the scope of a name, the table name may be prefixed
by the name of the spreadsheet (in the following format: <spreadsheet_
name>$<zone_name>). The columns for such a table are named after the first line
of the cell range. Note that new records are added automatically below the named
cell. It is possible to create a blank named cell range that will be loaded using ODI
by naming a cell range that contains only the first header line.

In most Microsoft Excel versions, you can simply select a cell range and use the
Name a Range... popup menu to name this range. See the Microsoft Excel
documentation for conceptual information about Names and how to define a cell
range in a spreadsheet.

Designing an Interface

Microsoft Excel 7-5

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on Microsoft Excel use the usual
procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator.

7.6 Designing an Interface
You can use a Microsoft Excel file as a source or a target of an integration interface, but
NOT as the staging area

The KM choice for an interface or a check determines the abilities and performances of
this interface or check. The recommendations below help in the selection of the KM for
different situations concerning a Microsoft Excel server.

7.6.1 Loading Data From and to Microsoft Excel
Microsoft Excel can be used as a source or a target of an interface. The LKM choice in
the Interface Flow tab to load data between Microsoft Excel and another type of data
server is essential for the performance of an interface.

7.6.1.1 Loading Data from Microsoft Excel
Oracle Data Integrator does not provide specific knowledge modules for Microsoft
Excel. Use the Generic SQL KMs or the KMs specific to the technology used as the
staging area. The following table lists some generic SQL KMs that can be used for
loading data from Microsoft Excel to any staging area.

7.6.1.2 Loading Data to Microsoft Excel
Because Microsoft Excel cannot be used as staging area you cannot use a LKM to load
data into Microsoft Excel. See Section 7.6.2, "Integrating Data in Microsoft Excel" for
more information on how to integrate data into Microsoft Excel.

Note: On the Reverse Engineer tab of your Model, select in the Types
of objects to reverse-engineer section Table and System Table to
reverse-engineer spreadsheets and named cell ranges.

Table 7–1 KMs to Load from Microsoft Excel

Target or Staging Area KM Notes

Oracle LKM SQL to Oracle Loads data from any ISO-92
database to an Oracle target
database. Uses statistics.

SQL LKM SQL to SQL Loads data from any ISO-92
database to any ISO-92 compliant
target database.

Sybase LKM SQL to Sybase (bcp) Loads data from any ISO-92
compliant database to a Sybase ASE
Server database. Uses Bulk
Loading.

Microsoft SQL Server LKM SQL to MSSQL
(bulk)

Loads data from any ISO-92
database to a Microsoft SQL Server
target database. Uses Bulk Loading.

Troubleshooting

7-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

7.6.2 Integrating Data in Microsoft Excel
Oracle Data Integrator does not provide specific knowledge modules for Microsoft
Excel. Use the Generic SQL KMs or the KMs specific to the technology used as the
staging area. For integrating data from a staging area to Microsoft Excel, you can use,
for example the IKM SQL to SQL Append.

7.7 Troubleshooting
This section provides information on how to troubleshoot problems that you might
encounter when using the Microsoft Excel technology in Oracle Data Integrator. It
contains the following topics:

■ Decoding Error Messages

■ Common Problems and Solutions

7.7.1 Decoding Error Messages
Errors appear often in Oracle Data Integrator in the following way:

java.sql.SQLException: java.sql.SQLException: [Microsoft][ODBC Driver Manager]
Data source name not found and no default driver specified RC=Oxb
at

the java.sql.SQLException code simply indicates that a query was made through the
JDBC-ODBC bridge, which has returned an error. This error is frequently a database
or driver error, and must be interpreted in this direction.

Only the part of text in italic must first be taken in account. It must be searched in the
ODBC driver or Excel documentation. If its contains a specific error code, like here in
bold italic, the error can be immediately identified.

If such an error is identified in the execution log, it is necessary to analyze the SQL
code to find the source of the error. The code is displayed in the description tab of the
task in error.

The most common errors with Excel are detailed below, with their principal causes.

7.7.2 Common Problems and Solutions
This section describes common problems and solutions.

■ UnknownDriverException

The JDBC driver is incorrect. Check the name of the driver.

■ [Microsoft][ODBC Driver Manager] Data source name not found
and no default driver specified RC=0xb Datasource not found
or driver name not specified

The ODBC Datasource specified in the JDBC URL is incorrect.

■ The Microsoft Jet Database engine could not find the object
<object name>

The table you are trying to access does not exist or is not defined in the Excel
spreadsheet.

■ Too few parameters. Expected 1.

You are trying to access an nonexisting column in the Excel spreadsheet.

Troubleshooting

Microsoft Excel 7-7

■ Operation must use an updateable query.

This error is probably due to the fact that you have not unchecked the "read only"
option when defined the Excel DSN. Unselect this option and re-execute your
interface.

■ DBCS or UTF-16 data is corrupted when loaded.

This error is due to the fact that the JDBC-ODBC Bridge of the Java machine does
not support UTF-16 data. This is a known issue in the Sun JVM that is solved in
the later releases (1.7).

Troubleshooting

7-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

8

Microsoft Access 8-1

8Microsoft Access

This chapter describes how to work with Microsoft Access in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 8.1, "Introduction"

■ Section 8.2, "Concepts"

■ Section 8.3, "Knowledge Modules"

■ Section 8.4, "Specific Requirements"

8.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in a Microsoft Access
database. Oracle Data Integrator features are designed to work best with Microsoft
Access, including integration interfaces.

8.2 Concepts
The Microsoft Access concepts map the Oracle Data Integrator concepts as follows: An
Microsoft Access database corresponds to a data server in Oracle Data Integrator.
Within this server, a schema maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Oracle Data Integrator uses Open Database Connectivity
(ODBC) to connect to connect to a Microsoft Access database.

8.3 Knowledge Modules
Oracle Data Integrator provides the IKM Access Incremental Update for handling
Microsoft Access data. This IKM integrates data in a Microsoft Access target table in
incremental update mode.

The IKM Access Incremental Update creates a temporary staging table to stage the
data flow and compares its content to the target table to identify the records to insert
and the records to update. It also allows performing data integrity check by invoking
the CKM.

Consider using this KM if you plan to load your Microsoft Access target table to insert
missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as the target.

This KM uses Microsoft Access specific features. It is also possible to use the generic
SQL KMs with the Microsoft Access database. See Chapter 4, "Generic SQL" for more
information.

Specific Requirements

8-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

8.4 Specific Requirements
There are no specific requirements for using Microsoft Access in Oracle Data
Integrator.

9

Netezza 9-1

9Netezza

This chapter describes how to work with Netezza in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 9.1, "Introduction"

■ Section 9.2, "Installation and Configuration"

■ Section 9.3, "Setting up the Topology"

■ Section 9.4, "Setting Up an Integration Project"

■ Section 9.5, "Creating and Reverse-Engineering a Netezza Model"

■ Section 9.6, "Setting up Data Quality"

■ Section 9.7, "Designing an Interface"

9.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in a Netezza database. Oracle
Data Integrator features are designed to work best with Netezza, including
reverse-engineering, data integrity check, and integration interfaces.

9.1.1 Concepts
The Netezza database concepts map the Oracle Data Integrator concepts as follows: A
Netezza cluster corresponds to a data server in Oracle Data Integrator. Within this
server, a database/owner pair maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to a Netezza
database.

9.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 9–1 for
handling Netezza data. These KMs use Netezza specific features. It is also possible to
use the generic SQL KMs with the Netezza database. See Chapter 4, "Generic SQL" for
more information.

Table 9–1 Netezza Knowledge Modules

Knowledge Module Description

CKM Netezza Checks data integrity against constraints defined on a Netezza table.
Rejects invalid records in the error table created dynamically. Can be
used for static controls as well as flow controls.

Installation and Configuration

9-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

9.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
Netezza Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

9.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

9.2.2 Technology Specific Requirements
Some of the Knowledge Modules for Netezza use the NZLOAD utility.

The following requirements and restrictions apply for these Knowledge Modules:

■ The source file must be accessible by the ODI agent executing the interface.

■ The run-time agent machine must have Netezza Performance Server client
installed. And the NZLOAD install directory needs to be in the PATH variable
when the agent is started.

■ All mappings need to be on the staging area.

■ All source fields need to be mapped, and must be in the same order as the target
table in Netezza.

IKM Netezza Control Append Integrates data in a Netezza target table in replace/append mode.
When flow data needs to be checked using a CKM, this IKM creates a
temporary staging table before invoking the CKM.

IKM Netezza Incremental Update Integrates data in a Netezza target table in incremental update mode.

IKM Netezza To File (EXTERNAL TABLE) Integrates data in a target file from a Netezza staging area. It uses the
native EXTERNAL TABLE feature of Netezza.

LKM File to Netezza (EXTERNAL TABLE) Loads data from a File to a Netezza Server staging area using the
EXTERNAL TABLE feature (dataobject).

LKM File to Netezza (NZLOAD) Loads data from a File to a Netezza Server staging area using
NZLOAD.

RKM Netezza Retrieves JDBC metadata from a Netezza database. This RKM may
be used to specify your own strategy to convert Netezza JDBC
metadata into Oracle Data Integrator metadata.

Consider using this RKM if you encounter problems with the
standard JDBC reverse-engineering process due to some specificities
of the Netezza JDBC driver.

Table 9–1 (Cont.) Netezza Knowledge Modules

Knowledge Module Description

Setting up the Topology

Netezza 9-3

■ Date, Time, Timestamp and Numeric formats should be specified in consistent
with Netezza Data Type definition.

For KMs using the EXTERNAL TABLE feature: Make sure that the file is accessible by
the Netezza Server.

9.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Netezza database.

JDBC Driver
Oracle Data Integrator uses the Netezza JDBC to connect to a NCR Netezza database.
This driver must be installed in your Oracle Data Integrator drivers directory.

9.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a Netezza Data Server

2. Creating a Netezza Physical Schema

9.3.1 Creating a Netezza Data Server
A Netezza data server corresponds to a Netezza cluster connected with a specific
Netezza user account. This user will have access to several databases in this cluster,
corresponding to the physical schemas in Oracle Data Integrator created under the
data server.

9.3.1.1 Creation of the Data Server
Create a data server for the Netezza technology using the standard procedure, as
described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide
for Oracle Data Integrator. This section details only the fields required or specific for
defining a Netezza data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator

■ Server: Physical name of the data server

■ User/Password: Netezza user with its password

2. In the JDBC tab:

■ JDBC Driver: org.netezza.Driver

■ JDBC URL: jdbc:Netezza://<host>:<port>/<database>

9.3.2 Creating a Netezza Physical Schema
Create a Netezza physical schema using the standard procedure, as described in
"Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

Note: Note that Oracle Data Integrator will have write access only on
the database specified in the URL.

Setting Up an Integration Project

9-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

9.4 Setting Up an Integration Project
Setting up a project using the Netezza database follows the standard procedure. See
"Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Netezza:

■ CKM Netezza

■ IKM Netezza Control Append

■ IKM Netezza Incremental Update

■ IKM Netezza To File (EXTERNAL TABLE)

■ LKM File to Netezza (EXTERNAL TABLE)

■ LKM File to Netezza (NZLOAD)

■ RKM Netezza

9.5 Creating and Reverse-Engineering a Netezza Model
This section contains the following topics:

■ Create a Netezza Model

■ Reverse-engineer a Netezza Model

9.5.1 Create a Netezza Model
Create a Netezza Model using the standard procedure, as described in "Creating a
Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.

9.5.2 Reverse-engineer a Netezza Model
Netezza supports both Standard reverse-engineering - which uses only the abilities of
the JDBC driver - and Customized reverse-engineering.

In most of the cases, consider using the standard JDBC reverse engineering for
starting.

Consider switching to customized reverse-engineering if you encounter problems with
the standard JDBC reverse-engineering process due to some specificities of the
Netezza JDBC driver.

Note: When performing this configuration, the work and data
databases names must match. Note also that the dollar sign ($) is an
invalid character for names in Netezza. Remove the dollar sign ($)
from work table and journalizing elements prefixes.

Designing an Interface

Netezza 9-5

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on Netezza use the usual procedure, as
described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on Netezza with a RKM, use the usual
procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator. This section details only the
fields specific to the Netezza technology:

1. In the Reverse tab of the Netezza Model, select the KM: RKM
Netezza.<project name>.

The reverse-engineering process returns tables, views, columns, Keys and Foreign
Keys.

9.6 Setting up Data Quality
Oracle Data Integrator provides the CKM Netezza for checking data integrity against
constraints defined on a Netezza table. See "Set up Flow Control and Post-Integration
Control" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for
details.

9.7 Designing an Interface
You can use Netezza as a source, staging area, or a target of an integration interface.

The KM choice for an interface or a check determines the abilities and performance of
this interface or check. The recommendations in this section help in the selection of the
KM for different situations concerning a Netezza data server.

9.7.1 Loading Data from and to Netezza
Netezza can be used as a source, target or staging area of an interface. The LKM choice
in the Interface Flow tab to load data between Netezza and another type of data server
is essential for the performance of an interface.

9.7.1.1 Loading Data from Netezza
Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from a Netezza database to a target or staging area database.

For extracting data from a Netezza staging area to a file, use the IKM Netezza to File
(EXTERNAL TABLE). See Section 9.7.2, "Integrating Data in Netezza" for more
information.

9.7.1.2 Loading Data to Netezza
Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into a Netezza database. These
optimized Netezza KMs are listed in Table 9–2. In addition to these KMs, you can also
use the Generic SQL KMs or the KMs specific to the other technology involved.

Designing an Interface

9-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

9.7.2 Integrating Data in Netezza
Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for Netezza. These optimized Netezza KMs are listed in
Table 9–3. In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Interface Flow tab determines the performances and
possibilities for integrating.

Table 9–2 KMs for loading data to Netezza

Source or Staging Area
Technology KM Notes

File LKM File to Netezza
(EXTERNAL TABLE)

Loads data from a File to a Netezza
staging area database using the
Netezza External table feature.

File LKM File to Netezza
(NZLOAD)

Loads data from a File to a Netezza
staging area database using the
NZLOAD bulk loader.

Table 9–3 KMs for integrating data to Netezza

KM Notes

IKM Netezza Control Append Integrates data in a Netezza target table in replace/append
mode.

IKM Netezza Incremental Update Integrates data in a Netezza target table in incremental
update mode.

This KM implements a DISTRIBUTE_ON option to define
the processing distribution. It is important that the chosen
column has a high cardinality (many distinct values) to
ensure evenly spread data to allow maximum processing
performance.

Please follow Netezza's recommendations on choosing a
such a column.

Valid options are:

■ [PK]: Primary Key of the target table.

■ [UK]: Update key of the interface

■ [RANDOM]: Random distribution

■ <list of column>: a comma separated list of columns

If no value is set (empty), no index will be created.

This KM also uses an ANALYZE_TARGET option to
generate statistics on the target after integration.

IKM Netezza to File (EXTERNAL
TABLE)

Integrates data from a Netezza staging area to a file using
external tables.

This KM implements an optional BASE_TABLE option to
specify the name of a table that will be used as a template
for the external table.

10

Teradata 10-1

10Teradata

This chapter describes how to work with Teradata in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 10.1, "Introduction"

■ Section 10.2, "Installation and Configuration"

■ Section 10.3, "Setting up the Topology"

■ Section 10.4, "Setting Up an Integration Project"

■ Section 10.5, "Creating and Reverse-Engineering a Teradata Model"

■ Section 10.6, "Setting up Data Quality"

■ Section 10.7, "Designing an Interface"

■ Section 10.8, "KM Optimizations for Teradata"

10.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an Teradata database.
Oracle Data Integrator features are designed to work best with Teradata, including
reverse-engineering, data integrity check, and integration interfaces.

10.1.1 Concepts
The Teradata database concepts map the Oracle Data Integrator concepts as follows: A
Teradata server corresponds to a data server in Oracle Data Integrator. Within this
server, a database maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) and Teradata Utilities
to connect to Teradata database.

10.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 10–1 for
handling Teradata data. These KMs use Teradata specific features. It is also possible to
use the generic SQL KMs with the Teradata database. See Chapter 4, "Generic SQL" for
more information.

Installation and Configuration

10-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

10.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
Teradata Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

10.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

Table 10–1 Teradata Knowledge Modules

Knowledge Module Description

CKM Teradata Checks data integrity against constraints defined on a Teradata table.
Rejects invalid records in the error table created dynamically. Can be
used for static controls as well as flow controls.

IKM File to Teradata (TTU) This IKM is designed to leverage the power of the Teradata utilities
for loading files directly to the target. See Section 10.8.2, "Support for
Teradata Utilities" for more information.

IKM SQL to Teradata (TTU) Integrates data from a SQL compliant database to a Teradata
database target table using Teradata Utilities FastLoad, MultiLoad,
TPump or Parallel Transporter. See Section 10.8.2, "Support for
Teradata Utilities" for more information.

IKM Teradata Control Append Integrates data in a Teradata target table in replace/append mode.

IKM Teradata Incremental Update Integrates data in a Teradata target table in incremental update mode.

IKM Teradata Slowly Changing Dimension Integrates data in a Teradata target table used as a Type II Slowly
Changing Dimension in your Data Warehouse.

IKM Teradata to File (TTU) Integrates data in a target file from a Teradata staging area in replace
mode. See Section 10.8.2, "Support for Teradata Utilities" for more
information.

IKM Teradata Multi Statement Integrates data in Teradata database target table using multi
statement requests, managed in one SQL transaction. See Using Multi
Statement Requests for more information.

IKM SQL to Teradata Control Append Integrates data from an ANSI-92 compliant source database into
Teradata target table in truncate / insert (append) mode.

This IKM is typically used for ETL configurations: source and target
tables are on different databases and the interface's staging area is set
to the logical schema of the source tables or a third schema.

LKM File to Teradata (TTU) Loads data from a File to a Teradata staging area database using the
Teradata bulk utilities. See Section 10.8.2, "Support for Teradata
Utilities" for more information.

LKM SQL to Teradata (TTU) Loads data from a SQL compliant source database to a Teradata
staging area database using a native Teradata bulk utility. See
Section 10.8.2, "Support for Teradata Utilities" for more information.

RKM Teradata Retrieves metadata from the Teradata database using the DBC system
views. This RKM supports UNICODE columns.

Setting up the Topology

Teradata 10-3

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

10.2.2 Technology Specific Requirements
Some of the Knowledge Modules for Teradata use the following Teradata Tools and
Utilities (TTU):

■ FastLoad

■ MultiLoad

■ Tpump

■ FastExport

■ Teradata Parallel Transporter

The following requirements and restrictions apply for these Knowledge Modules:

■ Teradata Utilities must be installed on the machine running the Oracle Data
Integrator Agent.

■ The server name of the Teradata Server defined in the Topology must match the
Teradata connect string used for this server (without the COP_n postfix).

■ It is recommended to install the Agent on a separate platform than the target
Teradata host. The machine were the Agent is installed should have a very large
network bandwidth to the target Teradata server.

■ The IKM File to Teradata (TTU) and LKM File to Teradata (TTU) support a File
Character Set Encoding option specify the encoding of the files integrated with
TTU. If this option is unset, the default TTU charset is used.
Refer to the "Getting Started: International Character Sets and the Teradata
Database" Teradata guide for more information about character set encoding.

See the Teradata documentation for more information.

10.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Teradata Database.

JDBC Driver
Oracle Data Integrator uses the Teradata JDBC Driver to connect to a Teradata
Database. The Teradata Gateway for JDBC must be running, and this driver must be
installed in your Oracle Data Integrator installation. You can find this driver at:

http://www.teradata.com/DownloadCenter/Group48.aspx

10.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a Teradata Data Server

2. Creating a Teradata Physical Schema

Setting Up an Integration Project

10-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

10.3.1 Creating a Teradata Data Server
A Teradata data server corresponds to a Teradata Database connected with a specific
Teradata user account. This user will have access to several databases in this Teradata
system, corresponding to the physical schemas in Oracle Data Integrator created under
the data server.

10.3.1.1 Creation of the Data Server
Create a data server for the Teradata technology using the standard procedure, as
described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide
for Oracle Data Integrator. This section details only the fields required or specific for
defining a Teradata data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator

■ Server: Physical name of the data server

■ User/Password: Teradata user with its password

2. In the JDBC tab:

■ JDBC Driver: com.teradata.jdbc.TeraDriver

■ JDBC URL: jdbc:teradata://<host>:<port>/<server>

The URL parameters are:

– <host>: Teradata gateway for JDBC machine network name or IP
address.

– <port>: gateway port number (usually 7060)

– <server>: name of the Teradata server to connect

10.3.2 Creating a Teradata Physical Schema
Create a Teradata physical schema using the standard procedure, as described in
"Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

10.4 Setting Up an Integration Project
Setting up a project using the Teradata database follows the standard procedure. See
"Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Teradata:

■ CKM Teradata

■ IKM File to Teradata (TTU)

■ IKM SQL to Teradata (TTU)

■ IKM Teradata Control Append

■ IKM Teradata Incremental Update

Creating and Reverse-Engineering a Teradata Model

Teradata 10-5

■ IKM Teradata Multi Statement

■ IKM Teradata Slowly Changing Dimension

■ IKM Teradata to File (TTU)

■ IKM SQL to Teradata Control Append

■ LKM File to Teradata (TTU)

■ LKM SQL to Teradata (TTU)

■ RKM Teradata

10.5 Creating and Reverse-Engineering a Teradata Model
This section contains the following topics:

■ Create a Teradata Model

■ Reverse-engineer a Teradata Model

10.5.1 Create a Teradata Model
Create a Teradata Model using the standard procedure, as described in "Creating a
Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.

10.5.2 Reverse-engineer a Teradata Model
Teradata supports both Standard reverse-engineering - which uses only the abilities of
the JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve
the metadata from Teradata database using the DBC system views.

In most of the cases, consider using the standard JDBC reverse engineering for
starting. Standard reverse-engineering with Teradata retrieves tables and columns.

Preferably use customized reverse-engineering for retrieving more metadata. Teradata
customized reverse-engineering retrieves the tables, views, columns, keys (primary
indexes and secondary indexes) and foreign keys. Descriptive information (column
titles and short descriptions) are also reverse-engineered.

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on Teradata use the usual procedure, as
described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on Teradata with a RKM, use the usual
procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator. This section details only the
fields specific to the Teradata technology:

1. In the Reverse tab of the Teradata Model, select the KM: RKM
Teradata.<project name>.

2. Set the REVERSE_FKS option to true, if you want to reverse-engineer existing FK
constraints in the database.

3. Set the REVERSE_TABLE_CONSTRAINTS to true if you want to reverse-engineer
table constrains.

Setting up Data Quality

10-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The reverse-engineering process returns tables, views, columns, Keys (primary indexes
and secondary indexes) and Foreign Keys. Descriptive information (Column titles and
short descriptions) are also reverse-engineered

Note that Unique Indexes are reversed as follows:

■ The unique primary index is considered as a primary key.

■ The primary index is considered as a non unique index.

■ The secondary unique primary index is considered as an alternate key

■ The secondary non unique primary index is considered as a non unique index.

You can use this RKM to retrieve specific Teradata metadata that is not supported by
the standard JDBC interface (such as primary indexes).

10.6 Setting up Data Quality
Oracle Data Integrator provides the CKM Teradata for checking data integrity against
constraints defined on a Teradata table. See "Set up Flow Control and Post-Integration
Control" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for
details.

Oracle Data Integrator provides the Knowledge Module listed in Table 10–2 to
perform a check on Teradata.

10.7 Designing an Interface
You can use Teradata as a source, staging area or a target of an integration interface. It
is also possible to create ETL-style integration interfaces based on the Teradata
technology.

The KM choice for an interface or a check determines the abilities and performance of
this interface or check. The recommendations in this section help in the selection of the
KM for different situations concerning a Teradata data server.

10.7.1 Loading Data from and to Teradata
Teradata can be used as a source, target or staging area of an interface. The LKM
choice in the Interface Flow tab to load data between Teradata and another type of
data server is essential for the performance of an interface.

10.7.1.1 Loading Data from Teradata
Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from a Teradata database to a target or staging area database.

Table 10–2 Check Knowledge Modules for Teradata Database

Recommended KM Notes

CKM Teradata Checks data integrity against constraints defined on a Teradata
table. Rejects invalid records in the error table created
dynamically. Can be used for static controls as well as flow
controls.

This KM supports the following Teradata optimizations:

■ Primary Indexes

■ Statistics

Designing an Interface

Teradata 10-7

For extracting data from a Teradata staging area to a file, use the IKM File to Teradata
(TTU). See Section 10.7.2, "Integrating Data in Teradata" for more information.

10.7.1.2 Loading Data to Teradata
Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into a Teradata database. These
optimized Teradata KMs are listed in Table 10–3. In addition to these KMs, you can
also use the Generic SQL KMs or the KMs specific to the other technology involved.

Table 10–3 KMs for loading data to Teradata

Source or Staging Area
Technology KM Notes

File LKM File to Teradata (TTU) Loads data from a File to a Teradata
staging area database using the
Teradata bulk utilities.

Because this method uses the native
Teradata utilities to load the file in
the staging area, it is more efficient
than the standard LKM File to SQL
when dealing with large volumes of
data.

Consider using this LKM if your
source is a large flat file and your
staging area is a Teradata database.

This KM support the following
Teradata optimizations:

■ Statistics

■ Optimized Temporary Tables
Management

Designing an Interface

10-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

10.7.2 Integrating Data in Teradata
Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for Teradata. These optimized Teradata KMs are listed in
Table 10–4. In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Interface Flow tab determines the performances and
possibilities for integrating.

SQL LKM SQL to Teradata (TTU) Loads data from a SQL compliant
source database to a Teradata
staging area database using a native
Teradata bulk utility.

This LKM can unload the source
data in a file or Named Pipe and
then call the specified Teradata
utility to populate the staging table
from this file/pipe. Using named
pipes avoids landing the data in a
file. This LKM is recommended for
very large volumes.

Consider using this IKM when:

■ The source data located on a
SQL compliant database is
large

■ You don't want to stage your
data between the source and
the target

■ Your staging area is a Teradata
database.

This KM support the following
Teradata optimizations:

■ Support for Teradata Utilities

■ Support for Named Pipes

■ Optimized Temporary Tables
Management

Table 10–4 KMs for integrating data to Teradata

KM Notes

IKM Teradata Control Append Integrates data in a Teradata target table in
replace/append mode. When flow data needs to be
checked using a CKM, this IKM creates a temporary
staging table before invoking the CKM.

Consider using this IKM if you plan to load your Teradata
target table in replace mode, with or without data integrity
check.

To use this IKM, the staging area must be on the same data
server as the target Teradata table.

This KM support the following Teradata optimizations:

■ Primary Indexes and Statistics

■ Optimized Temporary Tables Management

Table 10–3 (Cont.) KMs for loading data to Teradata

Source or Staging Area
Technology KM Notes

Designing an Interface

Teradata 10-9

IKM Teradata Incremental Update Integrates data in a Teradata target table in incremental
update mode. This IKM creates a temporary staging table
to stage the data flow. It then compares its content to the
target table to guess which records should be inserted and
which others should be updated. It also allows performing
data integrity check by invoking the CKM.

Inserts and updates are done in bulk set-based processing
to maximize performance. Therefore, this IKM is
optimized for large volumes of data.

Consider using this IKM if you plan to load your Teradata
target table to insert missing records and to update
existing ones.

To use this IKM, the staging area must be on the same data
server as the target.

This KM support the following Teradata optimizations:

■ Primary Indexes and Statistics

■ Optimized Temporary Tables Management

IKM Teradata Multi Statement Integrates data in Teradata database target table using
multi statement requests, managed in one SQL transaction

IKM Teradata Slowly Changing
Dimension

Integrates data in a Teradata target table used as a Type II
Slowly Changing Dimension in your Data Warehouse.
This IKM relies on the Slowly Changing Dimension
metadata set on the target datastore to figure out which
records should be inserted as new versions or updated as
existing versions.

Because inserts and updates are done in bulk set-based
processing, this IKM is optimized for large volumes of
data.

Consider using this IKM if you plan to load your Teradata
target table as a Type II Slowly Changing Dimension.

To use this IKM, the staging area must be on the same data
server as the target and the appropriate Slowly Changing
Dimension metadata needs to be set on the target
datastore.

This KM support the following Teradata optimizations:

■ Primary Indexes and Statistics

■ Optimized Temporary Tables Management

This KM also includes a COMPATIBLE option. This option
corresponds to the Teradata engine major version number.
If this version is 12 or above, then a MERGE statement will
be used instead of the standard INSERT then UPDATE
statements to merge the incoming data flow into the target
table.

Table 10–4 (Cont.) KMs for integrating data to Teradata

KM Notes

Designing an Interface

10-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

IKM Teradata to File (TTU) Integrates data in a target file from a Teradata staging area
in replace mode. This IKM requires the staging area to be
on Teradata. It uses the native Teradata utilities to export
the data to the target file.

Consider using this IKM if you plan to transform and
export data to a target file from your Teradata server.

To use this IKM, the staging area must be different from
the target. It should be set to a Teradata location.

This KM support the following Teradata optimizations:

■ Support for Teradata Utilities

IKM File to Teradata (TTU) This IKM is designed to leverage the power of the
Teradata utilities for loading files directly to the target. It is
restricted to one file as source and one Teradata table as
target.

Depending on the utility you choose, you'll have the
ability to integrate the data in either replace or incremental
update mode.

Consider using this IKM if you plan to load a single flat
file to your target table. Because it uses the Teradata
utilities, this IKM is recommended for very large volumes.

To use this IKM, you have to set the staging area to the
source file's schema.

This KM support the following Teradata optimizations:

■ Primary Indexes and Statistics

■ Support for Teradata Utilities

■ Optimized Temporary Tables Management.

Table 10–4 (Cont.) KMs for integrating data to Teradata

KM Notes

Designing an Interface

Teradata 10-11

Using Slowly Changing Dimensions
For using slowly changing dimensions, make sure to set the Slowly Changing Dimension
value for each column of the target datastore. This value is used by the IKM Teradata
Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or
Insert Column, Current Record Flag, and Start/End Timestamps columns.

Using Multi Statement Requests
Multi statement requests are typically enable the parallel execution of simple
interfaces. The Teradata performance is improved by synchronized scans and by
avoiding transient journal.

Set the KM options as follows:

■ Interfaces using this KM must be used within a package:

IKM SQL to Teradata (TTU) Integrates data from a SQL compliant database to a
Teradata database target table using Teradata Utilities
TPUMP, FASTLOAD OR MULTILOAD.

This IKM is designed to leverage the power of the
Teradata utilities for loading source data directly to the
target. It can only be used when all source tables belong to
the same data server and when this data server is used as a
staging area (staging area on source). Source data can be
unloaded into a file or Named Pipe and then loaded by the
selected Teradata utility directly in the target table. Using
named pipes avoids landing the data in a file. This IKM is
recommended for very large volumes.

Depending on the utility you choose, you'll have the
ability to integrate the data in replace or incremental
update mode.

Consider using this IKM when:

■ You plan to load your target table with few
transformations on the source

■ All your source tables are on the same data server
(used as the staging area)

■ You don't want to stage your data between the source
and the target

To use this IKM, you have to set the staging area to the
source data server's schema.

This KM support the following Teradata optimizations:

■ Primary Indexes and Statistics

■ Support for Teradata Utilities

■ Support for Named Pipes

■ Optimized Temporary Tables Management

IKM SQL to Teradata Control
Append

Integrates data from an ANSI-92 compliant source
database into Teradata target table in truncate / insert
(append) mode.

This IKM is typically used for ETL configurations: source
and target tables are on different databases and the
interface's staging area is set to the logical schema of the
source tables or a third schema. See Section 10.7.3,
"Designing an ETL-Style Interface" for more information.

Table 10–4 (Cont.) KMs for integrating data to Teradata

KM Notes

Designing an Interface

10-12 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

– In the first interface of the package loading a table via the multi-statement set
the INIT_MULTI_STATEMENT option to YES.

– The subsequent interfaces loading a table via the multi-statement must use
this KM and have the INIT_MULTI_STATEMENT option set to NO.

– The last interface must have the EXECUTE option set to YES in order to run
the generated multi-statement.

■ In the STATEMENT_TYPE option, specify the type of statement (insert or update)
for each interface.

■ In the SQL_OPTION option, specify the additional SQL sentence that is added at
the end of the query, for example QUALIFY Clause.

Note the following limitations concerning multi-statements:

■ Multi-statements are only supported when they are used within a package.

■ Temporary indexes are not supported.

■ Updates are considered as Inserts in terms of row count.

■ Updates can only have a single Dataset.

■ Only executing interface (EXECUTE = YES) reports row counts.

■ Journalized source data not supported.

■ Neither Flow Control nor Static Control is supported.

■ The SQL_OPTION option applies only to the last Dataset.

10.7.3 Designing an ETL-Style Interface
See "Working with Integration Interface" in the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator for generic information on how to design integration
interfaces. This section describes how to design an ETL-style interface where the
staging area is on a Teradata database or any ANSI-92 compliant database and the
target on Teradata.

In an ETL-style interface, ODI processes the data in a staging area, which is different
from the target. Oracle Data Integrator provides two ways for loading the data from a
Teradata or an ANSI-92 compliant staging area to a Teradata target:

■ Using a Multi-connection IKM

■ Using an LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported.

Using a Multi-connection IKM
A multi-connection IKM allows integrating data into a target when the staging area
and sources are on different data servers.

Oracle Data Integrator provides the following multi-connection IKM for handling
Teradata data: IKM SQL to Teradata Control Append. You can also use the generic
SQL multi-connection IKMs. See Chapter 4, "Generic SQL" for more information.

See Table 10–5 for more information on when to use a multi-connection IKM.

To use a multi-connection IKM in an ETL-style interface:

1. Create an integration interface with an ANSI-92 compliant staging area and the
target on Teradata using the standard procedure as described in "Creating an

Designing an Interface

Teradata 10-13

Interface" in the Oracle Fusion Middleware Developer’s Guide for Oracle Data
Integrator. This section describes only the ETL-style specific steps.

2. In the Definition tab of the Interface Editor, select Staging Area different from
Target and select the logical schema of the source tables or a third schema.

3. In the Flow tab, select one of the Source Sets, by clicking its title. The Property
Inspector opens for this object.

4. Select an LKM from the LKM Selector list to load from the source(s) to the staging
area. See Table 10–5 to determine the LKM you can use.

5. Optionally, modify the KM options.

6. In the Flow tab, select the Target by clicking its title. The Property Inspector opens
for this object.

In the Property Inspector, select an ETL multi-connection IKM from the IKM
Selector list to load the data from the staging area to the target. See Table 10–5 to
determine the IKM you can use.

Note the following when setting the KM options of the IKM SQL to Teradata Control
Append:

■ If you do not want to create any tables on the target system, set FLOW_
CONTROL=false. If FLOW_CONTROL=false, the data is inserted directly into the
target table.

■ If FLOW_CONTROL=true, the flow table is created on the target or on the staging
area.

■ If you want to recycle data rejected from a previous control, set RECYCLE_
ERROR=true and set an update key for your interface.

Using an LKM and a mono-connection IKM
If there is no dedicated multi-connection IKM, use a standard exporting LKM in
combination with a standard mono-connection IKM. The exporting LKM is used to
load the flow table from the staging area to the target. The mono-connection IKM is
used to integrate the data flow into the target table.

Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a
source and staging area of an ETL-style interface. The target is Teradata.

See Table 10–5 for more information on when to use the combination of a standard
LKM and a mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style interface:

1. Create an integration interface with an ANSI-92 compliant staging area and the
target on Teradata using the standard procedure as described in "Creating an
Interface" in the Oracle Fusion Middleware Developer’s Guide for Oracle Data
Integrator. This section describes only the ETL-style specific steps.

2. In the Definition tab of the Interface Editor, select Staging Area different from
Target and select the logical schema of the source tables or a third schema.

3. In the Flow tab, select one of the Source Sets.

4. In the Property Inspector, select an LKM from the LKM Selector list to load from
the source(s) to the staging area. See Table 10–5 to determine the LKM you can
use.

5. Optionally, modify the KM options.

Designing an Interface

10-14 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

6. Select the Staging Area. In the Property Inspector, select an LKM from the LKM
Selector list to load from the staging area to the target. See Table 10–5 to determine
the LKM you can use.

7. Optionally, modify the options.

8. Select the Target by clicking its title. The Property Inspector opens for this object.

In the Property Inspector, select a standard mono-connection IKM from the IKM
Selector list to update the target. See Table 10–5 to determine the IKM you can use.

Table 10–5 KM Guidelines for ETL-Style Interfaces with Teradata Data

Source Staging Area Target
Exporting
LKM IKM KM Strategy Comment

ANSI
SQL-92
standard
compliant

ANSI SQL-92
standard
compliant

Teradata NA IKM SQL to Teradata
Control Append

Multi-connect
ion IKM

Recommended to
perform control
append

Supports flow
control.

ANSI
SQL-92
standard
compliant

Teradata or
any ANSI
SQL-92
standard
compliant
database

Teradata
or any
ANSI
SQL-92
standard
complia
nt
database

NA IKM SQL to SQL
Incremental Update

Multi-connect
ion IKM

Allows an
incremental
update strategy
with no
temporary
target-side
objects. Use this
KM if it is not
possible to create
temporary
objects in the
target server.

The application
updates are
made without
temporary
objects on the
target, the
updates are
made directly
from source to
target. The
configuration
where the flow
table is created
on the staging
area and not in
the target should
be used only for
small volumes of
data.

Supports flow
and static control

KM Optimizations for Teradata

Teradata 10-15

10.8 KM Optimizations for Teradata
This section describes the specific optimizations for Teradata that are included in the
Oracle Data Integrator Knowledge Modules.

This section includes the following topics:

■ Primary Indexes and Statistics

■ Support for Teradata Utilities

■ Support for Named Pipes

■ Optimized Management of Temporary Tables

10.8.1 Primary Indexes and Statistics
Teradata performance heavily relies on primary indexes. The Teradata KMs support
customized primary indexes (PI) for temporary and target tables. This applies to
Teradata LKMs, IKMs and CKMs. The primary index for the temporary and target
tables can be defined in these KMs using the PRIMARY_INDEX KM option, which
takes the following values:

■ [PK]: The PI will be the primary key of each temporary or target table. This is the
default value.

■ [NOPI]: Do not specify primary index (Teradata 13.0 & above only).

■ [UK]: The PI will be the update key of the interface. This is the default value.

– <Column list>: This is a free PI based on the comma-separated list of column
names.

– <Empty string>: No primary index is specified. The Teradata engine will use
the default rule for the PI (first column of the temporary table).

Teradata MultiColumnStatistics should optionally be gathered for selected PI columns.
This is controlled by COLLECT_STATS KM option, which is set to true by default.

ANSI
SQL-92
standard
compliant

Teradata or
ANSI SQL-92
standard
compliant

Teradata LKM SQL to
Teradata (TTU)

IKM Teradata
Incremental Update

LKM +
standard IKM

ANSI
SQL-92
standard
compliant

Teradata Teradata LKM SQL to
Teradata (TTU)

IKM Teradata Slowly
Changing Dimension

LKM +
standard IKM

ANSI
SQL-92
standard
compliant

ANSI SQL-92
standard
compliant

Teradata LKM SQL to
Teradata (TTU)

IKM SQL to Teradata
(TTU)

LKM +
standard IKM

If no flow
control, this
strategy is
recommended
for large volumes
of data

Table 10–5 (Cont.) KM Guidelines for ETL-Style Interfaces with Teradata Data

Source Staging Area Target
Exporting
LKM IKM KM Strategy Comment

KM Optimizations for Teradata

10-16 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

10.8.2 Support for Teradata Utilities
Teradata Utilities (TTU) provide an efficient method for transferring data from and to
the Teradata engine. When using a LKM or IKM supporting TTUs, it is possible to set
the method for loading data using the TERADATA_UTILITY option.

This option takes the following values when pushing data to a Teradata target (IKM)
or staging area (LKM):

■ FASTLOAD: use Teradata FastLoad

■ MLOAD: use Teradata MultiLoad

■ TPUMP: use Teradata TPump

■ TPT-LOAD: use Teradata Parallel Transporter (Load Operator)

■ TPT-SQL-INSERT: use Teradata Parallel Transporter (SQL Insert Operator)

This option takes the following values when pushing data FROM Teradata to a file:

■ FEXP: use Teradata FastExport

■ TPT: use Teradata Parallel Transporter

When using TTU KMs, you should also take into account the following KM
parameters:

■ REPORT_NB_ROWS: This option allows you to report the number of lines
processed by the utility in a Warning step of the integration interface.

■ SESSIONS: Number of FastLoad sessions

■ MAX_ALLOWED_ERRORS: Maximum number of tolerated errors. This
corresponds to the ERRLIMIT command in FastLoad/MultiLoad/TPump and to
the ErrorLimit attribute for TPT.

■ MULTILOAD_TPUMP_TYPE: Operation performed by the MultiLoad or TPump
utility. Valid values are INSERT, UPSERT and DELETE. For UPSERT and DELETE
an update key is required in the interface.

For details and appropriate choice of utility and load operator, refer to the Teradata
documentation.

10.8.3 Support for Named Pipes
When using TTU KMs to move data between a SQL source and Teradata, it is possible
to increase the performances by using Named Pipes instead of files between the
unload/load processes. Named Pipes can be activated by setting the NP_USE_
NAMED_PIPE option to YES. The following options should also be taken into account
for using Named Pipes:

■ NP_EXEC_ON_WINDOWS: Set this option to YES if the run-time agent runs on a
windows platform.

■ NP_ACCESS_MODULE: Access module used for Named Pipes. This access
module is platform dependant.

■ NP_TTU_STARTUP_TIME: This number of seconds for the TTU to be able to
receive data through the pipe. This is the delay between the moment the KM starts
the TTU and the moment the KM starts to push data into the named pipe. This
delay is dependant on the machine workload.

KM Optimizations for Teradata

Teradata 10-17

10.8.4 Optimized Management of Temporary Tables
Creating and dropping Data Integrator temporary staging tables can be a resource
consuming process on a Teradata engine. The ODI_DDL KM option provides a mean
to control these DDL operations. It takes the following values:

■ DROP_CREATE: Always drop and recreate all temporary tables for every
execution (default behavior).

■ CREATE_DELETE_ALL: Create temporary tables when needed (usually for the
first execution only) and use DELETE ALL to drop the temporary table content.
Temporary table are reused for subsequent executions.

■ DELETE_ALL: Do not create temporary tables. Only submit DELETE ALL for all
temporary tables.

■ NONE: Do not issue any DDL on temporary tables. Temporary tables should be
handled separately.

KM Optimizations for Teradata

10-18 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

11

Hypersonic SQL 11-1

11Hypersonic SQL

This chapter describes how to work with Hypersonic SQL in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 11.1, "Introduction"

■ Section 11.2, "Installation and Configuration"

■ Section 11.3, "Setting up the Topology"

■ Section 11.4, "Setting Up an Integration Project"

■ Section 11.5, "Creating and Reverse-Engineering a Hypersonic SQL Model"

■ Section 11.6, "Setting up Changed Data Capture"

■ Section 11.7, "Setting up Data Quality"

■ Section 11.8, "Designing an Interface"

11.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an Hypersonic SQL
database. Oracle Data Integrator features are designed to work best with Hypersonic
SQL, including reverse-engineering, data integrity check, and integration interfaces.

11.1.1 Concepts
The Hypersonic SQL database concepts map the Oracle Data Integrator concepts as
follows: A Hypersonic SQL server corresponds to a data server in Oracle Data
Integrator. Within this server, one single Oracle Data Integrator physical schema maps
to the database.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to
Hypersonic SQL.

11.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 11–1 for
handling Hypersonic SQL data. These KMs use Hypersonic SQL specific features. It is
also possible to use the generic SQL KMs with the Hypersonic SQL database. See
Chapter 4, "Generic SQL" for more information.

Installation and Configuration

11-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

11.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
Hypersonic SQL Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

11.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

11.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Hypersonic SQL in Oracle
Data Integrator.

11.2.3 Connectivity Requirements
This section lists the requirements for connecting to a Hypersonic SQL Database.

JDBC Driver
Oracle Data Integrator is installed with a JDBC driver for Hypersonic SQL. This driver
directly uses the TCP/IP network layer and requires no other installed component or
configuration.

11.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a Hypersonic SQL Data Server

2. Creating a Hypersonic SQL Physical Schema

Table 11–1 Hypersonic SQL Knowledge Modules

Knowledge Module Description

CKM HSQL Checks data integrity against constraints defined on a Hypersonic
SQL table. Rejects invalid records in the error table created
dynamically. Can be used for static controls as well as flow controls.

JKM HSQL Consistent Creates the journalizing infrastructure for consistent journalizing on
Hypersonic SQL tables using triggers. Enables consistent Changed
Data Capture on Hypersonic SQL.

JKM HSQL Simple Creates the journalizing infrastructure for simple journalizing on
Hypersonic SQL tables using triggers.

SKM HSQL Generates data access Web services for Hypersonic SQL databases.

Creating and Reverse-Engineering a Hypersonic SQL Model

Hypersonic SQL 11-3

11.3.1 Creating a Hypersonic SQL Data Server
A Hypersonic SQL data server corresponds to an Hypersonic SQL Database connected
with a specific Hypersonic SQL user account. This user will have access to the
database via a physical schema in Oracle Data Integrator created under the data
server.

Create a data server for the Hypersonic SQL technology using the standard procedure,
as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator. This section details only the fields required or specific
for defining a Hypersonic SQL data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator

■ Server: Physical name of the data server

■ User/Password: Hypersonic SQL user with its password (usually sa)

2. In the JDBC tab:

■ JDBC Driver: org.hsqldb.jdbcDriver

■ JDBC URL: jdbc:hsqldb:hsql://<host>:<port>

The URL parameters are:

– <host>: Hypersonic SQL machine network name or IP address

– <port>: Port number

11.3.2 Creating a Hypersonic SQL Physical Schema
Create a physical schema using the standard procedure, as described in "Creating a
Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data
Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

11.4 Setting Up an Integration Project
Setting up a project using the Hypersonic SQL database follows the standard
procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Hypersonic SQL:

■ CKM HSQL

Import also the Generic SQL KMs into your project. See Chapter 4, "Generic SQL" for
more information about these KMs.

11.5 Creating and Reverse-Engineering a Hypersonic SQL Model
This section contains the following topics:

■ Create a Hypersonic SQL Model

■ Reverse-engineer a Hypersonic SQL Model

Setting up Changed Data Capture

11-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

11.5.1 Create a Hypersonic SQL Model
Create a Hypersonic SQL Model using the standard procedure, as described in
"Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data
Integrator.

11.5.2 Reverse-engineer a Hypersonic SQL Model
Hypersonic SQL supports Standard reverse-engineering - which uses only the abilities
of the JDBC driver.

To perform a Standard Reverse- Engineering on Hypersonic SQL use the usual
procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator.

11.6 Setting up Changed Data Capture
The ODI Hypersonic SQL Knowledge Modules support the Changed Data Capture
feature. See Chapter "Working with Changed Data Capture" of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator for details on how to set up
journalizing and how to use captured changes.

Hypersonic SQL Journalizing Knowledge Modules support Simple Journalizing and
Consistent Set Journalizing. The JKMs use triggers to capture data changes on the
source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 11–2 for
journalizing Hypersonic SQL tables.

11.7 Setting up Data Quality
Oracle Data Integrator provides the CKM HSQL for checking data integrity against
constraints defined on a Hypersonic SQL table. See "Set up Flow Control and
Post-Integration Control" in the Oracle Fusion Middleware Developer's Guide for Oracle
Data Integrator for details.

Oracle Data Integrator provides the Knowledge Module listed in Table 11–3 to
perform a check on Hypersonic SQL.

Table 11–2 Hypersonic SQL Journalizing Knowledge Modules

KM Notes

JKM HSQL Consistent Creates the journalizing infrastructure for consistent
journalizing on Hypersonic SQL tables using
triggers. Enables consistent Changed Data Capture
on Hypersonic SQL.

JKM HSQL Simple Creates the journalizing infrastructure for simple
journalizing on Hypersonic SQL tables using
triggers.

Table 11–3 Check Knowledge Modules for Hypersonic SQL Database

Recommended KM Notes

CKM HSQL Checks data integrity against constraints defined on a
Hypersonic SQL table. Rejects invalid records in the error table
created dynamically. Can be used for static controls as well as
flow controls.

Designing an Interface

Hypersonic SQL 11-5

11.8 Designing an Interface
You can use Hypersonic SQL as a source, staging area or a target of an integration
interface.

The KM choice for an interface or a check determines the abilities and performance of
this interface or check. The recommendations in this section help in the selection of the
KM for different situations concerning a Hypersonic SQL data server.

Oracle Data Integrator does not provide specific loading or integration knowledge
modules for Hypersonic SQL. Use the Generic SQL KMs or the KMs specific to the
other technologies used as source, target, or staging area.

Designing an Interface

11-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

12

IBM Informix 12-1

12IBM Informix

This chapter describes how to work with IBM Informix in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 12.1, "Introduction"

■ Section 12.2, "Concepts"

■ Section 12.3, "Knowledge Modules"

■ Section 12.4, "Specific Requirements"

12.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an IBM Informix database.
Oracle Data Integrator features are designed to work best with IBM Informix,
including reverse-engineering, journalizing, and integration interfaces.

12.2 Concepts
The IBM Informix concepts map the Oracle Data Integrator concepts as follows: An
IBM Informix Server corresponds to a data server in Oracle Data Integrator. Within
this server, an Owner maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an IBM
Informix database.

12.3 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 12–1 for
handling IBM Informix data. These KMs use IBM Informix specific features. It is also
possible to use the generic SQL KMs with the IBM Informix database. See Chapter 4,
"Generic SQL" for more information.

Specific Requirements

12-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

12.4 Specific Requirements
There are no specific requirements for using IBM Informix in Oracle Data Integrator.

Table 12–1 IBM Informix Knowledge Modules

Knowledge Module Description

IKM Informix Incremental Update Integrates data in an IBM Informix target table in incremental update
mode. This IKM creates a temporary staging table to stage the data
flow. It then compares its content to the target table to guess which
records should be inserted and which others should be updated. It
also allows performing data integrity check by invoking the CKM.

Inserts and updates are done in bulk set-based processing to
maximize performance. Therefore, this IKM is optimized for large
volumes of data.

Consider using this IKM if you plan to load your IBM Informix target
table to insert missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as
the target.

JKM Informix Consistent Creates the journalizing infrastructure for consistent journalizing on
IBM Informix tables using triggers.

Enables Consistent Set Changed Data Capture on IBM Informix.

JKM Informix Simple Creates the journalizing infrastructure for simple journalizing on
IBM Informix tables using triggers.

Enables Simple Changed Data Capture on IBM Informix.

LKM Informix to Informix (SAME
SERVER)

Loads data from a source Informix database to a target Informix
staging area located inside the same server.

This LKM creates a view in the source database and a synonym in the
staging area database. This method if often more efficient than the
standard "LKM SQL to SQL" when dealing with large volumes of
data.

Consider using this LKM if your source tables are located on an IBM
Informix database and your staging area is on an IBM Informix
database located in the same Informix server.

RKM Informix Retrieves IBM Informix specific metadata for tables, views, columns,
primary keys and non unique indexes. This RKM accesses the
underlying Informix catalog tables to retrieve metadata.

Consider using this RKM if you plan to extract additional metadata
from your Informix catalog when it is not provided by the default
JDBC reverse-engineering process.

RKM Informix SE Retrieves IBM Informix SE specific metadata for tables, views,
columns, primary keys and non unique indexes. This RKM accesses
the underlying Informix SE catalog tables to retrieve metadata.

Consider using this RKM if you plan to extract additional metadata
from your Informix SE catalog when it is not provided by the default
JDBC reverse-engineering process.

SKM Informix Generates data access Web services for IBM Informix databases. See
SKM SQL in Chapter 4, "Generic SQL" for more details.

13

1

13IBM DB2 for iSeries

This chapter describes how to work with IBM DB2 for iSeries in Oracle Data
Integrator.

This chapter includes the following sections:

■ Section 13.1, "Introduction"

■ Section 13.2, "Installation and Configuration"

■ Section 13.3, "Setting up the Topology"

■ Section 13.4, "Setting Up an Integration Project"

■ Section 13.5, "Creating and Reverse-Engineering an IBM DB2/400 Model"

■ Section 13.6, "Setting up Changed Data Capture"

■ Section 13.7, "Setting up Data Quality"

■ Section 13.8, "Designing an Interface"

■ Section 13.9, "Specific Considerations with DB2 for iSeries"

■ Section 13.10, "Troubleshooting"

13.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in IBM DB2 for iSeries. Oracle
Data Integrator features are designed to work best with IBM DB2 for iSeries, including
reverse-engineering, changed data capture, data integrity check, and integration
interfaces.

13.1.1 Concepts
The IBM DB2 for iSeries concepts map the Oracle Data Integrator concepts as follows:
An IBM DB2 for iSeries server corresponds to a data server in Oracle Data Integrator.
Within this server, a collection or schema maps to an Oracle Data Integrator physical
schema. A set of related objects within one schema corresponds to a data model, and
each table, view or synonym will appear as an ODI datastore, with its attributes,
columns and constraints.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to IBM DB2
for iSeries.

2 Product Title/BookTitle as a Variable

13.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 13–1 for
handling IBM DB2 for iSeries data. In addition to these specific IBM DB2 for iSeries
Knowledge Modules, it is also possible to use the generic SQL KMs with IBM DB2 for
iSeries. See Chapter 4, "Generic SQL" for more information.

13.2 Installation and Configuration
Make sure you have read the information in this section before you start working with
the IBM DB2 for iSeries technology:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

13.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

Table 13–1 IBM DB2 for iSeries Knowledge Modules

Knowledge Module Description

IKM DB2 400 Incremental Update Integrates data in an IBM DB2 for iSeries target table in incremental
update mode.

IKM DB2 400 Incremental Update (CPYF) Integrates data in an IBM DB2 for iSeries target table in incremental
update mode. This IKM is similar to the "IKM DB2 400 Incremental
Update" except that it uses the CPYF native OS/400 command to
write to the target table, instead of set-based SQL operations.

IKM DB2 400 Slowly Changing Dimension Integrates data in an IBM DB2 for iSeries target table used as a Type
II Slowly Changing Dimension in your Data Warehouse.

JKM DB2 400 Consistent Creates the journalizing infrastructure for consistent journalizing on
IBM DB2 for iSeries tables using triggers.

JKM DB2 400 Simple Creates the journalizing infrastructure for simple journalizing on
IBM DB2 for iSeries tables using triggers.

JKM DB2 400 Simple (Journal) Creates the journalizing infrastructure for simple journalizing on
IBM DB2 for iSeries tables using the journals.

LKM DB2 400 Journal to SQL Loads data from an IBM DB2 for iSeries source to a ANSI SQL-92
compliant staging area database. This LKM can source from tables
journalized with the JKM DB2 400 Simple (Journal) as it refreshes the
CDC infrastructure from the journals.

LKM DB2 400 to DB2 400 Loads data from an IBM DB2 for iSeries source database to an IBM
DB2 for iSeries staging area database using CRTDDMF to create a
DDM file on the target and transfer data from the source to this DDM
file using CPYF.

LKM SQL to DB2 400 (CPYFRMIMPF) Loads data from an ANSI SQL-92 compliant source database to an
IBM DB2 for iSeries staging area database using a temporary file
loaded into the DB2 staging area with CPYFRMIPF.

RKM DB2 400 Retrieves metadata for IBM DB2 for iSeries: physical files, tables,
views, foreign keys, unique keys.

3

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

13.2.2 Technology Specific Requirements
Some of the Knowledge Modules for IBM DB2 for iSeries use specific features of this
database. The following restrictions apply when using these Knowledge Modules.

See the IBM DB2 for iSeries documentation for additional information on these topics.

Using System commands
This section describes the requirements that must be met before using iSeries specific
commands in the knowledge modules for IBM DB2 for iSeries:

■ Knowledge modules using system commands such as CPYF or CPYFRMIPF
require that the agent runs on the iSeries runs on the iSeries system.

Using CDC with Journals
This section describes the requirements that must be met before using the
Journal-based Change Data Capture with IBM DB2 for iSeries:

■ This journalizing method requires that a specific program is installed and runs on
the iSeries system. See Setting up Changed Data Capture for more information.

13.2.3 Connectivity Requirements
This section lists the requirements for connecting to an IBM DB2 for iSeries system.

JDBC Driver
Oracle Data Integrator is installed with a default IBM DB2 Datadirect Driver. This
drivers directly uses the TCP/IP network layer and requires no other installed
component or configuration. You can alternatively use the drivers provided by IBM,
such as the Native Driver when installing the agent on iSeries.

13.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a DB2/400 Data Server

2. Creating a DB2/400 Physical Schema

13.3.1 Creating a DB2/400 Data Server
An IBM DB2/400 data server corresponds to an iSeries server connected with a
specific user account. This user will have access to several databases in this server,
corresponding to the physical schemas in Oracle Data Integrator created under the
data server.

13.3.1.1 Creation of the Data Server
Create a data server for the IBM DB2/400 technology using the standard procedure, as
described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide

4 Product Title/BookTitle as a Variable

for Oracle Data Integrator. This section details only the fields required or specific for
defining an IBM DB2/400 data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator

■ Server: Physical name of the data server

■ User/Password: DB2 user with its password

2. In the JDBC tab:

■ JDBC Driver: weblogic.jdbc.db2.DB2Driver

■ JDBC URL:
jdbc:weblogic:db2://hostname:port[;property=value[;...]]

13.3.2 Creating a DB2/400 Physical Schema
Create an IBM DB2/400 physical schema using the standard procedure, as described
in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

The work schema and data schema in this physical schema correspond each to a
schema (collection or library). The work schema should point to a temporary schema
and the data schema should point to the schema hosting the data to integrate.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

13.4 Setting Up an Integration Project
Setting up a project using the IBM DB2 for iSeries database follows the standard
procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with IBM DB2 for iSeries:

■ IKM DB2 400 Incremental Update

■ IKM DB2 400 Slowly Changing Dimension

■ JKM DB2 400 Consistent

■ JKM DB2 400 Simple

■ RKM DB2 400

■ CKM SQL

13.5 Creating and Reverse-Engineering an IBM DB2/400 Model
This section contains the following topics:

■ Create an IBM DB2/400 Model

■ Reverse-engineer an IBM DB2/400 Model

5

13.5.1 Create an IBM DB2/400 Model
Create an IBM DB2/400 Model using the standard procedure, as described in
"Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data
Integrator.

13.5.2 Reverse-engineer an IBM DB2/400 Model
IBM DB2 for iSeries supports both Standard reverse-engineering - which uses only the
abilities of the JDBC driver - and Customized reverse-engineering, which uses a RKM
to retrieve the metadata.

In most of the cases, consider using the standard JDBC reverse engineering for
starting.

Consider switching to customized reverse-engineering for retrieving more metadata.
IBM DB2 for iSeries customized reverse-engineering retrieves the physical files,
database tables, database views, columns, foreign keys and primary and alternate
keys.

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on IBM DB2 for iSeries use the usual
procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on IBM DB2 for iSeries with a RKM,
use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle
Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only
the fields specific to the IBM DB2/400 technology:

In the Reverse tab of the IBM DB2/400 Model, select the KM: RKM DB2
400.<project name>.

13.6 Setting up Changed Data Capture
Oracle Data Integrator handles Changed Data Capture on iSeries with two methods:

■ Trigger-based CDC on the journalized tables. This method is set up with the JKM
DB2/400 Simple or JKM DB2/400 Consistent. This CDC is not different from the
CDC on other systems. See Section 13.6.1, "Setting up Trigger-Based CDC" for
more information.

■ Log-based CDC by reading the native iSeries transaction journals. This method
is set up with the JKM DB2/400 Journal Simple and used by the LKM DB2/400
Journal to SQL. This method does not support Consistent Set CDC and requires a
platform-specific configuration. See Section 13.6.1, "Setting up Trigger-Based
CDC" for more information.

13.6.1 Setting up Trigger-Based CDC
This method support Simple Journalizing and Consistent Set Journalizing. The IBM
DB2 for iSeries JKMs use triggers to capture data changes on the source tables.

Oracle Data Integrator provides the Knowledge Modules listed in Table 13–2 for
journalizing IBM DB2 for iSeries tables using triggers.

6 Product Title/BookTitle as a Variable

See Chapter "Working with Changed Data Capture" of the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator for details on how to set up journalizing and
how to use captured changes.

13.6.2 Setting up Log-Based CDC
This method is set up with the JKM DB2/400 Journal Simple and used by the LKM
DB2/400 Journal to SQL. It uses also an RPG program to retrieve the journal content.

13.6.2.1 How does it work?
A iSeries transaction journal contains the entire history of the data changes for a given
period. It is handled by the iSeries system for tables that are journaled. A journaled
table is either a table from a collection, or a table for which a journal receiver and a
journal have been created and journaling started.

Reading the transaction journal is performed by the a journal retriever CDCRTVJRN
RPG program provided with Oracle Data Integrator. This program loads on demand
the tables of the Oracle Data Integrator CDC infrastructure (J$ tables) with the contents
from the transaction journal.

This program can be either scheduled on the iSeries system or called by the KMs
through a stored procedure also called CDCRTVJRN. This stored procedure is
automatically created by the JKM DB2/400 Journal Simple and invoked by the LKM
DB2/400 Journal to SQL when data extraction is needed.

13.6.2.2 CDCRTVJRN Program Details
This program connects to the native iSeries journal for a given table, and captures
changed data information into the Oracle Data Integrator Journal (J$).

The program works as follows:

1. Journalized table attributes retrieval:

a. Table attributes retrieval: PK columns, J$ table name, last journal reading date.

b. Attributes enrichment (short names, record size, etc.) using the
QSYS.QADBXREF system table.

c. Location of the iSeries journal using the QADBRTVFD() API.

2. PK columns information retrieval:

a. PK columns attributes (short name, data types etc.) using the
QSYS.QADBIFLD system table.

b. Attributes enrichment (real physical length) using the QUSLFLD() API.

c. Data preprocessing (RPG to SQL datatype conversion) for the primary key
columns.

3. Extraction the native journal information into the J$ table:

Table 13–2 IBM DB2 for iSeries Journalizing Knowledge Modules

KM Notes

JKM DB2 400 Consistent Creates the journalizing infrastructure for consistent
journalizing on IBM DB2 for iSeries tables using
triggers.

JKM DB2 400 Simple Creates the journalizing infrastructure for simple
journalizing on IBM DB2 for iSeries tables using
triggers.

7

a. Native journal reading using the QJoRetrieveJournalEntries() API.

b. Conversion of the raw data to native SQL data and capture into the J$ table.

c. Update of the changes count.

This program accepts the parameters listed in Table 13–3.

13.6.2.3 Installing the CDC Components on iSeries
There are two major components installed on the iSeries system to enable native
journal reading:

■ The CDCRTVJRN Program. This program is provided in an archive that should
installed in the iSeries system. The installation process is described below.

■ The CDC Infrastructure. It includes the standard CDC objects (J$ tables, views, ...)
and the CDCRTVJRN Stored Procedure created by the JKM and used by the LKM
to read journals. This stored procedure executes the CDCRTVJRN program.

Installing the CDCRTVJRN Program
To install the CDCRTVJRN program:

1. Identify the location the program SAVF file. It is located in the ODI_
HOME/setup/manual/cdc-iseries directory, and is also available on the
Oracle Data Integrator Companion CD.

2. Connect to the iSeries system.

3. Create the default work library if it does not exist yet. You can use, for example,
the following command to create an ODILIB library:

CRTLIB LIB(ODILIB)

4. Create in this library an empty save file that has the same name as the SAVF file
(mandatory). For example:

CRTSAVF FILE(ODILIB/SAVPGM0110)

Table 13–3 CDCRTVJRN Program Parameters

Parameter RPG Type SQL Type Description

SbsTName A138 Char(138) Full name of the subscribers table in the
following format: <Lib>.<Table>.

Example: ODILIB.SNP_SUBSCRIBERS

JrnTName A138 Char(138) Full name of the table for which the extract is
done from the journal.

Example: FINANCE.MY_COMPANY_ORDERS

JrnSubscriber A50 Char(50) Name of the current subscriber. It must
previously have been added to the list of
subscribers.

LogMessages A1 Char(1) Flag activating logging in a spool file. Possible
values are: Y enable logging, and N to disable
logging.

Note: The program must be set up in a library defined in the
Topology as the default work library for this iSeries data server. In the
examples below, this library is called ODILIB.

8 Product Title/BookTitle as a Variable

5. Upload the local SAVF file on the iSeries system in the library and on top of the
file you have just created. Make sure that the upload process is performed in
binary mode.

An FTP command sequence performing the upload is given below as an example.

FTP 192.168.0.13
LCD /oracle/odi/setup/manual/cdc-iseries/
BI
CD ODILIB
PUT SAVPGM0110
BYE

■ Restore the objects from the save file, using the RSTOBJ command. For example:

RSTOBJ OBJ(*ALL) SAVLIB(CDCODIRELE) DEV(*SAVF) OBJTYPE(*ALL)
SAVF(ODILIB/SAVPGM0110) RSTLIB(ODILIB)

■ Check that the objects are correctly restored. The target library should contain a
program object called CDCRTVJRN.

Use the following command below to view it:

WRKOBJ OBJ(ODILIB/CDCRTVJRN)

The CDCRTVJRN Stored Procedure
This procedure is used to call the CDCRTVJRN program. It is automatically created by
the JKM DB2/400 Journal Simple KM when journalizing is started. Journalizing
startup is described in the Change Data Capture topic.

The syntax for the stored procedure is provided below for reference:

create procedure ODILIB.CDCRTVJRN(
 SbsTName char(138), /* Qualified Subscriber Table Name */
 JrnTName char(138), /* Qualified Table Name */
 Subscriber char(50) , /* Subscriber Name */
 LogMessages char(1) /* Create a Log (Y - Yes, N - No) */
)
language rpgle
external name 'ODILIB/CDCRTVJRN'

13.6.2.4 Using the CDC with the Native Journals
Once the program is installed and the CDC is setup, using the native journals consists
in using the LKM DB2/400 Journal to SQL to extract journalized data from the iSeries
system. The retrieval process is triggered if the RETRIEVE_JOURNAL_ENTRIES
option is set to true for the LKM.

13.6.2.5 Problems While Reading Journals
This section list the possibly issues when using this changed data capture method.

CDCRTVJRN Program Limits
The following limits exist for the CDCRTVJRN program:

Note: The stored procedure and the program are installed in a
library defined in the Topology as the default work library for this
iSeries data server

9

■ The source table should be journaled and the iSeries journal should be readable by
the user specified in the iSeries data server.

■ The source table should have one PK defined in Oracle Data Integrator.

■ The PK declared in Oracle Data Integrator should be in the 4096 first octets of the
physical record of the data file.

■ The number of columns in the PK should not exceed 16.

■ The total number of characters of the PK column names added to the number of
columns of the PK should not exceed 255.

■ Large object datatypes are not supported in the PK. Only the following SQL types
are supported in the PK: SMALLINT, INTEGER, BIGINT, DECIMAL (Packed),
NUMERIC (Zoned), FLOAT, REAL, DOUBLE, CHAR, VARCHAR, CHAR
VARYING, DATE, TIME, TIMESTAMP and ROWID.

■ Several instances of CDCRTVJRN should not be started simultaneously on the
same system.

■ Reinitializing the sequence number in the iSeries journal may have a critical
impact on the program (program hangs) if the journal entries consumption date
(SNP_SUBSCRIBERS.JRN_CURFROMDATE) is before the sequence initialization
date. To work around this problem, you should manually set a later date in SNP_
SUBSCRIBERS.JRN_CURFROMDATE.

Troubleshooting the CDCRTVJRN Program
The journal reading process can be put in trace mode:

■ either by calling from your query tool the CDCRTVJRN stored procedure with the
LogMsg parameter set to Y,

■ or by forcing the CREATE_SPOOL_FILE LKM option to 1 then restarting the
interface.

The reading process logs are stored in a spool file which can be reviewed using the
WRKSPLF command.

You can also review the raw contents of the iSeries journal using the DSPJRN
command.

13.7 Setting up Data Quality
Oracle Data Integrator provides the generic CKM SQL for checking data integrity
against constraints defined in DB2/400. See "Set up Flow Control and Post-Integration
Control" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for
details.

See Chapter 4, "Generic SQL" for more information.

13.8 Designing an Interface
You can use IBM DB2 for iSeries as a source, staging area or a target of an integration
interface.

The KM choice for an interface or a check determines the abilities and performance of
this interface or check. The recommendations in this section help in the selection of the
KM for different situations concerning an IBM DB2 for iSeries data server.

10 Product Title/BookTitle as a Variable

13.8.1 Loading Data from and to IBM DB2 for iSeries
IBM DB2 for iSeries can be used as a source, target or staging area of an interface. The
LKM choice in the Interface Flow tab to load data between IBM DB2 for iSeries and
another type of data server is essential for the performance of an interface.

13.8.1.1 Loading Data from IBM DB2 for iSeries
Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from IBM DB2 for iSeries to a target or staging area
database. These optimized IBM DB2 for iSeries KMs are listed in Table 13–4.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to
the other technology involved to load data from IBM DB2 for iSeries to a target or
staging area database.

13.8.1.2 Loading Data to IBM DB2 for iSeries
Oracle Data Integrator provides Knowledge Modules that implement optimized
methods for loading data from a source or staging area into an IBM DB2 for iSeries
database. These optimized IBM DB2 for iSeries KMs are listed in Table 13–5.

In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to
the other technology involved.

Table 13–4 KMs for loading data from IBM DB2 for iSeries

Source or Staging
Area Technology KM Notes

IBM DB2 for iSeries LKM DB2 400 to DB2 400 Loads data from an IBM DB2 for
iSeries source database to an IBM
DB2 for iSeries staging area database
using CRTDDMF to create a DDM
file on the target and transfer data
from the source to this DDM file
using CPYF.

IBM DB2 for iSeries LKM DB2 400 Journal to
SQL

Loads data from an IBM DB2 for
iSeries source to a ANSI SQL-92
compliant staging area database. This
LKM can source from tables
journalized with the JKM DB2 400
Simple (Journal) as it refreshes the
CDC infrastructure from the journals.

Table 13–5 KMs for loading data to IBM DB2 for iSeries

Source or Staging Area
Technology KM Notes

IBM DB2 for iSeries LKM DB2 400 to DB2 400 Loads data from an IBM DB2 for
iSeries source database to an IBM
DB2 for iSeries staging area database
using CRTDDMF to create a DDM
file on the target and transfer data
from the source to this DDM file
using CPYF.

SQL LKM SQL to DB2 400
(CPYFRMIMPF)

Loads data from an ANSI SQL-92
compliant source database to an IBM
DB2 for iSeries staging area database
using a temporary file loaded into
the DB2 staging area with
CPYFRMIPF.

11

13.8.2 Integrating Data in IBM DB2 for iSeries
Oracle Data Integrator provides Knowledge Modules that implement optimized data
integration strategies for IBM DB2 for iSeries. These optimized IBM DB2 for iSeries
KMs are listed in Table 13–6. I

In addition to these KMs, you can also use the Generic SQL KMs.

The IKM choice in the Interface Flow tab determines the performances and
possibilities for integrating.

Using Slowly Changing Dimensions
For using slowly changing dimensions, make sure to set the Slowly Changing Dimension
value for each column of the target datastore. This value is used by the IKM DB2 400
Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or
Insert Column, Current Record Flag and Start/End Timestamps columns.

13.9 Specific Considerations with DB2 for iSeries
This section provides specific considerations when using Oracle Data Integrator in an
iSeries environment.

13.9.1 Installing the Run-Time Agent on iSeries
The Oracle Data Integrator Standalone Agent can be installed on iSeries.

See the Oracle Fusion Middleware Installation Guide for Oracle Data Integrator for more
information.

13.9.2 Alternative Connectivity Methods for iSeries
It is preferable to use the built-in IBM DB2 Datadirect driver in most cases. This driver
directly use the TCP/IP network layer and require no other components installed on
the client machine. Other methods exist to connect DB2 on iSeries.

13.9.2.1 Using Client Access
It is also possible to connect through ODBC with the IBM Client Access component
installed on the machine. This method does not have very good performance and does
not support the reverse engineering and some other features. It is therefore not
recommended.

Table 13–6 KMs for integrating data to IBM DB2 for iSeries

KM Notes

IKM DB2 400 Incremental Update Integrates data in an IBM DB2 for iSeries target table in
incremental update mode.

IKM DB2 400 Incremental Update
(CPYF)

Integrates data in an IBM DB2 for iSeries target table in
incremental update mode. This IKM is similar to the "IKM
DB2 400 Incremental Update" except that it uses the CPYF
native OS/400 command to write to the target table,
instead of set-based SQL operations.

IKM DB2 400 Slowly Changing
Dimension

Integrates data in an IBM DB2 for iSeries target table used
as a Type II Slowly Changing Dimension in your Data
Warehouse.

12 Product Title/BookTitle as a Variable

13.9.2.2 Using the IBM JT/400 and Native Drivers
This driver appears as a jt400.zip file you must copy into your Oracle Data
Integrator installation drivers directory.

To connect DB2 for iSeries with a Java application installed on the iSeries machine,
IBM recommends that you use the JT/400 Native driver (jt400native.jar) instead
of the JT/400 driver (jt400.jar). The Native driver provides optimized access to the
DB2 system, but works only from the iSeries machine.

To support seamlessly both drivers with one connection, Oracle Data Integrator has a
built-in Driver Wrapper for AS/400. This wrapper connects through the Native driver
if possible, otherwise it uses the JT/400 driver. It is recommended that you use this
wrapper if running agents installed on AS/400 systems.

To configure a data server with the driver wrapper:

1. Change the driver and URL to your AS/400 server with the following information:

■ Driver: com.sunopsis.jdbc.driver.wrapper.SnpsDriverWrapper

■ URL: jdbc:snps400:<machine_
name>[;param1=value1[;param2=value2...]]

2. Set the following java properties for the java machine the run-time agent deployed
on iSeries:

■ HOST_NAME: comma separated list of host names identifying the current
machine.

■ HOST_IP: IP Address of the current machine.

The value allow the wrapper to identify whether this data server is accessed on the
iSeries machine or from a remote machine.

13.10 Troubleshooting
This section provides information on how to troubleshoot problems that you might
encounter when using Oracle Knowledge Modules. It contains the following topics:

■ Troubleshooting Error messages

■ Common Problems and Solutions

13.10.1 Troubleshooting Error messages
Errors in Oracle Data Integrator appear often in the following way:

java.sql.SQLException: The application server rejected the connection.(Signon was
canceled.)
at ...
at ...
...

the java.sql.SQLExceptioncode simply indicates that a query was made to the
database through the JDBC driver, which has returned an error. This error is
frequently a database or driver error, and must be interpreted in this direction.

Only the part of text in bold must first be taken in account. It must be searched in the
DB2 or iSeries documentation. If its contains sometimes an error code specific to your
system, with which the error can be immediately identified.

13

If such an error is identified in the execution log, it is necessary to analyze the SQL
code send to the database to find the source of the error. The code is displayed in the
description tab of the erroneous task.

13.10.2 Common Problems and Solutions
This section describes common problems and solutions.

13.10.2.1 Connection Errors
■ UnknownDriverException

The JDBC driver is incorrect. Check the name of the driver.

■ The application requester cannot establish the
connection.(<name or IP address>) Cannot open a socket on
host: <name or IP address>, port: 8471 (Exception:
java.net.UnknownHostException:<name or IP address>)

Oracle Data Integrator cannot connect to the database. Either the machine name or
IP address is invalid, the DB2/400 Services are not started or the TCP/IP interface
on AS/400 is not started. Try to ping the AS/400 machine using the same machine
name or IP address, and check with the system administrator that the appropriate
services are started.

■ Datasource not found or driver name not specified

The ODBC Datasource specified in the JDBC URL is incorrect.

■ The application server rejected the connection.(Signon was
canceled.) Database login failed, please verify userid and
password. Communication Link Failure. Comm RC=8001 -
CWBSY0001 - ...

The user profile used is not valid. This error occurs when typing an invalid user
name or an incorrect password.

■ Communication Link Failure

An error occurred with the ODBC connectivity. Refer to the Client Access
documentation for more information.

■ SQL5001 - Column qualifier or table &2 undefined. SQL5016 -
Object name &1 not valid for naming convention

Your JDBC connection or ODBC Datasource is configured to use the wrong
naming convention. Use the ODBC Administrator to change your datasource to
use the proper (*SQL or *SYS) naming convention, or use the appropriate option in
the JDBC URL to force the naming conversion (for instance
jdbc:as400://195.10.10.13;naming=system) . Note that if using the system naming
convention in the Local Object Mask of the Physical Schema, you must enter
%SCHEMA/%OBJECT instead of %SCHEMA.%OBJECT.

"*SQL" should always be used unless your application is specifically designed for
*SYS. Oracle Data Integrator uses the *SQL naming convention by default.

■ SQL0204 &1 in &2 type *&3 not found

The table you are trying to access does not exist. This may be linked to an error in
the context choice, or in the sequence of operations (E.g.: The table is a temporary
table which must be created by another interface).

14 Product Title/BookTitle as a Variable

■ Hexadecimal characters appear in the target tables.
Accentuated characters are incorrectly transferred.

The iSeries computer attaches a language identifier or CCSID to files, tables and
even fields (columns). CCSID 65535 is a generic code that identifies a file or field
as being language independent: i.e. hexadecimal data. By definition, no translation
is performed by the drivers. If you do not wish to update the CCSID of the file,
then translation can be forced, in the JDBC URL, thanks to the flags ccsid=<ccsid
code> and convert _ccsid_65535=yes|no. See the driver's documentation for more
information.

■ SQL0901 SQL system error

This error is an internal error of the DB2/400 system.

■ SQL0206 Column &1 not in specified tables

Keying error in a mapping/join/filter. A string which is not a column
name is interpreted as a column name, or a column name is misspelled.

This error may also appear when accessing an error table associated to a datastore
with a structure recently modified. It is necessary to impact in the error table the
modification, or drop the error tables and let Oracle Data Integrator recreate it in
the next execution.

14

IBM DB2 UDB 14-1

14IBM DB2 UDB

This chapter describes how to work with IBM DB2 UDB in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 14.1, "Introduction"

■ Section 14.2, "Concepts"

■ Section 14.3, "Knowledge Modules"

■ Section 14.4, "Specific Requirements"

14.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an IBM DB2 UDB database.
Oracle Data Integrator features are designed to work best with IBM DB2 UDB,
including journalizing, data integrity checks, and integration interfaces.

14.2 Concepts
The IBM DB2 UDB concepts map the Oracle Data Integrator concepts as follows: An
IBM DB2 UDB database corresponds to a data server in Oracle Data Integrator. Within
this server, a schema maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an IBM
DB2 UDB database.

14.3 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 14–1 for
handling IBM DB2 UDB data. These KMs use IBM DB2 UDB specific features. It is also
possible to use the generic SQL KMs with the IBM DB2 UDB database. See Chapter 4,
"Generic SQL" for more information

Knowledge Modules

14-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 14–1 IBM DB2 UDB Knowledge Modules

Knowledge Module Description

IKM DB2 UDB Incremental Update Integrates data in an IBM DB2 UDB target table in incremental
update mode. This IKM creates a temporary staging table to stage the
data flow. It then compares its content to the target table to identify
which records should be inserted and which others should be
updated. It also allows performing data integrity check by invoking
the CKM.

Inserts and updates are done in bulk set-based processing to
maximize performance. Therefore, this IKM is optimized for large
volumes of data.

Consider using this IKM if you plan to load your IBM DB2 UDB
target table to insert missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as
the target.

IKM DB2 UDB Slowly Changing
Dimension

Integrates data in an IBM DB2 UDB target table used as a Type II
Slowly Changing Dimension in your Data Warehouse. This IKM
relies on the Slowly Changing Dimension metadata set on the target
datastore to figure out which records should be inserted as new
versions or updated as existing versions.

Because inserts and updates are done in bulk set-based processing,
this IKM is optimized for large volumes of data.

Consider using this IKM if you plan to load your IBM DB2 UDB
target table as a Type II Slowly Changing Dimension.

To use this IKM, the staging area must be on the same data server as
the target and the appropriate Slowly Changing Dimension metadata
needs to be set on the target datastore.

JKM DB2 UDB Consistent Creates the journalizing infrastructure for consistent journalizing on
IBM DB2 UDB tables using triggers.

Enables Consistent Changed Data Capture on IBM DB2 UDB.

JKM DB2 UDB Simple Creates the journalizing infrastructure for simple journalizing on
IBM DB2 UDB tables using triggers.

Enables Simple Changed Data Capture on IBM DB2 UDB.

LKM DB2 UDB to DB2 UDB (EXPORT_
IMPORT)

Loads data from an IBM DB2 UDB source database to an IBM DB2
UDB staging area database using the native EXPORT / IMPORT
commands.

This module uses the EXPORT CLP command to extract data in a
temporary file. Data is then loaded in the target staging DB2 UDB
table using the IMPORT CLP command. This method if often more
efficient than the standard LKM SQL to SQL when dealing with large
volumes of data.

Consider using this LKM if your source tables are located on a DB2
UDB database and your staging area is on a different DB2 UDB
database.

LKM File to DB2 UDB (LOAD) Loads data from a File to a DB2 UDB staging area database using the
native CLP LOAD Command.

Depending on the file type (Fixed or Delimited) this LKM will
generate the appropriate LOAD script in a temporary directory. This
script is then executed by the CLP and automatically deleted at the
end of the execution. Because this method uses the native IBM DB2
loaders, it is more efficient than the standard LKM File to SQL when
dealing with large volumes of data.

Consider using this LKM if your source is a large flat file and your
staging area is an IBM DB2 UDB database.

Specific Requirements

IBM DB2 UDB 14-3

14.4 Specific Requirements
Some of the Knowledge Modules for IBM DB2 UDB use operating system calls to
invoke the IBM CLP command processor to perform efficient loads. The following
restrictions apply when using such Knowledge Modules:

■ The IBM DB2 UDB Command Line Processor (CLP) as well as the DB2 UDB
Connect Software must be installed on the machine running the Oracle Data
Integrator Agent.

■ The server names defined in the Topology must match the IBM DB2 UDB connect
strings used for these servers.

■ Some DB2 UDB JDBC drivers require DB2 UDB Connect Software to be installed
on the machine running the ODI Agent.

See the IBM DB2 documentation for more information.

LKM SQL to DB2 UDB Loads data from any ANSI SQL-92 standard compliant source
database to an IBM DB2 UDB staging area. This LKM is similar to the
standard LKM SQL to SQL described in Chapter 4, "Generic SQL"
except that you can specify some additional specific IBM DB2 UDB
parameters.

LKM SQL to DB2 UDB (LOAD) Loads data from any ANSI SQL-92 standard compliant source
database to an IBM DB2 UDB staging area using the CLP LOAD
command.

This LKM unloads the source data in a temporary file and calls the
IBM DB2 native loader using the CLP LOAD command to populate
the staging table. Because this method uses the native IBM DB2
loader, it is often more efficient than the LKM SQL to SQL or LKM
SQL to DB2 UDB methods when dealing with large volumes of data.

Consider using this LKM if your source data located on a generic
database is large, and when your staging area is an IBM DB2 UDB
database.

SKM IBM UDB Generates data access Web services for IBM DB2 UDB databases. See
SKM SQL in Chapter 4, "Generic SQL" for more information.

Table 14–1 (Cont.) IBM DB2 UDB Knowledge Modules

Knowledge Module Description

Specific Requirements

14-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

15

Sybase AS Enterprise 15-1

15Sybase AS Enterprise

This chapter describes how to work with Sybase AS Enterprise in Oracle Data
Integrator.

This chapter includes the following sections:

■ Section 15.1, "Introduction"

■ Section 15.2, "Concepts"

■ Section 15.3, "Knowledge Modules"

■ Section 15.4, "Specific Requirements"

15.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in a Sybase AS Enterprise
database. Oracle Data Integrator features are designed to work best with Sybase AS
Enterprise, including journalizing and integration interfaces.

15.2 Concepts
The Sybase AS Enterprise concepts map the Oracle Data Integrator concepts as
follows: An Sybase AS Enterprise database corresponds to a data server in Oracle Data
Integrator. Within this server, a database/owner pair maps to an Oracle Data
Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to a Sybase
AS Enterprise database.

15.3 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 15–1 for
handling Sybase AS Enterprise data. These KMs use Sybase AS Enterprise specific
features. It is also possible to use the generic SQL KMs with the Sybase AS Enterprise
database. See Chapter 4, "Generic SQL" for more information.

Knowledge Modules

15-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 15–1 Sybase ASE Knowledge Modules

Knowledge Module Description

IKM Sybase ASE Incremental Update Integrates data in a Sybase Adaptive Server Enterprise target table in
incremental update mode. This IKM creates a temporary staging
table to stage the data flow. It then compares its content to the target
table to guess which records should be inserted and which others
should be updated. It also allows performing data integrity check by
invoking the CKM.

Inserts and updates are done in bulk set-based processing to
maximize performance. Therefore, this IKM is optimized for large
volumes of data.

Consider using this IKM if you plan to load your Sybase Adaptive
Server Enterprise target table to insert missing records and to update
existing ones.

To use this IKM, the staging area must be on the same data server as
the target.

IKM Sybase ASE Slowly Changing
Dimension

Integrates data in a Sybase Adaptive Server Enterprise target table
used as a Type II Slowly Changing Dimension in your Data
Warehouse. This IKM relies on the Slowly Changing Dimension
metadata set on the target datastore to figure out which records
should be inserted as new versions or updated as existing versions.

Because inserts and updates are done in bulk set-based processing,
this IKM is optimized for large volumes of data.

Consider using this IKM if you plan to load your Sybase Adaptive
Server Enterprise target table as a Type II Slowly Changing
Dimension.

To use this IKM, the staging area must be on the same data server as
the target and the appropriate Slowly Changing Dimension metadata
needs to be set on the target datastore.

JKM Sybase ASE Consistent Creates the journalizing infrastructure for consistent journalizing on
Sybase Adaptive Server Enterprise tables using triggers.

Enables Consistent Set Changed Data Capture on Sybase Adaptive
Server Enterprise.

JKM Sybase ASE Simple Creates the journalizing infrastructure for simple journalizing on
Sybase Adaptive Server Enterprise tables using triggers.

Enables Simple Changed Data Capture on Sybase Adaptive Server
Enterprise.

LKM SQL to Sybase ASE Loads data from any SQL compliant database to Sybase Adaptive
Server Enterprise. This KM uses the ODI Agent to read selected data
from the database and write the result into the target temporary table
created dynamically.

When using this KM on a journalized source table, the Journalizing
table is first updated to flag the records consumed and then cleaned
from these records at the end of the interface.

This Knowledge Module is NOT RECOMMENDED when using
LARGE VOLUMES. Other specific modules using Bulk utilities
(SQL*LOADER, BULK INSERT...) or direct links (DBLINKS, Linked
Servers...) are usually more efficient.

Specific Requirements

Sybase AS Enterprise 15-3

15.4 Specific Requirements
Some of the Knowledge Modules for Sybase Adaptive Server Enterprise use the BCP
specific loading utility. The following restrictions apply when using such Knowledge
Modules:

■ The BCP utility as well as the Sybase Adaptive Server Enterprise Client must be
installed on the machine running the Oracle Data Integrator Agent.

■ The server names defined in the Topology must match the Sybase Adaptive Server
Enterprise Client connect strings used for these servers.

■ White spaces in server names defined on the Client are not supported.

■ The target staging area database must have option "select into/bulk copy"

■ Execution can remain pending if the file generated by the BCP program is empty.

■ For performance reasons, it is often recommended to install Oracle Data Integrator
Agent on the target server machine.

 See the Sybase Adaptive Server Enterprise documentation for more information.

LKM SQL to Sybase ASE (BCP) Loads data from any SQL compliant database to a Sybase Adaptive
Server Enterprise staging area database using the BCP (Bulk Copy
Program) utility.

This LKM unloads the source data in a temporary file and calls the
Sybase BCP utility to populate the staging table. Because this method
uses the native BCP utility, it is often more efficient than the "LKM
SQL to SQL" method when dealing with large volumes of data.

Consider using this LKM if your source data located on a generic
database is large, and when your staging area is a Sybase Adaptive
Server Enterprise database.

LKM Sybase ASE to Sybase ASE (BCP) Loads data from a Sybase Adaptive Server Enterprise source
database to a Sybase Adaptive Server Enterprise staging area
database using the native BCP out/BCP in commands.

This module uses the native BCP (Bulk Copy Program) command to
extract data in a temporary file. Data is then loaded in the target
staging Sybase Adaptive Server Enterprise table using the native BCP
command again. This method if often more efficient than the
standard "LKM SQL to SQL" when dealing with large volumes of
data.

Consider using this LKM if your source tables are located on a
Sybase Adaptive Server Enterprise instance and your staging area is
on a different Sybase Adaptive Server Enterprise instance.

Table 15–1 (Cont.) Sybase ASE Knowledge Modules

Knowledge Module Description

Specific Requirements

15-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

16

Sybase IQ 16-1

16Sybase IQ

This chapter describes how to work with Sybase IQ in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 16.1, "Introduction"

■ Section 16.2, "Concepts"

■ Section 16.3, "Knowledge Modules"

■ Section 16.4, "Specific Requirements"

16.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in a Sybase IQ database.
Oracle Data Integrator features are designed to work best with Sybase IQ, including
data integrity check and integration interfaces.

16.2 Concepts
The Sybase IQ concepts map the Oracle Data Integrator concepts as follows: A Sybase
IQ server corresponds to a data server in Oracle Data Integrator. Within this server, a
schema maps to an Oracle Data Integrator physical schema.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to a Sybase
IQ database.

16.3 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 16–1 for
handling Sybase IQ data. These KMs use Sybase IQ specific features. It is also possible
to use the generic SQL KMs with the Sybase IQ database. See Chapter 4, "Generic SQL"
for more information.

Table 16–1 Sybase IQ Knowledge Modules

Knowledge Module Description

CKM Sybase IQ Checks data integrity against constraints defined on a Sybase IQ
table. Rejects invalid records in the error table created dynamically.
Can be used for static controls as well as flow controls.

Consider using this KM if you plan to check data integrity on a
Sybase IQ database.

Specific Requirements

16-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

16.4 Specific Requirements
Some of the Knowledge Modules for Sybase IQ use the LOAD TABLE specific
command. The following restrictions apply when using such Knowledge Modules.

■ The file to be loaded by the LOAD TABLE command needs to be accessible from
the Sybase IQ machine. It could be located on the file system of the server or
reachable from a UNC (Unique Naming Convention) path or mounted from a
remote file system.

IKM Sybase IQ Incremental Update Integrates data in a Sybase IQ target table in incremental update
mode. This IKM creates a temporary staging table to stage the data
flow. It then compares its content to the target table to guess which
records should be inserted and which others should be updated. It
also allows performing data integrity check by invoking the CKM.

Inserts and updates are done in bulk set-based processing to
maximize performance. Therefore, this IKM is optimized for large
volumes of data.

Consider using this IKM if you plan to load your Sybase IQ target
table to insert missing records and to update existing ones.

To use this IKM, the staging area must be on the same data server as
the target.

IKM Sybase IQ Slowly Changing
Dimension

Integrates data in a Sybase IQ target table used as a Type II Slowly
Changing Dimension in your Data Warehouse. This IKM relies on
the Slowly Changing Dimension metadata set on the target datastore
to figure out which records should be inserted as new versions or
updated as existing versions.

Because inserts and updates are done in bulk set-based processing,
this IKM is optimized for large volumes of data.

Consider using this IKM if you plan to load your Sybase IQ target
table as a Type II Slowly Changing Dimension.

To use this IKM, the staging area must be on the same data server as
the target and the appropriate Slowly Changing Dimension metadata
needs to be set on the target datastore.

LKM File to Sybase IQ (LOAD TABLE) Loads data from a File to a Sybase IQ staging area database using the
LOAD TABLE SQL command.

Because this method uses the native LOAD TABLE command, it is
more efficient than the standard "LKM File to SQL" when dealing
with large volumes of data. However, the loaded file must be
accessible from the Sybase IQ machine.

Consider using this LKM if your source is a large flat file and your
staging area is a Sybase IQ database.

LKM SQL to Sybase IQ (LOAD TABLE) Loads data from any ANSI SQL-92 standard compliant source
database to a Sybase IQ staging area database using the native LOAD
TABLE SQL command.

This LKM unloads the source data in a temporary file and calls the
Sybase IQ LOAD TABLE SQL command to populate the staging
table. Because this method uses the native LOAD TABLE, it is often
more efficient than the LKM SQL to SQL method when dealing with
large volumes of data.

Consider using this LKM if your source data located on a generic
database is large, and when your staging area is a Sybase IQ
database.

Table 16–1 (Cont.) Sybase IQ Knowledge Modules

Knowledge Module Description

Specific Requirements

Sybase IQ 16-3

■ UNC file paths are supported but not recommended as they may decrease
performance.

■ For performance reasons, it is often recommended to install Oracle Data Integrator
Agent on the target server machine.

See the Sybase IQ documentation for more information.

Specific Requirements

16-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Part II
Part II Business Intelligence

This part describes how to work with Business Intelligence in Oracle Data Integrator.

Part II contains the following chapters:

■ Chapter 17, "Oracle Business Intelligence Enterprise Edition"

■ Chapter 18, "Oracle Hyperion Essbase"

■ Chapter 19, "Oracle Hyperion Financial Management"

■ Chapter 20, "Oracle Hyperion Planning"

■ Chapter 21, "Oracle OLAP"

17

1

17Oracle Business Intelligence Enterprise
Edition

This chapter describes how to work with Oracle Business Intelligence Enterprise
Edition in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 17.1, "Introduction"

■ Section 17.2, "Installation and Configuration"

■ Section 17.3, "Setting up the Topology"

■ Section 17.4, "Setting Up an Integration Project"

■ Section 17.5, "Creating and Reverse-Engineering an Oracle BI Model"

■ Section 17.6, "Setting up Data Quality"

■ Section 17.7, "Designing an Interface"

17.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data from Oracle Business
Intelligence Enterprise Edition (Oracle BI).

Oracle Data Integrator provides specific methods for reverse-engineering and
extracting data from ADF View Objects (ADF-VOs) via the Oracle BI Physical Layer
using integration interfaces.

17.1.1 Concepts
The Oracle Business Intelligence Enterprise Edition concepts map the Oracle Data
Integrator concepts as follows: An Oracle BI Server corresponds to a data server in
Oracle Data Integrator. Within this server, a catalog/owner pair maps to an Oracle
Data Integrator physical schema.

Oracle Data Integrator connects to this server to access, via a bypass connection pool,
the physical sources that support ADF View Objects.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an Oracle
BI Server.

17.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 17–1 for
handling Oracle BI data. These KMs use Oracle BI specific features.

2 Product Title/BookTitle as a Variable

17.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
Oracle BI Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

17.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

17.2.2 Technology Specific Requirements
There are no technology-specific requirements for using Oracle BI in Oracle Data
Integrator.

17.2.3 Connectivity Requirements
This section lists the requirements for connecting to an Oracle BI Server.

JDBC Driver
Oracle Data Integrator uses the Oracle BI native driver to connect to the Oracle BI
Server. This driver must be installed in your Oracle Data Integrator drivers directory.

Bypass Connection Pool
In Oracle BI, a sqlbypass database connection must be setup to bypass the ADF layer
and directly fetch data from the underlying database. The name of this connection
pool is required for creating the Oracle BI data server in Oracle Data Integrator.

17.3 Setting up the Topology
Setting up the Topology consists of:

Table 17–1 Oracle BI Knowledge Modules

Knowledge Module Description

RKM Oracle BI (Jython) Retrieves the table structure in Oracle BI (columns and primary
keys).

LKM Oracle BI to Oracle (DBLink) Loads data from an Oracle BI source to an Oracle database area using
dblinks.

LKM Oracle BI to SQL Loads data from an Oracle BI source to any ANSI SQL-92 compliant
database.

IKM Oracle BI to SQL Append Integrates data into a ANSI-SQL92 target database from an Oracle BI
source.

3

1. Creating an Oracle BI Data Server

2. Creating an Oracle BI Physical Schema

17.3.1 Creating an Oracle BI Data Server
A data server corresponds to a Oracle BI Server. Oracle Data Integrator connects to
this server to access, via a bypass connection pool, the physical sources that support
ADF View Objects. These physical objects are located under the view objects that are
exposed in this server. This server is connected with a user who has access to several
catalogs/schemas. Catalog/schemas pairs correspond to the physical schemas that are
created under the data server.

17.3.1.1 Creation of the Data Server
Create a data server for the Oracle BI technology using the standard procedure, as
described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide
for Oracle Data Integrator. This section details only the fields required or specific for
defining a Oracle BI data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator

■ Server: Leave this field empty.

■ User/Password: Oracle BI user with its password

2. In the JDBC tab:

■ JDBC Driver: oracle.bi.jdbc.AnaJdbcDriver

■ JDBC URL: jddbc:oraclebi://<host>:<port>

<host> is the server on which Oracle BI server is installed. By default the
<port> number is 9703.

3. In the Properties tab, add a JDBC property with the following key/value pair.

■ Key: NQ_SESSION.SELECTPHYSICAL

■ Value: Yes

4. In the Flexfield tab, set the name of the bypass connection pool in the
CONNECTION_POOL flexfield.

■ Name: CONNECTION_POOL

■ Value: <connection pool name>

17.3.2 Creating an Oracle BI Physical Schema
Create a Oracle BI physical schema using the standard procedure, as described in
"Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

Note: This option is required for accessing the physical data. Using
this option makes the Oracle BI connection read-only.

Note: Note this bypass connection pool must also be defined in the
Oracle BI server itself.

4 Product Title/BookTitle as a Variable

In the physical schema the Data and Work Schemas correspond each to an Oracle BI
Catalog/schema pair.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

17.4 Setting Up an Integration Project
Setting up a project using an Oracle BI Server follows the standard procedure. See
"Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Oracle BI:

■ RKM Oracle BI (Jython)

■ LKM Oracle BI to Oracle (DBLink)

■ LKM Oracle BI to SQL

■ IKM Oracle BI to SQL Append

Import also the knowledge modules (IKM, CKM) required for the other technologies
involved in your project.

17.5 Creating and Reverse-Engineering an Oracle BI Model
This section contains the following topics:

■ Create an Oracle BI Model

■ Reverse-engineer an Oracle BI Model

17.5.1 Create an Oracle BI Model
Create an Oracle BI Model using the standard procedure, as described in "Creating a
Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.

17.5.2 Reverse-engineer an Oracle BI Model
Oracle BI supports Customized reverse-engineering.

To perform a Customized Reverse-Engineering on Oracle BI with a RKM, use the
usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator. This section details only the
fields specific to the Oracle BI technology:

1. In the Reverse tab of the Oracle BI Model, select the KM: RKM Oracle BI
(Jython).<project name>.

This KM implements the USE_LOG and LOG_FILE_NAME logging options to trace
the reverse-engineering process.

17.6 Setting up Data Quality
Data integrity check is not supported in an Oracle BI Server. You can check data
extracted Oracle BI in a staging area using another technology.

5

17.7 Designing an Interface
You can use Oracle BI as a source of an integration interface.

The KM choice for an interface determines the abilities and performance of this
interface. The recommendations in this section help in the selection of the KM for
different situations concerning an Oracle BI server.

17.7.1 Loading Data from and to Oracle BI
The LKM choice in the Interface Flow tab to load data between Oracle BI and another
type of data server is essential for the performance of an interface.

17.7.1.1 Loading Data from Oracle BI
Use the knowledge modules listed in Table 17–2 to load data from an Oracle BI server
to a target or staging area database.

17.7.1.2 Loading Data to Oracle BI
Oracle BI cannot be used as a staging area. No LKM targets Oracle BI.

17.7.2 Integrating Data in Oracle BI
Oracle BI cannot be used as a target or staging area. It is not possible to integrate data
into Oracle BI with the knowledge modules.

Table 17–2 KMs for loading data From Oracle BI

Staging Area/Target
Technology KM Notes

Oracle LKM Oracle BI to Oracle
(Dblink)

Loads data from an Oracle BI
source to an Oracle Database
staging area using DBLinks.

To use this knowledge module, a
DBLink must be manually created
from the source Fusion Transaction
DB (that is the database storing the
underlying data tables) to the
Oracle staging area. This DBLink
name must be the one specified in
the Oracle staging area data server
connection.

SQL LKM Oracle BI to SQL Loads data from an Oracle BI
Source to an ANSI SQL-92
compliant staging area database via
the agent.

SQL IKM Oracle BI to SQL
Append

Loads and Integrates data from an
Oracle BI Source to an ANSI SQL-92
compliant staging area database via
the agent.

To use this KM, you must set the
staging are of your interface on the
source Oracle BI server.

In this configuration, no temporary
table is created and data is loaded
and integrated directly from the
source to the target tables.

6 Product Title/BookTitle as a Variable

18

Oracle Hyperion Essbase 18-1

18Oracle Hyperion Essbase

This chapter describes how to work with Oracle Hyperion Essbase in Oracle Data
Integrator.

This chapter includes the following sections:

■ Section 18.1, "Introduction"

■ Section 18.2, "Installation and Configuration"

■ Section 18.3, "Setting up the Topology"

■ Section 18.4, "Creating and Reverse-Engineering an Essbase Model"

■ Section 18.5, "Designing an Interface"

18.1 Introduction
Oracle Data Integrator Adapter for Oracle's Hyperion Essbase enables you to connect
and integrate Essbase with virtually any source or target using Oracle Data Integrator.
The adapter provides a set of Oracle Data Integrator Knowledge Modules (KMs) for
loading and extracting metadata and data and calculating data in Essbase applications.

18.1.1 Integration Process
You can use Oracle Data Integrator Adapter for Essbase to perform these data
integration tasks on an Essbase application:

■ Load metadata and data

■ Extract metadata and data

Using the adapter to load or extract metadata or data involves the following tasks:

■ Setting up an environment: defining data servers and schemas.

See Section 18.3, "Setting up the Topology".

■ Reverse-engineering an Essbase application using the Reverse-engineering
Knowledge Module (RKM)

See Section 18.4, "Creating and Reverse-Engineering an Essbase Model".

■ Extracting metadata and data using Load Knowledge Modules (LKM).

See Section 18.5, "Designing an Interface"

■ Integrating the metadata and data into the Essbase application using the
Integration Knowledge Modules (IKM).

See Section 18.5, "Designing an Interface"

Installation and Configuration

18-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

18.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 18–1 for
handling Hyperion Essbase data. These KMs use Hyperion Essbase specific features. It
is also possible to use the generic SQL KMs with the Hyperion Essbase database. See
Chapter 4, "Generic SQL" for more information.

18.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
Oracle Data Integrator Adapter for Essbase:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

18.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

18.2.2 Technology Specific Requirements
There are no technology-specifc requirements for using the Oracle Data Integrator
Adapter for Essbase.

18.2.3 Connectivity Requirements
There are no connectivity-specific requirements for using the Oracle Data Integrator
Adapter for Essbase.

18.3 Setting up the Topology
Setting up the Topology consists of:

Table 18–1 Hyperion Essbase Knowledge Modules

Knowledge Module Description

RKM Hyperion Essbase Reverse-engineers Essbase applications and creates data models to
use as targets or sources in Oracle Data Integrator interfaces

IKM SQL to Hyperion Essbase (DATA) Integrates data into Essbase applications.

IKM SQL to Hyperion Essbase
(METADATA)

Integrates metadata into Essbase applications

LKM Hyperion Essbase DATA to SQL Loads data from an Essbase application to any SQL compliant
database used as a staging area.

LKM Hyperion Essbase METADATA to
SQL

Loads metadata from an Essbase application to any SQL compliant
database used as a staging area.

Creating and Reverse-Engineering an Essbase Model

Oracle Hyperion Essbase 18-3

1. Creating an Hyperion Essbase Data Server

2. Creating an Hyperion Essbase Physical Schema

18.3.1 Creating an Hyperion Essbase Data Server
Create a data server for the Hyperion Essbase technology using the standard
procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator. This section details only the fields required
or specific for defining a Hyperion Essbase data server:

1. In the Definition tab:

■ Name: Enter a name for the data server definition.

■ Server (Data Server): Enter the Essbase server name.

2. Under Connection, enter a user name and password for connecting to the Essbase
server.

18.3.2 Creating an Hyperion Essbase Physical Schema
Create a Hyperion Essbase physical schema using the standard procedure, as
described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator.

Under Application (Catalog) and Application (Work Catalog), specify an Essbase
application and under Database (Schema) and Database (Work Schema), specify an
Essbase database associated with the application you selected.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

18.4 Creating and Reverse-Engineering an Essbase Model
This section contains the following topics:

■ Create an Essbase Model

■ Reverse-engineer an Essbase Model

18.4.1 Create an Essbase Model
Create an Essbase Model using the standard procedure, as described in "Creating a
Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator

Note: If the Essbase server is running on a port other than the
default port (1423), then provide the Essbase server details in this
format, <Essbase Server hostname>:<port>.

Note: The Test button does not work for an Essbase data server
connection. This button works only for relational technologies that
have a JDBC Driver.

Creating and Reverse-Engineering an Essbase Model

18-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

18.4.2 Reverse-engineer an Essbase Model
Reverse-engineering an Essbase application creates an Oracle Data Integrator model
that includes a datastore for each dimension in the application and a datastore for
data.

To perform a Customized Reverse-Engineering on Hyperion Essbase with a RKM, use
the usual procedure, as described in "Reverse-engineering a Model" of the Oracle
Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only
the fields specific to the Hyperion Essbase technology.

1. In the Reverse tab of the Essbase Model, select the RKM Hyperion Essbase.

2. Set the KM options as indicated in Table 18–2.

Table 18–2 RKM Hyperion Essbase Options

Option Possible Values Description

MULTIPLE_DATA_
COLUMNS

■ No (Default)

■ Yes

If this option is set to No, then the datastore
created for the data extract / load model
contains one column for each of the standard
dimensions and a single data column.

If this option is set to Yes, then the datastore
created for the data extract / load model
contains one column for each of the standard
dimensions excluding the dimension specified
by the DATA_COLUMN_DIMENSION
option and as many data columns as specified
by the comma separated list for the DATA_
COLUMN_MEMBERS option.

DATA_COLUMN_
DIMENSION

Account This option is only applicable if MULTIPLE_
DATA_COLUMNS is set to Yes.

Specify the data column dimension name. For
example, data columns are spread across the
dimension Account or Time, and so on.

Designing an Interface

Oracle Hyperion Essbase 18-5

The RKM connects to the application (which is determined by the logical schema and
the context) and imports some or all of these datastores, according to the dimensions
in the application.

18.5 Designing an Interface
After reverse-engineering an Essbase application as a model, you can use the
datastores in this model in these ways:

■ Targets of interfaces for loading data and metadata into the application

■ Sources of interfaces for extracting metadata and data from the application.

DATA_COLUMN_
MEMBERS

Account This option is only applicable if MULTIPLE_
DATA_COLUMNS is set to Yes.

Separate the required data column members
with, (Comma).

For example, if the data column dimension is
set to Account and members are set to
Sales,COGS then the datastore for data
extract/load contains one column for each of
the dimension except the data column
dimension and one column for each of the
data column member specified in the comma
separated value. For example. Assuming that
the dimensions in the Essbase application are
Account, Scenario, Product, Market, and Year
and the data column dimension is specified as
Account and Data Column Members as
Sales, COGS, the datastore will have the
following columns:

■ Scenario (String)

■ Product (String)

■ Market (String)

■ Year (String)

■ Sales (Numeric)

■ COGS (Numeric)

EXTRACT_
ATTRIBUTE_
MEMBERS

■ No (Default)

■ Yes

If this option is set to No, then the datastore
created for the data extract / load model
contains one column for each of the standard
dimensions and a single data column.
Attribute dimensions are not included.

If this option is set to Yes, then the data
model contains these columns.

■ One column is created for each of the
standard dimensions

■ One or more Data column(s) are created
depending upon the value of the
MULTIPLE_DATA_COLUMN option

■ One column is created for each of the
associated attribute dimension

Table 18–2 (Cont.) RKM Hyperion Essbase Options

Option Possible Values Description

Designing an Interface

18-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The KM choice for an interface determines the abilities and performance of this
interface. The recommendations in this section help in the selection of the KM for
different situations concerning Hyperion Essbase.

This section contains the following topics:

■ Loading Metadata

■ Loading Data

■ Extracting Data

18.5.1 Loading Metadata
Oracle Data Integrator provides the IKM SQL to Hyperion Essbase (METADATA) for
loading metadata into an Essbase application.

Metadata consists of dimension members. You must load members, or metadata,
before you load data values for the members.

You can load members only to dimensions that exist in Essbase. You must use a
separate interface for each dimension that you load. You can chain interfaces to load
metadata into several dimensions at once.

Table 18–3 lists the options of the IKM SQL to Hyperion Essbase (METADATA). These
options define how the adapter loads metadata into an Essbase application.

Note: The metadata datastore can also be modified by adding or
delete columns to match the dimension build rule that will be used to
perform the metadata load. For example, the default datastore would
have columns for ParentName and ChildName, if the rule is a
generational dimension build rule, you can modify the metadata
datastore to match the columns within your generational dimension
build rule. The loadMarkets interface within the samples is an
example of performing a metadata load using a generational
dimension build rule.

Table 18–3 IKM SQL to Hyperion Essbase (METADATA) Options

Option Values Description

RULES_FILE Blank (Default) Specify the rules file for loading or building
metadata. If the rules file is present on the Essbase
server, then, only specify the file name, otherwise,
specify the fully qualified file name with respect to
the Oracle Data Integrator Agent.

RULE_SEPARATOR , (Default) (Optional) Specify a rule separator in the rules file.

These are the valid values:

■ Comma

■ Tab

■ Space

■ Custom character; for example, @, #, ^

Designing an Interface

Oracle Hyperion Essbase 18-7

RESTRUCTURE_
DATABASE

■ KEEP_ALL_
DATA
(Default)

■ KEEP_
INPUT_
DATA

■ KEEP_
LEVEL0_
DATA

■ DISCARD_
ALL_DATA

Restructure database after loading metadata in the
Essbasecube.

These are the valid values:

■ KEEP_ALL_DATA- Keep all the data

■ KEEP_INPUT_DATA Keep only

■ input data

■ KEEP_LEVEL0_DATA-Keep only

■ level 0 data

■ DISCARD_ALL_DATA-Discard all

■ data

Note: This option is applicable for the Essbase
Release 9.3 and later. For the Essbase releases prior
to 9.3, this option is ignored.

PRE_LOAD_MAXL_
SCRIPT

Blank (Default) Enable this option to execute a MAXL script before
loading metadata to the Essbase cube.

Specify a fully qualified path name (without blank
spaces) for the MAXL script file.

Note: To successfully execute this option, the
Essbase client must be installed and configured on
the machine where the Oracle Data Integrator
Agent is running.

POST_LOAD_MAXL_
SCRIPT

Blank (Default) Enable this option to execute a MAXL script after
loading metadata to the Essbase cube.

Specify a fully qualified path name (without blank
spaces) for the MAXL script file.

Note: To successfully execute this option, the
Essbase client must be installed and configured on
the machine where the Oracle Data Integrator
Agent is running.

ABORT_ON_PRE_
MAXL_ERROR

■ No (Default)

■ Yes

This option is only applicable if you are enabling
the PRE_LOAD_MAXL_SCRIPT option.

If you set the ABORT_ON_PRE_MAXL_ERROR
option to Yes, then the load process is aborted on
encountering any error while executing the
pre-MAXL script.

LOG_ENABLED ■ No (Default)

■ Yes

If this option is set to Yes, during the IKM process,
logging is done to the file specified in the LOG_
FILE_NAME option.

LOG_FILE_NAME <?=java.lang.Syst
em.getProperty
(“java.io.tmpdir”
)?>/Extract_<%
=snpRef.getFrom
()%>.log
(Default)

Specify a file name to log events of the IKM
process.

Table 18–3 (Cont.) IKM SQL to Hyperion Essbase (METADATA) Options

Option Values Description

Designing an Interface

18-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

18.5.2 Loading Data
Oracle Data Integrator provides the IKM SQL to Hyperion Essbase (DATA) for
loading data into an Essbase application.

You can load data into selected dimension members that are already created in
Essbase. For a successful data load, all the standard dimension members are required
and they should be valid members. You must set up the Essbase application before
you can load data into it.

You can also create a custom target to match a load rule.

Before loading data, ensure that the members (metadata) exist in the Essbase
dimension. The data load fails for records that have missing members and this
information is logged (if logging is enabled) as an error record and the data load
process will continue until the maximum error threshold is reached.

Table 18–4 lists the options of the IKM SQL to Hyperion Essbase (DATA). These
options define how the adapter loads and consolidates data in an Essbase application.

ERROR_LOG_
FILENAME

<?=java.lang.Syst
em.getProperty
(“java.io.tmpdir”
)?>/Extract_<%
=snpRef.getFrom
()%>.log
(Default)

Specify a file name to log the error records of the
IKM process.

Note: The data datastore can also be modified by adding or delete
columns to match the data load rule that will be used to perform the
data load.

Table 18–4 IKM SQL to Hyperion Essbase (DATA)

Option Values Description

RULES_FILE Blank (Default) (Optional) Specify a rules file to enhance the
performance of data loading.

Specify a fully qualified file name if the rules file is
not present on the Essbase server.

If the rules file option is not specified, then the
API-based data load is used. However, you cannot
specify the API.

RULE_SEPARATOR , (Default) (Optional) Specify a rule separator in the rules file.

These are the valid values:

■ Comma

■ Tab

■ Space

■ Custom character; for example, @, #, ^

Table 18–3 (Cont.) IKM SQL to Hyperion Essbase (METADATA) Options

Option Values Description

Designing an Interface

Oracle Hyperion Essbase 18-9

GROUP_ID Integer When performing multiple data loads in parallel,
many interfaces can be set to use the same
GROUP_ID. This GROUP _ID is used to manage
parallel loads allowing the data load to be
committed when the final interface for the
GROUP_ID is complete. For more information on
loading to parallel ASO cubes, refer to the Essbase
Database Administrators guide.

BUFFER_ID 1–1000000 Multiple data load buffers can exist on an
aggregate storage database. To save time, you can
load data into multiple data load buffers at the
same time. Although only one data load commit
operation on a database can be active at any time,
you can commit multiple data load buffers in the
same commit operation, which is faster than
committing buffers individually. For more
information on loading to parallel ASO cubes, refer
to the Essbase Database Administrators guide.

BUFFER_SIZE 0-100 When performing an incremental data load,
Essbase uses the aggregate storage cache for sorting

data. You can control how much of the cache a data
load buffer can use by specifying the percentage
(between 0 and 100% inclusive). By default, the
resource usage of a data load buffer is set to 100,
and the total resource usage of all data load buffers
created on a database cannot exceed 100. For
example, if a buffer of 90 exists, you cannot create
another buffer of a size greater than 10. A value of
0 indicates to Essbase to use a self-determined,
default load

buffer size.

CLEAR_DATABASE ■ None (Default)

■ All

■ Upper Blocks

■ Non-input
Blocks

Enable this option to clear data from the Essbase
cube before loading data into it.

These are the valid values:

■ None—Clear database will not happen

■ All—Clears all data blocksinput data

■ Upper Blocks—Clears all consolidated level
blocks

■ Non-Input Blocks—Clears blocks containing
values derived from calculations

Note: For ASO applications, the Upper Blocks and
Non-Input Blocks options will not be applicable.

CALCULATION_
SCRIPT

Blank (Default) (Optional) Specify the calculation script that you
want to run after loading data in the Essbase cube.

Provide a fully qualified file name if the calculation
script is not present on the Essbase server.

RUN_CALC_
SCRIPT_ONLY

■ No (Default)

■ Yes

This option is only applicable if you have specified
a calculation script in the CALCULATION_SCRIPT
option.

If you set the RUN_CALC_SCRIPT_ONLY option
to Yes, then only the calculation script is executed
without loading the data into the target Essbase
cube.

Table 18–4 (Cont.) IKM SQL to Hyperion Essbase (DATA)

Option Values Description

Designing an Interface

18-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

PRE_LOAD_MAXL_
SCRIPT

Blank (Default) Enable this option to execute a MAXL script before
loading data to the Essbase cube.

Specify a fully qualified path name (without blank
spaces) for the MAXL script file.

Note: Essbase client must be installed and
configured on the machine where the Oracle Data
Integrator Agent is running.

POST_LOAD_MAXL_
SCRIPT

Blank (Default) Enable this option to execute a MAXL script after
loading data to the Essbase cube.

Specify a fully qualified path name (without blank
spaces) for the MAXL script file.

Note: Essbase client must be installed and
configured on the machine where the Oracle Data
Integrator Agent is running.

ABORT_ON_PRE_
MAXL_ERROR

■ No (Default)

■ Yes

This option is only applicable if you are enabling
the PRE_LOAD_MAXL_SCRIPT option.

If you set the ABORT_ON_PRE_MAXL_ERROR
option to Yes, then the load process is aborted on
encountering any error while executing pre-MAXL
script.

MAXIMUM_ERRORS_
ALLOWED

1 (Default) Enable this option to set the maximum number of
errors to be ignored before stopping a data load.

The value that you specify here is the threshold
limit for error records encountered during a data
load process. If the threshold limit is reached, then
the data load process is aborted. For example, the
default value 1 means that the data load process
stops on encountering a single error record. If value
5 is specified, then data load process stops on
encountering the fifth error record. If value 0 (==
infinity) is specified, then the data load process
continues even after error records are encountered.

COMMIT_INTERVAL 1000 (Default) Commit Interval is the chunk size of records that
are loaded in the Essbase cube in a complete batch.

Enable this option to set the Commit Interval for
the records in the Essbase cube.

Changing the Commit Interval can increase
performance of data load based on design of the
Essbase database.

LOG_ENABLED ■ No (Default)

■ Yes

If this option is set to Yes, during the IKM process,
logging is done to the file specified in the LOG_
FILENAME option.

LOG_FILENAME <?=java.lang.Syste
m.getProperty

(“java.io.tmpdir”)?
/<%

=snpRef.getTargetT
able

("RES_
NAME")%>.log
(Default)

Specify a file name to log events of the IKM
process.

Table 18–4 (Cont.) IKM SQL to Hyperion Essbase (DATA)

Option Values Description

Designing an Interface

Oracle Hyperion Essbase 18-11

18.5.3 Extracting Data
This section includes the following topics:

■ Data Extraction Methods for Essbase

■ Extracting Essbase Data

■ Extracting Members from Metadata

18.5.3.1 Data Extraction Methods for Essbase
The Oracle Data Integrator Adapter for Essbase supports querying and scripting for
data extraction. To extract data, as a general process, create an extraction query and
provide the extraction query to the adapter. Before the adapter parses the output of the
extraction query and populates the staging area, a column validation is done. The
adapter executes the extraction query based on the results of the metadata output
query during the validation. The adapter does the actual parsing of the output query
only when the results of the column validation are successful.

After the extraction is complete, validate the results—make sure that the extraction
query has extracted data for all the output columns.

You can extract data with these Essbase-supported query and scripts:

■ Data Extraction Using Report Scripts

■ Data Extraction Using MDX Queries

■ Data Extraction Using Calculation Scripts

LOG_ERRORS ■ No (Default)

■ Yes

If this option is set to Yes, during the IKM process,
details of error records are logged to the file
specified in the ERROR_LOG_FILENAME option.

ERROR_LOG_
FILENAME

<?=java.lang.Syste
m.getProperty

(java.io.tmpdir”)?>
/<%

=snpRef.getTargetT
able

("RES_
NAME")%>.err

Specify a file name to log error record details of the
IKM process.

ERR_LOG_HEADER_
ROW

■ No (Default)

■ Yes

If this option is set to Yes, then the header row
containing the column names are logged to the
error records file.

ERR_COL_
DELIMITER

, (Default) Specify the column delimiter to be used for the
error records file.

ERR_ROW_
DELIMITER

\r\n (Default) Specify the row delimiter to be used for the error
records file.

ERR_TEXT_
DELIMITER

' (Default) Specify the text delimiter to be used for the column
data in the error records file.

For example, if the text delimiter is set as ' " '
(double quote), then all the columns in the error
records file will be delimited by double quotes.

Table 18–4 (Cont.) IKM SQL to Hyperion Essbase (DATA)

Option Values Description

Designing an Interface

18-12 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Data Extraction Using Report Scripts
Data can be extracted by parsing the reports generated by report scripts. The report
scripts can exist on the client computer as well as server, where Oracle Data Integrator
is running on the client computer and Essbase is running on the server. The column
validation is not performed when extracting data using report scripts. So, the output
columns of a report script is directly mapped to the corresponding connected column
in the source model. However, before you begin data extract using report scripts, you
must complete these tasks:

■ Suppress all formatting in the report script. Include this line as the first line in the
report script—{ROWREPEAT SUPHEADING SUPFORMAT SUPBRACKETS
SUPFEED SUPCOMMAS NOINDENTGEN TABDELIMIT DECIMAL 15}.

■ The number of columns produced by a report script must be greater than or equal
to the connected columns from the source model.

■ The column delimiter value must be set in the LKM option.

Data Extraction Using MDX Queries
An MDX query is an XML-based data-extraction mechanism. You can specify the
MDX query to extract data from an Essbase application. However, before you begin
data extract using MDX queries, you must complete these tasks:

■ The names of the dimension columns must match with the dimensions in the
Essbase cube.

■ For Type 1 data extraction, all the names of data columns must be valid members
of a single standard dimension.

■ For Type 1 data extraction, it is recommended that the data dimension exists in the
lower level axis, that is, axis (0) of columns. If it is not specified in the lowest level
axis then the memory consumption would be high.

■ If columns are connected with the associated attribute dimension from the source
model, then, the same attribute dimension must be selected in the MDX query.

■ The script of the MDX query can be present on the client computer or the server.

Data Extraction Using Calculation Scripts
Calculation scripts provide a faster option to extract data from an Essbase application.
However, before you extract data using the calculation scripts, take note of these
restrictions:

■ Data extraction using calculation scripts is supported ONLY for BSO applications.

■ Data extraction using calculation scripts is supported ONLY for the Essbase
Release 9.3 and later.

■ Set the DataExportDimHeader option to ON.

■ (If used) Match the DataExportColHeader setting to the data column dimension
(in case of multiple data columns extraction).

■ The Oracle Data Integrator Agent, which is used to extract data, must be running
on the same machine as the Essbase server.

■ When accessing calculation scripts present on the client computer, a fully qualified
path to the file must be provided, for example, C:\Essbase_Samples\Calc_Scripts
\calcall.csc, where as, to access calculation scripts present on the server, only the
file name is sufficient.

Designing an Interface

Oracle Hyperion Essbase 18-13

18.5.3.2 Extracting Essbase Data
Oracle Data Integrator provides the LKM Hyperion Essbase DATA to SQL for
extracting data from an Essbase application.

You can extract data for selected dimension members that exist in Essbase. You must
set up the Essbase application before you can extract data from it.

Table 18–5 provides the options of the LKM Hyperion Essbase Data to SQL. These
options define how Oracle Data Integrator Adapter for Essbase extracts data.

Table 18–5 LKM Hyperion Essbase DATA to SQL Options

Option Values Description

PRE_CALCULATION_
SCRIPT

Blank (Default) (Optional) Specify the calculation script that
you want to run before extracting data from
the Essbase cube.

EXTRACTION_
QUERY_TYPE

■ ReportScript
(Default)

■ MDXQuery

■ CalcScript

Specify an extraction query type—report
script, MDX query, or calculation script.

Provide a valid extraction query, which fetches
all the data to fill the output columns.

The first record (first two records in case of
calculation script) contains the meta
information of the extracted data.

EXTRACTION_
QUERY_FILE

Blank (Default) Specify a fully qualified file name of the
extraction query.

EXT_COL_
DELIMITER

\t (Default) Specify the column delimiter for the extraction
query.

If no value is specified for this option, then
space (“ “) is considered as column delimiter.

EXTRACT_DATA_
FILE_IN_CALC_
SCRIPT

Blank (Default) This option is only applicable if the query type
in the EXTRACTION_QUERY_TYPE option is
specified as CalcScript.

Specify a fully qualified file location where the
data is extracted through the calculation
script..

PRE_EXTRACT_MAXL Blank (Default) Enable this option to execute a MAXL script
before extracting data from the Essbase cube.

POST_EXTRACT_
MAXL

Blank (Default) Enable this option to execute a MAXL script
after extracting data from the Essbase cube.

ABORT_ON_PRE_
MAXL_ERROR

■ No (Default)

■ Yes

This option is only applicable if the PRE_
EXTRACT_MAXL option is enabled.

If the ABORT_ON_PRE_MAXL_ERROR
option is set to Yes, while executing pre-MAXL
script, the load process is aborted on
encountering any error.

LOG_ENABLED ■ No (Default)

■ Yes

If this option is set to Yes, during the LKM
process, logging is done to the file specified in
the LOG_FILE_NAME option.

LOG_FILENAME <?=java.lang.System.g
etProperty
(“java.io.tmpdir”)?/<
%
=snpRef.getTargetTab
le("RES_
NAME")%>.log
(Default)

Specify a file name to log events of the LKM
process.

Designing an Interface

18-14 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

18.5.3.3 Extracting Members from Metadata
Oracle Data Integrator provides the LKM Hyperion Essbase METADATA to SQL for
extracting members from a dimension in an Essbase application.

To extract members from selected dimensions in an Essbase application, you must set
up the Essbase application and load metadata into it before you can extract members
from a dimension.

Before extracting members from a dimension, ensure that the dimension exists in the
Essbase database. No records are extracted if the top member does not exist in the
dimension.

Table 18–6 lists the options of the LKM Hyperion Essbase METADATA to SQL. These
options define how Oracle Data Integrator Adapter for Oracle's Hyperion Essbase
extracts dimension members.

MAXIMUM_ERRORS_
ALLOWED

1 (Default Enable this option to set the maximum number
of errors to be ignored before stopping extract.

LOG_ERRORS ■ No (Default)

■ Yes

If this option is set to Yes, during the LKM
process, details of error records are logged to
the file specified in the ERROR_LOG_
FILENAME option.

ERROR_LOG_
FILENAME

<?=java.lang.System.g
etProperty(java.io.tmp
dir”)?>/<%=snpRef.g
etTargetTable("RES_
NAME")%>.err

Specify a file name to log error record details
of the LKM process.

ERR_LOG_HEADER_
ROW

■ No (Default)

■ Yes

If this option is set to Yes, then the header row
containing the column names are logged to the
error records file.

ERR_COL_
DELIMITER

, (Default) Specify the column delimiter to be used for the
error records file.

ERR_ROW_
DELIMITER

\r\n (Default) Specify the row delimiter to be used for the
error records file.

ERR_TEXT_
DELIMITER

' (Default) Specify the text delimiter to be used for the
column data in the error records file.

For example, if the text delimiter is set as ' " '
(double quote), then all the columns in the
error records file are delimited by double
quotes.

DELETE_
TEMPORARY_
OBJECTS

■ No (Default)

■ Yes

Set this option to No, in order to retain
temporary objects (tables, files, and scripts)
after integration.

This option is useful for debugging.

Table 18–5 (Cont.) LKM Hyperion Essbase DATA to SQL Options

Option Values Description

Designing an Interface

Oracle Hyperion Essbase 18-15

Table 18–6 LKM Hyperion Essbase METADATA to SQL

Option Values Description

MEMBER_FILTER_
CRITERIA

IDescendants,
(Default)

Enable this option to select members from the
dimension hierarchy for extraction. You can
specify these selection criteria:

■ IDescendants

■ Descendants

■ IChildren

■ Children

■ Member_Only

■ Level0

■ UDA

MEMBER_FILTER_
VALUE

Blank (Default) Enable this option to provide the member name
for applying the specified filter criteria. If no
member is specified, then the filter criteria is
applied on the root dimension member.

If the MEMBER_FILTER_CRITERIA value is
MEMBER_ONLY or UDA, then the MEMBER_
FILTER_VALUE option is mandatory and
cannot be an empty string.

LOG_ENABLED ■ No (Default)

■ Yes

If this option is set to Yes, during the LKM
process, logging is done to the file specified by
the LOG_FILE_NAME option.

LOG_FILE_NAME <?=java.lang.System.
getProperty

(java.io.tmpdir”)?>/E
xtract_<%

=snpRef.getFrom()%
>.log

Specify a file name to log events of the LKM
process.

MAXIMUM_ERRORS_
ALLOWED

1 (Default) Enable this option to set the maximum number
of errors to be ignored before stopping extract.

LOG_ERRORS ■ No (Default)

■ Yes

If this option is set to Yes, during the LKM
process, details of error records are logged to the
file specified in the ERROR_LOG_FILENAME
option.

ERROR_LOG_
FILENAME

<?=java.lang.System.
getProperty

(java.io.tmpdir”)?>/E
xtract_<%

=snpRef.getFrom()%
>.err

Specify a file name to log error record details of
the LKM process.

ERR_LOG_HEADER_
ROW

■ No (Default)

■ Yes

If this option is set to Yes, then the header row
containing the column names are logged to the
error records file.

ERR_COL_
DELIMITER

, (Default) Specify the column delimiter to be used for the
error records file.

ERR_ROW_
DELIMITER

\r\n (Default) Specify the row delimiter to be used for the error
records file.

Designing an Interface

18-16 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

ERR_TEXT_
DELIMITER

■ Blank (Default)

■ \"

■ \"

Specify the text delimiter to be used for the data
column in the error records file. For example, if
the text delimiter is set as ' " ' (double quote),
then all the columns in the error records file are
delimited by double quotes.

DELETE_
TEMPORARY_
OBJECTS

■ No (Default)

■ Yes

Set this option to No, in order to retain
temporary objects (tables, files, and scripts) after
integration.

This option is useful for debugging.

Table 18–6 (Cont.) LKM Hyperion Essbase METADATA to SQL

Option Values Description

19

Oracle Hyperion Financial Management 19-1

19Oracle Hyperion Financial Management

This chapter describes how to work with Oracle Hyperion Financial Management in
Oracle Data Integrator.

This chapter includes the following sections:

■ Section 19.1, "Introduction"

■ Section 19.2, "Installation and Configuration"

■ Section 19.3, "Setting up the Topology"

■ Section 19.4, "Creating and Reverse-Engineering a Financial Management Model"

■ Section 19.5, "Designing an Interface"

■ Section 19.6, "Data Store Tables"

19.1 Introduction
Oracle Data Integrator Adapter for Hyperion Financial Management enables you to
connect and integrate Hyperion Financial Management with any database through
Oracle Data Integrator. The adapter provides a set of Oracle Data Integrator
Knowledge Modules (KMs) for loading and extracting metadata and data and
consolidating data in Financial Management applications.

19.1.1 Integration Process
You can use Oracle Data Integrator Adapter for Hyperion Financial Management to
perform these data integration tasks on a Financial Management application:

■ Load metadata and data

■ Extract data

■ Consolidate data

■ Enumerate members of member lists

Using the adapter to load or extract data involves these tasks:

■ Setting up an environment: defining data servers and schemas

See Section 19.3, "Setting up the Topology".

■ Reverse-engineering a Financial Management application using the
Reverse-engineering Knowledge Module (RKM)

See Section 19.4, "Creating and Reverse-Engineering a Financial Management
Model".

Installation and Configuration

19-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ Loading metadata and data using Integration Knowledge Modules (IKM)

 See Section 19.5, "Designing an Interface"

■ Extracting data and members using Load Knowledge Modules (LKM)

See Section 19.5, "Designing an Interface"

19.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 19–1 for
handling Hyperion Financial Management data. These KMs use Hyperion Financial
Management specific features. It is also possible to use the generic SQL KMs with the
Financial Management database. See Chapter 4, "Generic SQL" for more information.

19.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
Oracle Data Integrator Adapter for Financial Management:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

19.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

Table 19–1 Hyperion Financial Management Knowledge Modules

Knowledge Module Description

RKM Hyperion Financial Management Reverse-engineers Financial Management applications and creates
data models to use as targets or sources in Oracle Data Integrator
interfaces.

IKM SQL to Hyperion Financial
Management Data

Integrates data into Financial Management applications.

IKM SQL to Hyperion Financial
Management Dimension

Integrates metadata into Financial Management applications.

LKM Hyperion Financial Management
Data to SQL

Loads data from a Financial Management application to any SQL
compliant database used as a staging area.

This knowledge module will not work if you change the column
names of the HFMData data store reverse engineered by the RKM
Hyperion Financial Management knowledge module.

LKM Hyperion Financial Management
Members To SQL

Loads member lists from a Financial Management application to any
SQL compliant database used as a staging area.

Creating and Reverse-Engineering a Financial Management Model

Oracle Hyperion Financial Management 19-3

19.2.2 Technology Specific Requirements
There are no technology-specifc requirements for using the Oracle Data Integrator
Adapter for Financial Management.

19.2.3 Connectivity Requirements
There are no connectivity-specific requirements for using the Oracle Data Integrator
Adapter for Financial Management.

19.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating an Hyperion Financial Management Data Server

2. Creating an Hyperion Financial Management Physical Schema

19.3.1 Creating an Hyperion Financial Management Data Server
Create a data server for the Hyperion Financial Management technology using the
standard procedure, as described in "Creating a Data Server" of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator. This section details only the
fields required or specific for defining a Hyperion Financial Management data server:

1. In the Definition tab:

■ Name: Enter a name for the data server definition.

■ Cluster (Data Server): Enter the Financial Management cluster name.

2. Under Connection, enter a user name and password for connecting to the
Financial Management server.

19.3.2 Creating an Hyperion Financial Management Physical Schema
Create a Hyperion Financial Management physical schema using the standard
procedure, as described in "Creating a Physical Schema" of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator.

Under Application (Catalog), specify a FinancialManagement application.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

19.4 Creating and Reverse-Engineering a Financial Management Model
This section contains the following topics:

■ Create an Financial Management Model

■ Reverse-Engineer an Financial Management Model

Note: The Test button does not work for a Hyperion Financial
Management data server connection; it works only for relational
technologies that have a JDBC driver.

Designing an Interface

19-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

19.4.1 Create an Financial Management Model
Create an Financial Management Model using the standard procedure, as described in
"Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data
Integrator.

19.4.2 Reverse-Engineer an Financial Management Model
Reverse-engineering a Financial Management application creates an Oracle Data
Integrator model that includes a data store for each dimension in the application, a
data store for data, an optional data store for data with multiple periods, and an
EnumMemberList data store.

To perform a Customized Reverse-Engineering on Hyperion Financial Management
with a RKM, use the usual procedure, as described in "Reverse-engineering a Model"
of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section
details only the fields specific to the Hyperion Financial Management technology.

1. In the Reverse tab of the Financial Management Model, select the RKM Hyperion
Financial Management.

2. Set the KM options as follows:

■ CREATE_HFMDATA_MULTIPLEPERIODS: Set to Yes to create an additional
data store for data with multiple periods. The number of periods for that
model is specified by the MULTIPERIOD_COUNT option.

Default is No.

■ MULTIPERIOD_COUNT: Specifies the number of periods for the HFMData_
MultiplePeriod table.

The RKM connects to the application (which is determined by the logical schema and
the context) and imports some or all of these data stores, according to the dimensions
in the application:

■ HFMData: For loading and extracting data

■ HFMData_MultiplePeriods: For data with the number of periods specified by the
option MULTIPERIODS_COUNT

■ Account: For loading the Account dimension.

■ Entity: For loading the Entity dimension.

■ Scenario: For loading the Scenario dimension.

■ Currency: For loading the currency dimension.

■ Custom1-4: For loading the Custom1-4 dimensions.

■ EnumMembersList-For extracting a members list.

See Section 19.6, "Data Store Tables" for more information about these tables.

19.5 Designing an Interface
After reverse-engineering a Financial Management application as a model, you can
use the data stores in this model in these ways:

Note: This data store is imported only if the CREATE_HFMDATA_MULTIPLEPERIODS
option is set to Yes in the model definition.

Designing an Interface

Oracle Hyperion Financial Management 19-5

■ As targets of interfaces for loading data and metadata into the application The
following figure shows the flow of an interface targeting Financial Management.

■ As sources of interfaces for extracting data and member lists from the application
The following figure shows the flow of an interface with a Financial Management
source.

The KM choice for an interface determines the abilities and performance of this
interface. The recommendations in this section help in the selection of the KM for
different situations concerning Hyperion Financial Management.

This section contains the following topics:

■ Loading Metadata

■ Loading Data

■ Extracting Data

19.5.1 Loading Metadata
Oracle Data Integrator provides the IKM SQL to Hyperion Financial Management
Dimension for loading metadata into a Finanacial Management application.

Metadata comprises dimension members. You must load members, or metadata,
before you load data values for the members.

You can load members only to existing Financial Management dimensions. You must
use a separate interface for each dimension that you load. You can chain interfaces to
load metadata into several dimensions at once.

The IKM SQL to Hyperion Financial Management Dimension supports the following
options for defining how the adapter loads metadata into a Financial Management
application:

■ REPLACE_MODE: If set to Yes, metadata is replaced in the application (Replace);
if set to No, metadata is overwritten in the application (Merge). Valid values: Yes
or No (default).

■ CLEAR_ALL_METADATA_BEFORE_LOADING: If set to Yes, all metadata is
cleared before loading. Valid values: Yes or No (default).

■ LOG_ENABLED: If set to Yes, logging is done during the load process to the file
specified by theLOG_FILE_NAME option. Valid values: Yes or No (default).

■ LOG_FILE_NAME: The name of the file where logs are saved; default: Java
temp folder/dimension.log

19.5.2 Loading Data
Oracle Data Integrator provides the IKM SQL to Hyperion Financial Management
Data for loading data into a Financial Management application.

You can load data into selected dimension members that are already created in
Financial Management. You must set up the Financial Management application before
you can load data into it.

Caution: If you set this option to Yes, you lose any active data or
journals in the application.

Designing an Interface

19-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Before loading data, ensure that the members (metadata) exist in the Financial
Management relational database. A data load fails if the members do not exist.

The IKM SQL to Hyperion Financial Management Data supports the following options
for defining how the adapter loads and consolidates data in a Financial Management
application:

■ IMPORT_MODE: Determines how data in the application cells is handled during
data load. Valid values are:

■ Merge (default): For each unique point of view that exists in the load data and
in the application, the load data overwrites the data in the application. For
each unique point of view that is in the load data but not in the application,
the load data is loaded into the application.

■ Replace: For each unique point of view in the load data, the system
clearscorresponding values from the application, and then the data is loaded.

■ Replace by Security: For each unique point of view in the load data to
which the user has full access rights, the system clears corresponding values
from the application, and then the data is loaded. Cells to which the user lacks
full access are ignored.

■ Accumulate:For each unique point of view that exists in the load data and in
the application, the value from the load data is added to the value in the
application.

■ ACCUMULATE_WITHIN_FILE: If set to Yes, multiple values for the same cells in
the load data are added before they are loaded into the application. Valid values:
Yes or No (default).

■ FILE_CONTAINS_SHARE_DATA: Set to Yes if the load file contains ownership
data, such as shares owned. Valid values: Yes or No (default).

■ CONSOLIDATE_AFTER_LOAD: If set to Yes, data is consolidated after being
loaded. Valid values: Yes or No (default).

■ CONSOLIDATE_ONLY: If set to Yes, data is consolidated but not loaded. Valid
values: Yes and No .

■ CONSOLIDATE_PARAMETERS: Specifies the parameters for consolidation as
comma-separated values in this order: Scenario (required), Year, Period,
Parent.Entity, and Type; default: an empty string.

Valid Type parameter settings:

■ "I" = Consolidate

Note: Use the HFMData or HFMData_MultiplePeriods data stores
from a Hyperion Financial Management model as the target data store
of your integration interface.

Note: Unless the connected user has full access rights to all specified cells, no data is changed.

Caution: If ownership data is included in the file and this option is set to No, an error occurs
when you load the file.

Designing an Interface

Oracle Hyperion Financial Management 19-7

■ "D" = Consolidate All with Data

■ "A" = Consolidate All

■ "C" = Calculate Contribution

■ "F"= Force Calculate Contribution

Example: Actual,1999,2,EastRegion.EastSales,A

■ LOG_ENABLED: If set to Yes, logging is done during the load process to the file
specified by the LOG_FILE_NAME option. Valid values: Yes or No (default)

■ LOG_FILE_NAME: The name of the file where logs are saved; default: Java
temp folder/HFMData.logor HFMData_MultiplePeriod.log.

19.5.3 Extracting Data
You can extract data for selected dimension members that exist in Financial
Management. You must set up the Financial Management application before you can
extract data from it.

Before extracting data, ensure that the members (metadata) exist in the Financial
Management relational database; no records are extracted for members that do not
exist (including the driver member and the members specified in the point of view.)

This section includes the following topics:

■ Extracting Financial Management Data

■ Extracting Members from Member Lists

19.5.3.1 Extracting Financial Management Data
Oracle Data Integrator provides the LKM Hyperion Financial Management Data to
SQL for extracting data from an Essbase application.

Use as a source the source data store (HFMData) from a Hyperion Financial
Management model.

LKM Hyperion Financial Management Data to SQL supports the following options for
defining how Oracle Data Integrator Adapter for Hyperion Financial Management
extracts data:

■ SCENARIO_FILTER: The Scenario dimension members for which you are
exporting data.

You can specify comma-delimited Scenario members or one scenario. If you do
not specify scenarios, the system exports data for all scenarios.

■ YEAR_FILTER: The Year dimension members for which you are exporting data

You can specify comma-delimited years or one year. If you do not specify years,
the system exports data for all years.

■ PERIOD_FILTER: The set of Period dimension members for which you are
exporting data.

Specify a range of members using the ~ character between start and end period
numbers; for example, 1~12. If you do not specify periods, the system exports data
for only the first period.

■ ENTITY_FILTER: The Entity dimension members for which you are exporting
data

Designing an Interface

19-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

You can specify comma-delimited entities or one entity. To specify the parent and
child, separate them with a period; for example, I.Connecticut. If you do not
specify entities, the system exports data for all entities.

■ ACCOUNT_FILTER: The Account dimension members for which you are
exporting data.

You can specify comma-delimited accounts or one account. If you do not specify
accounts, the system exports data for all accounts.

■ VIEW_FILTER: The View dimension member for which you are exporting data
Possible values: Periodic, YTD, or <Scenario_View> (default)

■ LOG_ENABLED: If set to Yes, logging is done during the extract process to the
file specified inLOG_FILE_NAME

■ LOG_FILE_NAME: The name of the file where logs are saved

■ DELETE_TEMPORARY_OBJECTS: If set to Yes (default), tables, files, and scripts
are deleted after integration.

19.5.3.2 Extracting Members from Member Lists
Oracle Data Integrator provides the LKM Hyperion Financial Management Members
to SQL for extracting members from a dimension in an Essbase application.

You can extract members fromselected member lists and dimensions in a Financial
Management application. You must set up the Financial Management application and
load member lists into it before you can extract members from a member list for a
dimension.

Before extracting members from a member list for a dimension, ensure that the
member list and dimension exist in the Financial Management relational database. No
records are extracted if the top member does not exist in the dimension.

Use as a source the source data store (EnumMembersList) from a Hyperion Financial
Management model.

The LKM Hyperion Financial Management Members to SQL supports the following
options for defining how Oracle Data Integrator Adapter for Hyperion Financial
Management extracts members of member lists:

■ DIMENSION_NAME: The name of the dimension for which you are creating a
member list; required.

■ MEMBER_LIST_NAME: A label for the member list; required.

■ TOP_MEMBER: The top member of the member list.

■ LOG_ENABLED: If set to Yes, logging is done during the extract process to the
file specified by the LOG_FILE_NAME option. Valid values: Yes and No (default)
.

■ LOG_FILE_NAME: The name of the file where logs are saved.

■ DELETE_TEMPORARY_OBJECTS: If set to Yes (default), tables, files, and scripts
are deleted after integration.

Tip: Temporary objects can be useful for resolving issues.

Tip: Temporary objects can be useful for resolving issues.

Data Store Tables

Oracle Hyperion Financial Management 19-9

19.6 Data Store Tables
The IKM SQL to Hyperion Financial Management loads columns in tables to create
data stores. The following tables describe the columns in each data store:

■ HFMData

■ HFMData_MultiplePeriods

■ Account

■ Entity

■ Scenario

■ Currency

■ Custom1-4

■ EnumMembersList

For Table 19–2 note that if custom dimensions have aliases, the aliases (rather than
CustomN) are displayed as column names.

For Table 19–3 note that if custom dimensions have aliases, the aliases (rather than
CustomN) are displayed as column names.

Note: In the following tables, the column types are String unless the column descriptions
specify otherwise.

Table 19–2 HFMData

Column Description

Scenario A Scenario dimension member; example: Actual

Year A Year dimension member; example: 2000

Entity An Entity dimension member, in parent.child format. For
example: United States.NewYork to specify member
NewYork as a child of member United States.

Account An Account dimension member; example: Sales

Value A Value dimension member; example: USD

ICP An Intercompany Partner dimension member; example: [ICP
Entities]

Custom1 A Custom1 dimension member; example: AllCustomers

Custom2 A Custom2 dimension member

Custom3 A Custom3 dimension member

Custom4 A Custom4 dimension member

Period A Period dimension member

Data Value The value associated with the intersection. This value is passed
as a Double.

Description A description of the data value

Data Store Tables

19-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 19–3 HFMData_MultiplePeriods

Column Description

Scenario A Scenario dimension member; example: Actual

Year A Year dimension member; example: 2000

Entity An Entity dimension member, in parent.child format. For
example: United States.NewYork to specify member
NewYork as a child of member United States.

Account An Account dimension member; example: Sales

Value A Value dimension member; example: USD

ICP An Intercompany Partner dimension member; example: [ICP
Entities]

Custom1 A Custom1 dimension member; example: AllCustomers

Custom2 A Custom2 dimension member

Custom3 A Custom3 dimension member

Custom4 A Custom4 dimension member

Period1..n For every data value being loaded, a period must be specified.
The number of periods to be loaded for each intersection is
specified when the Hyperion Financial Management model is
reversed. A period column is created for each specified period.

Data Value1..n Data values to be loaded. The number of periods to be loaded
for each intersection is specified when the Hyperion Financial
Management model is reversed. A data value column is created
for each specified period. This value is passed as a Double.

Description1..n A description for each data value

Table 19–4 Account

Column Description

Member An account table; required

Description A description for the account; required

Parent Member The parent account member

Account Type Required; Valid account types:

■ ASSET

■ LIABILITY

■ REVENUE

■ EXPENSE

■ FLOW

■ BALANCE

■ BALANCERECURRING

■ CURRENCYRATE

■ GROUPLABEL

■ DYNAMIC

Is Calculated Whether the account is calculated.

Valid values: Y if the account is calculated, or N (default) if it is
not calculated and manual input is enabled

Data Store Tables

Oracle Hyperion Financial Management 19-11

Is Consolidated Whether the account is consolidated into a parent account Valid
values: Y if the account is consolidated into a parent, or N
(default) if it is not.

Is ICP Whether intercompany transactions are allowed for this account.
Valid values:

■ Y if ICP transactions, including self-ICP transactions, are
allowed

■ N (default) if ICP transactions are not allowed

■ R if ICP transactions are allowed but the account is
restricted from having ICP transactions with itself

If you specify Y or R, enter the name of the ICP TopMember. If
you do not enter the top member, the default, [ICP TOP], is
used.

Plug Account The name of the account used for identifying discrepancies in
intercompany transactions; required if intercompany
transactions are allowed for this account.

Custom 1...4 TopMember The top member in the hierarchy of a Custom dimension that is
valid for the account.

The specified member, including all of its parents and
descendants, is valid for the account. All other members of the
Custom dimension are not valid for the account. These columns
required if intercompany transactions are allowed for this
account.

Number of Decimal Places The number of digits to display to the right of the decimal point
for the account values; required.

Specify an integer from 0 (default) to 9.

Use Line Items Whether the account can have line items.Valid values: Y if the
account uses line items, or N (default) if it does not.

Aggr Custom 1...4 Whether aggregation is enabled for intersections of the account
and the Customdimensions. This column is used for special
totals, not summing.

Valid values: Y (default) if the account is allowed to aggregate
with Custom dimensions, or N if it is not .

User Defined 1...3 Optional custom text for the account

XBRL Tag Optional XBRL tag for the account

Security Class The name of the security class that defines users who can access
the account data. Default: DEFAULT security class.

ICP Top Member The top member of the ICP group assigned to the account

Enable Data Audit Whether data auditing is enabled for the account.

Valid values: Y (default) to enable auditing, or N to disable
auditing

Description 2...10 Optional additional descriptions for the account

Table 19–5 Entity

Column Description

Member An entity label; required

Description A description for the entity; required

Table 19–4 (Cont.) Account

Column Description

Data Store Tables

19-12 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Parent Member The parent entity member

Default Currency The default currency for the entity; required.

Allow Adj Valid values: Y if journal postings are permitted, or N (default) if
journal entries are not permitted.

Is ICP Valid values: Y if the entity is an intercompany entity, or N
(default) if it is not.

Note: An intercompany entity is displayed in the POV in the ICP
dimensions under [ICP Entities].

Allow Adj From Child Valid values: Y if journal postings from children of this parent
entity are permitted, or N (default) if they are not.

Security Class The name of the security class that defines users who can access
the entity’s data. Default: DEFAULT security class.

User Defined 1...3 Optional custom text for the entity

Holding Company The holding company for the entity. Valid values: Any valid
entity or blank (default).

Description 2...10 Optional additional descriptions for the entity

Table 19–6 Scenario

Column Description

Member A scenario label; required

Description A description for the scenario; required

Parent Member The parent Scenario member

Default Frequency Period types for which data input is valid for the scenario;
required.

Default View Whether the view is YTD or Periodic; required.

Zero View Non Adj Whether the view is YTD or Periodic when missing, nonadjusted
data values exist; required.

Zero View Adj Whether the view is YTD or Periodic when missing, adjusted
data values exist; required.

Consol YTD The view for consolidations; required

Valid values: Y for YTD, or N for Periodic

Support PM Whether Process Management command is enabled in Data
Explorer; required.

Valid values: Y to enable Process Management, or N to disable
Process Management

Security Class The name of the security class that defines users who can access
the scenario data. Default: DEFAULT security class.

Maximum Review Level The maximum process management review level for the
scenario.

Enter an integer from 1 to 10.

Use Line Items Valid values: Y if the scenario can accept line items, or N
(default) if it cannot.

Enable Data Audit Valid values: Y to enable auditing, or N (default) to disable
auditing.

Table 19–5 (Cont.) Entity

Column Description

Data Store Tables

Oracle Hyperion Financial Management 19-13

Def Freq For IC Trans The default frequency for intercompany transactions.

Enter a string that identifies a valid frequency for the
application. The default value is an empty string, representing
no default frequency.

User Defined 1...3 Optional custom text for the scenario

Description 2...10 Optional additional descriptions for the scenario

Table 19–7 Currency

Column Description

Member A currency label; required

Description A description for the currency; required

Scale The unit in which amounts are displayed and stored for the
currency, which identifies where the decimal point is placed;
required

Must be one of the following valid integer values:

■ Blank = None

■ 0 = Units

■ 1 = Tens

■ 2 = Hundreds

■ 3 = Thousands

■ 4 = Ten Thousands

■ 5 = Hundred Thousands

■ 6 = Millions

■ 7 = Ten Millions

■ 8 = Hundred Millions

■ 9 = Billions

Translation Operator Whether conversions for the currency are calculated by
multiplying or dividing the translation rate.

Valid values: D to divide (default) or M to multiply

Description 2...10 Optional additional descriptions for the currency

Table 19–8 Custom1-4

Column Description

Member The label of a custom dimension member; required

Description A description for the custom dimension member; required

Parent Member The parent custom member; required

Is Calculated Whether the base-level custom account is calculated.

If a base-level custom account is calculated, you cannot
manually enter values.

Valid values: Y if the account is calculated, N if it is not
calculated.

Table 19–6 (Cont.) Scenario

Column Description

Data Store Tables

19-14 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Switch Sign Whether the sign is changed (Debit/Credit) for FLOW accounts
using the following rules:

■ ASSET to LIABILITY

■ LIABILITY to ASSET

■ EXPENSE to REVENUE

■ REVENUE to EXPENSE

■ BALANCE to FLOW

■ FLOW to BALANCE

Valid values: Y if the account type is switched, or N if it is not
switched

Switch Type The account type change for FLOW accounts, following these
rules:

■ ASSET to EXPENSE

■ EXPENSE to ASSET

■ LIABILITY to REVENUE

■ REVENUE to LIABILITY

■ BALANCE to FLOW

■ FLOW to BALANCE

Valid values: Y if the account type is switched, or N if it is not
switched

Security Class The name of the security class that defines users who can access
the custom dimension member data. Default: DEFAULT
security class.

User Defined 1...3 Optional custom text for the custom dimension member

Aggr Weight The aggregation weight for the custom dimensions; passed as
Double

Default: 1

Description 2...10 Optional additional descriptions for the custom dimension
member

Table 19–9 EnumMembersList

Column Description

Member The members of the member list

Table 19–8 (Cont.) Custom1-4

Column Description

20

Oracle Hyperion Planning 20-1

20Oracle Hyperion Planning

This chapter describes how to work with Oracle Hyperion Planning in Oracle Data
Integrator.

This chapter includes the following sections:

■ Section 20.1, "Introduction"

■ Section 20.2, "Installation and Configuration"

■ Section 20.3, "Setting up the Topology"

■ Section 20.4, "Creating and Reverse-Engineering a Planning Model"

■ Section 20.5, "Designing an Interface"

■ Section 20.6, "Datastore Tables and Data Load Columns"

20.1 Introduction
Oracle Data Integrator Adapter for Hyperion Planning enables you to connect and
integrate Oracle's Hyperion Planning with any database through Oracle Data
Integrator. The adapter provides a set of Oracle Data Integrator Knowledge Modules
(KMs) for loading metadata and data into Planning, Oracle's Hyperion Workforce
Planning, and Oracle's Hyperion Capital Expense Planning applications.

20.1.1 Integration Process
Loading a Planning application with metadata and data using Oracle Data Integrator
Adapter for Hyperion Planning involves these tasks:

■ Setting up an environment: Defining data servers and schemas

See Section 20.3, "Setting up the Topology".

■ Reverse-engineering a Planning application using the adapter's
Reverse-engineering Knowledge Module (RKM)

See Section 20.4, "Creating and Reverse-Engineering a Planning Model".

■ Loading metadata and data into the Planning application using the adapter's
Integration Knowledge Module (IKM)

See Section 20.5, "Designing an Interface".

20.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 20–1 for
handling Hyperion Planning data. These KMs use Hyperion Planning specific

Installation and Configuration

20-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

features. It is also possible to use the generic SQL KMs with the Hyperion Planning
database. See Chapter 4, "Generic SQL" for more information.

20.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
Oracle Data Integrator Adapter for Planning:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

20.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

20.2.2 Technology Specific Requirements
There are no technology-specifc requirements for using the Oracle Data Integrator
Adapter for Planning.

20.2.3 Connectivity Requirements
There are no connectivity-specific requirements for using the Oracle Data Integrator
Adapter for Planning.

20.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating an Hyperion Planning Data Server

2. Creating an Hyperion Planning Physical Schema

Table 20–1 Hyperion Planning Knowledge Modules

Knowledge Module Description

RKM Hyperion Planning Reverse-engineers Planning applications and creates data models to
use as targets in Oracle Data Integrator interfaces.

Each dimension (standard dimension and attribute dimension) is
reversed as a datastore with the same name as the dimension with
appropriate columns. Creates a datastore named "UDA" for loading
UDA's.

IKM SQL to Hyperion Planning Loads metadata and data into Planning applications.

Creating and Reverse-Engineering a Planning Model

Oracle Hyperion Planning 20-3

20.3.1 Creating an Hyperion Planning Data Server
Create a data server for the Hyperion Planning technology using the standard
procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator. This section details only the fields required
or specific for defining a Hyperion Planning data server:

1. In the Definition tab:

■ Name: Enter a name for the data server definition.

■ Server (Data Server): Enter the Planning application host name and RMI port
number in this format: <host>:<port>.

2. Under Connection, enter a user name and password for connecting to the
Planning server.

20.3.2 Creating an Hyperion Planning Physical Schema
Create a Hyperion Planning physical schema using the standard procedure, as
described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator.

Under a data server, you can define a physical schema corresponding to an application
and the logical schemas on which models are based.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

20.4 Creating and Reverse-Engineering a Planning Model
This section contains the following topics:

■ Create a Planning Model

■ Reverse-engineer a Planning Model

20.4.1 Create a Planning Model
Create a Planning Model using the standard procedure, as described in "Creating a
Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator

20.4.2 Reverse-engineer a Planning Model
Reverse-engineering a Planning application creates an Oracle Data Integrator model
that includes a datastore for each dimension in the application. Note that the
Year/Period/Version/Scenario are not reverse-engineered.

To perform a Customized Reverse-Engineering on Hyperion Planning with a RKM,
use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle
Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only
the fields specific to the Hyperion Planning technology.

1. In the Reverse tab of the Planning Model, select the RKM Hyperion Planning.

Note: The Test button does not work for a Hyperion Planning data
server connection. This button works only for relational technologies
that have a JDBC Driver.

Designing an Interface

20-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The RKM connects to the application (which is determined by the logical schema and
the context) and imports the following items:

■ A datastore for each dimension in the application, with the same name as the
dimension

■ A datastore called UDA, for UDA loading

20.5 Designing an Interface
After reverse-engineering a Planning application as a model, you can use the
datastores in this model as targets of interfaces for loading data and metadata into the
application.

The KM choice for an interface determines the abilities and performance of this
interface. The recommendations in this section help in the selection of the KM for
different situations concerning Hyperion Planning.

This section contains the following topics:

■ Loading Metadata

■ Loading Data

■ Load Options

20.5.1 Loading Metadata
Oracle Data Integrator provides the IKM SQL to Hyperion Planning for loading
metadata into a Planning application.

Metadata consists of dimension members. You must load members, or metadata,
before you load data values for the members. For example, before loading salary data
for five new employees, you load the employees (as members) to the Planning
relational database before you load the data to the Oracle's Hyperion Essbase
database.

You can load members only to dimensions that exist in Planning. You must use a
separate interface for each dimension that you load. You can chain interfaces to load
metadata into several dimensions at once.

To load metadata into a Planning application:

1. Create an interface. Make sure that you select the IKM SQL to Hyperion Planning
on the Flow tab.

2. Specify the load options as described in Section 20.5.3, "Load Options".

3. Run the interface to load the metadata into the application

4. Validate the dimension:

a. Log on to Planning Web.

b. Select Administration > Dimensions.

Note: You must refresh the Essbase database after loading the
dimension members in the application. The Essbase database is
refreshed if you set the REFRESH_DATABASE option in IKM SQL to
Hyperion Planning to Yes. See "Load Options" on page 18.

Designing an Interface

Oracle Hyperion Planning 20-5

20.5.2 Loading Data
Oracle Data Integrator provides the IKM SQL to Hyperion Planning for loading data
into a Planning application.

You can load data into selected dimension members that are already created in
Planning. You must set up the Planning, Workforce Planning, or Capital Expense
Planning application before you can load data into it.

Before loading data, ensure that the members (metadata) exist in the Planning
relational database and the Essbase database. A data load fails if the members do not
exist. (This includes the driver member and the members specified in the point of
view.) If necessary, load metadata and refresh the Essbase database to synchronize the
members.

Before loading data into a Planning, Workforce Planning, or Capital Expense Planning
application, you must set up the relevant data load and driver dimensions in Planning.
After you set up the data load and driver dimensions in Planning, you must determine
the point of view for the members whose data you are loading.

To load data into a Planning application:

1. In Planning, specify parameters for data to load:

a. Select Administration > Data Load Administration.

b. For Available Data Load Dimensions, select a dimension, and click Go.

c. For Available Driver Dimensions, select the dimension to which you are
loading data in an Essbase database; for example, select the Account
dimension.

d. Select the members of the driver dimension to load with data.

After the Hyperion Planning data load is set up, use Hyperion Planning RKM
to perform the reverse-engineering process. Reverse-engineering retrieves and
updates the datastore for the data load dimension with additional columns
(fields) required for the data load.

e. Click Save.

2. In Oracle Data Integrator Studio, run an interface for loading data.

3. Check the Operator log to see if the interface ran successfully.

4. To validate the data load, use either method:

■ Create a Planning data form to retrieve data.

■ Check Oracle's Essbase Administration Services to ensure that blocks were
created in the appropriate cube.

20.5.3 Load Options
IKM SQL to Hyperion Planning supports these options for defining how Oracle Data
Integrator Adapter for Hyperion Planning loads data:

■ LOAD_ORDER_BY_INPUT

Note: You can use the same interface for loading metadata and data.
Section 20.5.3, "Load Options" lists the options of the IKM SQL to
Hyperion Planning

Designing an Interface

20-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Possible values: Yes or No; default: No If set to Yes, members are loaded in the
same order as in the input records.

■ SORT_PARENT_CHILD

Possible values: Yes or No; default: No If set to Yes, incoming records are sorted so
that all parents are inserted before children.

■ LOG_ENABLED

Possible values: Yes or No; default: No If set to Yes, logging is done during the
load process to the file specified by the LOG_FILE_NAME option.

■ LOG_FILE_NAME

The name of the file where logs are saved; default value:Java temp folder/
dimension.log

■ MAXIMUM_ERRORS_ALLOWED

Maximum number of errors before the load process is stopped; default value: 0

If set to 0 or a negative number, the load process is not stopped regardless of the
number of errors.

■ LOG_ERRORS

Possible values: Yes or No; default: No

If set to Yes, error records are loggedto the file specified by the ERROR_LOG_FILE
property.

■ ERROR_LOG_FILE

The name of the file where error records are logged; default value: Java temp
folder/ dimension.err

■ ERR_COL_DELIMITER

The column delimiter used for the error record file; default value: comma (,)

■ ERR_ROW_DELIMITER

The row delimiter used for the error record file; default value: \r\n

■ ERR_TEXT_DELIMITER

The text delimiter to be used for the column values in the error record file

■ ERR_LOG_HEADER_ROW:

Possible values: Yes or No; default: Yes

If set to Yes, the row header (with all column names) is logged in the error records
file.

■ REFRESH_DATABASE:

If set to Yes, completion of the load operation invokes a cube refresh.

Possible values: Yes or No; default: No

Note: Row and column delimiters values can also be specified in
hexadecimal. A value that starts with 0x is treated as hexadecimal; for
example, 0x0041 is treated as the letter A.

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-7

20.6 Datastore Tables and Data Load Columns
IKM SQL to Hyperion Planning loads columns in tables to create datastores. The
following topics describe the columns in each datastore:

■ Accounts

■ Employee

■ Entities

■ User-Defined Dimensions

■ Attribute Dimensions

■ UDA

Data Load Columns are columns used for loading data into dimensions.

20.6.1 Accounts
Table 20–2 describes the columns of the Accounts table. See Section 20.6.7, "Data Load
Columns" for descriptions of additional columns that are displayed for loading
Account dimension data if the application has been set up for data load in Planning.

Table 20–2 Accounts

Column Description

Account Takes the name of the account member you are loading. If this
member exists, its properties are modified; otherwise, the record is
added. This field is required.

The value for this field must meet these requirements:

■ Unique

■ Alphanumeric

■ Not more than 80 characters

■ Member name cannot contain tabs, double quotation marks ("), or
backslash (\) characters.

■ Member name cannot start with any of these characters: ' \ < | , =
@ _ + - { } () .

■ Value must not be an Essbase reserved word such as Children,
Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more
information about reserved words in Essbase, see the Hyperion
Essbase - System 9 Database Administrator's Guide or Essbase online
help.

This value is passed as a string.

Datastore Tables and Data Load Columns

20-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Parent Takes the name of the parent of the member you are loading. It is
used to create the hierarchy in the dimension.

When you load data for a member and specify a different parent
member that from the parent member in the application, the member
is updated with the parent value that you specify.

Example: If Member 1 has a parent value of Member A in your
Planning application and you load Member 1 with a parent value of
Member B, your application is updated, and Member B becomes the
parent of Member 1. Member 1 and its descendants are moved from
Member A to Member B. If the column is left blank, it is ignored
during the load.

The record is not loaded if one of the following situations occurs:

■ The specified parent is a descendant of the member that you are
loading.

■ The specified parent does not exist in the Planning application.

Default Alias Takes an alternate name for the member being loaded. If you are
modifying properties and do not specify a value, the alias is not
changed in the Planning application. If you specify <NONE> or
<none> as the value, the alias in the Planning application is deleted.

The value for this column must meet the following requirements for a
successful load:

■ Unique

■ Alphanumeric

■ Not more than 80 characters

■ Member name cannot contain tabs, double quotation marks ("), or
backslash (\) characters.

■ Member name cannot start with any of these characters: ' \ < | , =
@ _ + - { } () .

■ Value must not be an Essbase reserved word such as Children,
Parent, $$$UNIVERSE $$$, #MISSING, or #MI. For more
information about reserved words in Essbase, see the Hyperion
Essbase - System 9 Database Administrator's Guide or Essbase online
help.

This value is passed as a string; default value: a null string.

Additional Alias Can take an alternate name for the member being loaded. There will
be as many Alias columns as there are Alias tables defined in
Planning. The value for multiple alias columns must conform to the
same requirements as those listed for the default alias column.

Data Storage Takes the storage attribute for the member being loaded.

Valid values:

■ Store

■ Dynamic Calc

■ Dynamic Calc and Store

■ Shared

■ Never Share (default)

■ Label Only

This value is passed as a string.

Table 20–2 (Cont.) Accounts

Column Description

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-9

Two Pass Calculation Boolean value to indicate whether the member being loaded has the
Two-Pass Calculation associated attribute. Valid values: 0 for False
(default), or any other number for True. Values are valid only when
the Data Storage value is Dynamic Calc or Dynamic Calc and Store;
otherwise, the record is rejected.

Account Type Takes the account type of the member that is being loaded. Valid
values: Revenue, Expense, Asset, Liability, Equity, and Saved
Assumption. The default is taken from the parent of the member that
is being loaded, or it is Expense if the member is being added to the
root dimension.

Time Balance Takes a type for members with an account type of Saved Assumption
only or when the record is rejected. Valid values: Flow, First, Balance,
Average, and two averaging options, Actual_365 and Actual_Actual.
(Actual_365 assumes the actual number of days in each month and 28
days in February; Actual_Actual accounts for 29 days in February
during leap years.)

The default is taken from the parent of the member being loaded or is
Flow if the member is being added to the root dimension. This value
is passed as a string. Default values of Time Balance for Account
types:

■ Revenue-Flow

■ Expense-Flow

■ Asset-Balance

■ Liability-Balance

■ Equity-Balance

Note: When Time Balance is Flow, records with any valid Skip Values
are loaded, but Skip Value is disabled for all account types.

Skip Value Skip ValueTakes the skip option that is set for the Time Balance
property. When the Time Balance property is set to First, Balance, or
Average, these Skip options are available:

■ None-Indicates that zeros and #missing value are considered
when the parent value is calculated

■ Missing-Excludes #missing values when calculating parent
values

■ Zeros-Excludes zero values when calculating parent values

■ Missing and Zeros-Excludes #missing and zero values when
calculating parent values

Note: When Time Balance is Flow, records with any valid Skip Values
are loaded, but Skip Value is disabled for all Account types.

Table 20–2 (Cont.) Accounts

Column Description

Datastore Tables and Data Load Columns

20-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Data Type Takes the data storage value. Valid values:

■ Currency-Stores and displays the member's data value in the
default currency.

■ Non-currency-Stores and displays the member's data value as a
numeric value.

■ Percentage-Stores data values as a numeric value and displays
the member's data value as a percentage.

■ Smart list / enumeration-Stores data values as a numeric value
and displays the member's data value as a string.

■ Date-Stores and displays the member's data value in the format
mm/dd/yyyy or dd/ mm/yyyy

■ Text-Stores and displays the member's data value as text.

■ Unspecified-Stores and displays the member's data value as
"unspecified."

The default value is taken from the parent of the member being
loaded or is Currency if the member is being added to the root
dimension.

Exchange Rate Type Takes the exchange rate. This column is dependent on the value
specified for the Data Type column. Valid values:

■ Average, Ending, and Historical when Data Type is equal to
Currency

■ None when Data Type is equal to Non-currency or Percentage

This value is passed as a string. The default value is taken from
the parent of the member that is being loaded or, if the member is
being added to the root dimension, is based on the account type
and takes the following values:

■ Revenue-Average

■ Expense-Average

■ Asset-Ending

■ Liability-Ending

■ Equity-Ending

■ Saved Assumption-None

Use 445 Indicates the distribution selected in the Planning application. If the
application has no distribution, this column is not displayed.

Valid values are 0 and 1 (or any number other than 0); default value:
1.

Table 20–2 (Cont.) Accounts

Column Description

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-11

Variance Reporting Takes a value for account members with an account type of Saved
Assumption or if the record is rejected. Valid values:

■ Expense-designates the saved assumption as an expense. The
actual amount is subtracted from the budgeted amount to
determine the variance.

■ Non-Expense-designates the saved assumption as revenue. The
budgeted amount is subtracted from the actual amount to
determine the variance.

This value is passed as a string. The default value is taken from the
parent of the member being loaded or, if the member is being added
to the root dimension, is based on the value of the count type.

For Account types, the value is set to the following:

■ Revenue-Non-Expense

■ Expense-Expense

■ Asset-Non-Expense

■ Liability-Non-Expense

■ Equity-Non-Expense

Source Plan Type Takes a plan type name for the plan type assigned to the member
being loaded. Valid values are any plan types specified in Planning
application.

This value is passed as a string. The default is taken from the parent
of the member being loaded. If the source plan of the parent is not
valid for the member, the specified plan type is not selected for the
member in the application, and the first plan type that the member is
used in is used. If the member is being loaded to the root dimension,
the first plan type the member is used in is used.

When you update or save the parent of a member, the system verifies
if the Source Plan Type associated with the member being loaded is
valid for the new parent. If the member's source plan type is not a
valid plan type of its parent member, you receive the error message,
"The source plan type is not in the subset of valid plan types."

If the source plan type of a member is valid for the parent member but
not for the member itself, the member is saved but its source plan
type is set to the first valid plan type (in the order Plan 1, Plan 2, Plan
3, Wrkforce, Capex).

Note: If a Source Plan Type is specified in the adapter but is not valid
for the parent, the record is rejected.

Plan Type (Plan1) Boolean value that indicates if the member being loaded is used in
Plan1. Valid values are 0 for False and any other number for True. The
default value is True. The name of the column varies depending on
the name of the plan type in the Planning application.

Table 20–2 (Cont.) Accounts

Column Description

Datastore Tables and Data Load Columns

20-12 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Aggregation (Plan1) Takes the aggregation option for the member being loaded as related
to Plan1. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Plan Type (Plan 2) Boolean value that indicates if the member being loaded is used in
Plan2. Valid values are 0 for False and any other number for True. The
default value is True. The name of the column varies depending on
the name of the plan type in the Planning application.

Aggregation (Plan2) Takes the aggregation option for the member being loaded as related
to Plan2. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Plan Type (Plan3) Boolean value that indicates if the member being loaded is used in
Plan3. Valid values: 0 for False or any other number for True; default
value: True. The name of the column varies depending on the name of
the plan type in the Planning application.

Aggregation (Plan3) Takes the aggregation option for the member being loaded as related
to Plan3. This column is available only ifthe Planning application is
valid for this plan type. The name of the column varies depending on
the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Table 20–2 (Cont.) Accounts

Column Description

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-13

Plan Type (Wrkforce) For Workforce Planning: The Plan Type (Wrkforce) column is a
Boolean value that indicates if the member being loaded is used in
Workforce Planning. Valid values are 0 for False and any other
number for True. The default is True. The actual name of the column
varies, depending on by the name of the plan type in the Planning
application.

Aggregation (Wrkforce) For Workforce Planning: The Aggregation (Wrkforce) column takes
the aggregation option for the member being loaded as related to
Workforce Planning. This column is available only if the Planning
application is valid for this plan type. The name of the column varies,
depending on the name of the plan type in the Planning application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Plan Type (Capex) For Capital Expense Planning: The Plan Type (Capex) column is a
Boolean value that indicates if the member being loaded is used in
Capital Expense Planning. Valid values are 0 for False and any other
number for True. The default is True. The actual name of the column
varies, depending on by the name of the plan type in the Planning
application.

Aggregation (Capex) For Capital Expense Planning: Takes the aggregation option for the
member being loaded as related to Capital Expense Planning. This
column is available only if the Planning application is valid for this
plan type. The name of the column varies, depending on the name of
the plan type in the Planning application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Custom Attribute Takes the custom attribute member values. The name of the column is
determined by the name of the custom attribute in the Planning
application. The number of custom attribute columns varies
depending on the number of attributes defined for the Account
dimension. If you modify properties and do not specify a value, the
custom attribute is not changed in the Planning application. If you
specify <NONE> or <none> as the value, then the custom attribute in
the Planning application is deleted. This value is passed as a string.

Member Formula Takes the member formula values defined for the dimension member.
By default, there is no member formula associated with a dimension
or dimension member. You cannot load member formulas for
dimension members that are Shared or Label Only.

Table 20–2 (Cont.) Accounts

Column Description

Datastore Tables and Data Load Columns

20-14 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

20.6.2 Employee
Table 20–3 describes the columns of the Employee table. See Section 20.6.7, "Data Load
Columns" for descriptions of additional columns that are displayed for loading
Employee dimension data if the application has been set up for data load in Planning.

UDA Specifies a list of user-defined attributes to be updated.

Note: You must define the UDA for the dimension members within
Planning or by way of the UDA target.

Smart Lists Takes the name of a user-defined Smart List defined in the Planning
application. This value is passed as a string. The default for Smart
Lists is <None>. Smart Lists are used in a metadata or dimension load
(not a data load) allowing you to define the association of the Smart
List name (not the values) with a given dimension member. You can
have multiple Smart Listsassociatedwith a dimension but only one
Smart Listassociated witha dimension member.

These predefined Smart Lists are available in a Workforce Planning
application:

■ None

■ Status

■ FT_PT

■ HealthPlan

■ TaxRegion

■ Month

■ Performance

■ Position

■ EmployeeType

Description Takes a description for the member that is being loaded. By default,
the Description column is empty.

Note: If you do not enter a value for this column or do not connect the
column, a new member is loaded without a description, and the
description of an existing member is unchanged. If you enter
<NONE> as the value for this column, any existing description for the
member is deleted and is not loaded with the member.

Operation Takes any of these values:

■ Update (default)-Adds, updates, or moves the member being
loaded.

■ Delete Level 0-Deletes the member being loaded if it has no
children.

■ Delete Idescendants-Deletes the member being loaded and all of
its descendants.

■ Delete Descendants-Deletes the descendants of the member being
loaded, but does not delete the member itself.

Note: If you delete a member, that member, its data, and any
associated planning units are permanently removed and cannot be
restored.

Table 20–2 (Cont.) Accounts

Column Description

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-15

Table 20–3 Employee

Column Description

Employee Takes the name of the account member you are loading. If this
member exists, its properties are modified; otherwise, the record
is added. This field is required.

The value for this field must meet these requirements:

■ Unique

■ Alphanumeric

■ Not more than 80 characters

■ Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

■ Member name cannot start with any of these characters: ' \
< | , = @ _ + - { } () .

■ Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string.

Parent Takes the name of the parent of the member you are loading. It
is used to create the hierarchy in the dimension.

When you load data for a member and specify a different parent
member that from the parent member in the application, the
member is updated with the parent value that you specify.

Example: If Member 1 has a parent value of Member A in your
Planning application and you load Member 1 with a parent
value of Member B, your application is updated, and Member B
becomes the parent of Member 1. Member 1 and its descendants
are moved from Member A to Member B. If the column is left
blank, it is ignored during the load.

The record is not loaded if one of the following situations occurs:

■ The specified parent is a descendant of the member that you
are loading.

■ The specified parent does not exist in the Planning
application.

Datastore Tables and Data Load Columns

20-16 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Default Alias Takes an alternate name for the member being loaded. If you are
modifying properties and do not specify a value, the alias is not
changed in the Planning application. If you specify <NONE> or
<none> as the value, the alias in the Planning application is
deleted.

The value for this column must meet the following requirements
for a successful load:

■ Unique

■ Alphanumeric

■ Not more than 80 characters

■ Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

■ Member name cannot start with any of these characters: ' \
< | , = @ _ + - { } () .

■ Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string; default value: a null string.

Additional Alias Can take an alternate name for the member being loaded. There
will be as many Alias columns as there are Alias tables defined
in Planning. The value for multiple alias columns must conform
to the same requirements as those listed for the default alias
column.

Data Storage Takes the storage attribute for the member being loaded.

Valid values:

■ Store

■ Dynamic Calc

■ Dynamic Calc and Store

■ Shared

■ Never Share (default)

■ Label Only

This value is passed as a string.

Valid for Consolidation The column is ignored.

Two Pass Calculation Boolean value to indicate whether the member being loaded has
the Two-Pass Calculation associated attribute. Valid values: 0 for
False (default), or any other number for True. Values are valid
only when the Data Storage value is Dynamic Calc or Dynamic
Calc and Store; otherwise, the record is rejected.

Table 20–3 (Cont.) Employee

Column Description

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-17

Data Type Takes the data storage value. Valid values:

■ Currency-Stores and displays the member's data value in
the default currency.

■ Non-currency-Stores and displays the member's data value
as a numeric value.

■ Percentage-Stores data values as a numeric value and
displays the member's data value as a percentage.

■ Smart list / enumeration-Stores data values as a numeric
value and displays the member's data value as a string.

■ Date-Stores and displays the member's data value in the
format mm/dd/yyyy or dd/ mm/yyyy

■ Text-Stores and displays the member's data value as text.

■ Unspecified-Stores and displays the member's data value as
"unspecified."

The default value is taken from the parent of the member being
loaded or is Currency if the member is being added to the root
dimension.

Custom Attribute Takes the custom attribute member values. The name of the
column is determined by the name of the custom attribute in the
Planning application. The number of custom attribute columns
varies depending on the number of attributes defined for the
Employee dimension. If you modify properties and do not
specify a value, the custom attribute is not changed in the
Planning application. If you specify <NONE> or <none> as the
value, then the custom attribute in the Planning application is
deleted. This value is passed as a string.

Aggregation (Plan1) Takes the aggregation option for the member being loaded as
related to Plan1. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Table 20–3 (Cont.) Employee

Column Description

Datastore Tables and Data Load Columns

20-18 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Aggregation (Plan2) Takes the aggregation option for the member being loaded as
related to Plan2. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Aggregation (Plan3) Takes the aggregation option for the member being loaded as
related to Plan3. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Aggregation (Wrkforce) For Workforce Planning: The Aggregation (Wrkforce) column
takes the aggregation option for the member being loaded as
related to Workforce Planning. This column is available only if
the Planning application is valid for this plan type. The name of
the column varies, depending on the name of the plan type in
the Planning application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Table 20–3 (Cont.) Employee

Column Description

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-19

Aggregation (Capex) For Capital Expense Planning: Takes the aggregation option for
the member being loaded as related to Capital Expense
Planning. This column is available only if the Planning
application is valid for this plan type. The name of the column
varies, depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Member Formula Takes the member formula values defined for the dimension
member. By default, there is no member formula associated with
a dimension or dimension member. You cannot load member
formulas for dimension members that are Shared or Label Only.

UDA Specifies a list of user-defined attributes to be updated.

Note: You must define the UDA for the dimension members
within Planning or by way of the UDA target.

Smart Lists Takes the name of a user-defined Smart List defined in the
Planning application. This value is passed as a string. The
default for Smart Lists is <None>. Smart Lists are used in a
metadata or dimension load (not a data load) allowing you to
define the association of the Smart List name (not the values)
with a given dimension member. You can have multiple Smart
Lists associatedwith a dimension but only one Smart List
associated with a dimension member.

These predefined Smart Lists are available in a Workforce
Planning application:

■ None

■ Status

■ FT_PT

■ HealthPlan

■ TaxRegion

■ Month

■ Performance

■ Position

■ EmployeeType

Description Takes a description for the member that is being loaded; empty
by default.

Note: If you do not enter a value for this column or do not
connect the column, a new member is loaded without a
description, and the description of an existing member is
unchanged. If you enter <NONE> as the value for this column,
any existing description for the member is deleted and is not
loaded with the member.

Table 20–3 (Cont.) Employee

Column Description

Datastore Tables and Data Load Columns

20-20 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

20.6.3 Entities
Table 20–4 describes the columns of the Entities table. See Section 20.6.7, "Data Load
Columns" for descriptions of additional columns that are displayed for loading
Entities data if the application has been set up for data load in Planning.

Operation Takes any of these values:

■ Update (default)-Adds, updates, or moves the member
being loaded.

■ Delete Level 0-Deletes the member being loaded if it has no
children.

■ Delete Idescendants-Deletes the member being loaded and
all of its descendants.

■ Delete Descendants-Deletes the descendants of the member
being loaded, but does not delete the member itself.

Note: If you delete a member, that member, its data, and any
associated planning units are permanently removed and cannot
be restored.

Table 20–4 Entities

Column Description

Entity Takes the name of the member you are loading. If this member
exists, its properties are modified. If the member does not exist,
then the record is added. This column is required.

The value for this column must meet the following requirements
for a successful load:

The value for this field must meet these requirements:

■ Unique

■ Alphanumeric

■ Not more than 80 characters

■ Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

■ Member name cannot start with any of these characters: ' \
< | , = @ _ + - { } () .

■ Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string.

Table 20–3 (Cont.) Employee

Column Description

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-21

Parent Takes the name of the parent of the member you are loading. It
is used to create the hierarchy in the dimension.

When you update a member of an application using the Load
method and specify a parent member that is different than the
parent member in the application, the member is updated with
the new parent value specified in your flow diagram.

For example, if Member 1 has a parent value of Member A in
your Planning application and you load Member 1 with a parent
value of Member B, the system updates your application and
makes Member B the parent of Member 1. Member 1 and its
descendants are moved from Member A to Member B. If the
column is left blank, it is ignored during the load.

The record is not loaded if one of the following situations occurs:

■ The specified parent is a descendant of the member that you
are loading.

■ The specified parent does not exist in the Planning
application.

Default Alias Takes an alternate name for the member being loaded. If you are
modifying properties and do not specify a value, the alias is not
changed in the Planning application. If you specify <NONE> or
<none> as the value, the alias in the Planning application is
deleted.

The value for this column must meet the following requirements
for a successful load:

■ Unique

■ Alphanumeric

■ Not more than 80 characters

■ Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

■ Member name cannot start with any of these characters: ' \
< | , = @ _ + - { } () .

■ Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string; default value: a null string.

Additional Alias Additional Alias columns can take alternate names for the
member being loaded. There are as many Alias columns as there
are Alias tables defined in Planning. The value for multiple alias
columns must conform to the same requirements as those listed
for the default alias column.

Table 20–4 (Cont.) Entities

Column Description

Datastore Tables and Data Load Columns

20-22 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Data Storage Takes the storage attribute for the member being loaded.

Valid values:

■ Store

■ Dynamic Calc

■ Dynamic Calc and Store

■ Shared

■ Never Share (default)

■ Label Only

This value is passed as a string.

Two Pass Calculation Boolean value to indicate if the member being loaded has the
Two-Pass Calculation attribute associated in the
Planningapplication. Valid values: 0 for False (default), or any
other number for True. Values are valid only when the Data
Storage value is Dynamic Calc or Dynamic Calc and Store;
otherwise, the record is rejected.

Data Type Takes the data storage value. Valid values:

■ Currency-Stores and displays the member's data value in
the default currency.

■ Non-currency-Stores and displays the member's data value
as a numeric value.

■ Percentage-Stores data values as a numeric value and
displays the member's data value as a percentage.

■ Smart list / enumeration-Stores data values as a numeric
value and displays the member's data value as a string.

■ Date-Stores and displays the member's data value in the
format mm/dd/yyyy or dd/ mm/yyyy

■ Text-Stores and displays the member's data value as text.

■ Unspecified-Stores and displays the member's data value as
"unspecified."

The default value is taken from the parent of the member being
loaded or is Currency if the member is being added to the root
dimension.

Base Currency Takes the base currency for the entity being loaded. It takes the
code of the currency as defined in your Planning application.
The default value is USD. This column is displayed only when
the application is defined to be multi-currency.

Plan Type (Plan1) Boolean value that indicates if the member being loaded is used
in Plan1. Valid values: 0 for False or any other number for True
(default). The name of the column varies depending on the name
of the plan type in the Planning application.

Table 20–4 (Cont.) Entities

Column Description

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-23

Aggregation (Plan1) Takes the aggregation option for the member being loaded as
related to Plan1. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Plan Type (Plan2) Boolean value that indicates if the member being loaded is used
in Plan2. Valid values are 0 for False and any other number for
True. The default value is True. The name of the column varies
depending on the name of the plan type in the Planning
application.

Aggregation (Plan2) Takes the aggregation option for the member being loaded as
related to Plan2. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Plan Type (Plan 3) Boolean value that indicates if the member being loaded is used
in Plan3. Valid values: 0 for False or any other number for True;
default value: True. The name of the column varies depending
on the name of the plan type in the Planning application.

Aggregation (Plan3) Takes the aggregation option for the member being loaded as
related to Plan3. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Table 20–4 (Cont.) Entities

Column Description

Datastore Tables and Data Load Columns

20-24 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Aggregation (Wrkforce) For Workforce Planning: The Aggregation (Wrkforce) column
takes the aggregation option for the member being loaded as
related to Workforce Planning. This column is available only if
the Planning application is valid for this plan type. The name of
the column varies, depending on the name of the plan type in
the Planning application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Aggregation (Capex) For Capital Expense Planning: Takes the aggregation option for
the member being loaded as related to Capital Expense
Planning. This column is available only if the Planning
application is valid for this plan type. The name of the column
varies, depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Custom Attribute Takes the custom attribute member values. The name of the
column is determined by the name of the custom attribute in the
Planning application. The number of custom attribute columns
varies depending on the number of attributes defined for the
Entity dimension. If you modify properties and do not specify a
value, the custom attribute is not changed in the Planning
application. If you specify <NONE> or <none> as the value,
then the custom attribute in the Planning application is deleted.
This value is passed as a string.

Member Formula Takes the member formula values defined for the dimension
member. By default, there is no member formula associated with
a dimension or dimension member. You cannot load member
formulas for dimension members that are Shared or Label Only.

UDA Specifies a list of user-defined attributes to be updated.

Note: You must define the UDA for the dimension members
within Planning or by way of the UDA target.

Table 20–4 (Cont.) Entities

Column Description

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-25

20.6.4 User-Defined Dimensions
Table 20–5 describes the columns of the User-Defined Dimensions table.

Smart Lists Takes the name of a user-defined Smart List defined in the
Planning application. This value is passed as a string. The
default for Smart Lists is <None>. Smart Lists are used in a
metadata or dimension load (not a data load) allowing you to
define the association of the Smart List name (not the values)
with a given dimension member. You can have multiple Smart
Lists associatedwith a dimension but only one Smart List
associated with a dimension member.

These predefined Smart Lists are available in a Workforce
Planning application:

■ None

■ Status

■ FT_PT

■ HealthPlan

■ TaxRegion

■ Month

■ Performance

■ Position

■ EmployeeType

Description Takes a description for the member that is being loaded; empty
by default.

Note: If you do not enter a value for this column or do not
connect the column, a new member is loaded without a
description, and the description of an existing member is
unchanged. If you enter <NONE> as the value for this column,
any existing description for the member is deleted and is not
loaded with the member.

Operation Takes any of these values:

■ Update (default)-Adds, updates, or moves the member
being loaded.

■ Delete Level 0-Deletes the member being loaded if it has no
children.

■ Delete Idescendants-Deletes the member being loaded and
all of its descendants.

■ Delete Descendants-Deletes the descendants of the member
being loaded, but does not delete the member itself.

Note: If you delete a member, that member, its data, and any
associated planning units are permanently removed and cannot
be restored.

Table 20–4 (Cont.) Entities

Column Description

Datastore Tables and Data Load Columns

20-26 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 20–5 User-Defined Dimensions

Column Description

Entity Takes the name of the member you are loading. If this member
exists, its properties are modified. If the member does not exist,
then the record is added. This column is required.

The value for this column must meet the following requirements
for a successful load:

The value for this field must meet these requirements:

■ Unique

■ Alphanumeric

■ Not more than 80 characters

■ Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

■ Member name cannot start with any of these characters: ' \
< | , = @ _ + - { } () .

■ Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string.

Parent Takes the name of the parent of the member you are loading. It
is used to create the hierarchy in the dimension.

When you update a member of an application using the Load
method and specify a parent member that is different than the
parent member in the application, the member is updated with
the new parent value specified in your flow diagram.

For example, if Member 1 has a parent value of Member A in
your Planning application and you load Member 1 with a parent
value of Member B, the system updates your application and
makes Member B the parent of Member 1. Member 1 and its
descendants are moved from Member A to Member B. If the
column is left blank, it is ignored during the load.

The record is not loaded if one of the following situations occurs:

■ The specified parent is a descendant of the member that you
are loading.

■ The specified parent does not exist in the Planning
application.

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-27

Default Alias Takes an alternate name for the member being loaded. If you are
modifying properties and do not specify a value, the alias is not
changed in the Planning application. If you specify <NONE> or
<none> as the value, the alias in the Planning application is
deleted.

The value for this column must meet the following requirements
for a successful load:

■ Unique

■ Alphanumeric

■ Not more than 80 characters

■ Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

■ Member name cannot start with any of these characters: ' \
< | , = @ _ + - { } () .

■ Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string; default value: a null string.

Additional Alias Additional Alias columns can take alternate names for the
member being loaded. There are as many Alias columns as there
are Alias tables defined in Planning. The value for multiple alias
columns must conform to the same requirements as those listed
for the default alias column.

Data Storage Takes the storage attribute for the member being loaded.

Valid values:

■ Store

■ Dynamic Calc

■ Dynamic Calc and Store

■ Shared

■ Never Share (default)

■ Label Only

This value is passed as a string.

Two Pass Calculation Boolean value to indicate if the member being loaded has the
Two-Pass Calculation attribute associated in the
Planningapplication. Valid values: 0 for False (default), or any
other number for True. Values are valid only when the Data
Storage value is Dynamic Calc or Dynamic Calc and Store;
otherwise, the record is rejected.

Table 20–5 (Cont.) User-Defined Dimensions

Column Description

Datastore Tables and Data Load Columns

20-28 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Data Type Takes the data storage value. Valid values:

■ Currency-Stores and displays the member's data value in
the default currency.

■ Non-currency-Stores and displays the member's data value
as a numeric value.

■ Percentage-Stores data values as a numeric value and
displays the member's data value as a percentage.

■ Smart list / enumeration-Stores data values as a numeric
value and displays the member's data value as a string.

■ Date-Stores and displays the member's data value in the
format mm/dd/yyyy or dd/ mm/yyyy

■ Text-Stores and displays the member's data value as text.

■ Unspecified-Stores and displays the member's data value as
"unspecified."

The default value is taken from the parent of the member being
loaded or is Currency if the member is being added to the root
dimension.

Aggregation (Plan1) Takes the aggregation option for the member being loaded as
related to Plan1. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Aggregation (Plan2) Takes the aggregation option for the member being loaded as
related to Plan2. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Table 20–5 (Cont.) User-Defined Dimensions

Column Description

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-29

Aggregation (Plan3) Takes the aggregation option for the member being loaded as
related to Plan3. This column is available only ifthe Planning
application is valid for this plan type. The name of the column
varies depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Aggregation (Wrkforce) For Workforce Planning: The Aggregation (Wrkforce) column
takes the aggregation option for the member being loaded as
related to Workforce Planning. This column is available only if
the Planning application is valid for this plan type. The name of
the column varies, depending on the name of the plan type in
the Planning application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Aggregation (Capex) For Capital Expense Planning: Takes the aggregation option for
the member being loaded as related to Capital Expense
Planning. This column is available only if the Planning
application is valid for this plan type. The name of the column
varies, depending on the name of the plan type in the Planning
application.

This value is passed as a string. Valid values:

■ + (default)

■ -

■ *

■ /

■ %

■ ~

■ Never

Table 20–5 (Cont.) User-Defined Dimensions

Column Description

Datastore Tables and Data Load Columns

20-30 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Custom Attribute Takes the custom attribute member values. The name of the
column is determined by the name of the custom attribute in the
Planning application. The number of custom attribute columns
varies depending on the number of attributes defined for the
Entity dimension. If you modify properties and do not specify a
value, the custom attribute is not changed in the Planning
application. If you specify <NONE> or <none> as the value,
then the custom attribute in the Planning application is deleted.
This value is passed as a string.

Member Formula Takes the member formula values defined for the dimension
member. By default, there is no member formula associated with
a dimension or dimension member. You cannot load member
formulas for dimension members that are Shared or Label Only.

UDA Specifies a list of user-defined attributes to be updated.

Note: You must define the UDA for the dimension members
within Planning or by way of the UDA target.

Smart Lists Takes the name of a user-defined Smart List defined in the
Planning application. This value is passed as a string. The
default for Smart Lists is <None>. Smart Lists are used in a
metadata or dimension load (not a data load) allowing you to
define the association of the Smart List name (not the values)
with a given dimension member. You can have multiple Smart
Lists associatedwith a dimension but only one Smart List
associated with a dimension member.

These predefined Smart Lists are available in a Workforce
Planning application:

■ None

■ Status

■ FT_PT

■ HealthPlan

■ TaxRegion

■ Month

■ Performance

■ Position

■ EmployeeType

Description Takes a description for the member that is being loaded; empty
by default.

Note: If you do not enter a value for this column or do not
connect the column, a new member is loaded without a
description, and the description of an existing member is
unchanged. If you enter <NONE> as the value for this column,
any existing description for the member is deleted and is not
loaded with the member.

Table 20–5 (Cont.) User-Defined Dimensions

Column Description

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-31

20.6.5 Attribute Dimensions
Table 20–6 describes the columns of the Attribute Dimensions table.

Operation Takes any of these values:

■ Update (default)-Adds, updates, or moves the member
being loaded.

■ Delete Level 0-Deletes the member being loaded if it has no
children.

■ Delete Idescendants-Deletes the member being loaded and
all of its descendants.

■ Delete Descendants-Deletes the descendants of the member
being loaded, but does not delete the member itself.

Note: If you delete a member, that member, its data, and any
associated planning units are permanently removed and cannot
be restored.

Note: The Parent, Default Alias, and Additional Alias columns are
available only in Planning 9.3.1 and later.

Table 20–6 Attribute Dimensions

Column Description

Entity Takes the name of the member you are loading. If this member
exists, its properties are modified. If the member does not exist,
then the record is added. This column is required.

The value for this column must meet the following requirements
for a successful load:

The value for this field must meet these requirements:

■ Unique

■ Alphanumeric

■ Not more than 80 characters

■ Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

■ Member name cannot start with any of these characters: ' \
< | , = @ _ + - { } () .

■ Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string.

Table 20–5 (Cont.) User-Defined Dimensions

Column Description

Datastore Tables and Data Load Columns

20-32 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Parent Takes the name of the parent of the member you are loading. It
is used to create the hierarchy in the dimension.

When you update a member of an application using the Load
method and specify a parent member that is different than the
parent member in the application, the member is updated with
the new parent value specified in your flow diagram.

For example, if Member 1 has a parent value of Member A in
your Planning application and you load Member 1 with a parent
value of Member B, the system updates your application and
makes Member B the parent of Member 1. Member 1 and its
descendants are moved from Member A to Member B. If the
column is left blank, it is ignored during the load.

The record is not loaded if one of the following situations occurs:

■ The specified parent is a descendant of the member that you
are loading.

■ The specified parent does not exist in the Planning
application.

Default Alias Takes an alternate name for the member being loaded. If you are
modifying properties and do not specify a value, the alias is not
changed in the Planning application. If you specify <NONE> or
<none> as the value, the alias in the Planning application is
deleted.

The value for this column must meet the following requirements
for a successful load:

■ Unique

■ Alphanumeric

■ Not more than 80 characters

■ Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

■ Member name cannot start with any of these characters: ' \
< | , = @ _ + - { } () .

■ Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string; default value: a null string.

Additional Alias Additional Alias columns can take alternate names for the
member being loaded. There are as many Alias columns as there
are Alias tables defined in Planning. The value for multiple alias
columns must conform to the same requirements as those listed
for the default alias column.

Table 20–6 (Cont.) Attribute Dimensions

Column Description

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-33

20.6.6 UDA
Table 20–7 describes the columns of the UDA table.

Operation Takes any of these values:

■ Update (default)-Adds, updates, or moves the member
being loaded.

■ Delete Level 0-Deletes the member being loaded if it has no
children.

■ Delete Idescendants-Deletes the member being loaded and
all of its descendants.

■ Delete Descendants-Deletes the descendants of the member
being loaded, but does not delete the member itself.

Note: If you delete a member, that member, its data, and any
associated planning units are permanently removed and cannot
be restored.

Table 20–7 UDA

Column Description

Dimension Takes the dimension name for the UDA. You can associate
UDAs only with dimensions that exist in the Planning
application. If the UDA exists, its properties are modified;
otherwise, the record is added. This column is required.

UDA Takes the values of the UDA that you are loading.

Dimension Takes the values of the UDA you are loading. The value for this
column must meet the following requirements for a successful
load:

The value for this column must meet the following requirements
for a successful load:

■ Unique

■ Alphanumeric

■ Not more than 80 characters

■ Member name cannot contain tabs, double quotation marks
("), or backslash (\) characters.

■ Member name cannot start with any of these characters: ' \
< | , = @ _ + - { } () .

■ Value must not be an Essbase reserved word such as
Children, Parent, $$$UNIVERSE $$$, #MISSING, or #MI.
For more information about reserved words in Essbase, see
the Hyperion Essbase - System 9 Database Administrator's
Guide or Essbase online help.

This value is passed as a string; default value: a null string.

Table 20–6 (Cont.) Attribute Dimensions

Column Description

Datastore Tables and Data Load Columns

20-34 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

20.6.7 Data Load Columns
These columns for loading data into Account, Employee, Entities, and user-defined
dimensions are displayed if the application has been set up for data load in Planning.

Operation Takes any of these values:

■ Update (default)-Adds, updates, or moves the member
being loaded.

■ Delete Level 0-Deletes the member being loaded if it has no
children.

■ Delete Idescendants-Deletes the member being loaded and
all of its descendants.

■ Delete Descendants-Deletes the descendants of the member
being loaded, but does not delete the member itself.

Note: If you delete a member, that member, its data, and any
associated planning units are permanently removed and cannot
be restored.

Table 20–8 Data Load Columns

Columns Description

Data Load Cube
Name

Takes the name of the plan type to which data is being loaded. The
value is passed as a string. Valid values are any plan types specified in
the Planning application. For example:

■ Plan1

■ Plan2

■ Plan3

■ Wkforce

■ Capex

Driver Member Takes the name of the driver member that is selected when the
Planning, Oracle's Hyperion® Workforce Planning, or Oracle's
Hyperion® Capital Expense Planning application is set up for loading
data. You can have one driver dimension per load. The Driver
Dimension and Driver Dimension Members are defined in the Data
Load Administration page in Planning. The driver members are the
members into which the data is loaded. The number of driver member
columns depends on the number of driver members you select in
Oracle's Hyperion® Planning - System 9. The value is passed as a string
representing a numeric value or, if a Smart List is bound to the member
represented on this column, a Smart List value.

Note: The Smart List field on this load method does not affect this
column.

Point-of-View Takes the names of all the other dimensions that are required to
determine the intersection to load the data. The value is passed as a
string. The data load automatically performs cross-product record
creations based on dimension parameters defined in the POV. For
example, an employee’s Smart List attribute values that are constant
over time such as full time status for all twelve months need only be
supplied once in the data feed and the load file will create and load that
data record for each relevant cell intersection.

Table 20–7 (Cont.) UDA

Column Description

Datastore Tables and Data Load Columns

Oracle Hyperion Planning 20-35

Column Description

Data Load Cube
Name

Takes the name of the plan type to which data is being loaded. The
value is passed as a string. Valid values are any plan types specified in
the Planning application. For example:

■ Plan1

■ Plan2

■ Plan3

■ Wkforce

■ Capex

Driver Member Takes the name of the driver member that is selected when the
Planning, Oracle's Hyperion® Workforce Planning, or Oracle's
Hyperion® Capital Expense Planning application is set up for loading
data. You can have one driver dimension per load. The Driver
Dimension and Driver Dimension Members are defined in the Data
Load Administration page in Planning. The driver members are the
members into which the data is loaded. The number of driver member
columns depends on the number of driver members you select in
Oracle's Hyperion® Planning - System 9. The value is passed as a
string representing a numeric value or, if a Smart List is bound to the
member represented on this column, a Smart List value.

Note: The Smart List field on this load method does not affect this
column.

Point-of-View Takes the names of all the other dimensions that are required to
determine the intersection to load the data. The value is passed as a
string. The data load automatically performs cross-product record
creations based on dimension parameters defined in the POV. For
example, an employee’s Smart List attribute values that are constant
over time such as full time status for all twelve months need only be
supplied once in the data feed and the load file will create and load
that data record for each relevant cell intersection.

Datastore Tables and Data Load Columns

20-36 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

21

Oracle OLAP 21-1

21Oracle OLAP

This chapter describes how to work with Oracle OLAP in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 21.1, "Introduction"

■ Section 21.2, "Installation and Configuration"

■ Section 21.3, "Setting up the Topology"

■ Section 21.4, "Setting Up an Integration Project"

■ Section 21.5, "Creating and Reverse-Engineering an Oracle Model"

■ Section 21.6, "Working with Oracle OLAP KMs in Integration Interfaces"

21.1 Introduction
Oracle Data Integrator (ODI) seamlessly integrates data in an Oracle OLAP. All Oracle
Data Integrator features are designed to work best with the Oracle OLAP cubes,
including reverse-engineering and integration interfaces.

Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to the
Oracle database instance containing the Oracle OLAP cubes.

21.1.1 Concepts
The Oracle Data Integrator Knowledge Modules for Oracle OLAP provide integration
and connectivity between Oracle Data Integrator and Oracle OLAP cubes. Oracle Data
Integrator is able to handle two different types of cubes with the Oracle OLAP KMs,
depending on the storage mode of these cubes:

■ ROLAP (Relational OnLine Analytical Processing) cubes are based on a relational
storage model. ROLAP cubes can handle a large amount of data and benefit all
features of the relational database.

■ MOLAP (Multidimensional OnLine Analytical Processing) data is stored in form
of multidimensional cubes. The MOLAP model provides high query performance
and fast data retrieval for a limited amount of data.

The Oracle Data Integrator KMs for Oracle OLAP use mature integration methods for
Oracle OLAP in order to:

■ Reverse-Engineer Oracle OLAP data structures (all tables used by a ROLAP or a
MOLAP cube).

■ Integrate data in an Oracle Analytical Workspace target in incremental update
mode.

Installation and Configuration

21-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

21.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 21–1 for
handling Oracle OLAP data. The KMs use Oracle OLAP specific features. It is also
possible to use the generic SQL KMs and Oracle Database KMs with the Oracle OLAP.
See Chapter 4, "Generic SQL" and Chapter 2, "Oracle Database" for more information.

21.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
Oracle OLAP Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

21.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

21.2.2 Technology Specific Requirements
There are no connectivity requirements for using Oracle OLAP data in Oracle Data
Integrator. The requirements for the Oracle Database apply also to Oracle OLAP. See
Chapter 2, "Oracle Database" for more information.

The RKM Oracle OLAP (Jython) uses in addition Oracle OLAP libraries. Copy the
awxml.jar and olap_api.jar from the ORACLE_HOME/olap/api/lib folder into the
additional drivers folder for ODI.

Note: The Oracle Data Integrator Oracle OLAP KMs are similar to
the standard Oracle Database KMs. This chapter describes the Oracle
OLAP specificities. See Chapter 2, "Oracle Database" for a description
of the Oracle Database KMs.

Table 21–1 Oracle OLAP Knowledge Modules

Knowledge Module Description

RKM Oracle OLAP (Jython) Reverse-engineering knowledge module to retrieve the tables, views,
columns, Primary Keys, Unique Keys and Foreign keys from Oracle
Database, which are used by a ROLAP or a MOLAP Cube. This KM
provides logging (Use Log & Log File Name) options.

IKM Oracle AW Incremental Update This KM is similar to the IKM Oracle Incremental Update. It has
additional options for handling MOLAP cubes.

Creating and Reverse-Engineering an Oracle Model

Oracle OLAP 21-3

21.2.3 Connectivity Requirements
There are no connectivity requirements for using Oracle OLAP data in Oracle Data
Integrator. The requirements for the Oracle Database apply also to Oracle OLAP. See
Chapter 2, "Oracle Database" for more information.

21.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating an Oracle Data Server

2. Creating an Oracle Physical Schema

21.3.1 Creating an Oracle Data Server
This step consists in declaring in Oracle Data Integrator the data server, as well as the
physical and logical schemas that store the Oracle OLAP cubes.

21.3.1.1 Creation of the Data Server
Create a data server for the Oracle technology as described in Section 2.3.1, "Creating
an Oracle Data Server".

21.3.2 Creating an Oracle Physical Schema
Create an Oracle physical schema using the standard procedure, as described in
"Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

21.4 Setting Up an Integration Project
Setting up a project using the Oracle OLAP features follows the standard procedure.
See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide
for Oracle Data Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with Oracle OLAP:

■ IKM Oracle AW Incremental Update

■ RKM Oracle OLAP (Jython)

Import also the Oracle Database knowledge modules recommended in Chapter 2,
"Oracle Database".

21.5 Creating and Reverse-Engineering an Oracle Model
This section contains the following topics:

■ Create an Oracle Model

■ Reverse-engineer an Oracle OLAP Cube

Working with Oracle OLAP KMs in Integration Interfaces

21-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

21.5.1 Create an Oracle Model
Create an Oracle Model using the standard procedure, as described in "Creating a
Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.

21.5.2 Reverse-engineer an Oracle OLAP Cube
Oracle OLAP supports Customized reverse-engineering. The RKM Oracle OLAP
(Jython) retrieves the metadata from the Oracle tables used by an Oracle OLAP cube.

Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on Oracle OLAP, use the usual
procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator. This section details only the
fields specific to the Oracle technology:

1. In the Reverse tab of the Oracle Model, select the KM: RKM Oracle OLAP
(Jython).<project name>.

2. Set the RKM options as follows:

■ MOLAP: Set to YES to reverse an Analytic Workspace. If this option is set to
YES, the following options are mandatory:

– AW_NAME: Indicate the name of the Analytical Workspace.

– AW_URL: Specify the URL of the Analytical Workspace.

– AW_OWNER: Indicate the name of the Analytical Workspace Owner.

– AW_PASSWORD: Indicate the password of the Analytical Workspace
Owner.

■ ROLAP: Set to YES to reverse tables from a ROLAP schema.

■ USE_LOG: Set to YES to write the log details of the reverse-engineering
process into a log file.

■ LOG_FILE_NAME: Specify the name of the log file.

The reverse-engineering process returns the tables used by a cube as datastores.
You can then use these datastores as a source or a target of your interfaces.

21.6 Working with Oracle OLAP KMs in Integration Interfaces
You can use the Oracle Data Integrator Oracle OLAP KMs as well as the standard
Oracle Database KMs. The Oracle OLAP KM specific steps are detailed in the
following sections.

21.6.1 Using Oracle OLAP as a Source in an Integration Interface
After performing a reverse-engineering using the RKM Oracle OLAP (Jython), you can
use Oracle OLAP data tables as a source of an integration interface to extract data from
the Oracle OLAP database and integrate them into another system (Data warehouse,
other database...). Using Oracle OLAP as a source in these conditions is identical to
using an Oracle datastore as a source in an integration interface. The Generic SQL and
Oracle Database KMs can be used for this purpose.

See the following chapters for more information:

■ Chapter 2, "Oracle Database"

Working with Oracle OLAP KMs in Integration Interfaces

Oracle OLAP 21-5

■ Chapter 4, "Generic SQL"

21.6.2 Using Oracle ROLAP as a Target in an Integration Interface
After performing a reverse-engineering using the RKM Oracle OLAP (Jython), you can
use Oracle ROLAP data tables as a target of an integration interface to load data from
any system to the Oracle ROLAP database. Using Oracle ROLAP as a target in these
conditions is identical to using an Oracle datastore as a target in an integration
interface. The Generic SQL and Oracle Database KMs can be used for this purpose.

See the following chapters for more information:

■ Chapter 2, "Oracle Database"

■ Chapter 4, "Generic SQL"

21.6.3 Using Oracle MOLAP as a Target in an Integration Interface
Using Oracle MOLAP as a Target in an integration interface is similar to using Oracle
ROLAP as a target with the difference that, in addition to the standard features of the
integration process, you can refresh the MOLAP cube at the execution of the
integration interface by using the IKM Oracle AW Incremental Update.

This IKM is similar to the IKM Oracle Incremental Update. See Chapter 2, "Oracle
Database"for more information. It has four additional options for handling MOLAP
cubes:

■ AW_NAME: The name of the Analytical Workspace.

■ AW_OWNER: The name of the Analytical Workspace owner.

■ CUBE_NAME: The name of the cube.

■ REFRESH_CUBE: Set this option to YES to refresh the cube for an Analytical
Workspace.

In order to avoid refreshing the cube at every integration interface step, use the IKM
Oracle AW Incremental Update with the refresh cube options only in the last
integration interface of the package.

In the last integration interface set the options to refresh the cube as follows:

■ Set the REFRESH_CUBE option to YES.

■ Specify the values for the AW_OWNER, AW_NAME, and CUBE_NAME options.

Working with Oracle OLAP KMs in Integration Interfaces

21-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Part III
Part III Other Technologies

This part describes how to work with other technologies in Oracle Data Integrator.

Part III contains the following chapters:

■ Chapter 22, "JMS"

■ Chapter 23, "JMS XML"

■ Chapter 24, "LDAP Directories"

■ Chapter 25, "Oracle Changed Data Capture Adapters"

■ Chapter 26, "Oracle GoldenGate"

■ Chapter 27, "Oracle Enterprise Service Bus"

22

JMS 22-1

22JMS

This chapter describes how to work with Java Message Services (JMS) in Oracle Data
Integrator.

This chapter includes the following sections:

■ Section 22.1, "Introduction"

■ Section 22.2, "Installation and Configuration"

■ Section 22.3, "Setting up the Topology"

■ Section 22.4, "Setting Up an Integration Project"

■ Section 22.5, "Creating and Defining a JMS Model"

■ Section 22.6, "Designing an Interface"

■ Section 22.7, "JMS Standard Properties"

22.1 Introduction
Oracle Data Integrator provides a simple and transparent method to integrate JMS
destinations. This chapter focuses on processing JMS messages with a text payload in
batch mode. For XML payload processing, refer to Chapter 23, "JMS XML".

22.1.1 Concepts
The JMS Knowledge Modules apply to most popular JMS compliant middleware,
including Oracle Service Bus, Sonic MQ, IBM Websphere MQ, and so forth. Most of
these Knowledge Modules include transaction handling to ensure message delivery.

22.1.1.1 JMS Message Structure
This section describes the structure of a message in a JMS destination.

A JMS Message consists of three sections:

■ Header

■ Properties

■ Payload

Header
The header contains in the header fields standard metadata concerning the message,
including the destination (JMSDestination), Message ID (JMSMessageID), Message
Type (JMSType), and so forth.

Introduction

22-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Properties
The properties section contains additional metadata concerning the message. These
metadata are properties, that can be separated in three groups:

■ JMS-Defined properties which are optional JMS Headers. Their name begins with
JMSX(JMSXUserID, JMSXAppID, etc.).

■ Provider-specific properties. They are specific to the router vendor. Their names
start with JMS_<vendor name>.

■ Application-specific properties. These properties depend on the application
sending the messages. These are user-defined information that is not included in
the message payload.

The Header and Properties sections provide a set of header fields and properties that:

■ Have a specific Java data type (Boolean, string, short, and so forth),

■ Can be accessed for reading and/or writing,

■ Can be used for filtering on the router through the JMS Selector.

Payload
The payload section contains the message content. This content can be anything (text,
XML, binary, and so forth).

22.1.1.2 Using a JMS Destination
Oracle Data Integrator is able to process JMS Text and Byte messages that are
delivered by a JMS destination. Each message is considered as a container for rows of
data and is handled through the JMS Queue or JMS Topic technology.

With JMS Queue/JMS Topic technologies, each JMS destination is defined similarly to
a flat file datastore. Each message in the destination is a record in the datastore.

In the topology, each JMS router is defined as a JMS Topic/Queue data server, with a
single physical schema. A JMS router may be defined therefore twice to access its
topics using one data server, and its queues using another one.

Each JMS destination (Topic of Queue) is defined as a JMS datastore which resource
name matches the name of the JMS destination (name of the queue or topic as defined
in the router). A model groups message structures related to different topics or
queues.

The JMS datastore structure is defined similarly to a flat file (delimited or fixed width).
The properties or header fields of the message can be declared with JMS-specific data
types as additional pseudo-columns in this flat file structure. Each message in the
destination is processed as a record of a JMS datastore.

Processing Messages
JMS destinations are handled as regular file datastores and messages as rows from
these datastores. With these technologies, entire message sets are produced and
consumed within each interface.

Message publishing as well consumption requires a commit action to finalize
removing/posting the message from/to the JMS destination. Committing is
particularly important when reading. Without a commit, the message is read but not
consumed. It remains in the JMS Topic/Queue and will be re-read at a later time.

Both the message content and pseudo-columns can be used as regular columns in the
integration interfaces (for mapping, filter, etc.). Certain pseudo-columns (such as the

Installation and Configuration

JMS 22-3

one representing the MESSAGE_ID property) are read-only, and some properties of
header fields are used (or set) through the Knowledge Module options.

Using Data Integrator you can transfer information either through the message
payload - the columns - , or through the properties - pseudo-columns - (application
properties, for example).

Using the properties to carry information is restricted by third-party applications
producing or consuming the messages.

Filtering Messages
It is possible to filter messages from a JMS destination in two ways:

■ By defining a filter using the datastore’s columns and pseudo-columns. In this case
Data Integrator performs the filtering operation after consuming the messages.
This implies that messages rejected by this filter may also be consumed.

■ By defining a Message Selector (MESSAGE_SELECTOR KM option). This type of
filter can only use the properties or header fields of the message. The filter is
processed by the router, and only the messages respecting the filter are consumed,
reducing the number of messages transferred.

22.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 22–1 for
handling JMS messages.

22.2 Installation and Configuration
Make sure you have read the information in this section before you start using the JMS
Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

Table 22–1 JMS Knowledge Modules

Knowledge Module Description

IKM SQL to JMS Append Integrates data into a JMS compliant message queue or topic in text
or binary format from any SQL compliant staging area.

Consider using this IKM if you plan to transform and export data to
a target JMS queue or topic. If most of your source datastores are
located on the same data server, we recommend using this data
server as staging area to avoid extra loading phases (LKMs).

To use this IKM, the staging area must be different from the target.

LKM JMS to SQL Loads data from a text or binary JMS compliant message queue or
topic to any SQL compliant database used as a staging area. This
LKM uses the Agent to read selected messages from the source
queue/topic and write the result in the staging temporary table
created dynamically.

To ensure message delivery, the message consumer (or subscriber)
does not commit the read until the data is actually integrated into the
target by the IKM.

Consider using this LKM if one of your source datastores is a text or
binary JMS message.

Setting up the Topology

22-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

22.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

22.2.2 Technology Specific Requirements
The JMS destinations are usually accessed via a JNDI service. The configuration and
specific requirements for JNDI and JMS depends on the JMS Provider you are
connecting to. Refer to the JMS Provider specific documentation for more details.

22.2.3 Connectivity Requirements
Oracle Data Integrator does not include specific drivers for JMS providers. Refer to the
JMS Provider documentation for the connectivity requirement of this provider.

22.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a JMS Data Server

2. Creating a JMS Physical Schema

22.3.1 Creating a JMS Data Server
A JMS data server corresponds to one JMS provider/router that is accessible through
your local network.

It exists two types of JMS data servers: JMS Queue and JMS Topic.

■ A JMS Queue data server is used to access several queues in the JMS router.

■ A JMS Topic data server is used to access several topics in the JMS router

22.3.1.1 Creation of the Data Server
Create a data server either for the JMS Queue technology or for the JMS Topic
technology using the standard procedure, as described in "Creating a Data Server" of
the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section
details only the fields required or specific for defining a JMS Queue or JMS Topic data
server.

1. In the Definition tab:

■ Name: Name of the data server as it will appear in Oracle Data Integrator.

■ User/Password: Not used here. Leave these fields empty.

2. In the JNDI tab:

■ JNDI Authentication: Set this field to None.

■ JNDI User: Enter the username to connect to the JNDI directory (optional
step).

Creating and Defining a JMS Model

JMS 22-5

■ Password: This user's password (optional step).

■ JNDI Protocol: From the list, select the JNDI protocol (optional step).

■ JNDI Driver: Name of the initial context factory java class to connect to the
JNDI provider, for example: com.sun.jndi.ldap.LdapCtxFactory for
LDAP

■ JNDI URL: <JMS_RESOURCE>, for example ldap://<host>:<port>/<dn>
for LDAP

■ JNDI Resource: Logical name of the JNDI resource corresponding to your JMS
Queue or Topic connection factory.

For example, specify QueueConnectionFactory if you want to access a
message queue and TopicConnectionFactory if you want to access a
topic. Note that these parameters are specific to the JNDI directory and the
provider.

22.3.2 Creating a JMS Physical Schema
Create a JMS physical schema using the standard procedure, as described in "Creating
a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data
Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

22.4 Setting Up an Integration Project
Setting up a project using JMS follows the standard procedure. See "Creating an
Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with JMS:

■ IKM SQL to JMS Append

■ LKM JMS to SQL

22.5 Creating and Defining a JMS Model
This section contains the following topics:

■ Create a JMS Model

■ Defining the JMS Datastores

Note: Only one physical schema is required per JMS data server.

Note: It is not possible to reverse-engineer a JMS model. To create a
datastore you have to create a JMS model and define the JMS
datastores.

Creating and Defining a JMS Model

22-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

22.5.1 Create a JMS Model
Create a JMS Model using the standard procedure, as described in "Creating a Model"
of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.

A JMS Model is a set of datastores corresponding to the Topics or Queues of a router.
Each datastore corresponds to a specific Queue or Topic. The datastore structure
defines the message structure for this queue or topic. A model is always based on a
Logical Schema. In a given Context, the Logical Schema corresponds to one JMS
Physical Schema. The Data Schema corresponding to this Physical Schema contains
the Topics or Queues.

22.5.2 Defining the JMS Datastores
In Oracle Data Integrator, each datastore is a JMS Topic or Queue. Each message in
this topic or queue is a row of the datastore.

A JMS message may carry any type of information and there is no metadata retrieval
method available. Therefore reverse-engineering is not possible.

To define the datastore structure, do one of the following:

■ Create the datastore as a file datastore and manually declare the message
structures.

■ Use the File reverse-engineering through an Excel spreadsheet in order to
automate the reverse engineering of messages. See Chapter 3, "Files" for more
information about this reverse-engineering method.

■ Duplicate a datastore from another model into the JMS model.

Declaring JMS Properties as Pseudo-Columns
The property pseudo-columns represent properties or header fields of a message.
These pseudo-columns are defined in the Oracle Data Integrator model as columns in
the JMS datastore, with JMS-specific datatypes. The JMS-specific datatypes are called
JMS_xxx (for example: JMS String, JMS Long, JMS Int, and so forth).

To define these property pseudo-columns, simply declare additional columns named
identically to the properties and specified with the appropriate JMS-specific datatypes.

 If you define pseudo-columns that are named like standard, provider-specific or
application-specific properties, they will be consumed or published with the message
as such. If a pseudo-column is not listed in the standard or provider-specific set of JMS
properties, It is considered as additional application-specific property.

For example, to use or set in interfaces the JMSPriority default property on messages
consumed from or pushed to a JMS queue called CUSTOMER, you would add a
column called JMSPriority (with this exact case) to the CUSTOMER datastore. This
column would have the JMS Int datatype available for the JMS Queue technology.

Important: The datastores' resource names must be identical to the
name of JMS destinations (this is the logical JNDI name) that will
carry the message corresponding to their data. Note that these names
are frequently case-sensitive.

Designing an Interface

JMS 22-7

For more information about JMS Properties, see:

■ Section 22.7, "JMS Standard Properties"

■ Section 22.7.1, "Using JMS Properties"

22.6 Designing an Interface
You can use JMS as a source or a target of an integration interface. It cannot be used as
the staging area.

The KM choice for an interface or a check determines the abilities and performance of
this interface or check. The recommendations in this section help in the selection of the
KM for different situations concerning JMS messages.

22.6.1 Loading Data from a JMS Source
JMS can be used as a source or a target in an interface. Data from a JMS message
Queue or Topic can be loaded to any SQL compliant database used as a staging area.
The LKM choice in the Interface Flow tab to load data between JMS and another type
of data server is essential for the performance of an interface.

Oracle Data Integrator provides the LKM JMS to SQL for loading data from a JMS
source to a Staging Area. This LKM loads data from a text or binary JMS compliant
message queue or topic to any SQL compliant database used as a staging area.

 Table 22–2 lists the JMS specific options.

22.6.2 Integrating Data in a JMS Target
Oracle Data Integrator provides the IKM SQL to JMS Append that implements
optimized data integration strategies for JMS. This IKM integrates data into a JMS
compliant message queue or topic in text or binary format from any SQL compliant
staging area. Table 22–2 lists the JMS specific KM options of this IKM.

The IKM choice in the Interface Flow tab determines the performances and
possibilities for integrating.

JMS Knowledge Modules Options
Table 22–2 lists the JMS specific KM options of the JMS IKM and LKM.

The JMS specific options of this LKM are similar to the options of the IKM SQL to JMS
Append. There are only two differences:

■ The DELETE_TEMPORARY_OBJECTS option is only provided for the LKM.

■ The PUBLISH option is only provided for the IKM.

Warning:

■ Property pseudo-columns must be defined and positioned in the
JMS datastore after the columns making up the message payload.
Use the Order field in the column definition to position these
columns. The order of the pseudo-columns themselves is not
important as long as they appear at the end of the datastore
definition.

■ Pseudo-columns names are case-sensitive.

Designing an Interface

22-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 22–2 JMS Specific KM Options

Option Used to Description

PUBLISH Write Check this option if you want to publish new
messages in the destination. This option is set to
Yes by default.

JMS_COMMIT Read/Write Commit the publication or consumption of a
message. Uncheck this option if you don't want to
commit your publication/consumption on your
router. This option is set to Yes by default.

JMSDELIVERYMODE Write JMS delivery mode (1: Non Persistent, 2:
Persistent). A persistent message remains on the
server and is recovered on server crash.

JMSEXPIRATION Write Expiration delay in milliseconds for the message on
the server [0..4 000 000 000]. 0 signifies that the
message never expires.

Warning! After this delay, a message is considered
as expired, and is no longer available in the topic or
queue. When developing interfaces it is advised to
set this parameter to zero.

JMSPRIORITY Write Relative Priority of the message: 0 (lowest) to 9
(highest).

SENDMESSAGETYPE Write Type of message to send (1 -> BytesMessage, 2
->TextMessage).

JMSTYPE Write Optional name of the message.

CLIENTID Read Subscriber identification string. This option is
described only for JMS compatibility.

 Not used for publication.

DURABLE Read D: Session is durable. Indicates that the subscriber
definition remains on the router after
disconnection.

MESSAGEMAXNUMBER Read Maximum number of messages retrieved [0 .. 4 000
000 000]. 0: All messages are retrieved.

MESSAGETIMEOUT Read Time to wait for the first message in milliseconds [0
.. 4 000 000 000]. if MESSAGETIMEOUT is equal to
0, then there is no timeout.

MESSAGETIMEOUT and
MESSAGEMAXNUMBER cannot be both equal to
zero. if MESSAGETIMEOUT= 0 and
MESSAGEMAXNUMBER =0, then
MESSAGETIMEOUT takes the value 1.

Warning! An interface may retrieve no message if
this timeout value is too small.

NEXTMESSAGETIMEOUT Read Time to wait for each subsequent message in
milliseconds [0 .. 4 000 000 000]. The default value is
1000.

Warning! An interface may retrieve only part of the
messages available in the topic or the queue if this
value is too small.

MESSAGESELECTOR Read Message selector in ISO SQL syntax. See
Section 22.7.1, "Using JMS Properties" for more
information on message selectors.

JMS Standard Properties

JMS 22-9

22.7 JMS Standard Properties
This section describes the JMS properties contained in the message header and how to
use them.

In Oracle Data Integrator, pseudo-columns corresponding to the JMS Standard
properties should be declared in accordance with the descriptions provided in
Table 22–3.

The JMS type and access mode columns refer to the use of these properties in Oracle
Data Integrator or in Java programs. In Oracle Data Integrator, some of these
properties are used through the IKM options, and the pseudo-column values should
not be set by the interfaces.

For more details on using these properties in a Java program, see
http://java.sun.com/products/jms/.

Table 22–3 Standard JMS Properties of Message Headers

Property JMS Type
Access
(Read/Write) Description

JMSDestination JMS String R Name of the destination (topic or
queue) of the message.

JMSDeliveryMode JMS Integer R/W (set by IKM
option)

Distribution mode: 1 = Not
Persistent or 2 = Persistent. A
persistent message is never lost,
even if a router crashes.

When sending messages, this
property is set by the
JMSDELIVERYMODE KM option.

JMSMessageID JMS String R Unique Identifier for a message. This
identifier is used internally by the
router.

JMSTimestamp JMS Long R Date and time of the message
sending operation. This time is
stored in a UTC standard format (1).

JMSExpiration JMS Long R/W (set by IKM
option)

Message expiration date and time.
This time is stored in a UTC
standard format (1).

To set this property the
JMSEXPIRATION KM option must
be used.

JMSRedelivered JMS Boolean R Indicates if the message was resent.
This occurs when a message
consumer fails to acknowledge the
message reception.

JMSPriority JMS Int R/W Name of the destination (topic or
queue) the message replies should
be sent to.

JMSCorrelationID JMS String R/W Correlation ID for the message. This
may be the JMSMessageID of the
message this message generating
this reply. It may also be an
application-specific identifier.

JMS Standard Properties

22-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table 22–4 lists the optional JMS-defined properties in the JMS standard.

(1): The UTC (Universal Time Coordinated) standard is the number of milliseconds
that have elapsed since January 1st, 1970

22.7.1 Using JMS Properties
In addition to their contents, messages have a set of properties attached to them. These
may be provider-specific, application-specific (user defined) or JMS Standard
Properties.

JMS properties are used in Oracle Data Integrator as complementary information to
the message, and are used, for example, to filter the messages.

JMSType JMS String R/W (set by IKM
option)

Message type label. This type is a
string value describing the message
in a functional manner (for example
SalesEvent, SupportProblem).

To set this property the JMSTYPE
KM option must be used.

Table 22–4 Standard JMS Properties of Message Headers

Property JMS Type
Access
(Read/Write) Description

JMSXUserID JMS String R Client User ID.

JMSXAppID JMS String R Client Application ID.

JMSSXProducerTXI
D

JMS String R Transaction ID for the production
session. This ID is the same for all
the messages sent to a destination by
a producer between two JMS
commit operations.

JMSSXConsumerTX
ID

JMS String R Transaction ID for current
consumption session. This ID is the
same of a batch of message read
from a destination by a consumer
between two JMS commit read
operations.

JMSXRcvTimestam
p

JMS Long R Message reception date and time.
This time is stored in a UTC
standard format (1).

JMSXDeliveryCoun
t

JMS Int R Number of times a message is
received. Always set to 1.

JMSXState JMS Int R Message state. Always set to 2
(Ready).

JMSXGroupID JMS String R/W ID of the group to which the
message belongs.

JMSXGroupSeq JMS Int R/W Sequence number of the message in
the group of messages.

Table 22–3 (Cont.) Standard JMS Properties of Message Headers

Property JMS Type
Access
(Read/Write) Description

JMS Standard Properties

JMS 22-11

22.7.1.1 Declaring JMS Properties
When Defining the JMS Datastores, you must append pseudo-columns corresponding
to the JMS properties that you want to use in your interfaces. See Declaring JMS
Properties as Pseudo-Columns for more information.

22.7.1.2 Filtering on the Router
With this type of filtering, the filter is specified when sending the JMS read query.
Only messages matching the message selector filter are retrieved. The message selector
is specified in Oracle Data Integrator using the MESSAGE_SELECTOR KM option

The MESSAGE_SELECTOR is programmed in an SQL WHERE syntax. Comparison,
boolean and mathematical operators are supported:

 +, -, *, /, =, >, <, <>, >=, <=, OR, AND, BETWEEN, IN, NOT,
LIKE, IS NULL.

Examples
Filter all messages with priority greater than 5

JMSPriority > 5

Filter all messages with priority not less than 6 and with the type Sales_Event.

NOT JMSPriority < 6 AND JMSType = 'Sales_Event'

22.7.1.3 Filtering on the Client
Filtering is performed after receiving the messages, and is setup by creating a standard
Oracle Data Integrator interface filter which must be executed on the staging area. A
filter uses pseudo-columns from the source JMS datastore. The pseudo-columns
defined in the Oracle Data Integrator datastore represent the JMS properties. See
Declaring JMS Properties as Pseudo-Columns for more information. Note that
messages filtered this way are considered as consumed from the queue or topic.

22.7.1.4 Using Property Values as Source Data
It is possible to use the values of JMS properties as source data in an interface. This is
carried out by specifying the pseudo-columns of the source JMS datastore in the
mapping. See Declaring JMS Properties as Pseudo-Columns for more information.

Note: Router filtering is not a JMS mandatory feature. It may be
unavailable. Please confirm that it is available by reviewing the JMS
provider documentation.

Notes:

■ The IS NULL clause handles properties with an empty value but
does not handle nonexistent application-specific properties.

For example, if the selector COLOR IS NULL is defined, a
message with the application-specific property COLOR specified
with an empty value is consumed correctly. Another message in
the same topic/queue without this property specified would raise
an exception.

JMS Standard Properties

22-12 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

22.7.1.5 Setting Properties when Sending a Message
When sending messages it is possible to specify JMS properties by mapping values of
the pseudo-columns in an interface targeting a JMS datastore. Certain properties may
be set using KM options. See Section 22.7, "JMS Standard Properties" for more
information.

23

JMS XML 23-1

23JMS XML

This chapter describes how to work with Java Message Services (JMS) with a XML
payload in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 23.1, "Introduction"

■ Section 23.2, "Installation and Configuration"

■ Section 23.3, "Setting up the Topology"

■ Section 23.4, "Setting Up an Integration Project"

■ Section 23.5, "Creating and Reverse-Engineering a JMS XML Model"

■ Section 23.6, "Designing an Interface"

23.1 Introduction
Oracle Data Integrator provides a simple and transparent method to integrate JMS
destinations. This chapter focuses on processing JMS messages with a XML payload.
For text payload processing in batch mode, refer to Chapter 22, "JMS".

23.1.1 Concepts
The JMS XML Knowledge Modules apply to most popular JMS compliant
middleware, including Oracle Service Bus, Sonic MQ, IBM Websphere MQ, and so
forth. Most of these Knowledge Modules include transaction handling to ensure
message delivery.

23.1.1.1 JMS Message Structure
See Section 22.1.1.1, "JMS Message Structure" for information about the JMS message
structure.

23.1.1.2 Using a JMS Destination
Oracle Data Integrator is able to process XML messages that are delivered by a JMS
destination. Each message is considered as a container for XML data and is handled
through the JMS XML Queue or JMS XML Topic technology.

With JMS XML Queue/JMS XML Topic technologies, each messages payload contains
a complete XML data structure. This structure is mapped into a relational schema
(XML Schema) that appears as a model, using the Oracle Data Integrator XML Driver.

Introduction

23-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

In the topology, each JMS destination is defined as a JMS XML Topic/Queue data
server with a single physical schema. A data server/physical schema pair will be
declared for each topic or queue delivering message in the XML format.

The structure of the XML message mapped into a relational structure (called the XML
schema) appears as a data model. Each datastore in this model represents a portion
(typically, an element type) in the XML file.

Processing Messages
As each XML message corresponds to an Oracle Data Integrator model, the entire
model must be used and loaded as one single unit when a JMS XML message is
consumed or produced. The processing unit for an XML message is the package.

It is not possible to declare the properties or header fields of the message in the model
or use them as columns in an interface. They still can be used in message selectors, or
be set through KM options.

Consuming an XML message
Processing an incoming XML message is performed in packages as follows:

1. Synchronize the JMS message to the XML schema: This operation reads the message
and generates the XML schema. This is usually performed by the first interface
accessing the message.

2. Extract the data: A sequence of interfaces use datastores from the XML schema as
sources. This data is usable until the session is terminated, another message is read
by a new Synchronize action, or the Commit JMS Read is performed.

3. Commit JMS Read: This operation validates the message consumption and deletes
the XML schema. It should be performed by the last interface which extracts data
from the XML message.

Producing an XML message
To produce an XML message, a package must be designed to perform the following
tasks:

1. Initialize the XML schema: This operation creates an empty XML schema
corresponding to the XML message to generate. This operation is usually
performed in the first interface loading the structure.

2. Load the data: A sequence of interfaces loads data into the XML schema.

3. Synchronize the XML schema to JMS: This operation converts the XML schema to an
XML message, and sends it to the JMS destination. This operation is usually
performed by the last interface loading the schema.

Filtering Messages
It is possible to filter messages from a JMS XML destination by defining a Message
Selector (MESSAGE_SELECTOR KM option) to filter messages on the server. This type
of filter can use only the properties or header fields of the message. The filter is

Note: This method is extremely similar to XML files processing. In
JMS XML, the message payload is the XML file. See Chapter 5, "XML
Files" and Appendix B, "Oracle Data Integrator Driver for XML
Reference" for more information about XML Files processing and the
XML Driver.

Installation and Configuration

JMS XML 23-3

processed by the server, reducing the amount of information read by Data Integrator.
It is also possible to filter data in the interface using data extracted from the XML
schema. These filters are processed in Data Integrator, after the message is
synchronized to the XML schema.

23.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 23–1 for
handling XML messages.

23.2 Installation and Configuration
Make sure you have read the information in this section before you start using the JMS
Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

23.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

23.2.2 Technology Specific Requirements
The JMS destinations are usually accessed via a JNDI service. The configuration and
specific requirements for JNDI and JMS depends on the JMS Provider you are
connecting to. Refer to the JMS Provider specific documentation for more details.

23.2.3 Connectivity Requirements
This section lists the requirements for connecting to a JMS XML database.

Oracle Data Integrator does not include specific drivers for JMS providers. Refer to the
JMS Provider documentation for the connectivity requirement of this provider.

XML Configuration
XML content is accessed through the Oracle Data Integrator JDBC for XML driver. The
driver is installed with Oracle Data Integrator.

Table 23–1 JMS XML Knowledge Modules

Knowledge Module Description

IKM SQL to JMS XML Append Integrates data into a JMS compliant message queue or topic in XML
format from any ANSI SQL-92 standard compliant staging area.

LKM JMS XML to SQL Loads data from a JMS compliant message queue or topic in XML to
any ANSI SQL-92 standard compliant database used as a staging
area.

Setting up the Topology

23-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Ask your system administrator for the location of the DTD file describing the XML
content.

23.3 Setting up the Topology
Setting up the Topology consists of:

1. Creating a JMS XML Data Server

2. Creating a JMS XML Physical Schema

23.3.1 Creating a JMS XML Data Server
An JMS XML data server corresponds to one JMS provider/router that is accessible
through your local network.

There are two types of JMS XML data servers: JMS Queue XML and JMS Topic XML.

■ A JMS Queue XML data server is used to connect a single queue in the JMS router to
integrate XML messages.

■ A JMS Topic XML data server is used to connect a single Topic in the JMS router to
integrate XML messages.

The Oracle Data Integrator JMS driver loads the messages that contains the XML
content into a relational schema in memory. This schema represents the hierarchical
structure of the XML message and enables unloading the relational structure back to
the JMS messages.

23.3.1.1 Creation of the Data Server
Create a data server either for the JMS Queue XML technology or for the JMS Topic
XML technology using the standard procedure, as described in "Creating a Data
Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.

The creation process for a JMS XML Queue or JMS Topic XML data server is identical
to the creation process of an XML data server except that you need to define a JNDI
connection with JMS XML specific information in the JNDI URL. See Section 5.3.1,
"Creating an XML Data Server" for more information.

This section details only the fields required or specific for defining a JMS Queue XML
or JMS Topic XML data server.

1. In the Definition tab:

■ Name: Name of the data server as it will appear in Oracle Data Integrator.

■ User/Password: Not used here. Leave these fields empty.

2. In the JNDI tab:

■ JNDI Authentication: From the list, select the authentication mode.

■ JNDI User: Enter the username to connect to the JNDI directory (not
mandatory).

■ Password: This user's password (not mandatory).

■ JNDI Protocol: From the list, select the JNDI protocol (not mandatory).

■ JNDI Driver: Name of the initial context factory java class to connect to the
JNDI provider, for example:

com.sun.jndi.ldap.LdapCtxFactory

Setting up the Topology

JMS XML 23-5

■ JNDI URL: <JMS_RESOURCE>?d=<DTD_FILE>&s=<SCHEMA>&JMS_
DESTINATION=<JMS_DESTINATION_NAME>.

The JNDI URL properties are described inTable 23–2.

■ JNDI Resource: Logical name of the JNDI resource corresponding to your JMS
Queue (or Topic) connection factory.

Example
If using an LDAP directory as the JNDI provider, you should use the following
parameters:

■ JNDI Driver: com.sun.jndi.ldap.LdapCtxFactory

■ JNDI URL: ldap://<ldap_host>:<port>/<dn>?d=<DTD_
FILE>&s=<SCHEMA>&JMS_DESTINATION=<JMS_DESTINATION_NAME>

■ JNDI Resource: <Name of the connection factory>

Note: Specify QueueConnectionFactory if you want to access a
message queue and TopicConnectionFactory if you want to access a
topic. Note that these parameters are specific to the JNDI directory.

Table 23–2 JNDI URL Properties

Parameter Value Notes

d <DTD File location> DTD File location (relative or absolute) in UNC format.
Use slash “/” in the path name and not backslash “\”
in the file path. This parameter is mandatory.

re <Root element> Name of the element to take as the root table of the
schema. This value is case sensitive. This parameter can
be used for reverse-engineering a specific message
definition from a WSDL file, or when several possible
root elements exist in a XSD file.

ro true | false If true, the XML file is opened in read only mode.

s <schema name> Name of the relational schema where the XML file will
be loaded.This value must match the one set for the
physical schema attached to this data server. This
parameter is mandatory.

cs true | false Load the XML file in case sensitive or insensitive mode.
For case insensitive mode, all element names in the
DTD file should be distinct (Ex: Abc and abc in the
same file are banned). The case sensitive parameter is a
permanent parameter for the schema. It CANNOT be
changed after schema creation. Please note that when
opening the XML file in insensitive mode, case will be
preserved for the XML file.

JMSXML_
ROWSEPARA
TOR

5B23245D Hexadecimal code of the string used as a line separator
(line break) for different XML contents. Default value
is 5B23245D which corresponds to the string [#$].

JMS_
DESTINATIO
N

JNDI Queue name or
Topic name

JNDI Name of the JMS Queue or Topic. This parameter
is mandatory.

Setting Up an Integration Project

23-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

23.3.2 Creating a JMS XML Physical Schema
Create a JMS XML physical schema using the standard procedure, as described in
"Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

23.4 Setting Up an Integration Project
Setting up a project using JMS XML follows the standard procedure. See "Creating an
Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data
Integrator.

It is recommended to import the following knowledge modules into your project for
getting started with JMS XML:

■ IKM SQL to JMS XML Append

■ LKM JMS XML to SQL

23.5 Creating and Reverse-Engineering a JMS XML Model
This section contains the following topics:

■ Create a JMS XML Model

■ Reverse-Engineering a JMS XML Model

23.5.1 Create a JMS XML Model
Create a JMS Queue XML or JMS Topic XML Model using the standard procedure, as
described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

A JMS Queue XML or JMS Topic XML Model corresponds to a set of datastores, with
each datastore representing an entry level in the XML file. The models contain
datastores describing the structure of the JMS messages. A model contains the
message structure of one topic or one queue. This model's structure is
reverse-engineered from the DTD or the XML file specified in the data server
definition, using standard reverse-engineering.

23.5.2 Reverse-Engineering a JMS XML Model
JMS XML supports Standard reverse-engineering - which uses only the abilities of the
XML driver.

Note: For the name of the Schema and Work Schema use the schema
name defined in the s=<schema name> property of the JNDI URL of
the JMS Queue XML or JMS Topic XML data server.

Note: Only one physical schema is required per JMS XML data
server.

Designing an Interface

JMS XML 23-7

To perform a Standard Reverse-Engineering on JMS Queue XML or JMS Topic XML
use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle
Fusion Middleware Developer's Guide for Oracle Data Integrator.

Oracle Data Integrator will automatically add the following columns to the tables
generated from the XML data:

■ Primary keys (PK columns) for parent-child relationships

■ Foreign keys (FK columns) for parent-child relationships

■ Order identifier (ORDER columns) to enable the retrieval of the order in which the
data appear in the XML file.

These extra columns enable the hierarchical XML structure's mapping in a relational
structure stored in the schema. See d Appendix B, "Oracle Data Integrator Driver for
XML Reference" for more information.

23.6 Designing an Interface
The KM choice for an interface or a check determines the abilities and performance of
this interface or check. The recommendations in this section help in the selection of the
KM for different situations concerning XML messages.

23.6.1 Loading Data from a JMS XML Source
JMS XML can be used as a source or a target in an interface. Data from an XML
message Queue or Topic can be loaded to any ANSI SQL-92 standard compliant
database used as a staging area. The LKM choice in the Interface Flow tab to load data
between JMS XML and another type of data server is essential for successful data
extraction.

Oracle Data Integrator provides the LKM JMS XML to SQL for loading data from a
JMS compliant message queue or topic in XML to any ANSI SQL-92 standard
compliant database used as a staging area. This LKM uses the Agent to read selected
messages from the source queue/topic and write the result in the staging temporary
table created dynamically.

To ensure message delivery, the message consumer (or subscriber) does not commit
the read until the data is actually integrated into the target by the IKM.

Consider using this LKM if one of your source datastores is an XML JMS message.

In order to load XML messages from a JMS provider, the following steps must be
followed:

■ The first interface reading the XML message from the JMS XML source must use
the LKM JMS XML to SQL with the SYNCHRO_JMS_TO_XML LKM option set to
Yes. This option creates and loads the XML schema from the message retrieved
from the queue or topic.

■ The last interface should commit the message consumption by setting the JMS_
COMMIT to Yes.

 Table 23–3 lists the JMS specific options of this knowledge module.

23.6.2 Integrating Data in a JMS XML Target
Oracle Data Integrator provides the IKM SQL to JMS XML Append that implements
optimized data integration strategies for JMS XML. This IKM integrates data into a

Designing an Interface

23-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

JMS compliant message queue or topic in XML format from any ANSI SQL-92
standard compliant staging area.

To use this IKM, the staging area must be different from the target.

In order to integrate XML data into a JMS XML target, the following steps must be
followed:

■ The first interface loading the XML schema must provide a value for the ROOT_
TABLE (it is the model's table that corresponds to the root element of the XML
file), and also set the INITIALIZE_XML_SCHEMA option to Yes.

■ The interfaces should load the datastores in the hierarchy order, starting by the
top of the hierarchy and going down. The interfaces loading subsequent levels of
the XML schema hierarchy should load the foreign key column linking the current
hierarchy level to a higher one.

For example, when loading the second level of the hierarchy (the one under the
root table), the foreign key column should be set to '0' (Zero), as it is the value that
is set by the IKM in the root table primary key when the root table is initialized.

■ The last interface should send the XML schema to the JMS provider by setting the
SYNCHRO_JMS_TO_XML parameter to Yes.

Example
An XML file format generates a schema with the following hierarchy of datastores:

+ GEOGRAPHY_DIM (GEO_DIMPK, ...)
 |
 +--- COUNTRY (GEO_DIMFK, COUNTRYPK, COUNTRY_NAME, ...)
 |
 +--- REGION (COUNTRYFK, REGIONPK, REGION_NAME, ...)

In this hierarchy, GEOGRAPHY_DIM is the root table, and its GEOGRAPHY_DIMPK
column is set to '0' at initialization time. The tables should be loaded in the
GEOGRAPHY_DIM, COUNTRY, REGION sequence.

■ When loading the second level of the XML hierarchy (COUNTRY) make sure that
the FK field linking this level to the root table level is set to '0'. In the model above,
when loading COUNTRY, we must load the COUNTRY.GEOGRAPHY_DIMFK
set to '0'.

■ You must also link the records of REGION to the COUNTRY level by loading the
REGION.COUNTRYFK column with values that correspond to a parent record in
COUNTRY (having REGION.COUNTRYFK = COUNTRY.COUNTRYPK).

For more information on loading data to XML schemas, see Appendix B, "Oracle Data
Integrator Driver for XML Reference".

Table 23–3 lists the JMS specific KM options of this IKM. Options that are specific to
XML messages are in bold.

Note: The root table of the XML schema usually corresponds to the
datastore at the top of the hierarchy tree view of the JMS XML model.
Therefore the ROOT_TABLE parameter should take the value of the
resource name for this datastore.

Designing an Interface

JMS XML 23-9

JMS XML Knowledge Modules Options
Table 23–3 lists the KM options for the LKM and IKM for JMS XML. Options that are
specific to XML messages are in bold.

Although most options are the same for the LKM and IKM, there are only few
differences:

■ The INITIALIZE_XML_SCHEMA and ROOT_TABLE options are only provided
for the IKM.

■ The DELETE_TEMPORARY_OBJECTS and JMS_COMMIT options are only
provided for the LKM.

■ Set JMS_COMMIT to Yes to commit the message consumption on the Router (JMS
XML).

Table 23–3 JMS Specific KM Options

Option Used to Description

CLIENTID Read Subscriber identification string.

 Not used for publication.

DURABLE Read D: Session is durable. Indicates that the subscriber
definition remains on the router after
disconnection.

INITIALIZE_XML_
SCHEMA

Write Initializes an empty XML schema. This option must
be set to YES for the first interface loading the
schema.

JMSDELIVERYMODE Write JMS delivery mode (1: Non Persistent, 2:
Persistent). A persistent message remains on the
server and is recovered on server crash.

JMSEXPIRATION Write Expiration delay in milliseconds for the message on
the server [0..4 000 000 000]. 0 signifies that the
message never expires.

Warning! After this delay, a message is considered
as expired, and is no longer available in the topic or
queue. When developing interfaces it is advised to
set this parameter to zero.

JMSPRIORITY Write Relative Priority of the message: 0 (lowest) to 9
(highest).

JMSTYPE Write Optional name of the message.

MESSAGEMAXNUMBER Read Maximum number of messages retrieved [0 .. 4 000
000 000]. 0: All messages are retrieved.

MESSAGESELECTOR Read Message selector in ISO SQL syntax for filtering on
the router. See Section 22.7.1, "Using JMS
Properties" for more information on message
selectors.

MESSAGETIMEOUT Read Time to wait for the first message in milliseconds [0
.. 4 000 000 000]. If MESSAGETIMEOUT is equal to
0, then there is no timeout.

MESSAGETIMEOUT and
MESSAGEMAXNUMBER cannot be both equal to
zero. If MESSAGETIMEOUT= 0 and
MESSAGEMAXNUMBER =0, then
MESSAGETIMEOUT takes the value 1.

Warning! An interface may retrieve no message if
this timeout value is too small.

Designing an Interface

23-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

NEXTMESSAGETIMEOUT Read Time to wait for each subsequent message in
milliseconds [0 .. 4 000 000 000]. The default value is
1000.

Warning! An interface may retrieve only part of the
messages available in the topic or the queue if this
value is too small.

ROOT_TABLE Write Resource name of the datastore that is the root of
the XML model hierarchy.

SENDMESSAGETYPE Write Type of message to send (1 -> BytesMessage, 2
->TextMessage).

SYNCHRO_XML_TO_JMS Write Generates the XML message from the XML schema,
and sends this message. This option must be set to
YES for the last interface that writes to the schema
XML.

Table 23–3 (Cont.) JMS Specific KM Options

Option Used to Description

24

LDAP Directories 24-1

24LDAP Directories

This chapter describes how to work with LDAP directories in Oracle Data Integrator.

This chapter includes the following sections:

■ Introduction

■ Installation and Configuration

■ Setting up the Topology

■ Setting Up an Integration Project

■ Creating and Reverse-Engineering an LDAP Directory

■ Designing an Interface

■ Troubleshooting

24.1 Introduction
Oracle Data Integrator supports LDAP directories integration using the Oracle Data
Integrator Driver for LDAP.

24.1.1 Concepts
The LDAP concepts map the Oracle Data Integrator concepts as follows: An LDAP
directory tree, more specifically the entry point to this LDAP tree, corresponds to a
data server in Oracle Data Integrator. Within this data server, a single schema maps
the content of the LDAP directory tree.

The Oracle Data Integrator Driver for LDAP (LDAP driver) loads the hierarchical
structure of the LDAP tree into a relational schema. This relational schema is a set of
tables that can be queried or modified using standard SQL statements.

The relational schema is reverse-engineered as a data model in ODI, with tables,
columns, and constraints. This model is used like a normal relational data model in
ODI. Any changes performed in the relational schema data (insert/update) is
immediately impacted by the driver in the LDAP data.

See Appendix A, "Oracle Data Integrator Driver for LDAP Reference" for more
information on this driver.

24.1.2 Knowledge Modules
Oracle Data Integrator does not provide specific Knowledge Modules (KM) for the
LDAP technology. You can use LDAP as a SQL data server. LDAP data servers
support both the technology-specific KMs sourcing or targeting SQL data servers, as

Installation and Configuration

24-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

well as the generic KMs. See Chapter 4, "Generic SQL" or the technology chapters for
more information on these KMs.

24.2 Installation and Configuration
Make sure you have read the information in this section before you start working with
the LDAP technology.

■ System Requirements

■ Technologic Specific Requirements

■ Connectivity Requirements

24.2.1 System Requirements
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

24.2.2 Technologic Specific Requirements
There are no technology-specific requirements for using LDAP directories in Oracle
Data Integrator.

24.2.3 Connectivity Requirements
This section lists the requirements for connecting to LDAP database.

Oracle Data Integrator Driver for LDAP
LDAP directories are accessed through the Oracle Data Integrator Driver for LDAP.
This JDBC driver is installed with Oracle Data Integrator.

To connect to an LDAP directory you must ask the system administrator for the
following connection information:

■ The URL to connect to the directory

■ The User and Password to connect to the directory

■ The Base Distinguished Name (Base DN). This is the location in the LDAP tree
that ODI will access.

You may also require a connection to the Reference LDAP Tree structure and to an
External Storage database for the driver. See Appendix B, "Oracle Data Integrator
Driver for XML Reference" for more information on these concepts and configuration
parameters.

24.3 Setting up the Topology
Setting up the topology consists in:

1. Creating an LDAP Data Server

Setting up the Topology

LDAP Directories 24-3

2. Creating a Physical Schema for LDAP

24.3.1 Creating an LDAP Data Server
An LDAP data server corresponds to an LDAP tree that is accessible to Oracle Data
Integrator.

24.3.1.1 Creation of the Data Server
Create a data server for the LDAP technology using the standard procedure, as
described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide
for Oracle Data Integrator. This section details only the fields required or specific for
defining a LDAP data server:

1. In the Definition tab:

■ Name: Name of the data server that will appear in Oracle Data Integrator.

■ User/Password: Name and password of the LDAP directory user.

2. In the JDBC tab, enter the values according to the driver used:

■ JDBC Driver: com.sunopsis.ldap.jdbc.driver.SnpsLdapDriver

■ JDBC URL: The driver supports two URL formats:

– jdbc:snps:ldap?<property>=<value>[&<property>=<value>...]

– jdbc:snps:ldap2?<property>=<value>[&<property>=<value>...
]

These two URLs accept the key properties listed in Table 24–1. See
Appendix A.3.1, "Driver Configuration" for a detailed description of these
properties and for a comprehensive list of all JDBC driver properties.

URL Examples
To connect an Oracle Internet Directory on server OHOST_OID and port 3060, using
the user orcladmin, and accessing this directory tree from the basedn
dc=us,dc=oracle,dc=com you can use the following URL:

Note: The first URL requires the LDAP directory password to be
encoded. The second URL allows you to give the LDAP directory
password without encoding it. It is recommended to use the first URL
to secure the LDAP directory password.

Table 24–1 JDBC Driver Properties

Property Value Notes

ldap_auth <authentication
mode>

LDAP Directory authentication method. See the auth property in Table A–2

ldap_url <LDAP URL> LDAP Directory URL. See the url property in Table A–2

ldap_user <LDAP user name> LDAP Directory user name. See the user property in Table A–2

ldap_
password

<LDAP user
password>

LDAP Directory user password. This password must be encoded if using the
jdbc:snps:ldap URL syntax.

See the password property in Table A–2

lldap_
basedn

<base DN> LDAP Directory basedn. See the basedn property in Table A–2

Setting Up an Integration Project

24-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

jdbc:snps:ldap?ldap_url=ldap://OHOST_OID:3060/
&ldap_basedn=dc=us,dc=oracle,dc=com
&ldap_password=ENCODED_PASSWORD
&ldap_user=cn=orcladmin

24.3.2 Creating a Physical Schema for LDAP
Create an LDAP physical schema using the standard procedure, as described in
"Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

24.4 Setting Up an Integration Project
Setting up a Project using the LDAP database follows the standard procedure. See
"Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

The recommended knowledge modules to import into your project for getting started
are the following:

■ LKM SQL to SQL

■ LKM File to SQL

■ IKM SQL Control Append

24.5 Creating and Reverse-Engineering an LDAP Directory
This section contains the following topics:

■ Create an LDAP Model

■ Reverse-Engineering an LDAP Model

24.5.1 Create an LDAP Model
A data model groups a set of datastores. Each datastore represents in the context of a
directory a class or group of classes. Typically, classes are mapped to tables and
attributes to column. See Appendix A.2.1, "LDAP to Relational Mapping" for more
information.

Create an LDAP Model using the standard procedure, as described in "Creating a
Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.

24.5.2 Reverse-Engineering an LDAP Model
LDAP supports standard reverse-engineering, which uses only the abilities of the
LDAP driver.

When the reverse-engineering process of the LDAP driver translates the LDAP tree
into a relational database structure, it constructs tables from sets of objects in the tree.

The names of these tables must reflect this original structure in order to maintain the
mapping between the two. As a result, the table names are composed of the original
LDAP object names that may be extremely long and not appropriate as datastore
names in integration interfaces.

Designing an Interface

LDAP Directories 24-5

The solution consists in creating an alias file that contains a list of short and clear table
name aliases. See Appendix A.3.3, "Table Aliases Configuration" for more information.

Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on LDAP use the usual procedure, as
described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator.

The standard reverse-engineering process will automatically map the LDAP tree
contents to a relational database structure. Note that these tables automatically include
primary key and foreign key columns to map the directory hierarchy.

The reverse-engineering process also creates a ROOT table that represents the root of
the LDAP tree structure from the LDAP entry point downwards.

See Appendix A.2, "LDAP Processing Overview" for more information.

24.6 Designing an Interface
You can use LDAP entries as a source or a target of an integration interface.

The KM choice for an interface or a check determines the abilities and performances of
this interface or check. The recommendations in this section help in the selection of the
KM for different situations concerning an LDAP data server.

24.6.1 Loading Data from and to LDAP
An LDAP directory can be used as an interface's source or target. The LKM choice in
the Interface Flow tab that is used to load data between LDAP entries and other types
of data servers is essential for the performance of the interface.

24.6.1.1 Loading Data from an LDAP Directory
Use the Generic SQL KMs or the KMs specific to the other technology involved to load
data from an LDAP database to a target or staging area database.

Table 24–2 lists some examples of KMs that you can use to load from an LDAP source
to a staging area.

24.6.1.2 Loading Data to an LDAP Directory
It is not advised to use an LDAP directory as a staging area.

24.6.2 Integrating Data in an LDAP Directory
LDAP can be used as a target of an interface. The IKM choice in the Interface Flow tab
determines the performances and possibilities for integrating.

Table 24–2 KMs to Load from LDAP to a Staging Area

Staging Area KM Notes

Microsoft SQL
Server

LKM SQL to MSSQL (BULK) Uses SQL Server's bulk loader.

Oracle LKM SQL to Oracle Faster than the Generic LKM (Uses
Statistics)

Sybase LKM SQL to Sybase ASE (BCP) Uses Sybase's bulk loader.

All LKM SQL to SQL Generic KM

Troubleshooting

24-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Use the Generic SQL KMs or the KMs specific to the other technology involved to
integrate data in an LDAP directory.

Table 24–3 lists some examples of KMs that you can use to integrate data from a
staging area to an LDAP target.

24.7 Troubleshooting
This section provides information on how to troubleshoot problems that you might
encounter when using LDAP in Oracle Data Integrator. It contains the following
topics:

■ SQL operations (insert, update, delete) performed on the relational model are not
propagated to the LDAP directory.

You are probably using an external RDBMS to store your relational model.

■ java.util.MissingResourceException: Can't find bundle for
base name ldap_....

The property bundle file is missing, present in the incorrect directory or the
filename is incorrect.

■ java.sql.SQLException: A NamingException occurred saying:
[LDAP: error code 32

The connection property bundle is possibly incorrect. Check the property values in
the bundle files.

■ java.sql.SQLException: A NamingException occurred saying:
[LDAP: error code 49 - Invalid Credentials]

The authentication property is possibly incorrect. Check the password.

■ java.sql.SQLException: Exception class
javax.naming.NameNotFoundException occurred saying: [LDAP:
error code 32 - No Such Object].

The LDAP tree entry point is possibly incorrect. Check the target
DistinguishedName in the LDAP URL.

■ java.sql.SQLException: No suitable driver

This error message indicates that the driver is unable to process the URL is
registered. The JDBC URL is probably incorrect. Check that the URL syntax is
valid. See Section A.3, "Installation and Configuration".

Table 24–3 KMs to Integrate Data in an LDAP Directory

Mode KM Notes

Append IKM SQL to SQL Append Generic KM

25

Oracle Changed Data Capture Adapters 25-1

25Oracle Changed Data Capture Adapters

This chapter describes how to work with Oracle Changed Data Capture Adapters as
well as with Attunity Stream in order to integrate changes captured on legacy sources
using Oracle Data Integrator.

This chapter includes the following sections:

■ Section 25.1, "Introduction"

■ Section 25.2, "Installation and Configuration"

■ Section 25.3, "Setting up the Topology"

■ Section 25.4, "Setting Up an Integration Project"

■ Section 25.5, "Creating and Reverse-Engineering an Attunity Stream Model"

■ Section 25.6, "Designing an Interface Using the LKM Attunity to SQL"

25.1 Introduction
Oracle Changed Data Capture Adapters offer log-based change data capture (CDC) for
enterprise data sources such as CICS, VSAM, Tuxedo, IMS DB, and IMS TM. Captured
changes are stored in a storage called Staging Area (which is different from the Oracle
Data Integrator interfaces’ staging areas).

Attunity Stream is part of the Attunity Integration Suite (AIS) and provides the same
features as the Oracle Changed Data Capture Adapters. In this section, we will refer to
both products as Attunity Stream.

The Attunity Stream Staging Area contains the Change Tables used by Attunity
Stream to store changes captured from the sources. It maintains the last position read
by Oracle Data Integrator (This is the Attunity Stream Context, which is different from
the Oracle Data Integrator Context concept) and starts at this point the next time a
request from Oracle Data Integrator is received. The Change Tables are accessed
through Attunity Stream Datasources.

Oracle Data Integrator uses Attunity Stream datasources as a sources of integration
interfaces. They cannot be used as target or staging area. Journalizing or data quality
check is not possible on this technology.

25.1.1 Concepts
The Attunity Stream concepts map the Oracle Data Integrator concepts as follows: One
Workspace within an Attunity Agent (or Daemon) listening on a port corresponds to
one data server in Oracle Data Integrator. Within this Daemon, each Datasource (or
Datasource/Owner pair) corresponds to one ODI Physical Schema. In each

Installation and Configuration

25-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

datasource, the Change Tables appear as ODI Datastores in an ODI model based on
the Attunity technology.

25.1.2 Knowledge Modules
Oracle Data Integrator provides the LKM Attunity to SQL for handling Attunity
Stream data. The KMs use Attunity Stream specific features.

The Oracle Data Integrator CDC Knowledge Module provides integration from
Attunity Stream Staging Areas via a JDBC interface. It is able to:

■ Read Attunity Stream data from Attunity Stream Data Sources.

■ Load this Attunity Stream data into an ANSI SQL-92 compliant database used as a
staging area in Oracle Data Integrator staging area.

■ Handle the Attunity Stream Context to ensure consistent consumption of the
changes read.

Using the data provided in the Attunity staging area, the Oracle CDC KM cleans the
working environment (dropping temporary tables), determines and saves Attunity
Stream Context information, loads the journalized data into the collect table and
purges the loaded data from the journal.

25.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
Oracle Knowledge Modules:

■ System Requirements

■ Technology Specific Requirements

■ Connectivity Requirements

25.2.1 System Requirements
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

25.2.2 Technology Specific Requirements
Please review the Attunity Streams or Oracle Changed Data Capture Adapters
documentation for the requirements and instruction for installing and setting up
Streams for your source servers.

Note: Although Attunity Stream is used to capture changes in source
systems, it is used as a regular JDBC source (only an LKM is used).
The Oracle Data Integrator journalizing framework (JKM) is not used
for this technology.

Setting up the Topology

Oracle Changed Data Capture Adapters 25-3

25.2.3 Connectivity Requirements
In order to use the Attunity Stream technology, you must first install the Attunity
drivers in the drivers directory of your Oracle Data Integrator installation and restart
ODI. See "Add Additional Drivers and Open Tools" in the Oracle Fusion Middleware
Installation Guide for Oracle Data Integrator.

The driver files include the following: nvjdbc2.jar, nvapispy2.jar,
nvlog2.jar.

25.3 Setting up the Topology
Setting up the Topology consists in:

1. Creating an Attunity Stream Data Server

2. Creating an Attunity Stream Physical Schema

25.3.1 Creating an Attunity Stream Data Server
An Attunity Stream data server corresponds to the server and workspace storing the
Attunity Stream datasources.

25.3.1.1 Creation of the Data Server
Create a data server for the Attunity Stream technology using the standard procedure,
as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator. This section details only the fields required or specific
for defining an Oracle data server:

1. In the Definition tab:

■ User: User profile to connect the workspace. If you are using anonymous
access or specifying the user and password on the URL, leave this field and
the JDBC Password field empty.

■ Password: Master password for the user profile.

2. In the JDBC tab:

■ JDBC Driver: com.attunity.jdbc.NvDriver

■ JDBC URL: jdbc:attconnect://<host_name>:<port>/<workspace>
[;AddDefaultSchema=1][;<parameter>=<value>]

You can use in the URL the properties listed in:

Table 25–1 JDBC Attunity Driver Properties

Option Description

<host_name> Name of the machine running the Attunity daemon

<port> Port that the daemon listens to

<workspace> Daemon’s workspace. Default is Navigator.

AddDefaultSchema=1 This parameter specifies that a schema shows the default owner
name public if the data source does not natively support
owners. It may be needed in some cases as Oracle Data
Integrator makes use of the owner value.

Setting Up an Integration Project

25-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

For more information on the JDBC URL connection details, see the Oracle
Application Server CDC Adapters Installation Guide.

25.3.2 Creating an Attunity Stream Physical Schema
Create an Attunity Stream physical schema using the standard procedure, as
described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator.

This physical schema represents the Attunity Stream datasource from which you want
to read the changed data. While defining the physical schema, the list of datasources
and owners available for your workspace is displayed, provided that the data server is
correctly configured. Public is displayed if no datasources and owners exist.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

25.4 Setting Up an Integration Project
Setting up a project using the Attunity Stream follows the standard procedure. See
"Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

It is recommended to import the LKM Attunity to SQL into your project for getting
started with Attunity Stream.

25.5 Creating and Reverse-Engineering an Attunity Stream Model
This section contains the following topics:

■ Create an Attunity Stream Model

■ Reverse-engineer an Attunity Stream Model

25.5.1 Create an Attunity Stream Model
Create an Attunity Stream Model using the standard procedure, as described in
"Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data
Integrator.

25.5.2 Reverse-engineer an Attunity Stream Model
Attunity Stream supports standard reverse-engineering. Standard reverse-engineering
returns the change tables stored in the datasource as datastores. The change tables
contain some CDC header columns in addition to the data columns used for
integration. These columns include timestamps, table_name, operation, transactionID,

<parameter>=<value> Any parameter available for the JDBC driver. Note that it is not
needed to specify the datasource using the DefTdpName driver
parameter, as Oracle Data Integrator accesses the change tables
using the full qualified syntax: DATASOURCE:OWNER.TABLE_
NAME

Table 25–1 (Cont.) JDBC Attunity Driver Properties

Option Description

Designing an Interface Using the LKM Attunity to SQL

Oracle Changed Data Capture Adapters 25-5

context, and so forth. See the Attunity Stream documentation for more information on
the header columns content.

To perform a Standard Reverse-Engineering on Oracle use the usual procedure, as
described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator.

25.6 Designing an Interface Using the LKM Attunity to SQL
Oracle Data Integrator uses Attunity Stream datasources as a sources of integration
interfaces. They cannot be used as target or staging area. Journalizing or data quality
check is not possible on this technology.

To create an integration interface, which loads Attunity Stream data into your Oracle
Data Integrator integration project, run the following steps:

1. Create an integration interface with Attunity Stream source datastores.

2. Create joins, filters and mappings as usual. Note that joins between change tables
are not allowed on the source. They should be performed on the interface’s staging
area.

3. In the Flow tab of the interface, select the source set containing the source change
table(s) and select the LKM Attunity to SQL.

4. Set the KM options as follows:

■ DELETE_TEMPORARY_OBJECTS - Set this option to No, if you wish to retain
temporary objects (files and scripts) after integration.

■ PK_LIST – Specify the list of source columns that holds the primary key of the
journalized table. Use SQL syntax and separate with a comma (,) each column
name without prefixing it by the table alias, for example ORDER_ID,
CUSTOMER_ID

Note: When running an interface using this LKM, the changes are
consumed from the change table. This KM does not support reading
twice the same change.

Designing an Interface Using the LKM Attunity to SQL

25-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

26

Oracle GoldenGate 26-1

26Oracle GoldenGate

This chapter describes how to work with Oracle GoldenGate in order to capture
changes on source transactional systems and replicate them in a staging server for
consumption by Oracle Data Integrator interfaces.

This chapter includes the following sections:

■ Section 26.1, "Introduction"

■ Section 26.2, "Installation and Configuration"

■ Section 26.3, "Working with the Oracle GoldenGate JKMs"

■ Section 26.4, "Advanced Configuration"

26.1 Introduction
Oracle GoldenGate (OGG) product offers solutions that provide key business
applications with continuous availability and real-time information. It provides
guaranteed capture, routing, transformation and delivery across heterogeneous
databases and environments in real-time.

Using the Oracle GoldenGate knowledge modules requires that you know and
understand Oracle GoldenGate concepts and architecture. See the Oracle GoldenGate
Documentation on OTN for more information.

26.1.1 Overview of the GoldeGate CDC Process
Oracle Data Integrator uses Oracle GoldenGate to replicate online data from a source
database to a staging database. This staging database contains a copy of the source
tables and the ODI Changed Data Capture (CDC) infrastructure, both loaded using
Oracle GoldenGate.

The staging database is stored in an Oracle schema. The source database can be Oracle,
Microsoft SQL Server, DB2 UDB, or Sybase ASE. In this chapter, <database> refers to
any of these source database technologies.

Setting up CDC with GoldenGate is done using the following process:

1. A replica of the source tables is created in the staging database, using, for example,
the Oracle Data Integrator Common Format Designer feature.

2. Oracle Data Integrator Changed Data Capture (CDC) is activated on these
replicated tables using the JKM <database> to Oracle Consistent (OGG). Starting
the journals creates Oracle GoldenGate configuration files and sets up a CDC
infrastructure in the staging database. Note that no active process is started for
capturing source data at that stage.

Installation and Configuration

26-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

3. Using the generated configuration files, an Oracle GoldenGate Extract process is
configured and started to capture changes from the source database, and
corresponding Replicat processes are configured and started to replicate these
changes into the staging database. Changes are replicated into both the replicated
source table and the CDC infrastructure. GoldenGate can optionally be configured
to perform the initial load of the source data into the staging tables.

4. ODI interfaces can source from the replicated tables and use captured changes
seamlessly within any ODI scenario.

26.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules listed in Table 26–1 for
replicating online data from a source to a staging database. Unlike other CDC JKMs,
the Oracle GoldenGate JKMs journalize data in a staging Oracle database and not in
the source server.

The JKM <database> to Oracle Consistent (OGG) performs the following tasks:

■ Creates and manages the ODI CDC framework infrastructure on the replicated
tables

■ Generates the parameter files to setup the Oracle GoldenGate capture (Extract)
and Delivery (Replicat) processes

■ Provides extra steps to check the configuration of the source database and
proposes tips to correct the configuration

■ Generates a readme file explaining how to complete the setup

26.2 Installation and Configuration
Make sure you have read the information in this section before you start using the
Oracle GoldenGate Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

Table 26–1 Oracle GoldenGate Knowledge Modules

Knowledge Module Description

JKM Oracle to Oracle
Consistent (OGG)

Creates the infrastructure for consistent set journalizing on an
Oracle staging server and generates the Oracle GoldenGate
configuration for replicating data from an Oracle source to this
staging server.

JKM DB2 UDB to Oracle
Consistent (OGG)

Creates the infrastructure for consistent set journalizing on an
Oracle staging server and generates the Oracle GoldenGate
configuration for replicating data from an IBM DB2 UDB source
to this staging server.

JKM Sybase ASE to Oracle
Consistent (OGG)

Creates the infrastructure for consistent set journalizing on an
Oracle staging server and generates the Oracle GoldenGate
configuration for replicating data from a SybaseASE source to
this staging server.

JKM MSSQL to Oracle
Consistent (OGG)

Creates the infrastructure for consistent set journalizing on an
Oracle staging server and generates the Oracle GoldenGate
configuration for replicating data from a Microsoft SQL Server
source to this staging server.

Working with the Oracle GoldenGate JKMs

Oracle GoldenGate 26-3

26.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

See also the Oracle GoldenGate documentation on OTN for source and staging
database version platform support.

26.2.2 Technology Specific Requirements
In order to run the Extract and Replicat processes, Oracle GoldenGate must be installed
on both the source and staging servers. Installing Oracle GoldenGate installs all of the
components required to run and manage GoldenGate processes.

Oracle GoldenGate Manager Process must be running on each system before Extract or
Replicat can be started, and must remain running during their execution for resource
management.

Oracle GoldenGate has specific requirement and installation instructions that must be
performed before starting the Extract and Replicat processes configured with the
Oracle GoldenGate JKMs. See the Oracle GoldenGate Documentation on OTN for
more information.

26.2.3 Connectivity Requirements
If the source database is Oracle, there are no connectivity requirements for using
Oracle GoldenGate data in Oracle Data Integrator.

If the source database is IBM DB2 UDB, Microsoft SQL Server, or Sybase ASE, Oracle
GoldenGate uses the ODBC driver to connect to the source database. You need to
install the ODBC driver and to declare the data source in your system. You also need
to set the data source name (DSN) in the KM option SRC_DSN.

26.3 Working with the Oracle GoldenGate JKMs
To use the JKM <database> to Oracle Consistent (OGG) in your Oracle Data Integrator
integration projects, you need to perform the following steps:

1. Define the Topology

2. Create the Replicated Tables

3. Set Up an Integration Project

4. Configure CDC for the Replicated Tables

5. Configure and Start Oracle GoldenGate Processes

Note: For Sybase source database only: When defining the data
source name, you have to add the database server name to the
datasource name as follows:

DSN_name@SYBASE_DBSERVER

Working with the Oracle GoldenGate JKMs

26-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

6. Design Interfaces Using Replicated Data

26.3.1 Define the Topology
This step consists in declaring in Oracle Data Integrator the staging data server, the
source data server, as well as the physical and logical schemas attached to these
servers.

To define the topology in this configuration, perform the following tasks:

1. Define the Staging Server

2. Create the Staging Physical Schema

3. Define the Source Data Server

4. Create the Source Physical Schema

26.3.1.1 Define the Staging Server
Create a data server for the Oracle technology as described in Section 2.3.1, "Creating
an Oracle Data Server".

26.3.1.2 Create the Staging Physical Schema
Create an Oracle physical schema using the standard procedure, as described in
"Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for
Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the the Oracle Fusion Middleware
Developer's Guide for Oracle Data Integrator and associate it in a given context.

26.3.1.3 Define the Source Data Server
You have to define a source data server from which Oracle GoldenGate will capture
changes.

Create a data server for your source technology using the standard procedure. For
more information, see the chapter corresponding to your source technology in this
guide:

■ Section 2.3.1, "Creating an Oracle Data Server"

■ Section 6.3.1, "Creating a Microsoft SQL Server Data Server"

■ Section 13.3.1, "Creating a DB2/400 Data Server"

■ Chapter 15, "Sybase AS Enterprise"

This data server represents the source database instance.

26.3.1.4 Create the Source Physical Schema
Create a physical schema under the data server that you have created in
Section 26.3.1.3, "Define the Source Data Server". Use the standard procedure, as

Note: The physical schema defined in the staging server will contain
in the data schema the changed records captured and replicated by
the Oracle GoldenGate processes. The work schema will be used to
store the ODI CDC infrastructure.

Working with the Oracle GoldenGate JKMs

Oracle GoldenGate 26-5

described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator and associate it in a given context.

26.3.2 Create the Replicated Tables
Oracle GoldenGate will replicate in the staging server the records changed in the
source. In order to perform this replication, the source table structures must be
replicated in the staging server.

To replicate these source tables:

1. Create a new Data Model using the Oracle technology. This model must use the
logical schema created using the instructions in Create the Staging Physical
Schema. See "Creating a Model" in the Oracle Fusion Middleware Developer's Guide
for Oracle Data Integrator for more information on model creation.

Note that you do not need to reverse-engineer this data model.

2. Create a new diagram for this model and add to this diagram the source tables
that you want to replicate.

3. Generate the DDL Scripts and run these scripts for creating the tables in the
staging data server.

4. An initial load of the source data can be made to replicate this data into the staging
tables. You can perform this initial load with ODI using the Generate Interface IN
feature of Common Format Designer. Alternately, you can use Oracle GoldenGate
to perform this initial load, by setting the USE_OGG_FOR_INIT JKM option to
Yes when you Configure CDC for the Replicated Tables.

26.3.3 Set Up an Integration Project
Setting up a project using Oracle GoldenGate features follows the standard procedure.
See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide
for Oracle Data Integrator.

Depending on the technology of your source data server, import one of the following
KMs into your project:

■ JKM Oracle to Oracle Consistent (OGG)

■ JKM DB2 UDB to Oracle Consistent (OGG)

■ JKM Sybase ASE to Oracle Consistent (OGG)

■ JKM MSSQL to Oracle Consistent (OGG)

Note: See "Working with Common Format Designer" in the Oracle
Fusion Middleware Developer's Guide for Oracle Data Integrator for more
information on diagrams, generating DDL, and generating Interface
IN features.

Working with the Oracle GoldenGate JKMs

26-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

26.3.4 Configure CDC for the Replicated Tables
Changed Data Capture must be configured for the replicated tables. This configuration
is similar to setting up consistent set journalizing and is performed using the following
steps.

1. Edit the data model that contains the replicated tables. In the Journalizing tab of
the data model, set the Journalizing Mode to Consistent Set and select for the
Journalizing KM JKM <database> to Oracle Consistent (OGG).

Set the KM options as follows:

■ LOCAL_TEMP_DIR: Full path to a temporary folder into which the Oracle
GoldenGate configuration files will be generated.

■ SRC_OGG_OBJECT_GROUP: Name of the Oracle GoldenGate source object
group.

■ SRC_LSCHEMA: Name of the logical schema of the source model.

■ SRC_DB_USER: Source schema or database user name.

■ SRC_DB_PASSWORD: Source schema or database user password.

■ SRC_OGG_PATH: Oracle GoldenGate installation path on the source server.

■ SRC_DSN: Name of the data source. This KM option is required when the
ODBC driver is used. Note that this option does not exist in the JKM Oracle to
Oracle Consistent (OGG).

■ STG_OGG_OBJECT_GROUP: Name of the Oracle GoldenGate staging object
group.

■ STG_HOST_NAME: Name of the staging machine.

■ STG_MANAGER_PORT: TCP port on which the Oracle GoldenGate Manager
process is listening on the staging machine.

■ STG_OGG_PATH: Oracle GoldenGate installation path on the staging server.

■ USE_OGG_FOR_INIT: Generate the Oracle GoldenGate processes to perform
the initial load of the replicated tables. If you have performed this initial load
using Oracle Data Integrator while Creating the Replicated Tables, you can
leave this option to NO.

2. Select the tables that you want to replicate or the model if want to replicate all
tables, right-click then select Changed Data Capture > Add to CDC.

3. Select the model, right-click then select Changed Data Capture > Subscriber >
Subscribe. Add subscribers for this model.

4. Select the model, right-click then select Changed Data Capture > Start Journal.
The JKM creates the CDC infrastructure and generates the configuration for Oracle
GoldenGate.

You can review the result of the journal startup action:

Note: For Sybase users only: When defining the data source name,
you have to add the database server name to the datasource name as
follows:

DSN_name@SYBASE_DBSERVER

Working with the Oracle GoldenGate JKMs

Oracle GoldenGate 26-7

■ The Oracle GoldenGate configuration files, as well as a Readme.txt file are
generated in the directory that is specified in the LOCAL_TEMP_DIR KM option.
You can use these files to Configure and Start Oracle GoldenGate Processes.

■ The CDC infrastructure is set up correctly. The journalized datastores appear in
the Models accordion with a Journalizing Active flag. You can right-click the
model and select Changed Data Capture > Journal Data… to access the
journalized data for these datastores.

See "Working with Changed Data Capture" in the Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator for more conceptual information and detailed
instructions on CDC.

26.3.5 Configure and Start Oracle GoldenGate Processes
The JKM generates in the LOCAL_TEMP_DIR a folder named after the source and
target object groups. This folder contains the following:

■ The Readme.txt file that contains detailed instructions for configuring and
starting the Oracle GoldenGate processes.

■ The src folder that contains configuration files to upload on the source server, in
the Oracle GoldenGate installation directory.

■ The stg folder that contains configuration files to upload on the staging server, in
the Oracle GoldenGate installation directory.

The detailed instructions, customized for your configuration, are provided in the
readme file.

These instructions include:

1. Uploading or copying files from the src folder to the source server.

2. Uploading or copying files from the stg folder to the staging server.

3. Running on the source server the OBEY file generated by the JKM for starting the
Extract process, using the ggsci command line.

4. Generating on the source server definition file using the defgen command line.

5. Copying this definition file to the staging server.

6. If the initial load option is used:

■ Running on the staging server the OBEY file generated by the JKM for the
initial load, using the ggsci command line.

■ Running on the source server the OBEY file generated by the JKM for the
initial load, using the ggsci command line.

7. Finally Running on the staging server the OBEY file generated by the JKM for the
starting the Replicat processes, using the ggsci command line.

See the Oracle GoldenGate documentation on OTN for more information on OBEY
files, the ggsci and defgen utilities.

Note: Although this CDC configuration supports consistent set
journalizing, it is not required to order datastores in the Journalized
Table tab of the model after adding them to CDC.

Advanced Configuration

26-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

26.3.6 Design Interfaces Using Replicated Data
You can use the data in the replicated data as a source in your integration interfaces.
This process is similar to using a source datastore journalized in consistent set mode.
See "Using Changed Data: Consistent Set Journalizing" in the the Oracle Fusion
Middleware Developer's Guide for Oracle Data Integrator for more information.

26.4 Advanced Configuration
This section includes the following advanced configuration topics:

■ Initial Load Method

■ Tuning Replication Performances

■ One Source Multiple Staging Configuration

26.4.1 Initial Load Method
The staging tables contain a replica of the structure and data from the source tables.
The Oracle GoldenGate processes capture changes on the source tables and apply
them to the target. Yet the staging tables must be initially loaded with the original
content of the source tables. You can use the following methods to perform the initial
load:

■ Using Oracle GoldenGate: A specific GoldenGate process loads the whole content
of the source tables into the staging tables.

■ Using Oracle Data Integrator: The Generate Interfaces IN option of Oracle Data
Integrator's Common Format Designer. This method uses ODI interfaces to
transfer the data.

■ Using database backup/restore tools to copy data and structures.

26.4.2 Tuning Replication Performances
The following KM options can be used to improve replication performances:

■ COMPATIBLE: This Oracle-specific option affects the use of the PURGE key word
and the way statistics (using DBMS_STATS or ANALYZE) are collected. Set this
value to the database version of your staging server.

■ NB_APPLY_PROCESS: Number of Oracle GoldenGate Apply processes created on
the staging server.

■ TRAIL_FILE_SIZE: Size of the Oracle GoldenGate trail file in Megabytes.

For the NB_APPLY_PROCESS and TRAIL_FILE_SIZE parameters, see the Oracle
GoldenGate Documentation on OTN for more information on performance tuning.

26.4.3 One Source Multiple Staging Configuration
It is possible to set up a configuration where changes are captured on a single source
and replicated to several staging servers. The example below illustrates how to set this
up in a typical configuration.

Replication should source from source server SRC and replicate in both STG1 and
STG2 staging servers.

1. Configure CDC for STG1 with the following configuration:

■ SRC_OGG_OBJECT_GROUP = SRC

Advanced Configuration

Oracle GoldenGate 26-9

■ SRC_SETUP_OGG_PROCESSES = YES

■ STG_OGG_OBJECT_GROUP = STG1

■ STG_SETUP_OGG_PROCESSES = YES

■ ENABLE_ODI_CDC= YES

2. Start the journal and follow the instructions in the readme to set up the Oracle
GoldenGate processes in SRC and STG1.

3. Configure CDC for STG2 with the following configuration:

■ SRC_OGG_OBJECT_GROUP = SRC (Use the same name as for STG1)

■ SRC_SETUP_OGG_PROCESSES = NO (The processes have been set up with
STG1)

■ STG_OGG_OBJECT_GROUP = STG2

■ STG_SETUP_OGG_PROCESSES = YES

■ ENABLE_ODI_CDC= YES

Start the journal and follow the instructions in the readme to set up the Oracle
GoldenGate processes in SRC and STG2. Note that playing the configuration on SRC
again will not recreate a capture process, trail files, or definition files. It will simply
create a new Oracle GoldenGate Datapump process to push data to STG2.

Advanced Configuration

26-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

27

Oracle Enterprise Service Bus 27-1

27Oracle Enterprise Service Bus

This chapter describes how to work with Oracle Enterprise Service Bus in Oracle Data
Integrator.

This chapter includes the following sections:

■ Section 27.1, "Introduction"

■ Section 27.2, "Installation and Configuration"

■ Section 27.3, "Working with XREF using the ESB Cross-References KMs"

■ Section 27.4, "Knowledge Module Options Reference"

27.1 Introduction
Oracle Data Integrator features are designed to work best with Enterprise Service Bus
(ESB), including integration interfaces that load a target table from several source
tables and handle cross-references.

27.1.1 Concepts
Cross-referencing is the Oracle Fusion Middleware Function, available through its
Enterprise Service Bus (ESB) component, and leveraged typically by any loosely
coupled integration, which is truly built on the Service Oriented Architecture. It is
used to manage the runtime correlation between the various participating applications
of the integration.

The cross-referencing feature of Oracle SOA Suite enables you to associate identifiers
for equivalent entities created in different applications. For example, you can use
cross-references to associate a customer entity created in one application (with native
id Cust_100) with an entity for the same customer in another application (with native
id CT_001).

Cross-reference (XRef) facilitates mapping of native keys for entities across
applications. For example, correlate the same order across different ERP systems.

The implementation of cross-referencing uses an Oracle database schema to store a
cross-reference table (called XREF_DATA) that stores information to reference records
across systems and data stores.

The optional ability to update or delete source table data after the data is loaded into
the target table is also a need in integration. This requires that the bulk integration
provides support for either updating some attributes like a status field or purging the
source records once they have been successfully processed to the target system.

Introduction

27-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

27.1.2 Knowledge Modules
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 27–1 for
handling ESB cross-references. The KMs use ESB specific features.

27.1.3 Overview of the XREF KM Process
The overall process can be divided into the following three main phases:

Loading Phase (LKM)
During the loading phase, a Source Primary Key is created using columns from the
source table. This Source Primary Key is computed using a user-defined SQL expression
that should return a VARCHAR value. This expression is specified in the SRC_PK_
EXPRESSION KM option.

For example, for a source Order Line Table (aliased OLINE in the interface) you can
use the following expression:

TO_CHAR(OLINE.ORDER_ID) || '-' || TO_CHAR(OLINE.LINE_ID)

This value will be finally used to populate the cross-reference table.

Integration and Cross-Referencing Phase (IKM)
During the integration phase, a Common ID is created for the target table. The value for
the Common ID is computed from the expression in the XREF_SYS_GUID KM option.
This expression can be for example:

■ A database sequence (<SEQUENCE_NAME>. NEXTVAL)

■ A function returning a global unique Id (SYS_GUID() for Oracle, NewID() for
SQL Server)

This Common ID is pushed to the target columns of the target table that are marked
with the UD1 flag.

Both the Common ID and the Source Primary Key are pushed to the cross-reference table
(XREF_DATA). In addition, the IKM pushes to the cross-reference table a unique Row
Number value that creates the cross-reference between the Source Primary Key and
Common ID. This Row Number value is computed from the XREF_ROWNUMBER_
EXPRESSION KM option, which takes typically expressions similar to the Common ID
to generate a unique identifier.

Table 27–1 ESB Knowledge Modules

Knowledge Module Description

LKM SQL to SQL (ESB XREF) This KM supports cross-references while loading data from a
standard ISO source. It supports both Oracle and DB2. The LKM SQL
to SQL (ESB XREF) has to be used in conjunction with the IKM SQL
Control Append (ESB XREF) in the same interface.

LKM MSSQL to SQL (ESB XREF) This KM is a version of the LKM SQL to SQL (ESB XREF) optimized
for Microsoft SQL Server.

IKM SQL Control Append (ESB XREF) This KM provides support for cross-references while integrating data
to an Oracle, DB2 or Microsoft SQL Server target. It integrates data to
the target table in truncate/insert (append) mode, and supports data
checks.

Working with XREF using the ESB Cross-References KMs

Oracle Enterprise Service Bus 27-3

The same Common ID is reused (and not re-computed) if the same source row is used
to load several target tables across several interfaces with the Cross-References KMs.
This allows the creation of cross-references between a unique source row and different
targets rows.

Updating/Deleting Processed Records (LKM)
This optional phase (parameterized by the SRC_UPDATE_DELETE_ACTION KM
option) deletes or updates source records based on the successfully processed source
records:

■ If SRC_UPDATE_DELETE_ACTION takes the DELETE value, the source records
processed by the interface are deleted.

■ If SRC_UPDATE_DELETE_ACTION takes the UPDATE value, the source column
of the source records processed by the interface is updated with the SQL
expression given in the SRC_UPD_EXPRESSION KM option. The name of this
source column must be specified in the SRC_UPD_COL KM option.

27.2 Installation and Configuration
Make sure you have read the information in this section before you start using the ESB
Knowledge Modules:

■ System Requirements and Certifications

■ Technology Specific Requirements

■ Connectivity Requirements

27.2.1 System Requirements and Certifications
Before performing any installation you should read the system requirements and
certification documentation to ensure that your environment meets the minimum
installation requirements for the products you are installing.

The list of supported platforms and versions is available on Oracle Technical Network
(OTN):

http://www.oracle.com/technology/products/oracle-data-integrator
/index.html.

27.2.2 Technology Specific Requirements
There are no connectivity requirements for using ESB in Oracle Data Integrator. The
requirements for the Oracle Database apply also to ESB. See Chapter 2, "Oracle
Database" for more information.

27.2.3 Connectivity Requirements
There are no connectivity requirements for using ESB in Oracle Data Integrator. The
requirements for the Oracle Database apply also to ESB. See Chapter 2, "Oracle
Database" for more information.

27.3 Working with XREF using the ESB Cross-References KMs
This section consists of the following topics:

■ Defining the Topology

Working with XREF using the ESB Cross-References KMs

27-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ Setting up the Project

■ Designing an Interface with the ESB Cross-References KMs

27.3.1 Defining the Topology
The steps to create the topology in Oracle Data Integrator, which are specific to
projects using ESB Cross-References KMs, are the following:

1. Create the data servers, physical and logical schemas corresponding to the sources
and targets.

2. Create a data server for the Oracle technology as described in Section 2.3.1,
"Creating an Oracle Data Server".

3. Under this Oracle data server, create a physical and a logical schema called ESB_
XREF for the schema containing the cross-reference table named XREF_DATA. If
this table is stored in a data server already declared, you only need to create the
schemas.

See "Creating a Physical Schema" and "Creating a Logical Schema" in the Oracle
Fusion Middleware Developer's Guide for Oracle Data Integrator for more information.

27.3.2 Setting up the Project
Import the following KMs into your project, if they are not already in your project:

■ IKM SQL Control Append (ESB XREF)

■ LKM SQL to SQL (ESB XREF) or LKM MSSQL to SQL (ESB XREF) if using
Microsoft SQL Server.

27.3.3 Designing an Interface with the ESB Cross-References KMs
To create an integration interface, which both loads a target table from several source
tables and handles cross-references between one of the sources and the target, run the
following steps:

1. Create an interface with the source and target datastores which will have the
cross-references.

2. Create joins, filters and mappings as usual. Make sure to check the UD1 flag for
the column of the target datastore that will be the placeholder for the Common ID.
Note that you do not need to map this column.

3. In the Flow tab of the interface, select the source set containing the source table to
cross-reference, and select the LKM SQL to SQL (ESB XREF) or LKM MSSQL to
SQL (ESB XREF) if the source data store is in Microsoft SQL Server.

4. Specify the KM options as follows:

■ SRC_PK_EXPRESSION

Specify the expression representing the Source Primary Key value that you
want to store in the XREF table. If the source table has just one column defined
as a key, enter the column name (for example SEQ_NO). If the source key has
multiple columns, specify the expression to use for deriving the key value. For
example, if there are two key columns in the table and you want to store the
concatenated value of those columns as your source value in the XREF table
enter SEQ_NO|DOC_DATE. This option is mandatory.

■ SRC_UPDATE_DELETE_ACTION

Working with XREF using the ESB Cross-References KMs

Oracle Enterprise Service Bus 27-5

Indicates what action to take on the source records after integrating data into
the target. See Table 27–2 for a list of possible values.

5. Select your staging area in the Flow tab of the interface and select the IKM SQL
Control Append (ESB XREF).

6. Specify the KM options as follows:

■ XREF_TABLE_NAME - Enter the name of the source table that will be stored
in the reference table.

■ XREF_COLUMN_NAME - This is the name of the source primary key that
will be stored in the XREF table.

■ XREF_SYS_GUID_EXPRESSION - Expression to be used to computing the
Common ID. This expression can be for example:

■ a database sequence (<SEQUENCE_NAME>.NEXTVAL)

■ a function returning a global unique Id (SYS_GUID() for Oracle and
NewID() for SQL Server)

■ XREF_ROWNUMBER_EXPRESSION - This is the value that is pushed into the
Row Number column of the XREF_DATA table. Use the default value of GUID
unless you have the need to change it to a sequence.

■ FLOW_CONTROL - Set to YES in order to be able to use the CKM Oracle.

Table 27–2 Values of the SRC_UPDATE_DELETE_ACTION

Value Description

NONE Specify NONE for no action on the source records.

UPDATE Enter UPDATE to update the source records flag according to
SRC_UPD_COL and SRC_UPD_EXPRESSION.

If you select the UPDATE option you also need to specify the
following options: SRC_PK_LOGICAL_SCHEMA, SRC_PK_
TABLE_NAME, SRC_PK_TABLE_ALIAS, SRC_UPD_COL, and
SRC_UPD_EXPRESSION.

DELETE Enter DELETE to delete the source records after the integration.

If you select the DELETE option, you also need to specify the
following options: SRC_PK_LOGICAL_SCHEMA, SRC_PK_
TABLE_NAME, and SRC_PK_TABLE_ALIAS.

Note: If the target table doesn't have any placeholder for the Common
ID and you are for example planning to populate the source identifier
in one of the target columns, you must use the standard mapping
rules of ODI to indicate which source identifier to populate in which
column.

If the target column that you want to load with the Common ID is a
unique key of the target table, it needs to be mapped. You must put a
dummy mapping on that column. At runtime, this dummy mapping
will be overwritten with the generated common identifier by the
integration knowledge module. Make sure to flag this target column
with UD1.

Knowledge Module Options Reference

27-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

27.4 Knowledge Module Options Reference
This section lists the KM options for the following Knowledge Modules:

■ LKM SQL to SQL (ESB XREF)

■ LKM MSSQL to SQL (ESB XREF)

■ IKM SQL Control Append (ESB XREF)

Table 27–3 LKM SQL to SQL (ESB XREF)

Option Values Mandatory Description

SRC_UPDATE_DELETE_
ACTION

NONE|UPDATE|DEL
ETE

Yes Indicates what action to take on source
records after integrating data into the target.
See Table 27–2 for a list of valid values for this
option.

SRC_PK_EXPRESSION Concatenating
expression

Yes Expression that concatenates values from the
PK to have them fit in a single large varchar
column. For example: for the source Orderline
Table (aliased OLINE in the interface) you can
use expression:

TO_CHAR(OLINE.ORDER_ID) || '-' ||
TO_CHAR(OLINE.LINE_ID)

SRC_PK_LOGICAL_
SCHEMA

Name of source table's
logical schema

No Indicates the source table's logical schema.
The source table is the one from which we
want to delete or update records after
processing them. This logical schema is used
to resolve the actual physical schema at
runtime depending on the Context. For
example: ORDER_BOOKING. This option is
required only when SRC_UPDATE_DELETE_
ACTION is set to UPDATE or DELETE.

SRC_PK_TABLE_NAME Source table name,
default is MY_TABLE

No Indicate the source table name of which we
want to delete records after processing them.
For example: ORDERS This option is required
only when SRC_UPDATE_DELETE_ACTION
is set to UPDATE or DELETE.

SRC_PK_TABLE_ALIAS Source table alias,
default is

MY_ALIAS

No Indicate the source table's alias within this
interface. The source table is the one from
which we want to delete or update records
after processing them. For example: ORD. This
option is required only when SRC_UPDATE_
DELETE_ACTION is set to UPDATE or
DELETE.

Knowledge Module Options Reference

Oracle Enterprise Service Bus 27-7

LKM MSSQL to SQL (ESB XREF)
See Table 27–3 for details on the LKM MSSQL to SQL (ESB XREF) options.

SRC_UPD_COL Aliased source column
name

No Aliased source column name that holds the
update flag indicator. The value of this
column will be updated after integration
when SRC_UPDATE_DELETE_ACTION is
set to UPDATE with the expression literal
SRC_UPD_EXPRESSION. The alias used for
the column should match the one defined for
the source table. For example: ORD.LOADED_
FLAG. This option is required only when
SRC_UPDATE_DELETE_ACTION is set to
UPDATE.

SRC_UPD_EXPRESSION Literal or expression No Literal or expression used to update the SRC_
UPD_COL. This value will be used to update
this column after integration when SRC_
UPDATE_DELETE_ACTION is set to
UPDATE. For example: RECORDS
PROCESSED. This option is required only
when SRC_UPDATE_DELETE_ACTION is
set to UPDATE.

DELETE_TEMPORARY_
OBJECTS

Yes|No Yes Set this option to NO if you wish to retain
temporary objects (files and scripts) after
integration. Useful for debugging.

Table 27–4 IKM SQL Control Append (ESB XREF)

Option Values Mandatory Description

INSERT Yes|No Yes Automatically attempts to insert data into the
Target Datastore of the Interface.

COMMIT Yes|No Yes Commit all data inserted in the target
datastore.

FLOW_CONTROL Yes|No Yes Check this option if you wish to perform flow
control.

RECYCLE_ERRORS Yes|No Yes Check this option to recycle data rejected
from a previous control.

STATIC_CONTROL Yes|No Yes Check this option to control the target table
after having inserted or updated target data.

TRUNCATE Yes|No Yes Check this option if you wish to truncate the
target datastore.

DELETE_ALL Yes|No Yes Check this option if you wish to delete all the
rows of the target datastore.

CREATE_TARG_TABLE Yes|No Yes Check this option if you wish to create the
target table.

DELETE_TEMPORARY_
OBJECTS

Yes|No Yes Set this option to NO if you wish to retain
temporary objects (tables, files and scripts)
after integration. Useful for debugging.

XREF_TABLE_NAME XREF table name Yes Table Name to use in the XREF table.
Example: ORDERS

Table 27–3 (Cont.) LKM SQL to SQL (ESB XREF)

Option Values Mandatory Description

Knowledge Module Options Reference

27-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

XREF_COLUMN_NAME Column name Yes Primary key column name to use as a literal in
the XREF table

XREF_SYS_GUID_
EXPRESSION

SYS_GUID() Yes Enter the expression used to populate the
common ID for the XREF table (column name
"VALUE"). Valid examples are: SYS_GUID(),
MY_SEQUENCE.NEXTVAL, and so forth.

XREF_ROWNUMBER_
EXPRESSION

SYS_GUID() Yes Enter the expression used to populate the
row_number for the XREF table. For example
for Oracle: SYS_GUID(), MY_
SEQUENCE.NEXTVAL and so forth.

Table 27–4 (Cont.) IKM SQL Control Append (ESB XREF)

Option Values Mandatory Description

A

Oracle Data Integrator Driver for LDAP Reference A-1

AOracle Data Integrator Driver for LDAP
Reference

This appendix describes how to work with the Oracle Data Integrator driver for
LDAP.

This appendix includes the following sections:

■ Introduction to Oracle Data Integrator Driver for LDAP

■ LDAP Processing Overview

■ Installation and Configuration

■ SQL Syntax

■ JDBC API Implemented Features

A.1 Introduction to Oracle Data Integrator Driver for LDAP
With Oracle Data Integrator Driver for LDAP (LDAP driver) Oracle Data Integrator is
able to manipulate complex LDAP trees using standard SQL queries.

The LDAP driver supports:

■ Manipulation of LDAP entries, their object classes and attributes

■ Standard SQL (Structured Query Language) Syntax

■ Correlated subqueries, inner and outer joins

■ ORDER BY and GROUP BY

■ COUNT, SUM, MIN, MAX, AVG and other functions

■ All Standard SQL functions

■ Referential Integrity (foreign keys)

■ Persisting modifications into directories

A.2 LDAP Processing Overview
The LDAP driver works in the following way:

1. The driver loads (upon connection) the LDAP structure and data into a relational
schema, using a LDAP to Relational Mapping.

2. The user works on the relational schema, manipulating data through regular SQL
statements. Any changes performed in the relational schema data (insert/update)
are immediately impacted by the driver in the LDAP data.

LDAP Processing Overview

A-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

A.2.1 LDAP to Relational Mapping
The LDAP to Relational Mapping is a complex but automated process that is used to
generate a relational structure. As LDAP servers do not provide metadata information
in a standard way, this mapping is performed using data introspection from the LDAP
tree. Therefore, automatic mapping is carried out on the contents of the LDAP tree
used as a source for this process.

This section contains the following topics:

■ General Principle

■ Grouping Factor

■ Mapping Exceptions

■ Reference LDAP Tree

A.2.1.1 General Principle
The LDAP driver maps LDAP elements to a relational schema in the following way:

■ Each LDAP class or combination of classes is mapped to a table. Each entry from
the LDAP tree is mapped to a record in the table.

■ Each attribute of the class instances is mapped to a column.

■ Hierarchical relationships between entries are mapped using foreign keys. A table
representing a hierarchical level is created with a primary key called
<tablename>PK. Records reference their parent tables through a <parent_
level_tablename>FK column. The root of the LDAP tree structure is mapped
to a table called ROOT containing a ROOTPK column in a unique record.

■ Attributes with multiple values for an entry (for example, a Person entry with
several email attributes) are mapped as sub-tables called <parent_
tablename><attribute_name>. Each sub-table contains a <parent_
tablename>FK column linking it to the parent table.

Figure A–1 shows an LDAP tree with OrganizationalUnit entries linking to Person
instances. In this case, certain Person entries have multiple email addresses.

Figure A–1 LDAP Tree Example

This LDAP tree will be mapped into the following relational structure:

LDAP Processing Overview

Oracle Data Integrator Driver for LDAP Reference A-3

■ The ROOT table represents the root of the hierarchy and contains one ROOTPK
column.

■ The ORGANIZATIONALUNIT table represents different organizationalUnit instances
of the tree. It contains the ORGANIZATIONALUNITPK primary key column and the
attributes of the organizationalUnit instances (cn, telephoneNumber, etc.). It is linked
to the ROOT table by the ROOTFK foreign key column.

■ The PERSON table represents the instances of the person class. It contains the
PERSONPK primary key column and the ORGANIZATIONALUNITFK linking it to
the ORGANIZATIONALUNIT table and the attributes of PERSON instances,
(telephoneNumber, description, cn).

■ The email attribute appears as a PERSON_EMAIL table containing the EMAIL
column and a PERSONFK linking a list of email attributes to a PERSON record.

Figure A–2 shows the resulting relational structure.

Figure A–2 Relational Structure mapped from the LDAP Tree Example shown in
Figure A–1

A.2.1.2 Grouping Factor
In LDAP directories, class entries are often specified by inheriting attributes from
multiple class definitions. In the relational mapping procedure, the LDAP driver
translates this fact by combining each combination of classes in an LDAP entry to
generate a new table.

For example, some entries of the Person class may also be instances of either of the
Manager or BoardMember classes (or both). In this case, the mapping procedure would
generate a PERSON table (for the instances of Person) but also MANAGER_PERSON,
BOARDMEMBER_PERSON, BOARDMEMBER_MANAGER_PERSON and so forth, tables
depending on the combination of classes existing in the LDAP tree.

In order to avoid unnecessary multiplication of generated tables, it is possible to
parameterize this behavior. The Grouping Factor parameter allows this by defining the
number of divergent classes below which the instances remain grouped together in the
same table. This resulting table contains flag columns named IS_<classname>, whose
values determine the class subset to which the instance belongs. For example, if IS_
<classname> is set to 1, then the instance represented by the record belongs to
<classname>.

LDAP Processing Overview

A-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The behavior where one table is created for each combination of classes corresponds to
a Grouping Factor equal to zero. With a grouping factor equal to one, instances with
only one divergent class remain in the same table.

In our example, with a Grouping Factor higher than or equal to 2, all company person
instances (including Person, Manager and BoardMember class instances) are grouped in
the PERSON table. The IS_MANAGER and IS_BOARDMEMBER columns enable the
determination of PERSON records that are also in the Manager and/or BoardMember
classes.

A.2.1.3 Mapping Exceptions
This section details some specific situations of the mapping process.

■ Table name length limits and collisions: In certain cases, name-length restrictions
may result in possible object name collisions. The LDAP driver avoids such
situations by automatically generating 3 digit suffixes to the object name.

■ Key column: It is possible to have the driver automatically create an additional
SNPSLDAPKEY column containing the Relative Distinguished Name (RDN) that
can be used as identifier for the current record (original LDAP class instance). This
is done by setting the key_column URL property to true. This SNPSLDAPKEY
column must be loaded if performing DML commands that update the LDAP tree
contents. Note that this column is created only in tables that originate from LDAP
instances. Tables that correspond to multiple valued instance attributes will not be
created with these columns.

■ Case sensitivity: This is set by the case_sens URL property that makes the
RDBMS and LDAP servers to enforce case-sensitivity.

■ Special characters: It is possible in LDAP to have non-alphanumeric characters
into attribute or class names. These characters are converted to underscores ("_")
during the mapping. Exception: If non alphanumeric, the first character is
converted to "x".

■ SQL Reversed Keywords: Generated tables and columns with names that match
SQL keywords are automatically renamed (an underscore is added after their
name) in the relational structure to avoid naming conflicts between table/column
names and SQL keywords. For example, a class named SELECT will be mapped to
a table named SELECT_.

A.2.1.4 Reference LDAP Tree
As LDAP servers do not provide metadata information in a standard way, the LDAP
to Relational Mapping process is performed by default using data introspection from the
LDAP tree.

With the LDAP driver it is also possible to use a Reference LDAP Tree for the LDAP to
Relational Mapping process instead of using the LDAP tree that contains the actual
data.

This Reference LDAP Tree is configured using the lm_props property of the driver
URL. This property specifies a.properties file that contains the connection
information to a LDAP tree whose hierarchical structure rigorously reflects that of the
operational LDAP tree but without the accompanying data volume.

This technique reveals certain advantages:

■ The Reference LDAP Tree can be maintained by the directory administrator as a
stable definition of the operational LDAP tree.

LDAP Processing Overview

Oracle Data Integrator Driver for LDAP Reference A-5

■ The Reference LDAP Tree contains few instances that make up the skeleton of the
real LDAP tree, and the LDAP to Relational Mapping process runs faster on this
small reference tree. This is particularly important for large operational LDAP
directories, and will result in reduced processing time and resources for running
the procedure.

The use of this technique, however, imposes a certain number of constraints in the
design of the precise structure of the Reference LDAP Tree:

■ All optional LDAP instance attributes must be instantiated in the reference entries.
Even if these attributes are absent in the operational LDAP directory entries, they
must be declared in the Reference LDAP Tree if they are to be used at a later time.

■ Any multiple valued attributes that exist in the operational LDAP directory must
be instantiated as such in the Reference LDAP Tree. For example, if any Person
instance in the operational LDAP directory possesses two telephoneNumber
attributes, then the generic Person class must instantiate at least two
telephoneNumber attributes in the Reference LDAP Tree.

A.2.2 Managing Relational Schemas
This section contains the following topics:

■ Relational Schema Storage

■ Accessing Data in the Relational Structure

A.2.2.1 Relational Schema Storage
The relational structure resulting from the LDAP to Relational mapping may be
managed by virtual mapping or stored in an external database.

The virtual mapping stores the relational structure in the run-time agent’s memory and
requires no other component. The relational structure is transparently mapped by the
driver to the LDAP tree structure. SQL commands and functions that are available for
the LDAP driver are listed in the SQL Syntax.

The external database may be any relational database management system. The driver
connects through JDBC to this engine and uses it to store the relational schema. This
method provides the following benefits:

■ Processing and storage capabilities of the selected external database engine.

■ Acccess to the specific SQL statements, procedures, and functions of the external
database engine.

■ Flexible persistence of the relational structure. This schema content may persist
after the connection to the LDAP driver is closed.

Note: These issues have a direct impact on the generated relational
structure by forcing the creation of additional tables and columns to
map multiple attribute fields and must be taken into consideration
when designing the Reference LDAP Tree.

Note: The virtual mapping may require a large amount of memory
for large LDAP tree structures.

Installation and Configuration

A-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

A.2.2.2 Accessing Data in the Relational Structure
DML operations on tables in the relational are executed with standard SQL statements.

Modifications made to the relational data are propagated to the directory depending
on the selected storage :

■ In the case where the virtual mapping is used, all insert, update, and delete requests
are automatically propagated to the original LDAP server in an autocommit mode.
No explicit COMMIT or ROLLBACK statements will have any impact on the
Oracle Data Integrator driver for LDAP.

■ In the case where the external database is used to store the relational structure, all
types of DML statements may be used with the driver. However, it is important to
know that no modifications will be propagated to the original LDAP server.

A.3 Installation and Configuration
The Oracle Data Integrator driver for LDAP is automatically installed during the
Oracle Data Integrator installation. The following topics cover advanced configuration
topics and reference information.

This section contains the following topics:

■ Driver Configuration

■ Using Property Bundles

■ Table Aliases Configuration

A.3.1 Driver Configuration
This section details the driver configuration.

■ The driver name is: com.sunopsis.ldap.jdbc.driver.SnpsLdapDriver

■ The driver supports two URL formats:

■ jdbc:snps:ldap?<property=value>[&...]

■ jdbc:snps:ldap2?<property=value>[&...]

The first URL requires the LDAP directory password to be encoded. The second
URL allows you to give the LDAP directory password without encoding it.

The properties for the URL are detailed in Table A–1.

Note: You must add the libraries and drivers required to connect the
LDAP directory using JNDI to the Oracle Data Integrator classpath.

Note: If using an external database engine you must also make sure
that the JDBC driver used to connect to the external database and the
.properties file are in the classpath.

Note: It is recommended to use the first URL to secure the LDAP
directory password.

Installation and Configuration

Oracle Data Integrator Driver for LDAP Reference A-7

Table A–1 Driver Properties

Property Mandatory Type Default Description

db_props or
dp

No string (file
location)

Empty
string

Name of a .properties file containing the external
database connection configuration. See Section A.3.2.2,
"External Database Connection Configuration" for the
details of this file content.

Note: This property should contain the name of the
.properties file without the file extension.

Note: This .properties file must be in the run-time agent
classpath.

Note: You can specify the external database connection
configuration using all the db_ properties listed below in
this table.

ldap_props
or lp

No string (file
location)

N/A Name of a .properties file containing the directory
connection configuration. See Section A.3.2.1, "LDAP
Directory Connection Configuration" for the details of this
file content.

Note: This property should contain the name of the
.properties file without the file extension.

Note: This .properties file must be in the run-time agent
classpath.

Note: You can specify the LDAP directory connection
configuration using all the ldap_ properties listed below in
this table.

lm_props or
lm

No string (file
location)

N/A Name of a .properties file containing the directory
connection configuration for the Reference LDAP Tree. See
Section A.3.2.1, "LDAP Directory Connection Configuration"
for the details of this file content, and Section A.2.1.4,
"Reference LDAP Tree" for an explanation of the reference
tree.

Note: This property should contain the name of the
.properties file without the file extension.

Note: This .properties file must be in the run-time agent
classpath.

Note: You can specify the reference LDAP directory
connection configuration using all the lm_ properties listed
below in this table.

case_sens or
cs

No boolean (true
| false)

false Enable / disable case sensitive mode for both LDAP- and
RDBMS-managed objects.

alias_
bundle or
ab

No string (file
location)

Empty
string

Name of a .properties file containing the list of aliases
for the LDAP to Relational Mapping. See Section A.3.3,
"Table Aliases Configuration" for more information.

Note: This property should contain the name of the
.properties file without the file extension.

Note: This.properties file must be in the run-time agent
classpath.

alias_
bundle_
encoding or
abe

No string
(encoding
code)

Default
encodin
g

Alias bundle file encoding. This encoding is used while
reading and overwriting the alias_bundle file. If it is not
defined then the default encoding would be used.

You will find a list of supported encoding at the following
URL:
http://java.sun.com/j2se/1.3/docs/guide/intl
/encoding.doc.html.

Installation and Configuration

A-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

grouping_
factor or gf

No alphanumeric 2 Determines how many object classes will be grouped
together to set up a single relational table mapping. See
Section A.2.1.2, "Grouping Factor" for more information.

key_column
or kc

No boolean (true
| false)

false If set to true, a technical column called SNPSLDAPKEY is
created to store the Relative Distinguished Name (RDN) for
each LDAP entry. See Section A.2.1.3, "Mapping Exceptions"
for more information.

numeric_
ids or ni

No boolean (true
| false)

false If set to true, all internal Primary and Foreign Keys are of
NUMERIC type. Otherwise, they are of the VARCHAR
type.

id_length or
il

No Alphanumeri
c

10 / 30 The length of the internal Primary and Foreign Key
columns. The default is 10 for NUMERIC column types and
30 for VARCHAR column types.

table_prefix
or tp

No string N/A Prefix added to relational tables of the current connection.

log_file or lf No string (file
location)

N/A Trace log file name. If the log file name is not set the trace
data is displayed on the standard output.

The presence of this property triggers trace logging for a
particular relational schema.

Table A–1 (Cont.) Driver Properties

Property Mandatory Type Default Description

Installation and Configuration

Oracle Data Integrator Driver for LDAP Reference A-9

log_level or
ll

No alphanumeric 1 Log level. This property is ignored if log_file is not
specified. The log level can is a bit mask that can be
specified either in hexadecimal or decimal value.

Log Level Values:

■ 0x1 (1): General information (important)

■ 0x2 (2): General information (detailed)

■ 0x4 (4): SQL statements

■ 0x8 (8): LDAP-Relational mapping information

■ 0x10 (16): LDAP-Relational mapping validation &
renaming information (Table and columns name
modifications, etc)

■ 0x20 (32): Display the LDAP model parsed and the
corresponding relational model.

■ 0x40 (64): Display the table creation statements.

■ 0x80 (128): Display data insert statements.

■ 0x100 (256): Grouping information (important)

■ 0x200 (512): Grouping information (detailed)

■ 0x400 (1024): Display details on the relational model
building

■ 0x800 (2048): Display the elements read from the LDAP
tree

■ 0x1000 (4096): Display SQL statements causing changes
into the LDAP tree

Examples:

■ Important and detailed general information: log_
level=3 (1+2)

■ Trace native SQL commands and important internal
events: log_level=5 (1+4)

■ Trace relational mapping calculation and validation:
log_level=24 (16+8)

■ Trace all events: log_level=8191 (1+2+ ... + 2048 + 4096)

ldap_auth No string simple LDAP Directory authentication method. See the auth
property in Section A–2, " LDAP Directory Connection
Properties"

ldap_url Yes string N/A LDAP Directory URL. See the url property in Section A–2,
" LDAP Directory Connection Properties"

ldap_user No string Empty
string

LDAP Directory user name. See the user property in
Section A–2, " LDAP Directory Connection Properties"

ldap_
password

No string Empty
string

LDAP Directory user password. See the password property
in Section A–2, " LDAP Directory Connection Properties"

lldap_
basedn

No string N/A LDAP Directory basedn. See the basedn property in
Section A–2, " LDAP Directory Connection Properties"

lm_auth No string simple Reference LDAP authentication method. See the auth
property in Section A–2, " LDAP Directory Connection
Properties"

lm_url Yes string N/A Reference LDAP URL. See the url property in Section A–2,
" LDAP Directory Connection Properties"

Table A–1 (Cont.) Driver Properties

Property Mandatory Type Default Description

Installation and Configuration

A-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

URL Examples
The following section lists URL examples:

■ jdbc:snps:ldap?lp=ldap_mir&ldap_basedn=o=tests&gf=10&lf=

Connects to the LDAP directory specified in the ldap_mir .properties file,
overriding the basedn property of the ldap bundle and using a grouping factor of
10. General information (important) is sent to the standard output.

■ jdbc:snps:ldap?lp=ldap_
ours&lm=generic&ab=c:/tmp/aliases.txt&gf=10&kc=true

Connects to the LDAP directory using the ldap_ours .properties file; a generic
Directory tree for relational model creation is signaled by the lm property; an alias
bundle file is used for the creation of the relational structure; a maximum
grouping factor of 10 is used; key column creation is enabled for the
SNPSLDAPKEY field to allow updates requests in the relational model.

■ jdbc:snps:ldap?lp=ldap_mir&dp=mysql_mir_ldap&ldap_
basedn=dc=tests&lm=ldap_mir&lm_
basedn=dc=model&ab=d:/temp/mapldap.txt&

Connects to the LDAP directory using the ldap_mir .properties file; overriding
ldap basedn property; using the "dc=model" subtree of the same directory to

lm_user No string Empty
string

Reference LDAP Directory user name. See the user
property in Section A–2, " LDAP Directory Connection
Properties"

lm_
password

No string Empty
string

Reference LDAP Directory user password. See the
password property in Section A–2, " LDAP Directory
Connection Properties"

lm_basedn No string N/A Reference LDAP Directory basedn. See the basedn
property in Section A–2, " LDAP Directory Connection
Properties"

db_driver Yes string N/A External Database JDBC Driver. See the driver property in
Section A–3, " External Database Connection Properties"

db_url Yes string N/A External Database JDBC URL. See the url property in
Section A–3, " External Database Connection Properties"

db_user No string Empty
string

External Database user. See the user property in
Section A–3, " External Database Connection Properties"

db_
password

No string Empty
string

External Database password. See the password property in
Section A–3, " External Database Connection Properties"

db_schema No string Empty
string

External Database schema. See the schema property in
Section A–3, " External Database Connection Properties"

db_catalog No string Empty
string

External Database catalog. See the catalog property in
Section A–3, " External Database Connection Properties"

db_drop_
on_
disconnect
or db_dod

No boolean (Y |
N)

true Drop tables on disconnect on the external database. See the
drop_on_disconnect property in Section A–3, " External
Database Connection Properties"

db_load_
mode or
db_lm

No string ci Loading method for the external database. See the load_
mode property in Section A–3, " External Database
Connection Properties"

Table A–1 (Cont.) Driver Properties

Property Mandatory Type Default Description

Installation and Configuration

Oracle Data Integrator Driver for LDAP Reference A-11

perform mapping; using an alias bundle; overriding the lm database property
(load mode); specifying a grouping factor of 0 to indicate no grouping (grouping
disabled); Full trace logging is activated.

■ Connects to a LDAP directory on the hydraroid machine. The LDAP server
connection information - url, base dn, user and password - is specified in the URL
using the ldap_xxx properties.

jdbc:snps:ldap?ldap_url=ldap://hydraroid:389/dc=localhost,dc=localdomain&ldap_
password=KPLEKFMJKCLFJMDFDDGPGPDB&ldap_user=cn=orcladmin&ldap_
basedn=ou=applications

A.3.2 Using Property Bundles
As described in Table A–1, the LDAP driver URL can reference property bundles
(.properties files) that contain the following information:

■ LDAP Connection information for the Directory

■ LDAP Connection information for the Reference Directory

■ External Database connection information

The values stored the bundle files (.properties files) can be also passed in the URL:

■ LDAP directory connection: The properties start with ldap_. For example,
ldap_basedn.

■ LDAP Reference Directory connection: The properties start with lm_. For
example, lm_basedn.

■ External Database connection: The properties start with db_. For example, db_
url.

When using property bundle files, you must make sure that the property bundle is
present in the Oracle Data Integrator classpath. Typically, you should install this
bundle in the drivers directories.

You should also make sure that the URL refers to the property bundle without
specifying the file extension. For example, if you have in your classpath the prod_
directory.properties file, you should refer to this file as follows: lp=prod_
directory.

A.3.2.1 LDAP Directory Connection Configuration
The Oracle Data Integrator driver for LDAP uses the following properties to connect to
a directory server that contains the LDAP data or the Reference LDAP Tree. These
properties can be provided either in a property bundle file or on the driver URL.

The properties for configuring a directory connection are detailed in Table A–2.

Note: It is important to understand that the LDAP driver loads
external property bundle files once only at runtime startup. If errors
occur in these files, it is advisable to exit Oracle Data Integrator and
then reload it before re-testing.

Table A–2 LDAP Directory Connection Properties

Property Mandatory Type Default Description

auth No string simple The authentication method

Installation and Configuration

A-12 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The following is an example of an LDAP properties file content:

url=ldap://ours:389
user=cn=Directory Manager
password=ENCODED_PASSWORD
basedn=dc=oracle,dc=com

A.3.2.2 External Database Connection Configuration
The Oracle Data Integrator driver for LDAP may store the relational structure
mapping of the LDAP tree in an external database engine.

The properties for configuring an external database connection are detailed in
Table A–3.

url Yes string N/A URL to connect to the directory. It is an LDAP URL.

Note: This driver supports the LDAPS (LDAP over SSL) protocol.
The LDAPS URL must start with ldaps://. To connect a server
using LDAPS, you must manually install the certificate in the java
machine. See the keytool program provided with the JVM for more
information.

user No string Empty
string

The LDAP server user-login name. Mandatory only if "auth" is
set.

Note: If user and password properties are provided to create the
connection with the JDBC Driver for LDAP, then they are used to
connect the LDAP directory.

password No string Empty
string

LDAP server user-login password. Mandatory only if "auth" is
set.

Note: The password needs to be encrypted, unless the
'jdbc:snps:ldap2' URL syntax.

Note: To encrypt the password, use the encode.bat command.
See the Oracle Fusion Middleware Installation Guide for Oracle Data
Integrator for more information.

basedn No string N/A The base dn with which you wish to connect to the LDAP tree.
The base dn is the top level of the LDAP directory tree. If it not
specified, the base dn specified in the LDAP URL is used.

Note: The list of technologies that support external storage is
available on Oracle Technical Network (OTN) :

http://www.oracle.com/technology/products/oracle-dat
a-integrator/index.html.

Table A–3 External Database Connection Properties

Property Mandatory Type Default Description

driver Yes string N/A JDBC driver name

url Yes string N/A JDBC URL

user No string Empty string Login used to connect the database

Table A–2 (Cont.) LDAP Directory Connection Properties

Property Mandatory Type Default Description

Installation and Configuration

Oracle Data Integrator Driver for LDAP Reference A-13

The following is an example of an external database .properties file to connect to
an external Oracle database:

driver=oracle.jdbc.OracleDriver
url=jdbc:oracle:thin:@hydraro:1521:SNPTST1
user=LDAP_T_1
password=ENCODED_PASSWORD
schema=LDAP_T_1

A.3.3 Table Aliases Configuration
The LDAP driver allows a certain flexibility in the definition of the model table names
in Oracle Data Integrator by the use of table aliases. This is particularly useful when
the algorithm used to navigate the LDAP tree generates long composite names from
the LDAP object class hierarchy. To avoid issues related to RDBMS-specific object
name-length constraints, the LDAP driver can set up and use aliases.

To create a table alias file:

1. In the LDAP Driver Data Server URL, include and set the alias_bundle (ab)
property that indicates the name of the alias text file, for example:

jdbc:snps:ldap?.....&ab=..../tmp/aliases.txt&....

password No string Empty string Encrypted database user password.

Note: To encrypt the password, use the encode.bat
command. See the Oracle Fusion Middleware Installation Guide
for Oracle Data Integrator for more information.

schema No string Empty string Database schema storing the LDAP Tree. This property
should not be used for Microsoft SQLServer, and the catalog
property should be used instead.

catalog No string Empty string Database catalog storing the LDAP Tree. For Microsoft SQL
Server only. This property should not be used simultaneously
with the schema property.

drop_on_
disconnect
or dod

No boolean
(true |
false)

true If true, drop the tables from the database at disconnection
time. If set to false the tables are preserved in the database.

load_mode
or lm

No string ci The loading method. Values may be:

■ n (none): the model and table mappings are created in
memory only.

■ dci (drop_create_insert): drop all tables that may cause
name conflicts then create tables and load the LDAP tree
into the relational model.

■ ci(create_insert): Create the relational tables and throw
an exception for existing tables, then load the LDAP tree
into the relational model.

Note: It is also possible to change the default "Maximum Table
Name Length" and "Maximum Column Name Length" values on the
Others tab of the Technology Editor in the Physical Architecture
accordion.

Table A–3 (Cont.) External Database Connection Properties

Property Mandatory Type Default Description

SQL Syntax

A-14 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

The alias file is created by the driver at connection time when the alias_bundle
property is specified. Typically, a user connects initially through the LDAP driver
which creates this file containing a list of potential table names to be created by the
reverse-engineering operation.

2. Test the connection to the LDAP data server.

3. Verify the that the text file has been created and has the expected structure. The
list consists of <original table name > = <desired alias name>
values. Example A–1 shows an extract of an alias file after the user has provided
shortened names. See step 4 for more information.

Example A–1 Alias File

INETORGPERSON_ORGANIZATIONALPERSON_PERSON_BISOBJECT_MAIL = PERSONMAIL
ORGANIZATIONALUNIT_RFC822MAILMEMBER = ORG_228MAIL
INETORGPERSON_ORGANIZATIONALPERSON_PERSON = ORG_PERSON
ORGANIZATIONALUNIT_MEMBER = ORG_UN_MEMBER
ORGANIZATIONALUNIT = ORG_UNIT
ROOT = ROOT
....

4. In the alias text file, add short text value aliases to replace the originally derived

composite names and save the file.

5. Reconnect to the same LDAP data server. The relational schema is created and this
time the aliases will be used for defining relational table names.

6. Now reverse-engineer the LDAP directory as described in Section 24.5.2,
"Reverse-Engineering an LDAP Model". Oracle Data Integrator will create
datastores with the table names defined as aliases in the alias file.

A.4 SQL Syntax
The SQL statements described in Section A.4.1, "SQL Statements" are available when
using the Oracle Data Integrator driver for LDAP. They enable the management of
relational data structure and data through standard SQL Syntax.

Table A–4 summarizes the recommendations to apply when performing the listed
DML operations on specific key fields.

Note: If any modifications have been applied to the object class
structure or attribute sets of the LDAP directory, the driver will
rewrite this file while including the new or modified entries to the
table name list.

Note:

■ If you are using an external database you may use its proprietary
query engine syntax in place of the following commands.

■ The LDAP driver works uniquely in auto commit mode. No
explicit transaction management with COMMIT or ROLLBACK
commands is permitted.

■ When using an external database to store LDAP tree data, DDL
statements may only be carried out on temporary tables.

SQL Syntax

Oracle Data Integrator Driver for LDAP Reference A-15

A.4.1 SQL Statements
Any number of commands may be combined. The semicolon (;) may be used to
separate each command but is not necessary.

A.4.1.1 DISCONNECT
DISCONNECT

Closes this connection.

Remarks
■ It is not required to call this command when using the JDBC interface: it is called

automatically when the connection is closed.

■ After disconnecting, it is not possible to execute other queries with this connection.

A.4.1.2 INSERT INTO
Insert one or more new rows of data into a table.

INSERT INTO <table_name> [(<column_name> [,...])]
 { VALUES (<expression> [,...]) | <SELECT Statement> }

A.4.1.3 SELECT
Retrieves information from one or more tables in the schema.

SELECT [DISTINCT] { <select_expression> | <table_name>.* | * } [, ...]
 [INTO <new_table>]
 FROM <table_list>
 [WHERE <expression>]
 [GROUP BY <expression> [, ...]]
 [ORDER BY <order_expression> [, ...]]
 [{ UNION [ALL] | {MINUS|EXCEPT} | INTERSECT } <select_statement>
]
<table_list> ::=
<table_name> [{ INNER | LEFT [OUTER] } JOIN <table_name> ON <expression>]
 [, ...]

<select_expression> ::=

Table A–4 DML Opertaions on Key Fields

Type of Column Insert Update Delete

Foreign Key Pay attention to master
table referential constraints
and ordered table populate
operations.

Not permitted Pay attention to master table
referential constraints and
ordered delete requests.

Primary Key Pay attention to slave table
referential constraints and
ordered table populate
operations.

Not permitted Pay attention to slave table
referential constraints and
ordered delete requests

IS_xxx Pay attention to associating
the correct flag value to the
original object class.

Not permitted OK

Key_Column Pay attention to setting the
RDN value in the correct
LDAP syntax.

Not permitted OK

SQL Syntax

A-16 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

{ <expression> | COUNT(*) | {COUNT | MIN | MAX | SUM | AVG}
 (<expression>) <column_alias>}

<order_expression> ::=
{ <column_number> | <column_alias> | <select_expression> } [ASC | DESC]

A.4.1.4 UPDATE
Modifies data of a table in the database.

UPDATE table SET column = <expression> [, ...] [WHERE <expression>]

A.4.1.5 Expressions, Condition & values
<expression> ::=
[NOT] <condition> [{ OR | AND } <condition>
]
<condition> ::=
{ <value> [|| <value>]
| <value> { = | < | <= | > | >= | <> | != | IS [NOT] } <value>
| EXISTS(<select_statement>)
| <value> BETWEEN <value> AND <value>
| <value> [NOT] IN ({<value> [, ...] | selectStatement })
| <value> [NOT] LIKE <value> [ESCAPE] value }

<value> ::=
[+ | -] { term [{ + | - | * | / } term]
| (condition)
| function ([parameter] [,...])
| selectStatement giving one value

<term> ::=
{ 'string' | number | floatingpoint | [table.]column | TRUE | FALSE | NULL }

<string> ::=
■ Starts and ends with a single '. In a string started with ' use '' to create a '.

■ LIKE uses '%' to match any (including 0) number of characters, and '_' to match
exactly one character. To search for '%' itself, '\%' must be used, for '_' use '_'; or
any other escaping character may be set using the ESCAPE clause.

<name> ::=
■ A name starts with a letter and is followed by any number of letters or digits.

Lowercase is changed to uppercase except for strings and quoted identifiers.
Names are not case-sensitive.

■ Quoted identifiers can be used as names (for example for tables or columns).
Quoted identifiers start and end with ". In a quoted identifier use "" to create a ".
With quoted identifiers it is possible to create mixed case table and column names.
Example: CREATE TABLE "Address" ("Nr" INTEGER,"Name" VARCHAR);
SELECT * FROM "Address". Quoted identifiers are not strings.

<values> ::=
■ A 'date' value starts and ends with ', the format is yyyy-mm-dd (see java.sql.Date).

■ A 'time' value starts and ends with ', the format is hh:mm:ss (see java.sql.Time).

■ Binary data starts and ends with ', the format is hexadecimal. '0004ff' for example
is 3 bytes, first 0, second 4 and last 255 (0xff).

SQL Syntax

Oracle Data Integrator Driver for LDAP Reference A-17

A.4.2 SQL FUNCTIONS
Table A–5 describes the numeric functions.

Table A–6 describes the string functions.

Table A–5 Numeric Functions

Function Description

ABS(d) returns the absolute value of a double value

ACOS(d) returns the arc cosine of an angle

ASIN(d) returns the arc sine of an angle

ATAN(d) returns the arc tangent of an angle

ATAN2(a,b) returns the tangent of a/b

BITAND(a,b) returns a & b

BITOR(a,b) returns a | b

CEILING(d) returns the smallest integer that is not less than d

COS(d) returns the cosine of an angle

COT(d) returns the cotangent of an angle

DEGREES(d) converts radians to degrees

EXP(d) returns e (2.718...) raised to the power of d

FLOOR(d) returns the largest integer that is not greater than d

LOG(d) returns the natural logarithm (base e)

LOG10(d) returns the logarithm (base 10)

MOD(a,b) returns a modulo b

PI() returns pi (3.1415...)

POWER(a,b) returns a raised to the power of b

RADIANS(d) converts degrees to radians

RAND() returns a random number x bigger or equal to 0.0 and smaller than 1.0

ROUND(a,b) rounds a to b digits after the decimal point

SIGN(d) returns -1 if d is smaller than 0, 0 if d==0 and 1 if d is bigger than 0

SIN(d) returns the sine of an angle

SQRT(d) returns the square root

TAN(d) returns the trigonometric tangent of an angle

TRUNCATE(a,b) truncates a to b digits after the decimal point

Table A–6 String Functions

Function Description

ASCII(s) returns the ASCII code of the leftmost character of s

BIT_LENGTH(s) returns the string length in bits

CHAR(c) returns a character that has the ASCII code c

CHAR_LENGTH(s) returns the string length in characters

SQL Syntax

A-18 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table A–7 describes the date and time functions.

CONCAT(str1,str2) returns str1 + str2

DIFFERENCE(s1,s2) returns the difference between the sound of s1 and s2

HEXTORAW(s1) returns the string translated from hexadecimal to raw

INSERT(s,start,len,s2) returns a string where len number of characters beginning at start
has been replaced by s2

LCASE(s) converts s to lower case

LEFT(s,count) returns the leftmost count of characters of s

LENGTH(s) returns the number of characters in s

LOCATE(search,s,[start]) returns the first index (1=left, 0=not found) where search is found
in s, starting at start

LTRIM(s) removes all leading blanks in s

OCTET_LENGTH(s) returns the string length in bytes

RAWTOHEX(s) returns translated string

REPEAT(s,count) returns s repeated count times

REPLACE(s,replace,s2) replaces all occurrences of replace in s with s2

RIGHT(s,count) returns the rightmost count of characters of s

RTRIM(s) removes all trailing blanks

SOUNDEX(s) returns a four character code representing the sound of s

SPACE(count) returns a string consisting of count spaces

SUBSTR(s,start[,len]) (alias for substring)

SUBSTRING(s,start[,len]) returns the substring starting at start (1=left) with length len.

Another syntax is SUBSTRING(s FROM start [FOR len])

TRIM TRIM([{LEADING | TRAILING | BOTH}] FROM s): removes
trailing and/or leading spaces from s.

UCASE(s) converts s to upper case

LOWER(s) converts s to lower case

UPPER(s) converts s to upper case

Table A–7 Date and Time Functions

Function Description

CURDATE() returns the current date

CURTIME() returns the current time

CURRENT_DATE returns the current date

CURRENT_TIME returns the current time

CURRENT_TIMESTAMP returns the current timestamp

Table A–6 (Cont.) String Functions

Function Description

SQL Syntax

Oracle Data Integrator Driver for LDAP Reference A-19

Note that A date value starts and ends with ', the format is yyyy-mm-dd (see
java.sql.Date). A time value starts and ends with ', the format is hh:mm:ss (see
java.sql.Time).

Table A–8 describes the system functions.

Table A–9 describes the system and connection functions.

DATEDIFF(s, d1,d2) returns the counts of unit of times specified in s elapsed from
datetime d1 to datetime d2. s may take the following values:
'ms'='millisecond', 'ss'='second','mi'='minute','hh'='hour', 'dd'='day',
'mm'='month', 'yy' = 'year'.

DAYNAME(date) returns the name of the day

DAYOFMONTH(date) returns the day of the month (1-31)

DAYOFWEEK(date) returns the day of the week (1 means Sunday)

DAYOFYEAR(date) returns the day of the year (1-366)

EXTRACT EXTRACT ({YEAR | MONTH | DAY | HOUR | MINUTE |
SECOND} FROM <datetime>): extracts the appropriate part from
the <datetime> value.

HOUR(time) return the hour (0-23)

MINUTE(time) returns the minute (0-59)

MONTH(date) returns the month (1-12)

MONTHNAME(date) returns the name of the month

NOW() returns the current date and time as a timestamp

QUARTER(date) returns the quarter (1-4)

SECOND(time) returns the second (0-59)

WEEK(date) returns the week of this year (1-53)

YEAR(date) returns the year

Table A–8 System Functions

Function Description

IFNULL(exp,value) if exp is null, value is returned else exp

CASEWHEN(exp,v2,v2) if exp is true, v1 is returned, else v2

CONVERT(term,type) converts exp to another data type

COALESCENCE(e1,e2,e3,...) if e1 is not null then it is returned, else e2 is evaluated. If e2 is
null, then is it returned, else e3 is evaluated and so on.

NULLIF(v1,v2) returns v1 if v1 is not equal to v2, else returns null

CASE WHEN There are two syntax for the CASE WHEN statement:

CASE v1 WHEN v2 THEN v3 [ELSE v4] END: if v1 equals v2
then returns v3 [otherwise v4 or null if ELSE is not specified].

CASE WHEN e1 THEN v1[WHEN e2 THEN v2] [ELSE v4]
END: when e1 is true return v1 [optionally repeated for more
cases] [otherwise v4 or null if there is no ELSE]

CAST(term AS type) converts exp to another data type

Table A–7 (Cont.) Date and Time Functions

Function Description

JDBC API Implemented Features

A-20 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

A.5 JDBC API Implemented Features
Table A–10 lists the JDBC API features of the Oracle Data Integrator driver for LDAP.

The following table identifies the JDBC classes supported by the Oracle Data
Integrator driver for LDAP.

Table A–9 System and Connection Functions

Function Description

DATABASE() returns the name of the database of this connection

USER() returns the user name of this connection

IDENTITY() returns the last identity values that was inserted by this connection

Table A–10 JDBC API Features

Feature Groups JDBC Version Support

Batch Update 2.0 Core Yes

Blob/Clob 2.0 Core No

JNDI DataSources 2.0 Optional No

Failover support - No

Transaction SavePoints 3.0 No

Unicode support - No

Disributed Transaction 2.0 Optional No

Connection Pooling 2.0 Optional No

Cluster support - No

Table A–11 JDBC Classes

JDBC Classes JDBC Version Support

Array 2.0 Core No

Blob 2.0 Core No

Clob 2.0 Core No

CallableStatement 1.0 Yes

Connection 1.0 Yes

ConnectionPoolDataSource 2.0 Optional No

DatabaseMetaData 1.0 Yes

DataSource 2.0 Optional No

Driver 1.0 Yes

PreparedStatement 1.0 Yes

Ref 2.0 Core No

RowSet 2.0 Optional No

ResultSet 1.0 Yes

ResultSetMetaData 1.0 Yes

Statement 1.0 Yes

JDBC API Implemented Features

Oracle Data Integrator Driver for LDAP Reference A-21

Struct 2.0 Core No

XAConnection 2.0 Optional No

XADataSource 2.0 Optional No

Table A–11 (Cont.) JDBC Classes

JDBC Classes JDBC Version Support

JDBC API Implemented Features

A-22 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

B

Oracle Data Integrator Driver for XML Reference B-1

BOracle Data Integrator Driver for XML
Reference

This appendix describes how to work with the Oracle Data Integrator driver for XML.

This appendix includes the following sections:

■ Section B.1, "Introduction to Oracle Data Integrator Driver for XML"

■ Section B.2, "XML Processing Overview"

■ Section B.3, "Installation and Configuration"

■ Section B.4, "Detailed Driver Commands"

■ Section B.5, "SQL Syntax"

■ Section B.6, "JDBC API Implemented Features"

■ Section B.7, "XML Schema Supported Features"

B.1 Introduction to Oracle Data Integrator Driver for XML
Oracle Data Integrator Driver for XML (XML driver) handles an XML document as a
JDBC data source. This allows Oracle Data Integrator to use XML documents as data
servers.

With Oracle Data Integrator Driver for XML, Oracle Data Integrator can query XML
documents using standard SQL syntax and perform changes in the XML files. These
operations occur within transactions and can be committed or rolled back.

The Oracle Data Integrator driver for XML supports the following features:

■ Standard SQL (Structured Query Language) Syntax

■ Correlated subqueries, inner and outer joins

■ ORDER BY and GROUP BY

■ COUNT, SUM, MIN, MAX, AVG and other functions

■ Standard SQL functions

■ Transaction Management

■ Referential Integrity (foreign keys)

■ Saving Changes made on XML data into the XML files

XML Processing Overview

B-2 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

B.2 XML Processing Overview
The XML driver works in the following way:

1. The driver loads (upon connection or user request) the XML structure and data
into a relational schema, using a XML to SQL Mapping.

2. The user works on the relational schema, manipulating data through regular SQL
statements or specific driver commands for driver operations.

3. Upon disconnection or user request, the XML driver synchronizes the data and
structure stored in the schema back to the XML file.

B.2.1 XML to SQL Mapping
The XML to SQL Mapping is a complex process that is used to map a hierarchical
structure (XML) into a relational structure (schema). This mapping is automatic.

Elements and Attributes Mapping
The XML driver maps XML elements and attributes the following way:

■ Elements are mapped as tables with the same name.

■ Attributes are mapped as columns named like the attributes. Each column is
created in the table representing the attribute's element.

Hierarchy & Order Mapping
Extra data may appear in the relational structure as follows:

■ In order to map the hierarchy of XML elements, or a one-to-many relation between
elements, the XML driver generates in each table corresponding to an element the
following extra columns:

– <element_name>PK: This column identifies the element.

– <parent_element_name>FK: This column links the current element to its
parent in the hierarchy. It contains a value matching the parent element’s
<element_name>PK value.

■ Records in a table, unlike elements in an XML file, are not ordered, unless a
specific column is used to define the order. The driver generates also a column
named <element_name>ORDER to preserve the order of the elements. When
adding new rows in the relational schema, make sure that the ORDER column is
correctly set to have the elements correctly ordered under the parent element.

■ The root of the hierarchy is identified by a root table named after the root element.
This table contains a single records with the following columns:

– <root_element_name>PK: All level 1 sub-elements will refer to this PK
entry.

– SNPSFILENAME: This column contains the names of the XML file loaded into
this schema.

– SNPSFILEPATH: This column contains the XML file path.

– SNPSLOADDATE: This column contains the date and time when the file was
loaded into the schema.

The values in this table are managed by the driver and should not be modified.

XML Processing Overview

Oracle Data Integrator Driver for XML Reference B-3

Mapping Exceptions
This section details some specific situations for the mapping of extra data.

■ Elements containing only #PCDATA are not mapped as tables, but as columns of
the table representing their parent element. These columns are named <element_
name>DATA.

■ List Attributes are mapped as a new table with a link (PK, FK) to the table
representing the element containing the list.

■ XML elements and attributes with names that match SQL keywords are
automatically renamed (an underscore is added after their name) in the relational
structure to avoid naming conflict between table/column names and SQL
keywords. For example, an element named SELECT will be mapped to a table
named SELECT_. Such elements are restored in the XML file with their original
naming when a synchronize operation takes place.

Note that extra objects created by the driver are used to keep the XML file consistency.
These records must be loaded in the relational schema before it is synchronized to an
XML file.

B.2.2 XML Namespaces
The XML driver supports XML namespaces (xmlns:) specified for XML attributes
and elements.

Elements or attributes specified with a namespace (using the syntax
<namespace>:<element or attribute name>) are mapped as tables or
columns prefixed with the namespace using the syntax: <namespace>_<element
or attribute name>. When synchronizing the XML data back to the file, the
namespace information is automatically generated.

B.2.3 Managing Schemas
A schema corresponds to the concept used in Oracle database and other RDBM systems
and is a container that holds a set of relational tables. A schema is a generic relational
structure in which an entire set of XML file instances may be successfully parsed and
extracted. The identified elements and attributes are inserted in the appropriate
relational tables and fields.

This schema is generated by the XML driver from either an XML instance file, a DTD
file, or an XSD file. It is recommended to generate the schema from a DTD or XSD file.

Note that only a single DTD or XSD file may be referenced in definition of an XML
data server URL. In this case, this DTD or XSD may be considered as a master DTD or
XSD file if the artifact includes references to other DTD / XSD files. Note that in
certain cases multiple schemas may be required. In this case use the add_schema_
bundle property.

B.2.3.1 Schema Storage
The schema may be stored either in a built-in engine or in an external database.

■ The built-in engine requires no other component to run. The XML schema is stored
in memory within the driver. The SQL commands and functions available on this
driver are detailed in the SQL Syntax.

■ The external database can be a relational database management system. The driver
connects through JDBC to this engine, and uses it to store the schema. This enables
the:

XML Processing Overview

B-4 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

– Use of the processing and storage power of the RDBMS engine

– Use of the statements and functions of the RDBMS

– Persistence of schema storage

See Section B.3.3, "Using an External Database to Store the Data" for more
information.

B.2.3.2 Multiple Schemas
It is possible to handle, within the same JDBC connection, multiple schemas and to
load multiple XML files simultaneously. It is possible to CREATE, TRUNCATE, SET,
and LOAD FILE INTO schemas. When connecting to the JDBC driver, you connect to
the schema that is specified on the URL. It is possible to set the current schema to
another one using the SET SCHEMA command. See Section B.4, "Detailed Driver
Commands" for more information.

The default schema is a specific schema that is used for storing temporary data. This
default schema cannot be associated with an XML file.

It is also possible to automatically create additional schemas with different XML
structures when creating the connection to the driver. See Section B.3.1, "Driver
Configuration" for more information.

B.2.3.3 Accessing Data in the Schemas
Data in the schemas is handled using the SQL language.

It is possible to access tables in a schema that is different from the current schema. To
access the tables of a different schema, prefix the table name with the schema name,
followed by a period character (.). For example:

SELECT col1, schema2.table2.col2, table1.col3 FROM table1, schema2.table2.

This query returns data from table1 in the current schema, and from table2 from
schema2.

B.2.3.4 Case Sensitivity
A schema cannot be case-sensitive. All elements in the schema (tables and columns)
are in UPPERCASE. If the XML file element names contain lowercase letters, they are
converted to upper case. When the elements are synchronized to the XML file, their
names are created with their original case.

B.2.3.5 Loading/Synchronizing
A schema is usually automatically created when connecting to an XML file, and
loaded with the data contained in the XML file. It is possible to force the schema
creation and the data loading in the schema using specific driver commands. See
Section B.4, "Detailed Driver Commands" for more information. It is also possible to
force a synchronization process of the data by using the SYNCHRONIZE command, as
described in Section B.4.9, "SYNCHRONIZE".

Note: Note that the other schema must be located on the same
storage space - built-in engine or external database - as than the current
schema.

Installation and Configuration

Oracle Data Integrator Driver for XML Reference B-5

B.2.4 Locking
When accessing an XML file, the driver locks it in order to prevent other instances of
the driver to connect to the file. The lock file has the same name as the XML file but an
.lck extension.

If the driver is incorrectly disconnected, a lock may remain on the file. To remove it,
delete the .lck file. It is also possible to unlock an XML file with the UNLOCK FILE
command.

B.2.5 XML Schema (XSD) Support
XSD is supported by the XML driver for describing XML file structures. See
Section B.7, "XML Schema Supported Features" for more information.

In addition, the XML driver supports document validation against XSD schemas
specified within the XML file. This operation may be performed using the VALIDATE
driver specific command.

B.3 Installation and Configuration
The Oracle Data Integrator driver for XML is automatically installed with Oracle Data
Integrator. The following topics cover advanced configuration topics and reference
information.

This section contains the following topics:

■ Driver Configuration

■ Automatically Create Multiple Schemas

■ Using an External Database to Store the Data

B.3.1 Driver Configuration
This section details the driver configuration.

■ The driver name is: com.sunopsis.jdbc.driver.xml.SnpsXmlDriver

■ The URL Syntax is:
jdbc:snps:xml?[property=value&property=value...]

The properties for the URL are detailed in Table B–1.

Note: If using an External Database storage, you must also make
sure that the JDBC driver used to connect the external database, as
well as the .properties file are in the classpath.

Installation and Configuration

B-6 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table B–1 Driver Properties

Property Mandatory Type Default Description

file or f No string (file
location)

- XML file name. Use slash "/" in the path name instead
of back slash "\". It is possible to use an HTTP, FTP or
File URL to locate the file. Files located by URL are
read-only.

For an XML file, if this property is missing, a relational
schema is created by the XML driver from the
DTD/XSD file and no XML file is searched for.

dtd or d No string (file
location)

- Description file: This file may be a DTD or XSD file. It is
possible to use an HTTP, FTP or File URL to locate the
file. Files located by URL are read-only.

Note that the DTD or XSD file that is specified in the
URL takes precedence over the DTD or XSD file that is
specified within the XML file. References should be
made with an absolute path.

For an XML file, if this property is missing, and no DTD
or XSD is referenced in the XML file, the driver will
automatically consider a DTD file name similar to the
XML file name with .dtd extension.

A DTD file may be created from the XML file structure
depending on the generate_dtd URL property.

Note that when no DTD or XSD file is present, the
relational structure is built using only the XML file
content. It is not recommended to reverse-engineer the
data model from such a structure as one XML file
instance may not contain all the possible elements
described in the DTD or XSD, and data model may be
incomplete.

root_elt or re No String - Name of the element to take as the root table of the
schema. This value is case sensitive. This property can
be used for reverse-engineering for example a specific
message definition from a WSDL file, or when several
possible root elements exist in a XSD file.

Important: This property is used to designate ONLY the
Element in the XSD / DTD file which will serve as the
Root Element DEFINITION of any XML instance file
Root Element.

read_only or ro No boolean (true |
false)

false Open the XML file in read only mode.

schema or s No string - Name of the schema where the XML file will be loaded.
If this property is missing, a schema name is
automatically generated from the XML file name.

If this property is not specified in the XML data Server
URL, the XML Driver will automatically create a
schema name. This schema will be named after the five
first letters of the XML file name.

Note: It is not possible to make more than one
connection to a schema. Subsequent connections fail if
trying to connect to a schema already in use.

Important: The schema name should be specified in
uppercase.

Important: It is forbidden to have a schema name
identical to an XML ELEMENT name.

Installation and Configuration

Oracle Data Integrator Driver for XML Reference B-7

standalone No boolean (true |
false)

false If this option is set to true, the schema for this
connection is completely isolated from all other
schemas. With this option, you can specify the same
schema name for several connections, each schema
being kept separated. When using this option, tables in
this schema cannot be accessed from other schemas,
and this connection cannot access tables from other
schemas.

ns_prefix_
generation or
nspg

No auto | xml |
xsd

auto This option defines how namespace prefixes are
generated and written in the XML file.

■ auto (default): Prefixes are automatically generated
from the namespace names themselves when
possible or generated as ns1, ns2, etc.

■ xml: Namespace prefixes are taken from the source
XML file, if any.

■ xsd: Namespace prefixes are taken from the XSD
file, if any.

Note that the xsd option value assumes that a similar
prefix is not used in several XSD files to reference a
different namespace.

no_default_ns or
ndns

No boolean (true |
false)

false If this property is set to true, the driver generates the
target file with no default namespace entry.

no_closing_tags
or nct

No boolean (true |
false)

false If this property is set to true, the driver generates the
empty tags without their closing tags (for example
<element/>). If set to false the driver generates an
empty element as <element></element>. This property
is true by default if the v1_compatibility property is
used.

db_props or dp No string - This property is used to use an external database
instead of the memory engine to store the schema.

The db_props property indicates that the schema must
be loaded in a database schema whose connection
information are stored in a external database property
file named like the db_props property with the
extension .properties. This property file must be
located in the application's classpath.

load_data_on_
connect or ldoc

No boolean (true |
false)

true Load automatically the data in the schema when
performing the JDBC connection. If set to false, a
SYNCHRONIZE statement is required after the
connection to load the data.

This option is useful to test the connection or browse
metadata without loading all the data.

drop_on_disc or
dod

No boolean (true |
false)

false Drop automatically the schema when closing the JDBC
connection.

If true, the schema is stored in the built-in engine, it is
always dropped.

If the schema is stored in an external database, the
driver attempts to drop the database schema, but might
fail if tables still exist in this schema. The drop_tables_
on_drop_schema property can be specified in the
external database property file to ensure that all tables
are automatically dropped when the schema is
dropped.

Table B–1 (Cont.) Driver Properties

Property Mandatory Type Default Description

Installation and Configuration

B-8 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

ignore_
unknown_
elements or iue

No boolean (true |
false)

false Ignore all elements in the XML file that do not exist in
the associated DTD (Document Type Definition) or XSD
(XML Schema Definition) file.

useMaxValue No boolean (true |
false)

false When this property is set to true, elements for which
maxOccurs is not specified in the XSD are considered as
maxOccurs ="unbounded". Otherwise, the driver
assumes that maxOccurs=1 when maxOccurs is not
specified.

generate_dtd or
gd

No yes | no | auto auto Defines if a DTD file must be created from the XML file
structure:

■ auto: create the DTD file if the it does not exist. if
the DTD exists, does nothing.

■ yes: always create the DTD file. An existing DTD
will be overwritten.

■ no: never create the DTD file. The DTD file must
exist.

Warning: DTD files created using this option contain
only the definition of XML elements appearing in the
XML file, and may not be complete.

java_encoding
or je

No string
(encoding
code)

UTF8 Target file encoding (for example: ISO8859_1). You
will find a list of supported encoding at the following
URL:
http://java.sun.com/j2se/1.3/docs/guide/i
ntl/encoding.doc.html.

Note that if the Java encoding is specified, the XML
encoding should also be specified.

xml_encoding or
xe

No string
(encoding
code)

UTF8 Encoding specified in the generated XML File, in the tag
(for example ISO-8859-1: <?xml version="1.0"
encoding="ISO-8859-1"?>. You will find a list of
supported encoding at the following URL:
http://java.sun.com/j2se/1.3/docs/guide/i
ntl/encoding.doc.html.

Note that if the XML encoding is specified, the Java
encoding should also be specified.

v1_compatibility
or v1

No boolean (true |
false)

false With this property set to true, the driver performs the
XML to SQL mapping as if in version 1.x. This property
is provided for compatibility.

numeric_id or ni No boolean (true |
false)

true If set to true, all internal Primary and Foreign Keys are
of NUMERIC type. Otherwise, they are of the
VARCHAR type.

id_length or il No integer 10 / 30 The length of the internal Primary and Foreign Key
columns. The default is 10 for NUMERIC column types
and 30 for VARCHAR column.

numeric_scale or
ns

No integer empty Scale of the numeric columns generated during the
XML to SQL mapping.

no_batch_
update or nobu

No boolean (true |
false)

false Batch update is not used for this connection. The
command to set the batch update is not sent. This
prevents errors to occur for external databases that do
not support this JDBC feature, or allows to debug errors
related to batch update usage.

Table B–1 (Cont.) Driver Properties

Property Mandatory Type Default Description

Installation and Configuration

Oracle Data Integrator Driver for XML Reference B-9

Table B–2 listsURL samples.

add_schema_
bundle or asb

No string - Additional schemas bundle file. This property indicates
that additional schemas must be created at connection
time. The description for these extra schemas are
located in an additional schemas property file named
like the add_schema_bundle property with the
extension ".properties". The additional schemas
property file contains a list of valid JDBC driver's URL.
In this file, the property names are ignored. Only the list
of values is taken into account.

All these additional schemas are created with the drop_
on_disconnect option set to true by default.

Example of additional schemas property files contents:

addschema_
1=jdbc:snps:xml?f=c:/myfile.xml&ro=true&s
=myschema1 addschema_
2=jdbc:snps:xml?file=c:/myfile2.xml&s=mys
chema2 addschema_
3=jdbc:snps:xml?d=c:/myfile3.dtd&s=mysche
ma3

add_schema_
path or asp

No string
(directory)

- Directory containing a set of XSD files. For each XSD
file in this directory, an additional schema is created in
the built-in engine or external database storage, based
on this XSD. Note that no object is created in the
external database storage for these additional schemas.
The schema names are default generated named (5 first
characters of the file name, uppercased).

log_file or lf No string (file
location)

- Log file name. If the log file is empty, the trace is
displayed in the standard output.

The presence of this property triggers the trace for the
schema. Each schema may have a different trace file.

log_level or ll No Integer - Log level. The log level is a mask of the following
values:

■ 1: Important internal events

■ 2: Detailed internal events

■ 4: Native SQL commands

■ 8: XML-Relational mapping calculation

■ 16: XML-Relational mapping validation (Table
names changes,etc)

Examples:

■ Trace Important & Detailed internal events: log_
level=3 (1+2)

■ Trace Native SQL commands and Important
internal events: log_level=5 (1+4)

■ Trace XML-Relational mapping calculation and
validation: log_level=24 (16+8)

■ Trace all events: log_level=31 (1+2+4+8+16)

Table B–1 (Cont.) Driver Properties

Property Mandatory Type Default Description

Installation and Configuration

B-10 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

B.3.2 Automatically Create Multiple Schemas
It is possible to automatically create additional schemas with different XML structures
when creating the connection with the driver. This is performed by:

■ Declaring in the add_schema_bundle URL property a property file that contains a
list of JDBC URLs corresponding to the different additional schemas to create.

■ Declaring in the add_schema_path URL property a directory that contains a set of
XSD files. For each XSD file an additional schema is created in the built-in engine,
based on the XML schema description.

■ Specifying additional valid driver URLs as JDBC properties, named addschema_X
(X is a number). An additional schema will be created for each URL found in a
JDBC property called addschema_X.

Note that all these additional schemas are automatically dropped when their last
connection is closed.

These schemas are created in addition to the one that may be created with the
properties specified in the JDBC driver URL

B.3.3 Using an External Database to Store the Data
In most cases, the XML driver stores the relational schema mapping of the XML
schema in a built-in engine. It is also possible to make the driver store the relational
schema in an external relational database.

Using an external database
To use an external database, you must have:

■ A file with the .properties extension. This External Database Properties File
contains the properties of a JDBC connection to the relational database schema.

■ This .properties file in the classpath of Oracle Data Integrator that uses the
XML driver. Typically, you can install it with your custom drivers.

Table B–2 URL Samples

URL Sample Action

jdbc:snps:xml Connects to the default schema.

jdbc:snps:xml?f=/tmp/
myfile.xml&ro=true&/t
mp/mydtd.dtd

Open the /tmp/myfile.xml file in read only mode, using the
/tmp/mydtd.dtd DTD.

jdbc:snps:xml?file=/t
mp/myfile.xml

Open the /tmp/myfile.xml file in read/write mode.

jdbc:snps:xml?s=mysch
ema

Connect directly to the schema myschema

Note: Supported RDBMS for external storage include Oracle,
Microsoft SQL Server, MySQL, and Hypersonic SQL. The complete
list of technologies that support external storage is available on Oracle
Technical Network (OTN) :

http://www.oracle.com/technology/products/oracle-dat
a-integrator/index.html.

Installation and Configuration

Oracle Data Integrator Driver for XML Reference B-11

■ The db_props property in the JDBC URL set to the name of the properties file
(without the extension .properties).

It is possible to set or override the external database properties on the URL. These
properties must be prefixed with the string dp_. For example:

jdbc:snps:xml?file=/temp/payload.xml&dp_driver=<external_db_driver>&dp_
url=<external_db_url>

External Database Properties File
The external database properties file is a text file containing a set of lines with on each
line a <property>=<value> pair:

The valid properties are described inTable B–3.

Note: When connecting to the external database, the XML driver
uses JDBC connectivity. Make sure that the JDBC driver to access this
external database is also available in the ODI classpath.

Table B–3 Properties of the External Database Properties File

Property Mandatory Type Default Description

driver Yes string - JDBC driver name.

Important: The driver class file must be in the classpath
of the java application.

url Yes string - JDBC URL

user Yes string - Login used to connect the database

password Yes string - Encrypted password of the user.

Note: To encrypt the password, use the encode.bat
command. See the Oracle Fusion Middleware Installation
Guide for Oracle Data Integrator for more information.

schema Yes string - Database schema storing the relational schema and the
XML data. This property should not be used for
Microsoft SQLServer, and the catalog property should be
used instead.

catalog Yes string - For Microsoft SQL Server only. Database catalog storing
the XML data & information.

drop_on_
connect or doc

No boolean
(Y|N)

N Drop the tables from the database schema if they already
exist. If set to N the existing tables are preserved.

create_tables or
ct

No (Y | N |
AUTO)

AUTO Y: create systematically the tables in the schema.

N: never create the tables in the schema

AUTO: Create the tables if they do not exist.

create_indexes
or ci

No boolean
(Y|N)

Y Y: create indexes on tables' PK and FK

N: do not create the indexes. This value provides faster
INSERT but dramatically slows SELECT in the data. It
also saves storage space on your RDB.

truncate_
before_load or
tbl

No boolean
(Y|N)

Y Y: truncate all data when connecting

N: preserve existing data

Installation and Configuration

B-12 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

ids_in_db or
iidb

No boolean
(Y|N)

Y Y: preserve identifiers (counters) in the database for a
future append connection

N: do not preserve identifiers. Future append is not
possible.

drop_tables_
on_drop_
schema or
dtods

No boolean
(Y|N)

Y Y: a DROP SCHEMA does not only causes the reference
to the database schema to be erased from the driver, but
also causes all tables to be dropped.

N: DROP SCHEMA erases the reference to the database
schema from the driver, but the tables are kept in the
database schema.

use_prepared_
statements or
ups

No boolean
(Y|N)

Y Y: use the prepared statements with the database
connection to perform driver operation (load/unload
files).

N: do not use the prepare statement.

Processing is usually faster with prepare statement. The
database and driver must support prepared statements
in order to use this option.

use_batch_
update or ubu

No boolean
(Y|N)

Y Y: use batch update with the database connection.

N: do not use batch update.

Inserting data is usually faster with batch update. Should
be set to Yes only if the following conditions are met:

■ The database and driver support batch update

■ The database supports prepared statements

■ The use_prepared_statements parameter is set toYes

Note: The batch update options specified here are only
used to load the data in the schema. To use batch update
when manipulating data in the schema, you must specify
batch update options in your Java application.

batch_update_
size or bus

No integer 30 Batch update size. Records will be written in the
database schema by batches of this size, if the use_batch_
update property is set to Y.

commit_
periodically or
cp

No boolean
(Y|N)

Y A COMMIT will be sent regularly when loading data
from the XML file into the database schema. This regular
COMMIT avoids overloading of the database log when
loading large XML data files.

Should be set to Yes only if the following conditions are
met:

■ The database supports batch update

■ The database supports prepared statements

■ The use_prepared_statements parameter is set toYes

■ The use_batch_updates parameters is set to Yes

Note: The commit options specified here are only used to
load the data in the schema. To commit when performing
transactions in the schema, you must specify the commit
in your Java application.

num_inserts_
before_commit
or nibc

No integer 1000 Interval in records between each COMMIT, if the
commit_periodically property is set to Y.

Table B–3 (Cont.) Properties of the External Database Properties File

Property Mandatory Type Default Description

Installation and Configuration

Oracle Data Integrator Driver for XML Reference B-13

The following sample is an example of a property file for using an Oracle Database as
the external storage:

driver=oracle.jdbc.driver.OracleDriver
url=jdbc:oracle:thin:@HOST:PORT:SID
user=USER_NAME
password=ENCODED_PASSWORD
schema=USER_NAME
drop_on_connect=Y
create_tables=AUTO
create_indexes=Y
truncate_before_load=Y
ids_in_db=Y
drop_tables_on_drop_schema=Y
use_prepared_statements=Y
use_batch_update=Y
batch_update_size=30
commit_periodically=Y
num_inserts_before_commit=1000
reserve_chars_for_column=3
reserve_chars_for_table=3

The following sample is an example of a property file for using a Microsoft SQL Server
database as the external storage:

driver=com.microsoft.jdbc.sqlserver.SQLServerDriver
url=jdbc:microsoft:sqlserver://SERVER_NAME:PORT;SelectMethod=cursor
user=USER_NAME
password=ENCODED_PASSWORD
schema=OWNNER_NAME
drop_on_connect=Y
create_tables=AUTO

reserve_chars_
for_column or
rcfc

No integer 3 Long XML names are truncated to fit the maximum
allowed size on the RDBMS, according to the maximum
allowed size for column names returned by the JDBC
driver.

However, there are some situations when you will want
to reserve characters to make the driver-generated names
shorter. The number of reserved character is defined in
the reserve_chars_for_column value.

For example, on a database with a maximum of 30
characters and with this property set to 3 (which is the
default), all column names will not be larger than 27
characters.

reserve_chars_
for_table or rcft

No integer 3 Same as reserve_chars_for_column (rcfc) property but
applies to names of the table created in the RDBMS
schema.

varchar_length
or vl

No integer 255 Size of all the columns of the relational structure that will
be used to contain string data.

numeric_length
or nl

No integer 30 Size of all the columns of the relational structure that will
be used to contain numeric data.

unicode No boolean
(true|false)

For MS SQL Server:

If unicode = true, nvarchar is used.

If unicode = false or not set, varchar is used.

Table B–3 (Cont.) Properties of the External Database Properties File

Property Mandatory Type Default Description

Detailed Driver Commands

B-14 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

create_indexes=Y
truncate_before_load=Y
ids_in_db=Y
drop_tables_on_drop_schema=Y
use_prepared_statements=Y
use_batch_update=Y
batch_update_size=30
commit_periodically=Y
num_inserts_before_commit=1000
reserve_chars_for_column=3
reserve_chars_for_table=3

B.4 Detailed Driver Commands
The following statements are specific to the XML driver, and allow to manage XML
files and schemas. They can be launched as standard SQL statements on the JDBC
connection to the XML driver.

To manipulate the data stored in the schemas, you may use standard SQL syntax. This
syntax is either the built-in engine's SQL Syntax, or the SQL Syntax of the External
Database engine you use.

Conventions
The following conventions are used within this document:

■ [A] means A is optional

■ [A | B] means A or B but the parameter is optional.

■ { B | C } means B or C must be used.

■ [A] [B] means a set of arguments that are not ordered.

■ (and) are the characters '(' and ')'.

■ keywords are in UPPERCASE

This section details the following driver specific commands:

■ CREATE FILE

■ CREATE XMLFILE

■ CREATE FOREIGNKEYS

■ CREATE SCHEMA

■ DROP FOREIGNKEYS

■ DROP SCHEMA

■ LOAD FILE

■ SET SCHEMA

■ SYNCHRONIZE

■ UNLOCK FILE

■ TRUNCATE SCHEMA

■ VALIDATE

■ COMMIT

■ CREATE TABLE

Detailed Driver Commands

Oracle Data Integrator Driver for XML Reference B-15

■ DELETE

■ DISCONNECT

■ DROP TABLE

■ INSERT INTO

■ ROLLBACK

■ SELECT

■ SET AUTOCOMMIT

■ UPDATE

B.4.1 CREATE FILE
Generate an XML file called <file_name> from the default schema data, or from a
specific schema.

If the EMPTY option is specified, an empty file with the XML structure specified in the
DTD or XSD is generated.

CREATE [EMPTY] FILE <file_name> [FROM SCHEMA <schema_name>]
 [JAVA_ENCODING <java_encoding> XML_ENCODING <xml_encoding>]
 [NO_CLOSING_TAGS] [NO_DEFAULT_NS]

Parameters

FROM SCHEMA
Specify the schema in which data will be written in the XML file.

JAVA_ENCODING
Encoding of the generated File.

XML_ENCODING
Encoding generated in the file's xml tag.

Example of generated tag: <?xml version="1.0" encoding="ISO-8859-1"?>

Note that Java and XML encoding should always be specified together.

NO_CLOSING_TAG
If this parameter is specified, the driver generates the empty tags with closing tag. By
default, the driver generates an empty element as <element></element>. with the
no_closing_tags parameter, it generates <element/>.

NO_DEFAULT_NS
If this parameter is specified, the driver generates the target file without a default
namespace entry.

Remarks
■ If the file name contains spaces, enclose it in double quotes

■ The encoding values should be enclosed in double quotes as they may contain
special characters.

Detailed Driver Commands

B-16 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

B.4.2 CREATE XMLFILE
Generate an XML file called <file_name> from the default schema data, or from a
specific schema.

CREATE XMLFILE <file_name> [FROM SCHEMA <schema_name>]
 [JAVA_ENCODING <java_encoding> XML_ENCODING <xml_encoding>]
 [NO_CLOSING_TAGS][NO_DEFAULT_NS]

Parameters

FROM SCHEMA
Specify the schema in which data will be written in the XML file.

JAVA_ENCODING
Encoding of the generated File.

XML_ENCODING
Encoding generated in the file's xml tag. Example of generated tag: <?xml
version="1.0" encoding="ISO-8859-1"?>.

Note that Java and XML encoding should always be specified together.

NO_CLOSING_TAG
If this parameter is specified, the driver generates the empty tags with closing tag. By
default, the driver generates an empty element as <element></element>. with the
no_closing_tags parameter, it generates <element/>.

NO_DEFAULT_NS
If this parameter is specified, the driver generates the target file without a default
namespace entry.

Remarks
■ If the file name contains spaces, enclose it in double quotes

■ The encoding values should be enclosed in double quotes as they may contain
special characters.

B.4.3 CREATE FOREIGNKEYS
Create physically all the foreign keys joining the tables from the relational schema in
the database. This command is helpful to enforce integrity constraints on the schema.

CREATE FOREIGNKEYS

Remarks
After using CREATE FOREIGNKEYS, it is not possible any longer to perform a LOAD
FILE.

Note: When requested, the driver always returns "virtual" foreign
keys, corresponding to the relational structure mapping. It does not
return the real foreign keys enforced at database level.

Detailed Driver Commands

Oracle Data Integrator Driver for XML Reference B-17

B.4.4 CREATE SCHEMA
Create in <schema_name> an empty schema or a schema with tables mapping the
structure of the description file specified as <dtd/xsd_name>.

CREATE SCHEMA <schema_name> [WITH DTD <dtd/xsd_name>] [REPLACE]
 [ROOTELT <root element>] [READONLY]
 [JAVA_ENCODING <java_encoding> XML_ENCODING <xml_encoding>]

Parameters

WITH DTD
Specify the description file (DTD or XSD) which structure will be created in the
schema.

REPLACE
Specify if an existing schema structure must be replaced with the new one.

ROOTELT
Element in the description file considered as the root of the XML file. This element
name is case sensitive.

READONLY
The schema loaded cannot have data inserted, deleted or updated.

JAVA_ENCODING
Encoding of the target XML file(s) generated from schema.

Note: Java and XML encoding should always be specified together.

XML_ENCODING
Encoding generated in the target files' XML tag. Example of generated tag: <?xml
version="1.0" encoding="ISO-8859-1"?>.

Remarks
■ The XML file data is not loaded. This command is similar to LOAD FILE but does

not load the XML file data.

■ The schema is created in READONLY mode since no XML file is associated with
it.

■ The connection schema does not automatically switch to the newly created
schema.

■ If the file name contains spaces, enclose the name id double quotes.

■ The encoding values should be enclosed in double quotes as they may contain
special characters.

B.4.5 DROP FOREIGNKEYS
Drop all the foreign keys on the tables of the relational schema in the database. This
command is helpful to drop all integrity constraints on the schema.

DROP FOREIGNKEYS

Detailed Driver Commands

B-18 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

B.4.6 DROP SCHEMA
Drop an existing schema. If <schema_name> is not specified, the current schema is
dropped. It is not possible to drop a schema if there are pending connections to this
schema. Trying to drop a schema with existing connections causes an exception.

DROP SCHEMA [<schema_name>]

B.4.7 LOAD FILE
Load the <file_name> XML file into the current relational schema.

LOAD FILE <file_name> [WITH DTD <dtd/xsd_name> | INSERT_ONLY] [ON SCHEMA <schema_
name>] [REPLACE] [READONLY] [ROOTELT <root element>] [AUTO_UNLOCK] [DB_PROPS
<external database properties>]

Parameters

WITH DTD
Specify the description file (DTD or XSD) which structure will be created in the
schema.

INSERT_ONLY
Adds the data from the XML file in the schema if it already exists. The new XML file
should have valid description file for the existing schema.

ON SCHEMA
Force the file to be loaded in <schema_name>. Note that the current schema is not set
after the command automatically to <schema_name>.

REPLACE
Specify if an existing schema structure with the same name must be replaced with the
one that is being loaded.

READONLY
The schema loaded cannot have data inserted, deleted or updated.

ROOTELT
Element in the description file considered as the root of the XML file. This element
name is case sensitive.

AUTO_UNLOCK
If the XML file is already locked by another driver instance, an exception occurs unless
the AUTO_UNLOCK is specified. This parameter unlocks automatically the file if it is
locked.

DB_PROPS
Loads the file in the external database identified by the properties file called <external
database properties>.properties.

Remarks
■ If the file name contains spaces, enclose the name in double quotes.

■ When no schema is specified, the driver automatically generates a schema name
from the file name.

■ The connection schema does not automatically switch to the loaded schema.

Detailed Driver Commands

Oracle Data Integrator Driver for XML Reference B-19

■ If the XML file is already open in another schema, an exception occurs.

B.4.8 SET SCHEMA
Set the current schema to <schema_name>.

SET SCHEMA <schema_name>

Remarks
If no <schema_name> is specified, the schema is set to the default schema.

B.4.9 SYNCHRONIZE
Synchronize data in the schema with the file data.

SYNCHRONIZE [ALL | SCHEMA <schema_name>] [FROM FILE/FROM DATABASE]
 [IGNORE CONFLICTS]

Parameters

ALL
Synchronizes all schemas

SCHEMA
Synchronizes only <schema_name>

FROM FILE
Forces the data to be loaded from the file to the schema. Erases all changes in the
schema.

FROM DATABASE
Forces the data to be loaded from the schema to the file. Erases all changes in the file.

IGNORE CONFLICTS
If FROM FILE/DATABASE are not specified, the driver automatically determines
where data have been modified (in the FILE or DATABASE) and updates the
unmodified data. If both the FILE and the DATABASE have been modified, the driver
issues a Conflict Error. if the IGNORE CONFLICTS parameter is used, no error is
issued, and if performing a SYNCHRONIZE ALL, the following schemas will be
synchronized.

B.4.10 UNLOCK FILE
Unlocks <file_name> if it is locked by another instance of the driver.

UNLOCK FILE <file_name>

Note: A schema is marked updated only when a data modification
(update, delete, insert, drop) is executed in a connection to that
schema. It is not marked as updated, when the order is launched from
a connection to another schema.

SQL Syntax

B-20 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

B.4.11 TRUNCATE SCHEMA
Clears all data from the current schema, or from <schema_name>.

TRUNCATE SCHEMA [<schema_name>]

B.4.12 VALIDATE
Validates an XML file <file_name> content against the XML Schema (XSD) referenced
in the XML file. This command returns an exception if the file is not valid.

VALIDATE [FILE <file_name>] [ERROR_ON_WARNING|IGNORE_ON_WARNING]
 [ERROR_ON_ERROR|IGNORE_ON_ERROR]
 [ERROR_ON_FATAL_ERROR|IGNORE_ON_FATAL_ERROR] [VERBOSE]

Parameters

FILE <file_name>
Name of the XML file to validate.

ERROR_ON_WARNING | IGNORE_ON_WARNING
Ignore or generate errors on XSD validation warnings, such as values out of range. The
default value is IGNORE_ON_WARNING.

ERROR_ON_ERROR | IGNORE_ON_ERROR
Ignore or generate errors on XSD validation errors, such as non conform attribute or
element. The default value is ERROR_ON_ERROR.

ERROR_ON_FATAL_ERROR | IGNORE_ON_FATAL_ERROR
Ignore or generate errors on XSD validation fatal errors, such as malformed XML. The
default value is ERROR_ON_FATAL_ERROR.

VERBOSE
Displays on the Java console the detailed errors and number of the line causing the
error. Nothing is displayed by default on the console.

B.5 SQL Syntax
The following statements are available when using the built-in engine to store the
XML schema. They enable the management of the data and data structure in the
schema through Standard SQL Syntax.

This section contains the following topics:

■ SQL Statements

■ SQL FUNCTIONS

B.5.1 SQL Statements
Any number of commands may be combined. You can optionally use the semicolon
character (;) to separate each command.

This section details the following commands:

Note: If you are using an external database, you may use the
database engine querying syntax instead of this one.

SQL Syntax

Oracle Data Integrator Driver for XML Reference B-21

■ COMMIT

■ CREATE TABLE

■ DELETE

■ DISCONNECT

■ DROP TABLE

■ INSERT INTO

■ ROLLBACK

■ SELECT

■ SET AUTOCOMMIT

■ UPDATE

■ Expressions, Condition and Values

B.5.1.1 COMMIT
Ends a transaction on the schema and makes the changes permanent.

COMMIT [WORK]

B.5.1.2 CREATE TABLE
Create a tables and its constraints in the relational schema.

CREATE TABLE <table_name>
 (<columnDefinition> [, ...] [, <constraintDefinition>...])

<columnDefinition> ::=
 <column_name> <datatype> [(anything)] [[NOT] NULL] [IDENTITY] [PRIMARY KEY]

<constraintDefinition> ::=
[CONSTRAINT <constraint_name>]
 UNIQUE (<column_name> [,<column>...]) |
 PRIMARY KEY (<column_name> [,<column_name>...]) |
 FOREIGN KEY (<column_name> [,<column_name>...])
 REFERENCES <referenced_table> (<column_name> [,<column_name>...])

Remarks
■ IDENTITY columns are automatically incremented integer columns. The last

inserted value into an identity column for a connection is available using the
IDENTITY() function.

■ Valid datatypes are: BIT, TINYINT, BIGINT, LONGVARBINARY, VARBINARY,
BINARY, LONGVARCHAR, CHAR, NUMERIC, DECIMAL, INTEGER,
SMALLINT, FLOAT, REAL, DOUBLE, VARCHAR, DATE, TIME, TIMESTAMP,
OBJECT

B.5.1.3 DELETE
Remove rows in a table in the relational schema. This function uses a standard SQL
Syntax.

DELETE FROM <table_name> [WHERE <expression>]

SQL Syntax

B-22 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

B.5.1.4 DISCONNECT
Closes this connection.

DISCONNECT

Remarks
■ It is not required to call this command when using the JDBC interface: it is called

automatically when the connection is closed.

■ After disconnecting, it is not possible to execute other queries with this connection.

B.5.1.5 DROP TABLE
Remove a table, the data and indexes from the relational schema.

DROP TABLE <table_name>

B.5.1.6 INSERT INTO
Insert one or more new rows of data into a table.

INSERT INTO <table_name> [(<column_name> [,...])]
 { VALUES (<expression> [,...]) | <SELECT Statement> }

B.5.1.7 ROLLBACK
Undo the changes made since the last COMMIT or ROLLBACK.

ROLLBACK

B.5.1.8 SELECT
Retrieves information from one or more tables in the schema.

SELECT [DISTINCT] { <select_expression> | <table_name>.* | * } [, ...]
[INTO <new_table>]
 FROM <table_list>
[WHERE <expression>]
[GROUP BY <expression> [, ...]]
[ORDER BY <order_expression> [, ...]]
[{ UNION [ALL] | {MINUS|EXCEPT} | INTERSECT } <select_statement>]

<table_list> ::=
 <table_name> [{ INNER | LEFT [OUTER] } JOIN <table_name>
 ON <expression>] [, ...]

<select_expression> ::=
 { <expression> | COUNT(*) | {COUNT | MIN | MAX | SUM | AVG}
 (<expression>) <column_alias>}

<order_expression> ::=
 { <column_number> | <column_alias> | <select_expression> } [ASC | DESC]

B.5.1.9 SET AUTOCOMMIT
Switches on or off the connection's auto-commit mode. If switched on, then all
statements will be committed as individual transactions. Otherwise, the statements are
grouped into transactions that are terminated by either COMMIT or ROLLBACK. By
default, new connections are in auto-commit mode.

SQL Syntax

Oracle Data Integrator Driver for XML Reference B-23

SET AUTOCOMMIT { TRUE | FALSE }

B.5.1.10 UPDATE
Modifies data of a table in the database.

UPDATE table SET column = <expression> [, ...] [WHERE <expression>]

B.5.1.11 Expressions, Condition and Values
<expression> ::=
 [NOT] <condition> [{ OR | AND } <condition>]

<condition> ::=
 { <value> [|| <value>]
 | <value> { = | < | <= | > | >= | <> | != | IS [NOT] } <value>
 | EXISTS(<select_statement>)
 | <value> BETWEEN <value> AND <value>
 | <value> [NOT] IN ({<value> [, ...] | selectStatement })
 | <value> [NOT] LIKE <value> [ESCAPE] value }

<value> ::=
 [+ | -] { term [{ + | - | * | / } term]
 | (condition)
 | function ([parameter] [,...])
 | selectStatement_giving_one_value

<term> ::=
 { 'string' | number | floatingpoint | [table.]column | TRUE | FALSE | NULL }

<string> ::=
■ Starts and ends with a single '. In a string started with ' use '' to create a '.

■ LIKE uses '%' to match any (including 0) number of characters, and '_' to match
exactly one character. To search for '%' itself, '\%' must be used, for '_' use '_'; or
any other escaping character may be set using the ESCAPE clause.

<name> ::=
■ A name starts with a letter and is followed by any number of letters or digits.

Lowercase is changed to uppercase except for strings and quoted identifiers.
Names are not case-sensitive.

■ Quoted identifiers can be used as names (for example for tables or columns).
Quoted identifiers start and end with ". In a quoted identifier use "" to create a ".
With quoted identifiers it is possible to create mixed case table and column names.
Example: CREATE TABLE "Address" ("Nr" INTEGER, "Name" VARCHAR);
SELECT * FROM "Address". Quoted identifiers are not strings.

<values> ::=
■ A 'date' value starts and ends with ', the format is yyyy-mm-dd (see java.sql.Date).

■ A 'time' value starts and ends with ', the format is hh:mm:ss (see java.sql.Time).

■ Binary data starts and ends with ', the format is hexadecimal. '0004ff' for example
is 3 bytes, first 0, second 4 and last 255 (0xff).

B.5.2 SQL FUNCTIONS
Table B–4 lists the numerical functions.

SQL Syntax

B-24 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table B–5 lists the string functions.

Table B–4 Numerical Functions

Function Description

ABS(d) returns the absolute value of a double value

ACOS(d) returns the arc cosine of an angle

ASIN(d) returns the arc sine of an angle

ATAN(d) returns the arc tangent of an angle

ATAN2(a,b) returns the tangent of a/b

CEILING(d) returns the smallest integer that is not less than d

COS(d) returns the cosine of an angle

COT(d) returns the cotangent of an angle

DEGREES(d) converts radians to degrees

EXP(d) returns e (2.718...) raised to the power of d

FLOOR(d) returns the largest integer that is not greater than d

LOG(d) returns the natural logarithm (base e)

LOG10(d) returns the logarithm (base 10)

MOD(a,b) returns a modulo b

PI() returns pi (3.1415...)

POWER(a,b) returns a raised to the power of b

RADIANS(d) converts degrees to radians

RAND() returns a random number x bigger or equal to 0.0 and
smaller than 1.0

ROUND(a,b) rounds a to b digits after the decimal point

SIGN(d) returns -1 if d is smaller than 0, 0 if d==0 and 1 if d is
bigger than 0

SIN(d) returns the sine of an angle

SQRT(d) returns the square root

TAN(d) returns the trigonometric tangent of an angle

TRUNCATE(a,b) truncates a to b digits after the decimal point

BITAND(a,b) return a & b

BITOR(a,b) returns a | b

Table B–5 String Functions

Function Description

ASCII(s) returns the ASCII code of the leftmost character of s

CHAR(c) returns a character that has the ASCII code c

CONCAT(str1,str2) returns str1 + str2

DIFFERENCE(s1,s2) returns the difference between the sound of s1 and s2

INSERT(s,start,len,s2) returns a string where len number of characters beginning at
start has been replaced by s2

SQL Syntax

Oracle Data Integrator Driver for XML Reference B-25

Table B–6 lists the date/time functions.

Note that a date value starts and ends with a single quote ('), the format is
yyyy-mm-dd (see java.sql.Date). A time value starts and ends with a single quote ('),
the format is hh:mm:ss (see java.sql.Time).

LCASE(s) converts s to lower case

LEFT(s,count) returns the leftmost count of characters of s

LENGTH(s) returns the number of characters in s

LOCATE(search,s,[start]) returns the first index (1=left, 0=not found) where search is
found in s, starting at start

LTRIM(s) removes all leading blanks in s

REPEAT(s,count) returns s repeated count times

REPLACE(s,replace,s2) replaces all occurrences of replace in s with s2

RIGHT(s,count) returns the rightmost count of characters of s

RTRIM(s) removes all trailing blanks

SOUNDEX(s) returns a four character code representing the sound of s

SPACE(count) returns a string consisting of count spaces

SUBSTRING(s,start[,len]) returns the substring starting at start (1=left) with length len

UCASE(s) converts s to upper case

LOWER(s) converts s to lower case

UPPER(s) converts s to upper case

Table B–6 Date/Time Functions

Function Description

CURDATE() returns the current date

CURTIME() returns the current time

DAYNAME(date) returns the name of the day

DAYOFMONTH(date) returns the day of the month (1-31)

DAYOFWEEK(date) returns the day of the week (1 means Sunday)

DAYOFYEAR(date) returns the day of the year (1-366)

HOUR(time) return the hour (0-23)

MINUTE(time) returns the minute (0-59)

MONTH(date) returns the month (1-12)

MONTHNAME(date) returns the name of the month

NOW() returns the current date and time as a timestamp

QUARTER(date) returns the quarter (1-4)

SECOND(time) returns the second (0-59)

WEEK(date) returns the week of this year (1-53)

YEAR(date) returns the year

Table B–5 (Cont.) String Functions

Function Description

JDBC API Implemented Features

B-26 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

Table B–7 lists the system functions.

B.6 JDBC API Implemented Features
Table B–8 lists the JDBC API features that are implemented in the Oracle Data
Integrator Driver for XML:

Table B–9 lists JDBC Java classes.

Table B–7 System Functions

Function Description

IFNULL(exp,value) if exp is null, value is returned else exp

CASEWHEN(exp,v2,v2) if exp is true, v1 is returned, else v2

CONVERT(term,type) converts exp to another data type

CAST(term AS type) converts exp to another data type

Table B–8 JDBC API Features

Feature Groups JDBC Version Support

Batch Update 2.0 Core Yes

Blob/Clob 2.0 Core Yes

JNDI DataSources 2.0 Optional Yes

Failover support - Yes

Transaction SavePoints 3.0 Yes

Unicode support - No

Distributed Transaction 2.0 Optional No

Connection Pooling 2.0 Optional No

Cluster support - No

Table B–9 JDBC Java Classes

JDBC Class JDBC Version Support

Array 2.0 Core No

Blob 2.0 Core Yes

CallableStatement 1.0 Yes

Clob 2.0 Core Yes

Connection 1.0 Yes

ConnectionPoolDataSource 2.0 Optional No

DatabaseMetaData 1.0 Yes

DataSource 2.0 Optional No

Driver 1.0 Yes

Ref 2.0 Core No

ResultSet 1.0 Yes

ResultSetMetaData 1.0 Yes

XML Schema Supported Features

Oracle Data Integrator Driver for XML Reference B-27

B.7 XML Schema Supported Features
The driver supports part of the XML Schema (XSD) specification. Supported elements
are listed in this section.

For more information on the XML Schema specification, see the W3C specification at
http://www.w3.org/TR/xmlschema-1/.

This section contains the following topics:

■ Datatypes

■ Supported Elements

■ Unsupported Features

B.7.1 Datatypes
The following datatypes are supported:

■ These datatypes are converted to String columns: string, normalizedString, token,
nmtoken, nmtokens, anyUri, id, idref, date, datetime, time, hexBinary

■ These datatypes are converted to Integer columns: int, positiveInteger,
negativeInteger, nonNegativeInteger, onPositiveInteger, long, unsignedLong,
unsignedInt, short, unsignedShort, byte, unsignedByte, boolean (Boolean are
converted to a numeric column with 0 or 1, but they can take "true" or "false"
values from the input files)

■ These datatypes are converted to Decimal (with 2 decimal places) columns:
decimal, float, double

B.7.2 Supported Elements
This section lists all schema elements. Supported syntax elements are shown in bold.
Unsupported syntax elements are shown in regular font. They are ignored by the
driver.

This section details the following schema elements:

■ All

■ Attribute

■ AttributeGroup

■ Choice

■ ComplexContent

■ ComplexType

RowSet 2.0 Optional No

Statement 1.0 Yes

Struct 2.0 Core No

PreparedStatement 1.0 Yes

XAConnection 2.0 Optional No

XADataSource 2.0 Optional No

Table B–9 (Cont.) JDBC Java Classes

JDBC Class JDBC Version Support

XML Schema Supported Features

B-28 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

■ Element

■ Extension

■ Group

■ Import

■ Include

■ List

■ Restriction

■ Schema

■ Sequence

■ SimpleContent

■ SimpleType

B.7.2.1 All
This element specifies that child elements can appear in any order and that each child
element can occur zero or one time.

Note that child elements mandatory properties (minOccurs=1) are not managed by the
driver. This should be handled by checks on the data, and by validating the XML
contents against the XSD.

<all
 id=ID
 maxOccurs=1
 minOccurs=0|1
 any attributes
>
(annotation?,element*)
</all>

B.7.2.2 Attribute
This element defines an attribute.

<attribute
 default=string
 id=ID
 name=NCName
 type=QName
 use=optional|prohibited|required
 ref=QName
 fixed=string
 form=qualified|unqualified
 any attributes
>
(annotation?,(simpleType?))
</attribute>

Note: XML files generated or updated using the XML driver should
ideally be validated against their corresponding XSD files using the
VALIDATE command after generation.

XML Schema Supported Features

Oracle Data Integrator Driver for XML Reference B-29

Note that the use attribute of this element defines the column mapped by the driver
for the attribute as mandatory or not.

B.7.2.3 AttributeGroup
This element defines a set of attributes.

<attributeGroup
 id=ID
 name=NCName
 ref=QName
 any attributes
>
(annotation?),((attribute|attributeGroup)*,anyAttribute?))
</attributeGroup>

B.7.2.4 Choice
This element allows one and only of the elements to be present within the containing
element.

<choice
 id=ID
 maxOccurs=nonNegativeInteger|unbounded
 minOccurs=nonNegativeInteger
 any attributes
>
(annotation?,(element|group|choice|sequence|any)*)
</choice>
Note that the child element’s unique nature are not managed by the driver. This
should be handled by checks on the data, and by validating the XML contents against
the XSD.

B.7.2.5 ComplexContent
This element defines extensions or restrictions on a complex type.

<complexContent
 id=ID
 mixed=true|false
 any attributes
>
(annotation?,(restriction|extension))
</complexContent>

B.7.2.6 ComplexType
This element defines a complex type.

<complexType
 name=NCName
 id=ID
 abstract=true|false
 mixed=true|false
 block=(#all|list of (extension|restriction))
 final=(#all|list of (extension|restriction))
 any attributes
>
(annotation?,(simpleContent|complexContent|((group|all|choice|sequence)?,((attribu
te|attributeGroup)*,anyAttribute?))))
</complexType>

XML Schema Supported Features

B-30 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

B.7.2.7 Element
This element defines an element of the XML file.

<element
 name=NCName
 maxOccurs=nonNegativeInteger|unbounded
 minOccurs=nonNegativeInteger
 type=QName
 id=ID
 ref=QName
 substitutionGroup=QName
 default=string
 fixed=string
 form=qualified|unqualified
 nillable=true|false
 abstract=true|false
 block=(#all|list of (extension|restriction))
 final=(#all|list of (extension|restriction))
 any attributes
>
annotation?,((simpleType|complexType)?,(unique|key|keyref)*))
</element>

B.7.2.8 Extension
This element extends an existing simpleType or complexType element

<extension
 id=ID
 base=QName
 any attributes
>
(annotation?,((group|all|choice|sequence)?,((attribute|attributeGroup)*,anyAttribu
te?)))
</extension>

Note: The maxOccurs and minOccurs attributes of the element are
used in the XML-to-SQL mapping. If a child element is of a simple
type and is monovalued (one occurrence only), then this element is
mapped to a simple column in the table corresponding to its parent
element. Otherwise, a table linked to the parent element's table is
created.

Note that if no reference to either minOccurs or maxOccurs is
mentioned in an element then the element is consider as monovalued
and is transformed to a column. This behavior can be changed using
the useImplicitMaxValue URL property. When this property is set
to yes, an elements for which maxOccurs is not specified in the XSD is
considered as multivalued (maxOccurs ="unbounded").

Note: Using different sub-elements with the same name but with
different types is not supported by XML driver. An XSD with such a
structure will not be processed correctly.

XML Schema Supported Features

Oracle Data Integrator Driver for XML Reference B-31

B.7.2.9 Group
The group element is used to define a group of elements to be used in complex type
definitions.

<group
 id=ID
 name=NCName
 ref=QName
 maxOccurs=nonNegativeInteger|unbounded
 minOccurs=nonNegativeInteger
 any attributes
>
(annotation?,(all|choice|sequence)?)
</group>

B.7.2.10 Import
This element is used to add multiple schemas with different target namespace to a
document.

<import
 id=ID
 namespace=anyURI
 schemaLocation=anyURI
 any attributes
>
(annotation?)
</import>

B.7.2.11 Include
This element is used to add multiple schemas with the same target namespace to a
document.

<include
 id=ID
 schemaLocation=anyURI
 any attributes
>
(annotation?)
</include>

B.7.2.12 List
This element defines a simple type element as a list of values of a specified data type.

<list
 id=ID
 itemType=QName
 any attributes
>
(annotation?,(simpleType?))
</list>

B.7.2.13 Restriction
This element defines restrictions on a simpleType, simpleContent, or a
complexContent.

<restriction
 id=ID
 base=QName

XML Schema Supported Features

B-32 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

 any attributes
>
Content for simpleType:
(annotation?,(simpleType?,(minExclusive|minInclusive|maxExclusive|maxInclusive|
totalDigits|fractionDigits|length|minLength|maxLength|enumeration|whiteSpace|
pattern)*))
Content for simpleContent:
(annotation?,(simpleType?,(minExclusive|minInclusive|maxExclusive|maxInclusive|
totalDigits|fractionDigits|length|minLength|maxLength|enumeration|whiteSpace|
pattern)*)?, ((attribute|attributeGroup)*,anyAttribute?))
Content for complexContent:
(annotation?,(group|all|choice|sequence)?,
((attribute|attributeGroup)*,anyAttribute?))
</restriction>

B.7.2.14 Schema
This element defines the root element of a schema.

<schema
 id=ID
 attributeFormDefault=qualified|unqualified
 elementFormDefault=qualified|unqualified
 blockDefault=(#all|list of (extension|restriction|substitution))
 finalDefault=(#all|list of (extension|restriction|list|union))
 targetNamespace=anyURI
 version=token
 xmlns=anyURI
 any attributes
>
((include|import|redefine|annotation)*,(((simpleType|complexType|group|
attributeGroup)|element|attribute|notation),annotation*)*)
</schema>

B.7.2.15 Sequence
This element specifies that the child elements must appear in a sequence. Each child
element can occur 0 or more times.

<sequence
 id=ID
 maxOccurs=nonNegativeInteger|unbounded
 minOccurs=nonNegativeInteger
 any attributes
>
(annotation?,(element|group|choice|sequence|any)*)
</sequence>

Note the following:

■ The Sequence order is not managed by the driver. The sequence order should be
handled by loading the xxx_ORDER column generated by the driver.

■ The maxOccurs and minOccurs attributes are not managed by the driver. This
should be handled by checks on the data, and by validating the XML contents
against the XSD.

B.7.2.16 SimpleContent
This element contains extensions or restrictions on a text-only complex type or on a
simple type as content.

XML Schema Supported Features

Oracle Data Integrator Driver for XML Reference B-33

<simpleContent
 id=ID
 any attributes
>
(annotation?,(restriction|extension))
</simpleContent>

B.7.2.17 SimpleType
This element defines a simple type element.

<simpleType
 name=NCName
 id=ID
 any attributes
>
(annotation?,(restriction|list|union))
</simpleType>

B.7.3 Unsupported Features
The following elements and features are not supported or implemented by the XML
driver.

B.7.3.1 Unsupported Elements
The following schema elements are not supported by the XML driver.

■ Annotation: The annotation is an element for defining comments and inline
documentation. This element and all its child elements (appInfo, documentation)
are ignored.

■ Any/anyAttribute: The any and anyAttribute elements enables you to extend the
XML document with any element or attribute, even if it is not specified by the
schema. These elements are not supported.

■ Key/keyRef/Unique: These elements allow the definition of constraints in the
schema. These elements and their child elements (selector, field) are ignored.

■ Union: The union element defines a list of values from specified simple data types.
This element is not supported.

■ Redefine: The redefine element redefines simple and complex types, groups, and
attribute groups from an external schema. This element is not supported.

B.7.3.2 Unsupported Features
Multipass parsing is not implemented in the ODI XML driver.

WARNING: Elements and attributes allowed in an XML file due to
an Any or AnyAttribute clause in the XSD may cause errors when
the file is loaded.

XML Schema Supported Features

B-34 Oracle® Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator

	Contents
	Preface
	1 Introduction
	1.1 Terminology
	1.2 Using This Guide

	Part I Databases, Files, and XML
	2 Oracle Database
	2.1 Introduction
	2.1.1 Concepts
	2.1.2 Knowledge Modules

	2.2 Installation and Configuration
	2.2.1 System Requirements and Certifications
	2.2.2 Technology Specific Requirements
	2.2.2.1 Using the SQL*Loader Utility
	2.2.2.2 Using External Tables
	2.2.2.3 Using Oracle Streams

	2.2.3 Connectivity Requirements

	2.3 Setting up the Topology
	2.3.1 Creating an Oracle Data Server
	2.3.1.1 Creation of the Data Server

	2.3.2 Creating an Oracle Physical Schema

	2.4 Setting Up an Integration Project
	2.5 Creating and Reverse-Engineering an Oracle Model
	2.5.1 Create an Oracle Model
	2.5.2 Reverse-engineer an Oracle Model

	2.6 Setting up Changed Data Capture
	2.7 Setting up Data Quality
	2.8 Designing an Interface
	2.8.1 Loading Data from and to Oracle
	2.8.1.1 Loading Data from Oracle
	2.8.1.2 Loading Data to Oracle

	2.8.2 Integrating Data in Oracle
	2.8.3 Designing an ETL-Style Interface

	2.9 Troubleshooting
	2.9.1 Troubleshooting Oracle Database Errors
	2.9.2 Common Problems and Solutions

	3 Files
	3.1 Introduction
	3.1.1 Concepts
	3.1.2 Knowledge Modules

	3.2 Installation and Configuration
	3.2.1 System Requirements and Certifications
	3.2.2 Technology Specific Requirements
	3.2.3 Connectivity Requirements

	3.3 Setting up the Topology
	3.3.1 Creating a File Data Server
	3.3.1.1 Creation of the Data Server

	3.3.2 Creating a File Physical Schema

	3.4 Setting Up an Integration Project
	3.5 Creating and Reverse-Engineering a File Model
	3.5.1 Create a File Model
	3.5.2 Reverse-engineer a File Model
	3.5.2.1 Delimited Files Reverse-Engineering
	3.5.2.2 Fixed Files Reverse-engineering using the Wizard
	3.5.2.3 COBOL Copybook reverse-engineering
	3.5.2.4 Customized Reverse-Engineering

	3.6 Designing an Interface
	3.6.1 Loading Data From Files
	3.6.2 Integrating Data in Files

	4 Generic SQL
	4.1 Introduction
	4.1.1 Concepts
	4.1.2 Knowledge Modules

	4.2 Installation and Configuration
	4.2.1 System Requirements and Certifications
	4.2.2 Technology-Specific Requirements
	4.2.3 Connectivity Requirements

	4.3 Setting up the Topology
	4.3.1 Creating a Data Server
	4.3.2 Creating a Physical Schema

	4.4 Setting up an Integration Project
	4.5 Creating and Reverse-Engineering a Model
	4.5.1 Create a Data Model
	4.5.2 Reverse-engineer a Data Model

	4.6 Setting up Changed Data Capture
	4.7 Setting up Data Quality
	4.8 Designing an Interface
	4.8.1 Loading Data From and to an ANSI SQL-92 Compliant Technology
	4.8.1.1 Loading Data from an ANSI SQL-92 Compliant Technology
	4.8.1.2 Loading Data to an ANSI SQL-92 Compliant Technology

	4.8.2 Integrating Data in an ANSI SQL-92 Compliant Technology
	4.8.3 Designing an ETL-Style Interface

	5 XML Files
	5.1 Introduction
	5.1.1 Concepts
	5.1.2 Knowledge Modules

	5.2 Installation and Configuration
	5.2.1 System Requirements
	5.2.2 Technologic Specific Requirements
	5.2.3 Connectivity Requirements

	5.3 Setting up the Topology
	5.3.1 Creating an XML Data Server
	5.3.1.1 Creation of the Data Server

	5.3.2 Creating a Physical Schema for XML

	5.4 Setting Up an Integration Project
	5.5 Creating and Reverse-Engineering a XML File
	5.5.1 Create an XML Model
	5.5.2 Reverse-Engineering an XML Model

	5.6 Designing an Interface
	5.6.1 Notes about XML Interfaces
	5.6.1.1 Targeting an XML Structure
	5.6.1.2 Synchronizing XML File and Schema
	5.6.1.3 Handling Large XML Files

	5.6.2 Loading Data from and to XML
	5.6.2.1 Loading Data from an XML Schema
	5.6.2.2 Loading Data to an XML Schema

	5.6.3 Integrating Data in XML

	5.7 Troubleshooting
	5.7.1 Detect the Errors Coming from XML
	5.7.2 Common Errors

	6 Microsoft SQL Server
	6.1 Introduction
	6.1.1 Concepts
	6.1.2 Knowledge Modules

	6.2 Installation and Configuration
	6.2.1 System Requirements and Certifications
	6.2.2 Technology Specific Requirements
	6.2.2.1 Using the BULK INSERT Command
	6.2.2.2 Using the BCP Command
	6.2.2.3 Using Linked Servers

	6.2.3 Connectivity Requirements

	6.3 Setting up the Topology
	6.3.1 Creating a Microsoft SQL Server Data Server
	6.3.1.1 Creation of the Data Server

	6.3.2 Creating a Microsoft SQL Server Physical Schema

	6.4 Setting Up an Integration Project
	6.5 Creating and Reverse-Engineering a Microsoft SQL Server Model
	6.5.1 Create a Microsoft SQL Server Model
	6.5.2 Reverse-engineer a Microsoft SQL Server Model

	6.6 Setting up Changed Data Capture
	6.7 Setting up Data Quality
	6.8 Designing an Interface
	6.8.1 Loading Data from and to Microsoft SQL Server
	6.8.1.1 Loading Data from Microsoft SQL Server
	6.8.1.2 Loading Data to Microsoft SQL Server

	6.8.2 Integrating Data in Microsoft SQL Server

	7 Microsoft Excel
	7.1 Introduction
	7.1.1 Concepts
	7.1.2 Knowledge Modules

	7.2 Installation and Configuration
	7.2.1 System Requirements and Certifications
	7.2.2 Technology Specific Requirements
	7.2.3 Connectivity Requirements

	7.3 Setting up the Topology
	7.3.1 Creating a Microsoft Excel Data Server
	7.3.2 Creating a Microsoft Excel Physical Schema

	7.4 Setting Up an Integration Project
	7.5 Creating and Reverse-Engineering a Microsoft Excel Model
	7.5.1 Create a Microsoft Excel Model
	7.5.2 Reverse-engineer a Microsoft Excel Model

	7.6 Designing an Interface
	7.6.1 Loading Data From and to Microsoft Excel
	7.6.1.1 Loading Data from Microsoft Excel
	7.6.1.2 Loading Data to Microsoft Excel

	7.6.2 Integrating Data in Microsoft Excel

	7.7 Troubleshooting
	7.7.1 Decoding Error Messages
	7.7.2 Common Problems and Solutions

	8 Microsoft Access
	8.1 Introduction
	8.2 Concepts
	8.3 Knowledge Modules
	8.4 Specific Requirements

	9 Netezza
	9.1 Introduction
	9.1.1 Concepts
	9.1.2 Knowledge Modules

	9.2 Installation and Configuration
	9.2.1 System Requirements and Certifications
	9.2.2 Technology Specific Requirements
	9.2.3 Connectivity Requirements

	9.3 Setting up the Topology
	9.3.1 Creating a Netezza Data Server
	9.3.1.1 Creation of the Data Server

	9.3.2 Creating a Netezza Physical Schema

	9.4 Setting Up an Integration Project
	9.5 Creating and Reverse-Engineering a Netezza Model
	9.5.1 Create a Netezza Model
	9.5.2 Reverse-engineer a Netezza Model

	9.6 Setting up Data Quality
	9.7 Designing an Interface
	9.7.1 Loading Data from and to Netezza
	9.7.1.1 Loading Data from Netezza
	9.7.1.2 Loading Data to Netezza

	9.7.2 Integrating Data in Netezza

	10 Teradata
	10.1 Introduction
	10.1.1 Concepts
	10.1.2 Knowledge Modules

	10.2 Installation and Configuration
	10.2.1 System Requirements and Certifications
	10.2.2 Technology Specific Requirements
	10.2.3 Connectivity Requirements

	10.3 Setting up the Topology
	10.3.1 Creating a Teradata Data Server
	10.3.1.1 Creation of the Data Server

	10.3.2 Creating a Teradata Physical Schema

	10.4 Setting Up an Integration Project
	10.5 Creating and Reverse-Engineering a Teradata Model
	10.5.1 Create a Teradata Model
	10.5.2 Reverse-engineer a Teradata Model

	10.6 Setting up Data Quality
	10.7 Designing an Interface
	10.7.1 Loading Data from and to Teradata
	10.7.1.1 Loading Data from Teradata
	10.7.1.2 Loading Data to Teradata

	10.7.2 Integrating Data in Teradata
	10.7.3 Designing an ETL-Style Interface

	10.8 KM Optimizations for Teradata
	10.8.1 Primary Indexes and Statistics
	10.8.2 Support for Teradata Utilities
	10.8.3 Support for Named Pipes
	10.8.4 Optimized Management of Temporary Tables

	11 Hypersonic SQL
	11.1 Introduction
	11.1.1 Concepts
	11.1.2 Knowledge Modules

	11.2 Installation and Configuration
	11.2.1 System Requirements and Certifications
	11.2.2 Technology Specific Requirements
	11.2.3 Connectivity Requirements

	11.3 Setting up the Topology
	11.3.1 Creating a Hypersonic SQL Data Server
	11.3.2 Creating a Hypersonic SQL Physical Schema

	11.4 Setting Up an Integration Project
	11.5 Creating and Reverse-Engineering a Hypersonic SQL Model
	11.5.1 Create a Hypersonic SQL Model
	11.5.2 Reverse-engineer a Hypersonic SQL Model

	11.6 Setting up Changed Data Capture
	11.7 Setting up Data Quality
	11.8 Designing an Interface

	12 IBM Informix
	12.1 Introduction
	12.2 Concepts
	12.3 Knowledge Modules
	12.4 Specific Requirements

	13 IBM DB2 for iSeries
	13.1 Introduction
	13.1.1 Concepts
	13.1.2 Knowledge Modules

	13.2 Installation and Configuration
	13.2.1 System Requirements and Certifications
	13.2.2 Technology Specific Requirements
	13.2.3 Connectivity Requirements

	13.3 Setting up the Topology
	13.3.1 Creating a DB2/400 Data Server
	13.3.1.1 Creation of the Data Server

	13.3.2 Creating a DB2/400 Physical Schema

	13.4 Setting Up an Integration Project
	13.5 Creating and Reverse-Engineering an IBM DB2/400 Model
	13.5.1 Create an IBM DB2/400 Model
	13.5.2 Reverse-engineer an IBM DB2/400 Model

	13.6 Setting up Changed Data Capture
	13.6.1 Setting up Trigger-Based CDC
	13.6.2 Setting up Log-Based CDC
	13.6.2.1 How does it work?
	13.6.2.2 CDCRTVJRN Program Details
	13.6.2.3 Installing the CDC Components on iSeries
	13.6.2.4 Using the CDC with the Native Journals
	13.6.2.5 Problems While Reading Journals

	13.7 Setting up Data Quality
	13.8 Designing an Interface
	13.8.1 Loading Data from and to IBM DB2 for iSeries
	13.8.1.1 Loading Data from IBM DB2 for iSeries
	13.8.1.2 Loading Data to IBM DB2 for iSeries

	13.8.2 Integrating Data in IBM DB2 for iSeries

	13.9 Specific Considerations with DB2 for iSeries
	13.9.1 Installing the Run-Time Agent on iSeries
	13.9.2 Alternative Connectivity Methods for iSeries
	13.9.2.1 Using Client Access
	13.9.2.2 Using the IBM JT/400 and Native Drivers

	13.10 Troubleshooting
	13.10.1 Troubleshooting Error messages
	13.10.2 Common Problems and Solutions
	13.10.2.1 Connection Errors

	14 IBM DB2 UDB
	14.1 Introduction
	14.2 Concepts
	14.3 Knowledge Modules
	14.4 Specific Requirements

	15 Sybase AS Enterprise
	15.1 Introduction
	15.2 Concepts
	15.3 Knowledge Modules
	15.4 Specific Requirements

	16 Sybase IQ
	16.1 Introduction
	16.2 Concepts
	16.3 Knowledge Modules
	16.4 Specific Requirements

	Part II Business Intelligence
	17 Oracle Business Intelligence Enterprise Edition
	17.1 Introduction
	17.1.1 Concepts
	17.1.2 Knowledge Modules

	17.2 Installation and Configuration
	17.2.1 System Requirements and Certifications
	17.2.2 Technology Specific Requirements
	17.2.3 Connectivity Requirements

	17.3 Setting up the Topology
	17.3.1 Creating an Oracle BI Data Server
	17.3.1.1 Creation of the Data Server

	17.3.2 Creating an Oracle BI Physical Schema

	17.4 Setting Up an Integration Project
	17.5 Creating and Reverse-Engineering an Oracle BI Model
	17.5.1 Create an Oracle BI Model
	17.5.2 Reverse-engineer an Oracle BI Model

	17.6 Setting up Data Quality
	17.7 Designing an Interface
	17.7.1 Loading Data from and to Oracle BI
	17.7.1.1 Loading Data from Oracle BI
	17.7.1.2 Loading Data to Oracle BI

	17.7.2 Integrating Data in Oracle BI

	18 Oracle Hyperion Essbase
	18.1 Introduction
	18.1.1 Integration Process
	18.1.2 Knowledge Modules

	18.2 Installation and Configuration
	18.2.1 System Requirements and Certifications
	18.2.2 Technology Specific Requirements
	18.2.3 Connectivity Requirements

	18.3 Setting up the Topology
	18.3.1 Creating an Hyperion Essbase Data Server
	18.3.2 Creating an Hyperion Essbase Physical Schema

	18.4 Creating and Reverse-Engineering an Essbase Model
	18.4.1 Create an Essbase Model
	18.4.2 Reverse-engineer an Essbase Model

	18.5 Designing an Interface
	18.5.1 Loading Metadata
	18.5.2 Loading Data
	18.5.3 Extracting Data
	18.5.3.1 Data Extraction Methods for Essbase
	18.5.3.2 Extracting Essbase Data
	18.5.3.3 Extracting Members from Metadata

	19 Oracle Hyperion Financial Management
	19.1 Introduction
	19.1.1 Integration Process
	19.1.2 Knowledge Modules

	19.2 Installation and Configuration
	19.2.1 System Requirements and Certifications
	19.2.2 Technology Specific Requirements
	19.2.3 Connectivity Requirements

	19.3 Setting up the Topology
	19.3.1 Creating an Hyperion Financial Management Data Server
	19.3.2 Creating an Hyperion Financial Management Physical Schema

	19.4 Creating and Reverse-Engineering a Financial Management Model
	19.4.1 Create an Financial Management Model
	19.4.2 Reverse-Engineer an Financial Management Model

	19.5 Designing an Interface
	19.5.1 Loading Metadata
	19.5.2 Loading Data
	19.5.3 Extracting Data
	19.5.3.1 Extracting Financial Management Data
	19.5.3.2 Extracting Members from Member Lists

	19.6 Data Store Tables

	20 Oracle Hyperion Planning
	20.1 Introduction
	20.1.1 Integration Process
	20.1.2 Knowledge Modules

	20.2 Installation and Configuration
	20.2.1 System Requirements and Certifications
	20.2.2 Technology Specific Requirements
	20.2.3 Connectivity Requirements

	20.3 Setting up the Topology
	20.3.1 Creating an Hyperion Planning Data Server
	20.3.2 Creating an Hyperion Planning Physical Schema

	20.4 Creating and Reverse-Engineering a Planning Model
	20.4.1 Create a Planning Model
	20.4.2 Reverse-engineer a Planning Model

	20.5 Designing an Interface
	20.5.1 Loading Metadata
	20.5.2 Loading Data
	20.5.3 Load Options

	20.6 Datastore Tables and Data Load Columns
	20.6.1 Accounts
	20.6.2 Employee
	20.6.3 Entities
	20.6.4 User-Defined Dimensions
	20.6.5 Attribute Dimensions
	20.6.6 UDA
	20.6.7 Data Load Columns

	21 Oracle OLAP
	21.1 Introduction
	21.1.1 Concepts
	21.1.2 Knowledge Modules

	21.2 Installation and Configuration
	21.2.1 System Requirements and Certifications
	21.2.2 Technology Specific Requirements
	21.2.3 Connectivity Requirements

	21.3 Setting up the Topology
	21.3.1 Creating an Oracle Data Server
	21.3.1.1 Creation of the Data Server

	21.3.2 Creating an Oracle Physical Schema

	21.4 Setting Up an Integration Project
	21.5 Creating and Reverse-Engineering an Oracle Model
	21.5.1 Create an Oracle Model
	21.5.2 Reverse-engineer an Oracle OLAP Cube

	21.6 Working with Oracle OLAP KMs in Integration Interfaces
	21.6.1 Using Oracle OLAP as a Source in an Integration Interface
	21.6.2 Using Oracle ROLAP as a Target in an Integration Interface
	21.6.3 Using Oracle MOLAP as a Target in an Integration Interface

	Part III Other Technologies
	22 JMS
	22.1 Introduction
	22.1.1 Concepts
	22.1.1.1 JMS Message Structure
	22.1.1.2 Using a JMS Destination

	22.1.2 Knowledge Modules

	22.2 Installation and Configuration
	22.2.1 System Requirements and Certifications
	22.2.2 Technology Specific Requirements
	22.2.3 Connectivity Requirements

	22.3 Setting up the Topology
	22.3.1 Creating a JMS Data Server
	22.3.1.1 Creation of the Data Server

	22.3.2 Creating a JMS Physical Schema

	22.4 Setting Up an Integration Project
	22.5 Creating and Defining a JMS Model
	22.5.1 Create a JMS Model
	22.5.2 Defining the JMS Datastores

	22.6 Designing an Interface
	22.6.1 Loading Data from a JMS Source
	22.6.2 Integrating Data in a JMS Target

	22.7 JMS Standard Properties
	22.7.1 Using JMS Properties
	22.7.1.1 Declaring JMS Properties
	22.7.1.2 Filtering on the Router
	22.7.1.3 Filtering on the Client
	22.7.1.4 Using Property Values as Source Data
	22.7.1.5 Setting Properties when Sending a Message

	23 JMS XML
	23.1 Introduction
	23.1.1 Concepts
	23.1.1.1 JMS Message Structure
	23.1.1.2 Using a JMS Destination

	23.1.2 Knowledge Modules

	23.2 Installation and Configuration
	23.2.1 System Requirements and Certifications
	23.2.2 Technology Specific Requirements
	23.2.3 Connectivity Requirements

	23.3 Setting up the Topology
	23.3.1 Creating a JMS XML Data Server
	23.3.1.1 Creation of the Data Server

	23.3.2 Creating a JMS XML Physical Schema

	23.4 Setting Up an Integration Project
	23.5 Creating and Reverse-Engineering a JMS XML Model
	23.5.1 Create a JMS XML Model
	23.5.2 Reverse-Engineering a JMS XML Model

	23.6 Designing an Interface
	23.6.1 Loading Data from a JMS XML Source
	23.6.2 Integrating Data in a JMS XML Target

	24 LDAP Directories
	24.1 Introduction
	24.1.1 Concepts
	24.1.2 Knowledge Modules

	24.2 Installation and Configuration
	24.2.1 System Requirements
	24.2.2 Technologic Specific Requirements
	24.2.3 Connectivity Requirements

	24.3 Setting up the Topology
	24.3.1 Creating an LDAP Data Server
	24.3.1.1 Creation of the Data Server

	24.3.2 Creating a Physical Schema for LDAP

	24.4 Setting Up an Integration Project
	24.5 Creating and Reverse-Engineering an LDAP Directory
	24.5.1 Create an LDAP Model
	24.5.2 Reverse-Engineering an LDAP Model

	24.6 Designing an Interface
	24.6.1 Loading Data from and to LDAP
	24.6.1.1 Loading Data from an LDAP Directory
	24.6.1.2 Loading Data to an LDAP Directory

	24.6.2 Integrating Data in an LDAP Directory

	24.7 Troubleshooting

	25 Oracle Changed Data Capture Adapters
	25.1 Introduction
	25.1.1 Concepts
	25.1.2 Knowledge Modules

	25.2 Installation and Configuration
	25.2.1 System Requirements
	25.2.2 Technology Specific Requirements
	25.2.3 Connectivity Requirements

	25.3 Setting up the Topology
	25.3.1 Creating an Attunity Stream Data Server
	25.3.1.1 Creation of the Data Server

	25.3.2 Creating an Attunity Stream Physical Schema

	25.4 Setting Up an Integration Project
	25.5 Creating and Reverse-Engineering an Attunity Stream Model
	25.5.1 Create an Attunity Stream Model
	25.5.2 Reverse-engineer an Attunity Stream Model

	25.6 Designing an Interface Using the LKM Attunity to SQL

	26 Oracle GoldenGate
	26.1 Introduction
	26.1.1 Overview of the GoldeGate CDC Process
	26.1.2 Knowledge Modules

	26.2 Installation and Configuration
	26.2.1 System Requirements and Certifications
	26.2.2 Technology Specific Requirements
	26.2.3 Connectivity Requirements

	26.3 Working with the Oracle GoldenGate JKMs
	26.3.1 Define the Topology
	26.3.1.1 Define the Staging Server
	26.3.1.2 Create the Staging Physical Schema
	26.3.1.3 Define the Source Data Server
	26.3.1.4 Create the Source Physical Schema

	26.3.2 Create the Replicated Tables
	26.3.3 Set Up an Integration Project
	26.3.4 Configure CDC for the Replicated Tables
	26.3.5 Configure and Start Oracle GoldenGate Processes
	26.3.6 Design Interfaces Using Replicated Data

	26.4 Advanced Configuration
	26.4.1 Initial Load Method
	26.4.2 Tuning Replication Performances
	26.4.3 One Source Multiple Staging Configuration

	27 Oracle Enterprise Service Bus
	27.1 Introduction
	27.1.1 Concepts
	27.1.2 Knowledge Modules
	27.1.3 Overview of the XREF KM Process

	27.2 Installation and Configuration
	27.2.1 System Requirements and Certifications
	27.2.2 Technology Specific Requirements
	27.2.3 Connectivity Requirements

	27.3 Working with XREF using the ESB Cross-References KMs
	27.3.1 Defining the Topology
	27.3.2 Setting up the Project
	27.3.3 Designing an Interface with the ESB Cross-References KMs

	27.4 Knowledge Module Options Reference

	A Oracle Data Integrator Driver for LDAP Reference
	A.1 Introduction to Oracle Data Integrator Driver for LDAP
	A.2 LDAP Processing Overview
	A.2.1 LDAP to Relational Mapping
	A.2.1.1 General Principle
	A.2.1.2 Grouping Factor
	A.2.1.3 Mapping Exceptions
	A.2.1.4 Reference LDAP Tree

	A.2.2 Managing Relational Schemas
	A.2.2.1 Relational Schema Storage
	A.2.2.2 Accessing Data in the Relational Structure

	A.3 Installation and Configuration
	A.3.1 Driver Configuration
	A.3.2 Using Property Bundles
	A.3.2.1 LDAP Directory Connection Configuration
	A.3.2.2 External Database Connection Configuration

	A.3.3 Table Aliases Configuration

	A.4 SQL Syntax
	A.4.1 SQL Statements
	A.4.1.1 DISCONNECT
	A.4.1.2 INSERT INTO
	A.4.1.3 SELECT
	A.4.1.4 UPDATE
	A.4.1.5 Expressions, Condition & values

	A.4.2 SQL FUNCTIONS

	A.5 JDBC API Implemented Features

	B Oracle Data Integrator Driver for XML Reference
	B.1 Introduction to Oracle Data Integrator Driver for XML
	B.2 XML Processing Overview
	B.2.1 XML to SQL Mapping
	B.2.2 XML Namespaces
	B.2.3 Managing Schemas
	B.2.3.1 Schema Storage
	B.2.3.2 Multiple Schemas
	B.2.3.3 Accessing Data in the Schemas
	B.2.3.4 Case Sensitivity
	B.2.3.5 Loading/Synchronizing

	B.2.4 Locking
	B.2.5 XML Schema (XSD) Support

	B.3 Installation and Configuration
	B.3.1 Driver Configuration
	B.3.2 Automatically Create Multiple Schemas
	B.3.3 Using an External Database to Store the Data

	B.4 Detailed Driver Commands
	B.4.1 CREATE FILE
	B.4.2 CREATE XMLFILE
	B.4.3 CREATE FOREIGNKEYS
	B.4.4 CREATE SCHEMA
	B.4.5 DROP FOREIGNKEYS
	B.4.6 DROP SCHEMA
	B.4.7 LOAD FILE
	B.4.8 SET SCHEMA
	B.4.9 SYNCHRONIZE
	B.4.10 UNLOCK FILE
	B.4.11 TRUNCATE SCHEMA
	B.4.12 VALIDATE

	B.5 SQL Syntax
	B.5.1 SQL Statements
	B.5.1.1 COMMIT
	B.5.1.2 CREATE TABLE
	B.5.1.3 DELETE
	B.5.1.4 DISCONNECT
	B.5.1.5 DROP TABLE
	B.5.1.6 INSERT INTO
	B.5.1.7 ROLLBACK
	B.5.1.8 SELECT
	B.5.1.9 SET AUTOCOMMIT
	B.5.1.10 UPDATE
	B.5.1.11 Expressions, Condition and Values

	B.5.2 SQL FUNCTIONS

	B.6 JDBC API Implemented Features
	B.7 XML Schema Supported Features
	B.7.1 Datatypes
	B.7.2 Supported Elements
	B.7.2.1 All
	B.7.2.2 Attribute
	B.7.2.3 AttributeGroup
	B.7.2.4 Choice
	B.7.2.5 ComplexContent
	B.7.2.6 ComplexType
	B.7.2.7 Element
	B.7.2.8 Extension
	B.7.2.9 Group
	B.7.2.10 Import
	B.7.2.11 Include
	B.7.2.12 List
	B.7.2.13 Restriction
	B.7.2.14 Schema
	B.7.2.15 Sequence
	B.7.2.16 SimpleContent
	B.7.2.17 SimpleType

	B.7.3 Unsupported Features
	B.7.3.1 Unsupported Elements
	B.7.3.2 Unsupported Features

