

Oracle Fusion Middleware
Developer’s Guide for Oracle TopLink

11g Release 1 (11.1.1)

B32441-03

May 2009

Oracle Fusion Middleware Developer's Guide for Oracle TopLink, 11g Release 1 (11.1.1)

B32441-03

Copyright © 1997, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Liza Rekadze

Contributing Author: Rick Sapir

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

v

Contents

Preface .. lix

Audience.. lix
Documentation Accessibility .. lix
Related Documentation.. lx
Conventions ... lx

Part I TopLink Application Development Overview

1 Introduction to TopLink

1.1 What Is TopLink?.. 1-1
1.2 What Is the Object-Persistence Impedance Mismatch... 1-3
1.3 TopLink Key Features .. 1-4
1.4 TopLink Application Architectures ... 1-5

2 Introduction to TopLink Application Development

2.1 Introduction to TopLink Application Development ... 2-1
2.1.1 Typical Development Stages.. 2-2
2.1.2 Oracle Development Support .. 2-3
2.2 Designing Your Application with TopLink .. 2-3
2.2.1 How to Use TopLink in Your Application Design ... 2-4
2.2.1.1 Relational Database Usage .. 2-4
2.2.1.2 Object-Relational Data Type Database Usage .. 2-4
2.2.1.3 Oracle XML Database (XDB) Usage... 2-4
2.2.1.4 Enterprise Information System (EIS) Usage ... 2-4
2.2.1.5 XML Usage .. 2-4
2.2.2 Target Platforms... 2-5
2.3 Selecting an Architecture with TopLink.. 2-5
2.3.1 Tiers ... 2-5
2.3.1.1 Three Tier... 2-6
2.3.1.1.1 Java EE or Non-Java EE.. 2-6
2.3.1.1.2 Client ... 2-6
2.3.1.2 Two Tier ... 2-6
2.3.2 Service Layer .. 2-7
2.3.2.1 EJB Session Beans ... 2-7
2.3.2.1.1 Stateful .. 2-7

vi

2.3.2.1.2 Stateless... 2-7
2.3.2.2 EJB Entity Beans.. 2-7
2.3.2.2.1 Container-Managed Persistence (CMP)... 2-8
2.3.2.2.2 Bean-Managed Persistence (BMP) .. 2-8
2.3.2.3 JPA Entities .. 2-8
2.3.2.4 Plain Old Java Objects (POJO) .. 2-8
2.3.3 Data Access... 2-8
2.3.3.1 Data Type... 2-9
2.3.3.2 Multiple Data Sources.. 2-9
2.3.3.3 Isolating Data Access ... 2-9
2.3.3.4 Historical Data Access ... 2-9
2.3.4 Caching.. 2-9
2.3.4.1 Cache Type ... 2-10
2.3.4.2 Refreshing... 2-10
2.3.4.3 Cache Coordination... 2-10
2.3.4.3.1 Protocol .. 2-10
2.3.4.3.2 Synchronization.. 2-10
2.3.5 Locking... 2-11
2.3.5.1 Optimistic Locking .. 2-11
2.3.5.2 Pessimistic Locking ... 2-11
2.4 Building and Using the Persistence Layer ... 2-11
2.4.1 Implementation Options.. 2-11
2.4.1.1 Using EclipseLink JPA Metatdata, Annotations, and XML 2-12
2.4.1.2 Using TopLink Metatdata XML .. 2-12
2.4.1.3 Using TopLink Metadata Java API ... 2-12
2.4.1.4 Using Method and Direct Field Access .. 2-12
2.4.1.5 Using Weaving... 2-13
2.4.2 Persistent Class Requirements.. 2-13
2.4.3 Persistence Layer Components... 2-14
2.4.3.1 Mapping Metadata .. 2-14
2.4.3.2 Session ... 2-14
2.4.3.3 Cache ... 2-15
2.4.3.4 Queries and Expressions .. 2-15
2.4.3.5 Transactions.. 2-15
2.4.4 How to Use the Persistence Layer.. 2-16
2.5 Deploying the Application ... 2-16
2.5.1 About Deployments ... 2-17
2.5.2 How to Use TopLink in a Java EE Application .. 2-17
2.6 Optimizing and Customizing the Application.. 2-17
2.7 Troubleshooting the Application... 2-17
2.8 Persisting Objects ... 2-18
2.8.1 Application Object Model ... 2-18
2.8.2 Data Storage Schema.. 2-18
2.8.3 Primary Keys and Object Identity .. 2-19
2.8.4 Mappings ... 2-19
2.8.5 Foreign Keys and Object Relationships... 2-19
2.8.6 Inheritance ... 2-19

vii

2.8.7 Concurrency .. 2-20
2.8.8 Caching... 2-20
2.8.9 Nonintrusive Persistence... 2-20
2.8.10 Indirection.. 2-21
2.8.11 Mutability... 2-21
2.9 Working with TopLink Metadata.. 2-22
2.9.1 Advantages of the TopLink Metadata Architecture.. 2-23
2.9.2 Creating Project Metadata ... 2-24
2.9.2.1 Descriptors and Mappings... 2-24
2.9.2.1.1 Amending Descriptors .. 2-24
2.9.2.2 Data Source Login Information ... 2-25
2.9.3 Creating Session Metadata .. 2-25
2.9.4 Deploying Metadata... 2-25
2.10 Using Weaving ... 2-25
2.10.1 Configuring Dynamic Weaving Using EclipseLink Agent .. 2-26
2.10.1.1 To Configure Dynamic Weaving Using EclipseLink Agent 2-26
2.10.2 Configuring Static Weaving.. 2-26
2.10.3 Disabling Weaving Using TopLink Persistence Unit Properties............................... 2-26
2.10.4 Packaging a POJO Application for Weaving.. 2-27
2.10.4.1 To Package a POJO Application for Weaving... 2-27
2.10.5 What You May Need to Know About Weaving and POJO Classes.......................... 2-27
2.10.6 What You May Need to Know About Weaving and Java EE Application Servers 2-28
2.11 Considering Three-Tier Architecture.. 2-28
2.11.1 Example Implementations... 2-29
2.11.2 Advantages and Disadvantages ... 2-29
2.11.3 Variation Using Remote Sessions... 2-29
2.11.4 Technical Challenges.. 2-29
2.12 Considering Two-Tier Architecture ... 2-30
2.12.1 Example Implementations... 2-31
2.12.2 Advantages and Disadvantages ... 2-31
2.12.3 Technical Challenges.. 2-31
2.13 Considering EJB Session Bean Facade Architecture ... 2-31
2.13.1 Example Implementation .. 2-32
2.13.2 Advantages and Disadvantages ... 2-32
2.13.3 What Are Session Beans... 2-33
2.13.4 Technical Challenges.. 2-33
2.13.5 What Is a Unit of Work Merge.. 2-34
2.14 Considering EJB Entity Beans with CMP Architecture.. 2-34
2.14.1 Example Implementation .. 2-35
2.14.2 Advantages and Disadvantages ... 2-35
2.14.3 Technical Challenges.. 2-36
2.14.3.1 External JDBC Pools.. 2-36
2.14.3.2 JTA/JTS Integration .. 2-36
2.14.3.3 Cache Coordination... 2-36
2.14.3.4 Maintaining Bidirectional Relationships.. 2-36
2.14.3.5 Managing Dependent Objects ... 2-37
2.14.3.6 Managing Collections of EJBObject Objects .. 2-37

viii

2.15 Considering EJB Entity Beans with BMP Architecture .. 2-38
2.15.1 Example Implementations... 2-39
2.15.2 Advantages and Disadvantages ... 2-39
2.15.3 Technical Challenges.. 2-40
2.15.3.1 External JDBC Pools .. 2-40
2.15.3.2 JTA/JTS Integration .. 2-40
2.15.3.3 Cache Coordination... 2-40
2.16 Considering JPA Entity Architecture.. 2-40
2.16.1 Example Implementations... 2-42
2.16.2 Advantages and Disadvantages ... 2-42
2.17 Considering Web Services Architecture... 2-42
2.17.1 Example Implementations... 2-43
2.17.2 Advantages and Disadvantages ... 2-43
2.17.3 Technical Challenges.. 2-43
2.18 Considering EclipseLink Service Data Objects (SDO) Architecture................................. 2-43

Part II TopLink Development Tools Overview

3 Introduction to TopLink Development Tools

3.1 Development Environment ... 3-2
3.2 TopLink Run-Time Environment ... 3-3

4 Using Oracle JDeveloper TopLink Editor

4.1 Introduction to Oracle JDeveloper TopLink Editor ... 4-1
4.2 Configuring the Oracle JDeveloper TopLink Editor ... 4-1
4.3 Using the Oracle JDeveloper TopLink Editor... 4-1
4.3.1 TopLink Project Elements in the Application Navigator... 4-2
4.3.2 TopLink Editor Tabs in the Editor Window.. 4-2
4.3.3 TopLink Project Elements in the Structure Window.. 4-3

5 Using TopLink Workbench

5.1 Introduction to TopLink Workbench... 5-1
5.2 Configuring the TopLink Workbench Environment ... 5-2
5.2.1 How to Configure the Language Preference ... 5-3
5.3 Using TopLink Workbench ... 5-3
5.3.1 How to Use Menus .. 5-5
5.3.1.1 Using Menu Bar Menus ... 5-5
5.3.1.2 Using Context Menus .. 5-6
5.3.2 How to Use Toolbars... 5-6
5.3.2.1 Using Standard Toolbar... 5-6
5.3.2.2 Using Context Toolbar... 5-7
5.3.3 How to Use the Navigator.. 5-9
5.3.4 How to Use the Editor.. 5-11
5.3.5 How to Use the Problems Window.. 5-11
5.3.6 How to Use the Online Help... 5-12
5.4 Using TopLink Workbench Preferences... 5-12

ix

5.4.1 How to Use General Preferences.. 5-13
5.4.2 How to Use Help Preferences ... 5-14
5.4.3 How to Use Mappings Preferences.. 5-15
5.4.4 How to Use Class Preferences .. 5-16
5.4.5 How to Use EJB Preferences.. 5-17
5.4.6 How to Use Database Preferences.. 5-18
5.4.7 How to Use Sessions Configuration Preferences ... 5-19
5.4.8 How to Use New Names Preferences.. 5-19
5.4.9 How to Use Session Platform Preferences .. 5-20
5.4.10 How to Use Platforms Preferences... 5-21
5.5 Using Databases .. 5-22
5.5.1 How to Use Database Tables in the Navigator Window .. 5-23
5.5.1.1 Logging In and Out of a Database .. 5-23
5.5.1.2 Creating New Tables... 5-23
5.5.1.3 Importing Tables from a Database.. 5-24
5.5.1.4 Removing Tables ... 5-26
5.5.1.5 Renaming Tables ... 5-26
5.5.1.6 Refreshing Tables from the Database ... 5-26
5.5.2 How to Use Database Tables in the Editor Window... 5-27
5.5.2.1 Working with Column Properties... 5-27
5.5.2.2 Setting a Primary Key for Database Tables ... 5-28
5.5.2.3 Creating Table References .. 5-29
5.5.2.4 Creating Field Associations ... 5-30
5.5.3 How to Generate Data from Database Tables .. 5-31
5.5.3.1 Generating SQL Creation Scripts .. 5-32
5.5.3.2 Generating Classes and Descriptors from Database Tables................................ 5-32
5.5.3.3 Generating EJB Entity Beans and Descriptors from Database Tables 5-34
5.5.3.4 Generating Tables on the Database... 5-35
5.6 Using XML Schemas.. 5-36
5.6.1 How to Use XML Schemas in the Navigator.. 5-36
5.6.2 How to Use an XML Schema Structure ... 5-37
5.6.3 How to Import an XML Schema... 5-38
5.6.4 How to Configure an XML Schema Reference... 5-40
5.6.4.1 How to Configure an XML Schema Reference Using TopLink Workbench 5-40
5.6.4.2 How to Configure an XML Schema Reference Using Java 5-41
5.6.5 How to Configure XML Schema Namespace... 5-42
5.6.5.1 How to Configure XML Schema Namespace Using TopLink Workbench 5-43
5.6.5.2 How to Configure XML Schema Namespace Using Java.................................... 5-44
5.7 Using Classes .. 5-44
5.7.1 How to Create Classes ... 5-44
5.7.1.1 How to Create Classes Using TopLink Workbench... 5-44
5.7.2 How to Configure Classes ... 5-45
5.7.2.1 Configuring Class Information.. 5-46
5.7.2.1.1 Using TopLink Workbench... 5-46
5.7.2.2 Configuring Class Modifiers.. 5-46
5.7.2.2.1 Using TopLink Workbench... 5-46
5.7.2.3 Configuring Class Interfaces.. 5-47

x

5.7.2.3.1 Using TopLink Workbench... 5-47
5.7.2.4 Adding Attributes ... 5-48
5.7.2.4.1 Using TopLink Workbench... 5-48
5.7.2.5 Configuring Attribute Modifiers... 5-48
5.7.2.5.1 Using TopLink Workbench... 5-48
5.7.2.6 Configuring Attribute Type Declaration ... 5-49
5.7.2.6.1 Using TopLink Workbench... 5-49
5.7.2.7 Configuring Attribute Accessing Methods.. 5-51
5.7.2.7.1 Using TopLink Workbench... 5-51
5.7.2.8 Adding Methods.. 5-52
5.7.2.8.1 Using TopLink Workbench... 5-52
5.7.2.9 Configuring Method Modifiers ... 5-53
5.7.2.9.1 Using TopLink Workbench... 5-53
5.7.2.10 Configuring Method Return Type .. 5-54
5.7.2.10.1 Using TopLink Workbench... 5-54
5.7.2.11 Configuring Method Parameters .. 5-54
5.7.2.11.1 Using TopLink Workbench... 5-54
5.7.3 How to Import and Update Classes... 5-55
5.7.3.1 Importing and Updating Classes Using TopLink Workbench 5-55
5.7.4 How to Manage Nondescriptor Classes.. 5-57
5.7.5 How to Rename Packages ... 5-57
5.7.5.1 Renaming Packages Using TopLink Workbench ... 5-58
5.8 Integrating TopLink Workbench with Apache Ant.. 5-58
5.8.1 How to Configure Ant to Use TopLink Workbench Tasks .. 5-59
5.8.1.1 Creating Library Dependencies... 5-59
5.8.1.2 Declaring TopLink Workbench Tasks .. 5-59
5.8.2 What You May Need to Know About TopLink Workbench Ant Task API............. 5-60
5.8.3 How to Create TopLink Workbench Ant Tasks... 5-60
5.8.4 How to Create the mappings.validate Task ... 5-62
5.8.4.1 Using Parameters... 5-62
5.8.4.2 Specifying Parameters Specified as Nested Elements.. 5-62
5.8.4.3 Examples... 5-62
5.8.5 How to Create the session.validate Task... 5-63
5.8.5.1 Using Parameters... 5-63
5.8.5.2 Specifying Parameters Specified as Nested Elements.. 5-63
5.8.5.3 Examples... 5-63
5.8.6 How to Create the mappings.export Task .. 5-64
5.8.6.1 Using Parameters... 5-64
5.8.6.2 Specifying Parameters Specified as Nested Elements.. 5-64
5.8.6.3 Examples... 5-64
5.8.7 How to Create the classpath Task .. 5-65
5.8.7.1 Using Parameters... 5-65
5.8.7.2 Specifying Parameters Specified as Nested Elements.. 5-65
5.8.7.3 Examples... 5-65
5.8.8 How to Create the ignoreerror Task .. 5-66
5.8.8.1 Using Parameters... 5-66
5.8.8.2 Specifying Parameters Specified as Nested Elements.. 5-66

xi

5.8.8.3 Examples... 5-66
5.8.9 How to Create the ignoreerrorset Task ... 5-66
5.8.9.1 Using Parameters... 5-66
5.8.9.2 Specifying Parameters Specified as Nested Elements.. 5-66
5.8.9.3 Examples... 5-67
5.8.10 How to Create the loginspec Task.. 5-67
5.8.10.1 Using Parameters... 5-67
5.8.10.2 Specifying Parameters Specified as Nested Elements.. 5-68
5.8.10.3 Examples... 5-68

6 Using the Schema Manager

6.1 Introduction to the Schema Manager... 6-1
6.1.1 How to Use Schema Manager Java and Database Type Conversion........................... 6-3
6.1.2 How to Use Sequencing.. 6-3
6.2 Creating a Table Creator .. 6-4
6.2.1 How to Use TopLink Workbench During Development... 6-4
6.2.2 How to Use the Default Table Generator at Run Time .. 6-4
6.2.3 How to Use Java to Create a Table Creator ... 6-5
6.2.3.1 Creating a TableCreator Class .. 6-5
6.2.3.2 Creating a TableDefinition Class.. 6-5
6.2.3.3 Adding Fields to a TableDefinition.. 6-5
6.2.3.4 Defining Sybase and Microsoft SQL Server Native Sequencing 6-6
6.3 Creating Tables with a Table Creator .. 6-6
6.4 Creating Database Tables Automatically .. 6-6
6.4.1 Creating Database Tables Automatically in JPA Projects.. 6-6
6.4.2 Creating Database Tables Automatically in EJB CMP Projects 6-7

7 Using an Integrated Development Environment

7.1 Configuring TopLink for Oracle JDeveloper .. 7-1
7.1.1 How to Use TopLink Mappings .. 7-1
7.2 Configuring TopLink Workbench with Source Control Management Software 7-3
7.2.1 How to Use a Source Control Management System... 7-3
7.2.2 How to Merge Files ... 7-4
7.2.2.1 Merging Project Files.. 7-4
7.2.2.2 Merging Table, Descriptor, and Class Files .. 7-5
7.2.3 How to Share Project Objects ... 7-6
7.2.4 How to Manage the ejb-jar.xml File .. 7-6
7.2.5 How to Work with Locked Files.. 7-6

Part III TopLink Application Deployment

8 Integrating TopLink with an Application Server

8.1 Introduction to the Application Server Support .. 8-1
8.2 Integrating TopLink with an Application Server... 8-2
8.2.1 What Are the Software Requirements .. 8-2
8.2.2 How to Configure the XML Parser Platform... 8-3

xii

8.2.2.1 Configuring XML Parser Platform... 8-3
8.2.2.2 Creating an XML Parser Platform.. 8-4
8.2.2.3 XML Parser Limitations... 8-4
8.2.3 How to Set Security Permissions... 8-4
8.2.4 How to Migrate the Persistence Manager.. 8-4
8.2.5 How to Integrate Clustering .. 8-5
8.3 Integrating TopLink with Oracle WebLogic Server... 8-5
8.3.1 How to Configure Classpath.. 8-5
8.3.2 How to Integrate JTA .. 8-6
8.3.3 How to Integrate JMX ... 8-6
8.3.4 How to Integrate the Security Manager ... 8-6
8.4 Integrating TopLink with Oracle Containers for Java EE (OC4J) .. 8-7
8.4.1 How to Integrate CMP.. 8-7
8.4.2 How to Migrate OC4J Orion CMP Persistence to OC4J TopLink Persistence............ 8-7
8.4.2.1 What You May Need to Know About Migrating OC4J Orion Persistence to OC4J

TopLink Persistence 8-8
8.4.2.2 Using the TopLink Migration Tool from TopLink Workbench.......................... 8-11
8.4.2.3 Using the TopLink Migration Tool from the Command Line 8-12
8.4.2.4 Performing Post-Migration Changes.. 8-14
8.4.2.4.1 EJB 2.1 Persistence Manager Customization .. 8-15
8.4.2.4.2 Session Event Listener ... 8-15
8.4.2.5 Troubleshooting Your Migration .. 8-15
8.4.3 How to Integrate JTA ... 8-16
8.4.4 How to Integrate with Oracle Application Server Manageability and Diagnosability.....

8-16
8.5 Integrating TopLink with IBM WebSphere Application Server 8-16
8.5.1 How to Configure Classpath... 8-17
8.5.1.1 Configuring Classpath for IBM WebSphere Application Server 6.1 and Later 8-17
8.5.2 How to Configure Class Loader Order ... 8-17
8.5.3 How to Integrate JTA ... 8-17
8.5.4 How to Configure Clustering on IBM WebSphere Application Server.................... 8-17
8.6 Integrating TopLink with Sun Application Server ... 8-17
8.6.1 How to Configure Classpath... 8-18
8.6.2 How to Integrate JTA ... 8-18
8.7 Integrating TopLink with JBoss Application Server... 8-18
8.7.1 How to Configure Classpath... 8-18
8.7.2 How to Integrate JTA ... 8-18
8.7.3 How to Configure JPA Application Deployment to JBoss 4.2 Application Server. 8-18
8.8 Defining Security Permissions ... 8-19
8.8.1 How to Define Permissions Required by TopLink Features...................................... 8-19
8.8.1.1 Defining System Properties.. 8-20
8.8.1.2 Loading project.xml or sessions.xml Files ... 8-20
8.8.1.3 Defining Cache Coordination .. 8-20
8.8.1.4 Accessing a Data Source by Port ... 8-20
8.8.1.5 Logging with java.util.logging .. 8-21
8.8.1.6 Granting Permissions for Java EE Application Deployment 8-21
8.8.2 How to Define Permissions Required when doPrivileged Is Disabled.................... 8-21
8.8.3 How to Disable doPrivileged Operation... 8-21

xiii

8.9 Configuring Miscellaneous EJB CMP Options .. 8-21
8.9.1 How to Configure EJB CMP Setter Parameter Type Checking.................................. 8-22
8.9.2 How to Configure EJB CMP Unknown Primary Key Class Support........................ 8-22
8.9.3 How to Configure EJB CMP Single-Object Finder Return Type Checking.............. 8-22

9 Creating TopLink Files for Deployment

9.1 Introduction to the TopLink Deployment File Creation ... 9-1
9.1.1 project.xml File ... 9-2
9.1.1.1 XSD File Format.. 9-2
9.1.1.2 POJO Applications and Project Metadata... 9-2
9.1.1.3 JPA Applications and Project Metadata.. 9-2
9.1.1.4 CMP Applications and Project Metadata.. 9-3
9.1.1.5 Creating the project.xml File with Oracle JDeveloper .. 9-3
9.1.1.6 Creating the project.xml File with TopLink Workbench.. 9-3
9.1.1.7 Creating project.xml Programatically.. 9-3
9.1.2 sessions.xml File... 9-4
9.1.2.1 XSD File Format.. 9-4
9.1.2.2 POJO Applications and Session Metadata.. 9-4
9.1.2.3 JPA Applications and Session Metadata... 9-4
9.1.2.4 CMP Applications and Session Metadata... 9-5
9.1.3 ejb-jar.xml File .. 9-5
9.1.4 JAVA-EE-CONTAINER-ejb-jar.xml File ... 9-6
9.1.4.1 Oracle WebLogic Server and the weblogic-ejb-jar.xml File 9-6
9.1.4.2 OC4J and the orion-ejb-jar.xml File.. 9-6
9.1.5 toplink-ejb-jar.xml File .. 9-7
9.1.5.1 OC4J and the toplink-ejb-jar.xml File ... 9-7
9.2 Creating Deployment Files for Java Applications ... 9-7
9.3 Creating Deployment Files for JavaServer Pages and Servlet Applications...................... 9-7
9.4 Creating Deployment Files for Session Bean Applications .. 9-7
9.4.1 How to Create Deployment Files for EJB 1.n and 2.n Session Bean Applications 9-8
9.4.2 How to Create Deployment Files for EJB 3.0 Session Bean Applications 9-8
9.5 Creating Deployment Files for JPA Applications .. 9-8
9.6 Creating Deployment Files for CMP Applications .. 9-8
9.7 Creating Deployment Files for BMP Applications .. 9-9
9.8 Configuring the weblogic-ejb-jar.xml File for Oracle WebLogic Server............................. 9-9
9.8.1 What You May Need to Know About Unsupported weblogic-ejb-jar.xml File Tags 9-9
9.9 Configuring the orion-ejb-jar.xml File for OC4J.. 9-10
9.9.1 How to Configure persistence-manager Entries .. 9-10
9.9.1.1 Configuring pm-properties.. 9-10
9.9.1.2 Configuring cache-synchronization Properties .. 9-12
9.9.1.3 Configuring default-mapping Properties .. 9-12

10 Packaging a TopLink Application

10.1 Packaging Java Applications.. 10-1
10.2 Packaging JavaServer Pages and Servlet Applications .. 10-2
10.2.1 How to Create the TopLink Domain JAR ... 10-3

xiv

10.3 Packaging Session Bean Applications... 10-3
10.3.1 How to Package an EJB 1.n and 2.n Session Bean Application.................................. 10-3
10.3.2 How to Package an EJB 3.0 Session Bean Application .. 10-4
10.3.3 How to Create the TopLink Domain JAR ... 10-4
10.3.4 How to Create the EJB JAR ... 10-5
10.4 Packaging JPA Applications... 10-5
10.5 Packaging a POJO Application for Weaving ... 10-5
10.6 Packaging CMP Applications .. 10-5
10.6.1 How to Create the EJB JAR ... 10-6
10.7 Packaging BMP Applications... 10-6
10.7.1 How to Create the TopLink Domain JAR ... 10-7
10.7.2 How to Create EJB JAR File... 10-8
10.8 Packaging with TopLink Metadata File Resource Paths.. 10-8

11 Deploying a TopLink Application

11.1 Deploying Java Applications ... 11-1
11.2 Deploying JavaServer Pages and Servlets.. 11-1
11.3 Deploying Session Bean Applications .. 11-2
11.4 Deploying JPA Applications .. 11-2
11.5 Deploying CMP Applications .. 11-2
11.5.1 How to Deploy a CMP Application to OC4J .. 11-2
11.6 Deploying BMP Applications .. 11-2
11.7 Performing Hot Deployment of EJB.. 11-3
11.7.1 How to Perform Hot Deployment in a CMP Application .. 11-3
11.7.2 How to Perform Hot Deployment in a POJO Application ... 11-3

Part IV Optimization and Customization of a TopLink Application

12 Optimizing the TopLink Application

12.1 Introduction to Optimization... 12-1
12.2 Identifying Sources of Application Performance Problems .. 12-2
12.3 Measuring TopLink Performance with the TopLink Profiler ... 12-2
12.3.1 How to Configure the TopLink Performance Profiler .. 12-3
12.3.2 How to Access the TopLink Profiler Results .. 12-4
12.4 Measuring TopLink Performance with the Oracle Dynamic Monitoring System (DMS)........

12-4
12.4.1 How to Configure the Oracle DMS Profiler.. 12-8
12.4.1.1 Configuring the Oracle DMS Profiler in a TopLink CMP Application on OC4J

12-9
12.4.1.2 Configuring the Oracle DMS Profiler in a EclipseLInk JPA Application on OC4J.....

12-9
12.4.2 How to Access Oracle DMS Profiler Data Using JMX .. 12-9
12.4.3 How to Access Oracle DMS Profiler Data Using the DMS Spy Servlet.................. 12-10
12.5 Identifying General Performance Optimization ... 12-11
12.6 Optimizing for a Production Environment.. 12-11
12.7 Optimizing Schema ... 12-11
12.7.1 Schema Case 1: Aggregation of Two Tables Into One .. 12-12

xv

12.7.2 Schema Case 2: Splitting One Table Into Many ... 12-12
12.7.3 Schema Case 3: Collapsed Hierarchy .. 12-14
12.7.4 Schema Case 4: Choosing One Out of Many .. 12-15
12.8 Optimizing Mappings and Descriptors.. 12-16
12.9 Optimizing Sessions .. 12-16
12.10 Optimizing Cache .. 12-16
12.11 Optimizing Data Access.. 12-17
12.11.1 How to Optimize JDBC Driver Properties.. 12-17
12.11.2 How to Optimize Data Format ... 12-18
12.11.3 How to Use Batch Writing for Optimization.. 12-18
12.11.4 How to Use Outer-Join Reading with Inherited Subclasses..................................... 12-19
12.11.5 How to Use Parameterized SQL (Parameter Binding) and Prepared Statement Caching

for Optimization 12-19
12.12 Optimizing Queries ... 12-21
12.12.1 How to Use Parameterized SQL and Prepared Statement Caching for Optimization......

12-21
12.12.2 How to Use Named Queries for Optimization .. 12-21
12.12.3 How to Use Batch and Join Reading for Optimization ... 12-21
12.12.4 How to Use Partial Object Queries and Fetch Groups for Optimization 12-22
12.12.5 How to Use Read-Only Queries for Optimization .. 12-22
12.12.6 How to Use JDBC Fetch Size for Optimization .. 12-22
12.12.7 How to Use Cursored Streams and Scrollable Cursors for Optimization.............. 12-23
12.12.8 How to Use Result Set Pagination for Optimization... 12-24
12.12.9 Read Optimization Examples ... 12-24
12.12.9.1 Reading Case 1: Displaying Names in a List... 12-26
12.12.9.1.1 Partial Object Reading ... 12-26
12.12.9.1.2 Report Query... 12-27
12.12.9.1.3 Fetch Groups ... 12-28
12.12.9.2 Reading Case 2: Batch Reading Objects ... 12-28
12.12.9.3 Reading Case 3: Using Complex Custom SQL Queries..................................... 12-30
12.12.9.4 Reading Case 4: Using View Objects .. 12-30
12.12.9.5 Reading Case 5: Inheritance Subclass Outer-Joining ... 12-31
12.12.10 Write Optimization Examples .. 12-32
12.12.10.1 Writing Case: Batch Writes .. 12-33
12.12.10.1.1 Cursors... 12-34
12.12.10.1.2 Batch Writing and Parameterized SQL ... 12-34
12.12.10.1.3 Sequence Number Preallocation .. 12-34
12.12.10.1.4 Multiprocessing .. 12-35
12.13 Optimizing the Unit of Work ... 12-35
12.14 Optimizing Using Weaving.. 12-36
12.15 Optimizing the Application Server and Database Optimization 12-36
12.16 Optimizing Storage and Retrieval of Binary Data in XML.. 12-36
12.16.1 How to Use an Attachment Marshaller and Unmarshaller...................................... 12-39

13 Customizing the TopLink Application

13.1 Introduction to Customization... 13-1
13.2 Creating Custom Data Types ... 13-1

xvi

13.3 Using Public Source... 13-2
13.4 Using the Session Customizer Class ... 13-2
13.5 Using the Descriptor Customizer Class.. 13-2
13.6 Using the Descriptor Amendment Methods.. 13-3
13.7 Using EclipseLink JPA Extensions .. 13-3

Part V Mapping and Configuration Overview

14 Introduction to TopLink Mapping and Configuration

14.1 Mapping and Configuration Concepts ... 14-1
14.1.1 Projects ... 14-1
14.1.2 Descriptors... 14-2
14.1.3 Mappings ... 14-2

Part VI Projects

15 Introduction to Projects

15.1 TopLink Project Types .. 15-1
15.2 Project Concepts ... 15-2
15.2.1 Project Architecture .. 15-2
15.2.2 Relational and Nonrelational Projects ... 15-2
15.2.3 Persistent and Nonpersistent Projects ... 15-2
15.2.4 Projects and Login .. 15-3
15.2.4.1 POJO Session Role ... 15-3
15.2.4.2 CMP Deployment Role ... 15-3
15.2.4.3 Development Role ... 15-4
15.2.5 Projects and Platforms ... 15-4
15.2.6 Projects and Sequencing .. 15-4
15.2.6.1 Configuring How to Obtain Sequence Values .. 15-5
15.2.6.2 Configuring Where to Write Sequence Values ... 15-5
15.2.7 XML Namespaces ... 15-5
15.3 Project API .. 15-6
15.3.1 Project Inheritance Hierarchy ... 15-6
15.4 XML Namespaces Overview.. 15-6
15.4.1 TopLink Workbench Namespace Resolution... 15-6
15.4.2 Element and Attribute Form Options.. 15-6
15.4.2.1 Element Form Default Qualified and Attribute Form Default Unqualified..... 15-6
15.4.2.2 Element and Attribute Form Default Unqualified ... 15-7
15.4.2.3 Element and Attribute Form Default Qualified.. 15-9
15.4.3 TopLink Runtime Namespace Resolution .. 15-10

Part VII Descriptors

16 Introduction to Descriptors

16.1 Descriptor Types .. 16-1
16.2 Descriptor Concepts .. 16-2

xvii

16.2.1 Descriptor Architecture ... 16-2
16.2.2 Descriptors and Inheritance .. 16-3
16.2.3 Descriptors and CMP and BMP.. 16-3
16.2.3.1 Nondeferred Changes... 16-3
16.2.3.2 Creating a New Entity Bean and ejbCreate / ejbPostCreate Methods 16-4
16.2.3.3 Inheritance .. 16-5
16.2.4 Fetch Groups .. 16-5
16.2.5 Descriptors and Aggregation.. 16-5
16.2.6 Descriptor Customization ... 16-5
16.2.7 Amendment and After-Load Methods.. 16-6
16.2.8 Descriptor Event Manager .. 16-6
16.2.9 Descriptor Query Manager ... 16-6
16.2.10 Descriptors and Sequencing.. 16-7
16.2.11 Descriptors and Locking.. 16-7
16.2.12 Default Root Element ... 16-7
16.3 Descriptors and Inheritance ... 16-9
16.3.1 How to Specify a Class Indicator ... 16-10
16.3.1.1 Using Class Indicator Fields .. 16-10
16.3.1.2 Using Class Extraction Methods ... 16-11
16.3.1.2.1 Specifying Expressions for Only-Instances and With-All-Subclasses 16-12
16.3.2 Inheritance and Primary Keys .. 16-12
16.3.3 Single and Multi-Table Inheritance.. 16-12
16.3.4 Aggregate and Composite Descriptors and Inheritance... 16-12
16.3.5 Inheritance and CMP and BMP .. 16-13
16.4 Descriptors and Locking ... 16-13
16.4.1 Optimistic Version Locking Policies .. 16-13
16.4.2 Optimistic Version Locking Policies and Cascading... 16-14
16.4.3 Optimistic Locking and Rollbacks ... 16-16
16.4.4 Optimistic Field Locking Policies... 16-16
16.4.5 Pessimistic Locking Policy .. 16-17
16.4.6 Locking in a Three-Tier Application.. 16-18
16.4.6.1 Optimistic Locking in a Three-Tier Application... 16-18
16.4.6.2 Pessimistic Locking in a Three-Tier Application .. 16-18
16.5 Descriptor API.. 16-18
16.5.1 Descriptor Inheritance Hierarchy... 16-19

Part VIII Mappings

17 Introduction to Mappings

17.1 Mapping Types .. 17-1
17.2 Mapping Concepts... 17-2
17.2.1 Mapping Architecture.. 17-3
17.2.2 Example Mapping .. 17-4
17.2.3 Automatic Mappings ... 17-4
17.2.3.1 JPA Automapping ... 17-5
17.2.3.2 Automapping with Oracle JDeveloper at Development Time 17-5

xviii

17.2.3.3 Automapping with TopLink Workbench at Development Time....................... 17-5
17.2.3.4 Default Mapping in EJB 2.n CMP Projects Using OC4J at Run Time 17-5
17.2.3.5 JAXB Project Generation at Development Time ... 17-6
17.2.4 Indirection (Lazy Loading).. 17-6
17.2.4.1 Value Holder Indirection.. 17-8
17.2.4.2 Transparent Indirect Container Indirection .. 17-9
17.2.4.3 Proxy Indirection ... 17-10
17.2.4.3.1 Proxy Indirection Restrictions .. 17-10
17.2.4.4 Weaved Indirection ... 17-11
17.2.4.5 Indirection and JPA... 17-11
17.2.4.6 Indirection and EJB 2.n CMP ... 17-11
17.2.4.7 Indirection, Serialization, and Detachment ... 17-11
17.2.5 Method Accessors and Attribute Accessors ... 17-12
17.2.6 Mapping Converters and Transformers.. 17-12
17.2.6.1 Serialized Object Converter ... 17-12
17.2.6.2 Type Conversion Converter... 17-13
17.2.6.3 Object Type Converter.. 17-14
17.2.6.4 Simple Type Translator... 17-15
17.2.6.4.1 Default Read Conversions .. 17-16
17.2.6.4.2 Default Write Conversions.. 17-16
17.2.6.5 Transformation Mappings ... 17-17
17.2.7 Mappings and XPath.. 17-17
17.2.7.1 XPath by Position .. 17-18
17.2.7.2 XPath by Path and Name ... 17-18
17.2.7.3 XPath by Name .. 17-19
17.2.7.4 Self XPath.. 17-19
17.2.8 Mappings and xsd:list and xsd:union Types.. 17-20
17.2.8.1 Mapping an xsd:union Type.. 17-20
17.2.8.2 Mapping an xsd:list Type... 17-21
17.2.8.3 Mapping a List of Unions... 17-21
17.2.8.4 Mapping a Union of Lists... 17-22
17.2.8.5 Mapping a Union of Unions .. 17-22
17.2.9 Mappings and the jaxb:class Customization .. 17-23
17.2.9.1 all, choice, or sequence Structure .. 17-23
17.2.9.2 group Structure.. 17-24
17.2.9.3 sequence or choice Structure Containing a group.. 17-24
17.2.9.4 group Structure Containing a sequence or choice .. 17-25
17.2.9.5 group Structure Containing a group .. 17-26
17.2.9.6 Limitations of jaxb:class Customization Support ... 17-26
17.2.10 Mappings and JAXB Typesafe Enumerations .. 17-27
17.3 Mapping API .. 17-28
17.4 Relational Mappings.. 17-28
17.5 Object-Relational Data Type Mappings.. 17-28
17.6 XML Mappings... 17-29
17.7 EIS Mappings.. 17-29

Part IX Relational Projects

xix

18 Introduction to Relational Projects

18.1 Building Relational Projects ... 18-1
18.1.1 How to Build Relational Projects for a Relational Database 18-1
18.1.2 How to Build Relational Projects for an Object-Relational Data Type Database 18-2
18.2 Sequencing in Relational Projects.. 18-3
18.2.1 Sequencing Configuration Options.. 18-4
18.2.2 Sequencing Types ... 18-4
18.2.2.1 Table Sequencing... 18-5
18.2.2.1.1 Default Versus Custom Sequence Table ... 18-5
18.2.2.2 Unary Table Sequencing... 18-6
18.2.2.3 Query Sequencing ... 18-6
18.2.2.4 Default Sequencing ... 18-7
18.2.2.5 Native Sequencing with an Oracle Database Platform.. 18-7
18.2.2.5.1 Understanding the Oracle SEQUENCE Object.. 18-7
18.2.2.5.2 Using SEQUENCE Objects ... 18-8
18.2.2.6 Native Sequencing with a Non-Oracle Database Platform 18-8
18.2.3 Sequencing and Preallocation Size... 18-9
18.2.4 Sequencing with EJB 2.n Entity Beans with Container-Managed Persistence....... 18-10

19 Creating a Relational Project

19.1 Introduction to the Relational Project Creation... 19-1
19.2 Creating a Project from an Existing Object and Data Model... 19-2
19.2.1 How to Create a Project from an Existing Object and Data Model Using TopLink

Workbench 19-2
19.3 Creating a Project from an Existing Object Model .. 19-2
19.3.1 How to Create a Project from an Existing Object Model Using TopLink Workbench......

19-2
19.4 Creating a Project from an Existing Data Model... 19-3
19.4.1 How to Create a Project from an Existing Data Model Using TopLink Workbench.........

19-3
19.5 Creating a Project from an OC4J EJB CMP EAR at Deployment Time............................ 19-3
19.6 Exporting Project Information ... 19-3
19.6.1 How to Export Project Java Source Using TopLink Workbench 19-3
19.6.2 How to Export Table Creator Files Using TopLink Workbench 19-4
19.7 Working with the ejb-xml.File ... 19-4
19.7.1 How to Write to the ejb-jar.xml File Using TopLink Workbench.............................. 19-5
19.7.2 How to Read from the ejb-jar.xml File Using TopLink Workbench 19-6

20 Configuring a Relational Project

20.1 Introduction to Relational Project Configuration.. 20-1
20.2 Configuring Relational Database Platform at the Project Level 20-3
20.2.1 How to Configure Relational Database Platform at the Project Level Using TopLink

Workbench 20-3
20.3 Configuring Sequencing at the Project Level... 20-3
20.3.1 How to Configure Sequencing at the Project Level Using TopLink Workbench.... 20-4
20.3.2 How to Configure Sequencing at the Project Level Using Java................................. 20-5

xx

20.4 Configuring Login Information at the Project Level .. 20-5
20.4.1 How to Configure Login Information at the Project Level UsingTopLink Workbench ...

20-5
20.5 Configuring Development and Deployment Logins.. 20-6
20.5.1 How to Configure Development and Deployment Logins Using TopLink Workbench..

20-7
20.6 Logging In to the Database... 20-8
20.7 Configuring Named Query Parameterized SQL and Statement Caching at the Project Level

20-8
20.7.1 How to Configure Named Query Parameterized SQL and Statement Caching at the

Project Level Using TopLink Workbench 20-9
20.8 Configuring Table Generation Options .. 20-10
20.8.1 How to Configure Table Generation Options Using TopLink Workbench........... 20-10
20.9 Configuring Table Creator Java Source Options... 20-11
20.9.1 How to Configure Table Creator Java Source Options Using TopLink Workbench.........

20-11
20.10 Configuring Project Java Source Code Options .. 20-12
20.10.1 How to Configure Project Java Source Code Options Using TopLink Workbench

20-12
20.11 Configuring Deprecated Direct Mappings... 20-13
20.11.1 How to Configure Deprecated Direct Mappings Using TopLink Workbench 20-14

Part X Relational Descriptors

21 Introduction to Relational Descriptors

21.1 Relational Descriptors ... 21-1
21.2 Aggregate and Composite Descriptors in Relational Projects .. 21-1
21.2.1 Relational Aggregates and Nesting ... 21-2
21.2.2 Relational Aggregates and Inheritance ... 21-3
21.2.3 Relational Aggregates and EJB 2.n Entity Beans.. 21-4
21.3 Descriptors and Inheritance in Relational Projects ... 21-4
21.3.1 Inheritance and Primary Keys in Relational Projects .. 21-4
21.3.2 Single- and Multi-Table Inheritance in Relational Projects 21-4
21.3.2.1 Single-Table Inheritance ... 21-4
21.3.2.2 Multi-Table Inheritance .. 21-5
21.3.2.2.1 Inheritance Outer-Joins ... 21-6

22 Creating a Relational Descriptor

22.1 Introduction to Relational Descriptor Creation... 22-1
22.2 Creating a Relational Descriptor.. 22-1
22.2.1 How to Create a Relational Descriptor Using TopLink Workbench......................... 22-1
22.2.1.1 Creating Relational Class Descriptors .. 22-2
22.2.1.2 Creating Relational Aggregate Descriptors ... 22-2
22.2.1.3 Creating Relational Interface Descriptors .. 22-2
22.2.2 How to Create a Relational Descriptor Using Java.. 22-2

xxi

23 Configuring a Relational Descriptor

23.1 Introduction to Relational Descriptor Configuration ... 23-1
23.2 Configuring Associated Tables .. 23-3
23.2.1 How to Configure Associated Tables Using TopLink Workbench........................... 23-3
23.2.2 How to Configure Associated Tables Using Java .. 23-4
23.3 Configuring Sequencing at the Descriptor Level .. 23-4
23.3.1 How to Configure Sequencing at the Descriptor Level Using TopLink Workbench

23-4
23.3.2 How to Configure Sequencing at the Descriptor Level Using Java 23-6
23.3.2.1 Configuring a Sequence by Name .. 23-6
23.3.2.2 Configuring the Same Sequence for Multiple Descriptors.................................. 23-6
23.3.2.3 Configuring the Platform Default Sequence ... 23-7
23.4 Configuring Custom SQL Queries for Basic Persistence Operations............................... 23-7
23.4.1 How to Configure Custom SQL Queries for Basic Persistence Operations Using

TopLink Workbench 23-8
23.4.2 How to Configure Custom SQL Queries for Basic Persistence Operations Using Java....

23-9
23.5 Configuring Interface Alias .. 23-11
23.5.1 How to Configure Interface Alias Using TopLink Workbench 23-12
23.5.2 How to Configure Interface Alias Using Java .. 23-12
23.6 Configuring a Relational Descriptor as a Class or Aggregate Type............................... 23-12
23.6.1 How to Configure a Relational Descriptor as a Class or Aggregate Type Using

TopLink Workbench 23-13
23.6.2 How to Configure a Relational Descriptor as a Class or Aggregate Type Using Java......

23-13
23.7 Configuring Multitable Information ... 23-14
23.7.1 How to Configure Multitable Information Using TopLink Workbench 23-14
23.7.2 How to Configure Multitable Information Using Java ... 23-15

Part XI Object-Relational Data Type Descriptors

24 Introduction to Object-Relational Data Type Descriptors

24.1 Object-Relational Data Type Descriptors ... 24-1

25 Creating an Object-Relational Data Type Descriptor

25.1 Introduction to Object-Relational Data Type Descriptor Creation................................... 25-1
25.2 Creating an Object-Relational Data Type Descriptor ... 25-1
25.2.1 How to Create an Object-Relational Data Type Descriptor Using Java 25-1

26 Configuring an Object-Relational Data Type Descriptor

26.1 Introduction to Object-Relational Data Type Descriptor Configuration 26-1
26.2 Configuring Field Ordering ... 26-2
26.2.1 How to Configure Field Ordering Using Java.. 26-2

Part XII Relational Mappings

xxii

27 Introduction to Relational Mappings

27.1 Relational Mapping Types.. 27-2
27.2 Relational Mapping Concepts.. 27-2
27.2.1 Directionality... 27-2
27.2.2 Converters and Transformers ... 27-3
27.2.2.1 Using a Direct Mapping ... 27-3
27.2.2.2 Using a Converter Mapping .. 27-3
27.2.2.3 Using a Transformation Mapping... 27-4
27.2.3 Relational Mappings and EJB 2.n CMP ... 27-4
27.3 Direct-to-Field Mapping ... 27-4
27.4 Direct-to-XMLType Mapping .. 27-5
27.5 One-to-One Mapping .. 27-5
27.5.1 One-to-One Mappings and EJB 2.n CMP .. 27-6
27.6 Variable One-to-One Mapping .. 27-7
27.7 One-to-Many Mapping ... 27-8
27.7.1 One-to-Many Mappings and EJB 2.n CMP ... 27-9
27.8 Many-to-Many Mapping .. 27-9
27.8.1 Many-to-Many Mappings and EJB 2.n CMP .. 27-10
27.9 Aggregate Collection Mapping.. 27-10
27.9.1 Aggregate Collection Mappings and Inheritance .. 27-11
27.9.2 Aggregate Collection Mappings and EJB.. 27-11
27.9.3 How to Implement Aggregate Collection Mappings .. 27-11
27.10 Direct Collection Mapping ... 27-12
27.11 Direct Map Mapping ... 27-13
27.12 Aggregate Object Mapping .. 27-13
27.12.1 Aggregate Object Mappings with a Single Source Object .. 27-14
27.12.2 Aggregate Object Mappings with Multiple Source Objects 27-15
27.12.3 How to Implement an Aggregate Object Relationship Mapping............................ 27-15
27.13 Transformation Mapping.. 27-16

28 Configuring a Relational Mapping

28.1 Introduction to Relational Mapping Configuration ... 28-1
28.2 Configuring Common Relational Mapping Options.. 28-2
28.3 Configuring a Database Field... 28-3
28.3.1 How to Configure a Database Field Using TopLink Workbench.............................. 28-4
28.4 Configuring Reference Descriptor... 28-5
28.4.1 How to Configure a Reference Descriptor Using TopLink Workbench................... 28-6
28.5 Configuring Batch Reading .. 28-7
28.5.1 How to Configure Batch Reading Using TopLink Workbench 28-8
28.5.2 How to Configure Batch Reading Using Java .. 28-8
28.6 Configuring Query Key Order... 28-8
28.6.1 How to Configure Query Key Order Using TopLink Workbench............................ 28-9
28.6.2 How to Configure Query Key Order Using Java... 28-9
28.7 Configuring Table and Field References (Foreign and Target Foreign Keys) 28-10
28.7.1 How to Configure Table and Field References (Foreign and Target Foreign Keys)

Using TopLink Workbench 28-11

xxiii

28.7.2 How to Configure Table and Field References (Foreign and Target Foreign Keys)
Using Java 28-12

28.8 Configuring Joining at the Mapping Level .. 28-13
28.8.1 How to Configure Joining at the Mapping Level Using TopLink Workbench 28-13
28.8.2 How to Configure Joining at the Mapping Level Using Java 28-14

29 Configuring a Relational Direct-to-Field Mapping

29.1 Introduction to Relational Direct-to-Field Mapping Configuration 29-1

30 Configuring a Relational Direct-to-XMLType Mapping

30.1 Introduction to Relational Direct-to-XMLType Mapping.. 30-1
30.2 Configuring Read Whole Document... 30-2
30.2.1 How to Configure Read Whole Document Using TopLink Workbench.................. 30-2
30.2.2 How to Configure Read Whole Document Using Java... 30-2

31 Configuring a Relational One-to-One Mapping

31.1 Introduction to Relational One-to-One Mapping Configuration 31-1

32 Configuring a Relational Variable One-to-One Mapping

32.1 Introduction to Relational Variable One-to-One Mapping Configuration...................... 32-1
32.2 Configuring Class Indicator ... 32-2
32.2.1 How to Configure a Class Indicator Using TopLink Workbench 32-3
32.2.2 How to Configure a Class Indicator Using Java .. 32-3
32.3 Configuring Unique Primary Key ... 32-4
32.3.1 How to Configure a Unique Primary Key UsingTopLink Workbench 32-4
32.3.2 How to Configure a Unique Primary Key Using Java .. 32-5
32.3.3 What You May Need to Know About Unique Primary Keys.................................... 32-5
32.4 Configuring Query Key Association... 32-6
32.4.1 How to Configure a Query Key Association Using TopLink Workbench............... 32-6
32.4.2 How to Configure a Query Key Association Using Java.. 32-6

33 Configuring a Relational One-to-Many Mapping

33.1 Introduction to Relational One-to-Many Mapping Configuration................................... 33-1

34 Configuring a Relational Many-to-Many Mapping

34.1 Introduction to Relational Many-to-Many Mapping Configuration................................ 34-1
34.2 Configuring a Relation Table ... 34-2
34.2.1 How to Configure a Relation Table Using TopLink Workbench 34-2
34.2.2 How to Configure a Relation Table Using Java ... 34-3

35 Configuring a Relational Aggregate Collection Mapping

35.1 Introduction to Relational Aggregate Collection Mapping Configuration..................... 35-1

xxiv

36 Configuring a Relational Direct Collection Mapping

36.1 Introduction to Relational Direct Collection Mapping Configuration............................. 36-1
36.2 Configuring Target Table ... 36-2
36.2.1 How to Configure a Target Table Using TopLink Workbench 36-2
36.2.2 How to Configure a Target Table Using Java... 36-3
36.3 Configuring Direct Value Field.. 36-4
36.3.1 How to Configure a Direct Value Field Using TopLink Workbench........................ 36-4
36.3.2 How to Configure Direct Value Field Using Java.. 36-5

37 Configuring a Relational Aggregate Object Mapping

37.1 Introduction to Relational Aggregate Object Mapping Configuration............................ 37-1
37.2 Configuring Aggregate Fields.. 37-2
37.2.1 How to Configure Aggregate Fields Using TopLink Workbench............................. 37-2
37.2.2 How to Configure Aggregate Fields Using Java.. 37-3
37.3 Configuring Allowing Null Values... 37-3
37.3.1 How to Configure Allowing Null Values Using TopLink Workbench.................... 37-3
37.3.2 How to Configure Allowing Null Values Using Java ... 37-4

38 Configuring a Relational Direct Map Mapping

38.1 Introduction to Relational Direct Map Mapping Configuration 38-1
38.2 Configuring Direct Value Field.. 38-2
38.2.1 How to Configure Direct Value Fields Using TopLink Workbench......................... 38-2
38.2.2 How to Configure Direct Value Fields Using Java .. 38-3
38.3 Configuring Direct Key Field... 38-3
38.3.1 How to Configure Direct Key Field Using TopLink Workbench.............................. 38-3
38.3.2 How to Configure Direct Key Field Using Java ... 38-4
38.4 Configuring Key Converters .. 38-4
38.4.1 How to Configure Key Converters Using TopLink Workbench 38-4
38.4.2 How to Configure Key Converters Using Java .. 38-5
38.5 Configuring Value Converters... 38-5
38.5.1 How to Configure Value Converters Using TopLink Workbench............................ 38-5

39 Configuring a Relational Transformation Mapping

39.1 Introduction to Relational Transformation Mapping Configuration............................... 39-1

Part XIII Object-Relational Data Type Mappings

40 Introduction to Object-Relational Data Type Mappings

40.1 Object-Relational Data Type Mapping Types.. 40-1
40.1.1 Object-Relational Data Type Structure Mapping... 40-2
40.1.2 Object-Relational Data Type Reference Mapping.. 40-2
40.1.3 Object-Relational Data Type Array Mapping... 40-3
40.1.4 Object-Relational Data Type Object Array Mapping .. 40-3
40.1.5 Object-Relational Data Type Nested Table Mapping.. 40-3

xxv

41 Configuring an Object-Relational Data Type Mapping

41.1 Introduction to Object-Relational Data Type Mapping Configuration 41-1
41.2 Configuring Common Object-Relational Data Type Mapping Options.......................... 41-2
41.3 Configuring Reference Class .. 41-2
41.3.1 How to Configure Reference Class Using Java .. 41-3
41.4 Configuring Attribute Name.. 41-3
41.4.1 How to Configure Attribute Name Using Java.. 41-4
41.5 Configuring Field Name ... 41-4
41.5.1 How to Configure Field Name Using Java ... 41-5
41.6 Configuring Structure Name.. 41-5
41.6.1 How to Configure Structure Name Using Java.. 41-6

42 Configuring an Object-Relational Data Type Structure Mapping

42.1 Introduction to Object-Relational Data Type Structure Mapping Configuration 42-1

43 Configuring an Object-Relational Data Type Reference Mapping

43.1 Introduction to Object-Relational Data Type Reference Mapping Configuration 43-1

44 Configuring an Object-Relational Data Type Array Mapping

44.1 Introduction to Object-Relational Data Type Array Mapping Configuration................ 44-1

45 Configuring an Object-Relational Data Type Object Array Mapping

45.1 Introduction to Object-Relational Data Type Object Array Mapping Configuration.... 45-1

46 Configuring an Object-Relational Data Type Nested Table Mapping

46.1 Introduction to Object-Relational Data Type Nested Table Mapping Configuration ... 46-1

Part XIV XML Projects

47 Introduction to XML Projects

47.1 XML Project Concepts ... 47-1
47.1.1 TopLink Support for Java Architecture for XML Binding (JAXB)............................. 47-2
47.1.1.1 Generating TopLink Project and XML Schema Using JAXB Annotations........ 47-2
47.1.1.2 Working with JAXB-Specific Generated Files ... 47-4
47.1.1.2.1 Implementation Classes .. 47-4
47.1.1.3 Using TopLink JAXB Compiler-Generated Files at Run Time 47-5
47.1.1.3.1 How to Use TopLink XMLContext.. 47-5
47.1.1.3.2 How to Use Marshal and Unmarshall Events ... 47-5
47.1.1.3.3 How to Use TopLink XMLBinder.. 47-7
47.1.1.3.4 How to Use JAXBContext ... 47-8
47.1.1.3.5 How to Use JAXBElement... 47-8
47.1.2 JAXB Validation .. 47-9

xxvi

48 Creating an XML Project

48.1 Introduction to XML Project Creation .. 48-1
48.2 Creating an XML Project from an XML Schema ... 48-1
48.2.1 How to Create an XML Project from an XML Schema Using TopLink Workbench

48-2
48.2.2 How to Create an XML Project from an XML Schema Using the Command Line. 48-3

49 Configuring an XML Project

49.1 Introduction to XML Project Configuration... 49-1

Part XV XML Descriptors

50 Introduction to XML Descriptors

50.1 XML Descriptor Concepts .. 50-1
50.1.1 XML Descriptors and Aggregation.. 50-1
50.1.1.1 Composite Descriptors in XML Projects .. 50-1

51 Creating an XML Descriptor

51.1 Introduction to XML Descriptor Creation.. 51-1
51.2 Creating an XML Descriptor .. 51-1
51.2.1 How to Create an XML Descriptor Using TopLink Workbench 51-1
51.2.2 How to Create an XML Descriptor Using Java .. 51-1

52 Configuring an XML Descriptor

52.1 Introduction to XML Descriptor Configuration .. 52-1
52.2 Configuring Schema Context for an XML Descriptor .. 52-2
52.2.1 How to Configure Schema Context for an XML Descriptor Using TopLink Workbench

52-2
52.2.1.1 Choosing a Schema Context... 52-3
52.2.2 How to Configure Schema Context for an XML Descriptor Using Java 52-3
52.3 Configuring for Complex Type of anyType .. 52-3
52.3.1 How to Configure Complex Type of anyType Using TopLink Workbench............ 52-5
52.4 Configuring Default Root Element.. 52-5
52.4.1 How to Configure Default Root Element Using TopLink Workbench..................... 52-5
52.4.1.1 Choosing a Root Element ... 52-6
52.5 Configuring Document Preservation.. 52-6
52.5.1 How to Configure Document Preservation Using TopLink Workbench................. 52-6
52.5.2 How to Configure Document Preservation Using Java .. 52-7

Part XVI XML Mappings

53 Introduction to XML Mappings

53.1 XML Mapping Types... 53-1
53.2 XML Mapping Concepts... 53-3
53.2.1 Mapping to Simple and Complex Types... 53-4

xxvii

53.2.2 Mapping Order ... 53-5
53.2.3 XPath Support ... 53-5
53.2.4 xsd:list and xsd:union Support ... 53-5
53.2.5 xs:any and xs:anyType Support ... 53-5
53.2.6 jaxb:class Support ... 53-6
53.2.7 Typesafe Enumeration Support.. 53-6
53.2.8 Mapping Extensions... 53-6
53.2.9 Key On Source-Based Mapping Support .. 53-6
53.2.10 Substitution Groups ... 53-7
53.2.11 Mixed Content Mapping ... 53-7
53.2.12 XML Adapter... 53-7
53.3 XML Direct Mapping .. 53-7
53.3.1 Mapping to a Text Node.. 53-8
53.3.1.1 Mapping to a Simple Text Node ... 53-8
53.3.1.2 Mapping to a Text Node in a Simple Sequence .. 53-8
53.3.1.3 Mapping to a Text Node in a Subelement ... 53-9
53.3.1.4 Mapping to a Text Node by Position.. 53-10
53.3.2 Mapping to an Attribute.. 53-11
53.3.3 Mapping to a Specified Schema Type.. 53-12
53.3.4 Mapping to a List Field with an XML Direct Mapping .. 53-13
53.3.5 Mapping to a Union Field with an XML Direct Mapping.. 53-13
53.3.6 Mapping to a Union of Lists with an XML Direct Mapping 53-15
53.3.7 Mapping to a Union of Unions with an XML Direct Mapping................................ 53-16
53.3.8 Mapping with a Simple Type Translator .. 53-17
53.4 XML Composite Direct Collection Mapping ... 53-18
53.4.1 Mapping to Multiple Text Nodes... 53-18
53.4.1.1 Mapping to a Simple Sequence ... 53-18
53.4.1.2 Mapping to a Sequence in a Subelement ... 53-19
53.4.2 Mapping to Multiple Attributes ... 53-20
53.4.3 Mapping to a Single Text Node with an XML Composite Direct Collection Mapping

53-20
53.4.4 Mapping to a Single Attribute with an XML Composite Direct Collection Mapping.......

53-21
53.4.5 Mapping to a List of Unions with an XML Composite Direct Collection Mapping..........

53-22
53.4.6 Mapping to a Union of Lists with an XML Composite Direct Collection Mapping..........

53-23
53.4.7 Specifying the Content Type of a Collection with an XML Composite Direct Collection

Mapping 53-24
53.5 XML Composite Object Mapping.. 53-24
53.5.1 Mapping into the Parent Record .. 53-25
53.5.2 Mapping to an Element.. 53-26
53.5.3 Mapping to Different Elements by Element Name ... 53-26
53.5.4 Mapping to Different Elements by Element Position.. 53-28
53.6 XML Composite Collection Mapping ... 53-29
53.7 XML Any Object Mapping ... 53-31
53.8 XML Any Collection Mapping... 53-33
53.9 XML Transformation Mapping.. 53-35

xxviii

53.10 XML Object Reference Mapping.. 53-36
53.10.1 Mapping Using a Single Key .. 53-37
53.10.2 Mapping Using a Composite Key .. 53-38
53.10.3 Mapping Using JAXB... 53-38
53.11 XML Collection Reference Mapping... 53-40
53.12 XML Binary Data Mapping .. 53-42
53.13 XML Binary Data Collection Mapping ... 53-43
53.14 XML Fragment Mapping .. 53-43
53.15 XML Fragment Collection Mapping ... 53-43
53.16 XML Choice Object Mapping... 53-44
53.17 XML Choice Collection Mapping .. 53-44
53.18 XML Any Attribute Mapping .. 53-44

54 Configuring an XML Mapping

54.1 Introduction to XML Mapping Configuration .. 54-1
54.2 Configuring Common XML Mapping Options... 54-2
54.3 Configuring Reference Descriptor... 54-3
54.3.1 How to Configure a Reference Descriptor Using TopLink Workbench................... 54-4
54.4 Configuring Maps to Wildcard.. 54-5
54.4.1 How to Configure Maps to Wildcard Using TopLink Workbench........................... 54-6
54.5 Configuring Source to Target Key Field Association ... 54-7
54.5.1 How to Configure Source to Target Key Field Association Using Java 54-8
54.6 Configuring Reference Class .. 54-8
54.6.1 How to Configure Reference Class Using Java .. 54-10
54.7 Configuring the Use of Inline Binary Data... 54-10
54.7.1 How to Configure the Use of Inline Binary Data Using Java................................... 54-11
54.8 Configuring the Use of SwaRef Type.. 54-11
54.8.1 How to Configure the Use of SwaRef Type Using Java.. 54-13
54.9 Configuring the Choice Element ... 54-13
54.9.1 How to Configure the Choice Element Using Java ... 54-14

55 Configuring an XML Direct Mapping

55.1 Introduction to XML Direct Mapping Configuration... 55-1

56 Configuring an XML Composite Direct Collection Mapping

56.1 Introduction to XML Composite Direct Collection Mapping Configuration 56-1

57 Configuring an XML Composite Object Mapping

57.1 Introduction to XML Composite Object Mapping Configuration.................................... 57-1

58 Configuring an XML Composite Collection Mapping

58.1 Introduction to XML Composite Collection Mapping Configuration 58-1

59 Configuring an XML Any Object Mapping

59.1 Introduction to XML Any Object Mapping Configuration ... 59-1

xxix

60 Configuring an XML Any Collection Mapping

60.1 Introduction to XML Any Collection Mapping Configuration... 60-1

61 Configuring an XML Transformation Mapping

61.1 Introduction to XML Transformation Mapping Configuration.. 61-1

62 Configuring an XML Object Reference Mapping

62.1 Introduction to XML Object Reference Mapping.. 62-1

63 Configuring an XML Collection Reference Mapping

63.1 Introduction to XML Collection Reference Mapping ... 63-1

64 Configuring an XML Binary Data Mapping

64.1 Introduction to XML Binary Data Mapping .. 64-1

65 Configuring an XML Binary Data Collection Mapping

65.1 Introduction to XML Binary Data Collection Mapping ... 65-1

66 Configuring an XML Fragment Mapping

66.1 Introduction to XML Fragment Mapping .. 66-1

67 Configuring an XML Fragment Collection Mapping

67.1 Introduction to XML Fragment Collection Mapping ... 67-1

68 Configuring an XML Choice Object Mapping

68.1 Introduction to XML Choice Object Mapping... 68-1

69 Configuring an XML Choice Collection Mapping

69.1 Introduction to XML Choice Collection Mapping Configuration 69-1

70 Configuring an XML Any Attribute Mapping

70.1 Introduction to XML Any Attribute Mapping Configuration .. 70-1

Part XVII EIS Projects

71 Introduction to EIS Projects

71.1 EIS Project Concepts .. 71-1

72 Creating an EIS Project

72.1 Introduction to EIS Project Creation ... 72-1
72.2 Creating an EIS Project with XML Records ... 72-1

xxx

72.2.1 How to Create an EIS Project with XML Records Using Oracle JDeveloper........... 72-2
72.2.2 How to Create an EIS Project with XML Records Using TopLink Workbench 72-2
72.3 Creating an EIS Project with Indexed or Mapped Records ... 72-2
72.3.1 How to Create an EIS Project with Indexed or Mapped Records Using Java 72-2

73 Configuring an EIS Project

73.1 Introduction to EIS Project Configuration.. 73-1
73.2 Configuring EIS Data Source Platform at the Project Level .. 73-2
73.2.1 How to Configure EIS Data Source Platform at the Project Level Using TopLink

Workbench 73-2
73.3 Configuring EIS Connection Specification Options at the Project Level 73-3
73.3.1 How to Configure EIS Connection Specification Options at the Project Level Using

TopLink Workbench 73-3

Part XVIII EIS Descriptors

74 Introduction to EIS Descriptors

74.1 EIS Descriptor Concepts ... 74-1
74.2 EIS Descriptors and Aggregation .. 74-1
74.2.1 Root and Composite Descriptors in EIS Projects ... 74-2
74.3 EIS Descriptors and Inheritance .. 74-2
74.3.1 Inheritance and Primary Keys in EIS Projects .. 74-2

75 Creating an EIS Descriptor

75.1 Introduction to EIS Descriptor Creation... 75-1
75.2 Creating an EIS Descriptor ... 75-1
75.2.1 How to Create an EIS Descriptor Using TopLink Workbench 75-1
75.2.1.1 EIS Root Descriptors ... 75-1
75.2.1.2 EIS Composite Descriptors... 75-2
75.2.2 How to Create an EIS Descriptor Using Java ... 75-2

76 Configuring an EIS Descriptor

76.1 Introduction to EIS Descriptor Configuration ... 76-1
76.2 Configuring Schema Context for an EIS Descriptor ... 76-3
76.2.1 How to Configure Schema Context for an EIS Descriptor Using TopLink Workbench ...

76-3
76.2.1.1 Choosing a Schema Context... 76-3
76.2.2 How to Configure Schema Context for an EIS Descriptor Using Java 76-4
76.3 Configuring Default Root Element.. 76-4
76.3.1 How to Configure Default Root Element Using TopLink Workbench..................... 76-4
76.3.1.1 Choosing a Root Element ... 76-5
76.3.2 How to Configure Default Root Element Using Java.. 76-5
76.4 Configuring Record Format ... 76-6
76.4.1 How to Configure Record Format Using Java ... 76-6
76.5 Configuring Custom EIS Interactions for Basic Persistence Operations 76-6

xxxi

76.5.1 How to Configure Custom EIS Interactions for Basic Persistence Operations Using
TopLink Workbench 76-7

76.5.2 How to Configure Custom EIS Interactions for Basic Persistence Operations Using
Java 76-9

76.6 Configuring an EIS Descriptor as a Root or Composite Type... 76-10
76.6.1 How to Configure an EIS Descriptor as a Root or Composite Type Using TopLink

Workbench 76-10
76.6.2 How to Configure an EIS Descriptor as a Root or Composite Type Using Java... 76-10

Part XIX EIS Mappings

77 Introduction to EIS Mappings

77.1 EIS Mapping Types.. 77-1
77.2 EIS Mapping Concepts.. 77-2
77.2.1 EIS Record Type.. 77-2
77.2.1.1 Indexed Records .. 77-3
77.2.1.2 Mapped Records.. 77-3
77.2.1.3 XML Records.. 77-3
77.2.2 XPath Support ... 77-3
77.2.3 xsd:list and xsd:union Support ... 77-3
77.2.4 jaxb:class Support ... 77-3
77.2.5 Typesafe Enumeration Support.. 77-4
77.2.6 Composite and Reference EIS Mappings .. 77-4
77.2.6.1 Composite EIS Mappings ... 77-4
77.2.6.2 Reference EIS Mappings... 77-4
77.2.7 EIS Mapping Architecture... 77-5
77.3 EIS Direct Mapping ... 77-6
77.4 EIS Composite Direct Collection Mapping .. 77-7
77.5 EIS Composite Object Mapping... 77-7
77.6 EIS Composite Collection Mapping .. 77-8
77.7 EIS One-to-One Mapping ... 77-9
77.7.1 EIS One-to-One Mappings with Key on Source... 77-10
77.7.2 EIS One-to-One Mappings with Key on Target ... 77-11
77.8 EIS One-to-Many Mapping .. 77-13
77.8.1 EIS One-to-Many Mappings with Key on Source.. 77-14
77.8.2 EIS One-to-Many Mappings with Key on Target .. 77-16
77.9 EIS Transformation Mapping... 77-18

78 Configuring an EIS Mapping

78.1 Introduction to EIS Mapping Configuration ... 78-1
78.2 Configuring Common EIS Mapping Options.. 78-2
78.3 Configuring Reference Descriptors ... 78-2
78.3.1 How to Configure Reference Descriptors Using TopLink Workbench.................... 78-3
78.4 Configuring Selection Interaction.. 78-4
78.4.1 How to Configure Selection Interaction Using TopLink Workbench....................... 78-5

xxxii

79 Configuring an EIS Direct Mapping

79.1 Introduction to EIS Direct Mapping Configuration.. 79-1

80 Configuring an EIS Composite Direct Collection Mapping

80.1 Introduction to EIS Composite Direct Collection Mapping Configuration 80-1

81 Configuring an EIS Composite Object Mapping

81.1 Introduction to EIS Composite Object Mapping Configuration....................................... 81-1

82 Configuring an EIS Composite Collection Mapping

82.1 Introduction to EIS Composite Collection Mapping Configuration 82-1

83 Configuring an EIS One-to-One Mapping

83.1 Introduction to EIS One-to-One Mapping Configuration ... 83-1
83.2 Configuring Foreign Key Pairs .. 83-2
83.2.1 How to Configure Foreign Key Pairs Using TopLink Workbench 83-2

84 Configuring an EIS One-to-Many Mapping

84.1 Introduction to EIS One-to-Many Mapping Configuration... 84-1
84.2 Configuring Foreign Key Pairs .. 84-2
84.2.1 How to Configure Foreign Key Pairs Using TopLink Workbench 84-2
84.3 Configuring Delete All Interactions .. 84-4
84.3.1 How to Configure Delete All Interactions Using TopLink Workbench 84-4

85 Configuring an EIS Transformation Mapping

85.1 Introduction EIS Transformation Mapping Configuration ... 85-1

Part XX Using TopLink

86 Introduction to Persistence Layer

86.1 Persistence Layer Concepts .. 86-1
86.1.1 Sessions .. 86-1
86.1.2 Data Access.. 86-2
86.1.3 Cache .. 86-2
86.1.4 Queries and Expressions ... 86-2
86.1.5 Transactions... 86-3

Part XXI TopLink Sessions

87 Introduction to TopLink Sessions

87.1 Session Types.. 87-1
87.2 Session Concepts .. 87-2
87.2.1 Session Architecture ... 87-3

xxxiii

87.2.1.1 Object Cache... 87-3
87.2.1.2 Connection Pools ... 87-4
87.2.1.3 Query Mechanism ... 87-4
87.2.1.4 Java Object Builder .. 87-4
87.2.2 Session Configuration and the sessions.xml File ... 87-5
87.2.3 Session Customization ... 87-5
87.2.4 Acquiring a Session at Run Time with the Session Manager..................................... 87-5
87.2.5 Managing Session Events with the Session Event Manager 87-6
87.2.5.1 Session Event Manager Events .. 87-6
87.2.5.2 Session Event Listeners... 87-8
87.2.6 Logging .. 87-8
87.2.6.1 Log Types.. 87-8
87.2.6.1.1 TopLink Native Logging... 87-8
87.2.6.1.2 java.util Logging... 87-9
87.2.6.1.3 Server Logging.. 87-10
87.2.6.2 Log Output ... 87-10
87.2.6.3 Log Level... 87-10
87.2.6.4 Logging SQL... 87-10
87.2.6.5 Logging Chained Exceptions ... 87-11
87.2.6.6 Logging Inside a Java EE Container ... 87-11
87.2.6.7 Logging Outside of a Java EE Container.. 87-11
87.2.7 Profiler .. 87-11
87.2.7.1 TopLink Profiler... 87-12
87.2.7.2 Oracle Dynamic Monitoring System (DMS).. 87-12
87.2.8 Integrity Checker .. 87-12
87.2.9 Exception Handlers .. 87-12
87.2.10 Registering Descriptors.. 87-13
87.2.11 Sessions and CMP... 87-13
87.2.12 Sessions and Sequencing ... 87-13
87.3 Server and Client Sessions.. 87-14
87.3.1 Three-Tier Architecture Overview... 87-15
87.3.2 Advantages of the TopLink Three-Tier Architecture.. 87-15
87.3.2.1 Shared Resources... 87-16
87.3.2.2 Providing Read Access ... 87-16
87.3.2.3 Providing Write Access .. 87-17
87.3.2.4 Security and User Privileges .. 87-18
87.3.2.5 Concurrency ... 87-19
87.3.2.6 Connection Allocation .. 87-19
87.4 Unit of Work Sessions ... 87-20
87.5 Isolated Client Sessions... 87-20
87.5.1 Isolated Client Sessions and Oracle Virtual Private Database (VPD)..................... 87-22
87.5.1.1 VPD with Oracle Database Proxy Authentication.. 87-22
87.5.1.2 VPD Without Oracle Database Proxy Authentication 87-22
87.5.1.3 Isolated Client Session Life Cycle ... 87-23
87.5.2 Isolated Client Session Limitations .. 87-24
87.6 Historical Sessions ... 87-25
87.6.1 Historical Session Limitations... 87-26

xxxiv

87.7 Session Broker and Client Sessions ... 87-26
87.7.1 Session Broker Architecture .. 87-27
87.7.2 Committing a Transaction with a Session Broker.. 87-28
87.7.2.1 Committing a Session with a JTA Driver: Two-Phase Commits...................... 87-28
87.7.2.2 Committing a Session Without a JTA Driver: Two-Stage Commits 87-28
87.7.3 Session Broker Session Limitations.. 87-28
87.7.3.1 Many-to-Many Join Tables and Direct Collection Tables.................................. 87-28
87.7.4 Session Broker Alternatives... 87-29
87.7.4.1 Database Linking ... 87-29
87.7.4.2 Multiple Sessions .. 87-29
87.8 Database Sessions .. 87-29
87.9 Remote Sessions ... 87-30
87.9.1 Architectural Overview ... 87-31
87.9.1.1 Application Layer.. 87-32
87.9.1.2 Transport Layer ... 87-32
87.9.1.3 Server Layer.. 87-32
87.9.2 Remote Session Concepts .. 87-32
87.9.2.1 Securing Remote Session Access ... 87-33
87.9.2.2 Queries .. 87-33
87.9.2.3 Refreshing... 87-33
87.9.2.4 Indirection... 87-33
87.9.2.5 Cursored Streams .. 87-34
87.9.2.6 Unit of Work... 87-34
87.10 Sessions and the Cache.. 87-34
87.10.1 Server and Database Session Cache ... 87-34
87.10.2 Isolated Session Cache ... 87-34
87.10.3 Historical Session Cache .. 87-34
87.11 Session API.. 87-34

88 Creating a Session

88.1 Introduction to the Session Creation... 88-1
88.2 Creating a Sessions Configuration .. 88-1
88.2.1 How to Create a Sessions Configuration Using TopLink Workbench 88-2
88.3 Configuring a Sessions Configuration.. 88-3
88.3.1 How to Configure a Sessions Configuration Using TopLink Workbench............... 88-3
88.4 Creating a Server Session.. 88-4
88.4.1 How to Create a Server Session Using TopLink Workbench..................................... 88-4
88.4.2 How to Create a Server Session Using Java.. 88-6
88.5 Creating Session Broker and Client Sessions... 88-6
88.5.1 How to Create a Session Broker and Client Sessions Using TopLink Workbench. 88-7
88.5.2 How to Create a Session Broker and Client Sessions Using Java 88-8
88.6 Creating Database Sessions .. 88-8
88.6.1 How to Create Database Sessions Using TopLink Workbench 88-9
88.6.2 How to Create Database Sessions Using Java .. 88-10
88.7 Creating Remote Sessions... 88-11
88.7.1 How to Create Remote Sessions Using Java ... 88-11
88.7.1.1 Server... 88-11

xxxv

88.7.1.2 Client ... 88-11

89 Configuring a Session

89.1 Configuring Common Session Options.. 89-2
89.2 Configuring a Primary Mapping Project.. 89-3
89.2.1 How to Configure a Primary Mapping Project Using TopLink Workbench........... 89-3
89.2.2 How to Configure a Primary Mapping Project Using Java.. 89-4
89.3 Configuring a Session Login .. 89-5
89.4 Configuring Logging... 89-5
89.4.1 How to Configure Logging Using TopLink Workbench.. 89-6
89.4.2 How to Configure Logging Using Session API in Java... 89-8
89.4.3 How to Configure Logging Using Oracle Enterprise Manager................................. 89-9
89.4.4 How to Configure Logging in a Java EE Container... 89-9
89.4.5 How to Configure a Session to use the java.util.logging Package 89-9
89.4.5.1 logging.properties ... 89-9
89.4.5.2 Formatters... 89-10
89.4.5.3 Namespace ... 89-10
89.5 Configuring Multiple Mapping Projects .. 89-11
89.5.1 How to Configure Multiple Mapping Projects Using TopLink Workbench 89-11
89.5.2 How to Configure Multiple Mapping Projects Using Java 89-12
89.6 Configuring a Performance Profiler.. 89-12
89.6.1 How to Configure a Performance Profiler Using TopLink Workbench................. 89-13
89.6.2 How to Configure a Performance Profiler Using Java .. 89-14
89.7 Configuring an Exception Handler ... 89-14
89.7.1 How to Configure an Exception Handler Using TopLink Workbench 89-14
89.7.2 How to Configure an Exception Handler Using Java ... 89-15
89.8 Configuring a Session Customizer Class.. 89-15
89.8.1 How to Configure Customizer Class Using TopLink Workbench.......................... 89-16
89.8.2 How to Configure Customizer Class Using Java... 89-16
89.9 Configuring the Server Platform ... 89-17
89.9.1 How to Configure the Server Platform Using TopLink Workbench 89-18
89.9.2 How to Configure the Server Platform Using Java ... 89-19
89.10 Configuring Session Event Listeners .. 89-19
89.10.1 How to Configure Session Event Listeners Using TopLink Workbench 89-20
89.10.2 How to Configure Session Event Listeners Using Java .. 89-20
89.11 Configuring the Integrity Checker .. 89-21
89.11.1 How to Configure the Integrity Checker Using Java .. 89-22
89.12 Configuring Connection Policy ... 89-22
89.12.1 How to Configure Connection Policy Using TopLink Workbench 89-23
89.12.2 How to Configure Connection Policy Using Java.. 89-24
89.13 Configuring Named Queries at the Session Level .. 89-24
89.13.1 How to Configure Named Queries at the Session Level Using Java 89-25

90 Acquiring and Using Sessions at Run Time

90.1 Introduction to Session Acquisition .. 90-1
90.1.1 Session Manager ... 90-2

xxxvi

90.1.2 Multiple Sessions .. 90-2
90.2 Acquiring the Session Manager ... 90-2
90.3 Acquiring a Session from the Session Manager .. 90-2
90.3.1 How to Load a Session from sessions.xml Using Defaults... 90-3
90.3.2 How to Load a Session from sessions.xml with an Alternative Class Loader......... 90-4
90.3.3 How to Load a Session from an Alternative Session Configuration File 90-4
90.3.4 How to Load a Session Without Logging In... 90-5
90.3.5 How to Reload and Refresh Session Configuration .. 90-5
90.3.6 How to Refresh a Session when the Class Loader Changes....................................... 90-5
90.4 Acquiring a Client Session.. 90-6
90.4.1 How to Acquire an Isolated Client Session... 90-6
90.4.2 How to Acquire a Client Session that Uses Exclusive Connections.......................... 90-7
90.4.3 How to Acquire a Client Session that Uses Connection Properties 90-8
90.4.4 How to Acquire a Client Session that Uses a Named Connection Pool 90-8
90.4.5 How to Acquire a Client Session that Does Not Use Lazy Connection Allocation 90-8
90.5 Acquiring a Historical Session ... 90-9
90.6 Logging In to a Session ... 90-9
90.7 Using Session API .. 90-9
90.8 Logging Out of a Session .. 90-10
90.9 Storing Sessions in the Session Manager Instance .. 90-10
90.10 Destroying Sessions in the Session Manager Instance ... 90-10

91 Configuring Server Sessions

91.1 Introduction to Server Session Configuration ... 91-1
91.2 Configuring Internal Connection Pools.. 91-2
91.3 Configuring External Connection Pools ... 91-2

92 Configuring Exclusive Isolated Client Sessions for Virtual Private Database

92.1 Introduction to Exclusive Isolated Client Session Configuration..................................... 92-1
92.2 Using PostAcquireExclusiveConnection Event Handler... 92-2
92.2.1 How to Use Java.. 92-2
92.3 Using PreReleaseExclusiveConnection Event Handler.. 92-2
92.3.1 How to Use Java.. 92-3
92.4 Using NoRowsModifiedSessionEvent Event Handler... 92-3
92.4.1 How to Use Java.. 92-4
92.5 Accessing Indirection .. 92-4

93 Configuring Historical Sessions

93.1 Introduction to Historical Session Configuration ... 93-1
93.1.1 How to Configure Historical Sessions Using an Oracle Platform............................. 93-1
93.1.2 How to Configure Historical Sessions Using a TopLink HistoryPolicy................... 93-2

94 Configuring Session Broker and Client Sessions

94.1 Introduction to Session Broker and Client Session Configuration 94-1
94.2 Removing, Renaming, or Adding Sessions ... 94-2
94.2.1 How to Use TopLink Workbench to Remove, Rename, or Add Sessions................ 94-2

xxxvii

95 Configuring Database Sessions

95.1 Introduction to Database Session Configuration .. 95-1
95.2 Configuring External Connection Pools ... 95-2

Part XXII Data Access

96 Introduction to Data Access

96.1 Data Access Concepts.. 96-1
96.1.1 Externally Managed Transactional Data Sources .. 96-1
96.1.2 Data Source Login Types... 96-2
96.1.2.1 DatabaseLogin ... 96-2
96.1.2.2 EISLogin.. 96-3
96.1.3 Data Source Platform Types.. 96-3
96.1.3.1 Database Platforms.. 96-3
96.1.3.2 EIS Platforms.. 96-4
96.1.4 Authentication... 96-5
96.1.4.1 Simple JDBC Authentication ... 96-5
96.1.4.2 Oracle Database Proxy Authentication .. 96-5
96.1.4.3 Auditing.. 96-6
96.1.5 Connections ... 96-7
96.1.6 Connection Pools .. 96-7
96.1.6.1 Internal Connection Pools .. 96-7
96.1.6.2 External Connection Pools ... 96-8
96.1.6.3 Default (Write) and Read Connection Pools ... 96-8
96.1.6.4 Sequence Connection Pools ... 96-8
96.1.6.5 Application-Specific Connection Pools .. 96-9
96.2 Data Access API ... 96-10
96.2.1 Login Inheritance Hierarchy ... 96-10
96.2.2 Platform Inheritance Hierarchy.. 96-10

97 Configuring a Data Source Login

97.1 Configuring Common Data Source Login Options .. 97-1
97.2 Configuring User Name and Password ... 97-2
97.2.1 How to Configure User Name and Password Using TopLink Workbench 97-2
97.3 Configuring Password Encryption.. 97-3
97.3.1 How to Configure Password Encryption Using Java.. 97-3
97.4 Configuring External Connection Pooling... 97-4
97.4.1 How to Configure External Connection Pooling Using TopLink Workbench........ 97-5
97.4.2 How to Configure External Connection Pooling Using Java 97-6
97.5 Configuring Properties.. 97-6
97.5.1 How to Configure Properties Using TopLink Workbench... 97-7
97.5.2 How to Configure Properties Using Java.. 97-8
97.6 Configuring a Default Null Value at the Login Level .. 97-8
97.6.1 How to Configure a Default Null Value at the Login Level Using Java 97-8

xxxviii

98 Configuring a Database Login

98.1 Introduction to Database Login Configuration ... 98-1
98.2 Configuring a Relational Database Platform at the Session Level 98-2
98.2.1 How to Configure a Relational Database Platform at the Session Level Using TopLink

Workbench 98-2
98.3 Configuring Database Login Connection Options.. 98-3
98.3.1 How to Configure Database Login Connection Options Using TopLink Workbench......

98-3
98.4 Configuring Sequencing at the Session Level.. 98-5
98.4.1 How to Configure Sequencing at the Session Level Using TopLink Workbench... 98-5
98.4.2 How to Configure Sequencing at the Session Level Using Java................................ 98-6
98.4.2.1 Using the Platform Default Sequence... 98-6
98.4.2.2 Configuring Multiple Sequences... 98-7
98.4.2.3 Configuring Query Sequencing... 98-8
98.5 Configuring a Table Qualifier .. 98-9
98.5.1 How to Configure a Table Qualifier Using TopLink Workbench 98-9
98.5.2 How to Configure a Table Qualifier Using Java .. 98-9
98.6 Configuring JDBC Options... 98-10
98.6.1 How to Configure JDBC Options Using TopLink Workbench................................ 98-10
98.6.2 How to Configure JDBC Options Using Java... 98-11
98.7 Configuring Advanced Options .. 98-12
98.7.1 How to Configure Advanced Options Using TopLink Workbench 98-12
98.7.2 How to Configure Advanced Options Using Java .. 98-13
98.8 Configuring Oracle Database Proxy Authentication.. 98-13
98.8.1 How to Configure Oracle Database Proxy Authentication Using Java 98-14

99 Configuring an EIS Login

99.1 Introduction to EIS Login Configuration ... 99-1
99.2 Configuring an EIS Data Source Platform at the Session Level .. 99-1
99.2.1 How to Configure an EIS Data Source Platform at the Session Level Using TopLink

Workbench 99-2
99.3 Configuring EIS Connection Specification Options at the Session Level 99-2
99.3.1 How to Configure EIS Connection Specification Options at the Session Level Using

TopLink Workbench 99-2

100 Creating an Internal Connection Pool

100.1 Introduction to the Internal Connection Pool Creation.. 100-1
100.2 Creating an Internal Connection Pool... 100-1
100.2.1 How to Create an Internal Connection Pool Using TopLink Workbench.............. 100-1
100.2.2 How to Create an Internal Connection Pool Using Java... 100-2

101 Configuring an Internal Connection Pool

101.1 Introduction to the Internal Connection Pool Configuration.. 101-1
101.2 Configuring Connection Pool Sizes... 101-2
101.2.1 How to Configure Connection Pool Size Using TopLink Workbench 101-2
101.2.2 How to Configure Connection Pool Size Using Java .. 101-3

xxxix

101.3 Configuring Properties.. 101-3
101.3.1 How to Configure Properties Using TopLink Workbench....................................... 101-3
101.3.2 How to Configure Properties Using Java.. 101-4
101.4 Configuring a Nontransactional Read Login... 101-4
101.4.1 How to Configure Nontransactional Read Login Using TopLink Workbench..... 101-4
101.4.2 How to Configure Nontransactional Read Login Using Java.................................. 101-5
101.5 Configuring Connection Pool Connection Options.. 101-5
101.5.1 How to Configure Connection Pool Connection Options Using TopLink Workbench....

101-6
101.6 Configuring Exclusive Read Connections.. 101-7
101.6.1 How to Configure Exclusive Read Connections Using TopLink Workbench....... 101-8

Part XXIII Cache

102 Introduction to Cache

102.1 Cache Architecture .. 102-1
102.1.1 Session Cache .. 102-2
102.1.2 Unit of Work Cache .. 102-2
102.2 Cache Concepts .. 102-2
102.2.1 Cache Type and Object Identity ... 102-3
102.2.1.1 Full Identity Map... 102-3
102.2.1.2 Weak Identity Map.. 102-4
102.2.1.3 Soft Identity Map... 102-4
102.2.1.4 Soft Cache Weak Identity Map and Hard Cache Weak Identity Map............. 102-4
102.2.1.5 No Identity Map .. 102-4
102.2.1.6 Guidelines for Configuring the Cache and Identity Maps................................ 102-4
102.2.1.7 What You May Need to Know About the Internals of Weak, Soft, and Hard

Identity Maps 102-5
102.2.2 Querying and the Cache .. 102-6
102.2.3 Handling Stale Data ... 102-6
102.2.3.1 Configuring a Locking Policy .. 102-7
102.2.3.2 Configuring the Cache on a Per-Class Basis.. 102-7
102.2.3.3 Forcing a Cache Refresh when Required on a Per-Query Basis 102-7
102.2.3.4 Configuring Cache Invalidation.. 102-7
102.2.3.5 Configuring Cache Coordination.. 102-7
102.2.4 Explicit Query Refreshes ... 102-7
102.2.4.1 Refresh Policy... 102-8
102.2.4.2 EJB 2.n CMP Finders and Refresh Policy ... 102-8
102.2.5 Cache Invalidation.. 102-8
102.2.6 Cache Coordination.. 102-9
102.2.7 Cache Isolation .. 102-9
102.2.8 Cache Locking and Transaction Isolation ... 102-10
102.2.9 Cache Optimization.. 102-10
102.3 Cache Coordination... 102-10
102.3.1 When to Use Cache Coordination.. 102-11
102.3.2 Coordinated Cache Architecture.. 102-11
102.3.2.1 Session ... 102-12

xl

102.3.2.2 Descriptor ... 102-12
102.3.2.3 Unit of Work... 102-12
102.3.3 Coordinated Cache Types ... 102-12
102.3.3.1 JMS Coordinated Cache.. 102-12
102.3.3.2 RMI Coordinated Cache ... 102-13
102.3.3.3 CORBA Coordinated Cache... 102-13
102.3.4 Custom Coordinated Cache .. 102-13
102.4 Cache API.. 102-14
102.4.1 Object Identity API ... 102-14
102.4.2 Cache Refresh API .. 102-14
102.4.3 Cache Invalidation API.. 102-14
102.4.4 Cache Coordination API.. 102-15

103 Configuring a Coordinated Cache

103.1 Configuring Common Coordinated Cache Options... 103-1
103.2 Configuring the Synchronous Change Propagation Mode ... 103-2
103.2.1 How to Configure the Synchronous Change Propagation Mode Using TopLink

Workbench 103-3
103.2.2 How to Configure the Synchronous Change Propagation Mode Using Java 103-3
103.3 Configuring a Service Channel .. 103-4
103.3.1 How to Configure a Service Channel Using TopLink Workbench 103-4
103.3.2 How to Configure a Service Channel Using Java .. 103-5
103.4 Configuring a Multicast Group Address.. 103-5
103.4.1 How to Configure a Multicast Group Address Using TopLink Workbench......... 103-6
103.4.2 How to Configure a Multicast Group Address Using Java...................................... 103-7
103.5 Configuring a Multicast Port.. 103-7
103.5.1 How to Configure a Multicast Port Using TopLink Workbench............................. 103-8
103.5.2 How to Configure a Multicast Port Using Java.. 103-9
103.6 Configuring a Naming Service Type .. 103-9
103.7 Configuring JNDI Naming Service Information ... 103-9
103.7.1 How to Configure JNDI Naming Service Information Using TopLink Workbench

103-10
103.7.2 How to Configure JNDI Naming Service Information Using Java 103-12
103.8 Configuring RMI Registry Naming Service Information... 103-13
103.8.1 How to Configure RMI Registry Naming Service Information Using TopLink

Workbench 103-14
103.8.2 How to Configure RMI Registry Naming Service Information Using Java......... 103-15
103.9 Configuring an Announcement Delay.. 103-15
103.9.1 How to Configure an Announcement Delay Using TopLink Workbench 103-15
103.9.2 How to Configure an Announcement Delay Using Java.. 103-16
103.10 Configuring Connection Handling ... 103-16
103.10.1 How to Configure Connection Handling Using TopLink Workbench 103-17
103.10.2 How to Configure Connection Handling Using Java.. 103-18
103.11 Configuring Context Properties... 103-18
103.11.1 How to Configure Context Properties Using TopLink Workbench...................... 103-18
103.11.2 How to Configure Context Properties Using Java... 103-19
103.12 Configuring a Packet Time-to-Live ... 103-19

xli

103.12.1 How to Configure a Packet Time-to-Live Using TopLink Workbench 103-20
103.12.2 How to Configure a Packet Time-to-Live Using Java ... 103-21

104 Configuring a JMS Coordinated Cache

104.1 Introduction to JMS Coordinated Cache Configuration .. 104-1
104.2 Configuring a Topic Name... 104-2
104.2.1 How to Configure a Topic Name Using TopLink Workbench................................ 104-2
104.2.2 How to Configure a Topic Name Java... 104-2
104.3 Configuring a Topic Connection Factory Name ... 104-3
104.3.1 How to Configure a Topic Connection Factory Name Using TopLink Workbench

104-3
104.3.2 How to Configure a Topic Connection Factory Name Using Java 104-4
104.4 Configuring a Topic Host URL.. 104-4
104.4.1 How to Configure a Topic Host URL Using TopLink Workbench......................... 104-4
104.4.2 How to Configure a Topic Host URL Using Java .. 104-4
104.5 Configuring Connection Handling ... 104-5
104.5.1 How to Configure Connection Handling Using TopLink Workbench 104-5
104.5.2 How to Configure Connection Handling Using Java.. 104-6

105 Configuring an RMI Coordinated Cache

105.1 Introduction to RMI Coordinated Cache Configuration.. 105-1

106 Configuring a CORBA Coordinated Cache

106.1 Introduction to CORBA Coordinated Cache Configuration ... 106-1

107 Configuring a Custom Coordinated Cache

107.1 Introduction to Custom Coordinated Cache Configuration ... 107-1
107.2 Configuring Transport Class.. 107-1
107.2.1 How to Configure Transport Class Using TopLink Workbench............................. 107-1
107.2.2 How to Configure Transport Class Using Java.. 107-2

Part XXIV Queries

108 Introduction to TopLink Queries

108.1 Query Types ... 108-1
108.2 Query Concepts.. 108-2
108.2.1 Call .. 108-3
108.2.2 DatabaseQuery.. 108-3
108.2.3 Data-Level and Object-Level Queries .. 108-3
108.2.4 Summary Queries ... 108-3
108.2.5 Descriptor Query Manager ... 108-3
108.2.6 TopLink Expressions.. 108-4
108.2.7 Query Keys .. 108-4
108.2.8 Query Languages.. 108-4
108.2.8.1 SQL Queries.. 108-5

xlii

108.2.8.2 EJB QL Queries .. 108-5
108.2.8.3 JP QL Queries ... 108-6
108.2.8.4 XML Queries .. 108-6
108.2.8.5 EIS Interactions .. 108-6
108.2.8.6 Query-by-Example .. 108-6
108.3 Building Queries .. 108-6
108.4 Executing Queries .. 108-7
108.5 Handling Query Results ... 108-8
108.5.1 Collection Query Results ... 108-8
108.5.2 Report Query Results ... 108-8
108.5.3 Stream and Cursor Query Results.. 108-9
108.6 Session Queries... 108-9
108.6.1 Read-Object Session Queries... 108-10
108.6.2 Create, Update, and Delete Object Session Queries .. 108-10
108.7 Database Queries ... 108-10
108.7.1 Object-Level Read Query... 108-11
108.7.1.1 ReadObjectQuery .. 108-11
108.7.1.2 ReadAllQuery .. 108-11
108.7.1.3 Partial Object Queries ... 108-11
108.7.1.4 Read-Only Query... 108-12
108.7.1.5 Join Reading and Object-Level Read Queries ... 108-12
108.7.1.5.1 Avoiding Join-Reading Duplicate Data .. 108-13
108.7.1.6 Fetch Groups and Object-Level Read Queries .. 108-14
108.7.2 Data-Level Read Query.. 108-14
108.7.2.1 DataReadQuery ... 108-14
108.7.2.2 DirectReadQuery... 108-14
108.7.2.3 ValueReadQuery ... 108-14
108.7.3 Object-Level Modify Query... 108-14
108.7.3.1 WriteObjectQuery.. 108-15
108.7.3.2 UpdateObjectQuery .. 108-15
108.7.3.3 InsertObjectQuery ... 108-15
108.7.3.4 DeleteObjectQuery .. 108-15
108.7.3.5 UpdateAllQuery .. 108-15
108.7.3.6 DeleteAllQuery .. 108-15
108.7.3.7 Object-Level Modify Queries and Privately Owned Parts.............................. 108-15
108.7.4 Data-Level Modify Query ... 108-16
108.7.5 Report Query... 108-16
108.8 Named Queries .. 108-17
108.9 Call Queries .. 108-17
108.9.1 SQL Calls.. 108-18
108.9.1.1 SQLCall ... 108-18
108.9.1.2 StoredProcedureCall ... 108-18
108.9.1.3 StoredFunctionCall.. 108-18
108.9.2 EJB QL Calls... 108-19
108.9.3 Enterprise Information System (EIS) Interactions ... 108-19
108.9.3.1 IndexedInteraction .. 108-19
108.9.3.2 MappedInteraction.. 108-19

xliii

108.9.3.3 XMLInteraction.. 108-19
108.9.3.4 XQueryInteraction... 108-20
108.9.3.5 QueryStringInteraction... 108-20
108.10 Redirect Queries... 108-20
108.11 Historical Queries .. 108-21
108.11.1 Using an ObjectLevelReadQuery with an AsOfClause .. 108-21
108.11.2 Using an ObjectLevelReadQuery with Expression Operator asOf 108-22
108.11.3 Using an ObjectLevelReadQuery in a Historical Session 108-22
108.12 Interface and Inheritance Queries ... 108-22
108.13 Descriptor Query Manager Queries.. 108-22
108.13.1 How to Configure Named Queries .. 108-23
108.13.2 How to Configure Default Query Implementations ... 108-23
108.13.3 How to Configure Additional Join Expressions .. 108-23
108.14 Oracle Extensions... 108-24
108.14.1 Hints ... 108-24
108.14.2 Hierarchical Queries... 108-24
108.14.3 Flashback Queries... 108-24
108.14.4 Stored Functions ... 108-24
108.15 EJB 2.n CMP Finders.. 108-25
108.15.1 Predefined Finders ... 108-25
108.15.1.1 Predefined CMP Finders .. 108-26
108.15.1.2 Predefined BMP Finders... 108-26
108.15.2 Default Finders.. 108-27
108.15.3 Call Finders.. 108-27
108.15.4 DatabaseQuery Finders ... 108-27
108.15.5 Named Query Finders ... 108-27
108.15.6 Primary Key Finders .. 108-28
108.15.7 Expression Finders ... 108-28
108.15.8 EJB QL Finders .. 108-28
108.15.9 SQL Finders ... 108-28
108.15.10 Redirect Finders .. 108-29
108.15.11 The ejbSelect Method ... 108-29
108.16 Queries and the Cache .. 108-30
108.16.1 How to Configure the Cache... 108-30
108.16.2 How to Use In-Memory Queries .. 108-31
108.16.2.1 Configuring Cache Usage for In-Memory Queries .. 108-31
108.16.2.2 Expression Options for In-Memory Queries ... 108-32
108.16.2.3 Handling Exceptions Resulting from In-Memory Queries 108-34
108.16.3 Primary Key Queries and the Cache.. 108-35
108.16.4 How to Disable the Identity Map Cache Update During a Read Query.............. 108-35
108.16.5 How to Refresh the Cache ... 108-36
108.16.5.1 Object Refresh .. 108-36
108.16.5.2 Cascading Object Refresh... 108-36
108.16.5.3 Refreshing the Identity Map Cache During a Read Query 108-36
108.16.6 How to Cache Query Results in the Session Cache... 108-37
108.16.7 How to Cache Query Results in the Query Cache... 108-37
108.16.7.1 Internal Query Cache Restrictions .. 108-38

xliv

108.16.8 How to Use Caching and EJB 2.n CMP Finders ... 108-38
108.16.8.1 Caching Options .. 108-38
108.16.8.2 Disabling Cache for Returned Finder Results ... 108-39
108.16.8.3 Refreshing Finder Results .. 108-39
108.17 Query API ... 108-39

109 Using Basic Query API

109.1 Using Session Queries ... 109-1
109.1.1 How to Read Objects with a Session Query ... 109-2
109.1.1.1 Reading an Object with a Session Query ... 109-2
109.1.1.2 Reading All Objects with a Session Query ... 109-2
109.1.1.3 Refreshing an Object with a Session Query... 109-2
109.1.2 How to Create, Update, and Delete Objects with a Session Query......................... 109-3
109.1.2.1 Writing a Single Object to the Database with a Session Query 109-3
109.1.2.2 Writing All Objects to the Database with a Session Query 109-3
109.1.2.3 Adding New Objects to the Database with a Session Query 109-4
109.1.2.4 Modifying Existing Objects in the Database with a Session Query 109-4
109.1.2.5 Deleting Objects in the Database with a Session Query 109-4
109.2 Using DatabaseQuery Queries... 109-4
109.2.1 How to Read Objects Using a DatabaseQuery... 109-4
109.2.1.1 Performing Basic DatabaseQuery Read Operations .. 109-5
109.2.1.2 Reading Objects Using Partial Object Queries .. 109-6
109.2.1.3 Reading Objects Using Report Queries .. 109-6
109.2.1.4 Reading Objects Using Query-By-Example... 109-6
109.2.1.5 Specifying Read Ordering .. 109-8
109.2.1.6 Specifying a Collection Class ... 109-9
109.2.1.7 Specifying the Maximum Rows Returned... 109-9
109.2.1.8 Configuring Query Timeout at the Query Level .. 109-10
109.2.1.9 Using Batch Reading... 109-10
109.2.1.10 Using Join Reading with ObjectLevelReadQuery .. 109-11
109.2.1.10.1 Using Java.. 109-11
109.2.2 How to Create, Update, and Delete Objects with a DatabaseQuery..................... 109-12
109.2.2.1 Using Write Query .. 109-12
109.2.2.2 Performing Noncascading Write Queries.. 109-13
109.2.2.3 Disabling the Identity Map Cache During a Write Query 109-13
109.2.3 How to Update and Delete Multiple Objects with a DatabaseQuery................... 109-14
109.2.3.1 Using UpdateAll Queries ... 109-14
109.2.3.2 Using DeleteAll Queries ... 109-14
109.2.4 How to Read Data with a DatabaseQuery.. 109-15
109.2.4.1 Using a DataReadQuery... 109-15
109.2.4.2 Using a DirectReadQuery .. 109-15
109.2.4.3 Using a ValueReadQuery... 109-15
109.2.5 How to Update Data with a DatabaseQuery.. 109-16
109.2.6 How to Specify a Custom SQL String in a DatabaseQuery.................................... 109-16
109.2.7 How to Specify a Custom JPQL String in a DatabaseQuery 109-16
109.2.8 How to Specify a Custom EJB QL String in a DatabaseQuery............................... 109-16
109.2.9 How to Use Parameterized SQL and Statement Caching in a DatabaseQuery... 109-17

xlv

109.3 Using Named Queries... 109-18
109.4 Using a SQLCall ... 109-18
109.4.1 How to Configure a SQLCall Without Arguments ... 109-19
109.4.2 How to Configure a SQLCall with Arguments Using JDBC Data Types............. 109-19
109.4.3 What You May Need to Know About Using a SQLCall ... 109-21
109.5 Using a StoredProcedureCall ... 109-21
109.5.1 How to Configure a StoredProcedureCall Without Arguments 109-22
109.5.2 How to Configure a StoredProcedureCall with Arguments Using JDBC Data Types

109-22
109.5.3 How to Configure a PLSQLStoredProcedureCall with PL/SQL Data Type Arguments.

109-24
109.5.4 How to Specify a Simple Optimistic Version Locking Value with a

StoredProcedureCall Using JDBC Data Types 109-27
109.5.5 How to Configure a StoredProcedureCall Output Parameter Event Using JDBC or

PL/SQL Data Types 109-29
109.5.6 What You May Need to Know About Using a StoredProcedureCall................... 109-30
109.6 Using a StoredFunctionCall.. 109-31
109.6.1 What You May Need to Know About Using a StoredFunctionCall 109-32
109.7 Using Java Persistence Query Language (JPQL) Calls ... 109-32
109.8 Using EIS Interactions ... 109-32
109.9 Handling Exceptions ... 109-33
109.10 Handling Collection Query Results .. 109-33
109.11 Handling Report Query Results .. 109-33

110 Introduction to TopLink Expressions

110.1 Expression Framework ... 110-1
110.1.1 Expressions Compared to SQL ... 110-1
110.2 Expression Components ... 110-2
110.2.1 Boolean Logic .. 110-3
110.2.2 Database Functions and Operators .. 110-3
110.2.3 Mathematical Functions... 110-4
110.2.4 XMLType Functions ... 110-5
110.2.5 Platform and User-Defined Functions... 110-5
110.2.6 Expressions for One-to-One and Aggregate Object Relationships 110-5
110.2.7 Expressions for Joining and Complex Relationships ... 110-6
110.2.7.1 What You May Need to Know About Joins .. 110-6
110.2.7.2 Using TopLink Expression API for Joins ... 110-7
110.3 Parameterized Expressions... 110-8
110.3.1 Expression Method getParameter .. 110-8
110.3.2 Expression Method getField ... 110-9
110.4 Query Keys and Expressions.. 110-9
110.5 Multiple Expressions ... 110-10
110.5.1 How to Use Subselects and Subqueries... 110-10
110.5.2 How to Use Parallel Expressions.. 110-11
110.6 Data Queries and Expressions ... 110-11
110.6.1 How to Use the getField Method ... 110-12
110.6.2 How to Use the getTable Method... 110-12

xlvi

110.7 Creating an Expression ... 110-12
110.7.1 How to Create an Expression Using TopLink Workbench 110-13
110.7.1.1 Adding Arguments ... 110-14
110.7.2 How to Create an Expression Using Java ... 110-15
110.8 Creating and Using a User-Defined Function ... 110-16
110.8.1 How to Make a User-Defined Function Available to a Specific Platform............ 110-16
110.8.2 How to Make a User-Defined Function Available to All Platforms 110-17
110.8.2.1 Using a User-Defined Function ... 110-17

111 Using Advanced Query API

111.1 Using Redirect Queries ... 111-1
111.1.1 How to Create a Redirect Query .. 111-1
111.2 Using Historical Queries... 111-2
111.3 Using Queries with Fetch Groups ... 111-3
111.3.1 How to Configure Default Fetch Group Behavior... 111-3
111.3.2 How to Query with a Static Fetch Group.. 111-3
111.3.3 How to Query with a Dynamic Fetch Group ... 111-4
111.4 Using Read-Only Queries... 111-4
111.5 Querying on Interfaces.. 111-4
111.6 Querying on an Inheritance Hierarchy... 111-5
111.7 Appending Additional Join Expressions.. 111-5
111.7.1 How to Append Additional Join Expressions Using Java.. 111-5
111.8 Using Queries on Variable One-to-One Mappings... 111-5
111.9 Using Oracle Database Features .. 111-6
111.9.1 How to Use Oracle Hints... 111-6
111.9.2 How to Use Hierarchical Queries... 111-7
111.9.2.1 Using startWith Parameter .. 111-7
111.9.2.2 Using connectBy Parameter ... 111-7
111.9.2.3 Using orderSibling Parameter ... 111-7
111.10 Using EJB 2.n CMP Finders .. 111-8
111.10.1 How to Create a Finder.. 111-8
111.10.1.1 ejb-jar.xml Finder Options.. 111-9
111.10.2 How to Use DatabaseQuery Finders ... 111-10
111.10.3 How to Use Named Query Finders ... 111-11
111.10.4 How to Use Primary Key Finders .. 111-11
111.10.5 How to Use EJB QL Finders .. 111-11
111.10.6 How to Use SQL Finders ... 111-12
111.10.7 How to Use Redirect Finders .. 111-12
111.10.8 How to Use the ejbSelect Method .. 111-15
111.11 Handling Cursor and Stream Query Results... 111-16
111.11.1 How to Handle Cursors and Java Iterators .. 111-16
111.11.1.1 Traversing Data with Scrollable Cursors ... 111-16
111.11.2 How to Handle Java Streams .. 111-17
111.11.2.1 Using Cursored Stream Support ... 111-17
111.11.3 How to Optimize Streams ... 111-18
111.11.4 How to Use Cursors and Streams with EJB 2.n CMP Finders 111-18
111.11.4.1 Building the Query.. 111-19

xlvii

111.11.4.2 Executing the Finder from the Client ... 111-19
111.12 Handling Query Results Using Pagination.. 111-20
111.13 Using Queries and the Cache... 111-20
111.13.1 How to Cache Results in a ReadQuery ... 111-20
111.13.2 How to Configure Cache Expiration at the Query Level.. 111-21

112 Introduction to TopLink Support for Oracle Spatial

112.1 TopLink Support for Oracle Spatial .. 112-1
112.2 Using Structure Converters .. 112-1
112.2.1 How to Configure the Database Platform to Use Structure Converters 112-2
112.2.2 How to Set Up Mappings Using Structure Converters... 112-2
112.3 Using JGeometry.. 112-2
112.3.1 How to Configure the Database Platform to Use JGeometry 112-2
112.3.2 How to Map JGeometry Attributes.. 112-2
112.3.3 How to Perform Queries Using Spatial Operator Expressions................................ 112-3

Part XXV Transactions

113 Introduction to TopLink Transactions

113.1 Unit of Work Architecture.. 113-1
113.1.1 Unit of Work Transaction Context ... 113-2
113.1.2 Unit of Work Transaction Demarcation .. 113-2
113.1.2.1 JTA Controlled Transactions.. 113-3
113.1.2.2 OTS Controlled Transactions... 113-3
113.1.2.3 CMP-Controlled Transactions ... 113-3
113.1.3 Unit of Work Transaction Isolation.. 113-4
113.2 Unit of Work Concepts.. 113-4
113.2.1 Unit of Work Benefits... 113-4
113.2.2 Unit of Work Life Cycle ... 113-5
113.2.3 Unit of Work and Change Policy.. 113-7
113.2.3.1 Deferred Change Detection Policy.. 113-7
113.2.3.2 Object-Level Change Tracking Policy .. 113-7
113.2.3.2.1 EJB CMP and JPA... 113-8
113.2.3.3 Attribute Change Tracking Policy .. 113-8
113.2.3.3.1 JPA Entities.. 113-8
113.2.3.3.2 Plain Old Java Object (POJO) Classes ... 113-8
113.2.3.3.3 EJB CMP on OC4J... 113-9
113.2.3.4 Change Policy Mapping Support.. 113-9
113.2.4 Clones and the Unit of Work .. 113-9
113.2.5 Nested and Parallel Units of Work .. 113-10
113.2.5.1 Nested Unit of Work ... 113-10
113.2.5.2 Parallel Unit of Work .. 113-10
113.2.6 Commit and Rollback Transactions ... 113-10
113.2.6.1 Commit Transactions .. 113-10
113.2.6.1.1 Commit and JTA... 113-11
113.2.6.2 Rollback Transactions ... 113-11

xlviii

113.2.6.2.1 Rollback and JTA.. 113-11
113.2.7 Primary Keys ... 113-11
113.2.8 Unit of Work Optimization ... 113-11
113.3 Unit of Work API ... 113-12
113.3.1 Unit of Work as Session ... 113-12
113.3.1.1 Reading and Querying Objects with the Unit of Work 113-12
113.3.1.1.1 Reading Objects with the Unit of Work .. 113-12
113.3.1.1.2 Querying Objects with the Unit of Work.. 113-12
113.3.1.2 Locking and the Unit of Work ... 113-12
113.4 Example Model Object and Schema.. 113-13

114 Using Basic Unit of Work API

114.1 Acquiring a Unit of Work ... 114-1
114.2 Creating an Object.. 114-2
114.3 Modifying an Object .. 114-2
114.4 Associating a New Target to an Existing Source Object .. 114-3
114.4.1 How to Associate a New Target to an Existing Source Object in a Unidirectional

Relationship: Reference to the New Cache Object After Commit not Required 114-3
114.4.2 How to Associate a New Target to an Existing Source Object in a Unidirectional

Relationship: Reference to the New Cache Object After Commit Required 114-4
114.4.3 How to Associate a New Target to an Existing Source Object in a Bidirectional

Relationship: Query for Target Before Commit not Required 114-5
114.4.4 How to Associate a New Target to an Existing Source Object in a Bidirectional

Relationship: Query for Target Object Before Commit Required 114-7
114.5 Associating a New Source to an Existing Target Object .. 114-8
114.6 Associating an Existing Source to an Existing Target Object .. 114-9
114.7 Deleting Objects ... 114-10
114.7.1 How to Use the privateOwnedRelationship Attribute ... 114-11
114.7.2 How to Explicitly Delete from the Database .. 114-12
114.7.3 What You May Need to Know About the Order in which Objects Are Deleted 114-12

115 Using Advanced Unit of Work API

115.1 Registering and Unregistering Objects ... 115-1
115.1.1 How to Create and Register a New Object in One Step Using UnitOfWork Method

newInstance 115-2
115.1.2 How to Use the registerAllObjects Method.. 115-2
115.1.3 How to Use Registration and Existence Checking .. 115-3
115.1.3.1 Using Check Database .. 115-3
115.1.3.2 Using Assume Existence... 115-3
115.1.3.3 Using Assume Nonexistence ... 115-3
115.1.4 How to Work with Aggregates... 115-3
115.1.5 How to Unregister Working Clones .. 115-4
115.1.6 What You May Need to Know About Object Registration 115-4
115.2 Declaring Read-Only Classes ... 115-5
115.2.1 How to Configure Read-Only Classes for a Single Unit of Work 115-6
115.2.2 How to Configure Default Read-Only Classes... 115-6
115.2.3 How to Declare Read-Only Descriptors.. 115-6

xlix

115.3 Writing Changes Before Commit Time .. 115-6
115.4 Using Conforming Queries and Descriptors ... 115-7
115.4.1 How to Use Conforming.. 115-7
115.4.1.1 Ensuring that the Query Supports Conforming ... 115-8
115.4.1.2 Considering how Conforming Affects Database Results 115-8
115.4.1.3 Registering New Objects and Instantiate Relationships.................................... 115-9
115.4.2 How to Use Conforming Queries... 115-10
115.4.3 How to Use Conforming Descriptors .. 115-11
115.4.4 What You May Need to Know About Conforming Query Alternatives.............. 115-11
115.4.4.1 Using Unit of Work Method writeChanges Instead of Conforming 115-11
115.4.4.2 Using Unit of Work Properties Instead of Conforming................................... 115-12
115.5 Merging Changes in Working Copy Clones .. 115-12
115.6 Resuming a Unit of Work After Commit ... 115-13
115.7 Reverting a Unit of Work.. 115-14
115.8 Using a Nested or Parallel Unit of Work.. 115-14
115.8.1 How to Use Parallel Unit of Work ... 115-14
115.8.2 How to Use Nested Unit of Work .. 115-15
115.9 Using a Unit of Work with Custom SQL.. 115-15
115.10 Controlling the Order of Delete Operations .. 115-16
115.10.1 How to Use the setShouldPerformDeletesFirst Method of the Unit of Work 115-16
115.10.2 How to Use the addConstraintDependencies Method of the Descriptor 115-16
115.10.3 How to Use the deleteAllObjects Method Without the addConstraintDependencies

Method 115-16
115.10.4 How to Use the deleteAllObjects Method with the addConstraintDependencies

Method 115-17
115.11 Using Optimistic Read Locking with the forceUpdateToVersionField Method 115-17
115.11.1 How to Force a Check of the Optimistic Read Lock.. 115-18
115.11.2 How to Force a Version Field Update ... 115-18
115.11.3 How to Disable the forceUpdateToVersionField Configuration........................... 115-20
115.12 Implementing User and Date Auditing with the Unit of Work.................................... 115-20
115.13 Integrating the Unit of Work with an External Transaction Service 115-20
115.13.1 How to Acquire a Unit of Work with an External Transaction Service................ 115-21
115.13.2 How to Use a Unit of Work when an External Transaction Exists........................ 115-21
115.13.3 How to Use a Unit of Work when No External Transaction Exists 115-22
115.13.4 How to Use the Unit of Work to Handle External Transaction Timeouts and

Exceptions 115-23
115.13.4.1 Handling External Transaction Commit Timeouts .. 115-23
115.13.4.2 Handling External Transaction Commit Exceptions.. 115-23
115.14 Integrating the Unit of Work with CMP... 115-24
115.14.1 How to Use CMP Transaction Attribute ... 115-24
115.14.2 How to Use Local Transactions .. 115-25
115.14.3 How to Use Nondeferred Changes.. 115-25
115.15 Database Transaction Isolation Levels.. 115-26
115.15.1 What You May Need to Know About General Factors Affecting Transaction Isolation

Level 115-26
115.15.1.1 External Applications.. 115-26
115.15.1.2 TopLink Coordinated Cache.. 115-27
115.15.1.3 DatabaseLogin Method setTransactionIsolation .. 115-27

l

115.15.1.4 Reading Through the Write Connection .. 115-27
115.15.1.4.1 Pessimistic Locking Query.. 115-28
115.15.1.4.2 Unit of Work Method beginTransactionEarly ... 115-28
115.15.1.4.3 ConnectionPolicy Method setShouldUseExclusiveConnection 115-28
115.15.1.5 Managing Cache Access ... 115-29
115.15.1.5.1 Isolated Client Session Cache ... 115-29
115.15.1.5.2 ReadObjectQuery ... 115-29
115.15.1.5.3 ReadAllQuery ... 115-29
115.15.1.5.4 Descriptor Method disableCacheHits ... 115-29
115.15.1.5.5 DatabaseQuery Method dontMaintainCache .. 115-29
115.15.1.6 CMP and External Transactions .. 115-29
115.15.2 What You May Need to Know About Read Uncommitted Level 115-30
115.15.3 What You May Need to Know About Read Committed Level 115-30
115.15.4 What You May Need to Know About Repeatable Read Levels 115-30
115.15.5 What You May Need to Know About Serializable Read Levels 115-30
115.16 Troubleshooting a Unit of Work.. 115-31
115.16.1 How to Avoid the Use of Post-Commit Clones ... 115-31
115.16.2 How to Determine Whether or Not an Object Is the Cache Object 115-31
115.16.3 How to Dump the Contents of a Unit of Work .. 115-32
115.16.4 How to Handle Exceptions ... 115-33
115.16.4.1 Handling Exceptions at Commit Time... 115-33
115.16.4.2 Handling Exceptions During Conforming .. 115-34
115.16.5 How to Validate a Unit of Work... 115-34
115.16.5.1 Validating the Unit of Work Before Commit Time .. 115-34

Part XXVI Creation and Configuration of Projects

116 Creating a Project

116.1 Introduction to the Project Creation.. 116-1
116.1.1 How to Create a Project Using Oracle JDeveloper .. 116-1
116.1.2 How to Create a Project Using TopLink Workbench .. 116-2
116.1.2.1 Creating New TopLink Workbench Projects... 116-2
116.1.3 How to Create a Project Using Java ... 116-3
116.2 Working with Projects... 116-5
116.2.1 How to Open Existing Projects ... 116-5
116.2.2 How to Save Projects.. 116-6
116.2.2.1 Saving Projects with a New Name or Location... 116-7
116.2.3 How to Generate the Project Status Report .. 116-8
116.3 Exporting Project Information ... 116-9
116.3.1 How to Export Deployment XML Information Using TopLink Workbench 116-9
116.3.2 How to Export Model Java Source Using TopLink Workbench............................ 116-10

117 Configuring a Project

117.1 Configuring Common Project Options... 117-2
117.2 Configuring Project Save Location.. 117-2
117.2.1 How to Configure Project Save Location Using TopLink Workbench................... 117-3

li

117.3 Configuring Project Classpath ... 117-3
117.3.1 How to Configure Project Classpath Using TopLink Workbench 117-4
117.4 Configuring Method or Direct Field Access at the Project Level.................................... 117-5
117.4.1 How to Configure Method or Direct Field Access at the Project Level Using TopLink

Workbench 117-5
117.5 Configuring Persistence Type .. 117-6
117.5.1 How to Configure Persistence Type Using TopLink Workbench 117-7
117.6 Configuring Default Descriptor Advanced Properties .. 117-8
117.6.1 How to Configure Default Descriptor Advanced Properties Using TopLink

Workbench 117-9
117.7 Configuring Existence Checking at the Project Level... 117-10
117.7.1 How to Configure Existence Checking at the Project Level Using TopLink Workbench.

117-10
117.8 Configuring Project Deployment XML Options ... 117-11
117.8.1 How to Configure Project Deployment XML Options Using TopLink Workbench

117-12
117.9 Configuring Model Java Source Code Options ... 117-13
117.9.1 How to Configure Model Java Source Code Options Using TopLink Workbench

117-13
117.10 Configuring Cache Type and Size at the Project Level .. 117-14
117.10.1 How to Configure Cache Type and Size at the Project Level Using TopLink

Workbench 117-15
117.10.2 How to Configure Cache Type and Size at the Project Level Using Java 117-17
117.11 Configuring Cache Isolation at the Project Level.. 117-17
117.11.1 How to Configure Cache Isolation at the Project Level Using TopLink Workbench........

117-18
117.12 Configuring Cache Coordination Change Propagation at the Project Level 117-19
117.12.1 How to Configure Cache Coordination Change Propagation at the Project Level Using

TopLink Workbench 117-20
117.13 Configuring Cache Expiration at the Project Level... 117-22
117.13.1 How to Configure Cache Expiration at the Project Level Using TopLink Workbench.....

117-22
117.14 Configuring Project Comments ... 117-23
117.14.1 How to Configure Project Comments Using TopLink Workbench 117-24

Part XXVII Creation and Configuration of Descriptors

118 Creating a Descriptor

118.1 Introduction to Descriptor Creation.. 118-1
118.2 Validating Descriptors .. 118-1
118.3 Generating Java Code for Descriptors .. 118-1

119 Configuring a Descriptor

119.1 Configuring Common Descriptor Options .. 119-2
119.2 Configuring Primary Keys ... 119-4
119.2.1 How to Configure Primary Keys Using TopLink Workbench 119-5
119.2.2 How to Configure Primary Keys Using Java.. 119-5

lii

119.2.2.1 Relational Projects ... 119-6
119.2.2.2 EIS Projects ... 119-6
119.3 Configuring Read-Only Descriptors ... 119-6
119.3.1 How to Use Read-Only EJB CMP Entity Beans.. 119-7
119.3.2 How to Configure Read-Only Descriptors Using TopLink Workbench 119-7
119.3.3 How to Configure Read-Only Descriptors Using Java ... 119-7
119.4 Configuring Unit of Work Conforming at the Descriptor Level 119-8
119.4.1 How to Configure Unit of Work Conforming at the Descriptor Level Using TopLink

Workbench 119-8
119.4.2 How to Configure Unit of Work Conforming at the Descriptor Level Using Java

119-9
119.5 Configuring Descriptor Alias... 119-9
119.5.1 How to Configure Descriptor Alias Using TopLink Workbench.......................... 119-10
119.5.2 How to Configure Descriptor Alias Using Java ... 119-10
119.6 Configuring Descriptor Comments... 119-11
119.6.1 How to Configure Descriptor Comments Using TopLink Workbench................ 119-11
119.7 Configuring Named Queries at the Descriptor Level .. 119-12
119.7.1 How to Configure Named Queries at the Descriptor Level Using TopLink Workbench

119-13
119.7.1.1 Adding Named Queries ... 119-14
119.7.1.2 Configuring Named Query Type and Parameters ... 119-15
119.7.1.3 Configuring Named Query Selection Criteria .. 119-17
119.7.1.4 Configuring Read All Query Order.. 119-18
119.7.1.5 Configuring Named Query Optimization ... 119-18
119.7.1.6 Configuring Named Query Attributes... 119-20
119.7.1.6.1 Adding Report Query Attributes... 119-21
119.7.1.7 Configuring Named Query Group/Order Options... 119-22
119.7.1.7.1 Adding Ordering Attributes... 119-22
119.7.1.8 Creating an EIS Interaction for a Named Query... 119-23
119.7.1.9 Configuring Named Query Options... 119-25
119.7.1.10 Configuring Named Query Advanced Options ... 119-27
119.7.2 How to Configure Named Queries at the Descriptor Level Using Java............... 119-28
119.8 Configuring Query Timeout at the Descriptor Level ... 119-29
119.8.1 How to Configure Query Timeout at the Descriptor Level TopLink Workbench.............

119-29
119.8.2 How to Configure Query Timeout at the Descriptor Level Java........................... 119-30
119.9 Configuring Cache Refreshing... 119-30
119.9.1 How to Configure Cache Refreshing Using TopLink Workbench........................ 119-31
119.9.2 How to Configure Cache Refreshing Using Java... 119-33
119.10 Configuring Query Keys... 119-33
119.10.1 How to Configure Query Keys Using TopLink Workbench.................................. 119-35
119.10.2 How to Configure Query Keys Using Java... 119-35
119.11 Configuring Interface Query Keys .. 119-37
119.11.1 How to Configure Interface Query Keys Using TopLink Workbench 119-38
119.11.2 How to Configure Interface Query Keys Using Java .. 119-38
119.12 Configuring Cache Type and Size at the Descriptor Level.. 119-39
119.12.1 How to Configure Cache Type and Size at the Descriptor Level Using TopLink

Workbench 119-40

liii

119.12.2 How to Configure Cache Type and Size at the Descriptor Level Using Java...... 119-41
119.13 Configuring Cache Isolation at the Descriptor Level ... 119-42
119.13.1 How to Configure Cache Isolation at the Descriptor Level Using TopLink Workbench .

119-42
119.13.2 How to Configure Cache Isolation at the Descriptor Level Using Java 119-43
119.14 Configuring Unit of Work Cache Isolation at the Descriptor Level............................. 119-43
119.14.1 How to Configure Unit of Work Cache Isolation at the Descriptor Level Using Java

119-44
119.15 Configuring Cache Coordination Change Propagation at the Descriptor Level 119-44
119.15.1 How to Configure Cache Coordination Change Propagation at the Descriptor Level

Using TopLink Workbench 119-45
119.15.2 How to Configure Cache Coordination Change Propagation at the Descriptor Level

Using Java 119-46
119.16 Configuring Cache Expiration at the Descriptor Level .. 119-47
119.16.1 How to Configure Cache Expiration at the Descriptor Level Using TopLink

Workbench 119-47
119.16.2 How to Configure Cache Expiration at the Descriptor Level Using Java 119-48
119.17 Configuring Cache Existence Checking at the Descriptor Level 119-49
119.17.1 How to Configure Cache Existence Checking at the Descriptor Level Using TopLink

Workbench 119-49
119.17.2 How to Configure Cache Existence Checking at the Descriptor Level Using Java

119-50
119.18 Configuring a Descriptor with EJB CMP and BMP Information.................................. 119-51
119.18.1 How to Configure a Descriptor with EJB CMP and BMP Information Using TopLink

Workbench 119-52
119.18.2 How to Configure a Descriptor with EJB CMP and BMP Information Using Java

119-54
119.18.2.1 Configuring CMP Information .. 119-54
119.18.2.2 Configuring BMP Information .. 119-54
119.19 Configuring Reading Subclasses on Queries ... 119-54
119.19.1 How to Configure Reading Subclasses on Queries Using TopLink Workbench 119-55
119.19.2 How to Configure Reading Subclasses on Queries Using Java 119-56
119.20 Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor 119-57
119.20.1 How to Configure Inheritance for a Child (Branch or Leaf) Class Descriptor Using

TopLink Workbench 119-58
119.20.2 How to Configure Inheritance for a Child (Branch or Leaf) Class Descriptor Using Java

119-59
119.21 Configuring Inheritance for a Parent (Root) Descriptor .. 119-59
119.21.1 How to Configure Inheritance for a Parent (Root) Descriptor Using TopLink

Workbench 119-59
119.21.2 How to Configure Inheritance for a Parent (Root) Descriptor Using Java 119-61
119.22 Configuring Inheritance Expressions for a Parent (Root) Class Descriptor................ 119-62
119.22.1 How to Configure Inheritance Expressions for a Parent (Root) Class Descriptor Using

Java 119-64
119.23 Configuring Inherited Attribute Mapping in a Subclass ... 119-65
119.23.1 How to Configure Inherited Attribute Mapping in a Subclass Using TopLink

Workbench 119-65
119.23.2 How to Configure Inherited Attribute Mapping in a Subclass Using Java 119-66
119.24 Configuring a Domain Object Method as an Event Handler .. 119-66

liv

119.24.1 How to Configure a Domain Object Method as an Event Handler Using TopLink
Workbench 119-67

119.24.2 How to Configure a Domain Object Method as an Event Handler Using Java .. 119-69
119.25 Configuring a Descriptor Event Listener as an Event Handler 119-69
119.25.1 How to Configure a Descriptor Event Listener as an Event Handler Using TopLink

Workbench 119-71
119.25.2 How to Configure a Descriptor Event Listener as an Event Handler Using Java..............

119-71
119.26 Configuring Locking Policy ... 119-71
119.26.1 How to Configure Locking Policy UsingTopLink Workbench 119-72
119.26.2 How to Configure Locking Policy Using Java.. 119-74
119.26.2.1 Configuring an Optimistic Locking Policy .. 119-75
119.26.2.2 Configuring Optimistic Locking Policy Cascading.. 119-75
119.26.2.3 Configuring a Pessimistic Locking Policy ... 119-75
119.27 Configuring Returning Policy.. 119-75
119.27.1 How to Configure Returning Policy Using TopLink Workbench......................... 119-76
119.27.2 How to Configure Returning Policy Using Java .. 119-77
119.28 Configuring Instantiation Policy ... 119-78
119.28.1 How to Configure Instantiation Policy Using TopLink Workbench 119-78
119.28.2 How to Configure Instantiation Policy Using Java ... 119-79
119.29 Configuring Copy Policy .. 119-79
119.29.1 How to Configure Copy Policy Using TopLink Workbench 119-80
119.29.2 How to Configure Copy Policy Using Java .. 119-81
119.30 Configuring Change Policy .. 119-81
119.30.1 How to Configure Change Policy Using Java .. 119-82
119.30.1.1 Configuring Deferred Change Detection Policy ... 119-82
119.30.1.2 Configuring Object Change Tracking Policy... 119-82
119.30.1.3 Configuring Attribute Change Tracking Policy.. 119-83
119.31 Configuring a History Policy ... 119-84
119.31.1 How to Configure a History Policy Using Java ... 119-85
119.31.1.1 Configuring Write Responsibility ... 119-86
119.32 Configuring Wrapper Policy.. 119-86
119.32.1 How to Configure Wrapper Policy Using Java .. 119-87
119.33 Configuring Fetch Groups.. 119-88
119.33.1 How to Configure Fetch Groups Using Java .. 119-89
119.34 Configuring a Descriptor Customizer Class .. 119-89
119.34.1 How to Configure Customizer Class Using Java... 119-90
119.35 Configuring Amendment Methods... 119-90
119.35.1 How to Configure Amendment Methods Using TopLink Workbench................ 119-91

Part XXVIII Creation and Configuration of Mappings

120 Creating a Mapping

120.1 Introduction to Mapping Creation .. 120-1
120.2 Creating Mappings Manually During Development ... 120-2
120.2.1 How to Create Mappings Manually During Development Using TopLink Workbench .

120-2

lv

120.2.2 How to Create Mappings During Development Using Java 120-2
120.3 Creating Mappings Automatically During Development ... 120-3
120.3.1 How to Create Mappings Automatically During Development Using TopLink

Workbench 120-3
120.4 Creating Mappings Automatically During Deployment... 120-3
120.5 Creating Mappings to Oracle LOB Database Objects... 120-3
120.5.1 How to Create Mappings to Oracle LOB Database Objects Using the Oracle JDBC Thin

Driver 120-4
120.6 Removing Mappings ... 120-5
120.6.1 How to Remove Mappings Using TopLink Workbench .. 120-5
120.6.2 How to Remove Mappings Using Java ... 120-6

121 Configuring a Mapping

121.1 Configuring Common Mapping Options... 121-2
121.2 Configuring Read-Only Mappings ... 121-3
121.2.1 How to Configure Read-Only Mappings Using TopLink Workbench 121-4
121.2.2 How to Configure Read-Only Mappings Using Java.. 121-4
121.3 Configuring Indirection (Lazy Loading) .. 121-4
121.3.1 How to Configure Indirection Using TopLink Workbench 121-6
121.3.2 How to Configure Indirection Using Java .. 121-7
121.3.2.1 Configuring Value Holder Indirection .. 121-7
121.3.2.2 Configuring Value Holder Indirection with Method Accessing 121-8
121.3.2.3 Configuring Value Holder Indirection with JPA.. 121-9
121.3.2.4 Configuring IndirectContainer Indirection .. 121-10
121.3.2.5 Configuring Proxy Indirection .. 121-10
121.4 Configuring XPath ... 121-12
121.4.1 How to Configure XPath Using TopLink Workbench .. 121-13
121.4.1.1 Choosing the XPath... 121-14
121.5 Configuring a Default Null Value at the Mapping Level .. 121-14
121.5.1 How to Configure a Default Null Value at the Mapping Level Using TopLink

Workbench 121-15
121.5.2 How to Configure a Default Null Value at the Mapping Level Using Java 121-16
121.6 Configuring Method or Direct Field Accessing at the Mapping Level........................ 121-16
121.6.1 How to Configure Method or Direct Field Accessing Using TopLink Workbench...........

121-17
121.6.2 How to Configure Method or Direct Field Accessing Using Java......................... 121-18
121.7 Configuring Private or Independent Relationships.. 121-18
121.7.1 How to Configure Private or Independent Relationships Using TopLink Workbench....

121-20
121.7.2 How to Configure Private or Independent Relationships Using Java.................. 121-20
121.8 Configuring Mapping Comments ... 121-21
121.8.1 How to Configure Mapping Comments Using TopLink Workbench 121-21
121.9 Configuring a Serialized Object Converter .. 121-21
121.9.1 How to Configure a Serialized Object Converter Using TopLink Workbench ... 121-22
121.9.2 How to Configure a Serialized Object Converter Using Java 121-23
121.10 Configuring a Type Conversion Converter ... 121-23
121.10.1 How to Configure a Type Conversion Converter Using TopLink Workbench .. 121-24

lvi

121.10.2 How to Configure a Type Conversion Converter Using Java 121-25
121.11 Configuring an Object Type Converter .. 121-25
121.11.1 How to Configure an Object Type Converter Using TopLink Workbench 121-26
121.11.2 How to Configure an Object Type Converter Using Java 121-27
121.12 Configuring a Simple Type Translator ... 121-28
121.12.1 How to Configure a Simple Type Translator Using TopLink Workbench 121-28
121.12.2 How to Configure a Simple Type Translator Using Java 121-29
121.13 Configuring a JAXB Typesafe Enumeration Converter ... 121-29
121.13.1 How to Configure a JAXB Typesafe Enumeration Converter Using Java 121-30
121.14 Configuring Container Policy .. 121-30
121.14.1 How to Configure Container Policy Using TopLink Workbench 121-32
121.14.2 How to Configure Container Policy Using Java .. 121-34
121.15 Configuring Attribute Transformer .. 121-34
121.15.1 How to Configure Attribute Transformer Using TopLink Workbench 121-35
121.15.2 How to Configure Attribute Transformer Using Java .. 121-36
121.16 Configuring Field Transformer Associations .. 121-36
121.16.1 How to Configure Field Transformer Associations Using TopLink Workbench 121-37
121.16.1.1 Specifying Field-to-Transformer Associations.. 121-38
121.16.2 How to Configure Field Transformer Associations Using Java 121-38
121.17 Configuring Mutable Mappings.. 121-39
121.17.1 How to Configure Mutable Mappings Using TopLink Workbench..................... 121-39
121.17.2 How to Configure Mutable Mappings Using Java .. 121-40
121.18 Configuring Bidirectional Relationship.. 121-40
121.18.1 How to Configure Bidirectional Relationship Using TopLink Workbench......... 121-41
121.18.2 How to Configure Bidirectional Relationship Using Java...................................... 121-42
121.19 Configuring the Use of a Single Node .. 121-43
121.19.1 How to Configure the Use of a Single Node Using TopLink Workbench 121-43
121.19.2 How to Configure the Use of a Single Node Using Java .. 121-44
121.20 Configuring the Use of CDATA .. 121-44
121.20.1 How to Configure the Use of CDATA Using Java .. 121-45

A Troubleshooting a TopLink Application

A.1 TopLink Support for Oracle Application Server Manageability and Diagnosability...... A-1
A.1.1 Oracle Application Server Manageability and Diagnosability Logging Enhancements ..

A-1
A.1.2 Oracle Dynamic Monitoring System (DMS) Sensor Enhancements A-2
A.1.3 Manageability and Diagnosability JMX Enhancements ... A-2
A.2 TopLink Exception Error Reference .. A-2
A.2.1 Descriptor Exceptions .. A-3
A.2.2 Concurrency Exceptions .. A-4
A.2.3 Conversion Exceptions... A-4
A.2.4 Database Exceptions... A-4
A.2.5 Optimistic Lock Exceptions... A-5
A.2.6 Query Exceptions.. A-5
A.2.7 Validation Exceptions .. A-5
A.2.8 EJB QL Exceptions .. A-6
A.2.9 Session Loader Exceptions .. A-6

lvii

A.2.10 EJB Exception Factory Exceptions.. A-6
A.2.11 Communication Exceptions .. A-7
A.2.12 EIS Exceptions ... A-7
A.2.13 JMS Processing Exceptions.. A-7
A.2.14 Default Mapping Exceptions .. A-7
A.2.15 Discovery Exceptions ... A-8
A.2.16 Remote Command Manager Exceptions... A-8
A.2.17 Transaction Exceptions .. A-8
A.2.18 XML Conversion Exceptions... A-8
A.2.19 XML Marshal Exceptions... A-9
A.2.20 Migration Utility Exceptions... A-9
A.2.21 XML Platform Exceptions.. A-9
A.2.22 Entity Manager Setup Exceptions .. A-9
A.2.23 EJB JAR XML Exceptions... A-10
A.3 TopLink Workbench Error Reference ... A-10
A.3.1 Miscellaneous Errors (1 – 89, 106 – 133) .. A-10
A.3.2 Project Errors (100 – 102) ... A-12
A.3.3 Descriptor Errors (200 – 399)... A-12
A.3.4 Mapping Errors (400 – 483) ... A-23
A.3.5 Table Errors (500 – 610).. A-27
A.3.6 XML Schema Errors (700 – 706) .. A-32
A.3.7 Session Errors (800 – 812) .. A-33
A.3.8 Common Classpath Problems... A-34
A.3.9 Database Connection Problems .. A-35

Glossary

Index

lviii

lix

Preface

Oracle Fusion Middleware Developer's Guide for Oracle TopLink explains how to use
Oracle TopLink to design, implement, deploy, and optimize an advanced persistence
or object-to-XML transformation layer for a wide range of Java 2 Enterprise Edition
(Java EE) and Java applications. It describes TopLink mapping metadata, sessions, data
access, queries, transactions (both with and without an external transaction controller),
and cache.

It describes how to use TopLink application development tools and how to integrate
TopLink with a variety of Java EE containers. It also introduces the concepts with
which you should be familiar to get the most out of TopLink.

Audience
Oracle Fusion Middleware Developer's Guide for Oracle TopLink is intended for application
developers creating applications that use TopLink to manage persistence.

This document assumes that you are familiar with the concepts of object-oriented
programming, the Enterprise JavaBeans (EJB) specification, and your own particular
Java development environment.

The document also assumes that you are familiar with your particular operating
system (such as Windows, UNIX, or other). The general operation of any operating
system is described in the user documentation for that system, and is not repeated in
this manual.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

lx

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documentation
For more information, refer to the documentation section of
http://www.oracle.com/technology/products/ias/toplink/index.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I TopLink Application Development

Overview

This part describes the architecture of TopLink and how TopLink fits into your
development process. It contains the following chapters:

■ Chapter 1, "Introduction to TopLink"

This chapter contains general information on TopLink. It discusses the TopLink
application space, development process, components, and the TopLink
metamodel.

■ Chapter 2, "Introduction to TopLink Application Development"

This chapter contains an overview of the key stages in the TopLink development
process including choosing an application architecture and platform, object and
relational mapping, building the persistence layer, and deploying and maintaining
a TopLink application.

1

Introduction to TopLink 1-1

1Introduction to TopLink

Oracle TopLink is an advanced, object-persistence and object-transformation
framework that provides development tools and run-time capabilities that reduce
development and maintenance efforts, and increase enterprise application
functionality.

This chapter includes the following sections:

■ What Is TopLink?

■ What Is the Object-Persistence Impedance Mismatch

■ TopLink Key Features

■ TopLink Application Architectures

1.1 What Is TopLink?
Oracle TopLink builds high-performance applications that store persistent
object-oriented data in a relational database. It successfully transforms object-oriented
data into either relational data or Extensible Markup Language (XML) elements.

Figure 1–1 TopLink Runtime Architecture

What Is the Object-Persistence Impedance Mismatch

1-2 Developer's Guide for Oracle TopLink

Using TopLink, you can integrate persistence and object-transformation into your
application, while staying focused on your primary domain problem by taking
advantage of an efficient, flexible, and field-proven solution (see Section 1.2, "What Is
the Object-Persistence Impedance Mismatch").

TopLink is suitable for use with a wide range of Java 2 Enterprise Edition (Java EE)
and Java application architectures (see Section 1.4, "TopLink Application
Architectures"). Use TopLink to design, implement, deploy, and optimize an advanced,
object-persistence and object-transformation layer that supports a variety of data
sources and formats, including the following:

■ Relational–for transactional persistence of Java objects to a relational database
accessed using Java Database Connectivity (JDBC) drivers.

■ Object-Relational Data Type–for transactional persistence of Java objects to special
purpose structured data source representations optimized for storage in
object-relational data type databases such as Oracle Database.

■ Enterprise information system (EIS)–for transactional persistence of Java objects to
a nonrelational data source accessed using a Java EE Connector architecture (JCA)
adapter, and any supported EIS record type, including indexed, mapped, or XML.

■ XML–for nontransactional, nonpersistent (in-memory) conversion between Java
objects and XML Schema Document (XSD)-based XML documents using Java
Architecture for XML Binding (JAXB).

TopLink supports EJB 3.0 in Java EE and Java SE environments including integration
with a variety of application servers, such as Oracle WebLogic Server, OC4J, SunAS,
JBoss, and IBM WebSphere application server. TopLink also includes support for EJB
2.n container-managed persistence (CMP) in OC4J.

The extensive suite of development tools that TopLink provides, including Oracle
JDeveloper TopLink Editor, Eclipse Dali, and Oracle TopLink Workbench, lets you
quickly capture and define object-to-data source and object-to-data representation
mappings in a flexible, efficient metadata format (see Section 2.9, "Working with
TopLink Metadata").

The TopLink runtime lets your application exploit this mapping metadata with a
simple session facade that provides in-depth support for data access, queries,
transactions (both with and without an external transaction controller), and caching.

For more information about TopLink, see Section 1.3, "TopLink Key Features".

1.2 What Is the Object-Persistence Impedance Mismatch
Java-to-data source integration is a widely underestimated problem when creating
enterprise Java applications. This complex problem involves more than simply reading
from and writing to a data source. The data source elements include tables, rows,
columns, and primary and foreign keys. The Java and Java EE include entity classes
(regular Java classes or Enterprise JavaBeans (EJB) entity beans), business rules,
complex relationships, and inheritance. In a nonrelational data source, you must match
your Java entities with EIS records or XML elements and schemas. These differences
(as shown in Figure 1–2) are known as the object-persistence impedance mismatch.

What Is the Object-Persistence Impedance Mismatch

Introduction to TopLink 1-3

Figure 1–2 Solving Object-Persistence Impedance Mismatch

Successful solution requires bridging these different technologies, and solving the
object-persistence impedance mismatch–a challenging and resource-intensive
problem. To solve this problem, you must resolve the following issues between Java
EE and data source elements:

■ Fundamentally different technologies.

■ Different skill sets.

■ Different staff and ownership for each of the technologies.

■ Different modeling and design principles.

As an application developer, you need a product that lets integrate Java applications
with any data source, without compromising ideal application design or data integrity.
In addition, as a Java developer, you need the ability to store (that is, persist) and
retrieve business domain objects using a relational database or a nonrelational data
source as a repository.

TopLink Solution
TopLink addresses the disparity between Java objects and data sources. TopLink is a
persistence framework that manages relational, object-relational data type, EIS, and
XML mappings in a seamless manner. This lets you rapidly build applications that
combine the best aspects of object technology and the specific data source.

TopLink lets you do the following:

■ Persist Java objects to virtually any relational database supported by a
JDBC-compliant driver.

■ Persist Java objects to virtually any nonrelational data source supported by a Java
EE Connector architecture (JCA) adapter using indexed, mapped, or XML
enterprise information system (EIS) records.

■ Perform in-memory conversions between Java objects and XML Schema (XSD)
based XML documents using JAXB.

■ Map any object model to any relational or nonrelational schema, using the Oracle
TopLink Workbench graphical mapping tool or Oracle JDeveloper TopLink editor.

■ Use TopLink successfully, even if you are unfamiliar with SQL or JDBC, because
TopLink offers a clear, object-oriented view of data sources.

TopLink Key Features

1-4 Developer's Guide for Oracle TopLink

1.3 TopLink Key Features
TopLink provides an extensive and thorough set of features. You can use these features
to rapidly build high-performance enterprise applications that are both scalable and
maintainable.

Some of the primary features of TopLink are the following:

■ Nonintrusive, flexible, metadata-based architecture (see Section 2.9, "Working with
TopLink Metadata")

■ Architectural flexibility: Plain Old Java Objects (POJO), Container-Managed
Persistence (CMP), as well as Java Persistence API (JPA), Java API for XML
Binding (JAXB), Service Data Objects (SDO), and Web services provided by
EclipseLink.

■ Advanced mapping support and flexibility: relational, object-relational data type,
Enterprise Information Systems (EIS), and XML.

■ Optimized for highly scalable performance and concurrency with extensive
performance tuning options.

■ Comprehensive object caching support including cluster integration for some
application servers (such as, for example, Oracle Application Server).

■ Extensive query capability including: TopLink Expressions framework, Java
Persistence Query Language (JP QL), Enterprise JavaBeans Query Language (EJB
QL), and native SQL.

■ Just-in-time reading

■ Object-level transaction support and integration with popular application servers
and databases.

■ Optimistic and pessimistic locking options and locking policies.

■ Comprehensive visual design tools: Oracle JDeveloper TopLink Editor, Eclipse
Dali, and Oracle TopLink Workbench.

For additional information, see the TopLink page on OTN:

http://www.oracle.com/technology/products/ias/toplink/index.html

1.4 TopLink Application Architectures
You can use TopLink in a variety of application architectures, including three- and
two-tier architectures, with or without Java EE, to access a variety of data types on
both relational and nonrelational data sources.

Figure 1–3 TopLink and Your Application Architecture

TopLink Application Architectures

Introduction to TopLink 1-5

For more information on strategies for incorporating TopLink into your application
architecture, see Section 2.2, "Designing Your Application with TopLink".

This section introduces some of the following common enterprise architectures used
by TopLink applications:

■ Three-Tier

The three-tier (or Java EE Web) application is one of the most common TopLink
architectures. This architecture is characterized by a server-hosted environment in
which the business logic, persistent entities, and the Oracle TopLink Foundation
Library all exist in a single Java Virtual Machine (JVM). See Section 2.11,
"Considering Three-Tier Architecture" for more information.

The most common example of this architecture is a simple three-tier application in
which the client browser accesses the application through servlets, JavaServer
Pages (JSP) and HTML. The presentation layer communicates with TopLink
through other Java classes in the same JVM, to provide the necessary persistence
logic. This architecture supports multiple servers in a clustered environment, but
there is no separation across JVMs from the presentation layer and the code that
invokes the persistence logic against the persistent entities using TopLink.

■ EJB Session Bean Facade

A popular variation on the three-tier application involves wrapping the business
logic, including the TopLink access, in EJB session beans. This architecture
provides a scalable deployment and includes integration with transaction services
from the host application server. See Section 2.13, "Considering EJB Session Bean
Facade Architecture" for more information.

Communication from the presentation layer occurs through calls to the EJB session
beans. This architecture separates the application into different tiers for the
deployment. The session bean architecture can persist either Java objects or EJB
entity beans.

■ EJB 3.0 Entities with JPA

The EJB 3.0 specification includes an additional persistence specification called the
Java Persistence API (JPA). You can use this API for creating, reading, updating,
and deleting plain old Java objects (POJO) within both a compliant EJB 3.0 Java EE
container and a standard Java SE 5 (or later) environment.

EclipseLink JPA is a standards-compliant JPA persistence provider built on the
EclipseLink foundation library. EclipseLink JPA offers a variety of vendor
extensions (annotations and persistence unit properties) that give you full access
to the underlying EclipseLink API.

For more information, see the following:

– "Java Persistence API Overview" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Introduction_to_Java_Persistence_
API_%28ELUG%29

– "Introduction to EclipseLink JPA" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Introduction_to_EclipseLink_JPA_
%28ELUG%29

– http://wiki.eclipse.org/EclipseLink/UserGuide/Developing_
JPA_Projects_%28ELUG%29

– Section 2.16, "Considering JPA Entity Architecture"

■ EJB Entity Beans with CMP

TopLink Application Architectures

1-6 Developer's Guide for Oracle TopLink

TopLink provides CMP support for applications that require the use of EJB entity
beans. This support is available on the leading application servers. TopLink CMP
support provides you with an EJB 1.0, 1.1, 2.0 and 2.1 CMP solution transparent to
the application code, but still offers all the TopLink run-time benefits. See
Section 2.14, "Considering EJB Entity Beans with CMP Architecture" for more
information.

Applications can access TopLink-enabled entity beans with container-managed
persistence directly from the client, or from within a session bean layer. TopLink
also offers the ability to use regular Java objects in relationships with enterprise
entity beans.

■ EJB Entity Beans with BMP

Another option for using EJB entity beans is to use TopLink BMP in the
application. This architecture enables you to access the persistent data through the
EJB application programming interface (API), but is platform independent. See
Section 2.15, "Considering EJB Entity Beans with BMP Architecture" for complete
information.

The BMP approach is portable–that is, after you create an application, you can
move it from one application server platform to another.

■ Web Services

A Web services architecture is similar to the three-tier or session-bean architecture.
However, in a Web services architecture you encapsulate business logic (the
service) in a Web service instead of (or in addition to) using session beans. In a
Web services architecture, clients communicate with your application using XML.

As in any architecture, you can use TopLink to persist objects to relational or EIS
data sources. However, in a Web services architecture you can also use TopLink to
map your object model to an XML schema for use with the Web service or as the
Web service XML serializer.

See Section 2.17, "Considering Web Services Architecture" for more information

■ Two-Tier

A two-tier (or client/server) application is one in which the TopLink application
accesses the database directly. Although less common than the other architectures
discussed here, TopLink supports this architecture for smaller or embedded data
processing applications. See Section 2.12, "Considering Two-Tier Architecture" for
more information.

Note: Even though TopLink fully supports EJB 1.0, 1.1, 2.0, 2.1 and
JPA, this edition of Oracle TopLink Developer’s Guide only focuses on
EJB 2.0, 2.1, and JPA. For detailed information on TopLink support for
EJB 1.0 and 1.1, refer to the earlier editions of Oracle TopLink
Developer’s Guide.

2

Introduction to TopLink Application Development 2-1

2Introduction to TopLink
Application Development

This chapter describes how to build a TopLink application, including suggested
development processes, architectures, and technologies.

This chapter includes the following sections:

■ Introduction to TopLink Application Development

■ Designing Your Application with TopLink

■ Selecting an Architecture with TopLink

■ Building and Using the Persistence Layer

■ Deploying the Application

■ Optimizing and Customizing the Application

■ Persisting Objects

■ Working with TopLink Metadata

■ Using Weaving

■ Considering Three-Tier Architecture

■ Considering Two-Tier Architecture

■ Considering EJB Session Bean Facade Architecture

■ Considering EJB Entity Beans with CMP Architecture

■ Considering EJB Entity Beans with BMP Architecture

■ Considering JPA Entity Architecture

■ Considering Web Services Architecture

■ Considering EclipseLink Service Data Objects (SDO) Architecture

2.1 Introduction to TopLink Application Development
To ensure the best design for your TopLink application, Oracle recommends that you
follow an iterative step-by-step development process. The flexibility of TopLink lets
you use any development tool.

This section describes following recommended development process:

■ Typical Development Stages

■ Oracle Development Support

Introduction to TopLink Application Development

2-2 Developer's Guide for Oracle TopLink

2.1.1 Typical Development Stages
This section describes the general development stages of a TopLink application.
Figure 2–1 illustrates the TopLink development process.

Figure 2–1 TopLink Development Process

Design the Application (1)
Define your application requirements, select an architecture, and determine the target
platform. See Section 2.2, "Designing Your Application with TopLink" for more
information. Remember, TopLink works with any architecture and any platform.

When designing the application, you should also create an object model for the
application. See Section 2.8, "Persisting Objects" for more information. It is important
to create the object model before using TopLink to map objects, because defining
persistent mappings for an incorrect or rapidly changing model can be very difficult.

Develop the Application (2, 3, 4)
Create the Java classes and decide how the classes should be implemented by the data
source. When working with a legacy system, decide how the classes relate to the
existing data. If there is no legacy data source to integrate, decide how to store each
class in the data source and create the required schema. Alternatively, you may use
TopLink to create your initial tables.

Using Oracle JDeveloper TopLink Editor or TopLink Workbench, create descriptors
and mappings for the persistent classes. Use TopLink sessions to manipulate the
persistent classes, including querying and changing data. See Part II, "TopLink
Development Tools Overview" for more information.

Avoid building all your model's descriptors in a single iteration. Start with a small
subset of your classes. Build and test their descriptors, then gradually add new
descriptors and relationships. This lets you catch common problems before they
proliferate through your entire design.

Designing Your Application with TopLink

Introduction to TopLink Application Development 2-3

Write Java code to use database sessions. Sessions are used to query for database
objects and write objects to the database. See Chapter 87, "Introduction to TopLink
Sessions" for more information.

Deploy the Application (5)
Generate, package, then deploy the necessary files to your application server. The
required information will vary, depending on your environment and architecture. See
Part III, "TopLink Application Deployment" for more information.

Maintain the Application (6)
TopLink includes many options that can enhance application performance. You can
customize most aspects of TopLink to suit your requirements. Use advanced TopLink
features or write custom querying routines to access the database in specific ways, and
to optimize performance. See Part IV, "Optimization and Customization of a TopLink
Application" for more information.

2.1.2 Oracle Development Support
Oracle provides additional support for you as a TopLink developer on the Oracle
Technology Network (OTN), including the following:

■ Metalink support

■ Discussion forums

■ How-to documents

■ Examples

You must register online before using OTN; registration is free of charge and can be
done at

http://www.oracle.com/technology/membership

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://www.oracle.com/technology/docs

Using your OTN user name and password, you can also access the TopLink
developer’s forum to post questions and get answers about using TopLink at

http://forums.oracle.com/forums/forum.jsp?forum=48

2.2 Designing Your Application with TopLink
When you design your application, you must choose how and where to use TopLink.
You can use TopLink to perform a variety of persistence and data transformation
functions (see Section 2.2.1, "How to Use TopLink in Your Application Design") on a
variety of Java-supporting platforms (see Section 2.2.2, "Target Platforms"). When you
design your application architecture, keep these capabilities in mind (see Section 2.3,
"Selecting an Architecture with TopLink").

2.2.1 How to Use TopLink in Your Application Design
This section describes the basic ways in which you can use TopLink, including the
following usage types:

■ Relational Database Usage

Designing Your Application with TopLink

2-4 Developer's Guide for Oracle TopLink

■ Object-Relational Data Type Database Usage

■ Oracle XML Database (XDB) Usage

■ Enterprise Information System (EIS) Usage

■ XML Usage

2.2.1.1 Relational Database Usage
You can use TopLink to persist Java objects to relational databases that support SQL
data types accessed using JDBC.

For more information, see Section 18.1.1, "How to Build Relational Projects for a
Relational Database".

2.2.1.2 Object-Relational Data Type Database Usage
You can use TopLink to persist Java objects to object-relational data type databases that
support data types specialized for object storage (such as Oracle Database) accessed
using JDBC.

For more information, see Section 18.1.2, "How to Build Relational Projects for an
Object-Relational Data Type Database".

2.2.1.3 Oracle XML Database (XDB) Usage
You can use TopLink to persist XML documents to an Oracle XML database using
TopLink direct-to-XMLType mappings.

For more information, see Chapter 18, "Introduction to Relational Projects" and
Section 27.4, "Direct-to-XMLType Mapping".

2.2.1.4 Enterprise Information System (EIS) Usage
You can use TopLink to persist Java objects to an EIS data source using a JCA adapter.

In this scenario, the application invokes EIS data source-defined operations by sending
EIS interactions to the JCA adapter. Operations can take (and return) EIS records.
Using TopLink EIS descriptors and mappings, you can easily map Java objects to the
EIS record types supported by your JCA adapter and EIS data source.

This usage is common in applications that connect to legacy data sources and is also
applicable to Web services.

For more information, see Chapter 71, "Introduction to EIS Projects".

2.2.1.5 XML Usage
You can use TopLink for in-memory, nonpersistent Java object-to-XML transformation
with XML Schema (XSD) based XML documents and JAXB.

You can use the TopLink JAXB compiler with your XSD to generate both JAXB-specific
artifacts (such as content and element interfaces, implementation classes, and object
factory class) and TopLink-specific artifacts (such as sessions and project XML files
and TopLink Workbench project). For more information, see Section 47.1.1, "TopLink
Support for Java Architecture for XML Binding (JAXB)".

This usage has many applications, including messaging and Web services.

For more information, see Chapter 47, "Introduction to XML Projects".

Selecting an Architecture with TopLink

Introduction to TopLink Application Development 2-5

2.2.2 Target Platforms
TopLink supports any enterprise architecture that uses Java, including the following:

■ Java EE

■ Spring

■ Java Web servers such as Tomcat

■ Java clients such as Java SE and Web browsers

■ Server Java platforms

Application packaging requirements of the specific target platform (for deployment in
the host Java or Java EE environment) influences how you use and configure TopLink.
For example, you package a Java EE application in an Enterprise Archive (EAR) file.
Within the EAR file, there are several ways to package persistent entities within Web
Archive (WAR) and Java Archive (JAR). How you configure TopLink depends, in part,
on how you package the application and how you use the host application server class
loader.

In addition, TopLink provides custom CMP integration for a variety of application
servers.

For detailed information about supported application server versions, custom
integration, and configuration requirements, see Chapter 8, "Integrating TopLink with
an Application Server".

2.3 Selecting an Architecture with TopLink
This section describes some of the key aspects of application architecture that apply to
TopLink and discusses the various options available for each, including the following:

■ Tiers

■ Service Layer

■ Data Access

■ Caching

■ Locking

2.3.1 Tiers
This section describes choices you need to make when deciding on how to separate
client and server functionality in your application architecture.

These choices can be summarized as follows:

■ Three Tier

– Java EE or Non-Java EE

– Client

* Web client

* XML/Web service client

* Java (fat) client

■ Two Tier

Selecting an Architecture with TopLink

2-6 Developer's Guide for Oracle TopLink

2.3.1.1 Three Tier
Oracle recommends a three-tier application architecture. With a three-tier architecture,
Oracle recommends using EclipseLink JPA or server sessions and client sessions (see
Section 87.3, "Server and Client Sessions") and the TopLink unit of work (see
Chapter 113, "Introduction to TopLink Transactions").

For more information, see Section 2.11, "Considering Three-Tier Architecture".

2.3.1.1.1 Java EE or Non-Java EE You can use TopLink in a Java EE or non-Java EE
application architecture. Oracle recommends that you use a Java EE application
architecture.

With a Java EE application, you should use external connection pools (see
Section 96.1.6.2, "External Connection Pools"). You may consider using JPA or CMP,
EJB session beans, and Java Transaction API (JTA) integration (see Section 113.1.2.1,
"JTA Controlled Transactions").

With a non-Java EE application, you should use internal connection pools (see
Section 96.1.6.1, "Internal Connection Pools"). You may still consider using JPA.

2.3.1.1.2 Client In a three-tier application architecture, you can implement any of the
following types of client:

■ Web client–Oracle recommends that you implement a Web client.

■ XML/Web service client–With this client type, you can use TopLink XML (see
Section 2.2.1.5, "XML Usage").

■ Java (fat) client–With this client type, you can choose the means of communicating
with the server:

– EJB session beans–Oracle recommends this approach. You may consider using
the UnitOfWork method mergeClone to handle merging deserialized objects
(see Section 115.5, "Merging Changes in Working Copy Clones"). The
disadvantage of this approach is that your application must handle
serialization. Avoid serializing deep object graphs. You should use indirection,
also known in JPA as lazy loading (see Section 121.3, "Configuring Indirection
(Lazy Loading)"). Consider using the data-transfer-object pattern.

– XML/Web service–Use TopLink XML (see Section 2.2.1.5, "XML Usage").

– EJB entity bean–Use TopLink CMP integration or BMP support. The
disadvantage of this approach is that remote entity beans may not perform or
scale well.

– RMI–You may consider using a TopLink remote session (see Section 87.9,
"Remote Sessions"). The disadvantage of this approach is that a remote session
is stateful and may not scale well.

See also Section 2.3.2, "Service Layer".

2.3.1.2 Two Tier
With a two-tier application architecture, Oracle recommends using TopLink database
sessions (see Section 87.8, "Database Sessions") and the TopLink unit of work (see
Chapter 113, "Introduction to TopLink Transactions"). The disadvantages of this
architecture are that it is not Web-enabled and does not scale well to large
deployments.

For more information, see Section 2.12, "Considering Two-Tier Architecture".

Selecting an Architecture with TopLink

Introduction to TopLink Application Development 2-7

2.3.2 Service Layer
This section describes choices you need to make when deciding on how to encapsulate
your application’s business logic (or service).

These choices can be summarized as follows:

■ EJB Session Beans

– Stateful

– Stateless

■ EJB Entity Beans

– Container-Managed Persistence (CMP)

– Bean-Managed Persistence (BMP)

■ JPA Entities

■ Plain Old Java Objects (POJO)

See also:

■ Section 2.3.3, "Data Access"

■ Section 2.3.4, "Caching"

2.3.2.1 EJB Session Beans
Oracle recommends using EJB session beans.

With EJB session beans, you should use JTA integration (see Section 113.1.2.1, "JTA
Controlled Transactions") and external connection pools (see Section 96.1.6.2, "External
Connection Pools"). You should acquire a unit of work (see Section 115.13.1, "How to
Acquire a Unit of Work with an External Transaction Service").

For more information, see Section 2.13, "Considering EJB Session Bean Facade
Architecture".

2.3.2.1.1 Stateful If you are using stateful session beans, then note that a reference to a
client session cannot be passivated. In this case, you must reacquire a client session
(see Section 87.2.4, "Acquiring a Session at Run Time with the Session Manager") on
activate or per request.

2.3.2.1.2 Stateless If you are using stateless session beans, you must acquire new client
session (see Section 87.2.4, "Acquiring a Session at Run Time with the Session
Manager") for each request.

2.3.2.2 EJB Entity Beans
EJB entity bean architectures are slightly different from other TopLink architectures,
because the EJB entity bean interfaces hide TopLink functionality completely from the
client application developer.

You can use entity beans in almost any Java EE application. For TopLink, how the
application uses the entity beans is not important; how entity beans are mapped and
implemented is important to TopLink.

2.3.2.2.1 Container-Managed Persistence (CMP) Oracle recommends using entity beans
with container-managed persistence. In this case, you should use the TopLink CMP
integration for your application server. You must ensure that you are using a Java EE

Selecting an Architecture with TopLink

2-8 Developer's Guide for Oracle TopLink

server that TopLink supports (see Chapter 8, "Integrating TopLink with an Application
Server").

For more information, see Section 2.14, "Considering EJB Entity Beans with CMP
Architecture".

2.3.2.2.2 Bean-Managed Persistence (BMP) If you are using entity beans with
bean-managed persistence, you should use the TopLink BMP integration. The
disadvantages of this architecture are that the BMP architecture is restrictive and may
not provide good performance.

For more information, see Section 2.15, "Considering EJB Entity Beans with BMP
Architecture".

2.3.2.3 JPA Entities
Java Persistence API (JPA) is a specification for persistence in Java EE and Java SE
applications. In JPA, a persistent class is referred to as an entity. An entity is a plain old
Java object (POJO) class (see Section 2.3.2.4, "Plain Old Java Objects (POJO)") that is
mapped to the database and configured for usage through JPA using annotations,
persistence XML, or both.

With JPA, when your application is running inside a container, all of the benefits of the
container support and ease of use apply. Note that you can configure the same
application to run outside the container.

You can use session beans (see Section 2.3.2.1, "EJB Session Beans") as the means for
your application to interact with JPA.

EclipseLink JPA is a standards-compliant JPA persistence provider built on the
EclipseLink foundation library. EclipseLink JPA offers a variety of vendor extensions
(annotations and persistence unit properties) that give you full access to the
underlying EclipseLink API to take advantage of additional functionality and
performance benefits.

For more information, see the following:

■ Section 2.16, "Considering JPA Entity Architecture"

■ Section 1.4, "TopLink Application Architectures"

2.3.2.4 Plain Old Java Objects (POJO)
If you choose to build your service layer with non-EJB Java objects with a Java EE
application server, you should use external connection pools (see Section 96.1.6.2,
"External Connection Pools"). If you use a non-Java EE Web server, you should use
internal connection pools (see Section 96.1.6.1, "Internal Connection Pools"). In either
case, you may consider using JTA integration (see Section 113.1.2.1, "JTA Controlled
Transactions").

2.3.3 Data Access
This section describes choices you need to make when deciding on what type of data
your application architecture must support.

These choices can be summarized as follows:

■ Data Type

■ Multiple Data Sources

■ Isolating Data Access

Selecting an Architecture with TopLink

Introduction to TopLink Application Development 2-9

■ Historical Data Access

See also Section 2.3.5, "Locking".

2.3.3.1 Data Type
You can use TopLink to manage any of the following types of data:

■ relational (see Section 2.2.1.1, "Relational Database Usage");

■ object-relational data type (see Section 2.2.1.2, "Object-Relational Data Type
Database Usage");

■ Oracle XDB (see Section 2.2.1.3, "Oracle XML Database (XDB) Usage");

■ EIS, nonrelational, legacy data (see Section 2.2.1.4, "Enterprise Information System
(EIS) Usage");

■ XML and Web service data (see Section 2.2.1.5, "XML Usage").

2.3.3.2 Multiple Data Sources
If your application architecture must access more than one data source, Oracle
recommends that you use a session broker (see Section 87.7, "Session Broker and Client
Sessions") and JTA integration (see Section 113.1.2.1, "JTA Controlled Transactions") for
two-phase commit.

Alternatively, you may use multiple sessions.

2.3.3.3 Isolating Data Access
If your application architecture requires that some data be restricted to a private cache
and isolated from the TopLink shared session cache, Oracle recommends that you use
an isolated session (see Section 87.5, "Isolated Client Sessions"). You can also use an
isolated session with the Oracle Virtual Private Database (VPD) feature (see
Section 87.5.1, "Isolated Client Sessions and Oracle Virtual Private Database (VPD)").

2.3.3.4 Historical Data Access
If your data source maintains past or historical versions of objects, Oracle recommends
that you use a TopLink historical session (see Section 87.6, "Historical Sessions") to
access this historical data so that you can express read queries conditional on how
your objects are changing over time.

2.3.4 Caching
This section describes choices you need to make when deciding on how to use the
TopLink cache (see Chapter 102, "Introduction to Cache") in your application
architecture.

These choices can be summarized as follows:

■ Cache Type

■ Refreshing

■ Cache Coordination

– Protocol

– Synchronization

See also Section 2.3.5, "Locking".

Selecting an Architecture with TopLink

2-10 Developer's Guide for Oracle TopLink

2.3.4.1 Cache Type
Choose a cache type (see Section 102.2.1, "Cache Type and Object Identity")
appropriate for the type of data your application processes. For example, consider a
weak identity map for volatile data (see Section 102.2.1.6, "Guidelines for Configuring
the Cache and Identity Maps").

2.3.4.2 Refreshing
Consider how your application architecture may be affected by stale data (see
Section 102.2.3, "Handling Stale Data"): for example, consider using query or
descriptor refresh options (see Section 2.3.4.2, "Refreshing") or cache invalidation (see
Section 102.2.5, "Cache Invalidation"). Consider using an isolated session’s cache (see
Section 87.5, "Isolated Client Sessions") for volatile data.

Avoid using no identity map (seeSection 102.2.1.5, "No Identity Map") for objects that
are involved in relationships or that require object identity.

2.3.4.3 Cache Coordination
TopLink provides a distributed cache coordination feature that allows multiple,
possibly distributed, instances of a session to broadcast object changes among each
other so that each session’s cache is kept up to date (see Section 102.3, "Cache
Coordination"). Before using cache coordination, ensure that it is appropriate for your
application (see Section 102.3.1, "When to Use Cache Coordination").

2.3.4.3.1 Protocol You can configure a coordinated cache to broadcast changes using
any of the following communication protocols:

■ Java Message Service (JMS)–Oracle recommends using a JMS coordinated cache
(see Section 102.3.3.1, "JMS Coordinated Cache").

■ Remote Method Invocation (RMI)–Oracle recommends that you use RMI cache
coordination only if you require synchronous change propagation (see
Section 103.2, "Configuring the Synchronous Change Propagation Mode"). For
more information, see Section 102.3.3.2, "RMI Coordinated Cache".

■ Common Object Request Broker Architecture (CORBA)–Currently, TopLink
provides support for the Sun ORB (see Section 102.3.3.3, "CORBA Coordinated
Cache").

2.3.4.3.2 Synchronization You can configure synchronization strategy that a
coordinated cache uses to determine what it broadcasts when an object changes. You
can configure this at the project (see Section 117.12, "Configuring Cache Coordination
Change Propagation at the Project Level") or descriptor (Section 119.15, "Configuring
Cache Coordination Change Propagation at the Descriptor Level") level as follows:

■ Invalidate changed objects–Propagate an object invalidation that marks the object
as invalid in all other sessions. This tells other sessions that they must update their
cache from the data source the next time this object is read. Oracle recommends
using this synchronization strategy.

■ Synchronize changes–Propagate a change notification that contains each changed
attribute.

■ Synchronize changes and new objects–Propagate a change notification that
contains each changed attribute. For new objects, propagate an object creation
(along with all the new instance’s attributes).

Building and Using the Persistence Layer

Introduction to TopLink Application Development 2-11

2.3.5 Locking
This section describes choices you need to make when deciding on how to use
TopLink locking options in your application architecture. Oracle strongly recommends
always using a locking policy in a concurrent system (see Section 119.26, "Configuring
Locking Policy").

These choices can be summarized as follows:

■ Optimistic Locking

■ Pessimistic Locking

If you are building a three-tier application, be aware of how that architecture affects
the way you use locking (see Section 16.4.6, "Locking in a Three-Tier Application").

For more information, see Section 16.4, "Descriptors and Locking".

2.3.5.1 Optimistic Locking
Oracle recommends using TopLink optimistic locking. With optimistic locking, all
users have read access to the data. When a user attempts to write a change, the
application checks to ensure the data has not changed since the user read the data.

You can use version (see Section 16.4.1, "Optimistic Version Locking Policies") or field
(see Section 16.4.4, "Optimistic Field Locking Policies") locking policies. Oracle
recommends using version locking policies.

2.3.5.2 Pessimistic Locking
With pessimistic locking, the first user who accesses the data with the purpose of
updating it locks the data until completing the update. The disadvantage of this
approach is that it may lead to reduced concurrency and deadlocks.

Consider using pessimistic locking support at the query level (see Section 119.7.1.9,
"Configuring Named Query Options").

If are using CMP, you may consider using bean-level pessimistic locking support (see
Section 119.7.1.9, "Configuring Named Query Options").

2.4 Building and Using the Persistence Layer
Oracle TopLink requires that classes must meet certain minimum requirements before
they can become persistent. TopLink also provides alternatives to most requirements.
TopLink uses a nonintrusive approach by employing a metadata architecture that
allows for minimal object model intrusions.

This section includes the following information:

■ Implementation Options

■ Persistent Class Requirements

■ Persistence Layer Components

■ How to Use the Persistence Layer

2.4.1 Implementation Options
When implementing your persistence layer using TopLink, consider the following
options:

■ Using EclipseLink JPA Metatdata, Annotations, and XML

Building and Using the Persistence Layer

2-12 Developer's Guide for Oracle TopLink

■ Using TopLink Metatdata XML

■ Using TopLink Metadata Java API

■ Using Method and Direct Field Access

■ Using Weaving

2.4.1.1 Using EclipseLink JPA Metatdata, Annotations, and XML
When using JPA, you can specify persistence layer components using any combination
of standard JPA annotations and persistence.xml, EclipseLink JPA annotation
extensions, and EclipseLink JPA persistence.xml extensions.

For more information, see Section 2.16, "Considering JPA Entity Architecture".

2.4.1.2 Using TopLink Metatdata XML
Persistence layer components may be generated as metadata from Oracle JDeveloper
or TopLink Workbench.

Oracle recommends using Oracle JDeveloper or TopLink Workbench to create the
necessary metadata (stored as XML). You can easily export and update the
project.xml and sessions.xml files. This reduces development effort by
eliminating the need to regenerate and recompile Java code each time you change the
project. With Oracle JDeveloper or TopLink Workbench, you write Java code only for
your own application classes and any necessary amendment methods. For information
about the XML structure of the project.xml and sessions.xml files, refer to the
appropriate XML schemas (XSD) in the TOPLINK_HOME/xsds directory.

TopLink Workbench provides Ant tasks that you can use to integrate TopLink
Workbench with your automated builds.

For more information, see the following:

■ Section 2.9, "Working with TopLink Metadata"

■ Section 5.8, "Integrating TopLink Workbench with Apache Ant"

2.4.1.3 Using TopLink Metadata Java API
Persistence layer components may be coded or generated as Java from Oracle
JDeveloper or TopLink Workbench.

To use Java code, you must manually write code for each element of the TopLink
project including: project, login, platform, descriptors, and mappings. This may be
more efficient if your application is model-based and relies heavily on code
generation. Depending on the type of project you are creating, Oracle JDeveloper and
TopLink Workbench can export Java code for projects, tables, and your model source.

TopLink Workbench provides Ant tasks that you can use to integrate TopLink
Workbench with your automated builds.

For more information, see the following:

■ Section 116.3, "Exporting Project Information"

■ Section 5.8, "Integrating TopLink Workbench with Apache Ant"

2.4.1.4 Using Method and Direct Field Access
You can access the fields (data members) of a class by using a getter/setter method
(also known as property access) or by accessing the field itself directly.

Building and Using the Persistence Layer

Introduction to TopLink Application Development 2-13

When to use method or direct field access depends on your application design.
Consider the following guidelines:

■ Use method access outside of a class.

This is the natural public API of the class. The getter/setter methods handle any
necessary side-effects and the client need not know anything about those details.

■ Use direct field access within a class to improve performance.

In this case, you are responsible for taking into consideration any side-effects not
invoked by bypassing the getter/setter methods.

When considering using method or direct field access, consider the following
limitations.

If you enable change tracking on a getter/setter method (for example, you decorate
method setPhone with @ChangeTracking), then TopLink tracks changes
accordingly when a client modifies the field (phone) using the getter/setter methods.

Similarly, if you enable change tracking on a field (for example, you decorate field
phone with @ChangeTracking), then TopLink tracks changes accordingly when a
client modifies the field (phone) directly.

However, if you enable change tracking on a getter/setter method (for example, you
decorate method setPhone with @ChangeTracking) and a client accesses the field
(phone) directly, TopLink does not detect the change. If you choose to code in this
style–field access within a class for performance and method access outside of a class
–be aware of this limitation.

For more information, see the following:

■ Section 117.4, "Configuring Method or Direct Field Access at the Project Level"

■ Section 121.6, "Configuring Method or Direct Field Accessing at the Mapping
Level"

■ Section 113.2.3, "Unit of Work and Change Policy"

■ "How to Use the @ChangeTracking Annotation" section of EclipseLink Developer’s
Guide at http://wiki.eclipse.org/Using_EclipseLink_JPA_
Extensions_%28ELUG%29#How_to_Use_the_.40ChangeTracking_
Annotation

■ Section 119.30, "Configuring Change Policy"

2.4.1.5 Using Weaving
Weaving is a technique of manipulating the byte-code of compiled Java classes.

Weaving is used to enhance both JPA entities and Plain Old Java Object (POJO) classes
for such things as lazy loading, change tracking, fetch groups, and internal
optimizations.

For more information, see Section 2.10, "Using Weaving".

2.4.2 Persistent Class Requirements
The following requirements apply to plain Java objects:

■ You can use direct access on private or protected attributes. For more information
on direct and method access, see Section 121.6, "Configuring Method or Direct
Field Accessing at the Mapping Level".

Building and Using the Persistence Layer

2-14 Developer's Guide for Oracle TopLink

■ When using nontransparent indirection, the attributes must be of the type
ValueHolderInterface rather than the original attribute type. The value
holder does not instantiate a referenced object until it is needed.

■ TopLink provides transparent indirection for Collection, List, Set, and Map
attribute types for any collection mappings. Using transparent indirection does not
require the use of the ValueHolderInterface or any other object model
requirements.

If you are using weaving, the ValueHolderInterface is not required. For more
information, see Section 2.4.1.5, "Using Weaving".

See Section 17.2.4, "Indirection (Lazy Loading)" for more information on indirection
and transparent indirection.

2.4.3 Persistence Layer Components
Typically, the TopLink persistence layer contains the following components:

■ Mapping Metadata

■ Session

■ Cache

■ Queries and Expressions

■ Transactions

2.4.3.1 Mapping Metadata
The TopLink application metadata model is based on the TopLink project. The project
includes descriptors, mappings, and various policies that customize the run-time
capabilities. You associate this mapping and configuration information with a
particular data source and application by referencing the project from a session.

For more information, see the following:

■ Section 2.9.2, "Creating Project Metadata"

■ Chapter 15, "Introduction to Projects"

■ Chapter 16, "Introduction to Descriptors"

■ Chapter 17, "Introduction to Mappings"

2.4.3.2 Session
A session is the primary interface between the client application and TopLink, and
represents the connection to the underlying data source.

TopLink offers several different session types (see Chapter 87, "Introduction to
TopLink Sessions"), each optimized for different design requirements and
architectures. The most commonly used session is the server session, a session that
clients access on the server through a client session. The server session provides a

Note: For EJB 2.0 entity beans with container-managed persistence,
the bean requirements are defined by the EJB 2.0 specification; for EJB
2.1 entity beans with container-managed persistence, the bean
requirements are defined by the EJB 2.1 specification.

Building and Using the Persistence Layer

Introduction to TopLink Application Development 2-15

shared cache and shared connection resources. You define a session with session
metadata.

For CMP projects, the TopLink run-time creates and uses a session internally, but your
application does not acquire or use this session directly. Depending on the application
server you use, you can specify some of the parameters for this internal session.

For EclipseLink JPA projects, the EntityManager represents (wraps) the session.

For more information, see the following:

■ Section 2.9.3, "Creating Session Metadata"

■ Section 2.4.4, "How to Use the Persistence Layer"

2.4.3.3 Cache
By default, a TopLink session provides an object-level cache that guarantees object
identity and enhances performance by reducing the number of times the application
needs to access the data source. TopLink provides a variety of cache options, including
locking, refresh, invalidation, isolation, and coordination. Using cache coordination,
you can configure TopLink to synchronize changes with other instances of the
deployed application. You configure most cache options at the session level. You can
also configure cache options on a per-query basis or on a descriptor to apply to all
queries on the reference class.

For more information, see Chapter 102, "Introduction to Cache".

2.4.3.4 Queries and Expressions
TopLink provides several object and data query types, and offers flexible options for
query selection criteria, including the following:

■ TopLink expressions

■ JPQL (Java Persistence Query Language)

■ SQL

■ Stored procedures

■ Query by example

With these options, you can build any type of query. Oracle recommends using
predefined queries to define application queries. Predefined queries are held in the
project metadata and referenced by name. This simplifies application development
and encapsulates the queries to reduce maintenance costs.

When using entity beans, you can code finders completely using EJB QL (in addition
to any of the other TopLink query options), enabling the application to comply with
the Java EE specification.

Regardless of the architecture or persistent entity type, you are free to use any of the
query options. Oracle JDeveloper and TopLink Workbench provide the simplest way
to define queries. Alternatively, you can build queries in code, using the TopLink API.

For more information, see Chapter 108, "Introduction to TopLink Queries" and
Chapter 110, "Introduction to TopLink Expressions".

2.4.3.5 Transactions
TopLink provides the ability to write transactional code isolated from the underlying
database and schema by using a unit of work, a specific transactional session.

Deploying the Application

2-16 Developer's Guide for Oracle TopLink

The unit of work isolates changes in a transaction from other threads until it
successfully commits the changes to the database. Unlike other transaction
mechanisms, the unit of work automatically manages changes to the objects in the
transaction, the order of the changes, and changes that might invalidate other TopLink
caches. The unit of work manages these issues by calculating a minimal change set,
ordering the database calls to comply with referential integrity rules and deadlock
avoidance, and merging changed objects into the shared cache. In a clustered
environment, the unit of work also synchronizes changes with the other servers in the
coordinated cache.

If an application uses entity beans, you do not access the unit of work API directly, but
you still benefit from its features: the integration between the TopLink runtime and the
Java EE container automatically uses the unit of work to the application’s best
advantage.

For more information, see Chapter 108, "Introduction to TopLink Queries".

2.4.4 How to Use the Persistence Layer
At run time, your application uses the TopLink metadata (see Section 2.9, "Working
with TopLink Metadata").

For a POJO (non-CMP) project, your application loads a session.xml file at run time
using the session manager (see Chapter 90, "Acquiring and Using Sessions at Run
Time"). The session.xml file contains a reference to the mapping metadata
project.xml file. Using the session, your application accesses the TopLink runtime
and the project.xml mapping metadata.

For a CMP project, the metadata required is dependent upon the Java EE application
server you deploy your application to (see Chapter 9, "Creating TopLink Files for
Deployment"). All application servers require an ejb-jar.xml and a TopLink project
XML file. The session configuration is dependent on the specific Java EE application
server.

2.5 Deploying the Application
Application packaging (for deployment in the host Java or Java EE environment)
influences TopLink use and configuration. For example, you package a Java EE
application in an EAR file. Within the EAR file, there are several ways to package
persistent entities within WAR and JAR. How you configure TopLink depends, in part,
on how you package the application and how you use the class loader of the host
application server.

This section discusses packaging and deployment from a TopLink perspective.
However, if you deploy your application to a Java EE container, you must configure
elements of your application to enable TopLink container support.

This section includes the following information:

■ About Deployments

■ How to Use TopLink in a Java EE Application

For more information, see Part III, "TopLink Application Deployment".

Troubleshooting the Application

Introduction to TopLink Application Development 2-17

2.5.1 About Deployments
The TopLink approach to deployment involves packaging application files into a
single file, such as aJAR file, or an EAR file. This approach lets you create clean and
self-contained deployments that do not require significant file management.

After creating these files, deploy the project.

2.5.2 How to Use TopLink in a Java EE Application
Although TopLink is an integral part of a Java EE application, in most cases the client
does not interact with TopLink directly. Instead, TopLink features are invoked
indirectly by way of EJB container callbacks.

As a result, the typical deployment process involves the following steps:

1. Build the project elements, including beans, classes, and data sources.

2. Define the application mappings in Oracle JDeveloper TopLink Editor or TopLink
Workbench.

3. Build the application deployment files. Use Oracle JDeveloper or TopLink
Workbench to create the files.

4. Package and deploy the application.

5. Add code to the client application to enable it to access the TopLink application.

2.6 Optimizing and Customizing the Application
TopLink provides a diverse set of features to optimize performance including the
following:

■ Enhancing queries

■ Tuning the cache

■ Scaling to multiple server configuration

You enable or disable most features in the descriptors or session, making any resulting
performance gains global.

Using TopLink EIS (see Section 2.2.1.4, "Enterprise Information System (EIS) Usage"),
you can integrate a TopLink application with legacy data sources using a JCA adapter.
This is the most efficient way to customize a TopLink application to accommodate
unusual or nonstandard systems.

Using TopLink XML (see Section 2.2.1.5, "XML Usage"), you can integrate a TopLink
application with legacy data sources using a Web service.

See Part IV, "Optimization and Customization of a TopLink Application" for details on
optimizing and customizing TopLink.

2.7 Troubleshooting the Application
See Appendix A, "Troubleshooting a TopLink Application" for information on
troubleshooting all aspects of a TopLink application including development and
deployment.

Persisting Objects

2-18 Developer's Guide for Oracle TopLink

2.8 Persisting Objects
This section includes a brief description of relational mapping and provides important
information and restrictions to guide object and relational modeling. This information
is useful when building TopLink applications.

This section includes information on the following:

■ Application Object Model

■ Data Storage Schema

■ Primary Keys and Object Identity

■ Mappings

■ Foreign Keys and Object Relationships

■ Inheritance

■ Concurrency

■ Caching

■ Nonintrusive Persistence

■ Indirection

■ Mutability

These sections contain additional detail on these features, and explain how to
implement and use them with TopLink.

2.8.1 Application Object Model
Object modeling refers to the design of the Java classes that represent your application
objects. With TopLink, you can use your favorite integrated development environment
(IDE) or Unified Modeling Language (UML) modeling tool to define and create your
application object model.

Any class that registers a descriptor with a TopLink database session is called a
persistent class. TopLink does not require that persistent classes provide public
accessor methods for any private or protected attributes stored in the database. Refer
to Section 2.4.2, "Persistent Class Requirements" for more information.

2.8.2 Data Storage Schema
Your data storage schema refers to the design that you implement to organize the
persistent data in your application. This schema refers to the data itself–not the actual
data source (such as a relational database or nonrelational legacy system).

During the design phase of the TopLink application development process (see
Section 2.1.1, "Typical Development Stages"), you should decide how to implement the
classes in the data source. When integrating existing data source information, you
must determine how the classes relate to the existing data. If no legacy information
exists to integrate, decide how you will store each class, then create the necessary
schema.

You can also use Oracle JDeveloper (see Chapter 4, "Using Oracle JDeveloper TopLink
Editor"), TopLink Workbench (see Chapter 5, "Using TopLink Workbench") or database
schema manager (see Chapter 6, "Using the Schema Manager") to create the necessary
information.

Persisting Objects

Introduction to TopLink Application Development 2-19

2.8.3 Primary Keys and Object Identity
When making objects persistent, each object requires an identity to uniquely identify it
for storage and retrieval. Object identity is typically implemented using a unique
primary key. This key is used internally by TopLink to identify each object, and to
create and manage references. Violating object identity can corrupt the object model.

In a Java application, object identity is preserved if each object in memory is
represented by one, and only one, object instance. Multiple retrievals of the same
object return references to the same object instance–not multiple copies of the same
object.

TopLink supports multiple identity maps to maintain object identity (including
composite primary keys). Refer to Section 102.2.1, "Cache Type and Object Identity" for
additional information.

2.8.4 Mappings
TopLink uses the metadata produced by Oracle JDeveloper or TopLink Workbench
(see Section 2.9, "Working with TopLink Metadata") to describe how objects and beans
map to the data source. This approach isolates persistence information from the object
model–you are free to design their ideal object model, and DBAs are free to design
their ideal schema.

You use Oracle JDeveloper or TopLink Workbench to create and manage the mapping
information. At run time, TopLink uses the metadata to seamlessly and dynamically
interact with the data source, as required by the application.

TopLink provides an extensive mapping hierarchy that supports the wide variety of
data types and references that an object model might contain. For more information,
see Chapter 17, "Introduction to Mappings".

2.8.5 Foreign Keys and Object Relationships
A foreign key is a combination of columns that reference a unique key, usually the
primary key, in another table. Foreign keys can be any number of fields (similar to
primary key), all of which are treated as a unit. A foreign key and the primary parent
key it references must have the same number and type of fields.

Foreign keys represents relationships from a column or columns in one table to a
column or columns in another table. For example, if every Employee has an attribute
address that contains an instance of Address (which has its own descriptor and
table), the one-to-one mapping for the address attribute would specify foreign key
information to find an address for a particular Employee.

Refer to Section 28.7, "Configuring Table and Field References (Foreign and
Target Foreign Keys)" for more information.

2.8.6 Inheritance
Object-oriented systems allow classes to be defined in terms of other classes. For
example: motorcycles, sedans, and vans are all kinds of vehicles. Each of the vehicle
types is a subclass of the Vehicle class. Similarly, the Vehicle class is the superclass of
each specific vehicle type. Each subclass inherits attributes and methods from its
superclass (in addition to having its own attributes and methods).

Inheritance provides several application benefits, including the following:

Persisting Objects

2-20 Developer's Guide for Oracle TopLink

■ Using subclasses to provide specialized behaviors from the basis of common
elements provided by the superclass. By using inheritance, you can reuse the code
in the superclass many times.

■ Implementing abstract superclasses that define generic behaviors. This abstract
superclass may define and partially implement behavior, while allowing you to
complete the details with specialized subclasses.

Refer to Section 119.20, "Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor" and Section 119.23, "Configuring Inherited Attribute Mapping in a
Subclass" for detailed information on using inheritance with TopLink.

2.8.7 Concurrency
To have concurrent clients logged in at the same time, the server must spawn a
dedicated thread of execution for each client. Java EE application servers do this
automatically. Dedicated threads enable each client to work without having to wait for
the completion of other clients. TopLink ensures that these threads do not interfere
with each other when they make changes to the identity map or perform database
transactions.

Using the TopLink UnitOfWork class, your client can make transactional changes in
an isolated and thread safe manner. The unit of work manages clones for the objects
you modify to isolate each client’s work from other concurrent clients and threads. The
unit of work is essentially an object-level transaction mechanism that maintains all of
the ACID (Atomicity, Consistency, Isolation, Durability) transaction principles as a
database transaction. For more information on the unit of work, see Chapter 113,
"Introduction to TopLink Transactions".

TopLink supports configurable optimistic and pessimistic locking strategies to let you
customize the type of locking that the TopLink concurrency manager uses. For more
information, see Section 16.4, "Descriptors and Locking".

2.8.8 Caching
TopLink caching improves application performance by automatically storing data
returned as objects from the database for future use. This caching provides several
advantages:

■ Reusing Java objects that have been previously read from the database minimizes
database access

■ Minimizing SQL calls to the database when objects already exist in the cache

■ Minimizing network access to the database

■ Setting caching policies a class-by-class and bean-by-bean basis

■ Basing caching options and behavior on Java garbage collection

TopLink supports several caching polices to provide extensive flexibility. You can
fine-tune the cache for maximum performance, based on individual application
performance. Refer to Part XXIII, "Cache" for complete information.

2.8.9 Nonintrusive Persistence
The TopLink nonintrusive approach of achieving persistence through a metadata
architecture (see Section 2.9, "Working with TopLink Metadata") means that there are
almost no object model intrusions.

To persist Java objects, TopLink does not require any of the following:

Persisting Objects

Introduction to TopLink Application Development 2-21

■ Persistent superclass or implementation of persistent interfaces

■ Store, delete, or load methods required in the object model

■ Special persistence methods

■ Generating source code into or wrapping the object model

When using entity beans with container-managed persistence, TopLink does not
require any additional intrusion to the object model, other than the CMP specification
requirements.

See Section 2.4, "Building and Using the Persistence Layer" for additional information
on this nonintrusive approach.

2.8.10 Indirection
An indirection object takes the place of an application object so the application object is
not read from the database until it is needed. Using indirection, or lazy loading in JPA,
allows TopLink to create stand-ins for related objects. This results in significant
performance improvements, especially when the application requires the contents of
only the retrieved object rather than all related objects.

Without indirection, each time the application retrieves a persistent object, it also
retrieves all the objects referenced by that object. This may result in lower performance
for some applications.

TopLink provides several indirection models, such as proxy indirection, transparent
indirection, and value holder indirection. TopLink also provides indirection support
for EJB (see Section 17.2.4.6, "Indirection and EJB 2.n CMP").

See Section 17.2.4, "Indirection (Lazy Loading)" for more information.

2.8.11 Mutability
Mutability is a property of a complex field that specifies whether or not the field value
may be changed or not changed as opposed to replaced.

An immutable mapping is one in which the mapped object value cannot change unless
the object ID of the object changes: that is, unless the object value is replaced by
another object value altogether.

A mutable mapping is one in which the mapped object value can change without
changing the object ID of the object.

By default, TopLink assumes the following:

■ all TransformationMapping instances are mutable;

■ all JPA @Basic mapping types, except Serializable types, are immutable
(including Date and Calendar types);

■ all JPA @Basic mapping Serializable types are mutable.

Whether a value is immutable or mutable largely depends on how your application
uses your persistent classes. For example, by default, TopLink assumes that a
persistent field of type Date is immutable: this means that as long as the value of the
field has the same object ID, TopLink assumes that the value has not changed. If your

Note: Oracle strongly recommends that you use indirection in all
situations.

Working with TopLink Metadata

2-22 Developer's Guide for Oracle TopLink

application uses the set methods of the Date class, you can change the state of the
Date object value without changing its object ID. This prevents TopLink from
detecting the change. To avoid this, you can configure a mapping as mutable: this tells
TopLink to examine the state of the persistent value, not just its object ID.

You can configure the mutability of the following:

■ TransformationMapping instances;

■ any JPA @Basic mapping type (including Date and Calendar types)
individually;

■ all Date and Calendar types.

Mutability can affect change tracking performance. For example, if a transformation
mapping maps a mutable value, TopLink must clone and compare the value in a unit
of work (see Section 119.29, "Configuring Copy Policy"). If the mapping maps a simple
immutable value, you can improve unit of work performance by configuring mapping
as immutable.

Mutability also affects weaving. TopLink can only weave an attribute change tracking
policy for immutable mappings.

For more information, see the following:

■ Section 113.2.3, "Unit of Work and Change Policy"

■ Section 2.10, "Using Weaving"

■ "How to Use the @Mutable Annotation" of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Use_the_.40Mutable_Annotation

■ Section 121.17, "Configuring Mutable Mappings"

2.9 Working with TopLink Metadata
The TopLink metadata is the bridge between the development of an application and its
deployed run-time environment. Capture the metadata using the following:

■ JPA annotations, persistence.xml, orm.xml, and EclipseLink JPA annotation
and persistence.xml property extensions: the EclipseLink JPA persistence
provider interprets all these sources of metadata to create an in-memory session
and project at run time.

■ Oracle JDeveloper TopLink Editor or TopLink Workbench (see Section 2.9.2,
"Creating Project Metadata" and Section 2.9.3, "Creating Session Metadata") to
create TopLink sessions.xml and project.xml files which you pass to the
TopLink run-time environment.

■ Java and the TopLink API (this approach is the most labor-intensive).

The metadata lets you pass configuration information into the run-time environment.
The run-time environment uses the information in conjunction with the persistent
classes (Java objects, JPA entities, or EJB entity beans) and the code written with the
TopLink API, to complete the application.

Using EclipseLink JPA, you also have the option of specifying your metadata using
sessions.xml and project.xml while accessing your persistent classes using JPA
and an EntityManager. For more information, see "What You May Need to Know
About EclipseLink JPA Overriding Mechanisms" section of EclipseLink Developer’s
Guide at http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_

Working with TopLink Metadata

Introduction to TopLink Application Development 2-23

%28ELUG%29#What_You_May_Need_to_Know_About_EclipseLink_JPA_
Overriding_Mechanisms

Figure 2–2 TopLink Metadata

This section describes the following:

■ Advantages of the TopLink Metadata Architecture

■ Creating Project Metadata

■ Creating Session Metadata

■ Deploying Metadata

2.9.1 Advantages of the TopLink Metadata Architecture
The TopLink metadata architecture provides many important benefits, including the
following:

■ Stores mapping information in XML descriptors–not in the domain model objects

■ By using the metadata, TopLink does not intrude in the object model or the
database schema

■ Allows you to design the object model as needed, without forcing any specific
design

■ Allows DBAs to design the database as needed, without forcing any specific
design

■ Does not rely on code-generation (which can cause serious design,
implementation, and maintenance issues)

■ Is unobtrusive: adapts to the object model and database schema, rather than
requiring you to design their object model or database schema to suit TopLink

Using EclipseLink JPA, you have the flexibility of expressing persistence metadata
using standard JPA annotations, deployment XML, or both and you can optionally
take advantage of EclipseLink JPA annotation and persistence.xml property
extensions.

2.9.2 Creating Project Metadata
A TopLink project contains the mapping metadata that the TopLink runtime uses to
map objects to a data source. The project is the primary object used by the TopLink
runtime.

This section describes the principal contents of project metadata, including the
following:

■ Descriptors and Mappings

Working with TopLink Metadata

2-24 Developer's Guide for Oracle TopLink

■ Data Source Login Information

Using EclipseLink JPA, the TopLink runtime constructs an in-memory project based on
any combination of JPA annotations, persistence.xml, orm.xml, and EclipseLink
JPA annotation and persistence.xml property extensions. The use of a
project.xml file is optional (see "What You May Need to Know About EclipseLink
JPA Overriding Mechanisms" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#What_You_May_Need_to_Know_About_EclipseLink_JPA_
Overriding_Mechanisms).

For more information about creating project.xml metadata, see Section 9.1.1,
"project.xml File".

2.9.2.1 Descriptors and Mappings
TopLink maps persistent entities to the database in the application, using the
descriptors and mappings you build with Oracle JDeveloper TopLink Editor or
TopLink Workbench. These tools support several approaches to project development,
including the following:

■ Importing classes and tables for mapping

■ Importing classes and generating tables and mappings

■ Importing tables and generating classes and mappings

■ Creating both class and table definitions

TopLink Workbench supports all these options. The most common solution is to
develop the persistent entities using a development tool, such as an integrated
development environment (IDE) like Oracle Oracle JDeveloper, or a modeling tool,
and to develop the relational model through appropriate relational design tools. You
then use Oracle JDeveloper TopLink Editor or TopLink Workbench to construct
mappings that relate these two models.

Although Oracle JDeveloper TopLink Editor and TopLink Workbench do offer the
ability to generate persistent entities or the relational model components for an
application, these utilities are intended only to assist in rapid initial development
strategies–not complete round-trip application development.

For more information, see Chapter 16, "Introduction to Descriptors" and Chapter 17,
"Introduction to Mappings".

2.9.2.1.1 Amending Descriptors An amendment method lets you implement a TopLink
feature that is not currently supported by Oracle JDeveloper TopLink Editor or
TopLink Workbench. Simply write a Java method to amend the descriptor after it is
loaded, and specify the method in Oracle JDeveloper TopLink Editor or TopLink
Workbench for inclusion in the project metadata. See Section 119.35, "Configuring
Amendment Methods" for detailed information on implementing an amendment
method for a TopLink descriptor.

2.9.2.2 Data Source Login Information
For POJO projects, you configure a session login in the session metadata that specifies
the information required to access the data source (see Section 2.9.3, "Creating Session
Metadata").

For CMP projects, the project contains a deployment login that specifies the
information required to access the data source.

For more information, see Section 15.2.4, "Projects and Login".

Using Weaving

Introduction to TopLink Application Development 2-25

2.9.3 Creating Session Metadata
A TopLink session contains a reference to a particular project.xml file, plus the
information required to access the data source. The session is the primary object used
by your application to access the features of the TopLink runtime.

The agent responsible for creating and accessing session metadata differs depending
on whether or not you are creating a CMP project. In a POJO project, your application
acquires and accesses a session directly (see Section 9.1.2.2, "POJO Applications and
Session Metadata"). In a CMP project, your application indirectly accesses a session
acquired internally by the TopLink runtime (see Section 9.1.2.4, "CMP Applications
and Session Metadata").

Using EclipseLink JPA, the TopLink runtime constructs an in-memory session based
on any combination of JPA annotations, persistence.xml, orm.xml, and
EclipseLink JPA annotation and persistence.xml property extensions. The use of a
sessions.xml file is optional (see "What You May Need to Know About EclipseLink
JPA Overriding Mechanisms" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#What_You_May_Need_to_Know_About_EclipseLink_JPA_
Overriding_Mechanisms).

2.9.4 Deploying Metadata
The project.xml and sessions.xml file are packaged for deployment differently
according to the type of application you are deploying.

For more information, see the following:

■ Chapter 9, "Creating TopLink Files for Deployment"

■ Chapter 10, "Packaging a TopLink Application"

Using EclipseLink JPA, you also have the option of specifying your metadata using
sessions.xml and project.xml while accessing your persistent classes using JPA
and an EntityManager. For more information, see "What You May Need to Know
About EclipseLink JPA Overriding Mechanisms" section of EclipseLink Developer’s
Guide at http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#What_You_May_Need_to_Know_About_EclipseLink_JPA_
Overriding_Mechanisms.

2.10 Using Weaving
Weaving is a technique of manipulating the byte-code of compiled Java classes.
Weaving is used to enhance both JPA entities and Plain Old Java Object (POJO) classes
for such things as lazy loading, change tracking, fetch groups, and internal
optimizations.

This section describes the following:

■ Configuring Dynamic Weaving Using EclipseLink Agent

■ Configuring Static Weaving

■ Disabling Weaving Using TopLink Persistence Unit Properties

■ Packaging a POJO Application for Weaving

■ What You May Need to Know About Weaving and POJO Classes

■ What You May Need to Know About Weaving and Java EE Application Servers

Using Weaving

2-26 Developer's Guide for Oracle TopLink

2.10.1 Configuring Dynamic Weaving Using EclipseLink Agent
When using EclipseLink JPA outside of an EJB 3.0 container, consider dynamic
weaving. For more information, see "How to Configure Dynamic Weaving for JPA
Entities Using EclipseLink Agent" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Configure_Dynamic_Weaving_for_JPA_Entities_
Using_the_EclipseLink_Agent

2.10.1.1 To Configure Dynamic Weaving Using EclipseLink Agent
For information, see the following:

■ "How to Configure Dynamic Weaving for JPA Entities Using EclipseLink Agent"
section of EclipseLink Developer’s Guide at http://wiki.eclipse.org/Using_
EclipseLink_JPA_Extensions_%28ELUG%29#How_to_Configure_
Dynamic_Weaving_for_JPA_Entities_Using_the_EclipseLink_Agent

■ Section 2.10.4, "Packaging a POJO Application for Weaving"

2.10.2 Configuring Static Weaving
Consider this option to weave all applicable class files at build time so that you can
deliver prewoven class files. For more information, see "How to Configure Static
Weaving for JPA Entities" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Configure_Static_Weaving_for_JPA_Entities.

Note that for weaving, you use a persistence.xml file in both JPA and POJO
applications.

For information on packaging and deployment of POJO applications, see
Section 2.10.4, "Packaging a POJO Application for Weaving".

2.10.3 Disabling Weaving Using TopLink Persistence Unit Properties
To disable weaving, you use persistence unit properties in both JPA and POJO
applications. For more information, see "How to Disable Weaving Using EclipseLink
Persistence Unit Properties" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Disable_Weaving_Using_EclipseLink_Persistence_
Unit_Properties.

For information on packaging and deployment of POJO application, see Section 2.10.4,
"Packaging a POJO Application for Weaving".

2.10.4 Packaging a POJO Application for Weaving
To package a POJO application for weaving, you create a JAR that contains a
sessions.xml file and a persistence.xml file.

2.10.4.1 To Package a POJO Application for Weaving
1. Create a sessions.xml file for your application.

For more information, Chapter 87, "Introduction to TopLink Sessions".

2. Create a persistence.xml file for your application and reference your
sessions.xml file, as Example 2–1 shows.

Using Weaving

Introduction to TopLink Application Development 2-27

Example 2–1 persistence.xml File for a EclipseLink JPA Application

<persistence>

<persistence-unit name="appname">
<exclude-unlisted-classes>false</exclude-unlisted-classes>
<properties>

<property
name="eclipselilnk.session-name"
value="appname-session"

>
<property

name="eclipselink.sessions-xml"
value="sessions.xml"

>
</properties>

</persistence-unit>
</persistence>
3. Create a JAR file that contains your POJO classes, sessions.xml file, and

persistence.xml file, as Example 2–2 shows.

Put both the persistence.xml and sessions.xml file in a META-INF
directory.

Example 2–2 JAR File for a POJO Application

appname.jar
META-INF

persistence.xml
sessions.xml

*.java

4. Weave the JAR.

For more information, see the following:

■ Section 2.10.1, "Configuring Dynamic Weaving Using EclipseLink Agent"

■ Section 2.10.2, "Configuring Static Weaving"

2.10.5 What You May Need to Know About Weaving and POJO Classes
TopLink uses weaving to enable the following for POJO classes:

■ lazy loading (indirection): see Section 121.3, "Configuring Indirection (Lazy
Loading)"

■ change tracking: see Section 119.30, "Configuring Change Policy"

■ fetch groups: see Section 119.33, "Configuring Fetch Groups"

■ internal optimizations.

TopLink weaves all the POJO classes in the JAR you create when you package a POJO
application for weaving. For more information, see Section 2.10.4, "Packaging a POJO
Application for Weaving".

TopLink weaves all the classes defined in the persistence.xml file. That is the
following:

■ all the classes you list in the persistence.xml file;

■ all classes relative to the JAR containing the persistence.xml file if element
<exclude-unlisted-classes> is false.

Considering Three-Tier Architecture

2-28 Developer's Guide for Oracle TopLink

2.10.6 What You May Need to Know About Weaving and Java EE Application Servers
The default TopLink weaving behavior applies in any Java EE JPA-compliant
application server using the EclipseLink JPA persistence provider.

To change this behavior, modify your persistence.xml (for your JPA entities or
POJO classes) to use EclipseLink JPA properties, EclipseLink JPA annotations, or both.

For lazy loading (indirection) differences between Java EE and Java SE applications,
see "EclipseLink JPA Support for Lazy Loading by Mapping Type" table of EclipseLink
Developer’s Guide at http://wiki.eclipse.org/Using_EclipseLink_JPA_
Extensions_%28ELUG%29#Table_19-33

2.11 Considering Three-Tier Architecture
The three-tier Web application architecture generally includes the connection of a
server-side Java application to the database through a JDBC connection (see
Figure 2–3). In this pattern, TopLink resides within a Java server (a Java EE server or a
custom server), with several possible server integration points. The application can
support Web clients such as servlets, Java clients, and generic clients using XML or
Common Object Request Broker Architecture (CORBA).

The three-tier application is a common architecture in which TopLink resides within a
Java server (either a Java EE server or a custom server). In this architecture, the server
session provides clients with shared access to JDBC connections and a shared object
cache. Because it resides on a single JVM, this architecture is simple and easily
scalable. The TopLink persistent entities in this architecture are generally Java objects.

This architecture often supports Web-based applications in which the client
application is a Web client, a Java client, or a server component.

Figure 2–3 Three Tier Architecture

Although not all three-tier applications are Web-based, this architecture is ideally
suited to distributed Web applications. In addition, although it is also common to use
EJB in a Web application, this TopLink architecture does not.

2.11.1 Example Implementations
Examples of three-tier architecture implementation include the following:

■ A Model-View-Controller Model 2 architectural design pattern that runs in a Java
EE container with servlets and JSP that uses TopLink to access data without EJB.

■ A Swing or Abstract Window Toolkit (AWT) client that connects to a server-side
Java application through RMI, without an application server or container.

Considering Three-Tier Architecture

Introduction to TopLink Application Development 2-29

2.11.2 Advantages and Disadvantages
The three-tier Web application architecture offers the following advantages:

■ High performance, lightweight persistent objects

■ High degree of flexibility in deployment platform and configuration

The disadvantage of this architecture is it is less standard than EJB.

2.11.3 Variation Using Remote Sessions
TopLink includes a session type called remote session. The session offers the full
session API and contains a cache of its own, but exists on the client system rather than
on the TopLink server. Communications can be configured to use RMI or RMI-Internet
Inter-Object Request Broker Protocol (IIOP).

Remote session operations require a corresponding client session on the server.

Although this is an excellent option for you if you wish to simplify the access from the
client tier to the server tier, it is less scalable than using a client session and does not
easily allow changes to server-side behavior.

For more information, see Section 87.9, "Remote Sessions".

2.11.4 Technical Challenges
The three-tier application with a stateless client presents several technical challenges,
including the following:

■ Transaction management in a stateless environment

A common design practice is to delimit client requests within a single unit of work
(transactional session). In a stateless environment, this may affect how you design
the presentation layer. For example, if a client requires multiple pages to collect
information for a transaction, then the presentation layer must retain the
information from page to page until the application accumulates the full set of
changes or requests. At that point, the presentation layer invokes the unit of work
to modify the database.

■ Optimistic locking in a stateless environment

In a stateless environment, take care to avoid processing out-of-date (stale) data. A
common strategy for avoiding stale data is to implement optimistic locking, and
store the optimistic lock values in the object.

This solution requires careful implementation if the stateless application serializes
the objects, or sends the contents of the object to the client in an alternative format.
In this case, transport the optimistic lock values to the client in the HTTP contents
of an edit page. You must then use the returned values in any write transaction to
ensure that the data did not change while the client was performing its work.

For more information about locking, see Section 119.26, "Configuring Locking
Policy".

■ External JDBC pools

By default, TopLink manages its own connection pools. You can also configure
TopLink to use connection pooling offered by the host application server. This
feature is useful for shared connection pools and is required for JTA/JTS
integration (see Section 97.4, "Configuring External Connection Pooling").

■ JTA/JTS Integration

Considering Two-Tier Architecture

2-30 Developer's Guide for Oracle TopLink

JTA and JTS are standard Java components that enable sessions to participate in
distributed transactions. You must configure TopLink to use JTA/JTS to use
session beans in the architecture (see Section 115.13, "Integrating the Unit of Work
with an External Transaction Service").

■ Cache coordination

If you choose to use multiple servers to scale your application, you may require
TopLink cache coordination (see Chapter 102, "Introduction to Cache").

2.12 Considering Two-Tier Architecture
A two-tier application generally includes a Java client that connects directly to the
database through TopLink. The two-tier architecture is most common in complex user
interfaces with limited deployment. The database session provides TopLink support
for two-tier applications.

For more information, see Chapter 87, "Introduction to TopLink Sessions".

Figure 2–4 Two-Tier Architecture

Although the two-tier architecture is the simplest TopLink application pattern, it is
also the most restrictive, because each client application requires its own session. As a
result, two-tier applications do not scale as easily as other architectures.

Two-tier applications are often implemented as user interfaces that directly access the
database (see Figure 2–4). They can also be non-interface processing engines. In either
case, the two-tier model is not as common as the three-tier model.

The following are key elements of an efficient two-tier (client-server) architecture with
TopLink:

■ Minimal dedicated connections from the client to the database

■ An isolated object cache

2.12.1 Example Implementations
An example of a two-tier architecture implementation is a Java user interface
(Swing/AWT) and batch data processing.

2.12.2 Advantages and Disadvantages
The advantage of the two-tier design is its simplicity. The TopLink database session
that builds the two-tier architecture provides all the TopLink features in a single
session type, thereby making the two-tier architecture simple to build and use.

The most important limitation of the two-tier architecture is that it is not scalable,
because each client requires its own database session.

Considering EJB Session Bean Facade Architecture

Introduction to TopLink Application Development 2-31

2.12.3 Technical Challenges
The current trend toward multitiered Web applications makes the two-tier architecture
less common in production systems, but no less viable. Because there is no shared
cache in a two-tier system, you risk encountering stale data if you run multiple
instances of the application. This risk increases as the number of individual database
sessions increases.

To minimize this problem, TopLink offers support for several data locking strategies.
These include pessimistic locking and several variations of optimistic locking. For
more information, see Section 119.26, "Configuring Locking Policy".

2.13 Considering EJB Session Bean Facade Architecture
This architecture is an extension of the three-tier pattern, with the addition of EJB
session beans wrapping the access to the application tier. Session beans provide public
API access to application operations, enabling you to separate the presentation tier
from the application tier. The architecture also lets you use session beans within a Java
EE container.

This type of architecture generally includes JTA integration, and serialization of data to
the client.

Figure 2–5 Three-Tier Architecture Using Session Beans and Java Objects

A common extension to the three-tier architecture is to combine session beans and
persistent Java objects managed by TopLink. The resulting application includes session
beans and Java objects on a TopLink three-tier architecture (see Figure 2–5).

The three-tier architecture creates a server session and shares it between the session
beans in the application. When a session bean needs to access a TopLink session, the
bean obtains a client session from the shared server session. This architecture has the
following key features:

■ Session beans delimit transactions.

Configure TopLink to work with a JTA system and its associated connection pool.

■ Accessing the persistent objects on the client side causes them to be serialized.

Ensure that when the objects re-emerge on the server-side, they properly merge
into the cache to maintain identity.

2.13.1 Example Implementation
An example of the EJB session bean facade architecture implementation is a
Model-View-Controller Model 2 architectural design pattern that runs in a Java EE
container with servlets and JSP and uses the session bean enabled by TopLink to access
data without EJB.

Considering EJB Session Bean Facade Architecture

2-32 Developer's Guide for Oracle TopLink

2.13.2 Advantages and Disadvantages
The EJB session bean facade architecture is a popular and effective compromise
between the performance of persistent Java objects, and the benefits of EJB for
standardized client development and server scalability. It offers the following
advantages:

■ Less overhead than an EJB CMP application

TopLink shares access to the project, descriptor, and login information across the
beans in the application.

■ Future compatibility with other servers

This design isolates login and EJB server-specific information from the beans,
which lets you migrate the application from one application server to another
without major recoding or rebuilding.

■ Shared read cache

This design offers increased efficiency by providing a shared cache for reading
objects.

The key disadvantage of this model is the need to transport the persistent model to the
client. If the model involves complex object graphs in conjunction with indirection
(lazy loading), this can present many challenges with inheritance, indirection, and
relationships.

For more information about managing inheritance, indirection and relationships, see
Part VIII, "Mappings".

2.13.3 What Are Session Beans
Session beans model a process, operation, or service and as such, are not persistent
entities. However, session beans can use persistence mechanisms to perform the
services they model.

Under the session bean model, a client application invokes methods on a session bean
that, in turn, performs operations on Java objects enabled by TopLink. Session beans
execute all operations related to TopLink on behalf of the client.

The EJB specifications describe session beans as either stateless or stateful.

Stateful beans maintain a conversational state with a client; that is, they retain
information between method calls issued by a particular client. This enables the client
to use multiple method calls to manipulate persistent objects.

Stateless beans do not retain data between method calls. When the client interacts
with stateless session beans, it must complete any object manipulations within a single
method call.

2.13.4 Technical Challenges
Your application can use both stateful and stateless session beans with a TopLink client
session or database session. When you use session beans with a TopLink session, the
type of bean used affects how it interacts with the session.

■ Stateless session beans and the TopLink session

Stateless beans store no information between method calls from the client. As a
result, reestablish the connection of the bean to the session for each client method
call. Each method call through TopLink obtains a client session, makes the
appropriate calls, and releases the reference to the client session.

Considering EJB Entity Beans with CMP Architecture

Introduction to TopLink Application Development 2-33

■ Stateful session beans and the TopLink session

Your EJB server configuration includes settings that affect the way it manages
beans–settings designed to increase performance, limit memory footprint, or set a
maximum number of beans. When you use stateful beans, the server may
deactivate a stateful session bean enabled by TopLink out of the JVM memory
space between calls to satisfy one of these settings. The server then reactivates the
bean when required, and brings it back into memory.

This behavior is important, because a TopLink session instance does not survive
passivation. To maintain the session between method calls, release the session
during the passivation process and re-obtain it when you reactivate the bean.

■ External JDBC pools

By default, TopLink manages its own connection pools. For the session bean
architecture, you must configure TopLink to use connection pooling offered by the
host application server. This feature is useful for shared connection pools and is
required for JTA/JTS integration (see Section 97.4, "Configuring External
Connection Pooling").

■ JTA/JTS integration

JTA and JTS are standard Java components that enable sessions to participate in
distributed transactions. You must configure TopLink to use JTA/JTS to use
session beans in the architecture (see Section 115.13, "Integrating the Unit of Work
with an External Transaction Service").

■ Cache coordination

If you choose to use multiple servers to scale your application, you may require
TopLink cache coordination (see Section 102.3, "Cache Coordination").

2.13.5 What Is a Unit of Work Merge
You can use a unit of work to enable your client application to modify objects on the
database. The unit of work merge functions employ mappings to copy the values from
the serialized object into the unit of work, and to calculate changes.

For more information, see Section 115.5, "Merging Changes in Working Copy Clones".

2.14 Considering EJB Entity Beans with CMP Architecture
CMP is the part of the Java EE component model that provides an object persistence
service that an EJB container uses to persist entity beans. CMP provides distributed,
transactional, secure access to persistent data, with a guaranteed portable interface.

This architecture is an extension of the three-tier architecture, in which the
implementation of persistence methods is handled by the container at runtime. As a
bean provider, you only need to specify in a deployment descriptor those persistent
fields and relationships for which the container must handle data access and,
optionally, an abstract representation of the database schema.

TopLink CMP is an extension of the TopLink persistence framework that provides
custom integration to EJB containers of various application servers (see Section 8.1,
"Introduction to the Application Server Support"). For more information about
choosing an application server, see Section 2.2.2, "Target Platforms". TopLink integrates
with the EJB container in this architecture to augment the container’s persistence
manager.

Considering EJB Entity Beans with CMP Architecture

2-34 Developer's Guide for Oracle TopLink

TopLink CMP integration is nonintrusive (see Figure 2–6). Through a combination of
run-time integration and code generation, the container uses TopLink internally and
the bean user interacts with entity beans with container-managed persistence
according to their standard API. This lets you combine the standard interfaces and
power of CMP and a container with TopLink flexibility, performance, and
productivity.

Figure 2–6 Three-Tier CMP Architecture

For more information, see the following:

■ Chapter 8, "Integrating TopLink with an Application Server"

■ Chapter 9, "Creating TopLink Files for Deployment"

■ Chapter 10, "Packaging a TopLink Application"

■ Chapter 11, "Deploying a TopLink Application"

■ Section 117.5, "Configuring Persistence Type"

2.14.1 Example Implementation
An example of the entity beans with container-managed persistence implementation is
a Model-View-Controller Model 2 architectural design pattern that runs in a Java EE
container, with servlets and JSP that access either session beans or entity beans with
container-managed persistence enhanced by TopLink.

2.14.2 Advantages and Disadvantages
A three-tier architecture using entity beans with container-managed persistence offers
the following advantages:

■ It allows for entity beans with container-managed persistence supplied with
sophisticated TopLink features such as caching and mapping support, storing
bean data across more than one table, composite primary keys, and data
conversion.

■ It presents a standard method to access data, which lets you create standardized,
reusable business objects.

■ It is well-suited to create coarse-grained objects, which TopLink relates to
dependent, lightweight, regular Java objects (TopLink can also manage
container-managed relationships to lightweight dependent Java objects).

■ TopLink provides for lazy initialization of referenced objects and beans (see
Section 17.2.4, "Indirection (Lazy Loading)").

■ TopLink provides functionality for transactional copies of beans, allowing
concurrent access by several clients, rather than relying on individual serialization.

Considering EJB Entity Beans with CMP Architecture

Introduction to TopLink Application Development 2-35

■ TopLink provides advanced query capabilities, as well as dynamic querying,
including the ability to define queries at the bean-level rather than the data source
level and to use a rich set of querying and finder options.

■ TopLink maintains bean and object identity.

The disadvantage of this architecture is that pure entity bean with container-managed
persistence architectures can impose a high overhead cost. This is especially true when
a data model has a large number of fine-grained classes with complex relationships.

2.14.3 Technical Challenges
The key technical challenge in this architecture lies in integrating components into a
cohesive system. For example, this architecture requires a specific TopLink integration
with the application server or Java EE container.

Other issues include the following:

■ External JDBC Pools

■ JTA/JTS Integration

■ Cache Coordination

■ Maintaining Bidirectional Relationships

■ Managing Dependent Objects

■ Managing Collections of EJBObject Objects

2.14.3.1 External JDBC Pools
By default, TopLink manages its own connection pools. You can also configure
TopLink to use connection pooling offered by the host application server. This feature
is useful for shared connection pools and is required for JTA/JTS integration (see
Section 97.4, "Configuring External Connection Pooling").

2.14.3.2 JTA/JTS Integration
JTA and JTS are standard Java components that enable sessions to participate in
distributed transactions. You must configure TopLink to use JTA/JTS to use session
beans in the architecture (see Section 115.13, "Integrating the Unit of Work with an
External Transaction Service").

2.14.3.3 Cache Coordination
If you choose to use multiple servers to scale your application, you may require
TopLink cache coordination (see Section 102.3, "Cache Coordination").

2.14.3.4 Maintaining Bidirectional Relationships
When one-to-one or many-to-many relationship is bidirectional, you must maintain
the back pointers as the relationships change.

TopLink automatically maintains the relationship between two entity beans.

To set the back pointer manually, do one of the following:

■ Code the entity bean to maintain the back pointer when the relationship is
established or modified (recommended).

■ Code the client to explicitly set the back pointer.

Considering EJB Entity Beans with CMP Architecture

2-36 Developer's Guide for Oracle TopLink

If you code the entity bean to set back pointers, the client is freed of this responsibility.
This has the advantage of encapsulating this maintenance implementation in the bean.

In a one-to-many relationship, a source bean might have several dependent target
objects. For example, an EmployeeBean might own several dependent PhoneNumber
instances. When you add a new dependent object (a PhoneNumber, in this example)
to an employee, you must set the PhoneNumber instance’s back pointer to its owner
(the employee). Maintaining a one-to-many relationship in the entity bean involves
getting the local object reference from the context of the EmployeeBean, and then
updating the back pointer, as Example 2–3 shows.

Example 2–3 Setting the Back-Pointer in the Entity Bean

// obtain owner and phoneNumber
owner = empHome.findByPrimaryKey(ownerId);
phoneNumber = new PhoneNumber("cell", "613", "5551212");
// add phoneNumber to the phoneNumbers of the owner
owner.addPhoneNumber(phoneNumber);

// Maintain the relationship in the Employee's addPhoneNumber method
public void addPhoneNumber(PhoneNumber newPhoneNumber) {

// get, then set the back pointer to the owner
Employee owner = (Employee)this.getEntityContext().getEJBLocalObject();
newPhoneNumber.setOwner(owner);
// add new phone
getPhoneNumbers().add(newPhoneNumber);

}

For more information, see the following:

■ Section 121.18, "Configuring Bidirectional Relationship"

■ Section 27.2.1, "Directionality"

2.14.3.5 Managing Dependent Objects
Unlike EJB, TopLink dependent persistent objects can be sent back and forth between a
client and a server. When objects are serialized, the risk exists the objects can cause the
cache to lose the identity of the objects or attempt to cache duplicate identical objects.
To avoid potential problems, use the bean setter methods when adding dependent
objects to relationship collections, as Example 2–4 shows. This enables TopLink to
handle merging of objects in the cache.

Example 2–4 Managing Dependent Objects

addPhoneNumber(PhoneNumber phone) {
Collection phones = this.getPhoneNumbers();
Vector newCollection = new Vector();
newCollection.addAll(phones);
newCollection.add(phone);
this.setPhones(newCollection);

}

2.14.3.6 Managing Collections of EJBObject Objects
Collections generally use the equals method to compare objects. This is not a
problem in the case of an object that contains a collection of EJBObject objects,
because the EJB container collection handles equality appropriately.

Considering EJB Entity Beans with BMP Architecture

Introduction to TopLink Application Development 2-37

2.15 Considering EJB Entity Beans with BMP Architecture
BMP is the part of the Java EE component model that lets you, the bean provider,
implement the entity bean’s persistence directly in the entity bean class or in one or
more helper classes that you provide.

This architecture is an extension of the three-tier architecture, in which the persistent
data is bean managed within an entity bean using code that you implement. The client
code accesses the data through the entity bean interface.

TopLink BMP is an extension of the TopLink persistence framework that provides base
class BMPEntityBase as a starting point for your BMP development. This class
provides an implementation for all methods (except ejbPassivate) required by the
EJB specifications prior to 3.0. Subclass BMPEntityBase to create a TopLink-enabled
entity bean with bean-managed persistence.

To use the BMPEntityBase class, perform the following:

1. Create a TopLink session (see Chapter 87, "Introduction to TopLink Sessions") for
your application.

2. Add a BMPWrapperPolicy to each descriptor that represents an entity bean with
bean-managed persistence.

The BMPWrapperPolicy provides TopLink with the information to create remote
objects for entity beans and to extract the data out of a remote object.

3. Create the home and remote interfaces.

4. Create deployment descriptors (see Chapter 8, "Integrating TopLink with an
Application Server" and Chapter 9, "Creating TopLink Files for Deployment").

5. Package your application (see Chapter 10, "Packaging a TopLink Application").

6. Deploy the beans (see Chapter 11, "Deploying a TopLink Application").

To make full use of TopLink session and unit of work features, TopLink provides a
hook into its functionality through the BMPDataStore class. Use this class to translate
EJB-required functionality into simple calls.

The BMPDataStore class provides implementations of LOAD and STORE, multiple
finders, and REMOVE functionality. The BMPDataStore class requires a TopLink
session. A single instance of BMPDataStore must exist for each bean type deployed
within a session. When creating a BMPDataStore, pass in the session name of the
session that the BMPDataStore must use to persist the beans and the class of the bean
type being persisted. Store the BMPDataStore in a global location so that each
instance of a bean type uses the correct store method.

TopLink BMP support (see Figure 2–7) lets you combine the standard interfaces of
entity beans with bean-managed persistence with TopLink flexibility, performance,
and productivity.

Considering EJB Entity Beans with BMP Architecture

2-38 Developer's Guide for Oracle TopLink

Figure 2–7 Three-Tier BMP Architecture

TopLink supports BMP. To use BMP support, the home interface must inherit from the
oracle.toplink.ejb.EJB20Home. To make calls to the BMPEntityBase, the
findAll method must call the EJB 2.0 version of the methods. These methods are
prefixed with ejb20. For example, in the EJB 2.0 version, the findAll method
appears as ejb20FindAll.

To use local beans, use the oracle.toplink.ejb.EJB20LocalHome setting instead
of the default oracle.toplink.ejb.EJB20Home. Instead of the
oracle.toplink.ejb.BMPWrapperPolicy setting, use the
oracle.toplink.ejb.bmp.BMPLocalWrapperPolicy setting.

To accommodate both local and remote configurations, ensure the following:

■ For a bean that has a single interface, use the corresponding wrapper policy (local
or remote) for the descriptor.

■ Beans can only participate in relationships as either local or remote interfaces, not
both.

For more information, see the following:

■ Chapter 8, "Integrating TopLink with an Application Server"

■ Chapter 9, "Creating TopLink Files for Deployment"

■ Chapter 10, "Packaging a TopLink Application"

■ Chapter 11, "Deploying a TopLink Application"

■ Section 117.5, "Configuring Persistence Type"

■ Section 89.9, "Configuring the Server Platform"

2.15.1 Example Implementations
An example of the entity beans with bean-managed persistence implementation is a
Model-View-Controller Model 2 architectural design pattern that runs in a Java EE
container, with servlets and JSP that access session beans and entity beans with
bean-managed persistence enhanced by TopLink.

2.15.2 Advantages and Disadvantages
Using BMP with a TopLink three-tier architecture offers the following advantages:

■ It simplifies the BMP method calls. These can be inherited from an abstract bean
class, rather than being generated.

■ TopLink makes BMP easier to implement.

■ It enables you to implement database-independent code in the bean methods.

Considering JPA Entity Architecture

Introduction to TopLink Application Development 2-39

■ The architecture supports features such as complex relationships, caching,
object-level and dynamic queries, and the unit of work.

The main disadvantages of BMP include the following:

■ You must create the persistence mechanisms in the bean code.

■ It is not as transparent or efficient as CMP.

■ TopLink-only Java object applications offer the same degree of independence from
the application server.

2.15.3 Technical Challenges
The key technical challenge in this architecture lies in integrating components into a
cohesive system. For example, this architecture requires a specific TopLink integration
with the application server or Java EE container.

Other issues include the following:

■ External JDBC Pools

■ JTA/JTS Integration

■ Cache Coordination

2.15.3.1 External JDBC Pools
By default, TopLink manages its own connection pools. You can also configure
TopLink to use connection pooling offered by the host application server. This feature
is useful for shared connection pools and is required for JTA/JTS integration (see
Section 97.4, "Configuring External Connection Pooling").

2.15.3.2 JTA/JTS Integration
JTA and JTS are standard Java components that enable sessions to participate in
distributed transactions. You must configure TopLink to use JTA/JTS to use session
beans in the architecture (see Section 115.13, "Integrating the Unit of Work with an
External Transaction Service").

2.15.3.3 Cache Coordination
If you choose to use multiple servers to scale your application, you may require
TopLink cache coordination (see Section 102.3, "Cache Coordination").

2.16 Considering JPA Entity Architecture
A part of the EJB 3.0 specification, the Java Persistence API (JPA) is a lightweight,
POJO-based framework for Java persistence. JPA focuses on object relational mapping
and contains a full object relational mapping specification supporting the use of Java
language metadata annotations and/or XML descriptors to define the mapping
between Java objects and a relational database. Object relational mapping with the JPA
is completely metadata-driven. JPA supports a SQL-like query language for both static
and dynamic queries. It also supports the use of pluggable persistence providers.

JPA includes the following concepts:

■ Entity–any application-defined object with the following characteristics can be an
entity:

– it can be made persistent;

Considering JPA Entity Architecture

2-40 Developer's Guide for Oracle TopLink

– it has a persistent identity (a key that uniquely identifies an entity instance
and distinguishes it from other instances of the same entity type. An entity has
a persistent identity when there is a representation of it in a data store);

– it is partially transactional in a sense that a persistence view of an entity is
transactional (an entity is created, updated and deleted within a transaction,
and a transaction is required for the changes to be committed in the database).
However, in-memory entities can be changed without the changes being
persisted.

– it is not a primitive, a primitive wrapper, or built-in object. An entity is a
fine-graned object that has a set of aggregated state that is typically stored in a
single place (such as a row in a table), and have relationships to other entities.

■ Entity metadata–describes every entity. Metadata could be expressed as
annotations (specifically defined types that may be attached to or place in front of
Java programming elements) or XML (descriptors).

■ Entity manager–enables API calls to perform operations on an entity. Until an
entity manager is used to create, read, or write an entity, the entity is just a regular
nonpersistent Java object. When an entity manager obtains a reference to an entity,
that entity becomes managed by the entity manager. The set of managed entity
instances within an entity manager at any given time is called its persistence
context–only one Java instance with the same persistent identity may exist in a
persistence context at any time.

You can configure an entity manager to be able to persist or manage certain types
of objects, read or write to a particular database, and be implemented by a specific
persistence provider. The persistence provider supplies the backing
implementation engine for JPA, including the EntityManager interface
implementation, the Query implementation, and the SQL generation.

Entity managers are provided by an EntityManagerFactory. The configuration
for an entity manager is bound to the EntityManagerFactory, but it is defined
separately as a persistence unit. You name persistence units to allow
differentiation between EntityManagerFactory objects. This way your
application obtains control over which configuration to use for operations on a
specific entity. The configuration that describes the persistence unit is defined in a
persistence.xml file.

The following description expresses relationships between JPA concepts:

– Persistence creates one or more EntityManagerFactory objects;

– each EntityManagerFactory is configured by one persistence unit;

– EntityManagerFactory creates one or more EntityManager objects;

– one or more EntityManager manages one PersistenceContext.

TopLink implementation of JPA is provided by EclipseLink.

For more information, see the following:

■ JPA sections of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/EclipseLink/UserGuide/Developing_JPA_
Projects_%28ELUG%29

■ EclipseLink API at
http://www.eclipse.org/eclipselink/api/1.0/index.html

Considering Web Services Architecture

Introduction to TopLink Application Development 2-41

2.16.1 Example Implementations
An example of the entity beans with bean-managed persistence implementation is a
Model-View-Controller Model 2 architectural design pattern that runs in a Java EE
container, with servlets and JSP that access session beans and EJB 3.0-compliant
entities using the EclipseLink JPA persistence provider.

2.16.2 Advantages and Disadvantages
The use of EclipseLink JPA entities offers the following advantages:

■ POJO persistence–in JPA, persistent objects are POJOs.

■ Object relational mapping is completely metadata-driven.

■ The persistence API exists as a separate layer from the persistent objects and does
not intrude upon them.

■ Using the query framework you can query across entities and their relationships
without having to use concrete foreign keys or database columns. Also, you can
define queries statically in metadata or create them dynamically by passing query
criteria on construction. Queries can return entities as results.

■ Entities are mobile: objects are able to move from one JVM to another and back,
and at the same time be usable by the application.

■ You can configure persistence features through the use of Java SE 5 annotations, or
XML, or a combination of both. You may also rely on defaults.

■ If your application is running inside a container, the container provides support
and ease of use; you can configure the same application to run outside a container.

2.17 Considering Web Services Architecture
A Web services architecture is similar to the three-tier (see Section 2.11, "Considering
Three-Tier Architecture") or session bean (see Section 2.13, "Considering EJB Session
Bean Facade Architecture") architecture, however, in a Web services architecture, you
encapsulate business logic (the service) in a Web service instead of (or in addition to)
using session beans. In a Web services architecture, clients communicate with your
application using SOAP messages (XML over HTTP).

Figure 2–8 Web Services Architecture

As in any architecture, you can use TopLink to persist objects to relational or EIS data
sources. However, in a Web services architecture, you can also use TopLink to map
your object model to an XML schema for use with the Web service or as the Web
service XML serializer.

Considering EclipseLink Service Data Objects (SDO) Architecture

2-42 Developer's Guide for Oracle TopLink

2.17.1 Example Implementations
An example of a Web services architecture implementation is the use of a Web service
to expose parts of an existing application to a remote client (typically another
application) by way of SOAP messages. In this application, you can use TopLink XML
to unmarshall XML messages to Java objects to facilitate requests and marshall Java
object responses back into XML for transmission to the client.

2.17.2 Advantages and Disadvantages
Using TopLink in Web services architecture has many advantages, including, but not
limited to, the following:

■ you can map XML messages to an existing Java object model;

■ you can achieve a high level of complexity of mapping support;

■ compliance with the JAXB standards;

■ providing a scalable, high-performing solution.

One debatable disadvantage is this solution’s complexity over a simple RMI session
bean service.

2.17.3 Technical Challenges
As with any technology, there are technical challenges associated with the use of
TopLink in Web services architecture. These technical challenges are mostly related to
special-case scenarios, such as when you need to implement a custom serializer
because you have both the Java objects and the schema.

For more information, see the following:

■ Oracle TopLink as a Custom Serializer in a JAX-RPC 1.1 Web service at
http://www.oracle.com/technology/products/ias/toplink/technic
al/tips/jaxRpc11/index.htm

■ Part XVI, "XML Mappings"

2.18 Considering EclipseLink Service Data Objects (SDO) Architecture
An EclipseLink SDO architecture uses the SDO 2.1 framework for data application and
development. For more information, see "Considering EclipseLink Service Data
Objects (SDO) Architecture" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Introduction_to_EclipseLink_Application_
Development_%28ELUG%29#Considering_EclipseLink_Service_Data_
Objects_.28SDO.29_Architecture.

Part II
Part II TopLink Development Tools Overview

This part describes the development tools and tool support TopLink provides. It
contains the following chapters:

■ Chapter 3, "Introduction to TopLink Development Tools"

This chapter describes the development tools and tool support TopLink provides.

■ Chapter 4, "Using Oracle JDeveloper TopLink Editor"

This chapter describes how to use Oracle JDeveloper TopLink editor.

■ Chapter 5, "Using TopLink Workbench"

This chapter describes how to use TopLink Workbench including working with
databases, generating data from database tables, and creating and editing a
sessions.xml file.

■ Chapter 6, "Using the Schema Manager"

This chapter explains how to use the TopLink schema manager to create databases,
tables, stored procedures, and to populate database tables.

■ Chapter 7, "Using an Integrated Development Environment"

This chapter explains how to integrate TopLink with an IDE.

3

Introduction to TopLink Development Tools 3-1

3 Introduction to TopLink Development Tools

The TopLink runtime provides Java or Java EE applications with access to persistent
entities stored in a data source. In addition to run-time capabilities, the TopLink
Foundation Library includes the TopLink Application Programming Interface (API).
This API enables applications to access TopLink run-time features.

TopLink includes additional development tools that simplify application
development. These tools capture mapping and run-time configuration information in
metadata files that TopLink passes to the application at run time.

This chapter includes the following sections:

■ Development Environment

■ TopLink Run-Time Environment

TopLink metadata is the link between the two (see Section 2.9, "Working with TopLink
Metadata").

Figure 3–1 illustrates how these elements interact with the data source.

Figure 3–1 TopLink Components in Development Lifecycle

Development Environment

3-2 Developer's Guide for Oracle TopLink

3.1 Development Environment
To create a TopLink application, use Oracle JDeveloper TopLink Editor or TopLink
Workbench to map objects to data sources using relational and nonrelational models.
Capture the resulting mappings and additional run-time configurations in the TopLink
project file (project.xml) and build a session configuration file (sessions.xml).
These files together represent your entire TopLink project, as shown in Figure 3–2.

During development, you can use the TopLink API to define query and transaction
logic. When you use entity beans, there is generally little or no direct use of the
TopLink API and there is no session or sessions.xml file.

Figure 3–2 TopLink Workbench in Development Environment

TopLink Workbench can import compiled entity classes (Java objects or EJB entity
beans), as well as relational or nonrelational schemas through a JDBC driver
(configured by you). Because TopLink imports the object and relational models for
mapping, you can develop the two models relatively independently from the mapping
phase of a project development.

3.2 TopLink Run-Time Environment
The TopLink Foundation Library provides the TopLink run-time component. Access
the run-time component either directly through the TopLink API or indirectly through
a Java EE container when using entity beans with container-managed persistence. The
run-time environment is not a separate or external process–it is embedded within the
application. Application calls invoke TopLink to provide persistence behavior. This
function allows for transactional and thread-safe access to shared database connections
and cached objects.

In addition to Java EE environments, TopLink fully supports non-Java EE
environments as well. See Section 2.3, "Selecting an Architecture with TopLink" for
more information.

4

Using Oracle JDeveloper TopLink Editor 4-1

4 Using Oracle JDeveloper TopLink Editor

This chapter provides general information about Oracle JDeveloper TopLink Editor, as
well as detailed information on using and customizing it.

This chapter includes the following sections:

■ Introduction to Oracle JDeveloper TopLink Editor

■ Configuring the Oracle JDeveloper TopLink Editor

■ Using the Oracle JDeveloper TopLink Editor

4.1 Introduction to Oracle JDeveloper TopLink Editor
Using Oracle JDeveloper's TopLink editor, you can quickly and easily configure and
map your Java classes, EJB, JPA entities to different data sources, including relational
databases, enterprise information systems (EIS), and XML schemas without using code.
The TopLink editor supports multiple standards, including JPA and EJB 3.0.

For more information, see the "Developing TopLink Mappings" section of the Oracle
JDeveloper online help.

4.2 Configuring the Oracle JDeveloper TopLink Editor
For more information, see "Configuring TopLink Preferences" in the "Developing
TopLink Mappings" section of the Oracle JDeveloper online help.

4.3 Using the Oracle JDeveloper TopLink Editor
Figure 4–1 shows the primary parts of the TopLink editor:

Using the Oracle JDeveloper TopLink Editor

4-2 Developer's Guide for Oracle TopLink

Figure 4–1 Parts of the TopLink Editor

1. TopLink Project Elements in the Application Navigator

2. TopLink Editor Tabs in the Editor Window

3. TopLink Project Elements in the Structure Window

For more information, see "About the TopLink Editor" in the "Developing TopLink
Mappings" section of the Oracle JDeveloper online help.

4.3.1 TopLink Project Elements in the Application Navigator
The Application Navigator displays each element of with your TopLink mappings
including the mapping project, deployment descriptor, and sessions information.

Figure 4–2 shows sample TopLink project elements in the Application Navigator.

Figure 4–2 Sample TopLink Editor – Application Navigator

Figure 4–2 identifies the following user interface components:

1. TopLink folder

2. Sessions configuration file (sessions.xml)

3. TopLink map

4.3.2 TopLink Editor Tabs in the Editor Window
The TopLink Editor displays your TopLink mapping information. The information in
the editor will vary, depending on the TopLink element you selected in the
Application Navigator or Structure window.

Figure 4–3 shows the TopLink Editor tabs for a TopLink map.

Using the Oracle JDeveloper TopLink Editor

Using Oracle JDeveloper TopLink Editor 4-3

Figure 4–3 Sample TopLink Editor Tabs

4.3.3 TopLink Project Elements in the Structure Window
The Structure window displays detailed information about the TopLink element
selected in Application Navigator or TopLink Editor.

■ When working with an EJB or Java class, the Structure window displays the
related TopLink descriptor and its mapping attributes.

■ When working with a TopLink sessions configuration file, the Structure window
displays your sessions and session brokers.

■ When working with a persistence configuration, the Structure window displays
your JPA descriptors and persistence units.

When you select an item in the Structure window, its properties appear in the TopLink
Editor.

Figure 4–4 Sample TopLink Editor – Structure Window

Figure 4–4 identifies the following user interface components:

1. TopLink map

2. Descriptor

3. Mapped Java attribute (one-to-one mapping)

4. Unmapped attribute

Using the Oracle JDeveloper TopLink Editor

4-4 Developer's Guide for Oracle TopLink

You can perform specific functions for an item by selecting the item in the Navigator
and doing the following:

■ Right-clicking the object and selecting the function from the pop-up menu.

■ Selecting the object by clicking a button in the Structure toolbar.

5

Using TopLink Workbench 5-1

5Using TopLink Workbench

This chapter provides information about understanding, using, and customizing
TopLink Workbench.

This chapter includes the following sections:

■ Introduction to TopLink Workbench

■ Configuring the TopLink Workbench Environment

■ Using TopLink Workbench

■ Using TopLink Workbench Preferences

■ Using Databases

■ Using XML Schemas

■ Using Classes

■ Integrating TopLink Workbench with Apache Ant

For information on using TopLink Workbench to configure sessions XML, refer to
Part XXI, "TopLink Sessions".

5.1 Introduction to TopLink Workbench
TopLink Workbench is a separate component from the TopLink runtime–it lets you
graphically configure descriptors and map your project. TopLink Workbench can
verify the descriptor options, access the data source (either a database or an XML
schema), and create the database schema. Using TopLink Workbench, you can define
TopLink descriptors and configurations without using code.

You can use TopLink Workbench during the development phase of the development
process (see Section 2.1, "Introduction to TopLink Application Development").
Typically, this phase includes the following:

1. Defining an object model (a set of Java classes) to describe and solve your
problem.

2. Creating a TopLink Workbench project, importing your Java classes and data
sources, and using descriptors to describe how the Java classes map to your data
source model.

3. Creating a TopLink session and registering your descriptors. In your application,
use the session to retrieve and store objects from and to the data source.

TopLink Workbench creates a <projectName>.mwp file to store all TopLink project
information, including object model, descriptor, and session information.

Configuring the TopLink Workbench Environment

5-2 Developer's Guide for Oracle TopLink

The <projectName>.mwp file is used only by TopLink Workbench. Typically, the
only time you need to modify the <projectName>.mwp file is to merge changes
during application development by a team of developers (Section 7.2.2, "How to
Merge Files").

Using TopLink Workbench, you export this information into a project.xml file that
your TopLink enabled application reads at run time.

For more information on using TopLink Workbench as the development environment,
see Figure 3–2.

5.2 Configuring the TopLink Workbench Environment
TopLink Workbench reads its environment variables from the setenv script in the
<TOPLINK_HOME>/bin directory.

Before you launch TopLink Workbench, you must configure its environment as
follows:

1. Use a text editor to open the <TOPLINK_HOME>/bin/setenv script.

■ For Windows, open the setenv.cmd file.

■ For UNIX, open the setenv.sh file.

2. Ensure that the JAVA_HOME environment variable is set:

■ For Windows: set JAVA_HOME=C:/j2sdk1.5.0_04

■ For UNIX: JAVA_HOME=/usr/local/packages/java; export JAVA_
HOME

3. Update the DRIVER_CLASSPATH environment variable to add the location of the
following (if necessary):

■ JDBC drivers–if you are using relational projects (see Section 18.1, "Building
Relational Projects").

■ Java EE Connector Architecture (JCA) adapters–if you are using EIS projects
(see Section 71.1, "EIS Project Concepts").

■ JCA connector.jar file–if you are using EIS projects (see Section 71.1, "EIS
Project Concepts").

The connector.jar file contains javax.resource.cci and
javax.resource.spi interfaces that TopLink EIS uses. By default, TopLink
Workbench updates its classpath to include the Java 1.5.n connector.jar
file from <ORACLE_HOME>/lib/java/api. If this version of the
connector.jar file is incompatible with your environment, edit the
workbench.cmd or workbench.sh file in <TOPLINK_
HOME>/utils/workbench to change the path to this file.

At run time, this connector.jar file (or its equivalent) must be on your
application or application server classpath.

Note: Do not include any Java classes for your persistent business
objects in the DRIVER_CLASSPATH variable. Instead, add these
persistent business objects in your TopLink Workbench project
classpath (see Section 117.3, "Configuring Project Classpath").

Using TopLink Workbench

Using TopLink Workbench 5-3

■ Oracle Database ORACLE_HOME/rdbms/jlib/xdb.jar file–if you are using
direct-to-XMLType mappings with an Oracle9i Database or later (see
Section 27.4, "Direct-to-XMLType Mapping").

■ Custom Collection class that you use to override the default Collection
class that TopLink uses with a mapping container policy (see Section 121.14,
"Configuring Container Policy").

Example 5–1 shows how to set the DRIVER_CLASSPATH variable for Windows
system, and Example 5–2–for UNIX.

Example 5–1 Setting DRIVER_CLASSPATH on Windows

set DRIVER_
CLASSPATH=C:\OraHome2\jdbc\lib\ojdbc14.jar;C:\Attunity\Connect\Java\lib\attunityResourceAdapt
er.jar;C:\OraHome2\rdbms\jlib\xdb.jar

Example 5–2 Setting DRIVER_CLASSPATH on UNIX

DRIVER_
CLASSPATH=/OraHome2/jdbc/lib/ojdbc14.jar;/attunity/connect/java/lib/attunityResourceAdapter.j
ar;/OraHome2/rdbms/jlib/xdb.jar; export JDBC_CLASSPATH

4. Save and close the setenv script.

To launch TopLink Workbench, double-click the workbench.cmd file located in
<TOPLINK_HOME>/utils/workbench directory.

5.2.1 How to Configure the Language Preference
To use TopLink Workbench in a language different than your default, add the
-Duser.language and -Duser.country options to the JVM_ARGS variable in the
workbench.cmd or .sh file. For example, the following arguments will start TopLink
Workbench in US English, regardless of default language of your operating system:

JVM_ARGS="-Duser.language=en -Duser.country=en_US"

5.3 Using TopLink Workbench
Figure 5–1 shows the primary parts of TopLink Workbench window.

Note: If the path to your driver(s) contains spaces, you must enclose
the path in double-quotes in the setenv.cmd file. For example:

set DRIVER_CLASSPATH="C:\Program Files\some directory\driver.jar"

Using TopLink Workbench

5-4 Developer's Guide for Oracle TopLink

Figure 5–1 TopLink Workbench Window

The numbered callouts in Figure 5–1 identify the following user interface components:

1. Menu bar

The menu bar contains menus for each TopLink Workbench function. Some objects
also contain context-sensitive menus. See Section 5.3.1, "How to Use Menus" for
more information.

2. Toolbars

The toolbars contain shortcuts to specific functions. See Section 5.3.2, "How to Use
Toolbars" for more information.

3. Navigator window section

The Navigator window section shows the project navigation tree for all open
projects (see Section 5.3.3, "How to Use the Navigator"). Click the plus (+) or
minus (–) sign next to an object (or double-click the object) to expand or collapse
the tree. When you select an object in the Navigator window section, its properties
appear in the Editor window.

4. Editor window section

The Editor window section contains specific property sheets and option tabs for
the currently selected object. See Section 5.3.4, "How to Use the Editor" for more
information.

5. Problems window section

Using TopLink Workbench

Using TopLink Workbench 5-5

The Problems window section shows messages and errors for the currently
selected object in the Navigator window section (see Section 5.3.5, "How to Use the
Problems Window"). Section A.3, "TopLink Workbench Error Reference" contains
detailed information on each error message.

5.3.1 How to Use Menus
TopLink Workbench contains the following two types of menus:

■ Menu bar menus (see Section 5.3.1.1, "Using Menu Bar Menus")

■ Context menus (see Section 5.3.1.2, "Using Context Menus")

5.3.1.1 Using Menu Bar Menus
The menu bar, located at the top of the TopLink Workbench window, provides menus
for each TopLink Workbench function. Some menus (such as Selected) are
context-sensitive; the available options may vary, depending on the currently selected
object.

Figure 5–2 Sample Menu Bar Menu

5.3.1.2 Using Context Menus
When you right-click objects in the Navigator window, a context menu appears with
functions specific to the selected object.

Using TopLink Workbench

5-6 Developer's Guide for Oracle TopLink

Figure 5–3 Sample Context Menu

5.3.2 How to Use Toolbars
TopLink Workbench contains the following toolbars at the top of the window:

■ Standard toolbar (see Section 5.3.2.1, "Using Standard Toolbar")

■ Context toolbar (see Section 5.3.2.2, "Using Context Toolbar")

Toolbars provide tool tips: each toolbar button provides a brief description when you
position the mouse pointer over it.

5.3.2.1 Using Standard Toolbar
The standard toolbar furnishes quick access to the standard menu options (File, Edit,
Selected, and so on).

Table 5–1 Standard Toolbar Buttons

Button Description Available for...

New All

Open All

Save All

Save as All

Save all All

Close All

Close all All

Help topics All

Using TopLink Workbench

Using TopLink Workbench 5-7

5.3.2.2 Using Context Toolbar
The context toolbar provides quick access to functions for the currently selected object
in the Navigator (see Section 5.3.3, "How to Use the Navigator"). The available buttons
will vary, depending on which item you have selected.

You can also right-click the item and choose the appropriate option from the context
menu.

Export deployment XML for the selected
projects

Projects

Refreshes selected classes Projects

Add or refresh classes Projects

Create new class Projects

Table 5–2 Context Toolbar Buttons

Button Description Available for...

Login to database Databases

Logout of database Databases

Add new table Databases

Add or update existing tables from
database

Databases

Refresh from database Database tables

Remove table or selected item Database tables

Rename table or selected item Database tables

Import schema Schemas

Relational aggregate descriptor Descriptors

Relational class descriptor Descriptors

Relational EJB descriptor Descriptors

EIS composite descriptor Descriptors

EIS root descriptor Descriptors

EIS EJB descriptor Descriptors

XML descriptor Descriptors

Direct-to-field mapping Attributes in relational descriptors

Object type mapping1 Attributes in relational descriptors

Type conversion mapping1 Attributes in relational descriptors

Table 5–1 (Cont.) Standard Toolbar Buttons

Button Description Available for...

Using TopLink Workbench

5-8 Developer's Guide for Oracle TopLink

Serialized object mapping1 Attributes in relational descriptors

Direct-to-XMLType mapping Attributes in relational descriptors

Direct collection mapping Attributes in relational descriptors

Direct map mapping Attributes in relational descriptors

Aggregate mapping Attributes in relational descriptors

One-to-one mapping Attributes in relational descriptors

Variable one-to-one mapping Attributes in relational descriptors

One-to-many mapping Attributes in relational descriptors

Many-to-many mapping Attributes in relational descriptors

Direct mapping Attributes in EIS descriptors

Direct collection mapping Attributes in EIS descriptors

Composite object mapping Attributes in EIS descriptors

Composite collection mapping Attributes in EIS descriptors

One-to-one mapping Attributes in EIS descriptors

One-to-many mapping Attributes in EIS descriptors

Direct-to-XML mapping Attributes in XML descriptors

Direct collection mapping Attributes in XML descriptors

Composite object mapping Attributes in XML descriptors

Composite collection mapping Attributes in XML descriptors

Any object mapping Attributes in XML descriptors

Any collection mapping Attributes in XML descriptors

Transformation mapping Attributes in all descriptors

Unmap Attributes in all descriptors

Session Sessions configurations

Session Broker Sessions configurations

Named connection pool Server sessions

Sequence connection pool Server sessions

Write connection pool Server sessions

Table 5–2 (Cont.) Context Toolbar Buttons

Button Description Available for...

Using TopLink Workbench

Using TopLink Workbench 5-9

5.3.3 How to Use the Navigator
TopLink displays the items included in each project (descriptors, mappings, data
source, and so on) in the Navigator on the left side of the TopLink Workbench
window, as Figure 5–4 shows.

Figure 5–4 Sample Navigator

The numbered callouts on Figure 5–4 identify the following user interface
components:

1. Project (relational project)

2. Package

3. TopLink Descriptor (relational descriptor)

4. Attribute/mapping (direct to field mapping)

5. Unsaved/changed item

6. Database

7. Database table

Click the plus (+) or minus (–) sign next to the item, or double-click the item name to
expand or collapse the item.

TopLink Workbench identifies items that have been changed but not yet saved by
adding an asterisk (*) in front of the item name.

When you select an item in the Navigator, its properties appear in the Editor (see
Section 5.3.4, "How to Use the Editor").

To perform specific functions for an item, select the item in the Navigator and do one
of the following:

■ Right-click on the object and select the function from the context menu (see
Section 5.3.1.2, "Using Context Menus").

Rename Database sessions, session brokers

Delete session Database sessions, session brokers

1 Deprecated. For more information, see Section 27.2.2.2, "Using a Converter Mapping"

Table 5–2 (Cont.) Context Toolbar Buttons

Button Description Available for...

Using TopLink Workbench

5-10 Developer's Guide for Oracle TopLink

■ Choose a function from the Selected menu (see Section 5.3.1.1, "Using Menu Bar
Menus").

For information on using the Navigator with a database in relational projects, see
Section 5.5.1, "How to Use Database Tables in the Navigator Window".

For information on using the Navigator with an XML schema in EIS projects (using
XML records) and XML projects, see Section 5.6.1, "How to Use XML Schemas in the
Navigator".

Active and Inactive Descriptors
Inactive descriptors appear dimmed in the Navigator. Inactive descriptors are not
registered with the session when the project is loaded into Java. This feature lets you
define and test subsets of descriptors. To activate or deactivate a descriptor, right-click
the descriptor and select Activate/Deactivate Descriptor from the context menu.

Figure 5–5 Sample Active and Inactive Descriptors

Figure 5–5 numbered callouts show the following user interface components:

1. Inactive descriptor

2. Active descriptor

Errors and Missing Information
If an element in the project (such as a descriptor or mapping) contains an error or some
deficiency (sometimes called neediness), a warning icon appears beside the element
icon in the Navigator, and TopLink Workbench displays a message in the Problems
window (see Section 5.3.5, "How to Use the Problems Window").

Section A.3, "TopLink Workbench Error Reference" contains more information on each
TopLink Workbench error message.

5.3.4 How to Use the Editor
The Editor, on the right side of the TopLink Workbench window, displays the property
sheet associated with the currently selected item in the Navigator, as Figure 5–6
shows.

Using TopLink Workbench

Using TopLink Workbench 5-11

Figure 5–6 Sample Editor

Figure 5–6 numbered callouts identify the following user interface components:

1. Selected element (from the Navigator)

2. Editor property tabs

5.3.5 How to Use the Problems Window
If an element in the project (such as a descriptor or mapping) contains an error or some
deficiency (sometimes called neediness), the TopLink Workbench displays a caution
icon (represented by a yellow triangle with a black exclamation point in the middle) to
the left of the deficient element in the Navigator (see Section 5.3.3, "How to Use the
Navigator") and displays a message in the Problems window as Figure 5–7 shows.

If you select the error, then TopLink Workbench displays the complete error message
in the Problems window. Section A.3, "TopLink Workbench Error Reference" contains
detailed information on each error message.

Figure 5–7 Sample Deficient Mapping

Using TopLink Workbench Preferences

5-12 Developer's Guide for Oracle TopLink

Double-click any error message in the Problems window to automatically highlight
the specific node in the Navigator. To display or hide the Problems window, select
Window > Show Problems from the menu.

You can also create a status report (see Section 116.2.3, "How to Generate the Project
Status Report") that includes all errors in a selected project.

5.3.6 How to Use the Online Help
TopLink Workbench contains an extensive online Help system to assist you in
developing TopLink applications.

To receive help on any field, tab, or element in TopLink Workbench, right-click the
element and select Help from the context menu or press F1.

To review the complete TopLink documentation and Quick Start, click Help.

5.4 Using TopLink Workbench Preferences
To customize TopLink Workbench, select Tools > Preferences from the menu. The
Preferences dialog box appears.

Figure 5–8 Preferences Dialog Box

TopLink Workbench provides the following preferences:

■ How to Use General Preferences

– How to Use Help Preferences

■ How to Use Mappings Preferences

– How to Use Class Preferences

– How to Use EJB Preferences

– How to Use Database Preferences

■ How to Use Sessions Configuration Preferences

– How to Use New Names Preferences

– How to Use Session Platform Preferences

Using TopLink Workbench Preferences

Using TopLink Workbench 5-13

Use this dialog box to configure TopLink Workbench preferences. After changing
preferences, you must restart TopLink Workbench.

To import your preferences from an existing file, click Import and select the file.

To export your preferences, click Export and select a directory location and filename.

5.4.1 How to Use General Preferences
Use the General preferences to customize the look and feel (the graphical user
interface) of TopLink Workbench as well as to specify any proxy information required
to access the Internet (for example, to allow TopLink to access XML schemas hosted on
Internet sites). Follow these steps to customize the General preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Select General in the Category window.

Figure 5–9 Preferences–General Dialog Box

Use the following information to enter data in each field of the dialog box:

Field Description

Display Splash Screen Specify if TopLink Workbench should show the graphical splash
screen when starting.

Look and Feel Select the look and feel to use for TopLink Workbench.

Size of recently opened
files list

Select the number of projects to maintain in the File menu. See
Section 116.2.1, "How to Open Existing Projects" for more
information.

HTTP Proxy Host Specify if your PC requires a proxy server to access the internet.

HTTP Proxy Port Specify the port used by your proxy host.

Network Connect
Timeout

Specify the timeout (in seconds) to establish a network or internet
connection.

Network Read Timeout Specify the timeout (in seconds) when accessing data from a
network or internet connection.

Reopen Projects on
Startup

Select to reopen the projects that were open the last time you exited
the TopLink Workbench.

Using TopLink Workbench Preferences

5-14 Developer's Guide for Oracle TopLink

You must restart TopLink Workbench to apply the changes.

5.4.2 How to Use Help Preferences
Use the Help preferences to select the Help system preferences.

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Expand General in the Category window and select Help. The Preferences–Help
dialog box appears.

Figure 5–10 Preferences–General–Help Dialog Box

Use the following information to enter data in each field:

5.4.3 How to Use Mappings Preferences
Use the Mappings preferences to specify general mapping preferences. Follow these
steps to set the Mapping preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Select Mappings in the Category window. The Mappings dialog box appears.

Field Description

Display Welcome at
Startup

Specify if TopLink should show the Welcome screen each time
you start TopLink Workbench.

External HTML Browser Click Browse and select the location of your default Web browser.
You must specify a Web browser to access the Quick Tour, Javadoc
(API), and other Web-based material.

Help Jar Specify the location of the JAR file that contains help topics.

Click Browse and select the help JAR file location. The default
filename is <TOPLINK_
HOME>/utils/jlib/help/tlmwhelp.jar

To use the help content in a language other than the default
language for your local, specify a different help JAR file.

Note: You must restart TopLink Workbench to apply changes
to this option.

Using TopLink Workbench Preferences

Using TopLink Workbench 5-15

Figure 5–11 Preferences–Mappings Dialog Box

Use the following information to enter data in each field:

5.4.4 How to Use Class Preferences
Use the Class preferences to specify how TopLink Workbench maintains classes when
renaming or editing a zero-argument constructor. Follow these steps to set the Class
preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Expand Mappings in the Category window and select Class.

Field Description

Allow changing query
type

Configure whether or not TopLink Workbench always allows, never
allows, or prompts before allowing you to change the query type
associated with a descriptor.

Allow changing query
format

Configure whether or not TopLink Workbench always allows, never
allows, or prompts before allowing you to change the configuration
of a query associated with a descriptor.

Using TopLink Workbench Preferences

5-16 Developer's Guide for Oracle TopLink

Figure 5–12 Preferences – Mappings – Class Dialog Box

On the Preferences–Mappings–Class dialog box, specify how TopLink Workbench
maintains classes when renaming or editing a zero-argument constructor.

5.4.5 How to Use EJB Preferences
Use the EJB preferences to specify how TopLink Workbench updates the
ejb-jar.xml file when saving EJB projects. Follow these steps to set the EJB
preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Expand Mappings in the Category window and select EJB.

Figure 5–13 Preferences–Mappings–EJB Preferences Dialog Box

Use the following information to select how TopLink Workbench will update the
ejb-jar.xml file:

Using TopLink Workbench Preferences

Using TopLink Workbench 5-17

5.4.6 How to Use Database Preferences
Use the Database preferences to specify custom database divers and connection URLs
for TopLink Workbench. These drivers and URLs can then be used when defining
database logins. Follow these steps to set the Database preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Expand Mappings in the Category window and select Database.

Figure 5–14 Preferences–Mappings–Database Preferences Dialog Box

Use the following information to enter data in each field:

5.4.7 How to Use Sessions Configuration Preferences
Use the Sessions preferences to specify default classpaths to be added to each newly
created TopLink sessions configuration for features that require an external Java class

Field Description

Write ejb-jar.xml on
project save

Configure whether or not TopLink Workbench always updates,
never updates, or prompts before updating the ejb-jar.xml file
each time you save the project.

Allow removing EJB
info

Configure whether or not TopLink Workbench always allows, never
allows, or prompts before allowing you to remove the EJB
information associated with a descriptor. See Section 119.18,
"Configuring a Descriptor with EJB CMP and BMP Information" for
more information.

Allow removing EJB 2.x
info

Configure whether or not TopLink Workbench always allows, never
allows, or prompts before allowing you to remove the EJB 2.0 or 2.1
information associated with a descriptor. See Section 119.18,
"Configuring a Descriptor with EJB CMP and BMP Information" for
more information.

Field Description

Database Driver Enter the custom database driver class name.

Connection URL Enter the custom database connection URL.

Using TopLink Workbench Preferences

5-18 Developer's Guide for Oracle TopLink

(for example, session event listeners). The entries added here will automatically
appear on the Sessions Configuration property sheet (see Section 88.3, "Configuring a
Sessions Configuration"). Follow these steps to set the Sessions Configuration
preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Select Sessions Configuration in the Category window.

Figure 5–15 Preferences–Sessions Configuration Dialog Box

To add a JAR or ZIP file, click Add Entry or Browse and add the JAR or ZIP files that
contain the default compiled Java classes for this sessions configuration.

To remove a JAR or ZIP file, select the file and click Remove.

To change the order in which TopLink searches these JAR or ZIP files, select a file and
click Up to move it up, or click Down to move it down in the list.

5.4.8 How to Use New Names Preferences
Use the New Names preferences to specify the default values and names of newly
created sessions, session brokers, and connection pools. Follow these steps to set the
New Names preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Expand Sessions Configuration in the Category window and select New Names.

Using TopLink Workbench Preferences

Using TopLink Workbench 5-19

Figure 5–16 Preferences–Sessions Configuration–New Names Dialog Box

Use the following information to enter data in each field:

5.4.9 How to Use Session Platform Preferences
Use the Platform preferences to specify the default data source type for newly created
sessions. The type selected here will automatically appear on the Create New Session
dialog box. Follow these steps to set the Platform preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Expand Sessions Configuration in the Category window and select Platform.

Field Description

Sessions Configuration Specify the default name for newly created sessions configuration
files (default, sessions.xml). See Section 88.2, "Creating a
Sessions Configuration" for more information.

Session Specify the default name for newly created sessions (default,
Session). See Section 88.1, "Introduction to the Session Creation"
for more information.

Broker Specify the default name for newly created session brokers (default,
SessionBroker). See Section 88.5, "Creating Session Broker and
Client Sessions" for more information.

Connection Pool Specify the default name for newly created connection pools
(default, ConnectionPool). See Chapter 100, "Creating an Internal
Connection Pool" for more information.

Using TopLink Workbench Preferences

5-20 Developer's Guide for Oracle TopLink

Figure 5–17 Preferences–Sessions Configuration–Platform Preferences Dialog Box

Use the following information to enter data in each field:

5.4.10 How to Use Platforms Preferences
Use the Platforms preferences to specify if platforms are to be visible in production.
Follow these steps to set Platforms preferences:

1. Select Tools > Preferences from the menu. The Preferences dialog box appears.

2. Select Platforms in the Category window.

Figure 5–18 Preferences – Platforms Preferences

Field Description

Use Server Platform Specify the default application server platform for newly created
sessions configuration files (default, sessions.xml). See
Section 88.2, "Creating a Sessions Configuration" for more
information.

Default Data Source
Type

Select the default data source type (Database, EIS, or XML) and
platform for newly created sessions. See Section 89.9, "Configuring
the Server Platform" for more information.

Using Databases

Using TopLink Workbench 5-21

Configure whether or not TopLink Workbench allows platforms to be visible in
production.

5.5 Using Databases
In relational projects, when you expand the database object in the Navigator, TopLink
Workbench displays the database tables associated with the project. You can associate
tables by importing them from the database, or by creating them within TopLink
Workbench.

Figure 5–19 Sample Database Tables

Figure 5–19 numbered callouts identify the following database icons.

1. Project

2. Database

3. Database table

Each database table property sheet contains the following tabs in the Editor:

■ Columns–Add or modify the table’s fields, and specify each field’s properties.

■ References–Specify references between tables.

This section includes information on the following topics:

■ How to Use Database Tables in the Navigator Window

■ How to Use Database Tables in the Editor Window

■ How to Generate Data from Database Tables

5.5.1 How to Use Database Tables in the Navigator Window
This section describes the following options:

■ Logging In and Out of a Database

■ Creating New Tables

■ Importing Tables from a Database

■ Removing Tables

■ Renaming Tables

■ Refreshing Tables from the Database

See Section 5.5.2, "How to Use Database Tables in the Editor Window" for more
information.

5.5.1.1 Logging In and Out of a Database
To log in or out of a relational database, do the following:

Using Databases

5-22 Developer's Guide for Oracle TopLink

1. Create a database login (see Section 98.1, "Introduction to Database Login
Configuration").

2. To log in to a relational database, right-click the database object in the Navigator,
and choose Log In to Database from the context menu or choose Selected > Log
In to Database from the menu.

3. To log out of a relational database, right-click the database object in the Navigator
and choose Log Out of Database from the context menu or choose Selected > Log
Out of Database from the menu.

5.5.1.2 Creating New Tables
To create a new database table within TopLink Workbench, use the following
procedure:

1. Select the database object in the Navigator window and click Add New Table. The
New Table dialog box appears.

You can also right-click the database object and choose Add New Table from the
context menu, or choose Selected > Add New Table from the menu.

Figure 5–20 New Table Dialog Box

Use the following information to enter data in each field:

TopLink Workbench adds the database table to the project.

Although the database table has been added to the project, it has not been written to
the actual database. See Section 5.5.3.4, "Generating Tables on the Database" for more
information on creating the table in the database.

Continue with Section 5.5.2, "How to Use Database Tables in the Editor Window" to
use these tables in your project.

5.5.1.3 Importing Tables from a Database
TopLink Workbench can automatically read the schema for a relational database and
import the table data into the project as long as your JDBC driver supports the
following JDBC methods:

Field Description

Catalog Use to identify specific database information for the table. Consult
your database administrator for more information.

Schema Use to identify specific database information for the table. Consult
your database administrator for more information.

Table Name Specify the name of this database table.

Using Databases

Using TopLink Workbench 5-23

■ getTables

■ getTableTypes

■ getImportedKeys

■ getCatalogs

■ getPrimaryKeys

The JDBC driver must be on the TopLink Workbench classpath (see Section 5.2,
"Configuring the TopLink Workbench Environment").

To import tables from the database, use the following procedure:

1. Select the database object in the Navigator, and click Add or Update Existing
Tables from Database. The Import Tables from Database dialog box appears.

You can also right-click on the database object in the Navigator and choose Add or
Update Existing Tables from Database from the context menu or choose Selected
> Add or Update Existing Tables from Database from the menu.

Figure 5–21 Import Tables from Database Dialog Box

Figure 5–21 numbered callouts identify the following user interface components:

1. Filters

2. Database tables that match the filters

Use the following information to enter data in each field of the dialog box:

Field Description

Table Name Pattern Specify the name of database table(s) to import. Use percent
character (%) as a wildcard. Tables that match the Table Name
Pattern can be imported.

Catalog Specify the catalog of database table(s) to import.

Schema Pattern Specify the schema of database table(s) to import.

Table Type Specify the type of database table(s) to import.

Using Databases

5-24 Developer's Guide for Oracle TopLink

Examine each table’s properties to verify that the imported tables contain the correct
information. See Section 5.5.2, "How to Use Database Tables in the Editor Window" for
more information.

5.5.1.4 Removing Tables
To remove a database table from the project, use the following procedure:

1. Select a database table in the Navigator, and click Remove Selected Item on the
toolbar. TopLink Workbench prompts for confirmation.

You can also right-click on the database object and choose Remove from the
context menu or choose Selected > Remove from the menu.

2. Click OK. TopLink Workbench removes the table from the project.

5.5.1.5 Renaming Tables
To rename a database table in the TopLink Workbench project, use the following
procedure:

1. Select a database table in the Navigator, and click Rename on the toolbar. The
Rename dialog box appears.

You can also right-click on the table and choose Rename from the context menu or
choose Selected > Rename from the menu.

2. Enter a new name and click OK. TopLink Workbench renames the table.

5.5.1.6 Refreshing Tables from the Database
To refresh (that is, reload) the database tables in the TopLink Workbench project, use
this procedure:

Select a database table in the Navigator, and click Refresh from Database on the
toolbar.

Available Tables Click Get Table Names to make TopLink display tables that match
Table Name Pattern, Catalog, Schema Pattern, and Table Type
settings.

Selected Tables Select the tables in the Available Tables area to import, and click
the right-arrow button. TopLink adds the table to the Selected
Tables field.

Click OK to import the tables from the database into the TopLink
Workbench project.

Import Fully Qualified
Names

Specify whether or not the tables’ names are fully qualified against
the schema and catalog.

Note: Although you have removed the table from the TopLink
Workbench project, the table remains in the database.

Note: Although you have renamed the table in the TopLink
Workbench project, the original table name remains in the database.

Field Description

Using Databases

Using TopLink Workbench 5-25

You can also right-click on the table and choose Refresh from Database from the
context menu or choose Selected > Refresh from Database from the menu. TopLink
Workbench reloads the database table.

When refreshing tables from the database, if there are multiple database tables with
similar names, the Duplicate Tables dialog box appears.

Figure 5–22 Duplicate Table Dialog Box

Select the specific database table to update, and then click OK.

5.5.2 How to Use Database Tables in the Editor Window
When you select a database table in the Navigator, its properties appear in the Editor.
Each database table contains the following property tabs:

■ Columns–Add or modify the table fields, and specify each field properties.

■ References–Specify references between tables.

This section describes how to use these tabs to configure the following:

■ Working with Column Properties

■ Setting a Primary Key for Database Tables

■ Creating Table References

■ Creating Field Associations

5.5.2.1 Working with Column Properties
Use the database table’s Column tab to specify properties for the database table’s
fields.

To specify a table’s column properties, use this procedure:

1. Select a database table in the Navigator. The table’s property sheet displays in the
Editor.

2. Click the Columns tab.

Using Databases

5-26 Developer's Guide for Oracle TopLink

Figure 5–23 Fields Properties

3. Enter data in each field on the Columns tab. Use the scroll bar to display the
additional field.

Use the following information to fill each column on the Columns tab:

To add a new field, click Add.

To remove a field, select the field and click Remove.

To rename a field, select the field and click Rename.

5.5.2.2 Setting a Primary Key for Database Tables
To set a primary key(s) for a database table, use this procedure:

1. Select a database table in the Navigator. Its property sheet appears in the Editor.

2. Click the Columns tab.

Field Description

Name Specify the name of the field.

Type Use the drop-down list to select the field’s type.

Note: The valid values will vary, depending on the database.

Size Specify the size of the field.

Sub-Size Specify the sub-size of the field.

Allows Null Specify if this field can be null.

Unique Specify whether the value must be unique within the table.

Primary Key Specify whether or not this field is a primary key for the table (see
Section 5.5.2.2, "Setting a Primary Key for Database Tables").

Identity Use to indicate a Sybase, SQL Server or Informix identity field.

Note: Some properties may be unavailable, depending on your
database type.

Note: TopLink Workbench can automatically import primary key
information if supported by the JDBC driver.

Using Databases

Using TopLink Workbench 5-27

Figure 5–24 Setting Primary Key for a Database Table

3. Select the Primary Key field(s) for the table.

5.5.2.3 Creating Table References
References are table properties that contain the foreign key; they may or may not
correspond to an actual constraint that exists on the database. TopLink Workbench
uses these references when you define relationship mappings and multiple table
associations.

When importing tables from the database, TopLink Workbench can automatically
create references (if the driver supports this), or you can define references from the
workbench. See Section 5.5.1.3, "Importing Tables from a Database".

To create a new table reference, use this procedure:

1. Select a database table in the Navigator. The table’s properties display in the
Editor.

2. Click the References tab.

Figure 5–25 References Tab

Figure 5–27 numbered callouts identify the following user interface components:

1. Table References area

2. Key Pairs area

3. In the References area, click Add. The New Reference dialog box appears.

Using Databases

5-28 Developer's Guide for Oracle TopLink

Figure 5–26 New Reference Dialog Box

Use the following information to enter data in each field of the dialog box:

Continue with Section 5.5.2.4, "Creating Field Associations".

5.5.2.4 Creating Field Associations
For each table reference, you can specify one or more field associations that define how
fields in the source table relate to fields in the target table. See Section 5.5.2.3, "Creating
Table References".

To create new field references, use this procedure:

1. Select a database table in the Navigator. The table’s properties display in the
Editor.

2. Click the References tab.

Figure 5–27 References Tab

Figure 5–27 numbered callouts identify the following user interface components:

Field Description

Enter Name of New
Reference

Specify the name of the reference table. If you leave this field
blank, TopLink Workbench automatically creates a name based on
the format: SOURCETABLE_TARGETTABLE.

Select the Source Table Specify the name of the source database table (the currently
selected table in the Navigator).

Select the Target Table Use the list to specify the target table for this reference.

On Database Specify if you want to create the reference on the database when
you create the table. Not all database drivers support this option.

Using Databases

Using TopLink Workbench 5-29

1. Table references area

2. Key pairs area

3. Select a table reference from the references area.

4. To create a new key pair, click Add in the key pairs area and complete each field in
the key pairs area using the following information:

To create a new key pair, click Add in the key pairs area and complete each field in the
key pairs area using the following information.

5.5.3 How to Generate Data from Database Tables
 TopLink Workbench can automatically generate a variety of information from the
database tables. This section describes the following:

■ Generating SQL Creation Scripts

■ Generating Classes and Descriptors from Database Tables

■ Generating EJB Entity Beans and Descriptors from Database Tables

■ Generating Tables on the Database

5.5.3.1 Generating SQL Creation Scripts
Using the TopLink Workbench, you can generate SQL scripts that you can use to create
tables in a relational database.

To automatically generate SQL scripts to create the tables in a project, use this
procedure:

1. Select the database table(s) in the Navigator.

2. Right-click the table(s) and choose Generate Creation Script for > Selected Tables
or All Tables from the context menu. The SQL Creation Script dialog box appears.

You can also choose Selected > Generate Creation Script for > Selected Tables or
All Tables from the menu.

Field Description

Table References Area

Name Specify the name of this table reference

Target Table Specify the database table that is the target of this
reference.

On Database Specify if the reference exists on the database.

Key Pairs Area

Source Column Select the database field from the source table.

Target Column Select the database field from the target table.

Using Databases

5-30 Developer's Guide for Oracle TopLink

Figure 5–28 SQL Creation Script Dialog Box

Copy the script and paste it into a file. You may need to edit the file to include
additional SQL information that TopLink Workbench could not generate. If the
database table or column name is an SQL reserved word, you must edit the SQL script
and enclose the database table or column in quotes. See "Oracle Database Reserved
Words" in the Oracle Database SQL Reference Guide for more information.

5.5.3.2 Generating Classes and Descriptors from Database Tables
TopLink Workbench can automatically generate Java class definitions, descriptor
definitions, and associated mappings from the information in database tables. You can
later edit the generated information if necessary.

For each table, TopLink Workbench does the following:

■ Creates a class definition and a descriptor definition.

■ Adds attributes to the class for each column in the table.

■ Automatically generates access methods, if specified.

■ Creates direct-to-field mappings for all direct (nonforeign key) fields in the table.

■ Creates relationship mappings (one-to-one and one-to-many) if there is sufficient
foreign key information. You may be required to determine the exact mapping
type.

To generate classes and descriptors from database tables, use the following
procedure:
1. Select the database table(s) in the Navigator.

2. Right-click the table(s) and choose Generate Classes and Descriptors from >
Selected Tables or All Tables from the context menu. TopLink Workbench
prompts you to save your project.

Note: If TopLink cannot determine how a particular table feature
should be implemented in SQL, it generates a descriptive message
in the script.

Note: Class and attribute names are generated based on the table
and column names. You can edit the class properties to change their
names.

Using Databases

Using TopLink Workbench 5-31

You can also choose Selected > Generate Classes and Descriptors from >
Selected Tables or All Tables from the menu.

3. Click Yes. The Generate Classes and Descriptors dialog box appears.

Figure 5–29 Generate Classes and Descriptors Dialog Box

Use the following information to enter data in each field:

If the table contains foreign key fields that may represent relationship mappings, then
the Choose Relationships to Generate dialog box appears.

Figure 5–30 Choose Relationships to Generate Dialog Box

Select an entry from Potential Relationships and click the 1:1 Mapping or 1:M
Mapping button, located between the Potential Relationships and Selected
Relationships windows. See Chapter 27, "Introduction to Relational Mappings" for
more information on mappings.

You can also specify whether the relationships are bidirectional. See Section 121.18,
"Configuring Bidirectional Relationship" for more information.

Click OK to automatically create the relationships.

The newly created descriptors appear in the Navigator of TopLink Workbench.

Field Description

Package Name Specify the name of package to generate. The package name must
comply with Java naming standards.

Generate Accessing
Methods

Specify if TopLink Workbench generates accessing methods for each
class and descriptor.

Using Databases

5-32 Developer's Guide for Oracle TopLink

5.5.3.3 Generating EJB Entity Beans and Descriptors from Database Tables
Using TopLink Workbench, you can automatically generate EJB entity beans and
descriptors for each database table, including the following:

■ One EJB descriptor that implements the <javax.ejb.EntityBean> and entity
bean classes

■ Bean relation attributes (CMP or BMP)

■ Java source for each class

■ EJB-compliant method stubs

To automatically generate EJB entity beans and descriptors for each database table, use
this procedure:

1. Select the database table(s) in the Navigator.

2. Right-click the table(s) and choose Generate EJB Entities and Descriptors from >
Selected Table or All Tables from the context menu. TopLink Workbench prompts
you to save your project.

You can also choose Selected > Generate EJB Entities and Descriptors from >
Selected Table or All Tables from the menu.

3. Click Yes to save your project before generating EJB entities. The Generate EJB
Entity Classes and Descriptors dialog box appears.

Figure 5–31 Generate EJB Entity Classes and Descriptors Dialog Box

Use the following information to enter data in each field on the Generate EJB Entity
Classes and Descriptors dialog box:

Note: This option is available only for projects with
container-managed or bean-managed persistence. See Section 117.5,
"Configuring Persistence Type" for more information.

Field Description

Package Name Name of the package to contain the generated entity
beans and descriptors.

Generate Local Interfaces1

1 For CMP and BMP projects only. See Section 119.18, "Configuring a Descriptor with EJB CMP and BMP
Information" for more information.

Specify if TopLink creates local interfaces for the EJB
entity beans.

Generate Remote Interfaces1 Specify if TopLink creates remote interfaces for the EJB
entity beans.

Using XML Schemas

Using TopLink Workbench 5-33

If the table contains foreign key fields that may represent relationship mappings, then
the Choose Relationships to Generate dialog box appears. Select a potential
relationship and click the 1:1 Mapping or 1:M Mapping button, located between the
Potential Relationships and Selected Relationships windows.

You can also specify if the relationships are bidirectional (see Section 121.18,
"Configuring Bidirectional Relationship").

Repeat for all appropriate sets of tables.

Click OK to generate the relationship mappings.

The system creates the remote primary key, home, and bean classes for each bean and
adds this information to the project.

5.5.3.4 Generating Tables on the Database
To create a table in the database, based on the information in TopLink Workbench, use
this procedure:

1. Select the database table(s) in the Navigator.

2. Right-click the table(s) and choose Create on Database > Selected Table or All
Tables from the context menu.

You can also create tables by selecting Selected > Create on Database > Selected
Table or All Tables from the menu.

TopLink Workbench creates the tables on the database.

Alternatively, you can generate tables at run time by exporting the information in
TopLink Workbench to a TableCreator class (see Section 6.1, "Introduction to the
Schema Manager").

5.6 Using XML Schemas
For XML and EIS projects, TopLink Workbench maps each TopLink descriptor to your
XML schema.

This section includes information on the following topics:

■ How to Use XML Schemas in the Navigator

■ How to Use an XML Schema Structure

■ How to Import an XML Schema

■ How to Configure an XML Schema Reference

■ How to Configure XML Schema Namespace

5.6.1 How to Use XML Schemas in the Navigator
After you import one or more XML schemas into your project (see Section 5.6.3, "How
to Import an XML Schema") and you expand the schema object in the Navigator,
TopLink Workbench displays the schemas associated with the project.

Note: You must log in the database before creating tables. See
Section 20.6, "Logging In to the Database" for more information.

Using XML Schemas

5-34 Developer's Guide for Oracle TopLink

Figure 5–32 Sample XML Schemas

Figure 5–32 numbered callouts identify the following schema icons:

1. Project

2. Schemas object

3. Specific schema

For more information, see the following:

■ Section 5.6.2, "How to Use an XML Schema Structure"

■ Section 5.6.4, "How to Configure an XML Schema Reference"

■ Section 5.6.5, "How to Configure XML Schema Namespace"

5.6.2 How to Use an XML Schema Structure
When you select a specific XML schema in the Navigator, you can display the
structure and details of the schema using the Schema Structure tab.

To display the structure and details of a schema, use this procedure:

1. Select a schema element in the Navigator. Its properties appear in the Editor.

2. Click the Schema Structure tab. The Schema Structure tab appears.

3. Select an element in the schema. The element’s details appear.

Using XML Schemas

Using TopLink Workbench 5-35

Figure 5–33 Schema Structure Tab

Use the following information to verify data in each field in the Schema Document
Info tab:

These fields are for display only and cannot be changed in TopLink Workbench.

5.6.3 How to Import an XML Schema
The first step in configuring an EIS project (using XML records) or XML project is
importing the XML schema(s) that your project uses.

When you import a schema, you define a schema reference that gives TopLink the
information it needs to locate the schema itself. Anytime after you import an XML
schema, you can update the schema reference (see Section 5.6.4, "How to Configure an
XML Schema Reference") if necessary.

After importing an XML schema, you can configure XML schema namespaces (see
Section 5.6.5, "How to Configure XML Schema Namespace").

To import an XML schema into an EIS project (using XML records) or an EIS project,
use this procedure:

1. Right-click the schemas element in the Navigator and select Import Schema from
the context menu. The Import Schema dialog box appears.

Field Description

Schema Structure Displays the elements of the schema, listed in alphabetical order, in
an expandable or collapsible tree structure.

Details Displays detailed information (such as name and type) for the
currently selected element in the Schema Structure area.

Using XML Schemas

5-36 Developer's Guide for Oracle TopLink

Figure 5–34 Import Schema Dialog Box

Use the following information to enter data in each field in the Import Schema dialog
box:

To reimport a specific schema, right-click on the specific schema in the Navigator and
select Reimport Schema from the context menu.

To reimport all schemas in a project, right-click on Schemas in the Navigator and select
Reimport All Schemas from the context menu.

To change a schema’s source, right-click on the specific schema in the Navigator
window and select Properties from the context menu. The Schema Properties dialog
appears.

Field Description

Name Specify the name of this schema. This is the display name that
TopLink Workbench uses. It can be different than the name you
specify when you configure Source.

Source Select how TopLink Workbench should import the schema.

File Specify that TopLink Workbench should import the schema from a
file.

Enter the fully qualified directory path and filename of the schema
file.

URL Specify that TopLink Workbench should import the schema using a
URL.

Enter the complete URL of the schema file.

Note: When importing schemas by URL, ensure you have set your
proxy information correctly. See Section 5.4.1, "How to Use General
Preferences" for more information.

Classpath Specify that TopLink Workbench should import the schema from the
project classpath.

Resource Name Enter the fully qualified name of the XML schema file including the
name of the package of which it is a part. For example, if your XML
schema mySchema.xsd is in C:\project\config and you add
this directory to your project classpath (see Table 117–4, " Project
Support for Project Classpath"), specify a resource name of
project.config.mySchema.xsd.

Using XML Schemas

Using TopLink Workbench 5-37

5.6.4 How to Configure an XML Schema Reference
After you import an XML schema (see Section 5.6.3, "How to Import an XML
Schema"), you can update its source by configuring the schema reference.

5.6.4.1 How to Configure an XML Schema Reference Using TopLink Workbench
To specify the source of a schema, use this procedure:

1. Select a schema element in the Navigator. Its properties appear in the Editor.

2. Click the Schema Document Info tab. The Schema Document Info tab appears.

Figure 5–35 Schema Document Info Tab–Source Field

3. Click Edit to select a new source for the selected schema. The Schema Properties
dialog box appears.

Figure 5–36 Schema Properties Dialog Box

Use the following information to complete each field in the Schema Properties dialog
box:

Using XML Schemas

5-38 Developer's Guide for Oracle TopLink

5.6.4.2 How to Configure an XML Schema Reference Using Java
Use Java to configure schema reference. Create a descriptor amendment method (see
Section 119.35, "Configuring Amendment Methods") that instantiates the appropriate
type of XMLSchemaReference (XMLSchemaClassPathReference,
XMLSchemaFileReference, or XMLSchemaURLReference) and configures the
descriptor with it, as follows:

■ If you are using EISDescriptors, the TopLink runtime does not use the schema
reference; no further configuration is required.

■ If you are using XMLDescriptors, configure the descriptor with the
XMLSchemaReference using XMLDescriptor method setSchemaReference.

5.6.5 How to Configure XML Schema Namespace
As defined in http://www.w3.org/TR/REC-xml-names/, an XML namespace is a
collection of names, identified by a URI reference, which are used in XML documents
as element types and attribute names. To promote reusability and modularity, XML
document constructs should have universal names, whose scope extends beyond their
containing document. XML namespaces are the mechanism which accomplishes this.

When you import an XML schema (see Section 5.6.3, "How to Import an XML
Schema") such as the one that Example 5–3 shows, TopLink Workbench organizes the
various namespaces that the XML schema identifies, as Table 5–3 shows.

Example 5–3 XML Schema with Namespace Options

<xsd:schema
xmlns:<prefix>="<URI>" <!-- TopLink Workbench Built-in Namespace -->
targetNamespace="<URI>" <!-- TopLink Workbench Target Namespace -->
elementFormDefault="qualified"

Field Description

Name Specify the name of this schema. This is the display name that
TopLink Workbench uses. It can be different than the name you
specify when you configure Source.

Source Select how TopLink Workbench should import the schema.

File Specify that TopLink Workbench should import the schema from a
file.

Enter the fully qualified directory path and filename of the schema
file.

URL Specify that TopLink Workbench should import the schema using a
URL.

Enter the complete URL of the schema file.

Note: When importing schemas by URL, ensure you have set your
proxy information correctly. See Section 5.4.1, "How to Use General
Preferences" for more information.

Classpath Specify that TopLink Workbench should import the schema from the
project classpath.

Resource Name Enter the fully qualified name of the XML schema file including the
name of the package of which it is a part. For example, if your XML
schema mySchema.xsd is in C:\project\config and you add this
directory to your project classpath (see Section 117.3, "Configuring
Project Classpath", specify a resource name of
project.config.mySchema.xsd.

Using XML Schemas

Using TopLink Workbench 5-39

attributeFormDefault="unqualified"
version="10.1.3">
<xsd:import <!-- TopLink Workbench Imported Namespace -->

namespace="http://xmlns.oracle.com/ias/xsds/opm"
schemaLocation="object-persistence_1_0.xsd"

/>
...
</xsd:schema>

For more information, see Section 15.4, "XML Namespaces Overview".

5.6.5.1 How to Configure XML Schema Namespace Using TopLink Workbench
To specify the namespaces of a schema, use this procedure:

1. Select a schema element in the Navigator. Its properties appear in the Editor.

2. Click the Schema Document Info tab. The Schema Document Info tab appears.

Figure 5–37 Schema Document Info Tab–Namespaces Field

Use the following information to complete each Namespaces field in the tab:

Table 5–3 TopLink Workbench XML Schema Categories

TopLink
Workbench
Category Defined By Purpose When Needed

Built-in xmlns:<prefix>="<URI>" Provides access to types
defined in other XML
schemas for use as is.

If your project uses more
than one XML schema or if
you want to use xsi or xsd
types.

Target targetNamespace="<URI>" The namespace you use to
qualify the types you define
for your application. If set, all
XML documents that use
these types must use this
namespace qualifier.

You may need to specify a
target namespace
depending on how element
and attribute form options
are set (see Section 15.4.2,
"Element and Attribute
Form Options").

Imported xsd:import Provides access to types
defined in the corresponding
built-in XML schema so that
you can extend the built-in
types. Extended types must
be qualified by the target
namespace.

If your project uses more
than one XML schema and
you want to extend one or
more built-in types.

Using Classes

5-40 Developer's Guide for Oracle TopLink

5.6.5.2 How to Configure XML Schema Namespace Using Java
Using Java, to configure XML schema namespaces for an EIS descriptor (with XML
records) or an XML descriptor, create a descriptor amendment method (see
Section 119.35, "Configuring Amendment Methods") that uses EISDescriptor or
XMLDescriptor method getNamespaceResolver to configure the descriptor’s
NamespaceResolver accordingly, as Example 5–4 shows.

Example 5–4 Configuring Namespaces

public void addToDescriptor(ClassDescriptor descriptor) {
descriptor.getNamespaceResolver.put(

prefix,
namespaceURI

);
}

5.7 Using Classes
Using TopLink Workbench, you can create Java classes and packages. This section
includes information on the following:

■ How to Create Classes

■ How to Configure Classes

■ How to Import and Update Classes

■ How to Manage Nondescriptor Classes

■ How to Rename Packages

Field Description

Built-in Namespaces All namespaces defined by xmlns:<prefix>="<URI>".

Note that when a schema is imported to the TopLink
Workbench (see Section 5.6.3, "How to Import an XML
Schema"), none of the built-in namespaces’ URLs are selected.
If you are using inheritance, declare the built-in namespace
with xsi prefix. Otherwise, TopLink will throw exceptions.

Target Namespaces All namespaces defined by targetNamespace="<URI>".

Imported Namespaces All namespaces defined by xsd:import.

Prefix Double-click in the Prefix field to specify the prefix that
corresponds to the given namespace.

When the TopLink runtime marshalls (writes) an object to an
XML document, it uses the namespace prefixes you specify
here.

When the TopLink runtime unmarshalls (reads) an XML
document, the document may use any prefix value as long as it
corresponds to the appropriate namespace. For more
information, see Section 15.4.3, "TopLink Runtime Namespace
Resolution".

Declare When selected, XML documents must use the corresponding
URI qualifier when referring to types from this namespace.
XML documents may use a different prefix value as long as
that value is associated with the appropriate namespace URI.
For more information, see Section 15.4.3, "TopLink Runtime
Namespace Resolution".

Using Classes

Using TopLink Workbench 5-41

5.7.1 How to Create Classes
Oracle recommends that you develop your Java classes using an IDE, such as Oracle
Oracle JDeveloper, and import these existing classes into TopLink Workbench (see
Section 5.7.3, "How to Import and Update Classes")

However, it is sometimes convenient to create and configure classes in TopLink
Workbench: for example, when generating an object model from a database schema.

This section includes information on using TopLink Workbench to create Java classes.

For more information on using TopLink Workbench to edit classes, see Section 5.7.1,
"How to Create Classes".

5.7.1.1 How to Create Classes Using TopLink Workbench
To create new classes and packages from within TopLink Workbench, use this
procedure:

1. Select the project in the Navigator and click Create New Class.

You can also right-click the project in the Navigator and choose Create New Class
from the context menu or choose Selected > Create New Class from the menu.

Figure 5–38 Add Class Dialog Box

Use the following information to enter data in each field on the Add Class dialog box:

For more information on using TopLink Workbench to edit classes, see Section 5.7.2,
"How to Configure Classes".

5.7.2 How to Configure Classes
Oracle recommends that you develop your Java classes using an IDE, such as Oracle
Oracle JDeveloper, and import these existing classes into TopLink Workbench (see
Section 5.7.3, "How to Import and Update Classes")

However, it is sometimes convenient to create (see Section 5.7.1, "How to Create
Classes") and configure classes in TopLink Workbench: for example, when generating
an object model from a database schema.

This section describes using TopLink Workbench to edit classes, including the
following:

■ Configuring Class Information

Field Description

Package Name Choose an existing package or enter a new package name. If
blank, TopLink Workbench uses the default package name.

New Class Name Enter a class name. The New Class Name must be unique within
the package.

Using Classes

5-42 Developer's Guide for Oracle TopLink

■ Configuring Class Modifiers

■ Configuring Class Interfaces

■ Adding Attributes

■ Configuring Attribute Modifiers

■ Configuring Attribute Type Declaration

■ Configuring Attribute Accessing Methods

■ Adding Methods

■ Configuring Method Modifiers

■ Configuring Method Return Type

■ Configuring Method Parameters

5.7.2.1 Configuring Class Information
This section includes information on Using TopLink Workbench to configure class
information.

5.7.2.1.1 Using TopLink Workbench To configure class and superclass information, use
this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Class tab.

Figure 5–39 Class Tab, Class Information Fields

Use the following information to enter data in each field on the tab:

Field Description

Name The name of the class. This field is for display only.

Superclass Click Browse and select a class and package that contains the
class (that is, the superclass).

Using Classes

Using TopLink Workbench 5-43

5.7.2.2 Configuring Class Modifiers
This section includes information on Using TopLink Workbench to configure class
modifiers.

5.7.2.2.1 Using TopLink Workbench To configure class modifiers, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Class tab.

Figure 5–40 Class Tab, Class Modifiers Fields

Use the following information to enter data in each field on the tab:

5.7.2.3 Configuring Class Interfaces
 This section includes information on Using TopLink Workbench to specify the
interfaces implemented by a class. You can choose any interface in the TopLink
Workbench classpath (see Section 117.3, "Configuring Project Classpath").

Although you may add interfaces to a project directly (see Section 5.7.3, "How to
Import and Update Classes"), you do not need to do so in order to configure a class to
implement an interface.

5.7.2.3.1 Using TopLink Workbench To implement interfaces, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Class tab.

Field Description

Access Modifiers Use to specify whether the class is accessible publicly or not.

Only public classes are visible to the Oracle TopLink
Workbench.

Other Modifiers Specify if the class is Final or Abstract, or both. Final classes are
not included in the superclass selection lists for other classes to
extend.

Using Classes

5-44 Developer's Guide for Oracle TopLink

Figure 5–41 Class Tab, Interfaces Implemented Fields

Use the following information to enter data in the Interfaces Implemented field on the
Class tab:

5.7.2.4 Adding Attributes
This section includes information on Using TopLink Workbench to add an attribute to
a class.

5.7.2.4.1 Using TopLink Workbench To add a new attribute (field) to the descriptor, click
Add.

To delete an existing attribute, select the attribute and click Remove.

To rename an existing attribute, select the attribute and click Rename.

The Attributes tab contains the following tabs:

■ General

■ Accessors

5.7.2.5 Configuring Attribute Modifiers
This section includes information on Using TopLink Workbench to configure attribute
modifiers.

5.7.2.5.1 Using TopLink Workbench To specify access modifiers, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Attributes tab. The Attributes tab contains two sub-tabs.

4. Click the General tab.

Field Description

Interfaces Implemented To add an interface, click Add. The Choose Class dialog box
appears. In the dialog box, select the interface and package.

To remove an interface, select the interface and click Remove

Using Classes

Using TopLink Workbench 5-45

Figure 5–42 Attributes Tab, Modifiers Fields

Use the following information to enter data in the Modifiers fields on the Attributes
tab:

5.7.2.6 Configuring Attribute Type Declaration
This section includes information on Using TopLink Workbench to configure attribute
type declaration.

5.7.2.6.1 Using TopLink Workbench To specify attribute type declaration, use this
procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Attributes tab. The Attributes tab contains two sub-tabs.

4. Click the General tab.

Field Description

Access Modifiers Specify how the attribute is accessible:

Public

Protected–only visible within its own package and
subclasses.

Private–not visible for subclasses

Default–only visible within its own package

Other Modifiers Specify whether the attribute is Final, Static, Transient, or
Volatile.

Note: Selecting some modifiers may disable others.

Using Classes

5-46 Developer's Guide for Oracle TopLink

Figure 5–43 Attributes Tab, Type Declaration Fields

Use the following information to enter data in Type Declaration fields on the
Attributes tab:

5.7.2.7 Configuring Attribute Accessing Methods
This section includes information on Using TopLink Workbench to configure attribute
accessing methods. If you change an attribute and regenerate the accessing methods,
TopLink does not remove any previously generated methods.

5.7.2.7.1 Using TopLink Workbench To specify attribute accessing methods, use this
procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Attributes tab. The Attributes tab contains two sub-tabs.

4. Click the Accessors tab.

Field Description

Type Click Browse and select a class and package for the attribute.

Dimensionality Specify the length of an array. This field applies only if Type is
an array.

Value Type Click Browse and select a class and package for the attribute.

This field applies for ValueHolderInterface types only.

Map Key Type Click Browse and select a class and package for the attribute.

This field applies for Map types only.

Map Value Type Click Browse and select a class and package for the attribute.

This field applies for Map types only.

Element Type Click Browse and select a class and package for the attribute.

This field applies for List types only.

Using Classes

Using TopLink Workbench 5-47

Figure 5–44 Attributes Tab, Accessors Fields

Use the following information to complete the Accessors fields on the Attributes tab:

5.7.2.8 Adding Methods
This section includes information on Using TopLink Workbench to add a method to a
class.

5.7.2.8.1 Using TopLink Workbench To add or remove methods, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

Field Description

Get Method Choose the get method for the attribute.

This field applies for non-Collection types only.

Set Method Choose the set method for the attribute.

This field applies for non-Collection types only.

Add Method Choose the add method for the attribute.

This field applies for List and Map types only.

Remove Method Choose the remove method for the attribute.

This field applies for List and Map types only.

Value Holder Get Method Choose the method used to return the
ValueHolderInterface type.

This field applies for ValueHolderInterface types only.

Value Holder Set Method Choose the method used to set the ValueHolderInterface
type.

This field applies for ValueHolderInterface types only.

Value Get Method Choose the method used to return the actual value.

This field applies for ValueHolderInterface types only.

Value Set Method Choose the method used to set the actual value.

This field applies for ValueHolderInterface types only.

Using Classes

5-48 Developer's Guide for Oracle TopLink

3. Click the Methods tab.

Figure 5–45 Class Info–Methods Tab

To add a new method to the descriptor, click Add.

To delete an existing method, select the method and click Remove.

To rename an existing method, select the method and click Rename.

5.7.2.9 Configuring Method Modifiers
This section includes information on Using TopLink Workbench to configure method
modifiers.

5.7.2.9.1 Using TopLink Workbench To specify access modifiers, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Methods tab.

Using Classes

Using TopLink Workbench 5-49

Figure 5–46 Methods Tab, Modifiers Fields

Use the following information to enter data in Modifiers fields on the Methods tab:

5.7.2.10 Configuring Method Return Type
This section includes information on Using TopLink Workbench to configure method
return type.

5.7.2.10.1 Using TopLink Workbench To specify method return type, use this procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Methods tab.

Field Description

Access Modifiers Specify how the method can be accessed:

Public

Protected–only visible within its own package and
subclasses.

Private–not visible for subclasses.

Default–only visible within its own package.

Other Modifiers Specify whether the method is Abstract, Final, Synchronized,
Static, or Native.

Note: Selecting some modifiers may disable others.

Using Classes

5-50 Developer's Guide for Oracle TopLink

Figure 5–47 Methods Tab, Return Type Fields

Use the following information to enter data in Return Type fields on the Methods tab:

5.7.2.11 Configuring Method Parameters
This section includes information on Using TopLink Workbench to configure method
parameters.

5.7.2.11.1 Using TopLink Workbench To specify additional method parameters, use this
procedure:

1. Select a class in the Navigator. Its properties appear in the Editor.

2. Click the Class Info tab in the Editor.

3. Click the Methods tab.

Field Description

Type Click Browse and select a class and package for the method.

Dimensionality Specify the length of an array. This field applies only if Type is
an array.

Using Classes

Using TopLink Workbench 5-51

Figure 5–48 Methods Tab, Method Parameters Fields

Use the following information to enter data in Parameters fields on the Methods tab:

5.7.3 How to Import and Update Classes
This section includes information on Importing and Updating Classes Using TopLink
Workbench to import and update Java classes.

You can import Java classes and interfaces created in any IDE.

You can import any class on the system classpath or project classpath.

If a class exists on both the system classpath and the project classpath, TopLink
Workbench will update the class from the system classpath. To update or refresh from
the project classpath, remove the class from the system classpath and restart TopLink
Workbench.

For more information, see Section 117.3, "Configuring Project Classpath".

5.7.3.1 Importing and Updating Classes Using TopLink Workbench
Use this procedure to update or refresh the classes in the TopLink Workbench project.

1. Define the available classes and packages for the project on the General tab. See
Section 117.3, "Configuring Project Classpath" for information on classes and
packages.

2. Click Add or Refresh Class. The Select Classes dialog box appears.

You can also update the classes by choosing Selected > Add or Refresh Classes
from the menu.

Field Description

Type Click Browse and select a class and package for the method.

Dimensionality Specify the length of an array. This field applies only if Type is
an array.

Using Classes

5-52 Developer's Guide for Oracle TopLink

Figure 5–49 Select Classes Dialog Box

Select the packages or classes (or both) to import into the project and click OK.
TopLink Workbench adds the new classes to your project in the Navigator.

By default, TopLink Workbench creates the following descriptor types for each
package and class (depending on your project type):

■ Relational projects–Relational class descriptors (see Section 22.2.1.1, "Creating
Relational Class Descriptors")

■ EIS projects–EIS composite descriptors (see Section 75.2.1.2, "EIS Composite
Descriptors")

■ XML projects–XML descriptors (see Section 50.1.1.1, "Composite Descriptors in
XML Projects")

See Chapter 118, "Creating a Descriptor" for more information.

To Remove a Class from a Project, do the following:
Select the descriptor and click Remove, or choose Selected > Remove from the menu.

5.7.4 How to Manage Nondescriptor Classes
Some of the mappings in your TopLink project may reference classes that do not have
TopLink descriptors or are not included in the project.

To add, remove, or refresh Java classes that do not have TopLink descriptors, use this
procedure:

From the menu, select Workbench > Manage Non-Descriptor Classes. The Manage
Non-Descriptor Classes dialog box appears.

You can access the dialog box by right-clicking the TopLink project icon in the
Navigator and selecting Manage Non-Descriptor Classes from the context menu.

Note: If the class exists on both the system classpath and the
project classpath, TopLink Workbench will update the class from
the system classpath. To update or refresh from the project
classpath, remove the class from the system classpath and restart
TopLink Workbench.

Using Classes

Using TopLink Workbench 5-53

Figure 5–50 Manage Non-Descriptor Classes Dialog Box

Select one of the following options:

■ To add new classes, click Add. The Select Classes dialog box appears.

■ To add new classes, click Add. The Select Classes dialog box appears (see
Figure 5–49, "Select Classes Dialog Box".

Only classes that have been added to the project’s class path can be added as
nondescriptor classes. See Section 117.3, "Configuring Project Classpath" for more
information.

■ To delete an existing class, select the class and click Remove.

■ To refresh the classes (for example, if you edited the classes in an IDE), click
Refresh.

5.7.5 How to Rename Packages
When you add classes to a project, TopLink Workbench shows the classes contained in
the package to which they belong (see Section 5.3.3, "How to Use the Navigator").

You can use TopLink Workbench to change the package statements in all the Java
classes of a selected package (to move the all the classes contained by the selected
package to a new package). This is useful if you are refactoring an existing TopLink
Workbench project.

For more information on using TopLink Workbench to edit classes, see Section 5.7.2,
"How to Configure Classes".

5.7.5.1 Renaming Packages Using TopLink Workbench
To change the package of an existing class in TopLink Workbench, use this procedure:

1. Right-click the package in the Navigator and select Rename.

Note: The TopLink Workbench package rename feature is not
intended for migrating projects from older versions of TopLink: for
this, you must still use the TopLink Package Renamer. The Package
Renamer updates import statements for TopLink classes–it does not
change the package statements in user application classes.

For information on the TopLink Package Renamer, refer to Oracle
TopLink Release Notes.

Integrating TopLink Workbench with Apache Ant

5-54 Developer's Guide for Oracle TopLink

You can also select the package and choose Selected > Rename from the menu.

Figure 5–51 Rename Package Dialog Box

Enter the package name and click OK. TopLink Workbench changes the name of the
package in the Navigator window.

For more information on using TopLink Workbench to edit classes, see Section 5.7.2,
"How to Configure Classes".

5.8 Integrating TopLink Workbench with Apache Ant
If you use the Apache Ant Java-based build tool, you can use the Ant task and type
definitions that TopLink provides to invoke certain TopLink Workbench functions
from an Ant build file. Using these tasks, you can integrate TopLink Workbench into
your automated build process.

This section describes the following:

■ How to Configure Ant to Use TopLink Workbench Tasks

■ What You May Need to Know About TopLink Workbench Ant Task API

■ How to Create TopLink Workbench Ant Tasks

For more information about Ant, see http://ant.apache.org/manual/.

5.8.1 How to Configure Ant to Use TopLink Workbench Tasks
Before you can use TopLink Workbench tasks in your Ant build files, you must
consider their library dependencies (see Section 5.8.1.1, "Creating Library
Dependencies").

To declare TopLink Workbench tasks in your Ant build.xml file, declare them
directly (see Section 5.8.1.2, "Declaring TopLink Workbench Tasks").

5.8.1.1 Creating Library Dependencies
In addition to the Ant library dependencies (see
http://ant.apache.org/manual/install.html#librarydependencies),
Table 5–4 lists the TopLink-specific JAR files that must be in your Ant classpath.

Table 5–4 TopLink Workbench Ant Task Library Dependencies

JAR Name Needed For... Available At...

toplinkmw.jar TopLink Workbench Ant task and type definitions. <TOPLINK_
HOME>/utils/workbenc
h/jlib

Integrating TopLink Workbench with Apache Ant

Using TopLink Workbench 5-55

5.8.1.2 Declaring TopLink Workbench Tasks
After you declare the TopLink Workbench task definitions (see Table 5–6) and data
definitions (see Table 5–4) in the toplink-ant-lib.xml file (see Example 5–5), you
can use a TopLink Workbench task in a build.xml file, as Example 5–6 shows:

Example 5–5 Declaring TopLink Workbench Ant Task and Data Types in a
toplink-ant-lib.xml File

<?xml version="1.0"?>
<antlib>

<taskdef name="mappings.export"
classname="oracle.toplink.workbench.ant.taskdefs.ExportDeploymentXMLTask" />

<taskdef name="mappings.validate"
classname="oracle.toplink.workbench.ant.taskdefs.MappingsValidateTask" />

<taskdef name="session.validate"
classname="oracle.toplink.workbench.ant.taskdefs.SessionValidateTask" />

<typedef name="ignoreerror"

classname="oracle.toplink.workbench.ant.typedefs.IgnoreError" />

<typedef name="ignoreerrorset"
classname="oracle.toplink.workbench.ant.typedefs.IgnoreErrorSet" />

<typedef name="loginspec"
classname="oracle.toplink.workbench.ant.typedefs.LoginSpec" />

</antlib>

Example 5–6 Specifying the toplink-ant-lib.xml File in the build.xml File

<project name="MyBuild" default="validate.session" basedir="." xmlns:toplink="toplinklib">

<typedef file = "toplink-ant-lib.xml" classpathref = "mw.classpath" uri = "toplinklib" />
...
</project>

5.8.2 What You May Need to Know About TopLink Workbench Ant Task API
Table 5–5 lists the TopLink Workbench Ant task definitions that TopLink provides.

Table 5–6 lists the TopLink Workbench Ant type definitions that TopLink provides.

Table 5–5 TopLink Workbench Ant Task Definitions

Task Name TopLink Class

How to Create the
mappings.validate
Task

oracle.toplink.workbench.ant.taskdefs.MappingsValidateTask

How to Create the
session.validate
Task

oracle.toplink.workbench.ant.taskdefs.SessionValidateTask

How to Create the
mappings.export
Task

oracle.toplink.workbench.ant.taskdefs.ExportDeploymentXMLTask

Table 5–6 TopLink Workbench Ant Type Definitions

Type Name TopLink Class

How to Create the
ignoreerror Task

oracle.toplink.workbench.ant.typedefs.IgnoreError

Integrating TopLink Workbench with Apache Ant

5-56 Developer's Guide for Oracle TopLink

5.8.3 How to Create TopLink Workbench Ant Tasks
Example 5–7 shows a typical Ant build.xml file that declares and uses the TopLink
Workbench Ant task and type definitions.

Example 5–7 Example Ant Build File with TopLink Workbench Ant Tasks

<project name="MyBuild" default="validate.session" basedir="." xmlns:toplink="toplinklib">
<!-- === -->
<!-- Properties -->
<!-- === -->
<target name="init">

<property file="build.properties"/>

<property name = "toplink.mwp.dir" value = "${basedir}/mw"/>
<property name = "toplink.sessions.dir" value = "${basedir}/config"/>
<property name = " myProject.classes" value = "${basedir}/classes "/>

<path id = "database.classpath">
<pathelement path = "${toplink.home}/mdoules/oracle.toplink_

11.1.1jlib/OracleThinJDBC.jar"/>
</path>
<path id = "toplink.classpath">

<pathelement path = "${toplink.home}/modules/oracle.toplink_11.1.1/toplink.jar"/>
<pathelement path = "${toplink.home}/modules/oracle.toplink_

11.1.1lib/java/api/ejb.jar"/>
<pathelement path = "${toplink.home}/modules/xmlparserv2.jar"/>
<pathelement path = "${toplink.home}/modules/oracle.toplink_

11.1.1/jlib/antlr.jar"/>
</path>
<path id = "mw.classpath">

<pathelement path = "${toplink.home}/modules/oracle.toplink_
11.1.1/jlib/tlmwcore.jar"/>

<pathelement path = "${toplink.home}/modules/oracle.toplink_
11.1.1/jlib/toplinkmw.jar"/>

</path>
<path id = "mwplatforms.classpath">

<pathelement path = "${toplink.home}/config"/>
</path>

<typedef file = "toplink-ant-lib.xml"

classpathref = "mw.classpath"
uri = "toplinklib" />

</target>
<!-- === -->
<!-- Define task parameter -->
<!-- === -->
<target name="parameter.definition" depends="init">

<toplink:ignoreerrorset id = "ignoreErrors">
<toplink:ignoreerror code = "0233" />
</toplink:ignoreerrorset>

<toplink:loginspec id = "loginSpec"
url = "jdbc:cloudscape:stagedb;create=true"
driverclass = "COM.cloudscape.core.JDBCDriver"

How to Create the
ignoreerrorset
Task

oracle.toplink.workbench.ant.typedefs.IgnoreErrorSet

How to Create the
loginspec Task

oracle.toplink.workbench.ant.typedefs.LoginSpec

Table 5–6 (Cont.) TopLink Workbench Ant Type Definitions

Type Name TopLink Class

Integrating TopLink Workbench with Apache Ant

Using TopLink Workbench 5-57

user = "scott"
password="tiger" />

</target>
 <!-- == -->
<!-- Validate the MW Project -->
<!-- === -->
<target name="validate.project" depends="parameter.definition">

<toplink:mappings.validate
projectfile = "${toplink.mwp.dir}/myProject.mwp"
reportfile = "${toplink.mwp.dir}/problem-report.html"
reportformat = "html"
property = "mw-valid"
classpathref = "mwplatforms.classpath" >

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "toplink.classpath" />

<toplink:ignoreerrorset refid = "ignoreErrors"/>

</toplink:mappings.validate>
</target>
<!-- === -->
<!-- TopLink deployment descriptor XML generation -->
<!-- === -->
<target name="export.deployment" depends="validate.project" if="mw-valid">

<toplink:mappings.export
projectfile = "${toplink.mwp.dir}/myProject.mwp"
deploymentfile = "${toplink.sessions.dir}/sessions.xml"
property = "export-completed"
failonerror = "true"
classpathref = "toplink.classpath">

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "mwplatforms.classpath" />

<toplink:ignoreerrorset refid = "ignoreErrors"/>
<toplink:loginspec refid = "loginSpec" />

</toplink:mappings.export>
</target>
<!-- === -->
<!-- TopLink Session Validate -->
<!-- === -->
<target name="validate.session" depends="export.deployment" if="export-completed">

<toplink:session.validate
sessionsfile = "${toplink.sessions.dir}/sessions.xml"
sessionname = "ThreeTierEmployee"
property = "session-valid"
classpathref = "toplink.classpath"
classpath = "${ myProject.classes}" >

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = " database.classpath" />

<toplink:loginspec refid = "loginSpec" />
</toplink:session.validate>

</target>
<project>

5.8.4 How to Create the mappings.validate Task
The mapings.validate task is a testing task that you use to list of all the problems
in a TopLink Workbench project (.mwp) file.

Integrating TopLink Workbench with Apache Ant

5-58 Developer's Guide for Oracle TopLink

This task lets you do the following:

■ log all the problems to a file in text or HTML format;

■ set an Ant property to indicate that the TopLink Workbench project is valid (has no
errors).

5.8.4.1 Using Parameters

5.8.4.2 Specifying Parameters Specified as Nested Elements
You can specify the following parameters as nested elements of this task:

■ classpath

■ ignoreerror (see Section 5.8.8, "How to Create the ignoreerror Task")

■ ignorerrorset (see Section 5.8.9, "How to Create the ignoreerrorset Task")

5.8.4.3 Examples
Example 5–8 shows a typical mappings.validate task.

Example 5–8 A mappings.validate Task

<toplink:mappings.validate
projectfile = "${toplink.mwp.dir}/myProject.mwp"
reportfile = "${toplink.mwp.dir}/problem-report.html"
reportformat = "html"
property = "mw-valid"
classpath = "${mwplatforms.classpath}" >

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "toplink.classpath" />

<toplink:ignoreerrorset refid = "ignoreErrors"/>
<toplink:ignoreerror code = "0555" />

</toplink:mappings.validate>

5.8.5 How to Create the session.validate Task
The session.validate task is a testing task that you use to test your TopLink
deployment XML by running TopLink.

This task provides the ability to do the following:

■ specify the test type using a nested element;

■ set an Ant property to indicate that the TopLink Workbench project is valid (has no
errors).

Table 5–7 mappings.validate Task Parameters

Attribute Description Required

projectfile Fully qualified TopLink Workbench projects file name (.mwp). Yes

reportfile Fully qualified file name to which to write the output. No

reportformat The format of the generated output. Must be html or text. No–default to text.

classpath Project classpath. No

classpathref Reference to a path defined elsewhere. No

property The name of the property to set (true if there is no problem). No

Integrating TopLink Workbench with Apache Ant

Using TopLink Workbench 5-59

5.8.5.1 Using Parameters

5.8.5.2 Specifying Parameters Specified as Nested Elements
You can specify the following parameters as nested elements of this task:

■ classpath;

■ loginspec (see Section 5.8.10, "How to Create the loginspec Task").

5.8.5.3 Examples
Example 5–9 shows a typical session.validate task.

Example 5–9 A session.validate Task

<toplink:session.validate
sessionsfile = "${toplink.sessions.dir}/sessions.xml"
sessionname = "ThreeTierEmployee"
property = "session-valid"
classpathref = "toplink.classpath"
classpath = "${ myProject.classes}" >

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = " database.classpath" />

<toplink:loginspec refid = "loginSpec" />
</toplink:session.validate>

5.8.6 How to Create the mappings.export Task
The mappings.export task is a generation task that you use to generate a TopLink
deployment XML file for a given TopLink Workbench project (.mwp). The
mappings.export task executes a mappings.validate (see Section 5.8.4, "How to
Create the mappings.validate Task") before executing. A BuildException is thrown
if validation fails.

This task provides the ability to override the TopLink Workbench project database
login information.

5.8.6.1 Using Parameters

Table 5–8 session.validate Task Parameters

Attribute Description Required

sessionsfile Fully qualified sessions.xml file. No–default to sessions.xml
and to classpath.

sessionname Name of the session to test. Yes

classpath Project classpath. No

classpathref Reference to a path defined elsewhere. No

property The name of the property to set (true if valid). No

Table 5–9 mappings.export Task Parameters

Attribute Description Required

projectfile Fully qualified TopLink Workbench projects file
name (.mwp).

Yes

Integrating TopLink Workbench with Apache Ant

5-60 Developer's Guide for Oracle TopLink

5.8.6.2 Specifying Parameters Specified as Nested Elements
You can specify the following parameters as nested elements of this task:

■ classpath;

■ loginspec (see Section 5.8.10, "How to Create the loginspec Task");

■ ignorerror (see Section 5.8.8, "How to Create the ignoreerror Task");

■ ignorerrorset (see Section 5.8.9, "How to Create the ignoreerrorset Task").

5.8.6.3 Examples
Example 5–10 shows a typical mappings.export task.

Example 5–10 A mappings.export Task

<toplink:mappings.export
projectfile = "${toplink.mwp.dir}/myProject.mwp"
deploymentfile = "${toplink.sessions.dir}/sessions.xml"
property = "export-completed"
failonerror = "true"
classpathref = "toplink.classpath">

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "mwplatforms.classpath" />

<toplink:ignoreerrorset refid = "ignoreErrors"/>
<toplink:ignoreerror code = "0545" />
<toplink:loginspec

url = "jdbc:cloudscape:stagedb;create=true"
driverclass = "COM.cloudscape.core.JDBCDriver"
user = "scott"
password="tiger" />

</toplink:mappings.export>

5.8.7 How to Create the classpath Task
Use the classpath element to define the Java classpath necessary to run a task. For
more information, see http://ant.apache.org/manual/using.html#path.

deploymentfile Fully qualified TopLink project deployment file
name (.xml).

No–default to the name
specified in the TopLink
Workbench project (.mwp).

ejbjarxmldir The directory that contains the ejb-jar.xml
file (only applicable to Java EE project).

No–default to the directory
specified in the TopLink
Workbench project (.mwp).

classpath Project classpath. No

classpathref Reference to a path defined elsewhere. No

failonerror Indicates whether the build will continue even if
there are export errors; defaults to true.

No

property The name of the property to set (true if export
completed successfully).

No

Table 5–9 (Cont.) mappings.export Task Parameters

Attribute Description Required

Integrating TopLink Workbench with Apache Ant

Using TopLink Workbench 5-61

5.8.7.1 Using Parameters

5.8.7.2 Specifying Parameters Specified as Nested Elements
You can specify the following parameters as nested elements of this task:

■ pathelement

■ fileset

■ dirset

■ filelist

5.8.7.3 Examples
Example 5–11 shows a typical classpath element.

Example 5–11 A classpath Element

<classpath>
<pathelement path="${classpath}"/>

<fileset dir="lib">
<include name="**/*.jar"/>

</fileset>
<pathelement location="classes"/>

<dirset dir="${build.dir}">
<include name="apps/**/classes"/>
<exclude name="apps/**/*Test*"/>

</dirset>
<filelist refid="third-party_jars"/>

</classpath>

5.8.8 How to Create the ignoreerror Task
Use the ignoreerror element to instruct a TopLink Ant task to ignore a specific
TopLink Foundation Library or TopLink Workbench (see Section A.3, "TopLink
Workbench Error Reference") run-time error code.

To instruct a TopLink Ant task to ignore multiple error codes, consider using an
ignoreerrorset element (see Section 5.8.9, "How to Create the ignoreerrorset
Task").

5.8.8.1 Using Parameters

Table 5–10 classpath Element Parameters

Attribute Description Required

location Specifies a single file or directory relative to the
project's base directory (or an absolute filename).

No

path Specifies one or multiple files or directories separated
by a colon or semicolon.

No

refid Reference to a path defined elsewhere. No

Table 5–11 ignoreerror Element Parameters

Attribute Description Required

code Error code of the problem to ignore. Yes

Integrating TopLink Workbench with Apache Ant

5-62 Developer's Guide for Oracle TopLink

5.8.8.2 Specifying Parameters Specified as Nested Elements
You cannot specify parameters as nested elements of this element.

5.8.8.3 Examples
Example 5–12 shows a typical ignoreerror element. This element instructs a
mappings.export task to ignore TopLink Workbench error code 0545.

Example 5–12 An ignoreerror Element

<toplink:mappings.export
projectfile = "${toplink.mwp.dir}/myProject.mwp"
deploymentfile = "${toplink.sessions.dir}/sessions.xml"
classpathref = "toplink.classpath">

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "mwplatforms.classpath" />
<toplink:ignoreerror code = "0545" />

</toplink:mappings.export>

5.8.9 How to Create the ignoreerrorset Task
Use the ignoreerrorset element to instruct a TopLink Ant task to ignore any of
multiple TopLink Foundation Library or TopLink Workbench (see Section A.3,
"TopLink Workbench Error Reference") run-time error codes.

5.8.9.1 Using Parameters

5.8.9.2 Specifying Parameters Specified as Nested Elements
You can specify the following parameter as nested elements of this element:

■ ignorerror (see Section 5.8.8, "How to Create the ignoreerror Task")

5.8.9.3 Examples
Example 5–13 shows a typical ignoreerrorset element. This element instructs a
mappings.export task to ignore all of TopLink Workbench error codes 0402 and
0570. Note that the mappings.export task also uses an explicitly ignoreerror
element: this means that the mappings.export task will ignore all of error codes
0402, 0570, and 0545.

Example 5–13 An ignoreerrorset Element

<toplink:ignoreerrorset id = "ignoreErrors">
<toplink:ignoreerror code = "0402" />
<toplink:ignoreerror code = "0570" />

</toplink:ignoreerrorset>
...
<toplink:mappings.export

Table 5–12 ignoreerrorset Element Parameters

Attribute Description Required

id Unique identifier for this type instance, can be used to
reference this type in scripts.

No

refid Reference to a ignoreerrorset defined elsewhere. No

Integrating TopLink Workbench with Apache Ant

Using TopLink Workbench 5-63

projectfile = "${toplink.mwp.dir}/myProject.mwp"
deploymentfile = "${toplink.sessions.dir}/sessions.xml"
classpathref = "toplink.classpath">

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "mwplatforms.classpath" />
<toplink:ignoreerrorset refid = "ignoreErrors"/>
<toplink:ignoreerror code = "0545" />

</toplink:mappings.export>

5.8.10 How to Create the loginspec Task
Use the loginspec element to instruct a TopLink Ant task to override the project
database login information in a TopLink Workbench project. For more information, see
Chapter 96, "Introduction to Data Access".

5.8.10.1 Using Parameters

5.8.10.2 Specifying Parameters Specified as Nested Elements
You cannot specify parameters as nested elements of this element.

5.8.10.3 Examples
Example 5–14 shows a typical loginspec element.

Example 5–14 A loginspec Element

<toplink:mappings.export
projectfile = "${toplink.mwp.dir}/myProject.mwp"
deploymentfile = "${toplink.sessions.dir}/sessions.xml"
classpathref = "toplink.classpath">

Note: You can only use this element with a relational project (see
Chapter 18, "Introduction to Relational Projects").

You cannot use this element with a Java EE project.

Table 5–13 loginspec Element Parameters

Attribute Description Required

id Unique identifier for this type instance, can be used
to reference this type in scripts.

No

refid Reference to a loginspec defined elsewhere. No

driverclass Fully qualified class of the data source driver (see
Section 98.3, "Configuring Database Login
Connection Options").

No–default to the class that the
TopLink Workbench project
specifies.

url URL of the driver see Section 98.3, "Configuring
Database Login Connection Options").

Yes

user Login user name (see Section 97.2, "Configuring User
Name and Password").

No–default to the value that the
TopLink Workbench project
specifies

password Login password (see Section 97.2, "Configuring User
Name and Password").

No–default to the value that the
TopLink Workbench project
specifies

Integrating TopLink Workbench with Apache Ant

5-64 Developer's Guide for Oracle TopLink

<toplink:classpath refid = "mw.classpath" />
<toplink:classpath refid = "mwplatforms.classpath" />

<toplink:loginspec
url = "jdbc:cloudscape:stagedb;create=true"
driverclass = "COM.cloudscape.core.JDBCDriver"
user = "scott"
password="tiger" />

</toplink:mappings.export>

6

Using the Schema Manager 6-1

6Using the Schema Manager

The SchemaManager and its related classes provide API that you can use from a Java
application to specify database tables in a generic format, and then create and modify
them in a specific relational database. This decouples your TopLink project from a
particular database schema while giving you a programmatic means of creating a
database schema based on your TopLink project. For example, you can use the schema
manager to recreate a production database in a nonproduction environment. This lets
you build models of your existing databases, and modify and test them during
development.

This chapter includes the following sections:

■ Introduction to the Schema Manager

■ Creating a Table Creator

■ Creating Tables with a Table Creator

■ Creating Database Tables Automatically

6.1 Introduction to the Schema Manager
Figure 6–1 summarizes the important SchemaManager classes and the primary
means of using them.

Note: You can also create database tables manually during
development using Oracle JDeveloper TopLink editor (see Chapter 4,
"Using Oracle JDeveloper TopLink Editor") or TopLink Workbench
(see Section 5.5.1.2, "Creating New Tables" and Section 5.5.3.4,
"Generating Tables on the Database").

Introduction to the Schema Manager

6-2 Developer's Guide for Oracle TopLink

Figure 6–1 SchemaManager Usage

Although you can use the SchemaManager API directly, Oracle recommends that you
create a TableCreator class and use its API (which, in turn, uses the
SchemaManager).

You can automatically generate a TableCreator using the following:

■ TopLink Workbench during development (see Section 6.2.1, "How to Use TopLink
Workbench During Development")

■ DefaultTableGenerator at run time (see Section 6.2.2, "How to Use the
Default Table Generator at Run Time")

The TableCreator class owns one or more TableDefinition classes (one for each
database table) and the TableDefinition class owns one or more
FieldDefinition classes (one for each field).

The TableDefinition class lets you specify a database table schema in a generic
format. At run time, TopLink uses the session associated with your TopLink project to
determine the specific database type, and uses the generic schema to create the
appropriate tables and fields for that database.

After creating a TableCreator class, you can use its API to create and drop tables
(see Section 6.3, "Creating Tables with a Table Creator"). You can also configure
TopLink to do this automatically (see Section 6.4, "Creating Database Tables
Automatically").

Because the schema manager uses Java types rather than database types, it is
database-independent. However, because it does not account for database-specific
optimizations, it is best-suited for development purposes rather than production. For
more information on how the schema manager maps Java types to database types, see
Section 6.1.1, "How to Use Schema Manager Java and Database Type Conversion".

Although the schema manager can handle the sequencing configuration that you
specify in your TopLink project, if you are using sequencing with non-Oracle
databases, there are some sequencing restrictions you should be aware of (see
Section 6.1.2, "How to Use Sequencing").

Introduction to the Schema Manager

Using the Schema Manager 6-3

6.1.1 How to Use Schema Manager Java and Database Type Conversion
Table 6–1 lists the Java type to database type conversions that the schema manager
supports depending on the database platform your TopLink project uses. This list is
specific to the schema manager and does not apply to mappings. TopLink
automatically performs conversions between any database types within mappings.

For more information about database platforms that TopLink supports, see
Section 96.1.3.1, "Database Platforms".

6.1.2 How to Use Sequencing
If you generate a TableCreator class using TopLink Workbench (see Section 6.2.1,
"How to Use TopLink Workbench During Development"), or
DefaultTableGenerator (see Section 6.2.2, "How to Use the Default Table
Generator at Run Time"), then sequencing configuration is included in your
TableCreator according to your TopLink project configuration. In this case, when
you use TableCreator method createTables, it does the following:

■ Creates the sequence table as defined in the session DatabaseLogin.

■ Creates or inserts sequences for each sequence name for all registered descriptors
in the session.

■ Creates the Oracle sequence object if you use Oracle native sequencing.

You can use advanced API to handle special cases like Sybase or Microsoft SQL Server
native sequencing (see Section 6.2.3, "How to Use Java to Create a Table Creator").

For more information about sequencing, see Section 18.2, "Sequencing in Relational
Projects".

Table 6–1 Java and Database Field Type Conversion

Java Type Oracle DB2 Sybase MySQL MS Access

java.lang.Boolean NUMBER SMALLINT BIT default 0 TINYINT(1) SHORT

java.lang.Byte NUMBER SMALLINT SMALLINT TINYINT SHORT

java.lang.Byte[] LONG RAW BLOB IMAGE BLOB LONGBINARY

java.lang.Character CHAR CHAR CHAR CHAR TEXT

java.lang.Character[] LONG CLOB TEXT TEXT LONGTEXT

java.lang.Double NUMBER FLOAT FLOAT(32) DOUBLE DOUBLE

java.lang.Float NUMBER FLOAT FLOAT(16) FLOAT DOUBLE

java.lang.Integer NUMBER INTEGER INTEGER INTEGER LONG

java.lang.Long NUMBER INTEGER NUMERIC BIGINT DOUBLE

java.lang.Short NUMBER SMALLINT SMALLINT SMALLINT SHORT

java.lang.String VARCHAR2 VARCHAR VARCHAR VARCHAR TEXT

java.math.BigDecimal NUMBER DECIMAL NUMERIC DECIMAL DOUBLE

java.math.BigInteger NUMBER DECIMAL NUMERIC BIGINT DOUBLE

java.sql.Date DATE DATE DATETIME DATE DATETIME

java.sql.Time DATE TIME DATETIME TIME DATETIME

java.sql.Timestamp DATE TIMESTAMP DATETIME DATETIME DATETIME

Creating a Table Creator

6-4 Developer's Guide for Oracle TopLink

6.2 Creating a Table Creator
You can automatically generate a TableCreator using the following:

■ Oracle JDeveloper (during development).

■ TopLink Workbench (during development) (see Section 6.2.1, "How to Use
TopLink Workbench During Development").

■ DefaultTableGenerator (at run time) (see Section 6.2.2, "How to Use the
Default Table Generator at Run Time").

After creating a TableCreator class, you can use its API to create and drop tables
(see Section 6.3, "Creating Tables with a Table Creator").

6.2.1 How to Use TopLink Workbench During Development
To create a TableCreator class that you can use in a Java application to recreate a
database schema using the SchemaManager, use this procedure:

1. Right-click the project in the Navigator and choose Export > Table Creator Java
Source from the context menu. The Table Creator dialog box appears.

You can also select the table and choose Selected > Export > Table Creator Java
Source from the menu.

2. Enter a name for the table creator class and click OK. The Save As dialog box
appears.

3. Choose a location for your table creator class and click OK. TopLink Workbench
exports the table creator Java class to the location you specify.

6.2.2 How to Use the Default Table Generator at Run Time
To create a TableCreator class in Java using the DefaultTableGenerator, use
this procedure:

1. Create an instance of DefaultTableGenerator, passing in an instance of your
TopLink project:

DefaultTableGenerator myDefTblGen = new DefaultTableGenerator(toplinkProject);
2. Create a TableCreator instance:

■ If you want a TableCreator that can support any session, use:

TableCreator myTblCre = myDefTblGen.generateDefaultTableCreator();
■ If you want a TableCreator customized for a specific TopLink session, use:

TableCreator myTblCre =
myDefTblGen.generateFilteredDefaultTableCreator(toplinkSession);

You can also configure TopLink to use the DefaultTableGenerator to
automatically generate and execute a TableCreator at run time (see Section 6.4,
"Creating Database Tables Automatically").

6.2.3 How to Use Java to Create a Table Creator
This section describes how to create a TableCreator class in Java, including the
following:

■ Creating a TableCreator Class

■ Creating a TableDefinition Class

■ Adding Fields to a TableDefinition

Creating a Table Creator

Using the Schema Manager 6-5

■ Defining Sybase and Microsoft SQL Server Native Sequencing

6.2.3.1 Creating a TableCreator Class
To create your own TableCreator instance, you should extend TableCreator, as
Example 6–1 shows:

Example 6–1 Creating a TableCreator Class

public class MyTableCreator extends oracle.toplink.tools.schemaframework.TableCreator {

public M7TableCreator() {
setName("MyTableCreator");
addTableDefinition(buildADDRESSTable());

...
}

public TableDefinition buildADDRESSTable() {
TableDefinition table = new TableDefinition();
...
return table;

}
...
}

6.2.3.2 Creating a TableDefinition Class
The TableDefinition class includes all the information required to create a new
table, including the names and properties of a table and all its fields.

The TableDefinition class has the following methods:

■ setName

■ addField

■ addPrimaryKeyField

■ addIdentityField

■ addForeignKeyConstraint

All table definitions must call the setName method to set the name of the table that is
described by the TableDefinition.

6.2.3.3 Adding Fields to a TableDefinition
Use the addField method to add fields to the TableDefinition. To add the
primary key field to the table, use the addPrimaryKeyField method rather than the
addField method.

To maintain compatibility among different databases, the type parameter requires a
Java class rather than a database field type. TopLink translates the Java class to the
appropriate database field type at run time. For example, the String class translates
to the CHAR type for dBase databases. However, if you are connecting to Sybase, the
String class translates to VARCHAR. For more information, see Section 6.1.1, "How to
Use Schema Manager Java and Database Type Conversion".

The addField method can also be called with the fieldSize or fieldSubSize
parameters for column types that require size and subsize to be specified.

Some databases require a subsize, but others do not. TopLink automatically provides
the required information, as necessary.

Creating Tables with a Table Creator

6-6 Developer's Guide for Oracle TopLink

6.2.3.4 Defining Sybase and Microsoft SQL Server Native Sequencing
Use FieldDefinition method addIdentityField to add fields representing a
generated sequence number from Sybase or Microsoft SQL Server native sequencing.
See Section 18.2.2.6, "Native Sequencing with a Non-Oracle Database Platform" for
detailed information on using sequencing.

6.3 Creating Tables with a Table Creator
After creating a TableCreator class (see Section 6.2, "Creating a Table Creator"), you
can use its API to create and drop tables. The important TableCreator methods are
the following (each method takes an instance of DatabaseSession):

■ createTables–this method creates tables, adds constraints, and creates sequence
tables and sequences (if sequence tables already exist, this method drops them and
recreates them).

■ dropTables–his method drops all constraints and drops all tables (except
sequence tables) that the TableCreator defines.

■ createConstraints–this method creates constraints on all pre-existing tables
that the TableCreator defines.

■ dropConstraints–this method drops constraints on all pre-existing tables that
the TableCreator defines.

■ replaceTables–this method drops and then creates all tables that the
TableCreator defines.

6.4 Creating Database Tables Automatically
You can configure TopLink to create database tables automatically in JPA and EJB
CMP projects:

■ Creating Database Tables Automatically in JPA Projects

■ Creating Database Tables Automatically in EJB CMP Projects

6.4.1 Creating Database Tables Automatically in JPA Projects
Using EclipseLink JPA persistence unit properties that you can define in a
persistence.xml file, you can configure schema generation

For more information, see "Using EclipseLink JPA Extensions for Schema Generation"
section of EclipseLink Developer’s Guide at http://wiki.eclipse.org/Using_
EclipseLink_JPA_Extensions_%28ELUG%29#Using_EclipseLink_JPA_
Extensions_for_Schema_Generation

6.4.2 Creating Database Tables Automatically in EJB CMP Projects
If you deploy a CMP project to OC4J configured to use TopLink as the persistence
manager, then you can configure OC4J to automatically create (and, optionally, delete)
database tables for your persistent objects.

You can configure automatic database table creation at one of three levels, as Table 6–2
shows. You can override the system level configuration at the application level, and
you can override system and application configuration at the EJB module level.

Creating Database Tables Automatically

Using the Schema Manager 6-7

If you configure automatic table generation at the EJB module level, the value you
assign to the db-table-gen attribute corresponds to the autocreate-tables and
autodelete-tables settings, as Table 6–3 shows.

You can use this feature in conjunction with default mapping (see Section 17.2.3.4,
"Default Mapping in EJB 2.n CMP Projects Using OC4J at Run Time").

Table 6–2 Configuring Automatic Table Generation

Level Configuration File Setting Values

System (global) <OC4J_HOME>/config/
application.xml

autocreate-tables True or False1

1 Default.

autodelete-tables True or False1

Application (EAR) orion-application.xml autocreate-tables True or False1

autodelete-tables True or False1

EJB Module (JAR) orion-ejb-jar.xml pm-properties sub-element
default-mapping attribute
db-table-gen2

2 For more information, see Section 9.9.1.3, "Configuring default-mapping Properties".

Create,
DropAndCreate,
or UseExisting3

3 See Table 6–3.

Note: In case of default mapping, the default value for
autocreate-tables setting is true.

Table 6–3 Equivalent Settings for db-table-gen

db-table-gen Setting autocreate-tables Setting autodelete-tables Setting

Create True False

DropAndCreate True True

UseExisting False NA

Creating Database Tables Automatically

6-8 Developer's Guide for Oracle TopLink

7

Using an Integrated Development Environment 7-1

7 Using an Integrated
Development Environment

This chapter includes information on using TopLink with an integrated development
environment (IDE).

This chapter includes the following sections:

■ Configuring TopLink for Oracle JDeveloper

■ Configuring TopLink Workbench with Source Control Management Software

In addition to the development environment described here, TopLink can be used with
any Java EE development environment and process.

7.1 Configuring TopLink for Oracle JDeveloper
This section contains information on how to configure TopLink for use with Oracle
JDeveloper. Oracle JDeveloper is a Java EE development environment with end-to-end
support to develop, debug, and deploy e-business applications and Web services.

7.1.1 How to Use TopLink Mappings
Starting with Oracle JDeveloper 10g, the standard Oracle JDeveloper installation
includes an embedded TopLink editor. Refer to the Oracle JDeveloper documentation
for complete information.

To use TopLink with Oracle JDeveloper 9.0.4 (and earlier), use the following procedure
to add the TopLink JAR files to your Oracle JDeveloper projects:

1. Select a Oracle JDeveloper project in the System Navigator window.

2. Choose Project > Project Settings. The Project Settings window appears.

3. Choose Configurations > Development > Libraries. A list of predefined and
user-defined libraries appears.

Configuring TopLink for Oracle JDeveloper

7-2 Developer's Guide for Oracle TopLink

Figure 7–1 List of Available Libraries

4. Click New to create a new library that will contain the TopLink .jar files. The
New Library dialog box appears.

5. Enter a name for the new library–for example, TopLink. Ensure that the default
choice for Location remains as User Libraries.

Figure 7–2 Creating a New Library Dialog Box

6. To edit the Class Path and add the TopLink .jar files, click Edit.

Add the following to the beginning of your Class Path:

<TOPLINK_HOME>\jlib\toplink.jar
<TOPLINK_HOME>\modules\com.bea.core.antlr.runtime_2.7.7.jar
<ORACLE_HOME>\modules\xmlparserv2.jar
<ORACLE_HOME>\modules\xml.jar

7. Click OK. On the Project Settings window click OK.

Configuring TopLink Workbench with Source Control Management Software

Using an Integrated Development Environment 7-3

Using an Existing User-Defined TopLink Library
After a user library is created, it can be referenced again by any other project. Revisit
the Libraries window of the Project Settings, and add the TopLink Library to any
project with which you want to use TopLink.

7.2 Configuring TopLink Workbench with Source Control Management
Software

You can use TopLink Workbench with a source control management (SCM) system to
facilitate enterprise-level team development (see Section 7.2.1, "How to Use a Source
Control Management System"). If you have a small development team, you can
manage the changes from within XML files (see Section 7.2.3, "How to Share Project
Objects").

When using a TopLink Workbench project in a team environment, you must
synchronize your changes with other developers. See Section 7.2.2, "How to Merge
Files" for more information.

7.2.1 How to Use a Source Control Management System
If you use an enterprise, file-based source control management system to manage your
Java source files, you can use the same system with your TopLink Workbench project
files. These project files are maintained by TopLink Workbench and written out in
XML file format.

The check in and check out mechanism for the source control system defines how to
manage the source (the XML source and TopLink Workbench project file) in a
multiuser environment.

Checking Out and Checking In TopLink Workbench Project Files
Although your actual development process will vary depending on your SCM tool, a
typical process involves the following steps:

1. Determine (based on your SCM system) which files to retrieve from the source
management system.

2. Edit the project using TopLink Workbench.

3. Save the edited project. If TopLink Workbench displays the Read-Only Files dialog
box, make a note of these files, they must be unlocked and possibly merged. See
Section 7.2.5, "How to Work with Locked Files" for more information.

4. Merge the required project files. See Section 7.2.2, "How to Merge Files" for details.

5. Check in the modified files, then retrieve from the repository any files that have
been added or modified for this TopLink Workbench project.

7.2.2 How to Merge Files
The most difficult aspect of application development is merging changes from two (or
more) development team members that have simultaneously edited the same file. If
you check in your changes, a merge condition exists. Use a file comparison tool to
determine the merged aspects of the project. The files to edit will vary, depending on
the type of merge, as follows:

■ Merging Project Files

■ Merging Table, Descriptor, and Class Files

Configuring TopLink Workbench with Source Control Management Software

7-4 Developer's Guide for Oracle TopLink

Example 7–1 and Example 7–2 demonstrate a merge out merging technique.

7.2.2.1 Merging Project Files
Project files contain references to the objects in the project. Generally, your project
<projectName>.mwp contains the following elements:

■ Database information: <database>

■ Database tables: <tables>

■ Descriptors: <descriptors>

■ Repository: <repository>

■ Classes: <classpath-entries>

Changes in these parts of the .mwp file are usually caused by adding, deleting, or
renaming project elements.

To merge project files, you will generally need to merge a project file if another
developer has added or removed a descriptor, table, or class, and checked in the
project while you were adding or removing descriptors, tables, or classes from the
same project. To merge the project’s .mwp file, use this procedure:

1. Perform a file comparison between the <projectName>.mwp file in the repository
and your local copy. The file comparison shows the addition or removal of a
project element inside the owner (that is, <database>, <descriptors>, or
<repository>).

2. Insert the XML script to, or delete from your local <projectName>.mwp file
(inside the corresponding owner element). This brings your local code up-to-date to
the current code in the code repository.

3. Retrieve any updated files, as indicated by your source control system.

Your local source now matches the repository.

Example 7–1 Merging Projects

Another developer has added and checked in a new Employee class descriptor to the
com.demo package while you were working with the same TopLink Workbench
project. To merge your work with the newly changed project, follow these steps:

1. Perform a file comparison on the <projectName>.mwp file to determine the
differences between your local file and the file in the repository. Your SCM system
may show the file in merge status.

The file comparison shows the addition of the <package-descriptor> tag and
a <name> element inside that tag:

<package-descriptor>
<name>com.demo.Employee.ClassDescriptor</name>

</package-descriptor>
2. Insert this XML into your <projectName>.mwp file (inside the <descriptors>

element) to bring it up-to-date with the current files in the source repository.

3. Retrieve any new or updated files from your source control system. This includes
the newly added Employee class descriptor.

4. Check in files that you have modified.

Configuring TopLink Workbench with Source Control Management Software

Using an Integrated Development Environment 7-5

7.2.2.2 Merging Table, Descriptor, and Class Files
Developers who concurrently modify the same existing table, descriptor, or class file
will create a merge condition for the following files:

■ Table: <tableName>.xml (one for each table)

■ Descriptor: <descriptorName.type>.xml (one for each descriptor)

■ Class: <className>.xml (one for each class)

TopLink Workbench changes these files when saving a project if you have changed
any of the contents within them (such as adding a mapping to a descriptor, adding an
attribute to a class, or a changing a field reference in a table).

If another developer has changed an attribute in a table, descriptor, or class, while you
were changing a different mapping on that same descriptor, you will need to merge
your project. To merge your project, use this procedure:

1. Perform a file comparison on the specific .xml files in merge status (that is, table,
descriptor, or class). The file comparison shows the addition or removal of an XML
element.

2. Insert the XML script to, or remove from your local .xml file to bring it up-to-date
with the current files in the source repository.

Example 7–2 Merging Files

Another developer has added and checked in the firstName mapping to the
Employee class descriptor while you were changing a different mapping on that same
descriptor. To merge your work with the newly changed project, use this procedure:

1. Perform a file comparison on the
com.demo.Employee.ClassDescriptor.xml file located in
<projectRoot>/Descriptor/ directory that is in merge status.

The file comparison shows the addition of the <mapping> tag and the elements
inside that tag:

<mapping>
<uses-method-accessing>false</uses-method-accessing>
<inherited>false</inherited>
<read-only>false</read-only>
<instance-variable-name>firstName</instance-variable-name>
<default-field-names>

<default-field-name>direct field=</default-field-name>
</default-field-names>
<field-handle>

<field-handle>
<table>EMPLOYEE</table>
<field-name>F_NAME</field-name>

</field-handle>
</field-handle>

<mapping-class>MWDirectToFieldMapping </mapping-class>
</mapping>

2. Insert this XML block into your local
com.demo.Employee.ClassDescriptor.xml file (inside the existing
<mapping> element) to bring it up to date to the current files in the source
repository.

3. Retrieve any new files noted as missing by your source control system. This
includes any tables or descriptors that may be referenced by the new mapping.

4. Check in files that you have modified.

Configuring TopLink Workbench with Source Control Management Software

7-6 Developer's Guide for Oracle TopLink

7.2.3 How to Share Project Objects
You can also share project objects by copying the table or descriptor files into the
appropriate directories in the target project.

After copying the files, insert a reference to the table, descriptor, or class in the
appropriate place in the <projectName>.mwp file. All references contained within
the project file must refer to an existing object in the project.

7.2.4 How to Manage the ejb-jar.xml File
When working in a team environment, manage the ejb-jar.xml file similarly
to the .xml project files. TopLink Workbench edits and updates the ejb-jar.xml
file, if necessary, when working with an EJB project.

If you use a version control system, perform the same check in and check out
procedures. For merge conditions, use a file comparison tool to determine which
elements have been added or removed. Modify the file as necessary and check in the
file to exercise version control on your work.

7.2.5 How to Work with Locked Files
When working in a team environment, your source control system may lock files when
you retrieve them from the repository. If TopLink Workbench attempts to save a locked
file, the Version Control Assistance dialog box appears, showing the locked files.

Figure 7–3 Version Control Assistance Dialog Box

Select one of the following methods to save your project:

■ Use your source control system to unlock the files, and then click Save.

■ Click Save As to save the project to a new location.

See Section 116.2.2, "How to Save Projects" for more information.

Part III
Part III TopLink Application Deployment

This part describes how to package and deploy a TopLink application to an
application server. It contains the following chapters:

■ Chapter 8, "Integrating TopLink with an Application Server"

This chapter contains information on software requirements for integrating
TopLink with your specific application server.

■ Chapter 9, "Creating TopLink Files for Deployment"

This chapter describes how to create the necessary TopLink files for deployment to
your application server.

■ Chapter 10, "Packaging a TopLink Application"

This chapter explains how to package the deployment files.

■ Chapter 11, "Deploying a TopLink Application"

This chapter provides procedures for deploying different types of TopLink
applications in a variety of environments.

8

Integrating TopLink with an Application Server 8-1

8Integrating TopLink with an Application
Server

This chapter describes how to configure Oracle TopLink for use with Java EE
containers and application servers. Although you can use Oracle TopLink with any
Java EE container or application server (by using the TopLink API), TopLink provides
specific integration and support for the application servers listed in this chapter.

This chapter includes the following sections:

■ Introduction to the Application Server Support

■ Integrating TopLink with an Application Server

■ Integrating TopLink with Oracle WebLogic Server

■ Integrating TopLink with Oracle Containers for Java EE (OC4J)

■ Integrating TopLink with IBM WebSphere Application Server

■ Integrating TopLink with Sun Application Server

■ Integrating TopLink with JBoss Application Server

■ Defining Security Permissions

■ Configuring Miscellaneous EJB CMP Options

For more information, see the following:

■ Chapter 9, "Creating TopLink Files for Deployment"

■ Chapter 10, "Packaging a TopLink Application"

■ Chapter 11, "Deploying a TopLink Application"

8.1 Introduction to the Application Server Support
You can use TopLink with any Java EE application server (by using the TopLink API)
that meets the requirements shown in "What Are the Software Requirements" on
page 8-2.

Table 8–1 lists the application servers for which TopLink provides specific JPA, CMP
2.n, and session EJB/BMP integration.

Table 8–1 TopLink Integration Support by Application Server Type

Application Server
Type

Application Server
Version JPA CMP 2.n

(Session
Bean1 and
BMP

Oracle WebLogic Server 10.3

Integrating TopLink with an Application Server

8-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Section 8.3, "Integrating TopLink with Oracle WebLogic Server"

■ Section 8.4, "Integrating TopLink with Oracle Containers for Java EE (OC4J)"

■ Section 8.5, "Integrating TopLink with IBM WebSphere Application Server"

■ Section 8.6, "Integrating TopLink with Sun Application Server"

■ Section 8.7, "Integrating TopLink with JBoss Application Server"

8.2 Integrating TopLink with an Application Server
This section describes concepts unique to TopLink application server integration,
including the following:

■ What Are the Software Requirements

■ How to Configure the XML Parser Platform

■ How to Set Security Permissions

■ How to Migrate the Persistence Manager

■ How to Integrate Clustering

8.2.1 What Are the Software Requirements
To run a TopLink application within a Java EE container, your system must meet the
following software requirements:

■ An application server or Java EE container (see Table 8–1);

■ XML parser (see Section 8.2.2, "How to Configure the XML Parser Platform");

■ A JDBC driver configured to connect with your local database system (for more
information, see your database administrator);

■ A Java development environment, such as the following:

– Oracle JDeveloper;

– IBM WebSphere Studio Application Developer (WSAD);

– Sun Java Development Kit (JDK) 1.5 or later;

Oracle WebLogic Server 9.n

OC4J 10.1.3.n

OC4J 10.1.3

OC4J 9.0.4

OC4J 9.0.3

IBM WebSphere 6.1

SunAS 9

JBoss 4.2.0

1 This applies to EJB 1.n, 2.n and 3.0 session beans.

Table 8–1 (Cont.) TopLink Integration Support by Application Server Type

Application Server
Type

Application Server
Version JPA CMP 2.n

(Session
Bean1 and
BMP

Integrating TopLink with an Application Server

Integrating TopLink with an Application Server 8-3

■ Any other Java environment that is compatible with the Sun JDK 1.5 or later;

■ A command-line JVM executable (such as java.exe or jre.exe).

8.2.2 How to Configure the XML Parser Platform
The TopLink run-time environment uses an XML parser to do the following:

■ Read and write XML configuration files (see Section 9.1.1, "project.xml File" and
Section 9.1.2, "sessions.xml File");

■ Read and write TopLink Workbench project files (see Section 5.1, "Introduction to
TopLink Workbench");

■ Perform object-to-XML transformations in EIS projects using XML records (see
Chapter 77, "Introduction to EIS Mappings");

■ Perform object-to-XML transformations in XML projects (see Chapter 53,
"Introduction to XML Mappings");

Application servers use an XML parser to read deployment files, such as
ejb-jar.xml and <Java EE container>-ejb-jar.xml files (see Chapter 9,
"Creating TopLink Files for Deployment").

To avoid XML parser conflicts, you must configure your TopLink application to use
the same XML parser as that used by the application server on which you deploy your
application.

Internally, TopLink accesses its XML parser using an instance of
oracle.toplink.platform.xml.XMLPlatform class.

You can configure TopLink to use any XML parser for which an XMLPlatform class
exists (see Section 8.2.2.1, "Configuring XML Parser Platform").

You can also create your own XMLPlatform to provide access to an XML parser not
currently supported by TopLink (see Section 8.2.2.2, "Creating an XML Parser
Platform").

8.2.2.1 Configuring XML Parser Platform
TopLink provides the XMLPlatform instances shown in Table 8–2.

Table 8–2 Supported XML Platforms

XMLPlatform... Provides Access to... Use with...

oracle.toplink.platform.xml.xdk.XDKPlatform1

1 Default.

XDKParser: this class provides
access to the Oracle XML
Developer’s Kit (XDK) XML
parser (see
http://www.oracle.com/t
echnology/tech/xml/xdkh
ome.html).

See Section 8.4, "Integrating
TopLink with Oracle
Containers for Java EE (OC4J)"

oracle.toplink.platform.xml.jaxp.JAXPPlatform JAXPParser: this class
provides access to the Java SDK
XML parser in the
javax.xml.parsers package
(see
http://java.sun.com/j2e
e/1.4/docs/tutorial/doc
/JAXPIntro2.html).

See the following:

■ Section 8.3, "Integrating
TopLink with Oracle
WebLogic Server"

■ Section 8.5, "Integrating
TopLink with IBM
WebSphere Application
Server"

Integrating TopLink with an Application Server

8-4 Developer's Guide for Oracle TopLink

To configure your TopLink application to use a particular instance of the
XMLPlatform class, set system property toplink.xml.platform to the fully
qualified name of your XMLPlatform class, as Example 8–1 shows.

Example 8–1 Configuring XML Platform

toplink.xml.platform=oracle.toplink.platform.xml.jaxp.JAXPPlatform

8.2.2.2 Creating an XML Parser Platform
Using the oracle.toplink.platform.xml classes included in the public source
files shipped with TopLink (see Section 13.3, "Using Public Source"), you can create
your own instance of the oracle.toplink.platform.xml.XMLPlatform class to
specify an XML parser not listed in Table 8–2.

After creating your XMLPlatform, configure TopLink to use it (see Section 8.2.2.1,
"Configuring XML Parser Platform").

8.2.2.3 XML Parser Limitations
Crimson (http://xml.apache.org/crimson/) is the XML parser supplied in the
Java Platform, Standard Edition (Java SE) and in some JAXP reference
implementations.

If you use Crimson with the JAXP API to parse XML files whose system identifier is
not a fully qualified URL, then XML parsing will fail with a not valid URL exception.

Other XML parsers defer validation of the system identifier URL until it is specifically
referenced.

If you are experiencing this problem, consider one of the following alternatives:

■ Ensure that your XML files use a fully qualified system identifier URL.

■ Use another XML parser (such as the OracleAS XML Parser for Java v2).

8.2.3 How to Set Security Permissions
By default, when you run a TopLink-enabled application in a JVM configured with a
nondefault java.lang.SecurityManager, the TopLink run-time environment
executes certain internal functions by executing a PrivilegedAction with
java.security.AccessController method doPrivileged. This ensures that
you do not need to grant many permissions to TopLink for it to perform its most
common operations. You need only grant certain permissions depending on the types
of optional TopLink features you use.

For more information, see Section 8.8, "Defining Security Permissions".

If you run a TopLink-enabled application in a JVM without a nondefault
SecurityManager, you do not need to set any permissions.

8.2.4 How to Migrate the Persistence Manager
You can configure an application server to use TopLink as the persistence manager.

Note: To use an XML parser not listed in Table 8–2, create your own
XMLPlatform (see Section 8.2.2.2, "Creating an XML Parser
Platform").

Integrating TopLink with Oracle WebLogic Server

Integrating TopLink with an Application Server 8-5

You can only use one persistence manager for all the entity beans with
container-managed persistence in a JAR file.

TopLink provides automated support for migrating an existing Java EE application to
use TopLink as the persistence manager. For more information, see Section 8.4.2, "How
to Migrate OC4J Orion CMP Persistence to OC4J TopLink Persistence".

8.2.5 How to Integrate Clustering
Most application servers include a clustering service that you can use with your
TopLink application.

To use TopLink with an application server cluster, use this general procedure:

1. Install the toplink.jar file (and include it in the classpath) on each application
server in the cluster to which you deploy TopLink applications.

2. Configure TopLink cache consistency options appropriate for your application.

For more information, see Chapter 102, "Introduction to Cache".

If you are deploying a CMP application, see also Section 9.10.1.2, "Configuring
cache-synchronization Properties".

3. Configure TopLink coordinated cache support for your application server, if
available.

4. Configure clustering on each application server.

For more information, see your application server documentation.

8.3 Integrating TopLink with Oracle WebLogic Server
To integrate a TopLink application with Oracle WebLogic Server, you must consider
the following:

■ How to Configure Classpath

■ How to Integrate JTA

■ How to Integrate JMX

■ How to Integrate the Security Manager

In addition to configuring these Oracle WebLogic Server-specific options, you must
also consider the general application server integration issues in Section 8.2,
"Integrating TopLink with an Application Server".

8.3.1 How to Configure Classpath
There is no need for the application server classpath modifications, as TopLink works
out of the box in Oracle WebLogic Server.

Note that both the TopLink library in the form of the com.oracle.toplink_*.jar
file, and the EclipseLink library in the form of the org.eclipse.persistence_
*.jar file, reside in the following location on the server:

<BEA_HOME>/modules/
where <BEA_HOME> is the directory in which the standalone Oracle WebLogic Server
is installed.

Integrating TopLink with Oracle WebLogic Server

8-6 Developer's Guide for Oracle TopLink

8.3.2 How to Integrate JTA
For applications that require JTA integration, specify the external transaction controller
when you configure the server platform in your session (see Section 89.9, "Configuring
the Server Platform").

For more information, see Section 115.13, "Integrating the Unit of Work with an
External Transaction Service".

8.3.3 How to Integrate JMX
By default, when you deploy a TopLink application to Oracle WebLogic Server, the
TopLink runtime uses the EclipseLink persistence provider to deploy the following
Java Management Extensions (JMX) MBean to the Oracle WebLogic Server JMX service
for each session:

■ org.eclipse.persistence.services.DevelopmentServices

■ org.eclipse.persistence.services.RuntimeServices

For more information, see "How to Integrate JMS" section of the EclipseLink Developer’s
Guide at http://wiki.eclipse.org/Integrating_EclipseLink_with_an_
Application_Server_%28ELUG%29#How_to_Integrate_JMX

For information on Oracle WebLogic Server JMX support, see the following
documentation:

■ Oracle Fusion Middleware Developing Manageable Applications With JMX for Oracle
WebLogic Server

■ Oracle Fusion Middleware Developing Manageable Applications With JMX for Oracle
WebLogic Server

For information on JMX in general, see
http://java.sun.com/docs/books/tutorial/jmx/index.html.

8.3.4 How to Integrate the Security Manager
If you use a security manager, specify a security policy file in the weblogic.policy
file (usually located in the Oracle WebLogic Server install directory), as follows:

-Djava.security.manager
-Djava.security.policy==<BEA_HOME>\wlsserver_10.3\weblogic.policy
The Oracle WebLogic Server installation procedure includes a sample security policy
file. You need to edit the weblogic.policy file to grant permission for TopLink to
use reflection.

The following example illustrates only the permissions that TopLink requires, but
most weblogic.policy files contain more permissions than are shown in this
example.

Note: Although not suitable for the production environment, during
development time you might consider different configurations of the
library files. These configuration options depend on the desired
location of the libraries in your classpath tree, as well as on whether or
not you want to run two different server versions. For more
information, see
http://wiki.eclipse.org/EclipseLink/Examples/JPA/Web
Logic_Web_Tutorial#EclipseLink_JAR_location

Integrating TopLink with Oracle Containers for Java EE (OC4J)

Integrating TopLink with an Application Server 8-7

Example 8–2 A Subset of a "Grant" Section from a weblogic.policy File

grant {
// "enableSubstitution" required to run the WebLogic console
permission java.io.SerializablePermission "enableSubstitution";
// "modifyThreadGroup" required to run the WebLogic server
permission java.lang.RuntimePermission "modifyThreadGroup";
// grant permission for TopLink to use reflection
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
};

8.4 Integrating TopLink with Oracle Containers for Java EE (OC4J)
To integrate a TopLink application with OC4J, you must consider the following:

■ How to Integrate CMP

■ How to Migrate OC4J Orion CMP Persistence to OC4J TopLink Persistence

■ How to Integrate JTA

■ How to Integrate with Oracle Application Server Manageability and
Diagnosability

In addition to configuring these OC4J-specific options, you must also consider the
general application server integration issues in Section 8.2, "Integrating TopLink with
an Application Server".

8.4.1 How to Integrate CMP
To enable TopLink CMP integration in OC4J, use the following procedure (this
procedure assumes you have already installed TopLink):

1. If necessary, migrate your CMP application using the TopLink migration tool (see
Section 8.4.2, "How to Migrate OC4J Orion CMP Persistence to OC4J TopLink
Persistence").

2. Evaluate your choice of UnitOfWork change policy (see Section 113.2.3, "Unit of
Work and Change Policy").

3. Ensure that all necessary deployment descriptor files are in place (see Chapter 9,
"Creating TopLink Files for Deployment" and Section 10, "Packaging a TopLink
Application").

4. Optionally, consider the EJB customization options that TopLink provides (see
Section 8.9, "Configuring Miscellaneous EJB CMP Options").

8.4.2 How to Migrate OC4J Orion CMP Persistence to OC4J TopLink Persistence
If you upgrade OC4J 9.0.4 or earlier to 11g Release 1 (11.1.1), you must migrate
persistence configuration from your original orion-ejb-jar.xml file to the
toplink-ejb-jar.xml file.

In 11g Release 1 (11.1.1), Oracle provides a TopLink migration tool that you can use to
automate this migration for Release 2 (9.0.4) or later OC4J installations.

After using the TopLink migration tool, you may need to make some additional
changes as described in Section 8.4.2.4, "Performing Post-Migration Changes".

If you encounter problems during migration, see Section 8.4.2.5, "Troubleshooting Your
Migration".

This section explains how to use the TopLink migration tool, including the following:

Integrating TopLink with Oracle Containers for Java EE (OC4J)

8-8 Developer's Guide for Oracle TopLink

■ What You May Need to Know About Migrating OC4J Orion Persistence to OC4J
TopLink Persistence

■ Using the TopLink Migration Tool from TopLink Workbench

■ Using the TopLink Migration Tool from the Command Line

■ Performing Post-Migration Changes

■ Troubleshooting Your Migration

8.4.2.1 What You May Need to Know About Migrating OC4J Orion Persistence to
OC4J TopLink Persistence
Before using the TopLink migration tool, review this section to understand how the
TopLink migration tool works and to determine what OC4J persistence manager
metadata is, and is not, migrated.

Input and Output
The TopLink migration tool takes the following files as input:

■ ejb-jar.xml

■ orion-ejb-jar.xml

It migrates as much OC4J-specific persistence configuration as possible to a new
toplink-ejb-jar.xml file and creates the following new files in a target directory
you specify:

■ orion-ejb-jar.xml

■ toplink-ejb-jar.xml

■ TopLink Workbench project file TLCmpProject.mwp

The ejb-jar.xml and orion-ejb-jar.xml files may be in an EAR, JAR, or just
standalone XML files. If you migrate from standalone XML files (rather than an EAR
or JAR file), ensure that the domain classes are accessible and included in your
classpath.

The TopLink migration tool creates a new orion-ejb-jar.xml and
toplink-ejb-jar.xml file to the target directory you specify in the same format as
it reads the original files. For example, if you specify an EAR file as input, then the
TopLink migration tool stages and creates a new EAR file that contains both the new
orion-ejb-jar.xml and the new toplink-ejb-jar.xml file, but is otherwise
identical to the original.

The TopLink Workbench project file is always created as a separate file.

Migration
As it operates, the TopLink migration tool logs all errors and diagnostic output to a log
file named oc4j_migration.log in the output directory. If you use the TopLink

Note: You can also use the TopLink migration tool from Oracle
JDeveloper.

Note: Oracle recommends that you make a backup copy of
your orion-ejb-jar.xml file before using the TopLink
migration tool.

Integrating TopLink with Oracle Containers for Java EE (OC4J)

Integrating TopLink with an Application Server 8-9

migration tool from TopLink Workbench, see also the TopLink Workbench log file
oracle.toplink.workbench.log located in your user home directory (for
example, C:\Documents and Settings\<user-name>).

The TopLink migration tool processes descriptor, mapping, and query information
from the input files as follows:

■ It builds a TopLink descriptor object for each entity bean and migrates native
persistence metadata like mapped tables, primary keys, and mappings for CMP
and CMR fields.

■ It builds a TopLink mapping object for every CMP and CMR field of an entity
bean and migrates native persistence metadata like foreign key references.

■ It builds a TopLink query object for each finder or ejbSelect of an entity bean
and migrates persistence metadata like customized query statements.

Table 8–3 lists OC4J <entity-deployment> attributes and subelements from the
orion-ejb-jar.xml file and for each, indicates whether or not the TopLink
migration tool:

■ Retains it in the new orion-ejb-jar.xml file

■ Migrates it to the new toplink-ejb-jar.xml file

In Table 8–3, elements are identified with angle brackets. Note that in some cases an
attribute is migrated when set to one value, but discarded if set to another value (for
example, exclusive-write-access).

Table 8–3 OC4J orion-ejb-jar.xml Feature Migration

orion-ejb-jar.xml Feature
Retained in New
orion-ejb-jar.xml

Migrated to New
toplink-ejb-jar.xml

<entity-deployment>

clustering-schema

copy-by-value

data-source

location

max-instances

min-instances

max-tx-retries

disable-wrapper-cache

name

pool-cache-timeout

wrapper

local-wrapper

call-timeout

exclusive-write-access

true

false

do-select-before-insert

true

false

isolation

locking-mode

Integrating TopLink with Oracle Containers for Java EE (OC4J)

8-10 Developer's Guide for Oracle TopLink

Table 8–4 lists OC4J features and their TopLink equivalents configured by the TopLink
migration tool.

pessimistic

optimistic

read-only

old_pessimistic

update-changed-fields-only

true

false

table

force-update

true1

false

data-synchronization-option

ejbCreate

ejbPostCreate

batch-size

Any value greater than 1

<ior-security-config>

<env-entry-mapping>

<resource-ref-mapping>

<resource-env-ref-mapping>

<primkey-mapping>

<cmp-field-mapping>

one-to-one-join

inner

outer2

shared

<finder-method>

<persistence-type>3

1 You can enable force-update after migration. For more information, see Section 119.18, "Configuring a
Descriptor with EJB CMP and BMP Information".

2 TopLink supports both outer and inner joins at run time.You can manually configure EJB descriptors
with these options. For more information, see Section 108.7.1.5, "Join Reading and Object-Level Read
Queries".

3 The persistence-type attribute’s table column size, if present, is discarded. For more information, see
Section , "Recovering persistence-type Table Column Size".

Table 8–4 OC4J and TopLink Feature Comparison

Feature orion-ejb-jar.xml toplink-ejb-jar.xml

CMP field mapping Direct

Serialized object

Direct-to-field

Serialized object

Table 8–3 (Cont.) OC4J orion-ejb-jar.xml Feature Migration

orion-ejb-jar.xml Feature
Retained in New
orion-ejb-jar.xml

Migrated to New
toplink-ejb-jar.xml

Integrating TopLink with Oracle Containers for Java EE (OC4J)

Integrating TopLink with an Application Server 8-11

8.4.2.2 Using the TopLink Migration Tool from TopLink Workbench
1. From TopLink Workbench, select File > Migrate > From OC4J 9.0.x.

CMR field mapping One-to-one

One-to-many

Many-to-many

One-to-one

One-to-many

Many-to-many

Partial query Full SQL statement SQL Call

Finder Oracle specific syntax SQL Call or EJB QL

Lazy loading (fetch group) Lazy loading of primary key and
CMP fields

Not supported

Alternatively, you can manually
configure the TopLink equivalent, if
appropriate (see Section 16.2.4, "Fetch
Groups").

SQL statement caching Cache static SQL Not supported at the bean level.

TopLink supports parameterized SQL
and statement caching at the session
and query level (see Chapter 108,
"Introduction to TopLink Queries").

Locking Optimistic: database-level

Pessimistic: bean instance-level

Optimistic: object-level

Pessimistic: query lock at
database-level

Read-only Attempt to change throws
Exception

Attempt to change throws
Exception

Validity timeout Read-only bean validity timeout
before reloaded.

Cache timeout

Isolation level Committed

Serializable

Committed

Serializable

Not Committed

Not Repeatable

Delay update until commit Supported Supported (see Section 119.18,
"Configuring a Descriptor with EJB
CMP and BMP Information").

Exclusive write access on bean Default value is false Assume true

Insert without existence check Supported Supported

Update changed fields only Supported Supported (see Section 113.2.3.3,
"Attribute Change Tracking Policy").

Force update Invoke bean life cycle ejbStore
method even though persistent
fields have not changed

Supported

Table 8–4 (Cont.) OC4J and TopLink Feature Comparison

Feature orion-ejb-jar.xml toplink-ejb-jar.xml

Integrating TopLink with Oracle Containers for Java EE (OC4J)

8-12 Developer's Guide for Oracle TopLink

Figure 8–1 Create TopLink Workbench Projects from OC4J Migration Dialog Box

Use the following information to enter data in each field of the Create TopLink
Workbench Projects from OC4J Migration dialog box:

8.4.2.3 Using the TopLink Migration Tool from the Command Line
To use the TopLink migration tool from the command line, you must perform the
following steps:

1. Ensure that the following is in your classpath:

■ <TOPLINK_HOME>/modules/oracle.toplink_
11.1.1/jlib/antlr.jar

Field Description

From Use these fields to specify the location of the existing OC4J files.
These files may be included as part of a JAR, EAR, or individual
files.

Individual Files Select to convert from individual ejb-jar.xml and
orion-ejb-jar.xml files in the Input Directory. Click
Browse and select the directory location that contains the XML
files to convert from.

Archive File Select to use a specific archive file. Click Browse and select the
archive file to convert from.

To Use these fields to specify the location to which migrated files
are written.

Output Directory Click Browse and select a directory location in which to create
the new XML files and TopLink Workbench project.

Classpath If you are migrating from individual files, ensure that the
domain classes are accessible and included in your classpath.

Show Migration Log Select to have migration log output displayed in a separate
window.

Integrating TopLink with Oracle Containers for Java EE (OC4J)

Integrating TopLink with an Application Server 8-13

■ <TOPLINK_HOME>/jlib/toplink.jar

■ <TOPLINK_HOME>/utils/workbench/jlib/cmpmigrator.jar

■ <TOPLINK_HOME>/utils/workbench/jlib/toplinkmw.jar

■ <TOPLINK_HOME>/utils/workbench/jlib/tlmwcore.jar

■ <TOPLINK_HOME>/jlib

■ <TOPLINK_HOME>/modules/xmlparserv2.jar

2. If you intend to migrate from plain XML files (rather than an EAR or JAR file),
ensure that the domain classes are accessible and included in your classpath.

3. Make a backup copy of your original XML files.

4. Execute the TopLink migration tool, as Example 8–6 illustrates, using the
appropriate arguments listed in Table 8–5.

The usage information for the TopLink migration tool is as follows:

java -Dtoplink.ejbjar.schemavalidation=<true|false>
 -Dtoplink.migrationtool.generateWorkbenchProject=<true|false>
 -Dhttp.proxyHost=<proxyHost>
 -Dhttp.proxyPort=<proxyPort> oracle.toplink.tools.migration.TopLinkCMPMigrator
 -s<nativePM> -i<inputDir>
 -a<ear>|<jar> -x -o<outputDir> -v
To identify the input files, you must specify one of -a or -x.

For troubleshooting information, see Section 8.4.2.5, "Troubleshooting Your
Migration".

Example 8–3 Using the TopLink Migration Tool from the Command Line

java -Dhttp.proxyHost=www-proxy.us.oracle.com
 -Dhttp.proxyPort=80 oracle.toplink.tools.migration.TopLinkCMPMigrator
 -sOc4j-native -iC:/mywork/in -aEmployee.ear -oC:/mywork/out -v

Table 8–5 TopLink Migration Tool Arguments

Argument Description

toplink.ejbjar.schemavalidation The system property used to turn on schema validation if
ejb-jar.xml uses XML Schema (XSD) instead of DTD. The
default value is false.

toplink.migrationtool.generateWorkbenchProject The system property used enable generation of the TopLink
Workbench project. The default value is true.

<proxyHost> The address of your local HTTP proxy host

<proxyHost> The port number on which your local HTTP proxy host receives
HTTP requests.

-s <source> The name of the native persistence manager from which you are
migrating.

For OC4J, use the name Oc4j-native.

-i <input-directory> Fully qualified path to the input directory that contains both the
OC4J ejb-jar.xml and orion-ejb-jar.xml files to
migrate. Default: current working directory.

-a <EAR-or-JAR> Fully qualified path to the archive file (either an EAR or JAR)
that contains both the OC4J ejb-jar.xml and
orion-ejb-jar.xml files to migrate.

Integrating TopLink with Oracle Containers for Java EE (OC4J)

8-14 Developer's Guide for Oracle TopLink

8.4.2.4 Performing Post-Migration Changes
After you migrate the orion-ejb-jar.xml file persistence configuration to your
toplink-ejb-jar.xml file, consider the following post-migration changes:

■ Recovering persistence-type Table Column Size

■ Updating the Unknown Primary Key Class Mapping Sequence Table

■ Customizing a Project

Recovering persistence-type Table Column Size
In the orion-ejb-jar.xml file, you can specify this mapping,
cmp-field-mapping, with a persistence-type attribute that provides both the
type and column size, as shown in Example 8–7.

Example 8–4 A cmp-field-mapping with persistence-type Specifying a Column Size

<cmp-field-mapping ejb-reference-home="MyOtherEntity" name="myField"
persistence-name="myField" persistence-type="VARCHAR2(30)">
The TopLink migration tool migrates the persistence type but not the column size
because a TopLink project does not normally contain this size information.

To recover the persistence-type column size, do the following:

1. Perform the migration as described in Section 8.4.2.3, "Using the TopLink
Migration Tool from the Command Line".

2. Launch the generated TopLink Workbench project file TLCmpProject.mwp.

3. Log in to your database (see Section 5.5.1.1, "Logging In and Out of a Database").

TopLink Workbench retrieves all column sizes.

Updating the Unknown Primary Key Class Mapping Sequence Table
TopLink supports the use of an unknown primary key class (see Section 8.9.2, "How to
Configure EJB CMP Unknown Primary Key Class Support") and so the TopLink
migration tool also supports this feature.

OC4J uses a native run-time key generator to generate unique keys for auto-id key
fields. In contrast, TopLink uses a sequencing table.

If your OC4J persistence configuration includes the use of an unknown primary key
class, then the TopLink migration tool will create a sequencing table for this purpose.

-x Tells the TopLink migration tool that the OC4J files in the input
directory to migrate from are plain XML files (not in an archive
file).

If you use this option, ensure that the domain classes are
accessible and included in your classpath.

-o <output-directory <targetDir> is the path to the directory into which the
TopLink migration tool writes the new orion-ejb-jar.xml,
toplink-ejb-jar.xml, and log files. The path may be
absolute or relative to the current working directory. You must
specify this argument value.

Ensure that permissions are set on this directory to allow the
TopLink migration tool to create files and subdirectories.

-v Verbose mode. Tells the TopLink migration tool to log errors and
diagnostic information to the console.

Table 8–5 (Cont.) TopLink Migration Tool Arguments

Argument Description

Integrating TopLink with Oracle Containers for Java EE (OC4J)

Integrating TopLink with an Application Server 8-15

Before deploying your application after migration, you must do the following:

1. Determine the largest key value generated prior to migration.

2. Manually update the counter of the TopLink migration tool-generated sequence
table to a number that must be one larger than the largest key value generated
prior to migration.

Customizing a Project
You can customize the following components of your project:

■ EJB 2.1 Persistence Manager Customization

■ Session Event Listener

8.4.2.4.1 EJB 2.1 Persistence Manager Customization For an EJB 2.1 CMP application
deployed to OC4J, you customize the TopLink persistence manager by configuring
properties in the orion-ejb-jar.xml file. These properties are used to configure the
TopLink session that the TopLink runtime uses internally for CMP projects. For more
information, see Section 9.10.1, "How to Configure persistence-manager Entries".

8.4.2.4.2 Session Event Listener After you applied the default settings to your project at
deployment time, you may wish to customize the TopLink session by configuring the
session event listener. The pre-login event that the session raises is particularly useful.
It lets you define the custom (nondefault) specifics for the session just before the
session initializes and acquires connections.

For more information, see the following:

■ Section 87.2.3, "Session Customization"

■ Section 87.2.5, "Managing Session Events with the Session Event Manager"

■ Section 89.10, "Configuring Session Event Listeners"

8.4.2.5 Troubleshooting Your Migration
This section describes solutions for problems you may encounter during migration,
including the following:

■ Log Messages

■ Unexpected Relational Multiplicity

Log Messages
As it operates, the TopLink migration tool logs all errors and diagnostic output to a log
file named oc4j_migration.log in the output directory. If you use the TopLink
migration tool from TopLink Workbench, see also the TopLink Workbench log file
oracle.toplink.workbench.log located in your user home directory (for
example, C:\Documents and Settings\<user-name>)

In addition to these warnings, the TopLink migration tool logs an error if it encounters
a problem that prevents it from completing the migration. Table 8–6 lists these
problems and suggests possible solutions.

Integrating TopLink with IBM WebSphere Application Server

8-16 Developer's Guide for Oracle TopLink

Unexpected Relational Multiplicity
The TopLink migration tool retrieves relationship multiplicity from the
orion-ejb-jar.xml file and not from the OC4J ejb-jar.xml file.

Thus, even though the OC4J ejb-jar.xml file defines a relationship to be
one-to-many, if the orion-ejb-jar.xml file defines the same relationship as
many-to-many, then the TopLink migration tool will migrate the relationship as
many-to-many.

8.4.3 How to Integrate JTA
For applications that require JTA integration, specify the external transaction controller
when you configure the server platform in your session (see Section 89.9, "Configuring
the Server Platform").

For more information, see Section 115.13, "Integrating the Unit of Work with an
External Transaction Service".

8.4.4 How to Integrate with Oracle Application Server Manageability and Diagnosability
Oracle recommends that you consider TopLink support for Oracle Application Server
Manageability and Diagnosability to simplify application management and problem
diagnosis.

For more information, see Section A.1, "TopLink Support for Oracle Application Server
Manageability and Diagnosability".

8.5 Integrating TopLink with IBM WebSphere Application Server
To integrate a TopLink application with IBM WebSphere Application Server, you must
consider the following:

■ How to Configure Classpath

Table 8–6 TopLink Migration Tool Error Messages

Error Message Description

There is no ejb-jar.xml in the input file. You must
provide the ejb-jar.xml in order for the migration
process to work.

The ejb-jar.xml file is missing. The TopLink migration tool stops and
copies the original input files into the target directory.

Verify that the ejb-jar.xml file is present in the specified EAR, JAR, or
as a plain XML file. Empty the target directory and execute the TopLink
migration tool again.

There is not an orion-ejb-jar.xml with native
persistent metadata defined, no migration needed.

The orion-ejb-jar.xml file is missing. The TopLink migration tool
stops and copies the original input files into the target directory.

Verify that the orion-ejb-jar.xml file is present in the specified EAR,
JAR, or as a plain XML file. Empty the target directory and execute the
TopLink migration tool again.

toplink-ejb-jar.xml is already defined in the
archive, no migration needed.

A toplink-ejb-jar.xml file is already present in the target directory.
The TopLink migration tool stops and copies the original input files into
the target directory.

Remove the toplink-ejb-jar.xml file from the target directory.
Empty the target directory and execute the TopLink migration tool again.

The entity (ENTITY_NAME) in
orion-ejb-jar.xml is not mapped as no table is
specified. You need to provide the completely
mapped orion-ejb-jar.xml to the migration
tool. You can obtain the completely mapped
orion-ejb-jar.xml from the
application-deployment directory after
deploying the application.

An entity is not mapped to database table. Before migration, confirm that
you map all CMP entities in your application to one or more database
tables in the ejb-jar.xml file, the orion-ejb-jar.xml file, or a
combination of both.

Integrating TopLink with Sun Application Server

Integrating TopLink with an Application Server 8-17

■ How to Configure Class Loader Order

■ How to Integrate JTA

In addition to configuring these IBM WebSphere application server-specific options,
you must also consider the general application server integration issues in Section 8.2,
"Integrating TopLink with an Application Server".

8.5.1 How to Configure Classpath
You configure the IBM WebSphere application server classpath differently depending
on what version of this server you are using:

■ Configuring Classpath for IBM WebSphere Application Server 6.1 and Later

8.5.1.1 Configuring Classpath for IBM WebSphere Application Server 6.1 and Later
TopLink provides JTA and general integration support for IBM WebSphere application
server 6.1 and later. To configure the classpath for this version, do the following:

1. Create a shared library that contains the following Toplink JAR files and associate
the shared library with the application:

<TOPLINK_HOME>\jlib\toplink.jar
2. Ensure that your TopLink application defines an XML parser platform (see

Section 8.2.2, "How to Configure the XML Parser Platform").

8.5.2 How to Configure Class Loader Order
If you are deploying a TopLink enabled application that uses TopLink sessions.xml
or XML project deployment, you must use the WebSphere Application Server
Administrative Console to set Class loader order to Class loaded with application
class loader first.

8.5.3 How to Integrate JTA
For applications that require JTA integration, specify the external transaction controller
when you configure the server platform in your session (see Section 89.9, "Configuring
the Server Platform").

For more information, see Section 115.13, "Integrating the Unit of Work with an
External Transaction Service".

8.5.4 How to Configure Clustering on IBM WebSphere Application Server
For information on integrating a TopLink application with an application server
cluster, see Section 8.2.5, "How to Integrate Clustering".

8.6 Integrating TopLink with Sun Application Server
To integrate a TopLink application with Sun Application Server (SunAS), you must
consider the following:

■ How to Configure Classpath

■ How to Integrate JTA

In addition to configuring these SunAS-specific options, you must also consider the
general application server integration issues in Section 8.2, "Integrating TopLink with
an Application Server".

Integrating TopLink with JBoss Application Server

8-18 Developer's Guide for Oracle TopLink

8.6.1 How to Configure Classpath
To configure TopLink support for SunAS, do the following:

1. Add the following JAR files to the application server classpath:

<TOPLINK_HOME>\jlib\toplink.jar
2. Ensure that your TopLink application defines an XML parser platform (see

Section 8.2.2, "How to Configure the XML Parser Platform").

8.6.2 How to Integrate JTA
For applications that require JTA integration, specify the external transaction controller
when you configure the server platform in your session (see Section 89.9, "Configuring
the Server Platform").

For more information, see Section 115.13, "Integrating the Unit of Work with an
External Transaction Service".

8.7 Integrating TopLink with JBoss Application Server
To integrate a TopLink application with JBoss Application Server, you must consider
the following:

■ How to Configure Classpath

■ How to Integrate JTA

In addition to configuring these JBoss-specific options, you must also consider the
general application server integration issues in Section 8.2, "Integrating TopLink with
an Application Server".

8.7.1 How to Configure Classpath
To configure TopLink support for JBoss, do the following:

1. Add the following JAR files to the application server classpath:

<TOPLINK_HOME>\jlib\toplink.jar
2. Ensure that your TopLink application defines an XML parser platform (see

Section 8.2.2, "How to Configure the XML Parser Platform").

8.7.2 How to Integrate JTA
For applications that require JTA integration, specify the external transaction controller
when you configure the server platform in your session (see Section 89.9, "Configuring
the Server Platform").

For more information, see Section 115.13, "Integrating the Unit of Work with an
External Transaction Service".

8.7.3 How to Configure JPA Application Deployment to JBoss 4.2 Application Server
For JPA applications, to enable the container to manage entities, statically weave the
entities and reference JBoss as the target server in the persistence.xml file.

Perform the following deployment changes:

1. If weaving is required, statically weave the entities before EAR packaging. Use
either the command-line weaver or the weaving Ant task (see "How to Configure
Static Weaving for JPA Entities" section of EclipseLink Developer’s Guide at

Defining Security Permissions

Integrating TopLink with an Application Server 8-19

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Configure_Static_Weaving_for_JPA_Entities).

2. Ensure that the eclipselink.target-server property (see "Using
EclipseLink JPA Extensions for Session, Target Database and Target Application
Server" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#Using_EclipseLink_JPA_Extensions_for_Session.2C_
Target_Database_and_Target_Application_Server) is set in the
persistence.xml file of all persistence units deployed to the JBoss container:

<property name="eclipselink.target-server" value="JBoss"/>
Otherwise, even though the container-managed entities are predeployed, they will
not be managed at run time.

For more information, see "How to Deploy an Application to Generic Java EE 5
Application Servers" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Packaging_and_Deploying_EclipseLink_JPA_
Applications_%28ELUG%29#How_to_Deploy_an_Application_to_Generic_
Java_EE_5_Application_Servers.

8.8 Defining Security Permissions
By default, when you run a TopLink-enabled application in a JVM configured with a
nondefault java.lang.SecurityManager, the TopLink run time executes certain
internal functions by executing a PrivilegedAction with
java.security.AccessController method doPrivileged. This ensures that
you do not need to grant many permissions to TopLink for it to perform its most
common operations. You need only grant certain permissions depending on the types
of optional TopLink features you use (see Section 8.8.1, "How to Define Permissions
Required by TopLink Features").

While using doPrivileged method provides enhanced security, it will severely
impact overall performance. Alternatively, you can configure TopLink to disable the
use of doPrivileged method even when a nondefault SecurityManager is
present (see Section 8.8.3, "How to Disable doPrivileged Operation"). In this case, you
must grant TopLink all required permissions (see Section 8.8.1, "How to Define
Permissions Required by TopLink Features" and Section 8.8.2, "How to Define
Permissions Required when doPrivileged Is Disabled").

If you run a TopLink-enabled application in a JVM without a nondefault
SecurityManager, you do not need to grant any permissions.

8.8.1 How to Define Permissions Required by TopLink Features
When you run a TopLink-enabled application in a JVM configured with a nondefault
java.lang.SecurityManager and doPrivileged operation is enabled, you may
need to grant additional permissions if your application requires any of the following:

Note: While enabling the use of doPriviledged method enhances
TopLink application security, it does not guarantee that secure code
cannot be called by application code in ways that the system did not
intend. You must consider the use of doPriviledged method within
the context of your overall application security strategy. For more
information, see http://java.sun.com/security/index.jsp.

Defining Security Permissions

8-20 Developer's Guide for Oracle TopLink

■ Defining System Properties

■ Loading project.xml or sessions.xml Files

■ Defining Cache Coordination

■ Accessing a Data Source by Port

■ Logging with java.util.logging

■ Granting Permissions for Java EE Application Deployment

8.8.1.1 Defining System Properties
By default, a TopLink-enabled application requires access to the system properties
granted in the default <JAVA_HOME>/lib/security/java.policy file. If your
application requires access to other platform-specific, environment, or custom
properties, then grant further PropertyPermission permissions, as Example 8–8
shows.

Example 8–5 Permissions for System Properties

permission java.util.PropertyPermission "my.property", "read";

8.8.1.2 Loading project.xml or sessions.xml Files
Most TopLink-enabled applications read in project.xml and sessions.xml files
directly. Grant permissions to the specific files or file locations, as Example 8–9 shows.
This example assumes that both project.xml and sessions.xml files are located
in the same directory (given by application-specific system property
deployment.xml.home). Alternatively, you can specify a separate
FilePermission for each file.

Example 8–6 Permissions for Loading Deployment XML Files

permission java.io.FilePermission "${deployment.xml.home}/*.xml", "read";
For information on FilePermission settings for Java EE applications, see
Section 8.8.1.6, "Granting Permissions for Java EE Application Deployment".

8.8.1.3 Defining Cache Coordination
If your application uses cache coordination (see Section 102.3, "Cache Coordination"),
then grant accept, connect, listen, and resolve permissions to the specific
sockets used by your coordinated cache, as Example 8–10 shows. This example
assumes that the coordinated cache multicast port (see Section 103.5, "Configuring a
Multicast Port") is 1024.

Example 8–7 Permissions for Cache Coordination

permission java.net.SocketPermission "localhost:1024-", "accept, connect, listen, resolve";

8.8.1.4 Accessing a Data Source by Port
If your TopLink-enabled application accesses a data source using a socket, then grant
connect and resolve permissions for that socket, as Example 8–11 shows. This
example assumes that the host name (or IP address) of the remote host that provides
the data source (such as a relational database server host) is given by
application-specific system property remote.data.source.host and that this host
accepts data source connections on port 1025.

Configuring Miscellaneous EJB CMP Options

Integrating TopLink with an Application Server 8-21

Example 8–8 Permissions for non-Java EE Data Source Connections

permission java.net.SocketPermission "${remote.data.source.host}:1025-", "connect, resolve";

For Java EE applications, data source socket permissions are usually handled by the
application server.

8.8.1.5 Logging with java.util.logging
If you configure your TopLink-enabled application to use java.util.logging
package (see Section 89.4, "Configuring Logging"), then grant your application
control permissions, as Example 8–12 shows.

Example 8–9 Permissions for java.util.logging

permission java.util.logging.LoggingPermission "control"

8.8.1.6 Granting Permissions for Java EE Application Deployment
If you are deploying a TopLink-enabled Java EE application, you must grant
permissions for the following:

■ The toplink.jar file. For example:

grant codeBase "file:<TOPLINK_HOME>/jlib/toplink.jar" {
permission java.security.AllPermission;

};
If you are using an XML platform, you must also grant the following permissions:

■ The toplink.xml.platform system property. For Example:

permission java.util.PropertyPermission "toplink.xml.platform", "read"

8.8.2 How to Define Permissions Required when doPrivileged Is Disabled
If you disable doPrivileged operation when you run a TopLink-enabled application
in a JVM configured with a nondefault java.lang.SecurityManager, you must
grant the following permissions:

■ java.lang.reflect.RelectPermission "suppressAccessChecks"

■ java.lang.RuntimePermission "accessDeclaredMembers"

■ java.lang.RuntimePermission "getClassLoader"

You may also have to grant additional permissions depending on the TopLink features
your application uses. For more information, see Section 8.8.1, "How to Define
Permissions Required by TopLink Features".

8.8.3 How to Disable doPrivileged Operation
To disable doPrivileged operation when you run a TopLink-enabled application in
a JVM configured with a nondefault java.lang.SecurityManager, set system
property oracle.j2ee.toplink.security.usedoprivileged to false. If you
are using OC4J, set system property oracle.j2ee.security.usedoprivileged
to false.

To enable doPrivileged operation, set these system properties to true.

8.9 Configuring Miscellaneous EJB CMP Options
TopLink provides system properties that you can use to customize the following EJB
CMP options:

Configuring Miscellaneous EJB CMP Options

8-22 Developer's Guide for Oracle TopLink

■ Setter Parameter Type Checking (see Section 8.9.1, "How to Configure EJB CMP
Setter Parameter Type Checking")

■ Unknown Primary Key Class Support (see Section 8.9.2, "How to Configure EJB
CMP Unknown Primary Key Class Support")

■ Single-Object Finder Return Type Checking (see Section 8.9.3, "How to Configure
EJB CMP Single-Object Finder Return Type Checking")

8.9.1 How to Configure EJB CMP Setter Parameter Type Checking
To make TopLink verify that the parameters to one-to-one and one-to-many
relationship setters are of the same type as the corresponding CMR field, set system
property toplink.cts.collection.checkParameters to a value of true (not
case sensitive). If the setters are not the same type, then TopLink throws a
java.lang.IllegalArgumentException.

If you set the property to false (the default value), TopLink does not make this
verification. In this case, it is up to your application to make sure the parameters are of
the correct type.

For more information, see Section 10.3.6 of the EJB 2.1 specification.

8.9.2 How to Configure EJB CMP Unknown Primary Key Class Support
In special situations, you may choose not to specify the primary key class or the
primary key fields for an entity bean with container-managed persistence. For
example, if the entity bean does not have a natural primary key or you want the
deployer to select the primary key fields at deployment time, you may choose to defer
primary key type specification.

If this is the case, you must declare the type of the argument of the
findByPrimaryKey method as java.lang.Object and you must also specify the
primary key class (prim-key-class) in the deployment descriptor (ejb-jar.xml)
as java.lang.Object.

TopLink provides run-time support for such deferred primary key type specification.

For more information, see Section 10.8.3 of the EJB 2.1 specification.

8.9.3 How to Configure EJB CMP Single-Object Finder Return Type Checking
By setting system property toplink.cts.checkMultipleRows to true, you can
configure TopLink to throw a javax.ejb.FinderException if multiple beans are
returned from a single-object finder method.

For more information, see Section 10.5.6.1 of the EJB 2.1 specification.

Note: Setting this property to true will affect performance. Use this
setting only if necessary.

9

Creating TopLink Files for Deployment 9-1

9Creating TopLink Files for Deployment

This chapter includes TopLink information that you need when creating deployment
files for various types of applications.

This chapter includes the following sections:

■ Introduction to the TopLink Deployment File Creation

■ Creating Deployment Files for Java Applications

■ Creating Deployment Files for JavaServer Pages and Servlet Applications

■ Creating Deployment Files for Session Bean Applications

■ Creating Deployment Files for JPA Applications

■ Creating Deployment Files for CMP Applications

■ Creating Deployment Files for BMP Applications

■ Configuring the weblogic-ejb-jar.xml File for Oracle WebLogic Server

■ Configuring the orion-ejb-jar.xml File for OC4J

For more information on packaging and deployment, see the following:

■ Section 9.1, "Introduction to the TopLink Deployment File Creation"

■ Chapter 8, "Integrating TopLink with an Application Server"

■ Chapter 10, "Packaging a TopLink Application"

■ Chapter 11, "Deploying a TopLink Application"

■ "Packaging and Deploying EclipseLink JPA Applications" section of EclipseLink
Developer’s Guide at http://wiki.eclipse.org/Packaging_and_
Deploying_EclipseLink_JPA_Applications_%28ELUG%29.

9.1 Introduction to the TopLink Deployment File Creation
Depending on the type of application you are deploying, you may need to create any
of the following deployment files:

■ project.xml File

■ sessions.xml File

■ ejb-jar.xml File

■ JAVA-EE-CONTAINER-ejb-jar.xml File

■ toplink-ejb-jar.xml File

Introduction to the TopLink Deployment File Creation

9-2 Developer's Guide for Oracle TopLink

TopLink Workbench provides the ability to create deployment files from a TopLink
Workbench project (see Section 116.3, "Exporting Project Information"). After you build
a project, you have two options to create the deployment files:

■ Create XML deployment files that require no compiling.

■ Create Java source files, which you compile and deploy outside of TopLink
Workbench.

Oracle recommends XML deployment because XML files are easier to deploy and
troubleshoot than compiled Java files. This approach gives you a very flexible
configuration that enables you to make changes safely and easily. XML deployment
files do not require third-party applications or compilers to deploy successfully.

9.1.1 project.xml File
The project.xml file is the core of your application. It contains the descriptors and
mappings you define and also includes any named queries or finders associated with
your project.

This section describes the following:

■ XSD File Format

■ POJO Applications and Project Metadata

■ JPA Applications and Project Metadata

■ CMP Applications and Project Metadata

■ Creating the project.xml File with Oracle JDeveloper

■ Creating the project.xml File with TopLink Workbench

■ Creating project.xml Programatically

9.1.1.1 XSD File Format
The project.xml file XSD is toplink-object-persistence_11_1_1.xsd and
it is located in the <TOPLINK_HOME>\xsds directory.

9.1.1.2 POJO Applications and Project Metadata
For a POJO application, you define your project metadata in a project.xml file.

The project.xml file provides a simple and flexible way to configure, modify, and
troubleshoot the project metadata. Because of these attributes, the project.xml file is
the preferred way to configure a TopLink project.

TopLink Workbench provides a graphical tool to build and edit the project.xml file.
For information on creating projects with TopLink Workbench, see Section 9.1.1.6,
"Creating the project.xml File with TopLink Workbench".

9.1.1.3 JPA Applications and Project Metadata
For a JPA application, you can express project metadata using JPA annotations,
persistence.xml, orm.xml, and EclipseLink JPA annotation and

Note: If you are using EJB 3.0, you can use annotations to specify
most of what you formerly specified in deployment descriptors. Use
deployment descriptors to override annotations or specify options not
supported by annotations.

Introduction to the TopLink Deployment File Creation

Creating TopLink Files for Deployment 9-3

persistence.xml property extensions. The EclipseLink JPA persistence provider
interprets all these sources of metadata to create an in-memory session and project at
run time.

Using EclipseLink JPA, you also have the option of specifying your metadata using
sessions.xml and project.xml while accessing your persistent classes using JPA
and an EntityManager. For more information, see "What You May Need to Know
About EclipseLink JPA Overriding Mechanisms" section of EclipseLink Developer’s
Guide at http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#What_You_May_Need_to_Know_About_EclipseLink_JPA_
Overriding_Mechanisms.

9.1.1.4 CMP Applications and Project Metadata
For a CMP application, how you specify project metadata is dependent upon the Java
EE application server you are deploying your application (see Section 9.1.5,
"toplink-ejb-jar.xml File").

9.1.1.5 Creating the project.xml File with Oracle JDeveloper
In Oracle JDeveloper, TopLink mapping project information is maintained in the
TopLink Map. For more information, see the Oracle JDeveloper online help.

9.1.1.6 Creating the project.xml File with TopLink Workbench
Because you must synchronize the project.xml file with the classes and data source
associated with your application, Oracle recommends that you not modify this file
manually. TopLink Workbench ensures proper synchronization, and is the best way to
make changes to the project. Simply modify the project in TopLink Workbench and
redeploy the project.xml file. Using this option reduces development time by
eliminating the need to regenerate and recompile Java code each time the project
changes.

See Section 116.3, "Exporting Project Information" for detailed information on
exporting the deployment XML information.

9.1.1.7 Creating project.xml Programatically
Optionally, you can use the DeploymentXMLGenerator API to programatically
generate the project.xml file in either of the following ways:

■ From an application, instantiate the DeploymentXMLGenerator and your java
source. Call the following method:

generate (<MW_Project.mwp>, <output file.xml>)

■ From the command line, use the following:

java -classpath
toplink.jar;toplinkmw.jar;xmlparserv2.jar;ejb.jar;oracle.toplink.workbench.mapp
ings.DeploymentXMLGenerator <MW_Project.mwp> <output file.xml>

Before you use either method, ensure that your classpath includes the <TOPLINK_
HOME>\xsds directory.

Note: You can name this file with a name other than project.xml;
however, for clarity, this discussion assumes that the file has not been
renamed.

Introduction to the TopLink Deployment File Creation

9-4 Developer's Guide for Oracle TopLink

9.1.2 sessions.xml File
Each TopLink project belongs to a TopLink session. A session is the facade through
which an application accesses TopLink functionality (for more information on
sessions, see Part XXI, "TopLink Sessions"). Where you define a session differs
depending on whether or not your application uses CMP.

This section describes the following:

■ XSD File Format

■ POJO Applications and Session Metadata

■ JPA Applications and Session Metadata

■ CMP Applications and Session Metadata

9.1.2.1 XSD File Format
The sessions.xml file XSD is sessions_11_1_1.xsd and it is located in the
<TOPLINK_HOME>\xsds directory.

When you use the XSD formatted sessions.xml file, the TopLink run time separates
sessions.xml file validation from session instantiation. Separating XML file
formatting problems from Session Manager session instantiation problems simplifies
troubleshooting. Exceptions thrown during validation clearly indicate that the failure
is due to an invalid sessions.xml file, as Example 9–1 illustrates.

Example 9–1 Enhanced Validation Exceptions

Exception [TOPLINK-9010] (Oracle TopLink - 10g (10.0.3)(Build 040127Dev)):
oracle.toplink.exceptions.SessionLoaderException
Exception Description: A End tag does not match start tag 'session'. was thrown while parsing
the XML file against the XML schema.
Internal Exception: oracle.xml.parser.v2.XMLParseException: End tag does not match start tag
'session'.

9.1.2.2 POJO Applications and Session Metadata
For a POJO application, you define your sessions in a sessions.xml file.

The sessions.xml file provides a simple and flexible way to configure, modify, and
troubleshoot the application sessions. Because of these attributes, the sessions.xml
file is the preferred way to configure a TopLink session.

TopLink provides graphical tools to build and edit the sessions.xml file. For
information see Chapter 88, "Creating a Session".

9.1.2.3 JPA Applications and Session Metadata
For a JPA application, you can express session metadata using JPA annotations,
persistence.xml, orm.xml, and EclipseLink JPA annotation and
persistence.xml property extensions. The EclipseLink JPA persistence provider

Note: If you are using EJB 3.0, you can use annotations to specify
most of what you formerly specified in the project.xml file. To
override annotations or specify options not supported by annotations,
you can still provide a project.xml file in your EJB 3.0 application.
For more information on what annotations are currently supported,
see Oracle Fusion Middleware Enterprise JavaBeans Developer's Guide for
Oracle Containers for Java EE

Introduction to the TopLink Deployment File Creation

Creating TopLink Files for Deployment 9-5

interprets all these sources of metadata to create an in-memory TopLink session and
project at run time.

Using EclipseLink JPA, you also have the option of specifying your metadata using
sessions.xml and project.xml while accessing your persistent classes using JPA
and an EntityManager. For more information, see "What You May Need to Know
About EclipseLink JPA Overriding Mechanisms" section of EclipseLink Developer’s
Guide at http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#What_You_May_Need_to_Know_About_EclipseLink_JPA_
Overriding_Mechanisms.

9.1.2.4 CMP Applications and Session Metadata
For a CMP project, how you specify session metadata is dependent upon the Java EE
application server to which you are deploying your application.

For OC4J, the session configuration is done in the orion-ejb-jar.xml file. You can
specify the data-source, some common session options, and a session customizer
class (see Table 9–3, " orion-ejb-jar.xml File persistence-manager Subentries for
pm-properties"). In this case, you name the TopLink project XML file as
toplink-ejb-jar.xml (see Section 9.1.1, "project.xml File")

9.1.3 ejb-jar.xml File
Each EJB module contains one ejb-jar.xml file that describes all the EJB in the
module.

 Most IDEs provide facilities to create the ejb-jar.xml file. For more information
about generating this file from your IDE, see your IDE documentation.

If you build an EJB application, Oracle recommends that you use TopLink Workbench
to build the ejb-jar.xml file. Because TopLink Workbench can both read and write
the ejb-jar.xml file, you can use TopLink Workbench to maintain your
ejb-jar.xml file in the following ways:

■ When you change the file manually outside of TopLink Workbench, reimport the
ejb-jar.xml file into TopLink Workbench project to refresh the project.

■ When you change the TopLink Workbench project, TopLink Workbench updates
the ejb-jar.xml file automatically when you save the project.

For more information about managing the ejb-jar.xml file in TopLink Workbench,
see Section 19.7, "Working with the ejb-xml.File".

Note: If you are using EJB 3.0, you cannot use annotations to specify
session configuration. You must provide a sessions.xml file, if one
is applicable to your application type.

Note: If you are using EJB 3.0, you can use annotations to specify
most of what you formerly specified in the ejb-jar.xml file. To
override annotations or specify options not supported by annotations,
you can still provide an ejb-jar.xml file in your EJB 3.0 application.

Introduction to the TopLink Deployment File Creation

9-6 Developer's Guide for Oracle TopLink

9.1.4 JAVA-EE-CONTAINER-ejb-jar.xml File
The contents of the JAVA-EE-CONTAINER-ejb-jar.xml file depend on the
container to which you deploy your EJB. To create this file, use the tools that
accompany your container.

In most cases, the JAVA-EE-CONTAINER-ejb-jar.xml file integrates with TopLink
without revision. However, in some cases, you must make some TopLink-specific
modifications.

For more information, see the following:

■ Section 9.1.4.1, "Oracle WebLogic Server and the weblogic-ejb-jar.xml File"

■ Section 9.1.4.2, "OC4J and the orion-ejb-jar.xml File"

9.1.4.1 Oracle WebLogic Server and the weblogic-ejb-jar.xml File
For more information on configuring the weblogic-ejb-jar.xml, see Section 9.8,
"Configuring the weblogic-ejb-jar.xml File for Oracle WebLogic Server".

9.1.4.2 OC4J and the orion-ejb-jar.xml File
Table 9–1 summarizes the scenarios in which you may choose to modify the
orion-ejb-jar.xml file.

For more information on configuring the orion-ejb.jar.xml file, see Section 9.9,
"Configuring the orion-ejb-jar.xml File for OC4J".

Note: If you are using EJB 3.0, you can use annotations to specify
most of what you formerly specified in the
JAVA-EE-CONTAINER-ejb-jar.xml file. To override annotations
or specify options not supported by annotations, you can still provide
a JAVA-EE-CONTAINER-ejb-jar.xml file in your EJB 3.0
application. For more information on what annotations are currently
supported, see Oracle Fusion Middleware Enterprise JavaBeans
Developer's Guide for Oracle Containers for Java EE.

Table 9–1 When to Modify the orion-ejb-jar.xml File

CMP Type Mapping Type Action

Orion Specified in orion-ejb-jar.xml 1. Deploy.

Orion Default mappings 1. Edit the orion-ejb-jar.xml file to set
persistence-manager attribute name to orion.

2. Deploy.

Toplink Specified in
toplink-ejb-jar.xml

1. Deploy.

Toplink Specified in
toplink-ejb-jar.xml (custom
persistence manager properties)

1. Edit the orion-ejb-jar.xml file to set
persistence-manager attribute name to
toplink.

2. Edit additional persistence-manager subentries
(see Section 9.9, "Configuring the orion-ejb-jar.xml
File for OC4J").

3. Deploy.

Toplink Default mappings (no
toplink-ejb-jar.xml)

1. Deploy.

Creating Deployment Files for Session Bean Applications

Creating TopLink Files for Deployment 9-7

9.1.5 toplink-ejb-jar.xml File
The toplink-ejb-jar.xml file is used only in CMP projects. The TopLink runtime
uses properties set in the JAVA-EE-CONTAINER-ejb-jar.xml file (see Section 9.1.4,
"JAVA-EE-CONTAINER-ejb-jar.xml File") to locate the toplink-ejb-jar.xml file
and read it in.

The purpose of toplink-ejb-jar.xml file depends on the type of application
server you are using.

9.1.5.1 OC4J and the toplink-ejb-jar.xml File
When deploying a CMP application to OC4J, the toplink-ejb-jar.xml file is the
name used for the project.xml file.

To create the toplink-ejb-jar.xml file in this case, simply rename your
project.xml file. For more information, see Section 9.1.1, "project.xml File".

9.2 Creating Deployment Files for Java Applications
In a Java application, TopLink does not use a Java EE container for deployment.
Instead, it relies on TopLink mechanisms to provide functionality and persistence. The
key elements of this type of application are the lack of a Java EE container and the fact
that you deploy the application by placing the application JAR file on the classpath.

Java applications require the following deployment files:

■ project.xml File

■ sessions.xml File

9.3 Creating Deployment Files for JavaServer Pages and Servlet
Applications

Many designers build TopLink applications that use JavaServer Pages (JSP) and Java
servlets. This type of design generally supports Web-based applications.

JSP and servlet applications require the following deployment files:

■ project.xml File

■ sessions.xml File

9.4 Creating Deployment Files for Session Bean Applications
Session beans generally model a process, operation, or service and as such, are not
persistent. You can build TopLink applications that wrap interaction with TopLink in
session beans. Session beans execute all TopLink-related operations on behalf of the
client.

This type of design uses JTS and externally managed transactions, but does not incur
the overhead associated with persistence applications. Session bean applications also
scale and deploy easily.

This section describes the following:

■ How to Create Deployment Files for EJB 1.n and 2.n Session Bean Applications

■ How to Create Deployment Files for EJB 3.0 Session Bean Applications

Creating Deployment Files for JPA Applications

9-8 Developer's Guide for Oracle TopLink

9.4.1 How to Create Deployment Files for EJB 1.n and 2.n Session Bean Applications
EJB 1.n and 2.n session bean applications require the following deployment files:

■ project.xml File

■ sessions.xml File

9.4.2 How to Create Deployment Files for EJB 3.0 Session Bean Applications
Oracle recommends using JPA annotations and persistence unit properties, or a
special-case eclipselink.session-xml persistence unit property (see "EclipseLink
JPA Persistence Unit Properties for Database, Session, and Application Server" table of
EclipseLink Developer’s Guide at http://wiki.eclipse.org/Using_
EclipseLink_JPA_Extensions_%28ELUG%29#Using_EclipseLink_JPA_
Extensions_for_Session.2C_Target_Database_and_Target_
Application_Server) in your EJB 3.0 session bean application.

You may also choose to use the project.xml File and sessions.xml File.

For more information, see the following:

■ "Java Persistence API Overview" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Introduction_to_Java_Persistence_API_
%28ELUG%29

■ "Introduction to EclipseLink JPA" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Introduction_to_EclipseLink_JPA_
%28ELUG%29

■ http://wiki.eclipse.org/EclipseLink/UserGuide/Developing_JPA_
Projects_%28ELUG%29

9.5 Creating Deployment Files for JPA Applications
See "Packaging and Deploying EclipseLink JPA Applications" section of EclipseLink
Developer’s Guide at http://wiki.eclipse.org/Packaging_and_Deploying_
EclipseLink_JPA_Applications_%28ELUG%29 for information on how to create
deployment files for your JPA application.

9.6 Creating Deployment Files for CMP Applications
Many applications use the persistence mechanisms a Java EE container offers. TopLink
provides full support for this type of application.

You can only use one persistence manager for all the entity beans with
container-managed persistence in a JAR file.

CMP applications require the following deployment files:

■ ejb-jar.xml (see Section 9.1.3, "ejb-jar.xml File")

■ JAVA-EE-CONTAINER-ejb-jar.xml (see Section 9.1.4,
"JAVA-EE-CONTAINER-ejb-jar.xml File")

■ toplink-ejb-jar.xml (see Section 9.1.5, "toplink-ejb-jar.xml File")

Configuring the orion-ejb-jar.xml File for OC4J

Creating TopLink Files for Deployment 9-9

9.7 Creating Deployment Files for BMP Applications
If you choose to write your own persistence code with BMP, you can take advantage of
the classes in oracle.toplink.ejb.bmp package. Whether or not you use these
classes, BMP applications require the following deployment files:

■ project.xml (see Section 9.1.1, "project.xml File")

■ sessions.xml (see Section 9.1.2, "sessions.xml File")

■ ejb-jar.xml (see Section 9.1.3, "ejb-jar.xml File")

9.8 Configuring the weblogic-ejb-jar.xml File for Oracle WebLogic Server
Before you deploy a TopLink application to a Oracle WebLogic Server, you must
modify the weblogic-ejb-jar.xml file.

Avoid the weblogic-ejb-jar.xml tags that TopLink either does not support or
does not require (see Section 9.8.1, "What You May Need to Know About Unsupported
weblogic-ejb-jar.xml File Tags").

9.8.1 What You May Need to Know About Unsupported weblogic-ejb-jar.xml File Tags
The weblogic-ejb-jar.xml file includes the following tags that TopLink either
does not support or does not require:

■ concurrency-strategy: This tag specifies how Oracle WebLogic Server
manages concurrent users for a given bean. Because TopLink manages concurrent
access internally, it does not require this tag.

For more information about the TopLink concurrency strategy, see Section 119.26,
"Configuring Locking Policy".

■ db-is-shared: Because TopLink does not make any assumptions about the
exclusivity of database access, TopLink does not require this tag. TopLink
addresses multiuser access issues through various locking and refreshing policies.

■ delay-updates-until-end-of-tx: TopLink always delays updates until the
end of a transaction, and does not require this tag.

■ finders-load-bean: TopLink always loads the bean upon execution of the
finder, and does not require this tag.

■ pool: TopLink does not use a pooling strategy for entity beans. This avoids
object-identity problems that can occur due to pooling.

■ lifecycle: This element manages beans that follow a pooling strategy. Because
TopLink does not use a pooling strategy, TopLink ignores this tag.

■ is-modified-method-name: TopLink does not require a bean
developer-defined method to detect changes in the object state.

■ isolation-level: Because isolation level settings for the cache or database
transactions are specified in the TopLink project, TopLink ignores this tag.

■ cache: Because you define TopLink cache properties in TopLink Workbench, this
tag is unnecessary.

9.9 Configuring the orion-ejb-jar.xml File for OC4J
To deploy a TopLink application to OC4J, modify the orion-ejb-jar.xml file. For
more information, see Section 9.9.1, "How to Configure persistence-manager Entries".

Configuring the orion-ejb-jar.xml File for OC4J

9-10 Developer's Guide for Oracle TopLink

If you are migrating an application from a previous release of OC4J, you can use the
TopLink migration tool to automatically migrate persistence information from your
orion-ejb-jar.xml file to a new toplink-ejb-jar.xml. For more information,
see Section 8.4.2, "How to Migrate OC4J Orion CMP Persistence to OC4J TopLink
Persistence".

9.9.1 How to Configure persistence-manager Entries
If you are using TopLink as your OC4J persistence manager, you can configure the
persistence-manager subentry (see Table 9–2) in the orion-ejb-jar.xml file.
For more information on the scenarios in which you would want to modify
orion-ejb-jar.xml, see Section 9.1.4.2, "OC4J and the orion-ejb-jar.xml File".

If you are not using TopLink as your OC4J persistence manager, do not modify the
persistence-manager subentries.

OC4J does not support entity-deployment attribute pm-name. Use
persistence-manager attribute name instead (see Table 9–2). When OC4J parses
the orion-ejb.jar.xml file, if it finds a pm-name attribute, OC4J ignores its value
and logs the following warning message:

9.9.1.1 Configuring pm-properties
When you select TopLink as the persistence manager (see name in Table 9–2), use the
persistence-manager subentries for pm-properties (see Table 9–3) to configure
the TopLink session that the TopLink runtime creates and uses internally for CMP
projects. The persistence-manager subentries take the place of a sessions.xml
file in a CMP project.

WARNING: Use of pm-name is unsupported and will be removed
in a future release. Specify pm usage using
<persistence-manager> ’name’ instead.

Table 9–2 orion-ejb-jar.xml File persistence-manager Entries

Entry Description

name The name of the persistence manager to use. Set this value to toplink.

If you set the name property to toplink, you may also configure
pm-properties (see Section 9.9.1.1, "Configuring pm-properties").

class-name Do not configure this attribute. If name is set to toplink, then
class-name is set correctly by default.

descriptor This property applies only when name is set to toplink.

If you export your TopLink mapping metadata to a deployment XML file,
set this property to the name of the deployment XML file (default:
toplink-ejb-jar.xml).

Do not set this property if you are using a TopLink project class instead of
a mapping metadata file (see project-class in Table 9–3).

Note: You can only configure a subset of session features using these
properties and in most cases, default configuration applies. To
configure all session features and to override defaults, you must use a
customization class (see customization-class in Table 9–3).

Configuring the orion-ejb-jar.xml File for OC4J

Creating TopLink Files for Deployment 9-11

9.9.1.2 Configuring cache-synchronization Properties
When you select TopLink as the persistence manager (see name in Table 9–2), use the
pm-properties subentry for cache-synchronization (see Table 9–4) to
configure TopLink cache coordination features of the session that the TopLink runtime
uses internally for CMP projects. For more information about TopLink cache
coordination, see Section 102.3, "Cache Coordination".

When this subentry is present, you must use a customization class (see
customization-class in Table 9–3) to complete cache coordination configuration.

Table 9–3 orion-ejb-jar.xml File persistence-manager Subentries for pm-properties

Entry Description

session-name Unique name for this TopLink-persisted EJB deployment JAR file. Must be
unique among all TopLink-persisted deployed JAR files in this application
server instance.

When the TopLink run time internally creates a TopLink session for this
TopLink-persisted deployed JAR file, the TopLink session manager stores
the session instance under this session-name. For more information
about the session manager, see Chapter 90, "Acquiring and Using Sessions
at Run Time").

If you do not specify a name, the TopLink runtime will generate a unique
name.

project-class If you export your TopLink mapping metadata to a Java class (that
extends oracle.toplink.sessions.Project), set this property to
the name of the class, fully qualified by its package name. Be sure to
include the class file in the deployable JAR file.

Do not set this property if you are using a mapping metadata file (see
descriptor in Table 9–2).

customization-class Optional Java class (that implements
oracle.toplink.ejb.cmp.DeploymentCustomization) used to
allow deployment customization of TopLink mapping and run-time
configuration. At deployment time, the TopLink run time creates a new
instance of this class and invokes its methods
beforeLoginCustomization (before the TopLink run time logs into
the session) and afterLoginCustomization (after the TopLink
runtime logs into the session), passing in the TopLink session as a
parameter.

Use your implementation of the beforeLoginCustomization method
to configure session attributes not supported by the pm-properties
including: cache coordination (see also Section 9.9.1.2, "Configuring
cache-synchronization Properties"), parameterized SQL, native SQL, batch
writing/batch size, byte-array/string binding, EIS login, event listeners,
table qualifier, and sequencing. For more information about session
configuration, see Chapter 89, "Configuring a Session".

The class must be fully qualified by its package name and included in the
deployment JAR file.

db-platform-class Optional TopLink database platform class (instance of
oracle.toplink.platform.database or
oracle.toplink.platform.database.oracle) containing TopLink
support specific to a particular database.

Set this value to the database platform class that corresponds to the
database that your application uses. The class must be fully qualified by
its package name.

remote-relationships Optional flag to allow relationships between remote objects. Valid values
are:

■ true: All relationships will be maintained through the remote
interfaces of the entity beans

■ false: Disables this feature.

cache-synchronization See Section 9.9.1.2, "Configuring cache-synchronization Properties".

default-mapping See Section 9.9.1.3, "Configuring default-mapping Properties".

Configuring the orion-ejb-jar.xml File for OC4J

9-12 Developer's Guide for Oracle TopLink

For more information about TopLink cache coordination configuration, see
Chapter 103, "Configuring a Coordinated Cache".

9.9.1.3 Configuring default-mapping Properties
When you select TopLink as the persistence manager (see name in Table 9–2), use the
pm-properties subentry for default-mapping (see Table 9–5) to configure the
TopLink default mapping and automatic table generation feature.

For more information about TopLink default mappings, see Section 17.2.3.4, "Default
Mapping in EJB 2.n CMP Projects Using OC4J at Run Time".

For more information about TopLink automatic table generation, see Section 6.4,
"Creating Database Tables Automatically".

Table 9–4 orion-ejb-jar.xml File pm-properties Subentries for cache-synchronization

Entry Description

mode An indicator of whether or not cache coordination updates should be propagated
to other servers synchronously or asynchronously. Valid values are as follows:

■ asynchronous (default)

■ synchronous

server-url For a JMS coordinated cache: assuming that you are using the OC4J JNDI naming
service and that all the hosts in your coordinated cache can communicate using
OC4J proprietary RMI protocol ORMI, use a URL similar to the following:

ormi://<JMS-host-IP>:<JMS-host-port>

where JMS-host-IP is the IP address of the host on which the JMS service
provider is running, and JMS-host-port is the port on which the JMS service
provider is listening for JMS requests.

For an RMI or CORBA coordinated cache: assuming that you are using the OC4J
JNDI naming service and that all the hosts in your coordinated cache can
communicate using OC4J proprietary RMI protocol ORMI on OC4J default port
23791, use a URL similar to the following:

ormi://<session-host-IP>:23791

where session-host-IP is the IP address of the host on which this session is
deployed.

server-user Optional user name required to log in to the JNDI naming service.

Configuring the orion-ejb-jar.xml File for OC4J

Creating TopLink Files for Deployment 9-13

Table 9–5 orion-ejb-jar.xml File pm-properties Subentries for default-mapping

Entry Description

db-table-gen Optional element that determines what TopLink will do to prepare the
database tables that are being mapped to. Valid values are:

■ Create (default): This value tells TopLink to create the mapped
tables during the deployment. If the tables already exist, TopLink
will log an appropriate warning messages (such as "Table already
existed...") and keeps processing the deployment.

■ DropAndCreate: This value tells TopLink to drop tables before
creating them during deployment. If a table does not initially exist,
the drop operation will cause anSQLException to be thrown through
the driver. However, TopLink handles the exception (logs and
ignores it) and moves on to process the table creation operation. The
deployment fails only if both drop and create operations fail.

■ UseExisting: This value tells TopLink to perform no table
manipulation. If the tables do not exist, deployment still goes
through without error.

If no orion-ejb-jar.xml file is defined in your EAR file, the OC4J
container generates one during deployment. In this case, to specify a value
for db-table-gen, use the TopLink system property
toplink.defaultmapping.dbTableGenSetting. For example:
-Dtoplink.defaultmapping.dbTableGenSetting="DropAndCre
ate".

The orion-ejb-jar.xml property overrides the system property. If
both the orion-ejb-jar.xml property and the system property are
present, TopLink retrieves the setting from the orion-ejb-jar.xml file.

This setting overrides autocreate-tables and autodelete-tables
configuration at the application (EAR) or system level. For more
information, see Section 6.4, "Creating Database Tables Automatically".

extended-table-names An element used if the generated table names are not long enough to be
unique. Values are restricted to true or false (default). When set to
true, the TopLink run time will ensure that generated tables names are
unique.

In default mapping, each entity is mapped to one table. The only
exception is in many-to-many mappings where there is one extra relation
table involved in the source and target entities.

When extended-table-names is set to false (the default), a simple
table naming algorithm is used as follows: table names are defined as TL_
<bean_name>. For example, if the bean name is Employee, the
associated table name would be TL_EMPLOYEE.

However, if the same entity is defined in multiple JAR files in an
application, or across multiple applications, table-naming collision is
inevitable.

To address this problem, set extended-table-names to true. When set
to true, TopLink uses an alternative table-naming algorithm as follows:
table names are defined as <bean_name>_<jar_name>_<app_name>.
This algorithm uses the combination of bean, JAR, and EAR names to
form a table name unique across the application. For example, given a
bean named Employee, which is in Test.jar, which is in Demo.ear
(and the application name is "Demo"), then the corresponding table name
will be EMPLOYEE_TEST_DEMO.

If there is no orion-ejb-jar.xml file defined in the EAR file, the OC4J
container generates one during deployment. In this case, to specify a value
for extended-table-names, use the TopLink system property
toplink.defaultmapping.useExtendedTableNames. For example:
-Dtoplink.defaultmapping.useExtendedTableNames="true".

The orion-ejb-jar.xml property overrides the system property. If
both the orion-ejb-jar.xml property and the system property are
present, TopLink retrieves the setting from the orion-ejb-jar.xml file.

Configuring the orion-ejb-jar.xml File for OC4J

9-14 Developer's Guide for Oracle TopLink

10

Packaging a TopLink Application 10-1

10Packaging a TopLink Application

How you package the components of your application depends on the type of
application and how you plan to deploy it.

This chapter describes TopLink-specific details applicable to the common packaging
strategies used for various types of applications.

This chapter includes the following sections:

■ Packaging Java Applications

■ Packaging JavaServer Pages and Servlet Applications

■ Packaging Session Bean Applications

■ Packaging JPA Applications

■ Packaging a POJO Application for Weaving

■ Packaging CMP Applications

■ Packaging BMP Applications

■ Packaging with TopLink Metadata File Resource Paths

For more information, see the following:

■ Chapter 8, "Integrating TopLink with an Application Server"

■ Chapter 9, "Creating TopLink Files for Deployment"

■ Chapter 11, "Deploying a TopLink Application"

10.1 Packaging Java Applications
For non-Java EE Java applications, it is common to package the application in a single
JAR file, as Example 10–1 shows.

Example 10–1 Packaging a non-Java EE Java Application

domain_module.jar
Java classes that represent the objects mapped
project.xml
session.xml

Note: If you are using EJB 3.0, you may be using annotations instead
of some deployment files. Include deployment descriptors to override
annotations or specify options not supported by annotations.

Packaging JavaServer Pages and Servlet Applications

10-2 Developer's Guide for Oracle TopLink

META-INF
Manifest.mf

This JAR contains the TopLink files and domain objects required by the application,
including the following:

■ sessions.xml (see Section 9.1.2, "sessions.xml File");

■ project.xml (see Section 9.1.1, "project.xml File") (or the compiled Project
class file if you are not using XML files for deployment);

■ The mapped classes required by the application, in a fully-resolved directory
structure.

When you create the JAR file, the JAR building utility automatically creates a directory
structure within the JAR. Ensure that the sessions.xml file and the project.xml
file (or project class file) appear at the root of the JAR file. Ensure that the class
directory structure starts at the root of the JAR.

If you do not store the project.xml or sessions.xml files at the root of the JAR
file, see Section 10.8, "Packaging with TopLink Metadata File Resource Paths".

10.2 Packaging JavaServer Pages and Servlet Applications
For simple Java EE applications without EJB, it is common to package the application
in an Enterprise Archive (EAR) file made up of various Java EE application component
archives, as Example 10–2 shows.

Example 10–2 Packaging a Java EE JSP or Servlet Application Without EJB

appname.ear
META-INF

application.xml
orion-application.xml

domain_module.jar
Java classes that represent the object mapped
project.xml
session.xm
META-INF

Manifest.mf
web_module.war

html pages, JSP’s, etc.
META-INF

web.xml
orion-web.xml

classes
servlet classes

lib
client_module.jar

Client classes
META-INF

application-client.xml
orion-application-client.xml

The component archives with TopLink dependencies include TopLink domain JAR
(see Section 10.2.1, "How to Create the TopLink Domain JAR").

Packaging Session Bean Applications

Packaging a TopLink Application 10-3

10.2.1 How to Create the TopLink Domain JAR
The domain JAR contains the TopLink files and domain objects required by the
application, including the following:

■ sessions.xml (see Section 9.1.2, "sessions.xml File");

■ project.xml (see Section 9.1.1, "project.xml File") (or the compiled Project
class file, if you are not using XML files for deployment);

■ The mapped classes required by the application, in a fully resolved directory
structure.

When you create the JAR file, the JAR building utility automatically creates a directory
structure within the JAR. Ensure that the sessions.xml file and the project.xml
file (or project.class file) appear at the root of the JAR file. Also ensure that the
class directory structure starts at the root of the JAR.

If you do not store the project.xml or sessions.xml files at the root of the JAR
file, see Section 10.8, "Packaging with TopLink Metadata File Resource Paths".

10.3 Packaging Session Bean Applications
The packaging strategy you choose depends on whether you are packaging an EJB 1.n
or 2.n session bean application (see Section 10.3.1, "How to Package an EJB 1.n and 2.n
Session Bean Application"), or an EJB 3.0 session bean application (see Section 10.3.2,
"How to Package an EJB 3.0 Session Bean Application").

10.3.1 How to Package an EJB 1.n and 2.n Session Bean Application
For Java EE applications with session beans, it is common to package the application
in an Enterprise Archive (EAR) file made up of various Java EE application component
archives, as Example 10–3 shows.

Example 10–3 Packaging a Java EE Application with Session Beans

appname.ear
META-INF

application.xml
orion-application.xml

ejb_module_X.jar
EJB classes - session and non-entity beans
META-INF

ejb-jar.xml
orion-ejb-jar.xml - no persistence-manager subentries

domain_module.jar
Java classes that represent the object mapped
project.xml
session.xml
META-INF

Manifest.mf
web_module.war

html pages, JSP’s, etc.
META-INF

web.xml
orion-web.xml

classes
servlet classes

lib
client_module.jar

Packaging JPA Applications

10-4 Developer's Guide for Oracle TopLink

Client classes
META-INF

application-client.xml
orion-application-client.xml

The component archives with TopLink dependencies include the following:

■ TopLink domain JAR (see Section 10.2.1, "How to Create the TopLink Domain
JAR");

■ EJB JAR (see Section 10.3.4, "How to Create the EJB JAR").

10.3.2 How to Package an EJB 3.0 Session Bean Application
For information on how to package an EJB 3.0 session bean application, see "Packaging
an EclipseLink JPA Application" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Packaging_and_Deploying_EclipseLink_JPA_
Applications_%28ELUG%29#Packaging_an_EclipseLink_JPA_
Application.

10.3.3 How to Create the TopLink Domain JAR
The domain JAR contains the TopLink files and domain objects required by the
application, including the following:

■ sessions.xml (see Section 9.1.2, "sessions.xml File");

■ project.xml (see Section 9.1.1, "project.xml File") (or the compiled
Project.class file if you are not using XML files for deployment);

■ The mapped classes required by the application, in a fully-resolved directory
structure.

When you create the JAR file, the JAR building utility automatically creates a directory
structure within the JAR. Ensure that the sessions.xml file and the project.xml
file (or project.class file) appear at the root of the JAR file. Also ensure that the
class directory structure starts at the root of the JAR.

If you do not store the project.xml or sessions.xml files at the root of the JAR
file, see Section 10.8, "Packaging with TopLink Metadata File Resource Paths".

10.3.4 How to Create the EJB JAR
In this type of application, the EJB JAR contains session beans. Consequently, its
orion-ejb-jar.xml file does not contain persistence-manager or
pm-properties entries. These entries apply only to CMP applications.

10.4 Packaging JPA Applications
See "Packaging an EclipseLink JPA Application" section of EclipseLink Developer’s Guide
at http://wiki.eclipse.org/Packaging_and_Deploying_EclipseLink_
JPA_Applications_%28ELUG%29#Packaging_an_EclipseLink_JPA_
Application for information on how to package your JPA application.

10.5 Packaging a POJO Application for Weaving
To package a POJO application for weaving, you create a JAR that contains a
sessions.xml file and a persistence.xml file.

Packaging CMP Applications

Packaging a TopLink Application 10-5

For more information on weaving, see Section 2.10.4.1, "To Package a POJO
Application for Weaving".

10.6 Packaging CMP Applications
For Java EE applications that use CMP to persist entity beans, it is common to package
the application in an Enterprise Archive (EAR) file made up of various Java EE
application component archives, as Example 10–4 shows.

Example 10–4 Packaging a Java EE Application with Entity Beans with
Container-Managed Persistence

appname.ear
META-INF

application.xml
orion-application.xml

cmp_ejb_module_1.jar
EJB classes - cmp entity beans
META-INF

ejb-jar.xml
orion-ejb-jar.xml - includes persistence-manager properties
toplink-ejb-jar.xml

ejb_module_X.jar
EJB classes - non-entity beans
META-INF

ejb-jar.xml
orion-ejb-jar.xml - no persistence-manager subentries

web_module.war
html pages, JSP’s, etc.
META-INF

web.xml
orion-web.xml

classes
servlet classes

lib
client_module.jar

Client classes
META-INF

application-client.xml
orion-application-client.xml

The component archives with TopLink dependencies include EJB JAR (see
Section 10.3.4, "How to Create the EJB JAR").

10.6.1 How to Create the EJB JAR
In this type of application, the EJB JAR file specifically service both non-entity and
entity EJB. It includes the following:

■ The home and remote, and all implementation code for all mapped beans in the
application.

■ All mapped non-EJB classes from the Oracle JDeveloper or TopLink Workbench
project

■ The home and remote, and all implementation code for any session beans
included in the application.

■ Helper classes that contain TopLink amendment methods, and any other classes
the application requires.

Packaging BMP Applications

10-6 Developer's Guide for Oracle TopLink

For example, an instance of
oracle.toplink.ejb.cmp.DeploymentCustomization (for more
information, see customization-class in Table 9–3 in Section 9.9.1, "How to
Configure persistence-manager Entries").

Store the following XML files in the EJB JAR \meta-inf directory:

■ ejb-jar.xml (see ejb-jar.xml File)

■ JAVA-EE-COMTAINER-ejb-jar.xml (see JAVA-EE-CONTAINER-ejb-jar.xml
File)

■ toplink-ejb-jar.xml (see toplink-ejb-jar.xml File)

You must persist all of the entity beans to the same data source. For a CMP
application, TopLink does not support the session broker functionality (see
Section 87.7, "Session Broker and Client Sessions").

10.7 Packaging BMP Applications
For Java EE applications that use BMP to persist entity beans, it is common to package
the application in an Enterprise Archive (EAR) file made up of various Java EE
application component archives, as Example 10–5 shows.

Example 10–5 Packaging a Java EE Application with Entity Beans with Bean-Managed
Persistence

appname.ear
META-INF

application.xml
orion-application.xml

bmp_ejb_module_1.jar
EJB classes - bmp entity beans
META-INF

ejb-jar.xml
orion-ejb-jar.xml - includes persistence-manager properties
toplink-ejb-jar.xml

ejb_module_X.jar
EJB classes - non-entity beans
META-INF

ejb-jar.xml
orion-ejb-jar.xml - no persistence-manager subentries

domain_module.jar
Java classes that represent the object mapped
project.xml
session.xml
META-INF

Manifest.mf
web_module.war

html pages, JSP’s, etc.
META-INF

web.xml
orion-web.xml

classes

Note: If you do not use XML files for deployment, include your
compiled oracle.toplink.sessions.Project file at the root of
the EJB JAR (not in the \meta-inf directory).

Packaging BMP Applications

Packaging a TopLink Application 10-7

servlet classes
lib

client_module.jar
Client classes
META-INF

application-client.xml
orion-application-client.xml

The component archives with TopLink dependencies include the following:

■ TopLink domain JAR (see Section 10.2.1, "How to Create the TopLink Domain
JAR")

■ EJB JAR (see Section 10.3.4, "How to Create the EJB JAR")

10.7.1 How to Create the TopLink Domain JAR
The domain JAR contains the TopLink files and domain objects required by the
application, including the following:

■ sessions.xml (see Section 9.1.2, "sessions.xml File");

■ project.xml (see Section 9.1.1, "project.xml File") (or the compiled
Project.class file if you are not using XML files for deployment);

■ The mapped classes required by the application, in a fully resolved directory
structure.

When you create the JAR file, the JAR building utility automatically creates a directory
structure within the JAR. Ensure that the sessions.xml file and the project.xml
file (or project.class file) appear at the root of the JAR file. Also ensure that the
class directory structure starts at the root of the JAR.

If you do not store the project.xml or sessions.xml files at the root of the JAR
file, see Section 10.8, "Packaging with TopLink Metadata File Resource Paths".

10.7.2 How to Create EJB JAR File
In this type of application, the EJB JAR file specifically services both session and entity
beans. It includes the following:

■ The home and remote, and all implementation code for all mapped beans in the
application.

■ All mapped non-EJB classes from the Oracle JDeveloper or TopLink Workbench
project.

■ The home and remote, and all implementation code for any session beans
included in the application.

■ Helper classes that contain TopLink amendment methods, and any other classes
the application requires.

Store the following XML files in the EJB JAR \meta-inf directory:

■ ejb-jar.xml (see ejb-jar.xml File)

■ JAVA-EE-COMTAINER-ejb-jar.xml (see JAVA-EE-CONTAINER-ejb-jar.xml
File)

Because the EJB JAR does not contain entity beans with container-managed
persistence, its orion-ejb-jar.xml file must not contain persistence-manager
or pm-properties entries.

Packaging with TopLink Metadata File Resource Paths

10-8 Developer's Guide for Oracle TopLink

For more information, see Section 9.9.1, "How to Configure persistence-manager
Entries".

10.8 Packaging with TopLink Metadata File Resource Paths
If you do not store the project.xml or sessions.xml files at the root of the JAR
file, then you must provide the full resource path to the files when accessing them.
Ensure that you use "/" in resources paths, not "\". Using "\" will not work in Java.

For example, in the jar element, reference the project.xml and sessions.xml
files as follows:

<jar>/myapp/ordersys/persist/sessions.xml
<jar>/myapp/ordersys/persist/project.xml
In the sessions.xml file, reference the project.xml as follows:

myapp/ordersys/persist/project.xml
To acquire the session, use the following:

SessionManager.getManager().getSession(
new XMLSessionConfigLoader("myapp/ordersys/persist/sessions.xml"),
"OrdersysSession",
getClass().getClassLoader()

);
For more information about acquiring sessions at run time, see Section 90.3,
"Acquiring a Session from the Session Manager".

11

Deploying a TopLink Application 11-1

11Deploying a TopLink Application

This chapter includes deployment information on various types of TopLink
applications.

This chapter includes the following sections:

■ Deploying Java Applications

■ Deploying JavaServer Pages and Servlets

■ Deploying Session Bean Applications

■ Deploying JPA Applications

■ Deploying CMP Applications

■ Deploying BMP Applications

■ Performing Hot Deployment of EJB

For more information, see the following:

■ Chapter 8, "Integrating TopLink with an Application Server"

■ Chapter 9, "Creating TopLink Files for Deployment"

■ Chapter 10, "Packaging a TopLink Application"

11.1 Deploying Java Applications
Build the JAR file (see Section 10.1, "Packaging Java Applications") and place it on the
classpath.

For more information on accessing TopLink from your client application, see
Chapter 90, "Acquiring and Using Sessions at Run Time".

11.2 Deploying JavaServer Pages and Servlets
After you build the WAR and JAR files (see Section 10.2, "Packaging JavaServer Pages
and Servlet Applications"), build them into an EAR file for deployment. To deploy the
EAR to your JSP servlet server, copy the EAR to a commonly used directory. You may
also need to use server-specific deployment tools. For more information, see the server
documentation.

For more information on accessing TopLink from your client application, see
Section 90.3.2, "How to Load a Session from sessions.xml with an Alternative Class
Loader".

Deploying Session Bean Applications

11-2 Developer's Guide for Oracle TopLink

11.3 Deploying Session Bean Applications
After you build the WAR and JAR files (see Section 10.3, "Packaging Session Bean
Applications"), build them into an EAR file for deployment. To deploy the EAR file to
your Java EE server, copy the EAR to a commonly used directory. You may also need
to use server-specific deployment tools. For more information, see the server
documentation.

For more information on accessing TopLink from your client application, see
Section 90.3.2, "How to Load a Session from sessions.xml with an Alternative Class
Loader".

Optionally, you may also consider Section 11.7, "Performing Hot Deployment of EJB".

11.4 Deploying JPA Applications
After you packaged your JPA application, deploy it to an application server of your
choice.

For more information, see "Deploying an EclipseLink JPA Application" section of
EclipseLink Developer’s Guide at http://wiki.eclipse.org/Packaging_and_
Deploying_EclipseLink_JPA_Applications_%28ELUG%29#Deploying_an_
EclipseLink_JPA_Application.

11.5 Deploying CMP Applications
After you build the WAR and JAR files (see Section 10.6, "Packaging CMP
Applications"), build them into an EAR file for deployment. To deploy the EAR file to
your Java EE server, copy the EAR to a commonly used directory. You may also need
to use server-specific deployment tools. For more information, see the server
documentation.

This section describes How to Deploy a CMP Application to OC4J.

For additional information on server-specific configuration, see Chapter 8, "Integrating
TopLink with an Application Server".

Optionally, you may also consider Section 11.7, "Performing Hot Deployment of EJB".

11.5.1 How to Deploy a CMP Application to OC4J
For more information, see Oracle Fusion Middleware Administrator's Guide.

When you deploy a CMP application to OC4J, the following happens:

■ OC4J performs a partial EJB conformance check on the beans and their associated
interfaces.

■ OC4J builds the internal OC4J classes that manage security and transactions, as
well as the RMI stubs and skeletons that enable client access to the beans.

■ TopLink builds concrete bean subclasses and EJB finder method implementations.

11.6 Deploying BMP Applications
After you build the WAR and JAR files, build them into an EAR file for deployment.
To deploy the EAR file to your Java EE server, copy the EAR to a commonly used
directory. You may also need to use server-specific deployment tools. For more
information, see the server documentation.

Performing Hot Deployment of EJB

Deploying a TopLink Application 11-3

For additional information on server-specific configuration, see Chapter 8, "Integrating
TopLink with an Application Server".

Optionally, you may also consider Section 11.7, "Performing Hot Deployment of EJB".

11.7 Performing Hot Deployment of EJB
Many Java EE containers support hot deployment, a feature that enables you to deploy
EJB on a running server. Hot deployment allows you to do the following:

■ Deploy newly developed EJB to a running production system.

■ Remove (undeploy) deployed EJB from a running server.

■ Modify (redeploy) the behavior of deployed EJB by updating the bean class
definition.

The client receives deployment exceptions when attempting to access undeployed or
re-deployed bean instances. The client application must catch and handle the
exceptions.

How you configure hot deployment of EJB depends on the type of Java EE application
you are deploying:

■ CMP application (see Section 11.7.1, "How to Perform Hot Deployment in a CMP
Application");

■ POJO application (see Section 11.7.2, "How to Perform Hot Deployment in a POJO
Application").

For more information about hot deployment, see the Java EE container documentation.

11.7.1 How to Perform Hot Deployment in a CMP Application
When you take advantage of hot deployment in a CMP application, consider the
following:

■ You must deploy all related beans (all beans that share a common TopLink project)
within the same EJB JAR file. Because TopLink views deployment on a project
level, deploy all the project beans (rather than just a portion of them) to maintain
consistency across the project.

■ When you redeploy a bean, you automatically reset its TopLink project. This
flushes all object caches and rolls back any active object transactions associated
with the project.

11.7.2 How to Perform Hot Deployment in a POJO Application
When you take advantage of hot deployment in a POJO application, you must refresh
the TopLink session using the SessionManager method getSession with the
appropriate arguments (see Section 90.3.6, "How to Refresh a Session when the Class
Loader Changes".

If you do not use this SessionManager method, then your application is responsible
for destroying or refreshing the session when a hot deployment (or hot redeployment)
occurs.

Performing Hot Deployment of EJB

11-4 Developer's Guide for Oracle TopLink

Part IV
Part IV Optimization and Customization of a

TopLink Application

This part describes how to optimize and customize a TopLink application. It contains
the following chapters:

■ Chapter 12, "Optimizing the TopLink Application"

This chapter contains information on the diverse set of features TopLink provides
to optimize performance.

■ Chapter 13, "Customizing the TopLink Application"

This chapter describes how to customize various aspects of TopLink, based on
your application’s specific needs.

12

Optimizing the TopLink Application 12-1

12 Optimizing the TopLink Application

TopLink provides a diverse set of features to measure and optimize application
performance. You can enable or disable most features in the descriptors or session,
making any resulting performance gains global.

This chapter includes the following sections:

■ Introduction to Optimization

■ Identifying Sources of Application Performance Problems

■ Measuring TopLink Performance with the TopLink Profiler

■ Measuring TopLink Performance with the Oracle
Dynamic Monitoring System (DMS)

■ Identifying General Performance Optimization

■ Optimizing for a Production Environment

■ Optimizing Schema

■ Optimizing Mappings and Descriptors

■ Optimizing Sessions

■ Optimizing Cache

■ Optimizing Data Access

■ Optimizing Queries

■ Optimizing the Unit of Work

■ Optimizing Using Weaving

■ Optimizing the Application Server and Database Optimization

■ Optimizing Storage and Retrieval of Binary Data in XML

12.1 Introduction to Optimization
Performance considerations are present at every step of the development cycle.
Although this implies an awareness of performance issues in your design and
implementation, it does not mean that you should expect to achieve the best possible
performance in your first pass.

For example, if optimization complicates the design, leave it until the final
development phase. You should still plan for these optimizations from your first
iteration, to make them easier to integrate later.

Identifying Sources of Application Performance Problems

12-2 Developer's Guide for Oracle TopLink

The most important concept associated with tuning your TopLink application is the
idea of an iterative approach. The most effective way to tune your application is to do
the following:

1. Measure application performance using the TopLink profiler (see Section 12.3,
"Measuring TopLink Performance with the TopLink Profiler") or the Oracle
Dynamic Monitoring System (DMS) profiler (see Section 12.4, "Measuring TopLink
Performance with the Oracle Dynamic Monitoring System (DMS)");

2. Modify application components (see Section 12.2, "Identifying Sources of
Application Performance Problems");

3. Measure performance again.

To identify the changes that improve your application performance, modify only one
or two components at a time. You should also tune your application in a
nonproduction environment before you deploy the application.

12.2 Identifying Sources of Application Performance Problems
For various parts of a TopLink enabled application, this section describes the
performance problems most commonly encountered and provides suggestions for
improving performance. Areas of the application where performance problems could
occur include the following:

■ General (see Section 12.5, "Identifying General Performance Optimization")

■ Schema (see Section 12.7, "Optimizing Schema")

■ Mappings and descriptors (see Section 12.8, "Optimizing Mappings and
Descriptors")

■ Sessions (see Section 12.9, "Optimizing Sessions")

■ Cache (see Section 12.10, "Optimizing Cache")

■ Data access (see Section 12.11, "Optimizing Data Access")

■ Queries (see Section 12.12, "Optimizing Queries")

■ Unit of work (see Section 12.13, "Optimizing the Unit of Work")

■ Application server and database (see Section 12.15, "Optimizing the Application
Server and Database Optimization")

12.3 Measuring TopLink Performance with the TopLink Profiler
The most important challenge to performance tuning is knowing what to optimize. To
improve the performance of your application, identify the areas of your application
that do not operate at peak efficiency. The TopLink performance profiler helps you
identify performance problems by logging performance statistics for every executed
query in a given session.

The TopLink performance profiler logs the following information to the TopLink log
file (for general information about TopLink logging, see Section 87.2.6, "Logging"):

Note: You should also consider using general performance profilers,
such as Oracle JDeveloper or JProbe, to analyze performance
problems. These tools can provide more detail that may be required to
properly diagnose a problem.

Measuring TopLink Performance with the TopLink Profiler

Optimizing the TopLink Application 12-3

■ query class;

■ domain class;

■ total time, total execution time of the query (in milliseconds);

■ local time, the amount of time spent on the user’s workstation (in milliseconds);

■ number of objects, the total number of objects affected;

■ number of objects handled per second;

■ logging, the amount of time spent printing logging messages (in milliseconds);

■ SQL prepare, the amount of time spent preparing the SQL script (in milliseconds);

■ SQL execute, the amount of time spent executing the SQL script (in milliseconds);

■ row fetch, the amount of time spent fetching rows from the database (in
milliseconds);

■ cache, the amount of time spent searching or updating the object cache (in
milliseconds);

■ object build, the amount of time spent building the domain object (in
milliseconds);

■ query prepare, the amount of time spent to prepare the query prior to execution
(in milliseconds);

■ SQL generation, the amount of time spent to generate the SQL script before it is
sent to the database (in milliseconds).

This section includes information on the following topics:

■ How to Configure the TopLink Performance Profiler

■ How to Access the TopLink Profiler Results

12.3.1 How to Configure the TopLink Performance Profiler
To enable the TopLink performance profiler, select the TopLink profiler option when
configuring your session (see Section 89.6, "Configuring a Performance Profiler").

The TopLink performance profiler is an instance of
oracle.toplink.tools.profiler.PerformanceProfiler class. It provides
the following public API:

■ logProfile–enables the profiler;

■ dontLogProfile–disables the profiler;

■ logProfileSummary–organizes the profiler log into a summary of all the
individual operation profiles including operation statistics like the shortest time of
all the operations that were profiled, the total time of all the operations, the

Note: Use the TopLink performance profiler to profile
single-threaded finite use cases to determine the bottle neck.

Do not use the TopLink performance profiler to enable monitoring of a
long-running multi-threaded server–use the DMS profiler instead (see
Section 12.4, "Measuring TopLink Performance with the Oracle
Dynamic Monitoring System (DMS)").

Measuring TopLink Performance with the Oracle Dynamic Monitoring System (DMS)

12-4 Developer's Guide for Oracle TopLink

number of objects returned by profiled queries, and the total time that was spent
in each kind of operation that was profiled;

■ logProfileSummaryByQuery–organizes the profiler log into a summary of all
the individual operation profiles by query;

■ logProfileSummaryByClass–organizes the profiler log into a summary of all
the individual operation profiles by class.

12.3.2 How to Access the TopLink Profiler Results
The simplest way to view TopLink profiler results is to read the TopLink log files with
a text editor. For general information about TopLink logging, such as logging file
location, see Section 87.2.6, "Logging".

Alternatively, you can use the graphical performance profiler that the TopLink Web
client provides. For more information, refer to the Web client online Help and
README files.

Example 12–1 shows an example of the TopLink profiler output.

Example 12–1 Performance Profiler Output

Begin Profile of{
ReadAllQuery(oracle.toplink.demos.employee.domain.Employee)
Profile(ReadAllQuery,# of obj=12, time=1399,sql execute=217,
prepare=495, row fetch=390, time/obj=116,obj/sec=8)
} End Profile
The second line of the profile contains the following information about a query:

■ ReadAllQuery(oracle.toplink.demos.employee.domain.Employee):
specific query profiled, and its arguments.

■ Profile(ReadAllQuery: start of the profile and the type of query.

■ # of obj=12: number of objects involved in the query.

■ time=1399: total execution time of the query (in milliseconds).

■ sql execute=217: total time spent executing the SQL statement.

■ prepare=495: total time spent preparing the SQL statement.

■ row fetch=390: total time spent fetching rows from the database.

■ time/obj=116: number of milliseconds spent on each object.

■ obj/sec=8: number of objects handled per second.

12.4 Measuring TopLink Performance with the Oracle
Dynamic Monitoring System (DMS)

Oracle DMS is a library that enables application and system developers to use a
variety of DMS sensors to measure and export customized performance metrics for
specific software components (called nouns).

TopLink includes DMS instrumentation in essential objects to provide efficient
monitoring of run-time data in TopLink-enabled applications, including both Java EE
and non-Java EE applications.

DMS instrumentation plays an important role in Oracle Application Server
Manageability and Diagnosability. TopLink-specific DMS instrumentation ensures that

Measuring TopLink Performance with the Oracle Dynamic Monitoring System (DMS)

Optimizing the TopLink Application 12-5

you can use Manageability and Diagnosability to simplify management and problem
diagnosis for TopLink-enabled applications deployed to Oracle Application Server.

By enabling DMS profiling in a TopLink application (see Section 12.4.1, "How to
Configure the Oracle DMS Profiler"), you can collect and easily access run-time data
that can help you with application administration tasks and performance tuning.

Table 12–1 lists the many performance and status metrics TopLink provides through
DMS for TopLink server session name SERVER-SESSION-NAME. TopLink also
provides query metrics organized by domain class, query type, query name (if
defined), and operation (if defined).

Table 12–2 lists the miscellaneous TopLink operations for which DMS metrics are
collected. These operations apply to any TopLink metric in Table 12–1 with an
OPERATION-NAME in its sensor name.

Table 12–3 lists the various profiling levels you can use to adjust the level of profiling
to the amount of monitoring information you require. Levels are listed in order of
increasing system overhead.

You can easily access DMS data at run time using a management application that
supports the Java Management Extensions (JMX) API such as the JConsole, or using
any Web browser and the DMS Spy servlet.

For more information, see the following:

■ Section 12.4.2, "How to Access Oracle DMS Profiler Data Using JMX"

■ Section 12.4.3, "How to Access Oracle DMS Profiler Data Using the DMS Spy
Servlet"

■ Oracle Fusion Middleware Administrator's Guide

Note: You should also consider using general performance profilers,
such as Oracle JDeveloper or JProbe, to analyze performance
problems. These tools can provide more detail that may be required to
properly diagnose a problem.

Table 12–1 TopLink DMS Metrics

DMS Noun Name Sensor Name Level1 Description

Cache_SERVER-SESSION-NAME CacheHits HEAVY The number of times that the
object was found in the cache.

CacheMisses HEAVY The number of times that the
object was not found in the
cache.

Caching ALL Includes time spent adding,
looking up, and removing
objects in the cache.

Connection_
SERVER-SESSION-NAME

ConnectCalls HEAVY Total number of connect calls
made.

ConnectionManagement ALL Time spent managing
connections including
connecting, reconnecting, and
disconnecting from a data
source.

ConnectionsInUse(default) HEAVY Number of connections in use
per pool for any exclusive
ConnectionPool(Write,
ExclusiveRead).

Measuring TopLink Performance with the Oracle Dynamic Monitoring System (DMS)

12-6 Developer's Guide for Oracle TopLink

ConnectionsInUse(POOL-NAME) HEAVY Number of connections in use
per pool for any exclusive
ConnectionPool(Write,
ExclusiveRead).

DisconnectCalls HEAVY Total number of disconnect
calls made.

Miscellaneous_
SERVER-SESSION-NAME

DescriptorEvents ALL Time spent on execute
DescriptorEvent.

logging ALL Time spent logging TopLink
activities.

OPERATION-NAME HEAVY Total time spent on operation:
OPERATION-NAME. This is for
special operations not included
in any query nouns, such as
batch writing.

For valid OPERATION-NAME
values, see Section 12–2,
" TopLink Operations".

SessionEvents ALL Time spent on execute
SessionEvent.

wrapping ALL Time spent wrapping both
CMP and BMP beans.

RCM_SERVER-SESSION-NAME ChangesNotProcessed ALL The number of
ObjectChangeSet thrown
away because the object was
not found in the cache.

ChangesProcessed ALL The number of
ObjectChangeSet was
found in the cache.

MessagesReceived HEAVY Number of messages that been
received through the RCM.

MessagesSent HEAVY Number of messages that been
sent through the RCM.

RCMStatus HEAVY One of [not configured, started,
stopped].

RemoteChangeSets HEAVY Number of change sets
received from remote machines
and processed.

Session_SERVER-SESSION-NAME ClientSession HEAVY The number of
ClientSession was logged
in.

loginTime NORMAL Time the session was logged
in.

UnitOfWork HEAVY Count of total number of
UnitOfWork objects created.

Table 12–1 (Cont.) TopLink DMS Metrics

DMS Noun Name Sensor Name Level1 Description

Measuring TopLink Performance with the Oracle Dynamic Monitoring System (DMS)

Optimizing the TopLink Application 12-7

TopLink_SERVER-SESSION-NAME_
DOMAIN-CLASS_QUERY-TYPE_
QUERY-NAME

TopLink_SERVER-SESSION-NAME_
DOMAIN-CLASS_QUERY-TYPE_
QUERY-NAME_OPERATION-NAME

HEAVY Total time spent on operation:
TopLink_
SERVER-SESSION-NAME_
DOMAIN-CLASS_
QUERY-TYPE_QUERY-NAME_
OPERATION-NAME.

Where QUERY-NAME and
OPERATION-NAME are
optional.

For example, given:

import
com.acme.model.Employee;
UpdateAllQuery
updateAllQuery = new
UpdateAllQuery(Employee.cla
ss);
updateAllQuery.setName("Upd
ateAllEmployee");

The DMS sensor name would
be:

TopLink_
SERVER-SESSION-NAME_
com.acme.model.Employee
UpdateAllQuery
UpdateAllEmployee_
OPERATION-NAME

For valid OPERATION-NAME
values, see Section 12–2,
" TopLink Operations".

Transaction_
SERVER-SESSION-NAME

deleted_object ALL Object need to be removed
from identity map from
ObjectChangeSet.

DistributedMerge ALL Time spent merging remote
transaction changes into local
shared cache. Appears when
cache sync is used.

MergeTime ALL Time spent merging changes
into the shared cache.

OptimisticLocks HEAVY Number of optimistic lock
exceptions which were thrown.

Sequencing ALL Includes time spent
maintaining the sequence
number mechanism and
actually setting the sequence
number on objects.

TXAfterCompletion ALL Time spent on JTS
afterCompletion(Object
status) method.

TXBeforeCompletion ALL Time spent on JTS
beforeCompletion()
method.

Table 12–1 (Cont.) TopLink DMS Metrics

DMS Noun Name Sensor Name Level1 Description

Measuring TopLink Performance with the Oracle Dynamic Monitoring System (DMS)

12-8 Developer's Guide for Oracle TopLink

12.4.1 How to Configure the Oracle DMS Profiler
To enable DMS metric collection for TopLink Java EE applications deployed to an
application sever other than OC4J, or for TopLink Java SE applications, do the
following:

1. Ensure that the dms.jar file is in your application classpath.

By default, the dms.jar file is located in <ORACLE_HOME>\jlib directory.

2. Set system property oracle.dms.sensors=<level>, where <level> is one of
the values listed in Table 12–3.

3. To enable the DMS profiler, select the DMS profiler option when configuring your
TopLink session (see Section 89.6, "Configuring a Performance Profiler").

UnitOfWorkCommits HEAVY Measures the commit process
of the UnitOfWork.

UnitOfWorkRegister ALL Includes time spent in
registerExistingObject,
registerNewContainerBea
n,
registerNewContainerBea
nForCMP,
registerNewObject,
registerObject, and
readIntoWorkingCopy.

UnitOfWorkRollbacks HEAVY Number of UnitOfWork
commits that were rollback.

1 See Table 12–3 for a description of each level setting.

Table 12–2 TopLink Operations

Operation Description

DatabaseExecution Time spent in calls to the JDBC statement. Includes time spent in calls to: close,
executeUpdate, and executeQuery.

EISExecuteTime Time spent building an InteractionSpec and building DatabaseRow objects
from the execution on the data source. Specific to EIS.

ObjectBuilding Time spent building persistent objects from database rows.

QueryPreparation Time to prepare the query. Does not include SQL prepare.

RowFetch Time taken to build DatabaseRow objects from the JDBC ResultSet. Includes
regular SQL calls and stored procedure calls.

SqlGeneration Time spent generating SQL. In the case of TopLink expressions, time spent
converting expression to SQL.

SqlPrepare Object relational: Time spent in JDBC preparing the statement.

EIS: Time spent in EIS creating an interaction associated with a connection, and
creating input and output record objects.

Table 12–3 DMS Metric Collection Levels

Level Description

NONE Disable collection of all DMS metrics.

NORMAL Enable collection of TopLink DMS metrics. Adds very low overhead. This is the default setting.

HEAVY Enable collection of basic TopLink DMS metrics. Adds about 1 percent overhead.

ALL Enable all possible TopLink DMS metrics. Adds about 3 percent overhead.

Table 12–1 (Cont.) TopLink DMS Metrics

DMS Noun Name Sensor Name Level1 Description

Measuring TopLink Performance with the Oracle Dynamic Monitoring System (DMS)

Optimizing the TopLink Application 12-9

To enable DMS metric collection for EclipseLink JPA applications deployed to Oracle
WebLogic Server, set the eclipselink.profiler persistence unit property to
DMSPerformanceProfiler in the persistence.xml file, as follows:

<property name="eclipselink.profiler" value="DMSPerformanceProfiler"/>
For more information, see "How to Use the Persistence Unit Properties for
Optimization" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Use_the_Persistence_Unit_Properties_for_
Optimization.

You configure DMS support in your TopLink application differently depending on the
type of application:

■ Configuring the Oracle DMS Profiler in a TopLink CMP Application on OC4J

■ Configuring the Oracle DMS Profiler in a EclipseLInk JPA Application on OC4J

12.4.1.1 Configuring the Oracle DMS Profiler in a TopLink CMP Application on
OC4J
By default, DMS metric collection is enabled for TopLink CMP applications deployed
to OC4J. For BMP or POJO applications deployed to OC4J, you must configure DMS
metric collection (see Section 89.6, "Configuring a Performance Profiler").

TopLink EJB deployed in OC4J are subject to the DMS configuration specified by the
OC4J command line-property -Doracle.dms.sensors=<level> where <level>
is one of the values listed in Table 12–3.

12.4.1.2 Configuring the Oracle DMS Profiler in a EclipseLInk JPA Application on
OC4J
To enable DMS metric collection for EclipseLink JPA applications deployed to OC4J,
set the eclipselink.profiler persistence unit property to
DMSPerformanceProfiler in the persistence.xml file, as follows:

<property name="eclipselink.profiler" value="DMSPerformanceProfiler"/>
For more information, see "How to Use the Persistence Unit Properties for
Optimization" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Use_the_Persistence_Unit_Properties_for_
Optimization.

12.4.2 How to Access Oracle DMS Profiler Data Using JMX
Using the Java Management Extensions (JMX) API, you can publish DMS profiler
run-time data from a managed application (TopLink) to a JMX-compliant management
application, by way of EJB-like MBean components.

When you configure your TopLink application to enable run-time services (see
Section 89.6, "Configuring a Performance Profiler") and you deploy your application to
Oracle WebLogic Server, the TopLink runtime will deploy a JMX MBean so that a JMX
management application can access the DMS profiler run-time data your application
publishes.

For more information on using JMX on Oracle WebLogic Server, see Section 8.3.3,
"How to Integrate JMX".

Identifying General Performance Optimization

12-10 Developer's Guide for Oracle TopLink

12.4.3 How to Access Oracle DMS Profiler Data Using the DMS Spy Servlet
Once your DMS-enabled TopLink application is running, you can access the DMS data
it is collecting.

The DMS Spy servlet is available in all Java processes that use DMS. It lets you
monitor metrics for a single Java process from a Web browser.

To access DMS data directly using the DMS Spy servlet, do the following:

1. Ensure that the dms.jar file is in your application classpath.

By default, the dms.jar file is located in <ORACLE_HOME>\jlib.

2. Set the following system properties for the DMS enabled Java process you want to
monitor:

oracle.dms.publisher.classes=oracle.dms.http.Httpd
oracle.dms.httpd.port.start=<port>
where <port> is the HTTP port on which DMS accepts requests (the default value
is 46080).

3. Apply the system property changes by restarting the Java process you want to
monitor.

4. Using a Web browser, connect to the Java process and access the Spy servlet by
entering the following URL:

http://<host>:<port>/dms0/Spy
where <host> is the host name of your Java process and <port> is the value
specified by the oracle.dms.httpd.port.start system property.

The Spy servlet displays all TopLink DMS-enabled objects appropriate for the
current DMS level setting. Figure 12–1 shows an example of the DMS Spy servlet
display.

Figure 12–1 DMS Spy Servlet Display

12.5 Identifying General Performance Optimization
In general, avoid overriding TopLink default behavior unless your application requires
it. Some TopLink defaults are suitable for a development environment; you should
change these defaults to suit your production environment (see Section 12.6,
"Optimizing for a Production Environment").

Optimizing Schema

Optimizing the TopLink Application 12-11

Use Oracle JDeveloper TopLink Editor or TopLink Workbench rather than manual
coding. These tools are not only easy to use: the default configuration they export to
deployment XML (and the code it generates, if required) represents best practices
optimized for most applications.

12.6 Optimizing for a Production Environment
Some TopLink defaults are suitable for a development environment but Oracle
recommends that you change these to suit your production environment for optimal
performance. These defaults include:

■ Batch writing: enable.

For more information, see Section 12.11.3, "How to Use Batch Writing for
Optimization".

■ Statement caching: enable either in TopLink when using an internal connection
pool or in the data source when using an external connection pool and choose a
statement cache size appropriate for your application.

For more information, see Section 12.11.5, "How to Use Parameterized SQL
(Parameter Binding) and Prepared Statement Caching for Optimization".

■ Read and write connection pool size: increase to the desired number of concurrent
threads (for example, 50).

For more information, see Section 96.1.6, "Connection Pools".

■ Session cache size: increase to the desired number of objects to be cached in
memory (for example, 1000). Note that you can configure session cache size for
each class individually.

For more information, see Section 102.2.1.6, "Guidelines for Configuring the Cache
and Identity Maps".

12.7 Optimizing Schema
Optimization is an important consideration when you design your database schema
and object model. Most performance issues occur when the object model or database
schema is too complex, which can make the database slow and difficult to query. This
is most likely to happen if you derive your database schema directly from a complex
object model.

To optimize performance, design the object model and database schema together.
However, allow each model to be designed optimally: do not require a direct
one-to-one correlation between the two.

This section includes the following schema optimization examples:

■ Schema Case 1: Aggregation of Two Tables Into One

■ Schema Case 2: Splitting One Table Into Many

■ Schema Case 3: Collapsed Hierarchy

■ Schema Case 4: Choosing One Out of Many

12.7.1 Schema Case 1: Aggregation of Two Tables Into One
A common schema optimization technique is to aggregate two tables into a single
table. This improves read and write performance by requiring only one database
operation instead of two.

Optimizing Schema

12-12 Developer's Guide for Oracle TopLink

Table 12–4 and Table 12–5 illustrate the table aggregation technique.

The nature of this application dictates that you always look up employees and
addresses together. As a result, querying a member based on address information
requires a database join, and reading a member and its address requires two read
statements. Writing a member requires two write statements. This adds unnecessary
complexity to the system, and results in poor performance.

A better solution is to combine the MEMBER and ADDRESS tables into a single table,
and change the one-to-one relationship to an aggregate relationship. This lets you read
all information with a single operation, and doubles the update and insert speed,
because only a single row in one table requires modifications.

12.7.2 Schema Case 2: Splitting One Table Into Many
To improve overall performance of the system, split large tables into two or more
smaller tables. This significantly reduces the amount of data traffic required to query
the database.

For example, the system illustrated in Table 12–6 assigns employees to projects within
an organization. The most common operation reads a set of employees and projects,
assigns employees to projects, and update the employees. The employee’s address or
job classification is also occasionally used to determine the project on which the
employee is placed.

Table 12–4 Original Schema (Aggregation of Two Tables Case)

Elements Details

Title ACME Member Location Tracking System

Classes Member, Address

Tables MEMBER, ADDRESS

Relationships Source, Instance Variable, Mapping, Target, Member, address,
one-to-one, Address

Table 12–5 Optimized Schema (Aggregation of Two Tables Case)

Elements Details

Classes Member, Address

Tables MEMBER

Relationships Source, Instance Variable, Mapping, Target, Member, address,
aggregate, Address

Table 12–6 Original Schema (Splitting One Table into Many Case)

Elements Details
Instance
Variable Mapping Target

Title ACME Employee
Workflow System

Optimizing Schema

Optimizing the TopLink Application 12-13

When you read a large volume of employee records from the database, you must also
read their aggregate parts. Because of this, the system suffers from general read
performance issues. To resolve this, break the EMPLOYEE table into the EMPLOYEE,
ADDRESS, PHONE, EMAIL, and JOB tables, as illustrated in Table 12–7.

Because you usually read only the employee information, splitting the table reduces
the amount of data transferred from the database to the client. This improves your
read performance by reducing the amount of data traffic by 25 percent.

Classes Employee,
Address,
PhoneNumber,
EmailAddress,
JobClassification,
Project

Tables EMPLOYEE,
PROJECT,
PROJ_EMP

Relationships Employee address aggregate Address

Employee phoneNumber aggregate EmailAddress

Employee emailAddress aggregate EmailAddress

Employee job aggregate JobClassification

Employee projects many-to-many Project

Table 12–7 Optimized Schema (Splitting One Table into Many Case)

Elements Details
Instance
Variable Mapping Target

Title ACME Employee
Workflow System

Classes Employee,
Address,
PhoneNumber,
EmailAddress,
JobClassification,
Project

Tables EMPLOYEE,
ADDRESS,
PHONE, EMAIL,
JOB, PROJECT,
PROJ_EMP

Relationships Employee address one-to-one Address

Employee phoneNumber one-to-one EmailAddress

Employee emailAddress one-to-one EmailAddress

Table 12–6 (Cont.) Original Schema (Splitting One Table into Many Case)

Elements Details
Instance
Variable Mapping Target

Optimizing Schema

12-14 Developer's Guide for Oracle TopLink

12.7.3 Schema Case 3: Collapsed Hierarchy
A common mistake when you transform an object-oriented design into a relational
model, is to build a large hierarchy of tables on the database. This makes querying
difficult, because queries against this type of design can require a large number of
joins. It is usually a good idea to collapse some of the levels in your inheritance
hierarchy into a single table.

Table 12–8 represents a system that assigns clients to a company’s sales
representatives. The managers also track the sales representatives that report to them.

The system suffers from complexity issues that hinder system development and
performance. Nearly all queries against the database require large, resource-intensive
joins. If you collapse the three-level table hierarchy into a single table, as illustrated in
Table 12–9, you substantially reduce system complexity. You eliminate joins from the
system, and simplify queries.

Employee job one-to-one JobClassification

Employee projects many-to-many Project

Table 12–8 Original Schema (Collapsed Hierarchy Case)

Elements Details

Title ACME Sales Force System

Classes Tables

Person PERSON

Employee PERSON, EMPLOYEE

SalesRep PERSON, EMPLOYEE, REP

Staff PERSON, EMPLOYEE, STAFF

Client PERSON, CLIENT

Contact PERSON, CONTACT

Table 12–9 Optimized Schema (Collapsed Hierarchy Case)

Elements Details

Classes Tables

Person none

Employee EMPLOYEE

SalesRep EMPLOYEE

Staff EMPLOYEE

Client CLIENT

Contact CLIENT

Table 12–7 (Cont.) Optimized Schema (Splitting One Table into Many Case)

Elements Details
Instance
Variable Mapping Target

Optimizing Schema

Optimizing the TopLink Application 12-15

12.7.4 Schema Case 4: Choosing One Out of Many
In a one-to-many relationship, a single source object has a collection of other objects. In
some cases, the source object frequently requires one particular object in the collection,
but requires the other objects only infrequently. You can reduce the size of the returned
result set in this type of case by adding an instance variable for the frequently required
object. This lets you access the object without instantiating the other objects in the
collection.

Table 12–10 represents a system by which an international shipping company tracks
the location of packages in transit. When a package moves from one location to
another, the system creates a new a location entry for the package in the database. The
most common query against any given package is for its current location.

A package in this system can accumulate several location values in its LOCATION
collection as it travels to its destination. Reading all locations from the database is
resource intensive, especially when the only location of interest is the current location.

To resolve this type of problem, add a specific instance variable that represents the
current location. You then add a one-to-one mapping for the instance variable, and use
the instance variable to query for the current location. As illustrated in Table 12–10,
because you can now query for the current location without reading all locations
associated with the package, this dramatically improves the performance of the
system.

Table 12–10 Original Schema (Choosing One out of Many Case)

Elements Details
Instance
Variable Mapping Target

Title ACME Shipping
Package Location
Tracking system

Classes Package, Location

Tables PACKAGE,
LOCATION

Relationships Package locations one-to-many Location

Table 12–11 Optimized Schema (Choosing One out of Many Case)

Elements Details
Instance
Variable Mapping Target

Classes Package, Location

Tables PACKAGE,
LOCATION

Relationships Package locations one-to-many Location

Package currentLocation one-to-many Location

Optimizing Mappings and Descriptors

12-16 Developer's Guide for Oracle TopLink

12.8 Optimizing Mappings and Descriptors
Always use indirection (lazy loading). It is not only critical in optimizing database
access, but also allows TopLink to make several other optimizations including
optimizing its cache access and unit of work processing. See Section 121.3,
"Configuring Indirection (Lazy Loading)".

Avoid using the existence checking option checkCacheThenDatabase on
descriptors (see Section 119.17, "Configuring Cache Existence Checking at the
Descriptor Level"), unless required by the application. The default existence checking
behavior offers better performance.

Avoid expensive initialization in the default constructor that TopLink uses to
instantiate objects. Instead, use lazy initialization or use a TopLink instantiation policy
(see Section 119.28, "Configuring Instantiation Policy") to configure the descriptor to
use a different constructor.

Avoid using method access in your TopLink mappings (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level"), especially if you have
expensive or potentially dangerous side-effect code in your get or set methods; use the
default direct attribute access instead.

12.9 Optimizing Sessions
Use a Server session in a server environment, not a DatabaseSession.

Use the TopLink client session instead of remote session. A client session is
appropriate for most multiuser Java EE application server environments.

Do not pool client sessions. Pooling sessions offers no performance gains.

Oracle recommends you increase the size of your session read and write connection
pools to the desired number of concurrent threads (for example, 50). You configure this
in TopLink when using an internal connection pool or in the data source when using
an external connection pool.

For more information, see the following:

■ Section 12.6, "Optimizing for a Production Environment"

■ Section 87.3, "Server and Client Sessions"

■ Section 96.1.6, "Connection Pools"

12.10 Optimizing Cache
Cache coordination (see Section 102.3, "Cache Coordination") is one way to allow
multiple, possibly distributed, instances of a session to broadcast object changes
among each other so that each session’s cache can be kept up-to-date.

However, cache coordination is best suited to applications with specific characteristics
(see Section 102.3.1, "When to Use Cache Coordination"). Before implementing cache
coordination, tune the TopLink cache for each class using alternatives such as object
identity type (see Section 119.12, "Configuring Cache Type and Size at the Descriptor
Level"), cache invalidation (see Section 102.2.5, "Cache Invalidation"), or cache
isolation (see Section 102.2.7, "Cache Isolation"). Doing so lets you configure the
optimal cache configuration for each type of class (see Table 12–12) and may eliminate
the need for distributed cache coordination altogether.

Optimizing Data Access

Optimizing the TopLink Application 12-17

If you do use cache coordination, use JMS for cache coordination rather than RMI. JMS
is more robust, easier to configure, and runs asynchronously. If you require
synchronous cache coordination, use RMI.

You can configure a descriptor to control when the TopLink runtime will refresh the
session cache when an instance of this object type is queried (see Section 119.9,
"Configuring Cache Refreshing"). Oracle does not recommend the use of Always
Refresh or Disable Cache Hits.

Using Always Refresh may result in refreshing the cache on queries when not
required or desired. As an alternative, consider configuring cache refresh on a query
by query basis (see Section 108.16.5, "How to Refresh the Cache").

Using Disable Cache Hits instructs TopLink to bypass the cache for object read
queries based on primary key. This results in a database round trip every time an
object read query based on primary key is executed on this object type, negating the
performance advantage of the cache. When used in conjunction with Always Refresh,
this option ensures that all queries go to the database. This can have a significant
impact on performance. These options should only be used in specialized
circumstances.

12.11 Optimizing Data Access
Depending on the type of data source your application accesses, TopLink offers a
variety of Login options that you can use to tune the performance of low level data
reads and writes.

You can use several techniques to improve data access performance for your
application. This section discusses some of the more common approaches, including
the following:

■ How to Optimize JDBC Driver Properties

■ How to Optimize Data Format

■ How to Use Batch Writing for Optimization

■ How to Use Outer-Join Reading with Inherited Subclasses

■ How to Use Parameterized SQL (Parameter Binding) and Prepared Statement
Caching for Optimization

12.11.1 How to Optimize JDBC Driver Properties
Consider the default behavior of the JDBC driver you choose for your application.
Some JDBC driver options can affect data access performance.

Some important JDBC driver properties can be configured directly using Oracle
JDeveloper TopLink Editor, TopLink Workbench, or TopLink API (for example, see
Section 12.12.6, "How to Use JDBC Fetch Size for Optimization").

Table 12–12 Identity Map and Cache Configuration by Class Type

Class Type Identity Map Options Cache Options

read-only soft, hard, or full1

1 If the number of instances is finite.

read-mostly soft or hard cache invalidation or cache coordination

write-mostly weak cache invalidation

Optimizing Data Access

12-18 Developer's Guide for Oracle TopLink

JDBC driver properties that are not supported directly by Oracle JDeveloper TopLink
Editor, TopLink Workbench, or TopLink API can still be configured as generic JDBC
properties that TopLink passes to the JDBC driver.

For example, some JDBC drivers, such as Sybase JConnect, perform a database round
trip to test whether or not a connection is closed: that is, calling the JDBC driver
method isClosed results in a stored procedure call or SQL select. This database
round-trip can cause a significant performance reduction. To avoid this, you can
disable this behavior: for Sybase JConnect, you can set property name CLOSED_TEST
to value INTERNAL.

For more information about configuring general JDBC driver properties from within
your TopLink application, see Section 97.5, "Configuring Properties".

12.11.2 How to Optimize Data Format
By default, TopLink optimizes data access by accessing the data from JDBC in the
format the application requires. For example, TopLink retrieves long data types from
JDBC instead of having the driver return a BigDecimal that TopLink would then
have to convert into a long.

Some older JDBC drivers do not perform data conversion correctly and conflict with
this optimization. In this case, you can disable this optimization (see Section 98.7,
"Configuring Advanced Options").

12.11.3 How to Use Batch Writing for Optimization
Batch writing can improve database performance by sending groups of INSERT,
UPDATE, and DELETE statements to the database in a single transaction, rather than
individually.

 When used without parameterized SQL, this is known as dynamic batch writing.

When used with parameterized SQL (see Section 12.11.5, "How to Use Parameterized
SQL (Parameter Binding) and Prepared Statement Caching for Optimization"), this is
known as parameterized batch writing. This allows a repeatedly executed statement,
such as a group of inserts of the same type, to be executed as a single statement and a
set of bind parameters. This can provide a large performance benefit as the database
does not have to parse the batch.

When using batch writing, you can tune the maximum batch writing size.

In JPA applications, you can use persistence unit property
eclipselink.jdbc.batch-writing (see "EclipseLink JPA Persistence Unit
Properties for JDBC Connection Communication" table of EclipseLink Developer’s Guide
at http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Use_EclipseLink_JPA_Extensions_for_JDBC_
Connection_Communication).

In CMP or POJO applications, you can use setMaxBatchWritingSize method of
the Login interface. The meaning of this value depends on whether or not you are
using parameterized SQL:

■ If you are using parameterized SQL (you configure your Login by calling its
bindAllParameters method), the maximum batch writing size is the number of
statements to batch with 100 being the default.

■ If you are using dynamic SQL, the maximum batch writing size is the size of the
SQL string buffer in characters with 32000 being the default.

Optimizing Data Access

Optimizing the TopLink Application 12-19

By default, TopLink does not enable batch writing because not all databases and JDBC
drivers support it. Oracle recommends that you enable batch writing for selected
databases and JDBC drivers that support this option. If your JDBC driver does not
support batch writing, use the batch writing capabilities of TopLink, known as
TopLink batch writing (see Section 98.6, "Configuring JDBC Options").

For a more detailed example of using batch writing to optimize write queries, see
Section 12.12.10.1.2, "Batch Writing and Parameterized SQL".

12.11.4 How to Use Outer-Join Reading with Inherited Subclasses
You can configure an object-level read query to allow inherited subclasses to be
outer-joined to avoid the cost of a single query per class, as Example 12–2 shows.

Example 12–2 Configuring an ObjectLevelReadQuery to Outer-Join Inherited
Subclasses

objectLevelReadQuery.setShouldOuterJoinSubclasses(true);

You can configure a descriptor’s InheritancePolicy to allow the same thing as
Example 12–3 shows. By configuring the InheritancePolicy, this option applies to
all queries on the descriptor’s class.

Example 12–3 Configuring a Descriptor to Allow Inherited Subclasses to be
Outer-Joined

myDescriptor.getInheritancePolicy().setShouldOuterJoinSubclasses(true);

For more information, see the following:

■ Section 16.3, "Descriptors and Inheritance"

■ Section 119.19, "Configuring Reading Subclasses on Queries"

■ Section 108.7.1.5, "Join Reading and Object-Level Read Queries"

12.11.5 How to Use Parameterized SQL (Parameter Binding) and Prepared Statement
Caching for Optimization

Using parameterized SQL, you can keep the overall length of an SQL query from
exceeding the statement length limit that your JDBC driver or database server
imposes.

Using parameterized SQL and prepared statement caching, you can improve
performance by reducing the number of times the database SQL engine parses and
prepares SQL for a frequently called query.

By default, TopLink enables parameterized SQL but not prepared statement caching.
Oracle recommends that you enable statement caching either in TopLink when using
an internal connection pool or in the data source when using an external connection
pool and choose a statement cache size appropriate for your application.

Note: When parameter binding is enabled, querying a database field
with a fixed CHAR length may result in no results returned. This is
because the white space may not be trimmed. Instead, you can:

1. Use a Variable length column type (for example, VARCHAR).

2. Force the proper padding manually (either in your application or in a
converter).

3. Not use parameter binding.

Optimizing Data Access

12-20 Developer's Guide for Oracle TopLink

Not all JDBC drivers support all JDBC binding options (see Section 98.6, "Configuring
JDBC Options"). Selecting a combination of options may result in different behavior
from one driver to another. Before selecting JDBC options, consult your JDBC driver
documentation. When choosing binding options, consider the following approach:

1. Try binding all parameters with all other binding options disabled.

2. If this fails to bind some large parameters, consider enabling one of the following
options, depending on the parameter’s data type and the binding options that
your JDBC driver supports:

a. To bind large String parameters, try enabling string binding.

If large String parameters still fail to bind, consider adjusting the maximum
String size. TopLink sets the maximum String size to 32000 characters by
default.

b. To bind large Byte array parameters, try enabling byte array binding.

3. If this fails to bind some large parameters, try enabling streams for binding.

Typically, configuring string or byte array binding will invoke streams for binding.
If not, explicitly configuring streams for binding may help.

For Java EE applications that use TopLink external connection pools, you must
configure parameterized SQL in TopLink, but you cannot configure prepared
statement caching in TopLink. In this case, you must configure prepared statement
caching in the application server connection pool. For example, in OC4J, if you
configure your data-source.xml file with a managed data-source (where
connection-driver is oracle.jdbc.OracleDriver, and class is
oracle.j2ee.sql.DriverManagerDataSource), you can configure a non-zero
num-cached-statements that enables JDBC statement caching and defines the
maximum number of statements cached.

For applications that use TopLink internal connection pools, you can configure
parameterized SQL and prepared statement caching.

You can configure parameterized SQL and prepared statement caching at the
following levels:

■ session database login level–applies to all queries and provides additional
parameter binding API to alleviate the limit imposed by some drivers on SQL
statement size.

Oracle recommends that you use this approach.

For more information, see the following:

– JPA applications: see persistence unit properties
eclipselink.jdbc.bind-parameters and
eclipselink.jdbc.cache-statements.size in "EclipseLink JPA
Persistence Unit Properties for JDBC Connection Communication" table of
EclipseLink Developer’s Guide at http://wiki.eclipse.org/Using_
EclipseLink_JPA_Extensions_%28ELUG%29#How_to_Use_
EclipseLink_JPA_Extensions_for_JDBC_Connection_
Communication.

– CMP and POJO applications: see Section 98.6, "Configuring JDBC Options"

■ project level–applies to all named queries (see Section 20.7, "Configuring Named
Query Parameterized SQL and Statement Caching at the Project Level");

Optimizing Queries

Optimizing the TopLink Application 12-21

■ descriptor level–applies on a per-named-query basis (see Section 119.7.1.9,
"Configuring Named Query Options");

■ query level–applies on a per-query basis (see Section 109.2.9, "How to Use
Parameterized SQL and Statement Caching in a DatabaseQuery").

12.12 Optimizing Queries
TopLink provides an extensive query API for reading, writing, and updating data.
This section describes ways of optimizing query performance in various
circumstances.

Before optimizing queries, consider the optimization suggestions in Section 12.11,
"Optimizing Data Access".

This section includes information on the following:

■ How to Use Parameterized SQL and Prepared Statement Caching for
Optimization

■ How to Use Named Queries for Optimization

■ How to Use Batch and Join Reading for Optimization

■ How to Use Partial Object Queries and Fetch Groups for Optimization

■ How to Use Read-Only Queries for Optimization

■ How to Use JDBC Fetch Size for Optimization

■ How to Use Cursored Streams and Scrollable Cursors for Optimization

■ How to Use Result Set Pagination for Optimization

■ Read Optimization Examples

■ Write Optimization Examples

12.12.1 How to Use Parameterized SQL and Prepared Statement Caching for
Optimization

These features let you cache and reuse a query’s preparsed database statement when
the query is reexecuted.

For more information, see Section 12.11.5, "How to Use Parameterized SQL (Parameter
Binding) and Prepared Statement Caching for Optimization".

12.12.2 How to Use Named Queries for Optimization
Whenever possible, use named queries in your application. Named queries help you
avoid duplication, are easy to maintain and reuse, and easily add complex query
behavior to the application. Using named queries also allows for the query to be
prepared once, and for the SQL generation to be cached.

For more information, see Section 108.8, "Named Queries".

12.12.3 How to Use Batch and Join Reading for Optimization
To optimize database read operations, TopLink supports both batch and join reading.
When you use these techniques, you dramatically decrease the number of times you
access the database during a read operation, especially when your result set contains a
large number of objects.

Optimizing Queries

12-22 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Section 12.11.3, "How to Use Batch Writing for Optimization"

■ Section 12.11.4, "How to Use Outer-Join Reading with Inherited Subclasses"

■ For JPA applications, see the following:

– "How to Use the @JoinFetch Annotation" section of EclipseLink Developer’s
Guide at http://wiki.eclipse.org/Using_EclipseLink_JPA_
Extensions_%28ELUG%29#How_to_Use_the_.40JoinFetch_
Annotation

– Persistence unit property eclipselink.jdbc.batch-writing in
"EclipseLink JPA Persistence Unit Properties for JDBC Connection
Communication" table of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Use_EclipseLink_JPA_Extensions_for_JDBC_
Connection_Communication

■ For CMP and POJO applications, see the following:

– Section 108.7.1.5, "Join Reading and Object-Level Read Queries"

– Section 109.2.1.9, "Using Batch Reading"

12.12.4 How to Use Partial Object Queries and Fetch Groups for Optimization
Partial object queries let you retrieve partially populated objects from the database
rather than complete objects.

When using weaving with JPA or POJO or when using CMP applications, you can use
fetch groups to accomplish the same performance optimization.

For more information about partial object reading, see Section 108.7.1.3, "Partial Object
Queries".

For more information about fetch groups, see Section 16.2.4, "Fetch Groups".

12.12.5 How to Use Read-Only Queries for Optimization
You can configure an object-level read query as read-only, as Example 12–4 shows.
When you execute such a query in the context of a UnitOfWork (or EclipseLink JPA
persistence provider), TopLink returns a read-only, non-registered object. You can
improve performance by querying read-only data in this way because the read-only
objects need not be registered or checked for changes.

Example 12–4 Configuring an ObjectLevelReadQuery as Read-Only

objectLevelReadQuery.setIsReadOnly(true);

For more information, see the following:

■ Section 119.3, "Configuring Read-Only Descriptors"

■ Section 108.7.1.4, "Read-Only Query"

12.12.6 How to Use JDBC Fetch Size for Optimization
The JDBC fetch size gives the JDBC driver a hint as to the number of rows that should
be fetched from the database when more rows are needed.

Optimizing Queries

Optimizing the TopLink Application 12-23

For large queries that return a large number of objects you can configure the row fetch
size used in the query to improve performance by reducing the number database hits
required to satisfy the selection criteria.

Most JDBC drivers default to a fetch size of 10, so if you are reading 1000 objects,
increasing the fetch size to 256 can significantly reduce the time required to fetch the
query's results. The optimal fetch size is not always obvious. Usually, a fetch size of
one half or one quarter of the total expected result size is optimal. Note that if you are
unsure of the result set size, incorrectly setting a fetch size too large or too small can
decrease performance.

Set the query fetch size with ReadQuery method setFetchSize, as Example 12–5
shows. Alternatively, you can use ReadQuery method setMaxRows to set the limit
for the maximum number of rows that any ResultSet can contain.

Example 12–5 JDBC Driver Fetch Size

// Create query and set Employee as its reference class
ReadAllQuery query = new ReadAllQuery(Employee.class);
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCriteria(builder.get("id").greaterThan(100));

// Set the JDBC fetch size
query.setFetchSize(50);

// Configure the query to return results as a ScrollableCursor
query.useScrollableCursor();

// Execute the query
ScrollableCursor cursor = (ScrollableCursor) session.executeQuery(query);

// Iterate over the results
while (cursor.hasNext()) {

System.out.println(cursor.next().toString());
}
cursor.close();
In this example, when you execute the query, the JDBC driver retrieves the first 50
rows from the database (or all rows if less than 50 rows satisfy the selection criteria).
As you iterate over the first 50 rows, each time you call cursor.next(), the JDBC
driver returns a row from local memory–it does not need to retrieve the row from the
database. When you try to access the fifty first row (assuming there are more than 50
rows that satisfy the selection criteria), the JDBC driver again goes to the database and
retrieves another 50 rows. In this way, 100 rows are returned with only two database
hits.

If you specify a value of zero (default; means the fetch size is not set), then the hint is
ignored and the JDBC driver’s default is used.

For more information about configuring JDBC driver properties from within your
TopLink application, see Section 97.5, "Configuring Properties".

12.12.7 How to Use Cursored Streams and Scrollable Cursors for Optimization
You can configure a query to retrieve data from the database using a cursored Java
stream or scrollable cursor. This lets you view a result set in manageable increments
rather than as a complete collection. This is useful when you have a large result set.
You can further tune performance by configuring the JDBC driver fetch size used (see
Section 12.12.6, "How to Use JDBC Fetch Size for Optimization").

Optimizing Queries

12-24 Developer's Guide for Oracle TopLink

For more information about scrollable cursors, see Section 111.11, "Handling Cursor
and Stream Query Results".

12.12.8 How to Use Result Set Pagination for Optimization
As Figure 12–2 shows, using ReadQuery methods setMaxRows(maxRows) and
setFirstResult(firstResult), you can configure a query to retrieve a result set
in pages, that is, a partial result as a List of pageSize (or less) results.

Figure 12–2 Using Result Set Pagination

In this example, for the first query invocation, pageSize=3, maxRows=pageSize,
and firstResult=0. This returns a List of results 00 through 02.

For each subsequent query invocation, you increment maxRows=maxRows+pageSize
and firstResult=firstResult+pageSize. This returns a new List for each
page of results 03 through 05, 06 through 08, and so on.

Typically, you use this approach when you do not necessarily need to process the
entire result set. For example, when a user wishes to scan the result set a page at a time
looking for a particular result and may abandon the query after the desired record is
found.

The advantage of this approach over cursors is that it does not require any state or live
connection on the server; you only need to store the firstResult index on the client.
This makes it useful for paging through a Web result.

For more information, see the following:

■ Section 111.12, "Handling Query Results Using Pagination"

■ Section 12.12.7, "How to Use Cursored Streams and Scrollable Cursors for
Optimization"

12.12.9 Read Optimization Examples
TopLink provides the read optimization features listed in Table 12–13.

This section includes the following read optimization examples:

■ Reading Case 1: Displaying Names in a List

■ Reading Case 2: Batch Reading Objects

■ Reading Case 3: Using Complex Custom SQL Queries

■ Reading Case 4: Using View Objects

■ Reading Case 5: Inheritance Subclass Outer-Joining

Optimizing Queries

Optimizing the TopLink Application 12-25

Table 12–13 Read Optimization Features

Feature Function Performance Technique

Unit of work Tracks object changes within
the unit of work.

To minimize the amount of tracking
required, registers only those objects
that will change.

For more information, see Chapter 113,
"Introduction to TopLink Transactions".

Indirection (lazy
loading)

Uses indirection objects to
defer the loading and
processing of relationships.

Provides a major performance benefit.
It allows database access to be
optimized and allows TopLink to
internally make several optimizations
in caching and unit of work.

Soft cache, weak
identity map

Offers client-side caching for
objects read from database,
and drops objects from the
cache when memory
becomes low.

Reduces database calls and improves
memory performance.

For more information, see
Section 102.2.1, "Cache Type and Object
Identity".

Weak identity map Offers client-side caching for
objects.

Reduces database access and maintains
a cache of all referenced objects.

For more information, see
Section 102.2.1, "Cache Type and Object
Identity".

Batch reading and
joining

Reduces database access by
batching many queries into a
single query that reads more
data.

Dramatically reduces the number of
database accesses required to perform a
read query.

For more information, see
Section 109.2.1.9, "Using Batch
Reading" and Section 109.2.1.10, "Using
Join Reading with
ObjectLevelReadQuery".

Partial object reading
and fetch groups.

Allows reading of a subset of
a result set of the object's
attributes.

Reduces the amount of data read from
the database.

For more information, see
Section 108.7.1.3, "Partial Object
Queries".

For more information about fetch
groups, see Section 16.2.4, "Fetch
Groups".

Report query Similar to partial object
reading, but returns only the
data instead of the objects.

Supports complex reporting functions
such as aggregation and group-by
functions. Also lets you compute
complex results on the database,
instead of reading the objects into the
application and computing the results
locally.

For more information, see
Section 108.7.5, "Report Query".

Read-only query TopLink returns a read-only,
non-registered object.

The read-only objects need not be
registered or checked for changes.

For more information, see
Section 12.12.5, "How to Use Read-Only
Queries for Optimization"

Optimizing Queries

12-26 Developer's Guide for Oracle TopLink

12.12.9.1 Reading Case 1: Displaying Names in a List
An application may ask the user to choose an element from a list. Because the list
displays only a subset of the information contained in the objects, it is not necessary to
query for all information for objects from the database.

TopLink features that optimize these types of operations include the following:

■ Partial Object Reading

■ Report Query

■ Fetch Groups

These features let you query only the information required to display the list. The user
can then select an object from the list.

12.12.9.1.1 Partial Object Reading Partial object reading is a query designed to extract
only the required information from a selected record in a database, rather than all the
information the record contains. Because partial object reading does not fully populate
objects, you can neither cache nor edit partially read objects.

For more information about partial object queries, see Section 108.7.1.3, "Partial Object
Queries".

In Example 12–6, the query builds complete employee objects, even though the list
displays only employee last names. With no optimization, the query reads all the
employee data.

Example 12–6 No Optimization

/* Read all the employees from the database, ask the user to choose one and return
it. This must read in all the information for all the employees */
List list;

// Fetch data from database and add to list box

JDBC fetch size and
ReadQuery first
result maximum
rows

Reduces the number of
database hits required to
return all the rows that
satisfy selection criteria.

For more information, see
Section 12.12.6, "How to Use JDBC
Fetch Size for Optimization".

Cursors Lets you view a large result
set in manageable
increments rather than as a
complete collection

For more information, see
Section 12.12.7, "How to Use Cursored
Streams and Scrollable Cursors for
Optimization"

Inheritance subclass
outer joins

Allows queries against an
inheritance superclass that
can read all of its subclasses
in a single query, instead of
multiple queries, with or
without a view.

For more information, see
Section 12.12.9.5, "Reading Case 5:
Inheritance Subclass Outer-Joining".

Soft identity map Similar to the weak identity
map, except that the map
uses soft references instead
of weak references. This
method allows full garbage
collection and provides full
caching and guaranteed
identity

Allows for optimal caching of the
objects without the overhead of a
sub-cache, while still allowing the JVM
to garbage collect the objects if memory
is low.

For more information, see
Section 102.2.1.3, "Soft Identity Map".

Table 12–13 (Cont.) Read Optimization Features

Feature Function Performance Technique

Optimizing Queries

Optimizing the TopLink Application 12-27

Vector employees = (Vector) session.readAllObjects(Employee.class);
list.addAll(employees);

// Display list box
....

// Get selected employee from list
Employee selectedEmployee = (Employee) list.getSelectedItem();

return selectedEmployee;
Example 12–7 demonstrates the use of partial object reading. It reads only the last
name and primary key for the employee data. This reduces the amount of data read
from the database.

Example 12–7 Optimization Through Partial Object Reading

/* Read all the employees from the database, ask the user to choose one and return
it. This uses partial object reading to read just the last names of the employees.
Since TopLink automatically includes the primary key of the object, the full
object can easily be read for editing */
List list;

// Fetch data from database and add to list box
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addPartialAttribute("lastName");

// The next line avoids a query exception
query.dontMaintainCache();
Vector employees = (Vector) session.executeQuery(query);
list.addAll(employees);

// Display list box
....

// Get selected employee from list
Employee selectedEmployee = (Employee)session.readObject(list.getSelectedItem());
return selectedEmployee;

12.12.9.1.2 Report Query Report query lets you retrieve data from a set of objects and
their related objects. Report query supports database reporting functions and features.

For more information, see Section 108.5.2, "Report Query Results".

Example 12–8 demonstrates the use of report query to read only the last name of the
employees. This reduces the amount of data read from the database compared to the
code in Example 12–6, and avoids instantiating employee instances.

Example 12–8 Optimization Through Report Query

/* Read all the employees from the database, ask the user to choose one and return
it. The report query is used to read just the last name of the employees. Then the
primary key stored in the report query result to read the real object */
List list;

// Fetch data from database and add to list box
ExpressionBuilder builder = new ExpressionBuilder();
ReportQuery query = new ReportQuery (Employee.class, builder);
query.addAttribute("lastName");
query.retrievePrimaryKeys();
Vector reportRows = (Vector) session.executeQuery(query);
list.addAll(reportRows);

Optimizing Queries

12-28 Developer's Guide for Oracle TopLink

// Display list box
....

// Get selected employee from list
ReportQueryResult result = (ReportQueryResult) list.getSelectedItem();
Employee selectedEmployee =

(Employee)result.readobject(Employee.Class,session);
Although the differences between the unoptimized example (Example 12–6) and the
report query optimization in Example 12–8 appear to be minor, report queries offer a
substantial performance improvement.

12.12.9.1.3 Fetch Groups Fetch groups are similar to partial object reading, but does
allow caching of the objects read. For objects with many attributes or reference
attributes to complex graphs (or both), you can define a fetch group that determines
what attributes are returned when an object is read. Because TopLink will
automatically execute additional queries when the get method is called for attributes
not in the fetch group, ensure that the unfetched data is not required: refetching data
can become a performance issue.

For more information about querying with fetch groups, see Section 111.3, "Using
Queries with Fetch Groups".

Example 12–9 demonstrates the use of a static fetch group.

Example 12–9 Configuring a Query with a FetchGroup Using the FetchGroupManager

// Create static fetch group at the descriptor level
FetchGroup group = new FetchGroup("nameOnly");
group.addAttribute("firstName");
group.addAttribute("lastName");
descriptor.getFetchGroupManager().addFetchGroup(group);

// Use static fetch group at query level
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setFetchGroupName("nameOnly");

/* Only Employee attributes firstName and lastName are fetched.
 If you call the Employee get method for any other attribute, TopLink executes
 another query to retrieve all unfetched attribute values. Thereafter,
 calling that get method will return the value directly from the object */

12.12.9.2 Reading Case 2: Batch Reading Objects
The way your application reads data from the database affects performance. For
example, reading a collection of rows from the database is significantly faster than
reading each row individually.

A common performance challenge is to read a collection of objects that have a
one-to-one reference to another object. This typically requires one read operation to
read in the source rows, and one call for each target row in the one-to-one relationship.

To reduce the number of read operations required, use join and batch reading.
Example 12–10 illustrates the unoptimized code required to retrieve a collection of
objects with a one-to-one reference to another object. Example 12–11 and
Example 12–12 illustrate the use of joins and batch reading to improve efficiency.

Example 12–10 No Optimization

/* Read all the employees, and collect their address’ cities. This takes N + 1
 queries if not optimized */

Optimizing Queries

Optimizing the TopLink Application 12-29

// Read all the employees from the database. This requires 1 SQL call
Vector employees = session.readAllObjects(Employee.class,

new ExpressionBuilder().get("lastName").equal("Smith"));

//SQL: Select * from Employee where l_name = ‘Smith’

// Iterate over employees and get their addresses.
// This requires N SQL calls
Enumeration enum = employees.elements();
Vector cities = new Vector();
while(enum.hasMoreElements()) {

Employee employee = (Employee) enum.nextElement();
cities.addElement(employee.getAddress().getCity());

}
//SQL: Select * from Address where address_id = 123, etc

Example 12–11 Optimization Through Joining

/* Read all the employees; collect their address’ cities. Although the code
 is almost identical because joining optimization is used it takes only 1
 query */

// Read all the employees from the database using joining.
// This requires 1 SQL call
ReadAllQuery query = new ReadAllQuery(Employee.class);
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCriteria(builder.get("lastName").equal("Smith"));
query.addJoinedAttribute("address");
Vector employees = session.executeQuery(query);

/* SQL: Select E.*, A.* from Employee E, Address A where E.l_name = ‘Smith’ and
 E.address_id = A.address_id Iterate over employees and get their addresses.
 The previous SQL already read all the addresses, so no SQL is required */
Enumeration enum = employees.elements();
Vector cities = new Vector();
while (enum.hasMoreElements()) {

Employee employee = (Employee) enum.nextElement();
cities.addElement(employee.getAddress().getCity());

}

Example 12–12 Optimization Through Batch Reading

/* Read all the employees; collect their address’ cities. Although the code
 is almost identical because batch reading optimization is used it takes only
 2 queries */

// Read all the employees from the database, using batch reading.
// This requires 1 SQL call, note that only the employees are read
ReadAllQuery query = new ReadAllQuery(Employee.class);
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCriteria(bulder.get("lastName").equal("Smith"));
query.addBatchReadAttribute("address");
Vector employees = (Vector)session.executeQuery(query);

// SQL: Select * from Employee where l_name = ‘Smith’

// Iterate over employees and get their addresses.
// The first address accessed will cause all the addresses
// to be read in a single SQL call
Enumeration enum = employees.elements();

Optimizing Queries

12-30 Developer's Guide for Oracle TopLink

Vector cities = new Vector();
while (enum.hasMoreElements()) {

Employee employee = (Employee) enum.nextElement();
cities.addElement(employee.getAddress().getCity());
// SQL: Select distinct A.* from Employee E, Address A
// where E.l_name = ‘Smith’ and E.address_id = A.address_i

}
Because the two-phase approach to the query (Example 12–11 and Example 12–12)
accesses the database only twice, it is significantly faster than the approach illustrated
in Example 12–10.

Joins offer a significant performance increase under most circumstances. Batch reading
offers a further performance advantage in that it allows for delayed loading through
value holders, and has much better performance where the target objects are shared.

For example, if employees in Example 12–10, Example 12–11, and Example 12–12 are
at the same address, batch reading reads much less data than joining, because batch
reading uses a SQL DISTINCT call to filter duplicate data.

Batch reading and joining are available for one-to-one, one-to-many, many-to-many,
direct collection, direct map and aggregate collection mappings. Note that
one-to-many joining will return a large amount of duplicate data and so is normally
less efficient than batch reading.

12.12.9.3 Reading Case 3: Using Complex Custom SQL Queries
TopLink provides a high-level query mechanism. However, if your application
requires a complex query, a direct SQL or stored procedure call may be the best
solution.

For more information about executing SQL calls, see Section 108.9.1.1, "SQLCall".

12.12.9.4 Reading Case 4: Using View Objects
Some application operations require information from several objects rather than from
just one. This can be difficult to implement, and resource-intensive. Example 12–13
illustrates unoptimized code that reads information from several objects.

Example 12–13 No Optimization

/* Gather the information to report on an employee and return the summary of the
 information. In this situation, a hash table is used to hold the report
 information. Notice that this reads a lot of objects from the database, but
 uses very little of the information contained in the objects. This may take 5
 queries and read in a large number of objects */

public Hashtable reportOnEmployee(String employeeName) {
Vector projects, associations;
Hashtable report = new Hashtable();
// Retrieve employee from database
Employee employee = session.readObject(Employee.class,

new ExpressionBuilder.get("lastName").equal(employeeName));
// Get all the projects affiliated with the employee
projects = session.readAllObjects(Project.class,
"SELECT P.* FROM PROJECT P," +
"EMPLOYEE E WHERE P.MEMBER_ID = E.EMP_ID AND E.L_NAME = " +
employeeName);

// Get all the associations affiliated with the employee
associations = session.readAllObjects(Association.class, "SELECT A.* " +
"FROM ASSOC A, EMPLOYEE E WHERE A.MEMBER_ID = E.EMP_ID AND E.L_NAME = "
+ employeeName);

Optimizing Queries

Optimizing the TopLink Application 12-31

report.put("firstName", employee.getFirstName());
report.put("lastName", employee.getLastName());
report.put("manager", employee.getManager());
report.put("city", employee.getAddress().getCity());
report.put("projects", projects);
report.put("associations", associations);
return report;

}
To improve application performance in these situations, define a new read-only object
to encapsulate this information, and map it to a view on the database. To set the object
to be read-only, configure its descriptor as read-only (see Section 119.3, "Configuring
Read-Only Descriptors").

Example 12–14 Optimization Through View Object

CREATE VIEW NAMED EMPLOYEE_VIEW AS (SELECT F_NAME = E.F_NAME, L_NAME = E.L_
NAME,EMP_ID = E.EMP_ID, MANAGER_NAME = E.NAME, CITY = A.CITY, NAME = E.NAME
FROM EMPLOYEE E, EMPLOYEE M, ADDRESS A
WHERE E.MANAGER_ID = M.EMP_ID
AND E.ADDRESS_ID = A.ADDRESS_ID)
Define a descriptor for the EmployeeReport class as follows:

■ Define the descriptor as usual, but specify the tableName as EMPLOYEE_VIEW.

■ Map only the attributes required for the report. In the case of the
numberOfProjects and associations, use a transformation mapping to retrieve
the required data.

You can now query the report from the database in the same way as any other object
enabled by TopLink.

Example 12–15 View the Report from Example 12–14

/* Return the report for the employee */
public EmployeeReport reportOnEmployee(String employeeName) {

EmployeeReport report;
report = (EmployeeReport) session.readObject(EmployeeReport.class,
new ExpressionBuilder.get("lastName").equal(employeeName));

return report;
}

12.12.9.5 Reading Case 5: Inheritance Subclass Outer-Joining
If you have an inheritance hierarchy that spans multiple tables and frequently query
for the root class, consider using outer joining. This allows an outer-joining to be used
for queries against an inheritance superclass that can read all of its subclasses in a
single query instead of multiple queries.

Note that on some databases, the outer joins may be less efficient than the default
multiple queries mechanism.

For more information about inheritance, see Section 16.2.2, "Descriptors and
Inheritance".

WARNING: Allowing an unverified SQL string to be passed into
methods (for example: readAllObjects(Class class, String
sql) and readObject(Class class, String sql) method)
makes your application vulnerable to SQL injection attacks.

Optimizing Queries

12-32 Developer's Guide for Oracle TopLink

For more information about querying on inheritance, see Section 111.6, "Querying on
an Inheritance Hierarchy".

12.12.10 Write Optimization Examples
TopLink provides the write optimization features listed in Table 12–14.

This section includes the following write optimization examples:

■ Writing Case: Batch Writes

12.12.10.1 Writing Case: Batch Writes
The most common write performance problem occurs when a batch job inserts a large
volume of data into the database. For example, consider a batch job that loads a large
amount of data from one database, and then migrates the data into another. The
following objects are involved:

■ Simple individual objects with no relationships.

Table 12–14 Write Optimization Features

Feature Effect on Performance

Unit of work Improves performance by updating only the changed fields and
objects.

Minimizes the amount of tracking required (which can be expensive)
by registering only those objects that will change.

For more information, see Chapter 113, "Introduction to TopLink
Transactions").

Note: The unit of work supports marking classes as read-only (see
Section 119.3, "Configuring Read-Only Descriptors" and Section 115.2,
"Declaring Read-Only Classes"). This avoids tracking of objects that do
not change.

Batch writing Lets you group all insert, update, and delete commands from a
transaction into a single database call. This dramatically reduces the
number of calls to the database (see Section 12.12.10.1.2, "Batch Writing
and Parameterized SQL").

Parameterized
SQL

Improves performance for frequently executed SQL statements (see
Section 12.12.1, "How to Use Parameterized SQL and Prepared
Statement Caching for Optimization").

Sequence number
preallocation

Dramatically improves insert performance (see Section 12.12.10.1.3,
"Sequence Number Preallocation").

Multiprocessing Splitting a batch job across threads lets you synchronize reads from a
cursored stream and use parallel units of work for performance
improvements even on a single machine (see Section 12.12.10.1.4,
"Multiprocessing").

Does exist
alternatives

The does exist call on write object can be avoided in certain situations by
checking the cache for does exist, or assuming the existence of the object
(see Section 117.7, "Configuring Existence Checking at the Project
Level" or Section 119.17, "Configuring Cache Existence Checking at the
Descriptor Level" and Section 115.1.3, "How to Use Registration and
Existence Checking").

Change Tracking Improves writing and transactional read performance (see
Section 113.2.3, "Unit of Work and Change Policy" and Section 119.30,
"Configuring Change Policy").

Isolated Client
Sessions

For write-only, or non-cached (isolated) objects, the unit of work
isolation level should be set to isolated-always to avoid caching
overhead when not caching (see Section 102.2.7, "Cache Isolation").

Optimizing Queries

Optimizing the TopLink Application 12-33

■ Objects that use generated sequence numbers as their primary key.

■ Objects that have an address that also uses a sequence number.

The batch job loads 10,000 employee records from the first database and inserts them
into the target database. With no optimization, the batch job reads all the records from
the source database, acquires a unit of work from the target database, registers all
objects, and commits the unit of work.

Example 12–16 No Optimization

/* Read all the employees, acquire a unit of work, and register them */

// Read all the employees from the database. This requires 1 SQL call,
// but will be very memory intensive as 10,000 objects will be read
Vector employees = sourceSession.readAllObjects(Employee.class);

//SQL: Select * from Employee

// Acquire a unit of work and register the employees
UnitOfWork uow = targetSession.acquireUnitOfWork();
uow.registerAllObjects(employees);
uow.commit();

// SQL: Begin transaction
// SQL: Update Sequence set count = count + 1 where name = 'EMP'
// SQL: Select count from Sequence
// SQL: ... repeat this 10,000 times + 10,000 times for the addresses ...
// SQL: Commit transaction
// SQL: Begin transaction
// SQL: Insert into Address (...) values (...)
// SQL: ... repeat this 10,000 times
// SQL: Insert into Employee (...) values (...)
// SQL: ... repeat this 10,000 times
// SQL: Commit transaction
This batch job performs poorly, because it requires 60,000 SQL executions. It also reads
huge amounts of data into memory, which can raise memory performance issues.
TopLink offers several optimization features to improve the performance of this batch
job.

To improve this operation, do the following:

■ Use TopLink batch read operations and cursor support (see Section 12.12.10.1.1,
"Cursors").

■ Use batch writing or parameterized batch writing to write to the database (see
Section 12.12.10.1.2, "Batch Writing and Parameterized SQL").

If your database does not support batch writing, use parameterized SQL to
implement the write query.

■ Implement sequence number preallocation (see Section 12.12.10.1.3, "Sequence
Number Preallocation").

■ Implement multiprocessing (see Section 12.12.10.1.4, "Multiprocessing").

12.12.10.1.1 Cursors To optimize the query in Example 12–16, use a cursored stream to
read the Employees from the source database. You can also employ a weak identity
map instead of a hard or soft cache identity map in both the source and target
databases.

Optimizing Queries

12-34 Developer's Guide for Oracle TopLink

To address the potential for memory problems, use the releasePrevious method
after each read to stream the cursor in groups of 100. Register each batch of 100
employees in a new unit of work and commit them.

Although this does not reduce the amount of executed SQL, it does address potential
out-of-memory issues. When your system runs out of memory, the result is
performance degradation that increases over time, and excessive disk activity caused
by memory swapping on disk.

For more information, see Section 12.12.7, "How to Use Cursored Streams and
Scrollable Cursors for Optimization".

12.12.10.1.2 Batch Writing and Parameterized SQL Batch writing lets you combine a group
of SQL statements into a single statement and send it to the database as a single
database execution. This feature reduces the communication time between the
application and the server, and substantially improves performance.

You can enable batch writing alone (dynamic batch writing) using Login method
useBatchWriting. If you add batch writing to Example 12–16, you execute each
batch of 100 employees as a single SQL execution. This reduces the number of SQL
executions from 20,200 to 300.

You can also enable batch writing and parameterized SQL (parameterized batch
writing) and prepared statement caching. Parameterized SQL avoids the prepare
component of SQL execution. This improves write performance because it avoids the
prepare cost of an SQL execution. For parameterized batch writing you would get one
statement per Employee, and one for Address: this reduces the number of SQL
executions from 20,200 to 400. Although this is more than dynamic batch writing
alone, parameterized batch writing also avoids all parsing, so it is much more efficient
overall.

Although parameterized SQL avoids the prepare component of SQL execution, it does
not reduce the number of executions. Because of this, parameterized SQL alone may
not offer as big of a gain as batch writing. However, if your database does not support
batch writing, parameterized SQL will improve performance. If you add
parameterized SQL in Example 12–16, you must still execute 20,200 SQL executions,
but parameterized SQL reduces the number of SQL PREPAREs to 4.

For more information, see Section 12.11.3, "How to Use Batch Writing for
Optimization".

12.12.10.1.3 Sequence Number Preallocation SQL select calls are more resource-intensive
than SQL modify calls, so you can realize large performance gains by reducing the
number of select calls you issue. The code in Example 12–16 uses the select calls to
acquire sequence numbers. You can substantially improve performance if you use
sequence number preallocation.

In TopLink, you can configure the sequence preallocation size on the login object (the
default size is 50). Example 12–16 uses a preallocation size of 1 to demonstrate this
point. If you stream the data in batches of 100 as suggested in Section 12.12.10.1.1,
"Cursors", set the sequence preallocation size to 100. Because employees and addresses
in the example both use sequence numbering, you further improve performance by
letting them share the same sequence. If you set the preallocation size to 200, this
reduces the number of SQL execution from 60,000 to 20,200.

For more information about sequencing preallocation, see Section 18.2.3, "Sequencing
and Preallocation Size".

Optimizing the Unit of Work

Optimizing the TopLink Application 12-35

12.12.10.1.4 Multiprocessing You can use multiple processes or multiple machines to
split the batch job into several smaller jobs. In this example, splitting the batch job
across threads enables you to synchronize reads from the cursored stream, and use
parallel Units of Work on a single machine.

This leads to a performance increase, even if the machine has only a single processor,
because it takes advantage of the wait times inherent in SQL execution. While one
thread waits for a response from the server, another thread uses the waiting cycles to
process its own database operation.

Example 12–17 illustrates the optimized code for this example. Note that it does not
illustrate multiprocessing.

Example 12–17 Fully Optimized

/* Read each batch of employees, acquire a unit of work, and register them */
targetSession.getLogin().useBatchWriting();
targetSession.getLogin().setSequencePreallocationSize(200);
targetSession.getLogin().bindAllParameters();
targetSession.getLogin().cacheAllStatements();
targetSession.getLogin().setMaxBatchWritingSize(200);

// Read all the employees from the database into a stream.
// This requires 1 SQL call, but none of the rows will be fetched.
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useCursoredStream();
CursoredStream stream;
stream = (CursoredStream) sourceSession.executeQuery(query);
//SQL: Select * from Employee. Process each batch
while (! stream.atEnd()) {

Vector employees = stream.read(100);
// Acquire a unit of work to register the employees
UnitOfWork uow = targetSession.acquireUnitOfWork();
uow.registerAllObjects(employees);
uow.commit();

}
//SQL: Begin transaction
//SQL: Update Sequence set count = count + 200 where name = 'SEQ'
//SQL: Select count from Sequence where name = 'SEQ'
//SQL: Commit transaction
//SQL: Begin transaction
//BEGIN BATCH SQL: Insert into Address (...) values (...)
//... repeat this 100 times
//Insert into Employee (...) values (...)
//... repeat this 100 times
//END BATCH SQL:
//SQL: Commit transactionJava optimization

12.13 Optimizing the Unit of Work
For best performance when using a unit of work, consider the following tips:

■ Register objects with a unit of work only if objects are eligible for change. If you
register objects that will not change, the unit of work needlessly clones and
processes those objects.

■ Avoid the cost of existence checking when you are registering a new or existing
object (see Section 115.1.3, "How to Use Registration and Existence Checking").

Optimizing Using Weaving

12-36 Developer's Guide for Oracle TopLink

■ Avoid the cost of change set calculation on a class you know will not change by
telling the unit of work that the class is read-only (see Section 115.2, "Declaring
Read-Only Classes").

■ Avoid the cost of change set calculation on an object read by a ReadAllQuery in a
unit of work that you do not intend to change by unregistering the object (see
Section 115.1.5, "How to Unregister Working Clones").

■ Before using conforming queries, be sure that it is necessary. For alternatives, see
Section 115.4, "Using Conforming Queries and Descriptors".

■ Enable weaving and change tracking to greatly improve transactional
performance. For more information, see Section 12.14, "Optimizing Using
Weaving".

If your performance measurements show that you have a performance problem
during unit of work commit, consider using object level or attribute level change
tracking, depending on the type of objects involved and how they typically change.
For more information, see Section 113.2.3, "Unit of Work and Change Policy".

12.14 Optimizing Using Weaving
Oracle recommends that you enable weaving to improve performance. Transactional
performance in particular can be greatly improved through the use of weaving and
change tracking.

In addition to using weaving to transparently configure lazy loading (indirection) and
change tracking, TopLink uses weaving to make numerous internal optimizations.

For more information, see Section 2.10, "Using Weaving".

12.15 Optimizing the Application Server and Database Optimization
Configuring your application server and database correctly can have a big impact on
performance and scalabilty. Ensure that you correctly optimize these key components
of your application in addition to your TopLink application and persistence.

For your application or Java EE server, ensure your memory, thread pool and
connection pool sizes are sufficient for your server's expected load, and that your JVM
has been configured optimally.

Ensure that your database has been configured correctly for optimal performance and
its expected load.

12.16 Optimizing Storage and Retrieval of Binary Data in XML
When working with Java API for XML Web Services (JAX-WS), you can use XML
binary attachments to optimize the storage and retrieval of binary data in XML. Rather
than storing the data as a base64 BLOB, you can optimize it by sending the data as a
Multipurpose Internet Mail Extensions (MIME) attachment in order to retrieve it on
the other end.

To make the use of XML binary attachments, register an instance of an
oracle.toplink.ox.attachment.XMLAttachmentMarshaller or
XMLAttachmentUnmarshaller with the binding framework. During a marshal
operation, binary data will be handed into the XMLAttachmentMarshaller, which will
be required to provide an ID that you can use at a later time to retrieve the data.

TopLink runtime supports MtOM and SwaRef-style attachments.

Optimizing Storage and Retrieval of Binary Data in XML

Optimizing the TopLink Application 12-37

TopLink provides support for the following Java types as attachments:

■ java.awt.Image

■ javax.activation.DataHandler

■ javax.mail.internet.MimeMultipart

■ javax.xml.transform.Source

■ byte[]

■ Byte[]

You can generate schema and mappings based on JAXB classes for these types.

You can configure which mappings will be treated as attachments and set the MIME
types of those attachments. You perform configurations using the following JAXB
annotations:

■ XmlAttachmentRef–Used on a DataHandler to indicate that this should be
mapped to a swaRef in the XML schema. This means it should be treated as a
SwaRef attachment.

■ XmlMimeType–Specifies the expected MIME type of the mapping. When used on
a byte array, this value should be passed into the XMLAttachmentMarshaller
during a marshal operation. During schema generation, this will result in an
expectedContentType attribute being added to the related element.

■ XmlInlineBinaryData–Indicates that this binary field should always be written
inline as base64Binary and never treated as an attachment.

For information on JAXB annotations, see Chapter 8 of the specification at
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html.

Additionally, you have to set the schema type on a mapping going to binary if it is to
be considered an attachment: it is either base64Binary or swaRef.

Consider the following examples.

Example 12–18 Using SwaRef

public class Employee {

@XmlAttachmentRef
public DataHandler photo;
...

}
The preceding code yields the following XML schema type:

<xs:complexType name="employee">
<xs:sequence>

<xs:element name="photo" type="xs:swaRef"/>
</xs:sequence>

</xs:complexType>
The XML would look as follows:

<employee>
<photo>attachment_id</photo>

</employee>

Note: TopLink lets you override treating an object as an attachment
on a per-mapping basis.

Optimizing Storage and Retrieval of Binary Data in XML

12-38 Developer's Guide for Oracle TopLink

Example 12–19 Using MtOM Without MimeType

public class Employee {

public java.awt.Image photo;
...

}
The preceding code generates the following XML schema type:

<xs:complexType name="employee">
<xs:sequence>

<xs:element name="photo" type="base64Binary"/>
</xs:sequence>

</xs:complexType>
The XML would look as follows:

<employee>
<photo>

<xop:Include href="attachment_id"/>
</photo>

</employee>

Example 12–20 Using MtOM with MimeType

public class Employee {

@XmlMimeType("image/jpeg")
public java.awt.Image photo;
...

}
The preceding code generates the following XML schema type:

<xs:complexType name="employee">
<xs:sequence>

<xs:element name="photo"
ns:expectedContentTypes="image/jpeg"
type="xs:base64Binary"/>

</xs:sequence>
</xs:complexType>
The XML would look as follows:

<employee>
<photo>

<xop:Include href="attachment_id"/>
</photo>

</employee>

Example 12–21 Using Binary Object with Forced Inline

public class Employee {

@XmlInlineBinaryData
public java.awt.Image photo;
...

}
The preceding code generates the following XML schema type:

<xs:complexType name="employee">
<xs:sequence>

<xs:element name="photo" type="xs:base64Binary"/>
</xs:sequence>

</xs:complexType>
The XML would look as follows:

Optimizing Storage and Retrieval of Binary Data in XML

Optimizing the TopLink Application 12-39

<employee>
<photo>ASWIUHFD1323423OIJEUFHEIUFWE134DFO3IR3298RY== </photo>

</employee>
If you are not using JAXB, use the
oracle.toplink.ox.mappings.XMLBinaryDataMapping and
XMLBinaryDataCollectionMapping API to handle binary data. For more
information, see Section 53.12, "XML Binary Data Mapping" and Section 53.13, "XML
Binary Data Collection Mapping".

12.16.1 How to Use an Attachment Marshaller and Unmarshaller
You implement TopLink XMLAttachmentMarshaller and
XMLAttachmentUnmarshaller interfaces to add and retrieve various types of XML
attachments. An XMLMarshaller holds an instance of
XMLAttachmentMarshaller, and XMLUnmarshaller–an instance of
XMLAttachmentUnmarshaller.

You set and obtain an attachment marshaller and unmarshaller using the following
corresponding XMLMarshaller and XMLUnmarshaller methods:

■ setAttachmentMarshaller(XMLAttachmentMarshaller am)

■ getAttachmentMarshaller()

■ setAttachmentUnmarshaller(XMLAttachmentUnmarshaller au)

■ getAttachmentUnmarshaller()

Example 12–22 shows how to use an attachment marshaller in your application.

Example 12–22 Using an Attachment Marshaller

...
XMLMarshaller marshaller = context.createMarshaller();
XMLAttachmentMarshaller am = new EmployeeAttachmentMarshaller();
marshaller.setAttachmentMarshaller(am);
...
For the preceding example to be valid, the XML schema type should be set to swaRef.

For more information, see Section 47.1.1.3.1, "How to Use TopLink XMLContext".

Optimizing Storage and Retrieval of Binary Data in XML

12-40 Developer's Guide for Oracle TopLink

13

Customizing the TopLink Application 13-1

13Customizing the TopLink Application

There are multiple ways to customize your TopLink application, ranging from creating
custom data types to using EclipseLink JPA extensions.

This chapter includes the following sections:

■ Introduction to Customization

■ Creating Custom Data Types

■ Using Public Source

■ Using the Session Customizer Class

■ Using the Descriptor Customizer Class

■ Using the Descriptor Amendment Methods

■ Using EclipseLink JPA Extensions

13.1 Introduction to Customization
By design, TopLink can adapt to a variety of relational and nonrelational data sources.

To integrate TopLink with a data source that is not directly supported by the TopLink
API, Oracle recommends that you use an EIS project (see Chapter 71, "Introduction to
EIS Projects") or a XML project (see Chapter 47, "Introduction to XML Projects").

Using an EIS project, you can integrate your TopLink-enabled application with any
nonrelational data source that supports a JCA adapter and any supported EIS record
type, including indexed, mapped, or XML. If no JCA adapter exists for your target
data source, you can concentrate your integration efforts on creating an adapter.
Simultaneously, you can build your application according to JCA specifications.
Although this still requires custom development effort, it is more efficient than trying
to extend TopLink classes and provides you with a JCA adapter that you can leverage
in any other project (making it a better value).

Using an XML project, you can integrate your TopLink-enabled application with Web
services or other XML-message based designs.

The remainder of this chapter describes other customization options provided by the
TopLink API.

13.2 Creating Custom Data Types
TopLink provides support for all the most common Java data types. Table 13–1 lists the
TopLink mapping extensions that you can use to support custom data types. You can

Using Public Source

13-2 Developer's Guide for Oracle TopLink

also create your object converter to allow conversion between a data type and your
own Java type.

13.3 Using Public Source
The source code to most public classes is available in <TOPLINK_
HOME>\jlib\toplink-src.zip.

This is provided for debugging purposes.

13.4 Using the Session Customizer Class
You can customize a session at run time by specifying a session customizer–a Java
class that implements the
oracle.toplink.tools.sessionconfiguration.SessionCustomizer
interface.

For more information, see the following:

■ Section 87.2.3, "Session Customization"

■ Section 89.8, "Configuring a Session Customizer Class"

■ Persistence unit property eclipselink.session.customizer in "EclipseLink
JPA Properties for Customization and Validation" table of EclipseLink Developer’s
Guide at http://wiki.eclipse.org/Using_EclipseLink_JPA_
Extensions_%28ELUG%29#How_to_Use_the_Persistence_Unit_
Properties_for_Customization_and_Validation

13.5 Using the Descriptor Customizer Class
You can customize a descriptor at run time by specifying a descriptor customizer–a
Java class that implements the
oracle.toplink.tools.sessionconfiguration.DescriptorCustomizer
interface.

For more information, see the following:

■ Section 16.2.6, "Descriptor Customization"

Table 13–1 Mapping Extensions for Custom Data Types

Extension Description

Object type converter (see Section 17.2.6.3,
"Object Type Converter")

An extension of direct and direct collection mappings that lets
you match a fixed number of data values to Java objects. Use
this converter when the values in the schema differ from those
in Java

Serialized object converter (see
Section 17.2.6.1, "Serialized Object
Converter")

An extension of direct and direct collection mappings that lets
you map serializable objects, such as multimedia data, to a
binary format in a data source, such as a base64 element in an
XML document or Binary Large Object (BLOB) field in a
database

Type conversion converter (see
Section 17.2.6.2, "Type Conversion
Converter")

An extension of direct and direct collection mappings that lets
you explicitly map a data source type to a Java type. For
example, a java.util.Date in Java can be mapped to a
java.sql.Date in the data source.

Simple type translator (see Section 17.2.6.4,
"Simple Type Translator")

An extension of direct and direct collection mappings that lets
you automatically translate an XML element value to an
appropriate Java type based on the element’s <type>
attribute as defined in your XML schema.

Using EclipseLink JPA Extensions

Customizing the TopLink Application 13-3

■ Section 119.34, "Configuring a Descriptor Customizer Class"

■ "How to Use the @Customizer Annotation" section of EclipseLink Developer’s Guide
at http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Use_the_.40Customizer_Annotation

■ Persistence unit property eclipselink.descriptor.customizer.<ENTITY>
in "EclipseLink JPA Properties for Customization and Validation" table of
EclipseLink Developer’s Guide at http://wiki.eclipse.org/Using_
EclipseLink_JPA_Extensions_%28ELUG%29#How_to_Use_the_
Persistence_Unit_Properties_for_Customization_and_Validation

13.6 Using the Descriptor Amendment Methods
To customize descriptors, you can use their amendment methods.

For more information, see the following:

■ Section 16.2.7, "Amendment and After-Load Methods"

■ Section 119.35, "Configuring Amendment Methods"

13.7 Using EclipseLink JPA Extensions
If you are developing a EclipseLink JPA application, use EclipseLink JPA metadata
annotations and XML extensions for customization.

For more information, see "Using EclipseLink JPA Extensions" chapter of EclipseLink
Developer’s Guide at http://wiki.eclipse.org/Using_EclipseLink_JPA_
Extensions_%28ELUG%29.

Using EclipseLink JPA Extensions

13-4 Developer's Guide for Oracle TopLink

Part V
Part V Mapping and Configuration Overview

This part describes how to use TopLink to map persistent objects to a data source and
how to capture that information for use with the TopLink run-time component. It
contains the following chapter:

■ Chapter 14, "Introduction to TopLink Mapping and Configuration"

This chapter introduces the metadata, contained in the descriptor, used by
TopLink to generate SQL statements that create, read, modify, and delete objects.

14

Introduction to TopLink Mapping and Configuration 14-1

14Introduction to TopLink Mapping and
Configuration

TopLink uses metadata (see Section 2.9, "Working with TopLink Metadata") to describe
how objects relate to a data source representation. Your mapping and configuration
activities construct this metadata.

After creating the metadata, you can use it in any number of applications by
referencing the metadata from a session (see Chapter 87, "Introduction to TopLink
Sessions"). The TopLink runtime uses this metadata in all persistence and data
transformation operations.

This chapter includes the following section:

■ Mapping and Configuration Concepts

14.1 Mapping and Configuration Concepts
This section describes concepts unique to TopLink mapping and configuration,
including the following:

■ Projects

■ Descriptors

■ Mappings

14.1.1 Projects
The Project class is the primary container in which TopLink stores its mapping and
configuration metadata. A project relates a set of object classes to a data source at the
data model level.

A project contains a descriptor (see Section 14.1.2, "Descriptors") for each class and
each descriptor contains a mapping (see Section 14.1.3, "Mappings") for each data
member that TopLink should persist or transform.

Using Oracle JDeveloper TopLink Editor or TopLink Workbench, you can export
mapping and configuration metadata into a deployment XML file called project. For
more information, see Section 116.3, "Exporting Project Information".

After creating the project XML file, you must associate it with a session so that
TopLink can use it at run time. For more information, see Section 89.2, "Configuring a
Primary Mapping Project".

Mapping and Configuration Concepts

14-2 Developer's Guide for Oracle TopLink

For Enterprise JavaBeans (EJB) applications where there is no session, deploy the
project XML file to the target application server. In this context, the project XML file is
also known as the deployment XML file.

For more information, see the following:

■ Section 9.1.2, "sessions.xml File"

■ Section 9.1.1, "project.xml File"

■ Chapter 15, "Introduction to Projects".

14.1.2 Descriptors
Descriptors describe how a Java class relates to a data source representation. They
relate object classes to the data source at the data model level. For example, persistent
class attributes may map to database columns.

TopLink uses descriptors to store the information that describes how an instance of a
particular class can be represented in a data source (see Section 14.1.3, "Mappings").
Most descriptor information can be defined by Oracle JDeveloper TopLink Editor or
TopLink Workbench, then read from the project XML file at run time.

See Chapter 16, "Introduction to Descriptors" for more information.

14.1.3 Mappings
Mappings describe how individual object attributes relate to a data source
representation. Mappings can involve a complex transformation or a direct entry.

TopLink uses mappings to determine how to transform data between object and data
source representation. Most mapping information can be defined by Oracle JDeveloper
TopLink Editor or TopLink Workbench, then read from the project XML file at run
time. Mappings are owned by descriptors (see Section 14.1.2, "Descriptors").

See Chapter 17, "Introduction to Mappings" for more information.

Part VI
Part VI Projects

This part describes the TopLink artifact used to contain mapping and data
source-specific information. It contains the following chapter:

■ Chapter 15, "Introduction to Projects"

This chapter describes each of the different TopLink project types and important
project concepts.

For information on specific project types, see the following parts:

■ Part IX, "Relational Projects" (for both relational and object-relational data type
applications)

■ Part XIV, "XML Projects"

■ Part XVII, "EIS Projects"

15

Introduction to Projects 15-1

15Introduction to Projects

A TopLink project encapsulates both mapping metadata and, where relevant, data
source access information. The project is the primary object used by TopLink at run
time. Each session (excluding the session broker) in a deployed application references
a single project.

This chapter includes the following sections:

■ TopLink Project Types

■ Project Concepts

■ Project API

■ XML Namespaces Overview

15.1 TopLink Project Types
Table 15–1 lists the project types available in TopLink, classifies each as basic or
advanced, and indicates how to create each.

For more information, see the following:

■ Chapter 116, "Creating a Project"

■ Chapter 117, "Configuring a Project"

■ Chapter 87, "Introduction to TopLink Sessions"

Table 15–1 TopLink Project Types

Project Type Description
Oracle
JDeveloper

TopLink
Workbench Java

Relational (see Chapter 18,
"Introduction to Relational
Projects")

A project for transactional persistence of Java
objects to a relational database or an
object-relational data type database accessed
using Java Database Connectivity (JDBC).
Supports TopLink queries and expressions.

EIS (see Chapter 71, "Introduction
to EIS Projects")

A project for transactional persistence of Java
objects to a nonrelational data source accessed
using a Java EE Connector Architecture (JCA)
adapter and any supported EIS record type,
including indexed, mapped, or XML. Supports
TopLink queries and expressions.

XML (see Chapter 47,
"Introduction to XML Projects")

A project for nontransactional, nonpersistent
(in-memory) conversion between Java objects
and XML schema (XSD)-based documents
using Java Architecture for XML Binding
(JAXB). Does not support TopLink queries and
expressions.

Project Concepts

15-2 Developer's Guide for Oracle TopLink

15.2 Project Concepts
This section describes concepts unique to TopLink projects, including the following:

■ Project Architecture

■ Relational and Nonrelational Projects

■ Persistent and Nonpersistent Projects

■ Projects and Login

■ Projects and Platforms

■ Projects and Sequencing

■ XML Namespaces

15.2.1 Project Architecture
The project type you choose determines the type of descriptors and mappings you can
use. There is a project type for each data source type that TopLink supports.

Table 15–2 summarizes the relationship between project, descriptor, and mappings.

15.2.2 Relational and Nonrelational Projects
TopLink supports both relational and nonrelational projects.

Relational projects persist Java objects to a relational database.

Nonrelational projects persist Java objects to another (nonrelational) type of data
source, or perform nonpersistent (see Section 15.2.3, "Persistent and Nonpersistent
Projects") data conversion. For example, to persist Java objects to an EIS data source by
using a JCA adapter, use an EIS project. To perform nonpersistent (in-memory)
conversions between Java objects and XML elements, use an XML project.

15.2.3 Persistent and Nonpersistent Projects
TopLink supports projects you use for applications that require persistent storage of
Java objects. For example, use a relational project to persist Java objects to a relational
database, or an EIS project to persist Java objects to an EIS data source by way of a JCA
adapter.

TopLink also supports projects you use for applications that require only nonpersistent
(in-memory) data conversion. For example, use an XML project to perform
nonpersistent (in-memory) conversion between Java objects and XML elements.

Table 15–2 Project, Descriptor, and Mapping Support

Project Descriptor Mapping

Relational (se)e Chapter 18,
"Introduction to Relational
Projects"

The following:

■ Relational (see Section 21.1,
"Relational Descriptors")

■ Object-relational data type
(see Section 24.1,
"Object-Relational Data Type
Descriptors")

The following:

■ Relational (see Section 17.4,
"Relational Mappings")

■ Object-relational data type (see
Section 17.5, "Object-Relational
Data Type Mappings")

EIS (see Chapter 71,
"Introduction to EIS Projects")

EIS (see Section 74.1, "EIS
Descriptor Concepts"

EIS (see Section 17.7, "EIS
Mappings"

XML (see Chapter 47,
"Introduction to XML
Projects")

XML (see Section 50.1, "XML
Descriptor Concepts"

XML (see Section 17.6, "XML
Mappings"

Project Concepts

Introduction to Projects 15-3

15.2.4 Projects and Login
The login (if any) associated with a project determines how the TopLink runtime
connects to the project’s data source.

A login includes details of data source access, such as authentication, use of connection
pools, and use of external transaction controllers. A login owns a platform.

A platform includes options specific to a particular data source, such as binding, use of
native SQL, use of batch writing, and sequencing. For more information about
platforms, see Section 15.2.5, "Projects and Platforms".

For projects that do not persist to a data source, a login is not required. For projects
that do persist to a data source, a login is always required.

In TopLink Workbench, the project type determines the type of login that the project
uses, if applicable.

You can use a login in a variety of roles. A login’s role determines where and how you
create it. The login role you choose depends on the type of project you are creating and
how you intend to use the login:

■ POJO Session Role

■ CMP Deployment Role

■ Development Role

15.2.4.1 POJO Session Role
You create a session login in the sessions.xml file for TopLink applications that do
not use container-managed persistence (CMP).

Typically, the TopLink runtime instantiates a project when you load a session from the
sessions.xml file (see Chapter 90, "Acquiring and Using Sessions at Run Time").
The runtime also instantiates a login and its platform based on the information in the
sessions.xml file.

The TopLink runtime uses the information in the session login whenever you perform
a persistence operation using the session in your POJO TopLink application.

In this case, you do not configure a deployment login (see Section 15.2.4.2, "CMP
Deployment Role").

If you are using TopLink Workbench and your login is based on a relational database
platform, you must also configure a development login (see Section 15.2.4.3,
"Development Role").

If a sessions.xml file contains a login, this login overrides any other login
definition.

There is a session login type for each project type that persists to a data source. For a
complete list of login types available, see Section 96.1.2, "Data Source Login Types".

For information on configuring a session login, see Section 89.3, "Configuring a
Session Login".

15.2.4.2 CMP Deployment Role
You create a deployment login in the project.xml file (also known as the
toplink-ejb-jar.xml file) for a TopLink-enabled CMP application.

When you deploy your TopLink-enabled CMP application with its
toplink-ejb-jar.xml file, the application server or EJB container uses the

Project Concepts

15-4 Developer's Guide for Oracle TopLink

information in the deployment login whenever your business logic performs a
persistence operation from within an entity bean with container-managed persistence.

In this case, you do not configure a session login (see Section 15.2.4.1, "POJO Session
Role"). In fact, there is no session.xml file at all (see Section 9.1.2.4, "CMP
Applications and Session Metadata").

If you are using TopLink Workbench and your login is based on a relational database
platform, you must also configure a development login (see Section 15.2.4.3,
"Development Role").

For information on creating a deployment login, see Section 20.5, "Configuring
Development and Deployment Logins".

15.2.4.3 Development Role
Using TopLink Workbench, you create a development login in the TopLink Workbench
project file when your project is based on a relational database platform.

TopLink Workbench uses the information in the development login whenever you
perform a data source operation from within TopLink Workbench, for example,
whenever you read or write schema information from or to a data store during
application development. The development login information is never written to a
sessions.xml or project.xml file.

The development login is never used when you deploy your application: it is
overridden by either the sessions.xml file (see Section 15.2.4.1, "POJO Session
Role") or the project.xml file (see Section 15.2.4.2, "CMP Deployment Role").

For more information on creating a development login, see Section 20.5, "Configuring
Development and Deployment Logins".

15.2.5 Projects and Platforms
The platform (if any) associated with a project tells the TopLink runtime what specific
type of data source a project uses.

A platform includes options specific to a particular data source, such as binding, use of
native SQL, use of batch writing, and sequencing.

A login includes details of data source access, such as authentication, use of connection
pools, and use of external transaction controllers. A login owns a platform. For more
information about logins, see Section 15.2.4, "Projects and Login".

For projects that do not persist to a data source, a platform is not required. For projects
that do persist to a data source, a platform is always required.

In TopLink Workbench, the project type determines the type of platform that the
project uses, if applicable.

There is a platform type for each project type that persists to a data source. For a
complete list of platform types available, see Section 96.1.3, "Data Source Platform
Types".

15.2.6 Projects and Sequencing
An essential part of maintaining object identity (see Section 102.2.1, "Cache Type and
Object Identity") is sequencing: managing the assignment of unique values to
distinguish one instance from another.

Projects have different sequencing requirements, depending on their types:

Project Concepts

Introduction to Projects 15-5

■ For relational projects, you typically obtain object identifier values from a separate
sequence table (or database object) dedicated to managing object identifier values
(see Section 18.2, "Sequencing in Relational Projects").

■ For EIS projects, you typically use a returning policy (see Section 119.27,
"Configuring Returning Policy") to obtain object identifier values managed by the
EIS data source.

■ For XML projects, because you are simply performing transformations between
objects and XML documents, sequencing is not an issue.

To configure sequencing, you must configure the following:

■ how to obtain sequence values (see Section 15.2.6.1, "Configuring How to Obtain
Sequence Values"), and

■ where to write sequence values when an instance of a descriptor’s reference class
is created (see Section 15.2.6.2, "Configuring Where to Write Sequence Values").

Depending on the type of sequencing you use and the architecture of your application,
you may consider using a sequence connection pool. For more information, see
Section 96.1.6.4, "Sequence Connection Pools".

15.2.6.1 Configuring How to Obtain Sequence Values
To determine how TopLink obtains sequence values, you configure TopLink
sequencing at the project or session level, depending on the type of project you are
building, as follows:

■ In a CMP project, you do not configure a session directly: in this case, you must
configure sequences at the project level (see Section 20.3, "Configuring Sequencing
at the Project Level").

■ In a POJO project, you can configure a session directly: in this case, you can use
session-level sequence configuration instead of project-level sequence
configuration or to override project level sequence configuration on a
session-by-session basis, if required (see Section 98.4, "Configuring Sequencing at
the Session Level").

15.2.6.2 Configuring Where to Write Sequence Values
To tell TopLink into which table and column to write the sequence value when an
instance of a descriptor’s reference class is created, you configure TopLink sequencing
at the descriptor level (see Section 23.3, "Configuring Sequencing at the Descriptor
Level").

15.2.7 XML Namespaces
As defined in http://www.w3.org/TR/REC-xml-names/, an XML namespace is a
collection of names, identified by a URI reference, which are used in XML documents
as element types and attribute names. To promote reusability and modularity, XML
document constructs should have universal names, whose scope extends beyond their
containing document. XML namespaces are the mechanism which accomplishes this.

XML namespaces are applicable in projects that reference an XML schema: EIS projects
that use XML records (see Section 72.2, "Creating an EIS Project with XML Records")
and XML projects (see Section 47.1, "XML Project Concepts").

For more information, see Section 15.4, "XML Namespaces Overview".

Project API

15-6 Developer's Guide for Oracle TopLink

15.3 Project API
This section describes the following:

■ Project Inheritance Hierarchy

15.3.1 Project Inheritance Hierarchy
There is only one type of project: oracle.toplink.sessions.Project.

15.4 XML Namespaces Overview
As defined in http://www.w3.org/TR/REC-xml-names/, an XML namespace is a
collection of names, identified by a URI reference, which are used in XML documents
as element types and attribute names. To promote reusability and modularity, XML
document constructs should have universal names, whose scope extends beyond their
containing document. XML namespaces are the mechanism which accomplishes this.

XML namespaces are applicable in projects that reference an XML schema: EIS projects
that use XML records (see Section 72.2, "Creating an EIS Project with XML Records")
and XML projects (see Section 47.1, "XML Project Concepts").

You can use Oracle JDeveloper or TopLink Workbench to configure the XML schema
namespae for your project.

This section describes the following:

■ TopLink Workbench Namespace Resolution

■ Element and Attribute Form Options

■ TopLink Runtime Namespace Resolution

15.4.1 TopLink Workbench Namespace Resolution
Using TopLink Workbench, you can configure the XML schema namespace for your
project. For more information, see Section 5.6.5, "How to Configure XML Schema
Namespace".

15.4.2 Element and Attribute Form Options
The xsd:schema element provides attributes that you can use to specify how
elements and attributes should be qualified by namespace.

This section describes the consequences of the following combinations of element and
attribute form configuration:

■ Element Form Default Qualified and Attribute Form Default Unqualified

■ Element and Attribute Form Default Unqualified

■ Element and Attribute Form Default Qualified

15.4.2.1 Element Form Default Qualified and Attribute Form Default Unqualified
Example 15–1 shows an XML schema in which a target namespace is set. It is coded
with elementFormDefault set to qualified and attributeFormDefault set to
unqualified. This means all elements must be namespace qualified and globally
declared attributes must be namespace qualified and locally defined attributes must
not be namespace qualified.

XML Namespaces Overview

Introduction to Projects 15-7

Example 15–1 XML Schema with Element Form Default Qualified and Attribute Form
Default Unqualified

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="unqualified"
xmlns="urn:namespace-example"
targetNamespace="urn:namespace-example">
<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element ref="date-of-birth"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer"/>

</xsd:complexType>
<xsd:element name="date-of-birth" type="xsd:date"/>

</xsd:schema>

Example 15–2 shows an XML document that conforms to this XML schema.

Example 15–2 XML Document

<?xml version="1.0" encoding="UTF-8"?>
<ns:customer xmlns:ns="urn:namespace-example" id="1">

<ns:name>Jane Doe</ns:name>
<ns:date-of-birth>1975-02-21</ns:date-of-birth>

</ns:customer>

Example 15–3 shows the Java code for a Customer class XMLDescriptor and XML
mappings for its attributes to illustrate how this schema configuration affects the
XPaths you specify for default root element and mappings (for more information, see
Chapter 52, "Configuring an XML Descriptor" and Chapter 54, "Configuring an XML
Mapping").

Example 15–3 XML Descriptors and Mappings

NamespaceResolver namespaceResolver = new NamespaceResolver();
namespaceResolver.put("ns", "urn:namespace-example");

XMLDescriptor customerDescriptor = new XMLDescriptor();
customerDescriptor.setJavaClass(Customer.class);
customerDescriptor.setDefaultRootElement("ns:customer");
customerDescriptor.setNamespaceResolver(namespaceResolver);

XMLDirectMapping idMapping = new XMLDirectMapping();
idMapping.setAttributeName("id");
idMapping.setXPath("@id");
customerDescriptor.addMapping(idMapping);

XMLDirectMapping nameMapping = new XMLDirectMapping();
nameMapping.setAttributeName("name");
nameMapping.setXPath("ns:name/text()");
customerDescriptor.addMapping(nameMapping);

XMLDirectMapping birthDateMapping = new XMLDirectMapping();
birthDateMapping.setAttributeName("birthDate");
birthDateMapping.setXPath("ns:date-of-birth/text()");
customerDescriptor.addMapping(birthDateMapping);

15.4.2.2 Element and Attribute Form Default Unqualified
Example 15–4 shows an XML schema in which a target namespace is set. It is coded
with elementFormDefault and attributeFormDefault set to unqualified.

XML Namespaces Overview

15-8 Developer's Guide for Oracle TopLink

This means that globally defined nodes must be namespace qualified and locally
defined nodes must not be namespace qualified.

Example 15–4 XML Schema with Element and Attribute Form Default Unqualified

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="unqualified"
attributeFormDefault="unqualified"
xmlns="urn:namespace-example"
targetNamespace="urn:namespace-example">
<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element ref="date-of-birth"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer"/>

</xsd:complexType>
<xsd:element name="date-of-birth" type="xsd:date"/>

</xsd:schema>

Example 15–5 shows an XML document that conforms to this XML schema.

Example 15–5 XML Document

<?xml version="1.0" encoding="UTF-8"?>
<ns:customer xmlns:ns="urn:namespace-example" id="1">

<name>Jane Doe</name>
<ns:date-of-birth>1975-02-21</ns:date-of-birth>

</ns:customer>

Example 15–6 shows the Java code for a Customer class XMLDescriptor and XML
mappings for its attributes to illustrate how this schema configuration affects the
XPaths you specify for default root element and mappings (for more information, see
Chapter 52, "Configuring an XML Descriptor" and Chapter 54, "Configuring an XML
Mapping").

Example 15–6 XML Descriptors and Mappings

NamespaceResolver namespaceResolver = new NamespaceResolver();
namespaceResolver.put("ns", "urn:namespace-example");

XMLDescriptor customerDescriptor = new XMLDescriptor();
customerDescriptor.setJavaClass(Customer.class);
customerDescriptor.setDefaultRootElement("ns:customer");
customerDescriptor.setNamespaceResolver(namespaceResolver);

XMLDirectMapping idMapping = new XMLDirectMapping();
idMapping.setAttributeName("id");
idMapping.setXPath("@id");
customerDescriptor.addMapping(idMapping);

XMLDirectMapping nameMapping = new XMLDirectMapping();
nameMapping.setAttributeName("name");
nameMapping.setXPath("name/text()");
customerDescriptor.addMapping(nameMapping);

XMLDirectMapping birthDateMapping = new XMLDirectMapping();
birthDateMapping.setAttributeName("birthDate");
birthDateMapping.setXPath("ns:date-of-birth/text()");
customerDescriptor.addMapping(birthDateMapping);

XML Namespaces Overview

Introduction to Projects 15-9

15.4.2.3 Element and Attribute Form Default Qualified
Example 15–7 shows an XML schema in which a target namespace is set. It is coded
with elementFormDefault and attributeFormDefault set to qualified. This
means that all nodes must be namespace qualified.

Example 15–7 XML Schema with Element and Attribute Form Default Qualified

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="qualified"
xmlns="urn:namespace-example"
targetNamespace="urn:namespace-example">
<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element ref="date-of-birth"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:integer"/>

</xsd:complexType>
<xsd:element name="date-of-birth" type="xsd:date"/>

</xsd:schema>

Example 15–8 shows an XML document that conforms to this XML schema.

Example 15–8 XML Document

<?xml version="1.0" encoding="UTF-8"?>
<ns:customer xmlns:ns="urn:namespace-example" ns:id="1">

<ns:name>Jane Doe</ns:name>
<ns:date-of-birth>1975-02-21</ns:date-of-birth>

</ns:customer>

Example 15–9 shows the Java code for a Customer class XMLDescriptor and XML
mappings for its attributes to illustrate how this schema configuration affects the
XPaths you specify for default root element and mappings (for more information, see
Chapter 52, "Configuring an XML Descriptor" and Chapter 54, "Configuring an XML
Mapping").

Example 15–9 XML Descriptors and Mappings

NamespaceResolver namespaceResolver = new NamespaceResolver();
namespaceResolver.put("ns", "urn:namespace-example");

XMLDescriptor customerDescriptor = new XMLDescriptor();
customerDescriptor.setJavaClass(Customer.class);
customerDescriptor.setDefaultRootElement("ns:customer");
customerDescriptor.setNamespaceResolver(namespaceResolver);

XMLDirectMapping idMapping = new XMLDirectMapping();
idMapping.setAttributeName("id");
idMapping.setXPath("@ns:id");
customerDescriptor.addMapping(idMapping);

XMLDirectMapping nameMapping = new XMLDirectMapping();
nameMapping.setAttributeName("name");
nameMapping.setXPath("ns:name/text()");
customerDescriptor.addMapping(nameMapping);

XMLDirectMapping birthDateMapping = new XMLDirectMapping();
birthDateMapping.setAttributeName("birthDate");
birthDateMapping.setXPath("ns:date-of-birth/text()");
customerDescriptor.addMapping(birthDateMapping);

XML Namespaces Overview

15-10 Developer's Guide for Oracle TopLink

15.4.3 TopLink Runtime Namespace Resolution
It is common for an XML document to include one or more namespaces. TopLink
supports this using its NamespaceResolver. The namespace resolver maintains
pairs of namespace prefixes and Uniform Resource Identifiers (URIs). TopLink uses
these prefixes in conjunction with the XPath statements you specify on EIS mappings
to XML records and XML mappings.

Although TopLink captures namespace prefixes in the XPath statements for mappings
(if applicable), the input document is not required to use the same namespace prefixes.
As Example 15–1 shows, TopLink will use the namespace prefixes specified in the
mapping when creating new documents.

Figure 15–1 Namespaces in TopLink

Part VII
Part VII Descriptors

This part describes the TopLink artifact used to describe persistent objects. It contains
the following chapter:

■ Chapter 16, "Introduction to Descriptors"

This chapter describes each of the different TopLink descriptor types and
important descriptor concepts.

For information on specific descriptor types, see the following parts:

■ Part X, "Relational Descriptors"

■ Part XI, "Object-Relational Data Type Descriptors"

■ Part XV, "XML Descriptors"

■ Part XVIII, "EIS Descriptors"

16

Introduction to Descriptors 16-1

16 Introduction to Descriptors

TopLink uses descriptors to store the information that describes how an instance of a
particular class can be represented by a data source. Descriptors own mappings that
associate class instance variables with a data source and transformation routines that
are used to store and retrieve values. As such, the descriptor acts as the connection
between a Java object and its data source representation.

This chapter includes the following sections:

■ Descriptor Types

■ Descriptor Concepts

■ Descriptors and Inheritance

■ Descriptors and Locking

■ Descriptor API

16.1 Descriptor Types
Table 16–1 lists the descriptor types you use to describe the classes in your object
model and classifies them as basic or advanced.

For more information, see the following:

■ Chapter 118, "Creating a Descriptor"

■ Chapter 119, "Configuring a Descriptor"

Table 16–1 TopLink Descriptor Types

Descriptor Type Description
Oracle
JDeveloper

TopLink
Workbench Java

Relational (see Section 21.1,
"Relational Descriptors")

Describes Java objects that you map to tables in a
relational database. Applicable to all relational
databases that TopLink supports.

Object-relational (see
Section 24.1,
"Object-Relational Data
Type Descriptors")

Describes Java objects that you map to tables in a
relational database that provides special database
data types that correspond more closely to object
types. Applicable only to the relational databases
that TopLink supports that provide these special
data types.

EIS (see Section 74.1, "EIS
Descriptor Concepts")

Describes Java objects that you map to an EIS data
source by way of a JCA adapter.

XML (see Section 50.1,
"XML Descriptor
Concepts")

Describes Java objects that you map, in memory, to
complex types in XML documents defined by an
XML schema document (XSD).

Descriptor Concepts

16-2 Developer's Guide for Oracle TopLink

16.2 Descriptor Concepts
This section introduces descriptor concepts unique to TopLink, including the
following:

■ Descriptor Architecture

■ Descriptors and Inheritance

■ Descriptors and CMP and BMP

■ Fetch Groups

■ Descriptors and Aggregation

■ Descriptor Customization

■ Amendment and After-Load Methods

■ Descriptor Event Manager

■ Descriptor Query Manager

■ Descriptors and Sequencing

■ Descriptors and Locking

■ Default Root Element

16.2.1 Descriptor Architecture
A descriptor stores all the information describing how an instance of a particular
object class can be represented in a data source.

TopLink descriptors contain the following information:

■ The persistent Java class it describes and the corresponding data source (database
tables, XML complex type, or EIS interaction)

■ A collection of mappings, which describe how the attributes and relationships for
that class are stored in the database

■ The primary key information (or equivalent) of the data source

■ A list of query keys (or aliases) for field names

■ Information for sequence numbers

■ A set of optional properties for tailoring the behavior of the descriptor, including
support for caching refresh options, identity maps, optimistic locking, the event
manager, and the query manager

There is a descriptor type for each data source type that TopLink supports. In some
cases, multiple descriptor types are valid for the same data source type. The type of
descriptor you use determines the type of mappings that you can define.

Table 16–2 summarizes the relationship between project, descriptor, and mappings.

Descriptor Concepts

Introduction to Descriptors 16-3

16.2.2 Descriptors and Inheritance
Inheritance describes how a derived (child) class inherits the characteristics of its
superclass (parent). You can use descriptors to describe the inheritance relationships
between classes in relational, EIS, and XML projects.

In the descriptor for a child class, you can override mappings that have been specified
in the descriptor for a parent class, or map attributes that have not been mapped at all
in the parent class descriptor.

For more information, see Section 16.3, "Descriptors and Inheritance".

16.2.3 Descriptors and CMP and BMP
You can use descriptors to describe the characteristics of entity beans with
container-managed or bean-managed persistence.

When mapping enterprise beans, you create a descriptor for the bean class: you do not
create a descriptor for the local interface, remote interface, home class, or primary key
class.

When using TopLink Workbench, you must define the project with the correct entity
bean type (such as entity beans with container-managed or bean-managed persistence)
and import the ejb-jar.xml file for the beans into the TopLink Workbench project.

For CMP projects, you use the ejb-jar.xml file to define the bean’s mapped
attributes. A descriptor of a bean with container-managed persistence contains a CMP
policy used to configure CMP-specific options.

This section describes the following:

■ Nondeferred Changes

■ Creating a New Entity Bean and ejbCreate / ejbPostCreate Methods

■ Inheritance

16.2.3.1 Nondeferred Changes
By default, TopLink defers all changes until commit time: this is the most efficient
approach that produces the least number of data source interactions.

Table 16–2 Project, Descriptor, and Mapping Support

Project Descriptor Mapping

Relational (see Chapter 18,
"Introduction to Relational
Projects")

The following:

■ Relational (see Section 21.1,
"Relational Descriptors"

■ Object-relational data type
(see Section 24.1,
"Object-Relational Data Type
Descriptors")

The following:

■ Relational (see Section 17.4,
"Relational Mappings")

■ Object-relational data type (see
Section 17.5, "Object-Relational
Data Type Mappings")

EIS (see Chapter 71,
"Introduction to EIS Projects")

EIS (see Section 74.1, "EIS
Descriptor Concepts")

EIS (see Section 17.7, "EIS Mappings"

XML (see Chapter 47,
"Introduction to XML Projects"

XML (see Section 50.1, "XML
Descriptor Concepts"

XML (see Section 17.6, "XML
Mappings"

Note: For EJB 3.0 projects, you can use annotations to define the
bean’s mapped attributes.

Descriptor Concepts

16-4 Developer's Guide for Oracle TopLink

Alternatively, you can configure an entity bean’s descriptor for nondeferred changes.
This means that as you change the persistent fields of the entity bean, TopLink CMP
modifies the relational schema immediately.

Using nondeferred changes, you can achieve backward compatibility with the native
behavior of some EJB containers. You can also accommodate advanced applications
that rely on the database and entity changes being synchronized for such things as
triggers or stored procedures based on transient state within the transaction, deletion
and creation of rows with the same primary key, or other complex queries that depend
on transient transaction state.

Nondeferred changes have the disadvantage of being the least efficient approach: they
produce the greatest number of data source interactions.

When you configure TopLink CMP to support nondeferred changes, TopLink will
continue to handle constraints for mapped relationships among entity beans with the
same deferral setting. However, you are responsible for handling any errors that result
from making changes to a class that is not deferred, but related to a class that is
deferred when a constraint exists between these two classes.

For more information, see Section 119.18, "Configuring a Descriptor with EJB CMP and
BMP Information".

16.2.3.2 Creating a New Entity Bean and ejbCreate / ejbPostCreate Methods
When you create a new entity bean, by default, the bean’s life cycle can be thought of
as follows:

1. ejbCreate method:

After the insert, the EJB container retrieves the primary key allocated by the
database for the created instance.

For a relational project:

a. INSERT INTO ...

b. SELECT FROM ...

For an EIS project:

a. Write object ...

b. Find object ...

2. ejbPostCreate method:

The EJB container updates container-managed relationship (CMR) fields. The EJB
container needs the primary key obtained in the ejbCreate method.

For a relational project:

a. UPDATE SET ...

For an EIS project:

a. Write object ...

Note: When you configure a descriptor for nondeferred changes,
TopLink CMP does not apply nondeferred changes to dependent
objects. Dependent objects are subject to default deferred changes: the
relational schema is not modified until commit.

Descriptor Concepts

Introduction to Descriptors 16-5

However, if you have non-null foreign key constraints in your database, doing a data
source modification after the ejbCreate method executes can cause problems. To get
around this, some application servers, such as, for example, OC4J, allow you to create
new objects after the ejbPostCreate method executes, and rely on the container to
resolve the foreign key constraint.

For more information, see Section 119.18, "Configuring a Descriptor with EJB CMP and
BMP Information".

16.2.3.3 Inheritance
TopLink allows you to configure inheritance for CMP descriptors, with some
reservations.

For more information, see Section 16.3.5, "Inheritance and CMP and BMP".

16.2.4 Fetch Groups
By default, when you execute an object-level read query for a particular object class,
TopLink returns all the persistent attributes mapped in the object’s descriptor. With
this single query, all the object’s persistent attributes are defined, and calling their get
methods returns the value directly from the object.

When you are interested in only some of the attributes of an object, it may be more
efficient to return only a subset of the object’s attributes using a fetch group with
which you can define a subset of an object’s attributes and associate the fetch group
with either a ReadObjectQuery or ReadAllQuery query.

For more information, see the following:

■ Section 119.33, "Configuring Fetch Groups"

■ Section 108.7.1.6, "Fetch Groups and Object-Level Read Queries"

16.2.5 Descriptors and Aggregation
Two objects–a source (parent or owning) object and a target (child or owned)
object–are related by aggregation if there is a strict one-to-one relationship between
them, and all the attributes of the target object can be retrieved from the same data
source representation as the source object. This means that if the source object exists,
then the target object must also exist, and if the source object is destroyed, then the
target object is also destroyed.

In this case, the descriptors for the source and target objects must be designated to
reflect this relationship.

In EJB 3.0, an aggregate is known as an embeddable. In the EJB 3.0 specification, an
embeddable may not contain another embeddable (that is, the EJB 3.0 specification
does not support nested aggregates).

For more information, see the following:

■ Section 21.2, "Aggregate and Composite Descriptors in Relational Projects"

■ Section 74.2, "EIS Descriptors and Aggregation"

■ Section 50.1.1.1, "Composite Descriptors in XML Projects"

16.2.6 Descriptor Customization
You can customize a descriptor at run time by specifying a descriptor customizer–a
Java class that implements the

Descriptor Concepts

16-6 Developer's Guide for Oracle TopLink

oracle.toplink.tools.sessionconfiguration.DescriptorCustomizer
interface and provides a default (zero-argument) constructor.

You use a descriptor customizer to customize a descriptor at run time through code
API similar to how you use an amendment method to customize a descriptor (see
Section 16.2.7, "Amendment and After-Load Methods").

For more information, see Section 119.34, "Configuring a Descriptor Customizer
Class".

16.2.7 Amendment and After-Load Methods
Using TopLink Workbench, you can associate a static Java method that is called when
a descriptor is loaded at run time. This method can amend the run-time descriptor
instance through the descriptor Java code API. Use this method to make some
advanced configuration options that may not be currently supported by TopLink
Workbench.

You can only modify descriptors before the session has been connected; you should
not modify descriptors after the session has been connected.

For more information, see Section 119.35, "Configuring Amendment Methods".

16.2.8 Descriptor Event Manager
In relational and EIS projects, TopLink raises various instances of DescriptorEvent
(see Table 119–26 and Table 119–28) during the persistence life cycle. Each descriptor
owns an instance of DescriptorEventManager that is responsible for receiving
these events and dispatching them to the descriptor event handlers registered with it.

Using a descriptor event handler, you can execute your own application specific logic
whenever descriptor events occur, allowing you to take customized action at various
points in the persistence life-cycle. For example, using a descriptor event handler, you
can do the following:

■ Synchronize persistent objects with other systems, services, and frameworks.

■ Maintain nonpersistent attributes of which TopLink is not aware.

■ Notify other objects in the application when the persistent state of an object
changes.

■ Implement complex mappings or optimizations not directly supported by TopLink
mappings.

For more information, see the following:

■ Section 119.24, "Configuring a Domain Object Method as an Event Handler"

■ Section 119.25, "Configuring a Descriptor Event Listener as an Event Handler"

16.2.9 Descriptor Query Manager
Each relational and EIS descriptor provides an instance of
DescriptorQueryManager that you can use to configure the following:

■ named queries (see Section 119.7, "Configuring Named Queries at the Descriptor
Level")

■ custom default queries for basic persistence operations (see Section 108.13.2, "How
to Configure Default Query Implementations")

Descriptor Concepts

Introduction to Descriptors 16-7

■ additional join expressions (see Section 108.13.3, "How to Configure Additional
Join Expressions")

For more information on using the query manager, see Section 108.13, "Descriptor
Query Manager Queries".

16.2.10 Descriptors and Sequencing
An essential part of maintaining object identity is managing the assignment of unique
values (that is, a specific sequence) to distinguish one object instance from another. For
more information, see Section 15.2.6, "Projects and Sequencing".

Sequencing options you configure at the project (or session) level determine the type
of sequencing that TopLink uses. In a CMP project, you typically configure the
sequence type at the project level (see Section 20.3, "Configuring Sequencing at the
Project Level"). In a POJO project, you can use session-level sequence configuration to
override project-level sequence configuration, on a session-by-session basis, if required
(see Section 98.4, "Configuring Sequencing at the Session Level").

After configuring the sequence type, for each descriptor’s reference class, you must
associate one attribute, typically the attribute used as the primary key (see
Section 119.2, "Configuring Primary Keys"), with its own sequence (see Section 23.3,
"Configuring Sequencing at the Descriptor Level").

16.2.11 Descriptors and Locking
You can configure a descriptor with any of the following locking policies to control
concurrent access to a domain object:

■ Optimistic–All users have read access to the data. When a user attempts to make a
change, the application checks to ensure the data has not changed since the user
read the data (see Section 16.4.1, "Optimistic Version Locking Policies" and
Section 16.4.4, "Optimistic Field Locking Policies").

■ Pessimistic–The first user who accesses the data with the purpose of updating it
locks the data until completing the update (see Section 16.4.5, "Pessimistic Locking
Policy").

■ No locking–The application does not prevent users overwriting each other’s
changes.

Oracle recommends using optimistic locking for most types of applications to ensure
that users do not overwrite each other's changes.

For more information, see the following:

■ Section 16.4, "Descriptors and Locking"

■ Section 119.26, "Configuring Locking Policy"

16.2.12 Default Root Element
You configure EIS root descriptors (Section 76.3, "Configuring Default Root Element")
and XML descriptors (Section 52.4, "Configuring Default Root Element") with a default
root element so that the TopLink runtime knows the data source data type associated
with the class the descriptor describes.

Descriptor Concepts

16-8 Developer's Guide for Oracle TopLink

This section describes what a default root element is and how TopLink uses it.

Consider the Customer and Address classes and their mappings, shown in
Example 16–1.

Example 16–1 Customer and Address Classes

Class: Customer
Default Root: customer
Attributes and Mappings:

name:String Drect Mapping to name/text()
billingAddress:Address Composite Object Mapping to billing-address
shippingAddress:Address Composite Object Mapping to shipping-address

Class: Address
Default Root: address
Attributes and Mappings:

street:String Direct Mapping to street/text()
city:String Direct Mapping to city/text()

These classes correspond to the XML schema, shown in Example 16–2.

Example 16–2 Customer and Address Schema

<xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name="address-type">

<xsd:sequence>
<element name="street" type="xsd:string"/>
<element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="billing-address" type="address-type"/>
<xsd:element name="shipping-address" type="address-type"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

When an instance of the Customer class is persisted to XML, the TopLink runtime
performs the following:

1. Gets the default root element.

The Customer class instance corresponds to the root of the XML document. The
TopLink runtime uses the default root element specified on the descriptor
(customer) to start the XML document. TopLink then uses the mappings on the
descriptor to marshal the object’s attributes:

<customer>
<name>…</name>

</customer>
2. When the TopLink runtime encounters an object attribute such as

billingAddress, it checks the mapping associated with it to determine with
what element (billing-address) to continue:

<customer>
<name>…</name>

Note: The undefined document root element of a referenced object is
ignored during marshalling with an any collection mapping and
object mapping.

Descriptors and Inheritance

Introduction to Descriptors 16-9

<billing-address/>
</customer>
The TopLink runtime checks the mapping's reference descriptor (Address) to
determine what attributes to persist:

<customer>
<name>…</name>
<billing-address>

<street>…</street>
<city>…</city>

</billing-address>
</customer>

16.3 Descriptors and Inheritance
Inheritance describes how a derived class inherits the characteristics of its superclass.
You can use descriptors to describe the inheritance relationships between classes in
relational, EIS, and XML projects.

Figure 16–1 illustrates the Vehicle object model–a typical Java inheritance hierarchy.
The root class Vehicle contains two branch classes: FueledVehicle and
NonFueledVehicle. Each branch class contains a leaf class: Car and Bicycle,
respectively.

Figure 16–1 Example Inheritance Hierarchy

TopLink recognizes the following three types of classes in an inheritance hierarchy:

1. The root class stores information about all instantiable classes in its subclass
hierarchy. By default, queries performed on the root class return instances of the
root class and its instantiable subclasses. However, the root class can be configured
so queries on it return only instances of itself, without instances of its subclasses.

For example, the Vehicle class in Figure 16–1 is a root class.

2. Branch classes have a persistent superclass and also have subclasses. By default,
queries performed on the branch class return instances of the branch class and any
of its subclasses. However, as with the root class, the branch class can be
configured so queries on it return only instances of itself without instances of its
subclasses.

Descriptors and Inheritance

16-10 Developer's Guide for Oracle TopLink

For example, the FueledVehicle class in Figure 16–1 is a branch class.

3. Leaf classes have a persistent superclass in the hierarchy but do not have
subclasses. Queries performed on the leaf class can only return instances of the
leaf class.

For example, the Car class in Figure 16–1 is a leaf class.

In the descriptor for a child class, you can override mappings that have been specified
in the descriptor for a parent class, or map attributes that have not been mapped at all
in the parent class descriptor.

This section includes information on the following topics:

■ How to Specify a Class Indicator

■ Inheritance and Primary Keys

■ Single and Multi-Table Inheritance

■ Aggregate and Composite Descriptors and Inheritance

■ Inheritance and CMP and BMP

For more information about configuring inheritance for a parent (root) class descriptor,
see Section 119.21, "Configuring Inheritance for a Parent (Root) Descriptor".

For more information about configuring inheritance for a child (branch or leaf) class
descriptor, see Section 119.20, "Configuring Inheritance for a Child (Branch or Leaf)
Class Descriptor".

16.3.1 How to Specify a Class Indicator
When configuring inheritance, you configure the root class descriptor with the means
of determining which subclasses it should instantiate.

You can do this in one of the following ways:

■ Using Class Indicator Fields

■ Using Class Extraction Methods

16.3.1.1 Using Class Indicator Fields
You can use a persistent attribute of a class to indicate which subclass should be
instantiated. For example, in a relational descriptor, you can use a class indicator field
in the root class table. The indicator field should not have an associated direct
mapping unless it is set to read-only.

You can use strings or numbers as values in the class indicator field.

The root class descriptor must specify how the value in the class indicator field
translates into the class to be instantiated.

Note: All leaf classes in the hierarchy must have a class indicator
and they must have the same type of class indicator (field or class
extraction method).

Note: If the indicator field is part of the primary key, define a
write-only transformation mapping for the indicator field (see
Chapter 39, "Configuring a Relational Transformation Mapping").

Descriptors and Inheritance

Introduction to Descriptors 16-11

One approach is to configure the root class descriptor with a class indicator dictionary:
a collection of key-values that associates a simple key, stored in the class indicator
field, with a class to instantiate. Table 16–3 illustrates the class indicator dictionary for
the Vehicle class’ subclasses, as shown in Figure 16–1.

Another approach is to simply use the class name itself as the value stored in the class
indicator field. This avoids having to define unique indicators for each class at the
expense of a slightly larger key value (depending on the length of your class names).

16.3.1.2 Using Class Extraction Methods
You can define a Java method to compute the class indicator based on any available
information in the object's data source record. Such a method is called a class
extraction method.

Using a class extraction method, you do not need to include an explicit class indicator
field in your data model and you can handle relationships that are too complex to
describe using class indicator fields.

A class extraction method must have the following characteristics:

■ it must be defined on the root descriptor’s class;

■ it must be static;

■ it must take a Record as an argument;

■ it must return the java.lang.Class object to use for the Record passed in.

You may also need to define only-instances and with-all-subclasses expressions (see
Section 16.3.1.2.1, "Specifying Expressions for Only-Instances and
With-All-Subclasses").

For example, Table 16–4 lists the rows in the EMPLOYEE table. The Employee class is
the base class. Director, Manager, Programmer, and TechWriter classes each
derive from the Employee class. However, in your application, instances of Manager,
Programmer, and TechWriter classes must be represented as Employee instances
and instances of Director must be represented as Director instances. Because
there is no a one-to-one correspondence between class and JOB_TYPE field value, the
JOB_TYPE field alone cannot serve as a class indicator field (see Section 16.3.1.1,
"Using Class Indicator Fields"). To resolve this issue, you could use the class extraction
method, shown in Example 16–3.

Table 16–3 Class Indicator Dictionary for the Vehicle Class

Key Value

F FueledVehicle

N NonFueledVehicle

C Car

B Bicycle

Table 16–4 EMPLOYEE Table

ID NAME JOB_TYPE JOB_TITLE

732 Bob Jones 1 Manager

733 Sarah Smith 3 Technical Writer

734 Ben Ng 2 Director

Descriptors and Inheritance

16-12 Developer's Guide for Oracle TopLink

Example 16–3 Class Extraction Method

...

// If the JOB_TYPE field value in record equals 2, return the Director class.
// Return the Employee class for all other JOB_TYPE field values

public static Class getClassFromRecord(Record record) {
if (record.get("JOB_TYPE").equals(new Integer(2)) {

return Director.class;
}
else {

return Employee.class;
}

}

When configuring inheritance using a class extraction method, Oracle TopLink does
not generate SQL for queries on the root class.

16.3.1.2.1 Specifying Expressions for Only-Instances and With-All-Subclasses If you use a
class extraction method (see Section 16.3.1.2, "Using Class Extraction Methods"), you
must provide TopLink with expressions to correctly filter sibling instances for all
classes that share a common table (see Section 119.22, "Configuring Inheritance
Expressions for a Parent (Root) Class Descriptor").

16.3.2 Inheritance and Primary Keys
For relational and EIS projects, TopLink assumes that all of the classes in an
inheritance hierarchy have the same primary key, as set in the root descriptor.

For more information, see the following:

■ Section 21.3.1, "Inheritance and Primary Keys in Relational Projects"

■ Section 74.3.1, "Inheritance and Primary Keys in EIS Projects"

16.3.3 Single and Multi-Table Inheritance
In a relational project, you can map your inheritance hierarchy to a single table (see
Section 21.3.2.1, "Single-Table Inheritance") or to multiple tables (see Section 21.3.2.2,
"Multi-Table Inheritance").

16.3.4 Aggregate and Composite Descriptors and Inheritance
You can designate relational descriptors as aggregates, and EIS descriptors as
composites. XML descriptors are always composites (see Section 50.1.1, "XML
Descriptors and Aggregation").

When configuring inheritance for a relational aggregate descriptor, all the descriptors
in the inheritance tree must be aggregates. The descriptors for aggregate and
non-aggregate classes cannot exist in the same inheritance tree.

Similarly, when configuring inheritance for an EIS composite descriptor, all the
descriptors in the inheritance tree must be composites. The descriptors for composite
and noncomposite classes cannot exist in the same inheritance tree.

735 Sally Johnson 3 Programmer

Table 16–4 (Cont.) EMPLOYEE Table

ID NAME JOB_TYPE JOB_TITLE

Descriptors and Locking

Introduction to Descriptors 16-13

When configuring inheritance for an XML descriptor, because all XML descriptors are
composites, descriptor type does not restrict inheritance.

16.3.5 Inheritance and CMP and BMP
Although inheritance is a standard tool in object-oriented modeling, the EJB
specifications prior to 3.0 contain only general information regarding inheritance. You
should fully understand this information before implementing EJB inheritance. Be
aware of the fact that future EJB specifications may dictate inheritance guidelines not
supported by all application servers.

16.4 Descriptors and Locking
This section describes the various types of locking policy that TopLink supports,
including the following:

■ Optimistic Version Locking Policies

■ Optimistic Version Locking Policies and Cascading

■ Optimistic Locking and Rollbacks

■ Optimistic Field Locking Policies

■ Pessimistic Locking Policy

■ Locking in a Three-Tier Application

For more information, see Section 119.26, "Configuring Locking Policy".

16.4.1 Optimistic Version Locking Policies
With optimistic locking, all users have read access to the data. When a user attempts to
make a change, the application checks to ensure the data has not changed since the
user read the data.

Optimistic version locking policies enforce optimistic locking by using a version field
(also known as a write-lock field) that you provide in the reference class that TopLink
updates each time an object change is committed.

TopLink caches the value of this version field as it reads an object from the data source.
When the client attempts to write the object, TopLink compares the cached version
value with the current version value in the data source in the following way:

■ If the values are the same, TopLink updates the version field in the object and
commits the changes to the data source.

■ If the values are different, the write operation is disallowed because another client
must have updated the object since this client initially read it.

 TopLink provides the following version-based optimistic locking policies:

■ VersionLockingPolicy: requires a numeric version field; TopLink updates the
version field by incrementing its value by one.

■ TimestampLockingPolicy: requires a timestamp version field; TopLink updates
the version field by inserting a new timestamp (this policy can be configured to get
the time from the data source or locally; by default, the policy gets the time from
the data source).

Descriptors and Locking

16-14 Developer's Guide for Oracle TopLink

Whenever any update fails because optimistic locking has been violated, TopLink
throws an OptimisticLockException. This should be handled by the application
when performing any database modification. The application must notify the client of
the locking contention, refresh the object, and have the client reapply its changes.

You can choose to store the version value in the object as a mapped attribute, or in the
cache. In three-tier applications, you typically store the version value in the object to
ensure it is passed to the client when updated (see Section 16.4.6, "Locking in a
Three-Tier Application").

If you store the version value in the cache, you do not need to map it. If you do map
the version field, you must configure the mapping as read-only (see Section 121.2,
"Configuring Read-Only Mappings").

To ensure that the parent object’s version field is updated whenever a privately owned
child object is modified, consider Section 16.4.2, "Optimistic Version Locking Policies
and Cascading".

When using optimistic version locking with the unit of work, consider Section 115.11,
"Using Optimistic Read Locking with the forceUpdateToVersionField Method".

If you are using a stored procedure to update or delete an object, your database may
not return the row-count required to detect an optimistic lock failure, so your stored
procedure is responsible for checking the optimistic lock version and throwing an
error if they do not match. Only version locking is directly supported with a
StoredProcedureCall. Because timestamp and field locking require two versions
of the same field to be passed to the call, an SQL call that uses an ## parameter to
access the translation row could be used for other locking policies. For more
information, see Section 109.5, "Using a StoredProcedureCall" and Section 109.6,
"Using a StoredFunctionCall".

16.4.2 Optimistic Version Locking Policies and Cascading
If your database schema is such that both a parent object and its privately owned child
object are stored in the same table, then if you update the child object, the parent
object’s version field will be updated.

However, if the parent and its privately owned child are stored in separate tables, then
changing the child will not, by default, update the parent’s version field.

To ensure that the parent object’s version field is updated in this case, you can either
manually update the parent object’s version field (see Section 115.11, "Using Optimistic
Read Locking with the forceUpdateToVersionField Method") or, if you are using a
VersionLockingPolicy, you can configure TopLink to automatically cascade the
child object’s version field update to the parent (see Section 119.26.2.2, "Configuring
Optimistic Locking Policy Cascading").

After you enable optimistic version locking cascading, when a privately owned child
object is modfied, TopLink will traverse the privately owned foreign reference
mappings, updating all the parent objects back to the root.

Note: In general, Oracle recommends numeric version locking
because of the following:

■ accessing the timestamp from the data source can have a negative
impact on performance;

■ time stamp locking is limited to the precision that the database
stores for timestamps.

Descriptors and Locking

Introduction to Descriptors 16-15

Optimistic version locking cascading is only applied if the child object is registered in
a unit of work.

TopLink supports optimistic version locking cascading for:

■ object changes in privately owned one-to-one and one-to-many mappings

■ relationship changes (adding or removing) in the following collection mappings
(privately owned or not):

– direct collection

– one-to-many

– many-to-many

– aggregate collection

Consider the example object graph shown in Figure 16–2

Figure 16–2 Optimistic Version Locking Policies and Cascading Example

In this example, ObjectA privately owns ObjectB, and ObjectB privately owns
ObjectC, and ObjectC privately owns ObjectD.

Suppose you register ObjectB in a unit of work, modify an ObjectB field, and
commit the unit of work. In this case, ObjectB checks the cache for ObjectA and, if
not present, queries the database for ObjectA. ObjectB then notifies ObjectA of its
change. ObjectA forces an update on its version optimistic locking field even though
it has no changes to its corresponding table.

Suppose you register ObjectA in a unit of work, access its ObjectB to access its
ObjectC to access its ObjectD, modify an ObjectD field, and commit the unit of
work. In this case, ObjectD notifies ObjectC of its changes. ObjectC forces an
update on its version optimistic locking field even though it has no changes to its
corresponding table. ObjectC then notifies ObjectB of the ObjectD change.
ObjectB then notifies ObjectA of the ObjectD change. ObjectA forces an update
on its version optimistic locking field even though it has no changes to its
corresponding table.

16.4.3 Optimistic Locking and Rollbacks
With optimistic locking, use the UnitOfWork method
commitAndResumeOnFailure (see Section 115.6, "Resuming a Unit of Work After
Commit") to rollback a locked object’s value, if you store the optimistic lock versions in
the cache.

If you store the locked versions in an object, you must refresh the objects (or their
versions) on a failure. Alternatively, you can acquire a new unit of work on the failure
and reapply any changes into the new unit of work.

Descriptors and Locking

16-16 Developer's Guide for Oracle TopLink

16.4.4 Optimistic Field Locking Policies
Optimistic field locking policies enforce optimistic locking by using one or more of the
fields that currently exist in the table to determine if the object has changed since the
client read the object.

The unit of work caches the original state of the object when you first read the object or
register it with the unit of work. At commit time, the unit of work compares the
original values of the lock fields with their current values on the data source during
the update. If any of the lock field's values have changed, an optimistic lock exception
is thrown.

TopLink provides the following optimistic field locking policies:

■ AllFieldsLockingPolicy: For update and delete operations, TopLink
compares all the fields of the object with all the fields in the data source. If the
original value of any fields differ from that in the data source, the write operation
is disallowed.

For example, if you changed a customer’s last name, TopLink might produce SQL
similar to the following:

UPDATE CUSTOMER SET LNAME='new last name' WHERE ID=7 AND LNAME='old last name'
AND FNAME='Donald' AND B_DAY='1972’ AND CREDIT_RATING='A+' AND EYE_COLOR='Blue'
The main disadvantage of this field locking policy is that it is not the most
efficient, especially if the changed object has many attributes.

■ ChangedFieldsLockingPolicy: For update operations, TopLink compares
only the fields of the object that have changed with the corresponding fields in the
data source. If the original value of any such field differs from that in the data
source, the write operation is disallowed. TopLink does not make any field
comparisons for deletes.

The main advantage of this field locking policy is that it allows concurrent updates
of different fields. For example, if one thread updates a customer’s last name and
another thread updates the same customer’s credit rating, and you configure the
Customer descriptor with ChangedFieldsLockingPolicy, then TopLink
might produce SQL like:

// Unit of work 1
UPDATE CUSTOMER SET LNAME='new name' WHERE ID=7 AND LNAME='old name'
// Unit of work 2
UPDATE CUSTOMER SET CREDIT_RATING='B' WHERE ID=7 AND CREDIT_RATING='A+'

■ SelectedFieldsLockingPolicy: For update and delete operations, TopLink
compares only the selected fields of the object with the corresponding fields in the
data source. If the cached value of any such field differs from that in the data
source, the write operation is disallowed.

For example, if you select Customer attributes LNAME and CREDIT_RATING, then
at run time, TopLink might produce SQL like:

UPDATE CUSTOMER SET LNAME='new name' WHERE ID=7 AND LNAME='old name’ AND
CREDIT_RATING='A+'

Whenever any update fails because optimistic locking has been violated, TopLink
throws an OptimisticLockException. This should be handled by the application

Note: This comparison is only on a per table basis. If an update
operation is performed on an object that is mapped to multiple
tables (multiple table inheritance), then only the changed fields for
each table changed appear in the where clause.

Descriptors and Locking

Introduction to Descriptors 16-17

when performing any database modification. The application must notify the client of
the locking contention, refresh the object, and have the client reapply its changes.

When using field locking policies, a unit of work must be employed for updating the
data source.

16.4.5 Pessimistic Locking Policy
With pessimistic locking, the first user who accesses the data with the purpose of
updating it locks the data until completing the update.

When using a pessimistic locking policy, you can configure the policy to either fail
immediately or to wait until the read lock is acquired.

You can use a pessimistic locking policy only in a project with a container-managed
persistence type (see Section 117.5, "Configuring Persistence Type") and with
descriptors that have EJB information (see Section 119.18, "Configuring a Descriptor
with EJB CMP and BMP Information").

You can also use pessimistic locking (but not a pessimistic locking policy) at the query
level (see Section 119.7.1.9, "Configuring Named Query Options").

TopLink provides an optimization for pessimistic locking when this locking is used
with entity beans with container-managed persistence: if you set your query to
pessimistic locking and run the query in its own new transaction (which will end after
the execution of the finder), then TopLink overrides the locking setting and does not
append FOR UPDATE to the SQL. However, the use of this optimization may produce
an undesirable result if the pessimistic lock query has been customized by the user
with a SQL string that includes FOR UPDATE. In this case, if the conditions for the
optimization are present, the query will be reset to nonpessimistic locking, but the SQL
will remain the same resulting in the locking setting of the query conflicting with the
query’s SQL string. To avoid this problem, you can take one of the following two
approaches:

■ Use EJB QL or a TopLink’s expression (see Chapter 110, "Introduction to TopLink
Expressions") for the selection criteria. This will give TopLink control over the SQL
generation.

■ Place the finder in a transaction to eliminate conditions for the optimization.

16.4.6 Locking in a Three-Tier Application
If you are building a three-tier application, in order to correctly lock an object, you
must obtain the lock before the object is sent to client for editing.

16.4.6.1 Optimistic Locking in a Three-Tier Application
If you are using optimistic locking, you have the following two choices for locking
objects correctly:

1. Map the optimistic lock field in your object as not read-only and pass the version
to the client on the read and back to the server on the update.

You must define a non-read-only mapping for the version field and make the
optimistic locking policy store the version value in the object, not the cache (in

Note: You cannot use an instance of FieldsLockingPolicy if you
are using AttributeChangeTrackingPolicy (see
Section 113.2.3.3, "Attribute Change Tracking Policy").

Descriptor API

16-18 Developer's Guide for Oracle TopLink

TopLink Workbench, this is done on the Locking tab by unchecking Store Version
in Cache (see Section 119.26.1, "How to Configure Locking Policy UsingTopLink
Workbench")).

Ensure that the original version value is sent to the client when it reads the object
for the update. The client must then pass the original version value back with the
update information, and this version must be set into the object to be updated
after it is registered/read in the new unit of work on the server.

2. Hold the unit of work for the duration of the interaction with the client.

Either through a stateful session bean, or in an HTTP session, store the unit of
work used to read the object for the update for the duration of the client
interaction.

You must read the object through this unit of work before passing it to the client
for the update. This ensures that the version value stored in the unit of work cache
or in the unit of work clone will be the original value.

This same unit of work must be used for the update.

The first option is more commonly used, and is required if developing a stateless
application.

16.4.6.2 Pessimistic Locking in a Three-Tier Application
If you are using pessimistic locking, you must use the unit of work to start a database
transaction before the object is read. You must hold this unit of work and database
transaction while the client is editing the object and until the client updates the object.
You must use this same unit of work to update the object. If you are building a
three-tier Web application (where it is not normally desirable to hold a database
transaction open across client interactions), optimistic locking is normally more
desirable than pessimistic locking (see Section 16.4.6.1, "Optimistic Locking in a
Three-Tier Application").

16.5 Descriptor API
The descriptor API can be used to define, or amend TopLink descriptors through Java
code. The descriptor API classes are mainly in the oracle.toplink.descriptors
package. These include the following classes:

■ ClassDescriptor (abstract generic descriptor API)

■ RelationalDescriptor (relational project-specific API)

■ DescriptorEventManager (event API)

■ DescriptorQueryManager (query API)

■ InheritancePolicy

■ InterfacePolicy

■ ReturningPolicy

■ Locking policies (various optimistic locking policies)

For object-relational data type, EIS, and XML projects, descriptor classes are in the
oracle.toplink.objectrelational, oracle.toplink.eis, and
oracle.toplink.ox packages, respectively.

This section describes the important descriptor classes in the Oracle TopLink
Foundation Library, including the Descriptor Inheritance Hierarchy.

Descriptor API

Introduction to Descriptors 16-19

16.5.1 Descriptor Inheritance Hierarchy
Example 16–4 illustrates the descriptor types that derive from class
oracle.toplink.descriptors.ClassDescriptor.

Example 16–4 Descriptor Inheritance Hierarchy

class oracle.toplink.descriptors.ClassDescriptor
class oracle.toplink.descriptors.RelationalDescriptor

class oracle.toplink.objectrelational.ObjectRelationalDescriptor
class oracle.toplink.eis.EISDescriptor
class oracle.toplink.ox.XMLDescriptor

Descriptor API

16-20 Developer's Guide for Oracle TopLink

Part VIII
Part VIII Mappings

This part provides general mapping information. It contains the following chapter:

■ Chapter 17, "Introduction to Mappings"

This chapter describes each of the different TopLink mapping types and important
mapping concepts.

For information on specific mapping types, see the following parts:

■ Part XII, "Relational Mappings"

■ Part XIII, "Object-Relational Data Type Mappings"

■ Part XVI, "XML Mappings"

■ Part XIX, "EIS Mappings"

17

Introduction to Mappings 17-1

17Introduction to Mappings

TopLink can transform data between an object representation and a representation
specific to a data source. This transformation is called mapping and it is the core of a
TopLink project.

A mapping corresponds to a single data member of a domain object. It associates the
object data member with its data source representation and defines the means of
performing the two-way conversion between object and data source.

This chapter includes the following sections:

■ Mapping Types

■ Mapping Concepts

■ Mapping API

■ Relational Mappings

■ Object-Relational Data Type Mappings

■ XML Mappings

■ EIS Mappings

17.1 Mapping Types
Table 17–1 describes the mapping types that TopLink supports.

Table 17–1 TopLink Mapping Types

Type Description
Oracle
JDeveloper

TopLink
Workbench Java

Relational (see Section 17.4,
"Relational Mappings")

Mappings that transform any object data member
type to a corresponding relational database (SQL)
data source representation in any supported
relational database. Relational mappings allow
you to map an object model into a relational data
model.

Mapping Concepts

17-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Chapter 120, "Creating a Mapping"

■ Chapter 121, "Configuring a Mapping"

17.2 Mapping Concepts
This section describes concepts unique to TopLink mappings, including the following:

■ Mapping Architecture (applicable to relational and nonrelational mappings)

■ Example Mapping (applicable to relational and nonrelational mappings)

■ Automatic Mappings

– JPA Automapping (applicable to relational mappings)

– Automapping with TopLink Workbench at Development Time (applicable to
relational and nonrelational mappings)

– Default Mapping in EJB 2.n CMP Projects Using OC4J at Run Time (applicable
to relational mappings)

– JAXB Project Generation at Development Time (applicable to XML mappings)

■ Indirection (Lazy Loading) (applicable to relational mappings)

– Value Holder Indirection

– Transparent Indirect Container Indirection

– Proxy Indirection

– Weaved Indirection

– Indirection and JPA

– Indirection and EJB 2.n CMP

– Indirection, Serialization, and Detachment

■ Method Accessors and Attribute Accessors (applicable to relational and
nonrelational mappings)

■ Mapping Converters and Transformers

Object-relational data type (see
Section 17.5, "Object-Relational
Data Type Mappings")

Mappings that transform certain object data
member types to structured data source
representations optimized for storage in
specialized object-relational data type databases,
such as Oracle Database. Object-relational data
type mappings let you map an object model into
an object-relational data type data model.

EIS (see Section 17.7, "EIS
Mappings")

Mappings that transform object data members to
the EIS record format defined by the object’s
descriptor.

XML (see Section 17.6, "XML
Mappings")

Mappings that transform object data members to
the XML elements of an XML document whose
structure is defined by an XML schema document
(XSD).

Table 17–1 (Cont.) TopLink Mapping Types

Type Description
Oracle
JDeveloper

TopLink
Workbench Java

Mapping Concepts

Introduction to Mappings 17-3

– Serialized Object Converter (applicable to relational and nonrelational
mappings)

– Type Conversion Converter (applicable to relational and nonrelational
mappings)

– Object Type Converter (applicable to XML mappings)

– Simple Type Translator (applicable to XML mappings)

– Transformation Mappings (applicable to relational and nonrelational
mappings)

■ Mappings and XPath (applicable to XML mappings)

■ Mappings and xsd:list and xsd:union Types (applicable to XML mappings)

■ Mappings and the jaxb:class Customization (applicable to XML mappings)

■ Mappings and JAXB Typesafe Enumerations (applicable to XML mappings)

17.2.1 Mapping Architecture
To define a mapping, you draw upon the following components:

■ The data representation specific to the data source (such as a relational database
table or schema-defined XML element) in which you store the object’s data.

■ A descriptor for a particular object class.

■ An object class to map.

For an example of a typical TopLink mapping, see Section 17.2.2, "Example Mapping".

The type of data source you define in your TopLink project determines the type of
mappings you can use and how you configure them. In a persistent project, you use
mappings to persist to a data source. In a nonpersistent project, you use mappings
simply to transform between the object format and some other data representation
(such as XML). For more information about data source and project types, see
Section 15.1, "TopLink Project Types".

A descriptor represents a particular domain object: it describes the object’s class. It
owns mappings: one mapping for each of the class data members that you intend to
persist or transform in memory.

For more information about descriptors, see Chapter 16, "Introduction to Descriptors".

TopLink provides mappings to handle a wide variety of data types and data
representations. For more information, see Section 17.1, "Mapping Types".

All mappings are subclasses of the
oracle.toplink.mappings.DatabaseMapping class. For more information
about the mapping API, see Section 17.3, "Mapping API".

Note: A mapping is the same regardless of whether your project is
persistent or nonpersistent.

Note: Persistence is applicable at the descriptor level.

Mapping Concepts

17-4 Developer's Guide for Oracle TopLink

17.2.2 Example Mapping
Although TopLink supports more complex mappings, most TopLink classes map to a
single database table or XML element that defines the type of information available in
the class. Each object instance of a given class maps to a single row comprising the
object’s attributes, plus an identifier (the primary key) that uniquely identifies the
object.

Figure 17–1 illustrates the simplest database mapping case in which:

■ Table_X in the database represents Class_X.

■ Object_X1 and Object_X2 are instances of Class_X.

■ Individual rows in Table_X represent Object_X1 and Object_X2, as well as any
other instances of Class_X.

Figure 17–1 How Classes and Objects Map to a Database Table

TopLink provides you with the tools to build these mappings, from the simple
mappings illustrated in Figure 17–1, to complex mappings.

For an additional example of a relational mapping, see Figure 27–1, "Direct-to-Field
Mapping".

For an example of a nonrelational mapping, see Figure 53–34, "XML Transformation
Mappings".

17.2.3 Automatic Mappings
Typically, you use Oracle JDeveloper TopLink Editor or TopLink Workbench to define
mappings on a class-by-class and data-member-by-data-member basis manually (see
Section 120.2, "Creating Mappings Manually During Development").

Alternatively, you can take advantage of the following:

■ JPA Automapping

■ Automapping with Oracle JDeveloper at Development Time

■ Automapping with TopLink Workbench at Development Time

■ Default Mapping in EJB 2.n CMP Projects Using OC4J at Run Time

■ JAXB Project Generation at Development Time

Mapping Concepts

Introduction to Mappings 17-5

17.2.3.1 JPA Automapping
To configure automapping in a JPA project, you just need to annotate your persistence
classes with @Entity and define their primary key with @Id (or define the list of
entities and their primary key fields in your orm.xml) and the EclipseLink JPA
persistence provider will automatically map all unmapped properties. You can also
configure persistence.xml properties to automatically create or replace the
corresponding database tables. For more information, see "Introduction to EclipseLink
JPA" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Introduction_to_EclipseLink_JPA_
%28ELUG%29

17.2.3.2 Automapping with Oracle JDeveloper at Development Time
You can use Oracle JDeveloper TopLink Editor Automap feature to automatically
define default mappings for every class and data member in your project (see
Section 120.3, "Creating Mappings Automatically During Development").

17.2.3.3 Automapping with TopLink Workbench at Development Time
You can use TopLink Workbench Automap feature to automatically define default
mappings for every class and data member in your project (see Section 120.3, "Creating
Mappings Automatically During Development").

TopLink Workbench automapping is available for all project types and assumes that
both the object model and database schema are already defined.

17.2.3.4 Default Mapping in EJB 2.n CMP Projects Using OC4J at Run Time
Default mapping is a relational persistence framework term that refers to making the
framework automatically generate the object descriptor metadata (including such
things as mappings, login data, database platform, locking, and foreign keys).

TopLink can also optionally create or drop-and-create the tables associated with the
entities during the deployment. This means that TopLink can handle the whole
deployment process with the minimum requirements: a compliant EAR file and a
valid data source. This frees you from creating tables and specifying mappings before
you deploy your application.

TopLink default mapping supports the following features:

■ Direct-to-field mapping support for standard CMP (that is, not dependent object)
fields.

■ Serialized object mapping support for dependent objects.

■ One-to-one, one-to-many, and many-to-many mappings support for CMR fields.

■ Self-referencing, unidirectional and bidirectional relationship mappings (see
Section 27.2.1, "Directionality").

■ Optimistic version locking for each entity.

■ Automatic table drop and create, platform-specified supported types, default size
and subsize, and database-reserved keywords.

■ EJB QL (EJB query language) queries, such as finder and ejbSelect.

Note: You can apply default mapping to relational projects only.

Mapping Concepts

17-6 Developer's Guide for Oracle TopLink

■ Unknown primary key class case (primary key-class type
java.lang.Object.class).

Default mapping is available for CMP relational projects deployed to OC4J configured
to use TopLink as the persistence manager. In this configuration, the EJB container
provides the entity bean descriptor data (from ejb-jar.xml) required by the
persistence manager to generate the persistence descriptor file.

If a toplink-ejb-jar.xml descriptor file is not present, TopLink, working as the
OC4J persistence manager, generates a default persistence descriptor file for any CMP
project during deployment. In this case, TopLink applies default mappings and,
optionally, automatic table generation. The generated descriptor file includes the
following:

■ Mapping for each entity CMP and CMR field.

■ Optimistic locking, foreign keys, target foreign key, and relation table.

■ Transparent indirection (lazy loading) for relationships.

■ Database login and platform metadata.

If a toplink-ejb-jar.xml descriptor file is present and specified in the
orion-ejb-jar.xml file, TopLink does not apply default mapping: it honours the
mappings specified in the toplink-ejb-jar.xml file. In this case, you can still
configure automatic table generation.

For more information, see Section 9.9.1.3, "Configuring default-mapping Properties".

17.2.3.5 JAXB Project Generation at Development Time
JAXB provides an API and a tool that allow automatic two-way mapping between
XML documents and Java objects. The JAXB compiler generates all the Java classes
and mappings based on the provided Document Type Definition (DTD) and a schema
definition.

For more information on JAXB, see Architecture for XML Binding (JAXB): A Primer at
http://java.sun.com/developer/technicalArticles/xml/jaxb/index.h
tml

For more information on XML projects, see Chapter 47, "Introduction to XML Projects".

For more information on XML mappings, see Chapter 53, "Introduction to XML
Mappings".

17.2.4 Indirection (Lazy Loading)
By default, when TopLink retrieves a persistent object, it retrieves all of the dependent
objects to which it refers. When you configure indirection (also known as lazy reading,
lazy loading, and just-in-time reading) for an attribute mapped with a relationship
mapping, TopLink uses an indirection object as a place holder for the referenced object:
TopLink defers reading the dependent object until you access that specific attribute.
This can result in a significant performance improvement, especially if the application
is interested only in the contents of the retrieved object, rather than the objects to
which it is related.

Oracle strongly recommends using indirection for all relationship mappings. Not only
does this lets you optimize data source access, but it also allows TopLink to optimize
the unit of work processing, cache access, and concurrency.

Mapping Concepts

Introduction to Mappings 17-7

Figure 17–2 shows an indirection example. Without indirection, reading the Order
object also reads the dependent collection of LineItem objects. With indirection,
reading the Order object does not read the dependent collection of LineItem objects:
the lineItems attribute refers to an indirection object. You can access other attributes
(such as customerId), but TopLink reads the dependent LineItem objects only if
and when you access the lineItems attribute.

Figure 17–2 TopLink Indirection

TopLink supports the following types of indirection:

■ Value Holder Indirection

■ Transparent Indirect Container Indirection

■ Proxy Indirection

When using indirection with CMP, the version of EJB and application server you use
affects how indirection is configured and what types of indirection are applicable (see
Section 17.2.4.6, "Indirection and EJB 2.n CMP").

When using indirection with an object that your application serializes, you must
consider the effect of any untriggered indirection objects at deserialization time (see
Section 17.2.4.7, "Indirection, Serialization, and Detachment").

For information on configuring indirection, see Section 121.3, "Configuring Indirection
(Lazy Loading)".

17.2.4.1 Value Holder Indirection
Persistent classes that use indirection must replace relationship attributes with value
holder attributes. A value holder is an instance of a class that implements the

Note: The use of indirection is especially important for providing a
proper maintenance of bidirectional relationships (see Section 2.14.3.4,
"Maintaining Bidirectional Relationships"). In this case, you must use
indirection. If you are operating with collections, you must use
transparent indirection (see Section 17.2.4.2, "Transparent Indirect
Container Indirection").

Mapping Concepts

17-8 Developer's Guide for Oracle TopLink

ValueHolderInterface interface, such as ValueHolder. This object stores the
information necessary to retrieve the object it is replacing from the database. If the
application does not access the value holder, the replaced object is never read from the
database.

To obtain the object that the value holder replaces, use the getValue and setValue
methods of the ValueHolderInterface. A convenient way of using these methods
is to hide the getValue and setValue methods of the ValueHolderInterface
inside get and set methods, as shown in the following illustrations.

Figure 17–3 shows the Employee object being read from the database. The Address
object is not read and will not be created unless it is accessed.

Figure 17–3 Address Object Not Read

The first time the address is accessed, as in Figure 17–4, the ValueHolder reads and
returns the Address object.

Figure 17–4 Initial Request

Subsequent requests for the address do not access the database, as shown in
Figure 17–5.

Figure 17–5 Subsequent Requests

If you are using method access (Section 121.6, "Configuring Method or Direct Field
Accessing at the Mapping Level"), the get and set methods specified in the mapping
must access the instance of ValueHolderInterface, rather than the object
referenced by the value holder. The application should not use these getter and setter,
but use the getter and setter that hide the usage of value holders. For more

Mapping Concepts

Introduction to Mappings 17-9

information, see Section 121.3.2.2, "Configuring Value Holder Indirection with Method
Accessing".

For JPA entities or POJO classes that you configure for weaving, TopLink weaves value
holder indirection for one-to-one mappings. If you want TopLink to weave change
tracking and your application includes collection mappings (one-to-many or
many-to-many), then you must configure all collection mappings to use transparent
indirect container indirection only (you may not configure your collection mappings to
use eager loading nor value holder indirection).

17.2.4.2 Transparent Indirect Container Indirection
Transparent indirect container (see Section 121.14, "Configuring Container Policy")
indirection lets you declare any relationship attribute of a persistent class that holds a
collection of related objects as any of the following:

■ java.util.Collection

■ java.util.Hastable

■ java.util.List

■ java.util.Map

■ java.util.Set

■ java.util.Vector

TopLink will use an indirection object that implements the appropriate interface and
also performs just-in-time reading of the related objects. When using transparent
indirection, you do not have to declare the attributes as ValueHolderInterface.

Newly created collection mappings use transparent indirection by default if their
attribute is not a ValueHolderInterface.

For JPA entities or POJO classes that you configure for weaving, TopLink weaves value
holder indirection for one-to-one mappings. If you want TopLink to weave change
tracking and your application includes collection mappings (one-to-many or
many-to-many), then you must configure all collection mappings to use transparent
indirect container indirection only (you may not configure your collection mappings to
use eager loading nor value holder indirection).

You can configure TopLink to automatically weave transparent indirect container
indirection for JPA entities and Plain Old Java Object (POJO) classes. For more
information, see the following:

■ Section 2.10, "Using Weaving"

■ "Using EclipseLink JPA Weaving" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#Using_EclipseLink_JPA_Weaving

17.2.4.3 Proxy Indirection
Introduced in JDK 1.3, the Java class Proxy lets you use dynamic proxy objects as
place-holders for a defined interface. Certain TopLink mappings (see Table 121–4,
" Mapping Support for Indirection") can be configured to use proxy indirection, which
gives you the benefits of TopLink indirection without the need to include TopLink
classes in your domain model. Proxy indirection is to one-to-one relationship
mappings as indirect containers are to collection mappings.

To use proxy indirection, your domain model must satisfy all of the following criteria:

■ The target class of the one-to-one relationship must implement a public interface.

Mapping Concepts

17-10 Developer's Guide for Oracle TopLink

■ The one-to-one attribute on the source class must be of the interface type.

■ If you employ method accessing (Section 121.6, "Configuring Method or Direct
Field Accessing at the Mapping Level"), then the getter and setter methods must
use the interface.

Before using proxy indirection, be aware of the restrictions it places on how you use
the unit of work (see Section 17.2.4.3.1, "Proxy Indirection Restrictions").

To configure proxy indirection, you can use Oracle JDeveloper TopLink Editor,
TopLink Workbench (see Section 121.3.1, "How to Configure Indirection Using
TopLink Workbench"), or Java in an amendment method (see Section 121.3.2.5,
"Configuring Proxy Indirection").

17.2.4.3.1 Proxy Indirection Restrictions Proxy objects in Java are only able to intercept
messages sent. If a primitive operation such as ==, instanceof, or getClass is used
on a proxy, it will not be intercepted. This limitation can require the application to be
somewhat aware of the usage of proxy objects.

You cannot register the target of a proxy indirection implementation with a unit of
work. Instead, first register the source object with the unit of work. This lets you
retrieve a target object clone with a call to a getter on the source object clone.

For example:

UnitOfWork uow = session.acquireUnitOfWork();
Employee emp = (Employee)session.readObject(Employee.class);

// Register the source object
Employee empClone = (Employee)uow.registerObject(emp);

// All of source object's relationships are cloned when source object is cloned
Address addressClone = empClone.getAddress();
addressClone.setCity("Toronto");

For more information about clones and the unit of work, see Chapter 113,
"Introduction to TopLink Transactions".

17.2.4.4 Weaved Indirection
For JPA entities or POJO classes that you configure for weaving, TopLink weaves value
holder indirection for one-to-one mappings. If you want TopLink to weave change
tracking and your application includes collection mappings (one-to-many or
many-to-many), then you must configure all collection mappings to use transparent
indirect container indirection only (you may not configure your collection mappings to
use eager loading nor value holder indirection).

For more information, see Section 2.10, "Using Weaving".

17.2.4.5 Indirection and JPA
When you set mapping annotation attribute fetch to lazy, the EclipseLink JPA
persistence provider uses indirection.

By default, one-to-many and many-to-many relationships are lazy and use transparent
indirection, while one-to-one and many-to-one relationships are not lazy.

If you set one-to-one or many-to-one relationships to lazy, and you enable weaving,
the EclipseLink JPA persistence provider will use weaving to enable value holder
indirection for these relationships.

For more information, see the following:

■ Section 17.2.4.4, "Weaved Indirection"

Mapping Concepts

Introduction to Mappings 17-11

■ Section 2.10, "Using Weaving"

17.2.4.6 Indirection and EJB 2.n CMP
When using indirection (lazy loading) with EJB 2.n, how TopLink handles indirection
depends on the EJB version and application server you are using.

In addition, you cannot use proxy indirection (see Section 17.2.4.3, "Proxy Indirection")
for relationships to an enterprise bean, because EJB do not directly implement their
remote or local interfaces.

When using indirection with an enterprise bean that your application serializes, you
must consider the effect of any untriggered indirection objects at deserialization time
(see Section 17.2.4.7, "Indirection, Serialization, and Detachment").

When using CMP with any of the application servers for which TopLink provides
CMP integration (see Section 8.1, "Introduction to the Application Server Support"),
TopLink uses code generation to automatically configure the usage of value holder
indirection (Section 17.2.4.1, "Value Holder Indirection") for all CMR.

17.2.4.7 Indirection, Serialization, and Detachment
When using indirection (lazy loading), it is likely that a graph of persistent objects will
contain untriggered indirection objects. Because indirection objects are transient and
do not survive serialization between one JVM and another, untriggered indirection
objects will trigger an error if the relationship is accessed after deserialization.

The application must ensure that any indirect relationships that will be required after
deserialization have been instantiated before serialization. This can be done through
accessing the get method for any relationship using ValueHolder or weaved
indirection, and by sending the size method to any relationship using transparent
indirection. If the application desired the relationships to be always instantiated on
serialization, you could overwrite the serialization writeObject method in the
persistent class to first instantiate the desired relationships. Use caution for objects
with many or deep relationships to avoid serializing large object graphs: ideally, only
the relationships required by the client should be instantiated.

When serializing JPA entities, any lazy relationships that have not been instantiated
prior to serialization will trigger errors if they are accessed. If weaving is used on the
server, and the entities are serialized to a client, the same weaved classes must exist on
the client, either through static weaving of the jar, or through launching the client JVM
using the TopLink agent.

For more information, see the following:

■ Section 2.10, "Using Weaving"

■ Section 115.5, "Merging Changes in Working Copy Clones"

17.2.5 Method Accessors and Attribute Accessors
By default, TopLink uses direct access to access public attributes. Using TopLink, you
can configure field access at the project level (see Section 117.4, "Configuring Method
or Direct Field Access at the Project Level") and at the mapping level (Section 121.6,
"Configuring Method or Direct Field Accessing at the Mapping Level").

17.2.6 Mapping Converters and Transformers
If existing TopLink mappings do not meet your needs, you can create custom
mappings using mapping extensions. These extensions include the following:

Mapping Concepts

17-12 Developer's Guide for Oracle TopLink

■ Serialized Object Converter

■ Type Conversion Converter

■ Object Type Converter

■ Simple Type Translator

■ Transformation Mappings

17.2.6.1 Serialized Object Converter
The serialized object converter is an extension of direct and direct collection mappings
that lets you map complex objects into binary fields through Java object serialization.
Serialized objects are normally stored in RAW or Binary Large Object (BLOB) fields in
the database, or HEX or BASE64 elements in an XML document.

Figure 17–6 shows an example of a direct-to-field mappings that uses a serialized
object converter. The attribute jobDescription contains a formatted text document
that is stored in the JOB_DESC field of the database.

Figure 17–6 Serialized Object Converter (relational)

Figure 17–8 demonstrates an example of a nonrelational mapping that uses a serialized
object converter. The attribute jobDescription contains a formatted text document
that TopLink stores in the JOB DESCRIPTION element of an XML schema.

Figure 17–7 Serialized Object Converter (nonrelational)

The serialized object converter relies on the Java serializer. Before you map a domain
object with the serialized object converter, ensure that the domain object implements
the java.io.Serializable interface (or inherits that implementation) and marks
all nonserializable fields transient.

For more information, see Section 121.9, "Configuring a Serialized Object Converter".

17.2.6.2 Type Conversion Converter
The type conversion converter is an extension of direct and direct collection mappings
that lets you explicitly map a data source type to a Java type. For example, a Number

Note: You can use the mapping converters and transformers
regardless of whether your data source is relational or nonrelational.

Mapping Concepts

Introduction to Mappings 17-13

in the data source can be mapped to a String in Java, or a java.util.Date in Java
can be mapped to a java.sql.Date in the data source.

Figure 17–8 illustrates a type conversion mapping (relational). Because the
java.util.Date class is stored by default as a Timestamp in the database, it must
first be converted to an explicit database type such as java.sql.Date (required only
for DB2–most other databases have a single date data type that can store any date or
time).

Figure 17–8 Type Conversion Mapping (relational)

Figure 17–9 illustrates a type conversion mapping (nonrelational). java.util.Date
object is mapped to a String in a XML schema.

Figure 17–9 Type Conversion Mapping (nonrelational)

You can use a type conversion converter to specify the specific database type when
that type must be handled specially for the database. This includes support for the
special Oracle JDBC binding options required for NCHAR, NVARCHAR2, and NCLOB
fields as well as the special Oracle Thin JDBC insert and update requirements for
handling BLOB and CLOB fields greater than 5K.

TopLink uses the NCharacter, NClob and NString types in the
oracle.toplink.platform.database.oracle package as the converter data
type to support the NCHAR, NCLOB and NVARCHAR2 types. TopLink uses the
java.sql.Blob and Clob types as the converter data type to support BLOB and
CLOB values greater than 5K.

You can configure a type conversion converter to map a data source time type (such as
TIMESTAMP) to a java.lang.String provided that the String value conforms to the
following formats:

■ YYYY/MM/DD HH:MM:SS

■ YY/MM/DD HH:MM:SS

■ YYYY-MM-DD HH:MM:SS

■ YY-MM-DD HH:MM:SS

For more complex String to TIMESTAMP type conversion, consider a transformation
mapping (see Section 17.2.6.5, "Transformation Mappings").

For more information, see Section 121.10, "Configuring a Type Conversion Converter".

Mapping Concepts

17-14 Developer's Guide for Oracle TopLink

17.2.6.3 Object Type Converter
The object type converter is an extension of direct and direct collection mappings that
lets you match a fixed number of XML values to Java objects. Use this converter when
the values in the schema differ from those in Java.

Figure 17–10 illustrates an object type conversion between the Employee attribute
gender and the XML element gender. If the value of the Java object attribute is
Female, TopLink stores it in the XML element as F.

Figure 17–10 Object Type XML Converter

For more information, see Section 121.11, "Configuring an Object Type Converter".

17.2.6.4 Simple Type Translator
The simple type translator is an extension of direct and direct collection mappings that
lets you automatically translate an XML element value to an appropriate Java type
based on the element’s <type> attribute as defined in your XML schema.

You can use a simple type translator only when the mapping’s XPath goes to a text
node. You cannot use a simple type translator if the mapping’s XPath goes to an
attribute.

Using a simple type translator, you can make the XML document preserve type
information. This is useful when your object model specifies generic object attributes
such as java.lang.Object and java.io.Serializable, since they do not
trigger specific type conversions in TopLink as do specific object attributes such as
java.lang.Integer or java.util.Calendar.

Figure 17–11 illustrates a type translation XML mapping for the number attribute of
the PhoneNumber class. Notice that the Java attribute is not specific enough to
preserve the typing. The simple type translator adds the type information to the
resulting document to preserve the typing.

Mapping Concepts

Introduction to Mappings 17-15

Figure 17–11 Simple Type Translator

By default, TopLink uses built-in read and write conversion pairs (see
Section 17.2.6.4.1, "Default Read Conversions" and Section 17.2.6.4.2, "Default Write
Conversions").

You can override this behavior by specifying and configuring your own simple type
translator, for example, to write XML binary data as Base64.

For more information, see Section 121.12, "Configuring a Simple Type Translator".

17.2.6.4.1 Default Read Conversions Table 17–2 lists the built-in conversion pairs for
reading XML elements. When the schema <type> attribute is specified and the simple
type translator is enabled, the value read is converted to the corresponding Java type.

Table 17–2 Simple Type Translator Read Conversions

Schema Type Java Type

base64Binary Byte[]

boolean Boolean

byte Byte

date Calendar

dateTime Calendar

double Double

float Float

hexBinary Byte[]

int int

integer BigInteger

long Long

short Short

string String

time Calendar

unsignedByte Short

Mapping Concepts

17-16 Developer's Guide for Oracle TopLink

17.2.6.4.2 Default Write Conversions Table 17–3 lists the built-in conversion pairs for
writing XML. When a Java class attribute is of a type in Table 17–3 and the simple type
translator is enabled, the corresponding schema type is specified on the element
written.

17.2.6.5 Transformation Mappings
In some special circumstances, existing mapping types and their default Java to data
source type handling may be insufficient. In these special cases, you can consider
using a transformation mapping to perform specialized translations between how a
value is represented in Java and in the data source.

A transformation mapping is made up of the following two components:

■ attribute transformer (see Section 121.15, "Configuring Attribute Transformer"):
performs the object attribute transformation at read (unmarshall) time;

■ field transformer (see Section 121.16, "Configuring Field Transformer
Associations"): performs the object attribute-to-field transformation at write
(marshal) time;

You can implement a transformer as either a separate class or as a method on your
domain object.

Within your implementation of the attribute and field transformer, you can take
whatever actions are necessary to transform your application data to suit your data
source, and vise versa.

For more information, see the following:

unsignedInt Long

unsignedShort Integer

Table 17–3 Simple Type Translator Write Conversions

Java Type Schema Type

Byte[] hexBinary

BigInteger integer

Boolean boolean

Byte byte

Calendar dateTime

Gregorian_Calendar dateTime

Double double

Float float

Integer int

Long long

int int

short short

String string

Table 17–2 (Cont.) Simple Type Translator Read Conversions

Schema Type Java Type

Mapping Concepts

Introduction to Mappings 17-17

■ Section 27.13, "Transformation Mapping"

■ Section 77.9, "EIS Transformation Mapping"

■ Section 53.9, "XML Transformation Mapping"

17.2.7 Mappings and XPath
TopLink uses XPath statements to efficiently map the attributes of a Java object in EIS
mappings to XML records, and in XML mappings to XML documents. When you
create such a mapping, you can specify the following:

■ XPath by Position

■ XPath by Path and Name

■ XPath by Name

■ Self XPath

17.2.7.1 XPath by Position
In a relational database table, columns are uniquely identified by name. In an XML
document, elements are uniquely identified by name and position. Figure 17–12
illustrates mapping to an XML document in which the first instance of the street
element stores apartment information and the second instance of the street element
stores street information. Figure 17–12 shows that TopLink XML mappings preserve
the order in which mappings are persisted and allow you to map Java object attributes
to XML elements by position using an XPath like street[2]/text().

Other XML technologies only recognize the name of XML elements (not their position)
and force you to store the simple values from elements with the same name in a
collection.

Figure 17–12 Mapping to an XML Document by Position

17.2.7.2 XPath by Path and Name
In an XML document, attributes and elements are uniquely identified by a
combination of name and path. Figure 17–13 illustrates that TopLink XML mappings
can uniquely identify an XML element by name and path using an XPath such as
item/name/text(). TopLink does not require a formal object relationship between
XML elements lines and item.

Other XML technologies force you to provide an object relationship for every level of
nesting, resulting in the inclusion of many XML elements and classes simply to
organize the data to satisfy this restriction. This produces an unnecessarily large object
model that does not properly reflect the domain space.

Mapping Concepts

17-18 Developer's Guide for Oracle TopLink

Figure 17–13 Mapping to an XML Document by Path and Name

17.2.7.3 XPath by Name
For simple XML documents, TopLink XML mappings can correctly place data in an
XML document given an XPath of only an attribute or element name.

Figure 17–14 illustrates mapping to a simple XML document by name. You can map
Java object attribute name to XML attribute name by specifying an XPath of only
@NAME. Similarly, you can map Java object attribute age to XML text node AGE by
specifying an XPath of only AGE.

Figure 17–14 Mapping to a Simple XML Document by Name

Specifying an XPath by name provides the worst performance of the XPath mapping
options. Oracle recommends that you use XPath by position (see Section 17.2.7.1,
"XPath by Position") or XPath by path and name (see Section 17.2.7.2, "XPath by Path
and Name") instead.

17.2.7.4 Self XPath
For composite relationships, TopLink XML mappings can place data in the parent’s
element rather than an element nested within it given the self XPath (".").

Figure 17–15 illustrates mapping to an XML document using the self XPath.

Figure 17–15 Mapping to a XML Document Using Self XPath

Note that in the preceding example represented by Figure 17–15, name attribute of the
Employee class is mapped using the @name annotation.

Mapping Concepts

Introduction to Mappings 17-19

Using the self XPath, you can make TopLink perform all read and write operations in
the parent’s element and not an element nested within it (see Section 17.2.9,
"Mappings and the jaxb:class Customization").

17.2.8 Mappings and xsd:list and xsd:union Types
TopLink supports mapping to xsd:list and xsd:union types in EIS mappings to
XML records and XML mappings to XML documents, as Table 17–4 shows.

17.2.8.1 Mapping an xsd:union Type
Use an EISDirectMapping (with XML records), an XMLDirectMapping or their
subclasses to map a Java attribute to an xsd:union type, such as the following:

<xsd:simpleType name="size-type">
<xsd:union memberTypes="xsd:decimal xsd:string"/>

</xsd:simpleType>

When TopLink marshalls (writes) an object to XML, it uses its default conversion pairs
to convert from the Java type to the appropriate xsd type.

In the case where the memberTypes map to the same Java type, TopLink marshalls
using the first memberType in the union which allows a successful conversion. For
example, if you map a Java type of byte[] to an xsd:union with memberTypes of
hexBinary and base64Binary, then TopLink marshalls using the first
memberType: hexBinary.

You can customize the default conversion pairs to control the Java type to xsd type
conversion using XMLField method addConversion and configuring your mapping
with that XMLField using EISDirectMapping or XMLDirectMapping method
setField. For example, if the memberTypes were xsd:date and xsd:time and
the Java attribute was of type java.util.Date instead of the JAXB 1.0 standard
java.util.Calendar, you can modify the conversion pair for xsd:date to be
java.util.Date.

When TopLink unmarshalls (reads) XML into an object, it tries each memberType in
the order specified in the XSD until the first successful conversion is made.

If your XML document specifies the xsi:type attribute on an element, then TopLink
converts according to the xsi:type instead of trying the memberTypes.

For more information, see Section 53.3.5, "Mapping to a Union Field with an XML
Direct Mapping". The same applies to an EISDirectMapping with XML records (see
Section 77.3, "EIS Direct Mapping").

17.2.8.2 Mapping an xsd:list Type
You can map a Java attribute to an xsd:list type, such as:

Table 17–4 TopLink Support for xsd:list and xsd:union Types

XSD

EIS Direct
Mapping
XML Direct
Mapping

EIS Composite Direct Collection
Mapping
XML Composite Direct Collection
Mapping

Mapping an xsd:union Type

Mapping an xsd:list Type

Mapping a List of Unions

Mapping a Union of Lists

Mapping a Union of Unions

Mapping Concepts

17-20 Developer's Guide for Oracle TopLink

<xsd:simpleType name="sizes">
<xsd:list itemType="xsd:int"/>

</xsd:simpleType>
If you represent the xsd:list in your object model as a Java List type, use an
EISCompositeDirectCollectionMapping (with XML records), an
XMLCompositeDirectCollectionMapping or their subclasses and use mapping
method useCollectionClass to specify the List type of the Java attribute.

If you represent the list in your object model as a String of white space delimited
tokens (for example, "aaa bbb ccc"), use an EISDirectMapping (with XML
records), an XMLDirectMapping or their subclasses to map this Java attribute to an
xsd:list (for example, <item>aaa bbb ccc</item>).

In either case, you can configure whether or not the mapping unmarshalls (writes) the
list to a single node, like <item>aaa bbb ccc</item>, or to multiple nodes, such
as the following:

<item>aaa</item>
<item>bbb</item>
<item>ccc</item>
For more information on mapping to an xsd:list type using an
XMLCompositeDirectCollectionMapping or its subclasses, see the following:

■ Section 53.4.3, "Mapping to a Single Text Node with an XML Composite Direct
Collection Mapping"

■ Section 53.4.4, "Mapping to a Single Attribute with an XML Composite Direct
Collection Mapping"

■ Section 53.4.7, "Specifying the Content Type of a Collection with an XML
Composite Direct Collection Mapping"

The same applies to an EISCompositeDirectCollectionMapping (with XML
records).

For more information about mapping to an xsd:list type using an
XMLDirectMapping or its subclasses, see Section 53.3.4, "Mapping to a List Field
with an XML Direct Mapping". The same applies to an EISDirectMapping with
XML records (see Section 77.3, "EIS Direct Mapping").

17.2.8.3 Mapping a List of Unions
Use an EISCompositeDirectCollectionMapping (with XML records), an
XMLCompositeDirectCollectionMapping or their subclasses to map a Java
attribute to an xsd:list that contains xsd:union types, such as:

<xsd:element name="listOfUnions" type="listOfUnions"/>
<xsd:simpleType name="listOfUnions">

<xsd:list>
<xsd:simpleType>

<xsd:union memberTypes="xsd:date xsd:integer"/>
</xsd:simpleType>

</xsd:list>
</xsd:simpleType>

When TopLink marshalls (writes) an object to XML, it does not rely on a single
xsd:list itemType. Instead, for each item in the list, TopLink tries each
memberType until the first successful conversion.

For more information, see Section 53.4.5, "Mapping to a List of Unions with an XML
Composite Direct Collection Mapping". The same applies to an
EISCompositeDirectCollectionMapping with XML records (see Section 77.4,
"EIS Composite Direct Collection Mapping").

Mapping Concepts

Introduction to Mappings 17-21

17.2.8.4 Mapping a Union of Lists
You can map a Java attribute to an xsd:union type whose memberTypes are
xsd:list types where each xsd:list contains items of a single type, such as:

<xsd:element name="listOfUnions" type="UnionOfLists"/>
<xsd:simpleType name="UnionOfLists">

<xsd:union memberTypes="xsd:double">
<xsd:simpleType>

<xsd:list itemType="xsd:date"/>
</xsd:simpleType>
<xsd:simpleType>

<xsd:list itemType="xsd:integer"/>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

Note that in this example, valid XML documents contain either all xsd:double, all
xsd:date, or all xsd:integer values.

If you represent the list in your object model as a String of white space delimited
tokens (for example, "aaa bbb ccc"), use an EISDirectMapping (with XML
records) or an XMLDirectMappng to map this Java attribute to an xsd:list (for
example, <item>aaa bbb ccc</item>).

If you represent the list in your object model as a Java List type, use an
EISCompositeDirectCollectionMapping (with XML records), an
XMLCompositeDirectCollectionMapping or their subclasses.

For more information, see the following:

■ Section 53.3.6, "Mapping to a Union of Lists with an XML Direct Mapping". The
same applies to an EISDirectMapping with XML records (see Section 77.3, "EIS
Direct Mapping").

■ Section 53.4.6, "Mapping to a Union of Lists with an XML Composite Direct
Collection Mapping". The same applies to an
EISCompositeDirectCollectionMapping with XML records (see
Section 77.4, "EIS Composite Direct Collection Mapping").

17.2.8.5 Mapping a Union of Unions
Use an EISDirectMapping (with XML records), an XMLDirectMapping or their
subclasses to map a Java attribute to an xsd:union that contains xsd:union types,
such as the following:

<xsd:simpleType name="UnionOfUnions">
<xsd:union>

<xsd:simpleType>
<xsd:union>
<xsd:simpleType>
<xsd:list itemType="xsd:date"/>

</xsd:simpleType>
<xsd:simpleType>
<xsd:list itemType="xsd:integer"/>

</xsd:simpleType>
</xsd:union>

</xsd:simpleType>
<xsd:simpleType>

<xsd:union>
<xsd:simpleType>
<xsd:list itemType="xsd:string"/>

</xsd:simpleType>
<xsd:simpleType>
<xsd:list itemType="xsd:float"/>

</xsd:simpleType>

Mapping Concepts

17-22 Developer's Guide for Oracle TopLink

</xsd:union>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

Note that in this example, valid XML documents may contain any of xsd:date,
xsd:integer, xsd:string, or xsd:float.

For more information, see Section 53.3.7, "Mapping to a Union of Unions with an XML
Direct Mapping". The same applies to an EISDirectMapping with XML records (see
Section 77.3, "EIS Direct Mapping").

17.2.9 Mappings and the jaxb:class Customization
Using the jaxb:class customization, you can declaratively specify an
application-specific subclass of a schema-derived implementation class. This lets you
write your own classes that extend JAXB's generated implementation classes (see
Section 47.1.1.2.1, "Implementation Classes"). The JAXB runtime binding framework
can then access your subclasses.

When you create an EIS composite object mapping to XML records, or an XML
composite object mapping to XML documents, you can configure the mapping’s XPath
(Section 121.4, "Configuring XPath") to accommodate jaxb:class customizations
with the following XSD structures:

■ all, choice, or sequence Structure

■ group Structure

■ sequence or choice Structure Containing a group

■ group Structure Containing a sequence or choice

■ group Structure Containing a group

When mapping to jaxb:class customized structures, consider the limitations of
TopLink support for this customization (see Section 17.2.9.6, "Limitations of jaxb:class
Customization Support").

17.2.9.1 all, choice, or sequence Structure
You can use the jaxb:class customization with an all, choice, or sequence
structure. Example 17–1 shows a jaxb:class customization of an all structure.

Example 17–1 jaxb:class Customization of an all Structure

<xsd:element name="employee">
<xsd:complexType>

<xsd:all>
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="period"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:element name="startDate" type="xsd:date"/>
<xsd:element name="endDate" type="xsd:date"/>

</xsd:all>
</xsd:complexType>

</xsd:element>

This directs the JAXB compiler to create an inner class named Period in the owning
element’s class for the all structure. Use an EISCompositeObjectMapping (with
XML records) or an XMLCompositeObjectMapping to map a Java attribute to this
inner class.

Mapping Concepts

Introduction to Mappings 17-23

For more information, see Section 53.5, "XML Composite Object Mapping". The same
applies to an EISCompositeObjectMapping with XML records (see Section 77.5,
"EIS Composite Object Mapping").

17.2.9.2 group Structure
You can use the jaxb:class customization with a group structure, as Example 17–2
shows.

Example 17–2 jaxb:class Customization of a group Structure

<xsd:group name="G1">
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="period"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="startDate" type="xsd:date"/>
<xsd:element name="endDate" type="xsd:date"/>

</xsd:sequence>
</xsd:group>

<xsd:element name="employee">
<xsd:complexType>

<xsd:group ref="G1"/>
</xsd:complexType>

</xsd:element>

This directs the JAXB compiler to create an external wrapper class named Period for
the group structure. Use an EISCompositeObjectMapping (with XML records) or
an XMLCompositeObjectMapping to map a Java attribute to this external wrapper
class.

For more information, see Section 53.5, "XML Composite Object Mapping". The same
applies to an EISCompositeObjectMapping with XML records (see Section 77.5,
"EIS Composite Object Mapping").

17.2.9.3 sequence or choice Structure Containing a group
You can use the jaxb:class customization with a sequence or choice structure
that contains a group. Example 17–3 shows a jaxb:class customization of a
sequence structure containing a group structure.

Example 17–3 jaxb:class Customization of a sequence Structure Containing a group

<xsd:element name="employee">
<xsd:complexType>

<xsd:sequence>
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="EmploymentInfo"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:element name="id" type="xsd:int"/>
<xsd:group ref="G1"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:group name="G1">
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="Period"/>

Mapping Concepts

17-24 Developer's Guide for Oracle TopLink

</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="startDate" type="xsd:date"/>
<xsd:element name="endDate" type="xsd:date"/>

</xsd:sequence>
</xsd:group>

This directs the JAXB compiler to create an inner class named EmploymentInfo in
the owning element’s class for the sequence structure and an external wrapper class
named Period for the group structure. The inner class references the external
wrapper class. Use an EISCompositeObjectMapping (with XML records) or an
XMLCompositeObjectMapping to map a Java attribute to this inner class.

For more information, see Section 53.5, "XML Composite Object Mapping". The same
applies to an EISCompositeObjectMapping with XML records (see Section 77.5,
"EIS Composite Object Mapping".

17.2.9.4 group Structure Containing a sequence or choice
You can use the jaxb:class customization with a group structure that contains a
sequence or choice. Example 17–4 shows a jaxb:class customization of a group
structure containing a sequence structure.

Example 17–4 jaxb:class Customization of a group Structure Containing a sequence

<xsd:group name="G1">
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="EmploymentInfo"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>

<xsd:annotation>
<xsd:appinfo>

<jaxb:class name="Period"/>
</xsd:appinfo>

</xsd:annotation>
<xsd:element name="startDate" type="xsd:date"/>
<xsd:element name="endDate" type="xsd:date"/>

</xsd:sequence>
</xsd:group>

<xsd:element name="employee">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="id" type="xsd:int"/>
<xsd:group ref="G1"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

This directs the JAXB compiler to create an external wrapper class named
EmploymentInfo for the group structure and an inner class named Period in the
external wrapper class for the sequence structure. The owning element references the
external wrapper class. Use an EISCompositeObjectMapping (with XML records)
or an XMLCompositeObjectMapping to map a Java attribute to this external
wrapper class.

For more information, see Section 53.5, "XML Composite Object Mapping". The same
applies to an EISCompositeObjectMapping with XML records (see Section 77.5,
"EIS Composite Object Mapping").

Mapping Concepts

Introduction to Mappings 17-25

17.2.9.5 group Structure Containing a group
You can use the jaxb:class customization with a group structure that contains
another group structure, as Example 17–5 shows.

Example 17–5 jaxb:class Customization of a group Structure Containing a group

<xsd:group name="G1">
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="EmploymentInfo"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="id" type="xsd:int"/>
<xsd:group ref="G2"/>

</xsd:sequence>
</xsd:group>

<xsd:group name="G2">
<xsd:annotation>

<xsd:appinfo>
<jaxb:class name="Period"/>

</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="startDate" type="xsd:date"/>
<xsd:element name="endDate" type="xsd:date"/>

</xsd:sequence>
</xsd:group>

<xsd:element name="employee">
<xsd:complexType>

<xsd:group ref="G1"/>
</xsd:complexType>

</xsd:element>

This directs the JAXB compiler to create a wrapper class named EmploymentInfo for
the group structure that the owning element’s class references and another wrapper
class named Period for the group structure that the EmploymentInfo class
references. Use an EISCompositeObjectMapping (with XML records) or an
XMLCompositeObjectMapping to map a Java attribute to these wrapper classes.

For more information, see Section 53.5, "XML Composite Object Mapping". The same
applies to an EISCompositeObjectMapping with XML records (see Section 77.5,
"EIS Composite Object Mapping").

17.2.9.6 Limitations of jaxb:class Customization Support
When mapping to jaxb:class customized structures, consider the following limitations:

■ Unbounded structures are not supported.

■ Partial validation is not supported.

■ When mapping sequence elements to a composite object, the XML schema must
order the elements so that the elements you map to the composite object are kept
together.

The sequence structure forces all elements to occur in the order in which they are
specified in the XML schema. Consider the XML schema shown in Example 17–6.
A valid XML instance must contain the sequence elements in the specified order:

street, customerName, city

Mapping Concepts

17-26 Developer's Guide for Oracle TopLink

In this example, you want to map the customerName attribute with a direct
mapping and you want to map the street and city attributes to a composite
Address object. Depending on the order in which you define the mappings,
TopLink will marshall invalid XML document instances in the order

customerName, street, city

or

street, city, customerName.

Example 17–6 XML Schema With Unsupported Sequence Element Order

<xs:element name="customer">
<xs:complexType>

<xs:sequence>
<xs:element name="street" type="xs:string"/>
<xs:element name="customerName" type="xs:string" />
<xs:element name="city" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
To correct this problem, modify the XML schema to keep the elements you want to
map to the composite object together (see Example 17–7) and define the mappings
in the order specified by the XML schema.

Example 17–7 XML Schema With Supported Sequence Element Order

<xs:element name="customer">
<xs:complexType>

<xs:sequence>
<xs:element name="customerName" type="xs:string"/>
<xs:element name="street" type="xs:string"/>
<xs:element name="city" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>

17.2.10 Mappings and JAXB Typesafe Enumerations
JAXB binds a typesafe enumeration class to a named simple type definition with a
basetype that derives from xsd:NCName and has enumeration facets (see
Example 17–8).

Example 17–8 Schema Fragment with Typesafe Enumeration Declaration

<simpleType name="NISTSchema-NCName-enumeration-1-Type">
 <restriction base="NCName">
 <enumeration value="qbandwidth-and.software-use.too"/>
 <enumeration value="_effort-disseminate_and-devices.com"/>
 </restriction>
</simpleType>
You can map a Java attribute to such an enumeration using the
JAXBTypesafeEnumConverter with an EISDirectMapping or
EISCompositeDirectCollectionMapping with XML records, or with an
XMLDirectMapping, XMLCompositeDirectCollectionMapping or their
subclasses with XML documents.

Oracle JDeveloper TopLink Editor and TopLink Workbench do not support the
JAXBTypesafeEnumConverter directly: to configure a mapping with this converter,

Object-Relational Data Type Mappings

Introduction to Mappings 17-27

you must use a descriptor amendment method (see Section 121.13, "Configuring a
JAXB Typesafe Enumeration Converter").

If you create a project and object model using the TopLink JAXB compiler (see
Section 48.2, "Creating an XML Project from an XML Schema"), the compiler will create
the type safe enumeration class and a class with descriptor amendment methods and
register the required amendment methods automatically.

17.3 Mapping API
All the mapping classes are derived from the DatabaseMapping class.

17.4 Relational Mappings
A relational mapping transforms any object data member type to a corresponding
relational database (SQL) data source representation in any supported relational
database. Relational mappings allow you to map an object model into a relational
data-model.

Relational mappings can also transform object data members that reference other
domain objects that are stored in other tables in the database and are related through
foreign keys.

Use relational mappings in relational projects. For more information, see Section 18.1,
"Building Relational Projects".

For more information about relational mappings, see Part XII, "Relational Mappings"

17.5 Object-Relational Data Type Mappings
An object-relational data type mapping transforms certain object data member types to
structured data source representations optimized for storage in specialized
object-relational data type databases such as Oracle Database. Object-relational data
type mappings allow you to map an object model into an object-relational data type
data-model.

Use object-relational data type mappings in relational projects. For more information,
see Section 18.1, "Building Relational Projects".

For more information about object-relational data type mappings, see Part XIII,
"Object-Relational Data Type Mappings".

Table 17–5 Platform and Mapping Package Compatibility

Platform Mapping Package

DatabasePlatform

For relational projects

oracle.toplink.mappings

oracle.toplink.xdb

oracle.toplink.objectrelational

EISPlatform

For EIS projects

oracle.toplink.eis.mappings

XMLPlatform

For XML projects

oracle.toplink.ox.mappings

XML Mappings

17-28 Developer's Guide for Oracle TopLink

17.6 XML Mappings
An XML mapping transforms object data members to the XML elements of an XML
file whose structure is defined by an XML schema document (XSD).

Use XML mappings in XML projects. For more information, see Section 47.1, "XML
Project Concepts".

For more information about XML mappings, see Part XVI, "XML Mappings".

17.7 EIS Mappings
An EIS mapping transforms object data members to the EIS record format defined by
the object’s descriptor.

Use EIS mappings in EIS projects. For more information, see Section 71.1, "EIS Project
Concepts".

For more information about EIS mappings, see Part XIX, "EIS Mappings".

Part IX
Part IX Relational Projects

This part describes relational projects.

This part contains the following chapters:

■ Chapter 18, "Introduction to Relational Projects"

This chapter provides an overview of relational projects.

■ Chapter 19, "Creating a Relational Project"

This chapter explains how to create a relational project.

■ Chapter 20, "Configuring a Relational Project"

This chapter explains how to configure project options specific to relational
project.

18

Introduction to Relational Projects 18-1

18 Introduction to Relational Projects

This chapter provides an overview of relational projects and focuses on building these
projects for relational and object-relational data type databases.

This chapter includes the following sections:

■ Building Relational Projects

■ Sequencing in Relational Projects

For information on project concepts and features common to more than one type of
TopLink projects, see Chapter 15, "Introduction to Projects".

18.1 Building Relational Projects
Use a relational project for transactional persistence of Java objects to a conventional
relational database or to an object-relational data type database that supports data types
specialized for object storage, both accessed using JDBC.

In a relational project, you can make full use of TopLink queries and expressions (see
Part XXIV, "Queries").

18.1.1 How to Build Relational Projects for a Relational Database
Oracle JDeveloper TopLink Editor and TopLink Workbench provide complete support
for creating relational projects that map Java objects to a conventional relational
database accessed using JDBC.

Table 18–1 describes the components of a relational project for a relational database.

Note: If you are using TopLink Workbench, you must add your
JDBC driver to the TopLink Workbench classpath. If you are using
TopLink Workbench and direct-to-XMLType mappings (see
Section 27.4, "Direct-to-XMLType Mapping"), you must add the Oracle
Database xdb.jar file to the TopLink Workbench classpath.

For more information, see Section 5.2, "Configuring the TopLink
Workbench Environment".

Building Relational Projects

18-2 Developer's Guide for Oracle TopLink

For more information, see Chapter 19, "Creating a Relational Project".

18.1.2 How to Build Relational Projects for an Object-Relational Data Type Database
Oracle JDeveloper TopLink Editor and TopLink Workbench do not currently support
relational projects for an object-relational data type database. You must create such a
relational project in Java.

Using Java, you can create a relational project for transactional persistence of Java
objects to an object-relational data type database that supports data types specialized
for object storage (such as Oracle Database) accessed using JDBC.

When using TopLink to build a relational project for an object-relational data type
database, consider the following:

■ You must create a Java class and a TopLink ObjectRelationalDescriptor for
each structured type (Struct/object-type).

■ TopLink supports only arrays (Varrays) of basic types or arrays on structured
types (Struct/object-type).

TopLink does not support arrays of Refs or arrays of nested tables.

■ TopLink supports only nested tables of Refs.

TopLink does not support nested tables of basic types, structured types, or array
types.

The general development process for building a relational project for an
object-relational data type database is as follows:

1. Define structured object-types in the database.

2. Define tables of the structured object-types in the database.

3. Define the Java classes that will map to the structured object-types.

4. Create a relational project (see Chapter 116, "Creating a Project").

5. Create an object-relational data type descriptor for each Java class (see
Section 25.2, "Creating an Object-Relational Data Type Descriptor").

6. Create object-relational data type mappings from each persistent field of each Java
class to the corresponding object-types and object-type tables.

For more information, see the following:

■ Chapter 120, "Creating a Mapping"

■ Chapter 41, "Configuring an Object-Relational Data Type Mapping"

Table 18–1 Components of a Relational Project for a Relational Database

Component Supported Types

Data Source For more information, see the following:

■ Section 96.1.2.1, "DatabaseLogin"

■ Section 96.1.3.1, "Database Platforms"

Descriptors For more information, see Section 21.1, "Relational Descriptors".

Mappings For more information, see the following:

■ Part VIII, "Mappings"

■ Part XII, "Relational Mappings"

Sequencing in Relational Projects

Introduction to Relational Projects 18-3

Table 18–2 describes the components of a relational project for an object-relational data
type database.

For more information, see Chapter 19, "Creating a Relational Project".

18.2 Sequencing in Relational Projects
In an relational project, you store persistent objects for your application in database
tables that represent the class of instantiated object. As Figure 18–1 shows, each row of
the VEHICLE_POOL table represents an instantiated object from that class, and the
VEH_ID column holds the primary key for each object.

Figure 18–1 Sequencing Elements in a Class Database Table

You configure TopLink sequencing at the project or session level (see Section 20.3,
"Configuring Sequencing at the Project Level" or Section 98.4, "Configuring
Sequencing at the Session Level") to tell TopLink how to obtain values for the primary
key column: that is, what type of sequencing to use (see Section 18.2.2, "Sequencing
Types").

You configure TopLink sequencing at the descriptor level (see Section 23.3,
"Configuring Sequencing at the Descriptor Level") to tell TopLink into which table and
column to write the sequence value when an instance of a descriptor’s reference class
is created.

This section describes the following:

Table 18–2 Components of a Relational Project for an Object-Relational Data Type
Database

Component Supported Types

Data Source For more information, see the following:

■ Section 96.1.2.1, "DatabaseLogin"

■ Section 96.1.3.1, "Database Platforms"

Descriptors For more information, see Section 24.1, "Object-Relational Data
Type Descriptors".

Mappings For more information, see the following:

■ Part VIII, "Mappings"

■ Part XIII, "Object-Relational Data Type Mappings"

Note: When choosing a column type for a primary key value, ensure
that the type provides a suitable precision. For example, if you use a
TIMESTAMP type but your database platform’s TIMESTAMP is defined
only to the second, then identical values may be returned for objects
created within the same second.

Sequencing in Relational Projects

18-4 Developer's Guide for Oracle TopLink

■ Sequencing Configuration Options

■ Sequencing Types

■ Sequencing and Preallocation Size

■ Sequencing with EJB 2.n Entity Beans with Container-Managed Persistence

18.2.1 Sequencing Configuration Options
You can configure sequencing using either Oracle JDeveloper TopLink Editor, TopLink
Workbench, or Java (but not both).

Oracle recommends using Oracle JDeveloper to configure sequencing. Using Oracle
JDeveloper, you can easily configure the sequencing options applicable to most
applications. For more information, see Section 20.3, "Configuring Sequencing at the
Project Level" or Section 98.4, "Configuring Sequencing at the Session Level".

Using TopLink Workbench, create one sequence with a single preallocation size that
applies to all descriptors that require sequencing. You can configure table sequencing
(see Section 18.2.2.1, "Table Sequencing") or native sequencing (see Section 18.2.2.5,
"Native Sequencing with an Oracle Database Platform"). If you choose table
sequencing, you can either use default table and column names or specify your own
(see Section 18.2.2.1.1, "Default Versus Custom Sequence Table").

Using Java, you can configure any sequence type that TopLink supports (see
Section 18.2.2, "Sequencing Types"). You can create any number and combination of
sequences per project. You can create a sequence object explicitly or use the platform
default sequence (see Section 18.2.2.4, "Default Sequencing"). You can associate the
same sequence with more than one descriptor or associate different sequences (and
different sequence types) to various descriptors. You can configure a separate
preallocation size for each descriptor’s sequence. For more information, see
Section 98.4.2, "How to Configure Sequencing at the Session Level Using Java".

18.2.2 Sequencing Types
TopLink supports the following sequence types:

■ Table Sequencing

■ Unary Table Sequencing

■ Query Sequencing

■ Default Sequencing

■ Native Sequencing with an Oracle Database Platform

■ Native Sequencing with a Non-Oracle Database Platform

18.2.2.1 Table Sequencing
With table sequencing, you create a single database table that includes sequencing
information for one or more sequenced objects in the project. TopLink maintains this
table to track sequence numbers for these object types.

As Figure 18–2 shows, the table may contain sequencing information for more than
one class that uses sequencing. The default table is called SEQUENCE and contains two
columns:

■ SEQ_NAME, which specifies the class type to which the selected row refers

Sequencing in Relational Projects

Introduction to Relational Projects 18-5

■ SEQ_COUNT, which specifies the highest sequence number currently allocated for
the object represented in the selected row

Figure 18–2 TopLink Table Sequence Table

The rows of the SEQUENCE table represent each sequence object: one for each class that
participates in sequencing or a single sequence object across several classes so that
they can benefit from the same preallocation pool. When you configure sequencing at
the descriptor level (see Section 23.3, "Configuring Sequencing at the Descriptor
Level"), you specify the SEQ_NAME for the class. Add a row with that name to the
SEQUENCE table and initialize the SEQ_COUNT column to the value 0.

Each time a new instance of a class is created, TopLink obtains the required sequence
value. For efficiency, TopLink uses preallocation to reduce the number of table accesses
required to obtain sequence values (see Section 18.2.3, "Sequencing and Preallocation
Size").

You can create the SEQUENCE table on the database in one of two ways:

■ Use either Oracle JDeveloper TopLink Editor or TopLink Workbench to create the
table. See Section 5.5.3.4, "Generating Tables on the Database" for more
information.

■ Use the TopLink table creator to create and update the table manually. See
Section 5.5.3.1, "Generating SQL Creation Scripts" for more information.

You can configure table sequencing using Oracle JDeveloper, TopLink Workbench, or
Java. For more information about configuring table sequencing, see Section 20.3,
"Configuring Sequencing at the Project Level" or Section 98.4, "Configuring
Sequencing at the Session Level".

18.2.2.1.1 Default Versus Custom Sequence Table In most cases, you implement table
sequencing using the default table and column names. However, you may want to
specify your own table and column names if the following holds true:

■ You want to use an existing sequence table for sequencing.

■ You do not want to use the default naming convention for the table and its
columns.

18.2.2.2 Unary Table Sequencing
Although similar to table sequencing (see Section 18.2.2.1, "Table Sequencing"), with
unary table sequencing, you create a separate sequence table for each sequenced object
in the project.

As Figure 18–3 shows, sequencing information appears in the table for a single class
that uses sequencing. You can name the table anything you want but it must contain
only one column named (by default) SEQUENCE.

Sequencing in Relational Projects

18-6 Developer's Guide for Oracle TopLink

Figure 18–3 TopLink Unary Table Sequence Table

When you configure sequencing at the descriptor level, you specify the sequence name
for the class: this is the name of the unary table sequence table. Figure 18–3 shows a
unary table sequence for the Employee class. The Employee class descriptor is
configured (see Section 23.3, "Configuring Sequencing at the Descriptor Level") with a
sequence name of EMP_SEQ to match the unary table sequence table name. TopLink
adds a row to this table and initializes the SEQUENCE column to the value 1.

Each time a new class is created, TopLink obtains the required sequence value from the
single row of the unary sequence table corresponding to the class. For efficiency,
TopLink uses preallocation to reduce the number of table accesses required to obtain
sequence values (see Section 18.2.3, "Sequencing and Preallocation Size").

You can create the unary table sequence table on the database in one of two ways:

■ Use either Oracle JDeveloper TopLink Editor or TopLink Workbench to create the
table. See Section 5.5.3.4, "Generating Tables on the Database" for more
information.

■ Use the TopLink table creator to create and update the table manually. See
Section 5.5.3.1, "Generating SQL Creation Scripts" for more information.

Currently, you can only configure unary table sequencing in Java using the
UnaryTableSequence class (for more information, see Section 98.4.2, "How to
Configure Sequencing at the Session Level Using Java").

18.2.2.3 Query Sequencing
With query sequencing, you can access a sequence resource using custom read
(ValueReadQuery) and update (DataModifyQuery) queries and a preallocation
size that you specify. This allows you to perform sequencing using stored procedures
and allows you to access sequence resources that are not supported by the other
sequencing types that TopLink provides.

Currently, you can only configure query sequencing in Java using the
QuerySequence class (for more information, see Section 98.4.2.3, "Configuring Query
Sequencing").

18.2.2.4 Default Sequencing
The platform owned by a login is responsible for providing a default sequence
instance appropriate for the platform type. For example, by default, a
DatabasePlatform provides a table sequence using the default table and column
names (see Section 18.2.2.1, "Table Sequencing").

You can access this default sequence directly using DatasourceLogin method
getDefaultSequence, or indirectly by using the DefaultSequence class, a
wrapper for the platform default sequence.

If you associate a descriptor with a nonexistent sequence, the TopLink runtime will
create an instance of DefaultSequence to provide sequencing for that descriptor.
For more information, see Section 23.3.2.3, "Configuring the Platform Default
Sequence".

Sequencing in Relational Projects

Introduction to Relational Projects 18-7

The main purpose of the DefaultSequence is to allow a sequence to use a different
pre-allocation size than the project default.

Currently, you can only make use of default sequencing in Java (for more information,
see Section 98.4.2.1, "Using the Platform Default Sequence").

18.2.2.5 Native Sequencing with an Oracle Database Platform
TopLink support for native sequencing with Oracle Databases is similar to table
sequencing (see Section 18.2.2.1, "Table Sequencing"), except that TopLink does not
maintain a table in the database. Instead, the database contains a sequence object that
stores the current maximum number and preallocation size for sequenced objects. The
sequence name configured at the descriptor level identifies the sequence object
responsible for providing sequencing values for the descriptor’s reference class.

You can configure native sequencing using Oracle JDeveloper, TopLink Workbench, or
Java. For more information about configuring table sequencing, see Section 20.3,
"Configuring Sequencing at the Project Level" or Section 98.4, "Configuring
Sequencing at the Session Level".

18.2.2.5.1 Understanding the Oracle SEQUENCE Object The Oracle SEQUENCE object
implements a strategy that closely resembles TopLink sequencing: it implements an
INCREMENT construct that parallels the TopLink preallocation size, and a
sequence.nextval construct that parallels the SEQ_COUNT field in the TopLink
SEQUENCE table in table sequencing. This implementation enables TopLink to use the
Oracle SEQUENCE object as if it were a TopLink SEQUENCE table, but eliminates the
need for TopLink to create and maintain the table.

As with table sequencing, TopLink creates a pool of available numbers by requesting
that the Oracle SEQUENCE object increment the sequence.nextval and return the
result. Oracle adds the value, INCREMENT, to the sequence.nextval, and TopLink
uses the result to build the sequencing pool.

The key difference between this process and the process involved in table sequencing
is that TopLink is unaware of the INCREMENT construct on the SEQUENCE object.
TopLink sequencing and the Oracle SEQUENCE object operate in isolation. To avoid
sequencing errors in the application, set the TopLink preallocation size and the Oracle
SEQUENCE object INCREMENT to the same value. Note that the Oracle sequence object
must have a starting value equal to the preallocation size because when TopLink gets
the next sequence value, it assume it has the previous preallocation size of values.

18.2.2.5.2 Using SEQUENCE Objects Your database administrator (DBA) must create a
SEQUENCE object on the database for every sequencing series your application
requires. If every class in your application requires its own sequence, the DBA creates
a SEQUENCE object for every class; if you design several classes to share a sequence,
the DBA need create only one SEQUENCE object for those classes.

For example, in Figure 18–4, consider the case of a sporting goods manufacturer that
manufactures three styles of tennis racquet. The data for these styles of racquet are
stored in the database as follows:

■ Each style of racquet has its own class table.

■ Each manufactured racquet is an object represented by a line in the class table.

■ The system assigns serial numbers to the racquets that use sequencing.

Sequencing in Relational Projects

18-8 Developer's Guide for Oracle TopLink

Figure 18–4 Example of Database Tables–Racquet Information

The manufacturer can do either of the following:

■ Use separate sequencing for each racquet style. The DBA builds three separate
SEQUENCE objects, perhaps called ATTACK_SEQ, VOLLEY_SEQ, and PROX_SEQ.
Each different racquet line has its own serial number series, and there may be
duplication of serial numbers between the lines (for example: all three styles may
include a racquet with serial number 1234).

■ Use a single sequencing series for all racquets. The DBA builds a single SEQUENCE
object (perhaps called RACQUET_SEQ). The manufacturer assigns serial numbers to
racquets as they are produced, without regard for the style of racquet.

18.2.2.6 Native Sequencing with a Non-Oracle Database Platform
Several databases support a type of native sequencing in which the database
management system generates the sequence numbers.

When you create a database table for a class that uses native sequencing, include a
primary key column, and set the column type as follows:

■ For Sybase and Microsoft SQL Server databases, set the primary key field to the
type IDENTITY.

■ For IBM Informix databases, set the primary key field to the type SERIAL.

■ For IBM DB2 databases, set the primary key field to the type IDENTITY.

When you insert a new object into the table, TopLink populates the object before
insertion into the table, but does not include the sequence number. As the database
inserts the object into its table, the database automatically populates the primary key
field with a value equal to the primary key of the previous object plus 1.

At this point, and before the transaction closes, TopLink reads back the primary key
for the new object so that the object has an identity in the TopLink cache.

Note: This type of sequencing does not support preallocation, so the
preallocation size must be set to 1. To take advantage of sequence
preallocation, Oracle recommends that you use table sequencing on
these databases instead of native sequencing.

Sequencing in Relational Projects

Introduction to Relational Projects 18-9

If your database provides native sequencing, but TopLink does not directly support it,
you may be able to access the native sequence object using a query sequence and
stored procedures. For more information, see Section 18.2.2.3, "Query Sequencing".

You can configure native sequencing using Oracle JDeveloper, TopLink Workbench, or
Java. For more information about configuring table sequencing, see Section 20.3,
"Configuring Sequencing at the Project Level" or Section 98.4, "Configuring
Sequencing at the Session Level".

18.2.3 Sequencing and Preallocation Size
To improve sequencing efficiency, TopLink lets you preallocate sequence numbers.
Preallocation enables TopLink to build a pool of available sequence numbers that are
assigned to new objects as they are created and inserted into the database. TopLink
assigns numbers from the sequence pool until the pool is empty.

The preallocation size specifies the size of the pool of available numbers. Preallocation
improves sequencing efficiency by substantially reducing the number of database
accesses required by sequencing. By default, TopLink sets preallocation size to 50. You
can specify preallocation size either in Oracle JDeveloper TopLink Editor, TopLink
Workbench, or as part of the session login.

Preallocation size configuration applies to table sequencing and Oracle native
sequencing. In Oracle native sequencing, the sequence preallocation size must match
the Oracle sequence object increment size. Preallocation is not available for native
sequencing in other databases as they use an auto-assigned sequence column. Oracle
recommends that you use table sequencing in non-Oracle databases to allow
preallocation.

For table sequencing, TopLink maintains a pool of preallocated values for each
sequenced class. When TopLink exhausts this pool of values, it acquires a new pool of
values, as follows:

1. TopLink accesses the database, requesting that the SEQ_COUNT for the given class
(identified by the SEQ_NAME) be incremented by the preallocation size and the
result returned.

For example, consider the SEQUENCE table in Figure 18–2. If you create a new
purchase order and TopLink has exhausted its pool of sequence numbers, then
TopLink executes a SQL statement to increment SEQ_COUNT for SEQ_PURCH_
ORDER by the preallocation size (in this case, the TopLink default of 50). The
database increments SEQ_COUNT for SEQ_PURCH_ORDER to 1600 and returns this
number to TopLink.

2. TopLink calculates a maximum and a minimum value for the new sequence
number pool, and creates the pool of values.

3. TopLink populates the object sequence attribute with the first number in the pool
and writes the object to the class table.

As you add new objects to the class table, TopLink continues to assign values from the
pool until it exhausts the pool. When the pool is exhausted, TopLink again requests
new values from the table.

Using Oracle JDeveloper TopLink Editor and TopLink Workbench, you specify a
preallocation size when you choose a sequencing type at the project or session level.
That preallocation size applies to all descriptors.

Using Java, you can specify a different preallocation size for each sequence that you
create.

Sequencing in Relational Projects

18-10 Developer's Guide for Oracle TopLink

For more information about configuring preallocation size, see Section 20.3,
"Configuring Sequencing at the Project Level" or Section 98.4, "Configuring
Sequencing at the Session Level".

18.2.4 Sequencing with EJB 2.n Entity Beans with Container-Managed Persistence
To implement sequencing for entity beans with container-managed persistence, use a
sequencing strategy that implements preallocation, such as table sequencing or Oracle
native sequencing. Preallocation ensures that the entity bean primary key is available
at the ejbPostCreate method. If you use non-Oracle native sequencing (for
example, Sybase, Microsoft SQL Server, or Informix database native sequencing), be
aware of the following:

■ Non-Oracle native sequencing does not strictly conform to any EJB specification,
because it does not initialize the primary key for a created object until you commit
the transaction that creates the object. EJB specifications prior to 3.0 expect that the
primary key is available at ejbPostCreate method.

■ OC4J supports native sequencing; however, this type of native sequencing does
not assign or return a primary key for a created object until you commit the
transaction in which the object is created. Because of this, if you use native
sequencing, commit a transaction immediately after calling the ejbCreate
method to avoid problems with object identity in the TopLink cache and the
container.

19

Creating a Relational Project 19-1

19Creating a Relational Project

This chapter describes the various components that you must configure in order to
create a relational project.

This chapter includes the following sections:

■ Introduction to the Relational Project Creation

■ Creating a Project from an Existing Object and Data Model

■ Creating a Project from an Existing Object Model

■ Creating a Project from an Existing Data Model

■ Creating a Project from an OC4J EJB CMP EAR at Deployment Time

■ Exporting Project Information

■ Working with the ejb-xml.File

For information on how to create more than one type of TopLink projects, see
Chapter 116, "Creating a Project".

19.1 Introduction to the Relational Project Creation
You can create a project using Oracle JDeveloper TopLink Editor, TopLink Workbench,
or Java code.

Oracle recommends using either Oracle JDeveloper or TopLink Workbench to create
projects and generate deployment XML or Java source versions of the project for use at
run time. For more information on how to create a project using TopLink Workbench,
see Section 116.1.2, "How to Create a Project Using TopLink Workbench". For
information on how to create a project using Java, see Section 116.1.3, "How to Create a
Project Using Java".

You can use TopLink to create a relational project, if any of the following conditions
are met:

■ You have both an object and data model: see Section 19.2, "Creating a Project from
an Existing Object and Data Model".

■ You have an object model, but no data model yet: see Section 19.3, "Creating a
Project from an Existing Object Model".

■ You have a data model, but no object model yet: Section 19.4, "Creating a Project
from an Existing Data Model".

■ You are deploying an EJB CMP application to OC4J, you can create a project
(including all mappings and data model) automatically at deployment time: see

Creating a Project from an Existing Object and Data Model

19-2 Developer's Guide for Oracle TopLink

Section 19.5, "Creating a Project from an OC4J EJB CMP EAR at Deployment
Time".

For more information, see Chapter 18, "Introduction to Relational Projects".

19.2 Creating a Project from an Existing Object and Data Model
If you have both an existing object model (Java classes for your domain objects) and
data model (such as an existing database schema), you can use either Oracle
JDeveloper or TopLink Workbench to create your TopLink project.

19.2.1 How to Create a Project from an Existing Object and Data Model Using TopLink
Workbench

1. Create the project (see Section 116.1.2, "How to Create a Project Using TopLink
Workbench").

2. Configure the project classpath (see Section 117.3, "Configuring Project
Classpath").

3. Import classes (see Section 5.7.3, "How to Import and Update Classes").

4. Import database tables (see Section 5.5.1.3, "Importing Tables from a Database").

5. Automatically create mappings (see Section 120.3.1, "How to Create Mappings
Automatically During Development Using TopLink Workbench").

6. Configure project options (see Chapter 117, "Configuring a Project").

19.3 Creating a Project from an Existing Object Model
If you have an existing object model (Java classes for your domain objects), but you do
not have a corresponding data model, you can use either Oracle JDeveloper or
TopLink Workbench to create your TopLink project and automatically generate the
corresponding data model.

19.3.1 How to Create a Project from an Existing Object Model Using TopLink
Workbench

1. Create the project (see Section 116.1.2, "How to Create a Project Using TopLink
Workbench").

2. Configure the project classpath (see Section 117.3, "Configuring Project
Classpath").

3. Import classes (see Section 5.7.3, "How to Import and Update Classes").

4. Generate database tables. For more information, see the following:

■ Section 5.5.1.2, "Creating New Tables"

■ Section 5.5.3.4, "Generating Tables on the Database"

■ Section 20.9.1, "How to Configure Table Creator Java Source Options Using
TopLink Workbench"

■ Section 19.6.2, "How to Export Table Creator Files Using TopLink Workbench"

5. Configure project options (see Chapter 117, "Configuring a Project").

Exporting Project Information

Creating a Relational Project 19-3

19.4 Creating a Project from an Existing Data Model
If you have an existing data model (such as a database schema), but you do not have a
corresponding data model (Java classes for domain objects), you can use either Oracle
JDeveloper or TopLink Workbench to create your TopLink project and automatically
generate the corresponding object model.

19.4.1 How to Create a Project from an Existing Data Model Using TopLink Workbench
1. Create the project (see Section 116.1.2, "How to Create a Project Using TopLink

Workbench").

2. Import database tables (see Section 5.5.1.3, "Importing Tables from a Database").

3. Generate classes. For more information, see either of the following:

■ Section 5.5.3.2, "Generating Classes and Descriptors from Database Tables"

■ Section 5.5.3.3, "Generating EJB Entity Beans and Descriptors from Database
Tables"

4. Configure project options (see Chapter 117, "Configuring a Project").

19.5 Creating a Project from an OC4J EJB CMP EAR at Deployment Time
For a CMP application deployed to OC4J configured to use TopLink as the persistence
manager, you can use the TopLink default mapping feature to automatically generate a
TopLink project, including descriptors and mappings for all persistent objects, at
deployment time.

This procedure applies only to CMP relational projects deployed to OC4J configured to
use TopLink as the persistence manager.

For more information, see Section 17.2.3.4, "Default Mapping in EJB 2.n CMP Projects
Using OC4J at Run Time".

19.6 Exporting Project Information
TopLink Workbench generates and exports the following project information:

■ Project Java source (see Section 19.6.1, "How to Export Project Java Source Using
TopLink Workbench")

■ Table creator files (see Section 19.6.2, "How to Export Table Creator Files Using
TopLink Workbench")

19.6.1 How to Export Project Java Source Using TopLink Workbench
For relational projects only, you can convert the project to Java source code. Generally,
the generated code executes faster and deploys easier than XML files. See
Section 118.3, "Generating Java Code for Descriptors" to export the model source for a
specific descriptor in a project. To convert your relational project to Java source, use this
procedure:

1. Right-click the project in the Navigator and choose Export > Project Java Source
from the context menu.

You can also choose Workbench > Export > Export Java Source or Selected >
Export > Project Java Source from the menu.

Working with the ejb-xml.File

19-4 Developer's Guide for Oracle TopLink

If you have not defined deployment and source code generation defaults (see
Chapter 117, "Configuring a Project") TopLink Workbench prompts for a project
class name and directory.

To generate Java source that is compatible with projects prior to this release, see
Section 20.11, "Configuring Deprecated Direct Mappings".

19.6.2 How to Export Table Creator Files Using TopLink Workbench
For relational projects only, you can create Java source code to generate database tables
defined in the project using this procedure:

1. Right-click the project in the Navigator and choose Export > Table Creator Java
Source from the context menu.

You can also choose Workbench > Export > Table Creator Java Source or Selected
> Export > Table Creator Java Source from the menu.

If you have not defined deployment and source code generation defaults (see
Chapter 117, "Configuring a Project") TopLink Workbench prompts for a class name
and root directory.

19.7 Working with the ejb-xml.File
For relational projects that use EJB 2.0 CMP, use the ejb-jar.xml file to store
persistence information for the application server. With TopLink Workbench, you can
import information from an existing ejb-jar.xml file into your project, or you can
create and update the ejb-jar.xml file from your project.

Each TopLink Workbench project uses a single ejb-jar.xml file. For each entity bean
in the file, you should have an EJB descriptor in the project. All entity beans must use
the same persistence type.

As you make changes in your project, you can update the ejb-jar.xml file to reflect
your project. Additionally, if you edit the ejb-jar.xml file outside TopLink
Workbench, you can update your project to reflect the current file.

Table 19–1 describes how fields in the ejb-jar.xml file correspond to specific
functions in TopLink Workbench.

Note: If your TopLink Workbench project uses the UTF-8
character set, you must use a compatible JDK when compiling the
exported Java source.

If your project contains errors, the project.xml file may not be
valid. See Section A.3, "TopLink Workbench Error Reference" for
information on each reported error.

Table 19–1 ejb-jar.xml Fields and TopLink Workbench

ejb-jar.xml Fields TopLink Workbench

primkey Bean attribute mapped to the primary key in the database
table (see Section 119.2, "Configuring Primary Keys").

ejb-name, prim-key-class,
local, local-home, remote,
home, and ejb-class

EJB descriptor information on the EJB Info tab (see
Section 119.18, "Configuring a Descriptor with EJB CMP
and BMP Information").

Working with the ejb-xml.File

Creating a Relational Project 19-5

For more information, see Section 9.1.3, "ejb-jar.xml File".

19.7.1 How to Write to the ejb-jar.xml File Using TopLink Workbench
To update the ejb-jar.xml file based on the current TopLink Workbench
information, use this procedure:

1. Choose Selected > Write Project to ejb-jar.xml from the menu.

You can also right-click the project in the Navigator and choose Write Project to
ejb-jar.xml from the context menu.

■ If the project does not currently contain an ejb-jar.xml file, the system
prompts you to create a new file.

■ If the system detects that changes were made to the ejb-jar.xml file but not
yet read into TopLink Workbench (for example, you changed the file outside
TopLink Workbench), then the system prompts you to read the file before
writing the changes.

abstract-schema-name Descriptor Alias field (see Section 119.5, "Configuring
Descriptor Alias").

cmp-field Direct (non-relationship) attributes on the Descriptor Info
tab (see Section 119.1, "Configuring Common Descriptor
Options").

cmp-version Persistence Type field on the General tab (see
Section 117.5, "Configuring Persistence Type"). The
persistence-type is set to container.

query Queries listed in Queries tab (see Section 119.7,
"Configuring Named Queries at the Descriptor Level").

Note: The findByPrimaryKey query is not in the
ejb-jar.xml file as per the EJB 2.0 specification.

relationships One-to-one, one-to-many, and many-to-many mappings
(see Part XII, "Relational Mappings").

Note: You can also use Oracle JDeveloper TopLink Editor for reading
from and writing to the ejb-jar.xml file. For more information, see
the Oracle JDeveloper online help.

Note: Use the EJB preferences to specify whether or not TopLink
Workbench automatically updates the ejb-jar.xml file when you
save the project.

Note: You can also write the information to a .jar file. TopLink
Workbench automatically places the ejb-jar.xml file in the
proper location (META-INF/ejb-jar.xml).

Table 19–1 (Cont.) ejb-jar.xml Fields and TopLink Workbench

ejb-jar.xml Fields TopLink Workbench

Working with the ejb-xml.File

19-6 Developer's Guide for Oracle TopLink

19.7.2 How to Read from the ejb-jar.xml File Using TopLink Workbench
To read the ejb-jar.xml information and update your TopLink Workbench project,
use this procedure.

1. Choose Selected > Update Project from ejb-jar.xml from the menu.

You can also right-click the project in the Navigator window and choose Update
Project from ejb-jar.xml from the context menu.

Tip: To automatically create EJB descriptors in TopLink
Workbench for all entities, read the ejb-jar.xml file before
adding any classes in TopLink Workbench.

Note: If you are using TopLink Workbench behind a firewall, before
reading from the ejb-jar.xml file, you may need to configure
TopLink Workbench with a proxy (see Section 5.4.2, "How to Use Help
Preferences"). If TopLink Workbench fails to read the ejb-jar.xml
file due to connection timeout or no route to host, proxy configuration
is required.

20

Configuring a Relational Project 20-1

20Configuring a Relational Project

This chapter describes the various components that you must configure in order to use
a relational project.

This chapter contains the following sections:

■ Introduction to Relational Project Configuration

■ Configuring Relational Database Platform at the Project Level

■ Configuring Sequencing at the Project Level

■ Configuring Login Information at the Project Level

■ Configuring Development and Deployment Logins

■ Configuring Named Query Parameterized SQL and Statement Caching at the
Project Level

■ Configuring Table Generation Options

■ Configuring Table Creator Java Source Options

■ Configuring Project Java Source Code Options

■ Configuring Deprecated Direct Mappings

This chapter also describes logging into a database during development when using
TopLink Workbench. For more information, see Section 20.6, "Logging In to the
Database".

For information on how to configure TopLink project options common to two or more
project types, see Chapter 117, "Configuring a Project".

20.1 Introduction to Relational Project Configuration
In addition to the configurable options described here, you must also configure the
base class options described in Table 117–2, " Common Project Options".

Table 20–1 lists the configurable options for relational projects.

Table 20–1 Configurable Options for Relational Projects

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Project save location (see Section 117.2, "Configuring Project
Save Location")

Persistence type (see Section 117.5, "Configuring Persistence
Type")

Configuring Relational Database Platform at the Project Level

20-2 Developer's Guide for Oracle TopLink

For more information, see Chapter 18, "Introduction to Relational Projects".

20.2 Configuring Relational Database Platform at the Project Level
For each relational project, you must specify the database platform (such as Oracle
Database 10g). This platform configuration is overridden by the session login, if
configured.

For more information, see the following:

Project classpath (see Section 117.3, "Configuring Project
Classpath")

Project comments (see Section 117.14, "Configuring Project
Comments")

Method or direct field access (see Section 117.4, "Configuring
Method or Direct Field Access at the Project Level")

Default descriptor advanced properties (see Section 117.6,
"Configuring Default Descriptor Advanced Properties")

Existence checking (see Section 117.7, "Configuring Existence
Checking at the Project Level")

Project deployment XML options (see Section 117.8,
"Configuring Project Deployment XML Options")

Model Java source code options (see Section 117.9, "Configuring
Model Java Source Code Options")

Relational database (see Section 20.2, "Configuring Relational
Database Platform at the Project Level")

Sequencing (see Section 20.3, "Configuring Sequencing at the
Project Level")

Login information (see Section 20.4, "Configuring Login
Information at the Project Level")

Development and deployment logins (see Section 20.5,
"Configuring Development and Deployment Logins")

Cache type and size (see Section 117.10, "Configuring Cache
Type and Size at the Project Level")

Cache isolation (see Section 117.11, "Configuring Cache
Isolation at the Project Level")

Cache coordination change propagation (see Section 117.12,
"Configuring Cache Coordination Change Propagation at the
Project Level")

Cache expiration (see Section 117.13, "Configuring Cache
Expiration at the Project Level")

Named query parameterized SQL and statement caching (see
Section 20.7, "Configuring Named Query Parameterized SQL
and Statement Caching at the Project Level")

Table generation options (see Section 20.8, "Configuring Table
Generation Options")

Table creator Java source options (see Section 20.9, "Configuring
Table Creator Java Source Options")

Project Java source code options (see Section 20.10,
"Configuring Project Java Source Code Options")

Deprecated direct mappings (see Section 20.11, "Configuring
Deprecated Direct Mappings")

Table 20–1 (Cont.) Configurable Options for Relational Projects

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Configuring Sequencing at the Project Level

Configuring a Relational Project 20-3

■ Section 98.2, "Configuring a Relational Database Platform at the Session Level"

■ Section 96.1.3, "Data Source Platform Types"

20.2.1 How to Configure Relational Database Platform at the Project Level Using
TopLink Workbench

To specify the database platform of a relational project, use this procedure:

1. Select the database object in the Navigator. The Database property sheet appears.

Figure 20–1 Database Property Sheet, Database Platform Options

Click Change to select a new database platform for the project. For more information,
see Section 96.1.3, "Data Source Platform Types".

20.3 Configuring Sequencing at the Project Level
Sequencing allows TopLink to automatically assign the primary key or ID of an object
when the object is inserted.

You configure TopLink sequencing at the project or session level to tell TopLink how to
obtain sequence values: that is, what type of sequences to use.

In a CMP project, you do not configure a session directly: in this case, you must
configure sequences at the project level. In a POJO project, you can configure a session
directly: in this case, you can use a session-level sequence configuration to override
project-level sequence configuration, on a session-by-session basis, if required (see
Section 98.4, "Configuring Sequencing at the Session Level").

You can configure sequencing using Oracle JDeveloper.

Using TopLink Workbench (see Section 20.3.2, "How to Configure Sequencing at the
Project Level Using TopLink Workbench"), you can configure table sequencing (see
Section 18.2.2.1, "Table Sequencing") and native sequencing (Section 18.2.2.5, "Native
Sequencing with an Oracle Database Platform" and Section 18.2.2.6, "Native
Sequencing with a Non-Oracle Database Platform") and you can configure a
preallocation size that applies to all sequences (see Section 18.2.3, "Sequencing and
Preallocation Size").

Using Java (see Section 20.3.3, "How to Configure Sequencing at the Project Level
Using Java"), you can configure any sequence type that TopLink supports

Configuring Sequencing at the Project Level

20-4 Developer's Guide for Oracle TopLink

(Section 18.2.2, "Sequencing Types"). You can create any number and combination of
sequences. You can create a sequence object explicitly or use the default sequence that
the platform creates. You can associate the same sequence with more than one
descriptor and you can configure a separate preallocation size for each descriptor’s
sequence.

After configuring the sequence type at the project (or session) level, to enable
sequencing, you must configure a descriptor with a sequence field and a sequence
name (see Section 23.3, "Configuring Sequencing at the Descriptor Level").

For more information about sequencing, see Section 18.2, "Sequencing in Relational
Projects".

20.3.1 How to Configure Sequencing at the Project Level Using TopLink Workbench
To specify the sequencing information for the project, use this procedure:

1. Select the project object in the Navigator.

2. Select the Sequencing tab in the Editor. The Sequencing tab appears.

Figure 20–2 Sequencing Tab

Use this table to enter data in the following fields to configure the sequencing
information:

Field Description

Preallocation Size Specify the default preallocation size (see Section 18.2.3, "Sequencing
and Preallocation Size"). Default is 50. The preallocation size you
configure applies to all sequences.

Default Sequence
Table

Select this option to use table sequencing (see Section 18.2.2.1, "Table
Sequencing") with default sequence table name SEQUENCE, default
sequence name field SEQ_NAME, and default sequence counter field
SEQ_COUNT.

Native Sequencing Select this option to use a sequencing object (see Section 18.2.2.5,
"Native Sequencing with an Oracle Database Platform" or
Section 18.2.2.6, "Native Sequencing with a Non-Oracle Database
Platform") created by the database platform. This option applies only
to Oracle, Sybase, Microsoft SQL, and IBM Informix database
platforms.

Custom Sequence
Table

Select this option to use table sequencing (see Section 18.2.2.1, "Table
Sequencing") with a sequence table name, sequence name field, and
sequence counter field name that you specify.

Name Specify the name of the sequence table.

Name Field Specify the name of the column used to store the sequence name.

Configuring Login Information at the Project Level

Configuring a Relational Project 20-5

20.3.2 How to Configure Sequencing at the Project Level Using Java
Using Java, you can configure a project to use multiple, different sequences, as
Example 20–1 shows.

Example 20–1 Configuring Sequencing at the Project Level in Java

// Enable native sequencing for the project as the default. Configured the default
// preallocation size
project.getLogin().useNativeSequencing();
project.getLogin().setSequencePreallocationSize(50);

// Configure the EMP_SEQ to not use preallocation
DefaultSequence empSequence = new DefaultSequence("EMP_SEQ", 1);
project.getLogin().addSequence(empSequence);

// Configure the PROJ_SEQ to use a seperate sequence table
UnarySequence projSequence = new UnarySequence("PROJ_SEQ_TAB", "COUNTER");
project.getLogin().addSequence(projSequence);

20.4 Configuring Login Information at the Project Level
This section describes how to define a login to a relational database. After you define a
login, you must designate its role (see Section 20.5, "Configuring Development and
Deployment Logins").

After you create a login (see Section 20.4, "Configuring Login Information at the
Project Level") and specify it as a development login (see Section 20.5, "Configuring
Development and Deployment Logins"), you can log in to a database instance (see
Section 20.6, "Logging In to the Database").

20.4.1 How to Configure Login Information at the Project Level Using TopLink
Workbench

To create or edit a database login, use this procedure:

1. Select the database object in the Navigator. The Database property sheet appears.

Counter Field Specify the name of the column used to store the sequence count.

Field Description

Configuring Development and Deployment Logins

20-6 Developer's Guide for Oracle TopLink

Figure 20–3 Database Property Sheet, Database Login Fields

2. Click Add to create a new Defined Login.

3. Complete the Database Login fields on the property sheet.

Use this table to enter data in the following fields on the Database property sheet to
configure the database login:

20.5 Configuring Development and Deployment Logins
This section describes how to designate a defined login’s role. For information on how
to define a login, see Section 20.4, "Configuring Login Information at the Project
Level". TopLink recognizes the following login roles:

■ Development Role

■ CMP Deployment Role

■ POJO Session Role

Field Description

Defined Logins Login used to access the database. Click Add to add a new login, or
Remove to delete an existing login.

Driver Class The JDBC driver to use to connect to the database.

URL The URL used to connect to the appropriate database.

User Name The name required to log in to the database.

Password The password required to log in to the database.

Save Password Whether or not to save the Password for this Defined Login.

Oracle recommends that you do not save the password with a
deployment login.

Note: If you select Save Password, then when you export Java source
and deployment XML (see Section 116.3, "Exporting Project
Information"), TopLink Workbench writes the database password
using JCE encryption (when using JDK 1.4 or later). For information
on how to specify password encryption options, see Section 97.3,
"Configuring Password Encryption".

Default: unselected.

Configuring Development and Deployment Logins

Configuring a Relational Project 20-7

Development Role
While using TopLink Workbench to develop a project (see Section 15.2.4.3,
"Development Role"), you must define a login (see Section 20.4, "Configuring Login
Information at the Project Level") and designate it as the development login. The
development login is stored in the TopLink project file. TopLink Workbench use the
information in the development login whenever you perform a data source operation
from within TopLink Workbench. For example, when you read or write schema
information from or to a data source during application development, the
development login information is never written to a sessions.xml or
project.xml file and is overridden by the deployment login (or the session login) at
run time.

For more information on how to use a development login to connect to a database, see
Section 20.6, "Logging In to the Database".

CMP Deployment Role
If you are creating a CMP project (see Section 15.2.4.2, "CMP Deployment Role"), you
may define a run-time login (see Section 20.4, "Configuring Login Information at the
Project Level") and designate it as the deployment login. This is the login that the
application will use at run time, unless overridden in the sessions.xml file, CMP
deployment file, or through Java code.

POJO Session Role
If you are creating a POJO project (see Section 15.2.4.1, "POJO Session Role"), Oracle
recommends that you use the sessions.xml file to store the sessions your project
uses at run time (see Section 96.1.2, "Data Source Login Types").

20.5.1 How to Configure Development and Deployment Logins Using TopLink
Workbench

To specify different development and deployment database logins, use this procedure:

1. Select the database object in the Navigator. The Database property sheet appears.

Figure 20–4 Database Property Sheet, Development and Deployment Login Options

Use this table to enter data in the following fields on the Database property sheet to
configure the login:

Logging In to the Database

20-8 Developer's Guide for Oracle TopLink

20.6 Logging In to the Database
Using Oracle JDeveloper or TopLink Workbench, after you create a login (see
Section 20.4, "Configuring Login Information at the Project Level") and specify it as a
development login (see Section 20.5, "Configuring Development and Deployment
Logins"), you can log in to a database instance.

You must log in to the database before importing or exporting table information.

To log in to the database using TopLink Workbench, use one of the following
procedures:

■ Select the database object in the Navigator and click Login. TopLink Workbench
logs in to the database.

■ Right-click on the database object in the Navigator and choose Log In to Database
from the context menu, or choose Selected > Log In to Database from the menu.

The database icon in the Navigator window changes to indicate you are now logged in
to the database.

20.7 Configuring Named Query Parameterized SQL and Statement
Caching at the Project Level

You can configure TopLink to use parameterized SQL (parameter binding) and
prepared statement caching for all named queries and finders.

By default, TopLink uses parameterized SQL.

The use of parameterized SQL lets you create and store queries that are complete
except for one or more bound parameters. The TopLink runtime binds the current
parameter values when executing the query. This approach avoids the preparation of
SQL execution and, thus, improves the performance of frequently executed SQL
statements.

This section describes configuring parameterized SQL and statement caching options
at the project level. This configuration applies to all named queries or finders (see
Section 108.8, "Named Queries" or Section 108.15, "EJB 2.n CMP Finders") you create
on the descriptors in this project–not to all queries in general or write operations.

You can also configure parameterized SQL and statement caching options at the
named query or finder-level to override this project-level configuration on a
query-by-query basis (see Section 119.7.2.9, "Configuring Named Query Options") or
at the session login-level (see Section 98.6, "Configuring JDBC Options").

For more information, see Section 12.11.5, "How to Use Parameterized SQL (Parameter
Binding) and Prepared Statement Caching for Optimization".

Field Description

Development Login The Defined Login to be used by TopLink Workbench during
development to connect with the database, and to read or write table
information.

For more information on how to use a development login to connect
to a database, see Section 20.6, "Logging In to the Database".

Deployment Login The Defined Login to be used by your TopLink-enabled application
during deployment.

Configuring Named Query Parameterized SQL and Statement Caching at the Project Level

Configuring a Relational Project 20-9

Table 20–2 summarizes which projects support parameterized SQL and statement
caching configuration.

20.7.1 How to Configure Named Query Parameterized SQL and Statement Caching at
the Project Level Using TopLink Workbench

To specify the named query options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Figure 20–5 Defaults Tab, Named Queries Options

Note: For applications using a Java EE data source or external
connection pool, you must configure statement caching in the Java EE
server’s data source–not in TopLink.

Table 20–2 Project Support for Default Named Query Caching and Binding

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Named Query
Parameterized SQL
and Statement
Caching at the Project
Level Using TopLink
Workbench

How to Use
Java

Relational Projects

EIS Projects

XML Projects

Configuring Table Generation Options

20-10 Developer's Guide for Oracle TopLink

Use this table to enter data in following fields on the Defaults tab to specify the named
query options for newly created descriptors.:

20.8 Configuring Table Generation Options
Using TopLink Workbench, you can configure options that apply when you generate
database tables from the descriptors you define in your TopLink Workbench project.
The resulting tables and columns will conform to the naming restrictions of the
project’s target database.

20.8.1 How to Configure Table Generation Options Using TopLink Workbench
To specify the default table generation options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Options tab in the Editor. The Options tab appears.

Figure 20–6 Options Tab, Table Generation Options

Use this table to enter data in the following fields to specify the default export and
generation options.

Field Description

Cache All Statements Caches the query’s prepared statement in the TopLink statement
cache.

Bind All Parameters By default, TopLink binds all of the query’s parameters.

Deselect this option to disable binding.

Configuring Table Creator Java Source Options

Configuring a Relational Project 20-11

20.9 Configuring Table Creator Java Source Options
Using TopLink Workbench, you can configure options that apply when you export
Java source code that you can use to create database tables.

20.9.1 How to Configure Table Creator Java Source Options Using TopLink Workbench
To specify the default Java code generation options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Options tab in the Editor. The Options tab appears.

Figure 20–7 Options Tab, Table Creator Java Source Options

Use this table to enter data in the following fields to specify the default table creator
options.

Field Description

Default Primary Key Enter the default name to use when generating primary keys.

Primary Key Search Pattern Enter the default search pattern to use when generating
primary keys.

Field Description

Class Name Base class name to use when generating table’s Java source
code from the project.

Root Directory Directory for storing the generated source code.

Configuring Project Java Source Code Options

20-12 Developer's Guide for Oracle TopLink

20.10 Configuring Project Java Source Code Options
Using TopLink Workbench, you can export a project as Java source. You can configure
the class name and root directory that TopLink Workbench uses when exporting the
project to Java source code.

For more information on exporting a project as Java source, see Section 19.7.1, "How to
Export Project Java Source Using TopLink Workbench".

20.10.1 How to Configure Project Java Source Code Options Using TopLink Workbench
To specify the default Java code generation options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Options tab in the Editor. The Options tab appears.

Figure 20–8 Options Tab, Project Java Source Options

Use this table to enter data in the following fields to specify the default export and
generation options:

20.11 Configuring Deprecated Direct Mappings
You can configure deprecated direct mapping options when using Oracle JDeveloper
or TopLink Workbench.

Field Description

Class Name Base class name to use when generating Java source code
from the project.

Root Directory Directory for storing the generated source code.

Configuring Deprecated Direct Mappings

Configuring a Relational Project 20-13

Starting with the 10.1.3.1 release, TopLink no longer uses the following direct mapping
types:

■ Type conversion

■ Object type

■ Serialized object

Instead, TopLink uses a direct-to-field mapping with a specialized converter.

To generate backward-compatible deployment XML and Java source code files, use the
Generate Deprecated Direct Mappings option.

20.11.1 How to Configure Deprecated Direct Mappings Using TopLink Workbench
To specify if TopLink Workbench should generate the deprecated direct mappings
(instead of using the converter) when exporting projects, use this procedure:

1. Select the project object in the Navigator.

2. Select the Options tab in the Editor. The Options tab appears.

Figure 20–9 Options Tab, Generate Deprecated Direct Mappings Option

Select the Generate Deprecated Direct Mappings option on the tab to specify that
TopLink Workbench should generate backward-compatible code (using the deprecated
direct mappings, instead of the converter).

Configuring Deprecated Direct Mappings

20-14 Developer's Guide for Oracle TopLink

Part X
Part X Relational Descriptors

This part contains general information about relational descriptors, as well as detailed
information on how to create and configure these descriptors.

This part includes the following chapters:

■ Chapter 21, "Introduction to Relational Descriptors"

This chapter introduces concepts of relational descriptors.

■ Chapter 22, "Creating a Relational Descriptor"

This chapter explains how to create relational descriptors.

■ Chapter 23, "Configuring a Relational Descriptor"

This chapter explains how to configure descriptor options specific to a relational
descriptor.

21

Introduction to Relational Descriptors 21-1

21Introduction to Relational Descriptors

This chapter provides an overview of relational descriptors, as well as explains the role
of inheritance and various types of descriptors in relational projects.

This chapter includes the following sections:

■ Relational Descriptors

■ Aggregate and Composite Descriptors in Relational Projects

■ Descriptors and Inheritance in Relational Projects

For information on descriptor concepts and features common to more than one type of
TopLink descriptors, see Chapter 16, "Introduction to Descriptors".

21.1 Relational Descriptors
Relational descriptors describe Java objects that you map to tables in a relational
database. You use them in relational projects (see Chapter 18, "Introduction to
Relational Projects").

Using relational descriptors in a relational project, you can configure relational
mappings (see Section 27.1, "Relational Mapping Types").

For more information, see the following:

■ Section 22.2, "Creating a Relational Descriptor"

■ Chapter 23, "Configuring a Relational Descriptor"

21.2 Aggregate and Composite Descriptors in Relational Projects
In a relational project, you can designate the descriptor as an aggregate (see
Section 22.2.1.2, "Creating Relational Aggregate Descriptors").

This lets you configure an aggregate mapping (see Chapter 37, "Configuring a
Relational Aggregate Object Mapping") to associate data members in the target object
with fields in the source object’s underlying database tables.

When you designate a relational descriptor as an aggregate, TopLink lets you specify a
mapping type for each field in the target class, but defers associating the field with a
database table until you configure the aggregate object mapping in the source
descriptor. In other words, the target class descriptor defines how each target class field
is mapped, but the source class descriptor defines where each target class field is
mapped. This lets you share an aggregate object among many parent descriptors
mapped to different tables.

Aggregate and Composite Descriptors in Relational Projects

21-2 Developer's Guide for Oracle TopLink

When you designate a relational descriptor as an aggregate, you tell TopLink that the
class will be a target of an aggregate object mapping, and this ensures that the TopLink
runtime handles the target class as follows:

■ It inserts, updates, and deletes the target class in parallel with its source class.

■ It does not cache the target class on its own; instead, it caches the target class as
part of its source class.

■ It does not allow the target class to be read, written, deleted, or registered in a unit
of work.

When working with aggregate relational descriptors, consider the following:

■ Relational Aggregates and Nesting

■ Relational Aggregates and Inheritance

■ Relational Aggregates and EJB 2.n Entity Beans

For more information, see Section 23.6, "Configuring a Relational Descriptor as a Class
or Aggregate Type".

21.2.1 Relational Aggregates and Nesting
TopLink supports nested aggregates. In Figure 21–1 source class HockeyPlayer is a
normal nonaggregate class descriptor. It owns target class Info which is designated as
an aggregate. The Info class itself owns target classes PersonalInfo and TeamInfo
which are each designated as aggregates.

Figure 21–1 Nested Aggregates

In EJB 3.0, an aggregate is known as an embeddable. In the EJB 3.0 specification, an
embeddable may not contain another embeddable (that is, the EJB 3.0 specification
does not support nested aggregates).

However, if you deploy a TopLink-enabled EJB 3.0 application with persistence to
Oracle WebLogic Server, you can take advantage of a EclipseLink extension of the EJB
3.0 specification to configure nested embeddables. Note that if you do so, your
application will not be strictly EJB 3.0-compliant. Example 21–1 shows the classes from
Figure 21–1 using EJB 3.0 annotations to take advantage of the EclipseLink extension
of the EJB 3.0 specification to allow Info (an embeddable) to own embeddables
TeamInfo and PersonalInfo.

Example 21–1 Nested Embeddables

public class HockeyPlayer implements Serializable {

Aggregate and Composite Descriptors in Relational Projects

Introduction to Relational Descriptors 21-3

private int playerId;
private Info Info;
private String lastName;
private String firstName;
...
@Embedded
public Info getInfo() {

return Info;
}

}

@Embeddable
public class Info implements Serializable {

TeamInfo teamInfo; // EclipseLink extension of EJB 3.0 allows Embeddable with Embeddable
PersonalInfo personalInfo;

public Info() {}

@Embedded
public PersonalInfo getPersonalInfo() {

return personalInfo;
}

public void setPersonalInfo(PersonalInfo personalInfo) {
this.personalInfo = personalInfo;

}

@Embedded
public TeamInfo getTeamInfo() {

return teamInfo;
}

public void setTeamInfo(TeamInfo teamInfo) {
this.teamInfo = teamInfo;

}
}

@Embeddable
public class PersonalInfo implements Serializable {

private int age;
private double weight;
private double height;
...

}

@Embeddable
public class TeamInfo implements Serializable {

private String position;
private int jerseyNumber;
private HockeyTeam hockeyTeam;
...

}

21.2.2 Relational Aggregates and Inheritance
You can configure inheritance for a relational descriptor designated as an aggregate
(see Section 16.2.2, "Descriptors and Inheritance"), however, in this case, all the
descriptors in the inheritance tree must be aggregates. Aggregate and class descriptors
cannot exist in the same inheritance tree.

Descriptors and Inheritance in Relational Projects

21-4 Developer's Guide for Oracle TopLink

21.2.3 Relational Aggregates and EJB 2.n Entity Beans
You can use relational aggregate descriptors in an EJB project, but you cannot
configure EJB information for a relational descriptor designated as an aggregate (see
Section 16.2.3, "Descriptors and CMP and BMP").

For information on using relational aggregates and EJB 3.0, see Section 21.2.1,
"Relational Aggregates and Nesting".

21.3 Descriptors and Inheritance in Relational Projects
Inheritance describes how a derived class inherits the characteristics of its superclass.
You can use descriptors to describe the inheritance relationships between classes in
your relational projects.

This section includes information on the following topics:

■ Inheritance and Primary Keys in Relational Projects

■ Single- and Multi-Table Inheritance in Relational Projects

For more information, see Section 16.3, "Descriptors and Inheritance".

21.3.1 Inheritance and Primary Keys in Relational Projects
For relational projects, TopLink assumes that all of the classes in an inheritance
hierarchy have the same primary key, as set in the root descriptor. Child descriptors
associated with data source representations that have different primary keys must
define the mapping between the root primary key and the local one.

For more information, see Section 119.2, "Configuring Primary Keys".

21.3.2 Single- and Multi-Table Inheritance in Relational Projects
In a relational project, you can map your inheritance hierarchy to a single table (see
Section 21.3.2.1, "Single-Table Inheritance") or to multiple tables (see Section 21.3.2.2,
"Multi-Table Inheritance"). Use these options to achieve the balance between storage
efficiency and access efficiency that is appropriate for your application.

21.3.2.1 Single-Table Inheritance
In this example, you store classes with multiple levels of inheritance in a single table to
optimize database access speeds.

The entire inheritance hierarchy shown in Figure 21–1, "Nested Aggregates" can share
the same table, as in Figure 21–2. The FueledVehicle and NonFueledVehicle
subclasses can share the same table even though FueledVehicle has some attributes
that NonFueledVehicle does not. The NonFueledVehicle instances waste
database resources because the database must still allocate space for the unused
portion of its row. However, this approach saves on accessing time because there is no
need to join to another table to get the additional FueledVehicle information.

As Figure 21–2 shows, this approach uses a class indicator field. For more information,
see Section 16.3.1, "How to Specify a Class Indicator".

Descriptors and Inheritance in Relational Projects

Introduction to Relational Descriptors 21-5

Figure 21–2 Inheritance Using a Superclass Table with Optional Fields

21.3.2.2 Multi-Table Inheritance
In this example, you store classes with multiple levels of inheritance in multiple tables
to optimize database storage space.

In the inheritance hierarchy shown in Figure 21–1, "Nested Aggregates", for subclasses
that require additional attributes, you use multiple tables instead of a single superclass
table. This optimizes storage space because there are no unused fields in the database.
However, this may affect performance because TopLink must read from more than one
table before it can instantiate the object. TopLink first looks at the class indicator field
(see Section 16.3.1, "How to Specify a Class Indicator") to determine the class of object
to create, then uses the descriptor for that class to read from the subclass tables.

Figure 21–3 illustrates the TopLink implementation of the FUELEDVHCL, CAR, and
BICYCLE tables. All objects are stored in the VEHICLE table. FueledVehicle, Car,
and Bicycle information are also stored in secondary tables. Note that because the
NonFueledVehicle class does not hold any attributes or relationships, it does not
need a secondary table.

Figure 21–3 Inheritance Using Separate Tables for Each Subclass

21.3.2.2.1 Inheritance Outer-Joins If a root or branch inheritance descriptor has
subclasses that span multiple tables, you can configure a database view to optimize
the performance of queries against the parent descriptor by outer-joining all of the
subclass tables. This allows TopLink to fetch all of the subclass instances in one query,
instead of multiple queries. It also allows queries for the parent class that use cursors
or ordering.

By default, TopLink executes multiple queries to read in a multiple table inheritance
hierarchy, which, in some cases, is the most efficient way to query. In addition,

Note: In general, using multitable inheritance is inefficient
because it can require excessive joins and multiple table fetching.

Descriptors and Inheritance in Relational Projects

21-6 Developer's Guide for Oracle TopLink

TopLink supports querying the inheritance hierarchy using a single outer-join query
(Section 119.19, "Configuring Reading Subclasses on Queries").

You can also set a database view on the descriptor that outer-joins or unions all of the
tables. For more information, see Section 23.7, "Configuring Multitable Information".

22

Creating a Relational Descriptor 22-1

22Creating a Relational Descriptor

This chapter describes how to create relational descriptors.

This chapter includes the following sections:

■ Introduction to Relational Descriptor Creation

■ Creating a Relational Descriptor

For information on how to create more than one type of descriptors, see Chapter 118,
"Creating a Descriptor".

22.1 Introduction to Relational Descriptor Creation
After you create a descriptor, you must configure its various options (see Chapter 119,
"Configuring a Descriptor") and use it to define mappings.

For complete information on the various types of mapping that TopLink supports, see
Chapter 17, "Introduction to Mappings" and Chapter 120, "Creating a Mapping".

For complete information on the various types of descriptor that TopLink supports,
see Section 16.1, "Descriptor Types".

For more information, see Chapter 21, "Introduction to Relational Descriptors".

22.2 Creating a Relational Descriptor
You can create a relational descriptor using Oracle JDeveloper, TopLink Workbench
(see Section 22.2.1, "How to Create a Relational Descriptor Using TopLink
Workbench"), or Java code (see Section 22.2.2, "How to Create a Relational Descriptor
Using Java").

22.2.1 How to Create a Relational Descriptor Using TopLink Workbench
Using TopLink Workbench, you can create the following types of descriptor in a
relational project:

■ Relational class descriptors (see Section 22.2.1.1, "Creating Relational Class
Descriptors");

■ Relational aggregate descriptors (see Section 22.2.1.2, "Creating Relational
Aggregate Descriptors");

■ Relational interface descriptors (see Section 22.2.1.3, "Creating Relational Interface
Descriptors").

Creating a Relational Descriptor

22-2 Developer's Guide for Oracle TopLink

22.2.1.1 Creating Relational Class Descriptors
By default, when you add a Java class to a relational project (see Section 117.3,
"Configuring Project Classpath"), TopLink Workbench creates a relational class
descriptor for it. A class descriptor is applicable to any persistent object except an
object that is owned by another in an aggregate relationship. In this case, you must
describe the owned object with an aggregate descriptor (see Section 22.2.1.2, "Creating
Relational Aggregate Descriptors"). Using a class descriptor, you can configure any
relational mapping except aggregate collection and aggregate object mappings.

22.2.1.2 Creating Relational Aggregate Descriptors
An aggregate object is an object that is strictly dependent on its owning object.
Aggregate descriptors do not define a table, primary key, or many of the standard
descriptor options as they obtain these from their owning descriptor. If you want to
configure an aggregate mapping to associate data members in a target object with
fields in a source object’s underlying database tables (see Chapter 35, "Configuring a
Relational Aggregate Collection Mapping" and Chapter 37, "Configuring a Relational
Aggregate Object Mapping"), you must designate the target object’s descriptor as an
aggregate (see Section 23.6, "Configuring a Relational Descriptor as a Class or
Aggregate Type").

22.2.1.3 Creating Relational Interface Descriptors
If you add an interface to a relational project (see Section 117.3, "Configuring Project
Classpath"), TopLink Workbench creates an interface descriptor for it.

An interface is a collection of abstract behavior that other classes can use. It is a purely
Java concept and has no representation on the relational database. Therefore, a
descriptor defined for the interfaces does not map any relational entities on the
database.

The interface descriptor includes the following elements:

■ The Java interface it describes.

■ The parent interface(s) it implements.

■ A list of abstract query keys.

An interface descriptor does not define any mappings, because there is no concrete
data or table associated with it. A list of abstract query keys is defined so that you can
issue queries on the interfaces (see Section 119.11, "Configuring Interface Query Keys").
A read query on the interface results in reading one or more of its implementors.

22.2.2 How to Create a Relational Descriptor Using Java
Example 22–1 shows how to create a relational descriptor using Java code.

Example 22–1 Creating a Relational Descriptor in Java

RelationalDescriptor descriptor = new RelationalDescriptor();
descriptor.setJavaClass(YourClass.class);
To designate a relational descriptor as an aggregate, use ClassDescriptor method
descriptorIsAggregate. For a RelationalDescriptor configured as an
aggregate, you do not define a primary key, but when using Java, you must configure
the associated table (see Section 23.2, "Configuring Associated Tables") and field
mappings (see Chapter 17, "Introduction to Mappings").

To allow a relational descriptor to participate in an aggregate collection mapping (see
Section 27.9, "Aggregate Collection Mapping"), use ClassDescriptor method

Creating a Relational Descriptor

Creating a Relational Descriptor 22-3

descriptorIsAggregateCollection. For a RelationalDescriptor
configured for use with an aggregate collection mapping, you do define primary keys
(see Section 119.2, "Configuring Primary Keys") and an associated table (see
Section 23.2, "Configuring Associated Tables"), but you do not have to map the
primary keys if they are shared from their parent.

To configure a relational descriptor for an interface, use ClassDescriptor method
setJavaInterface, passing in the java.lang.Class of the interface. You should
only use an interface descriptor for an interface that has multiple implementors. If an
interface has only a single implementor, then rather than creating an interface
descriptor, just set the implementor descriptor's interface alias (see Section 23.5,
"Configuring Interface Alias").

Creating a Relational Descriptor

22-4 Developer's Guide for Oracle TopLink

23

Configuring a Relational Descriptor 23-1

23Configuring a Relational Descriptor

This chapter describes how to configure a relational descriptor.

This chapter contains the following sections:

■ Introduction to Relational Descriptor Configuration

■ Configuring Associated Tables

■ Configuring Sequencing at the Descriptor Level

■ Configuring Custom SQL Queries for Basic Persistence Operations

■ Configuring Interface Alias

■ Configuring a Relational Descriptor as a Class or Aggregate Type

■ Configuring Multitable Information

For information on how to configure descriptor options common to two or more
descriptor types, see Chapter 119, "Configuring a Descriptor".

23.1 Introduction to Relational Descriptor Configuration
Table 23–1 lists the default configurable options for a relational descriptor.

Table 23–1 Configurable Options for Relational Descriptor

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Associated tables (see Section 23.2, "Configuring Associated
Tables")

Primary keys (see Section 119.2, "Configuring Primary Keys")

Sequencing (see Section 23.3, "Configuring Sequencing at the
Descriptor Level")

Read-only descriptors (see Section 119.3, "Configuring Read-Only
Descriptors")

Unit of work conforming (see Section 119.4, "Configuring Unit of
Work Conforming at the Descriptor Level")

Descriptor alias (see Section 119.5, "Configuring Descriptor
Alias")

Descriptor comments (see Section 119.6, "Configuring Descriptor
Comments")

Classes (see Section 5.7.2, "How to Configure Classes")

Named queries (see Section 119.7, "Configuring Named Queries
at the Descriptor Level")

Introduction to Relational Descriptor Configuration

23-2 Developer's Guide for Oracle TopLink

Custom SQL queries for basic persistence operations (see
Section 23.4, "Configuring Custom SQL Queries for Basic
Persistence Operations")

Query timeout (see Section 119.8, "Configuring Query Timeout at
the Descriptor Level")

Cache refreshing (see Section 119.9, "Configuring Cache
Refreshing")

Query keys (see Section 119.10, "Configuring Query Keys")

Interface query keys (see Section 119.11, "Configuring Interface
Query Keys")

Interface alias (see Section 23.5, "Configuring Interface Alias")

Cache type and size (see Section 119.12, "Configuring Cache Type
and Size at the Descriptor Level")

Cache isolation (see Section 119.13, "Configuring Cache Isolation
at the Descriptor Level")

Cache coordination change propagation (see Section 119.15,
"Configuring Cache Coordination Change Propagation at the
Descriptor Level")

Cache expiration (see Section 119.16, "Configuring Cache
Expiration at the Descriptor Level")

Cache existence Checking (see Section 119.17, "Configuring
Cache Existence Checking at the Descriptor Level")

EJB information (see Section 119.18, "Configuring a Descriptor
with EJB CMP and BMP Information")

Relational descriptor as a class or aggregate type (see
Section 23.6, "Configuring a Relational Descriptor as a Class or
Aggregate Type")

Reading subclasses on queries (see Section 119.19, "Configuring
Reading Subclasses on Queries")

Inheritance for a child class descriptor (see Section 119.20,
"Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor")

Inheritance for a parent class descriptor (see Section 119.21,
"Configuring Inheritance for a Parent (Root) Descriptor")

Inheritance expressions for a parent class descriptor (see
Section 119.22, "Configuring Inheritance Expressions for a Parent
(Root) Class Descriptor"

Inherited attribute mapping in a subclass (see Section 119.23,
"Configuring Inherited Attribute Mapping in a Subclass")

Multitable information (see Section 23.7, "Configuring Multitable
Information")

Domain object method as an event handler (see Section 119.24,
"Configuring a Domain Object Method as an Event Handler")

Descriptor event listener as an event handler (see Section 119.25,
"Configuring a Descriptor Event Listener as an Event Handler")

Locking policy (see Section 119.26, "Configuring Locking Policy")

Returning policy (see Section 119.27, "Configuring Returning
Policy")

Instantiation policy (see Section 119.28, "Configuring
Instantiation Policy")

Copy policy (see Section 119.29, "Configuring Copy Policy")

Change policy (see Section 119.30, "Configuring Change Policy")

Table 23–1 (Cont.) Configurable Options for Relational Descriptor

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Configuring Associated Tables

Configuring a Relational Descriptor 23-3

For more information, see Chapter 21, "Introduction to Relational Descriptors".

23.2 Configuring Associated Tables
Each relational class descriptor (see Section 22.2.1.1, "Creating Relational Class
Descriptors") must be associated with a database table for storing instances of that
class. This does not apply to relational aggregate descriptors (see Section 22.2.1.2,
"Creating Relational Aggregate Descriptors").

23.2.1 How to Configure Associated Tables Using TopLink Workbench
To associate a descriptor with a database table, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 23–1 Descriptor Info Tab, Associated Table Options

Use the Associated Table list to select a database table for the descriptor. You must
associate a descriptor with a database table before specifying primary keys.

History policy (see Section 119.31, "Configuring a History
Policy")

Wrapper policy (see Section 119.32, "Configuring Wrapper
Policy")

Fetch groups (see Section 119.33, "Configuring Fetch Groups")

Amendment methods (see Section 119.35, "Configuring
Amendment Methods")

Mapping (see Section 121, "Configuring a Mapping")

Table 23–1 (Cont.) Configurable Options for Relational Descriptor

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Configuring Sequencing at the Descriptor Level

23-4 Developer's Guide for Oracle TopLink

23.2.2 How to Configure Associated Tables Using Java
To configure a descriptor’s associated table(s) using Java, use
RelationalDescriptor methods setTableName or addTableName.

23.3 Configuring Sequencing at the Descriptor Level
Sequencing allows TopLink to automatically assign the primary key or ID of an object
when the object is inserted.

You configure TopLink sequencing at the project level (Section 20.3, "Configuring
Sequencing at the Project Level") or session level (see Section 98.4, "Configuring
Sequencing at the Session Level") to tell TopLink how to obtain sequence values: that
is, what type of sequences to use.

To enable sequencing, you must then configure TopLink sequencing at the descriptor
level to tell TopLink into which table and column to write the sequence value when an
instance of a descriptor’s reference class is created.

Only descriptors that have been configured with a sequence field and a sequence
name will be assigned sequence numbers.

The sequence field is the database field that the sequence number will be assigned to:
this is almost always the primary key field (see Section 119.2, "Configuring Primary
Keys"). The sequence name is the name of the sequence to be used for this descriptor.
The purpose of the sequence name depends on the type of sequencing you are using:

When using table sequencing, the sequence name refers to the row's SEQ_NAME
value used to store this sequence.

When using Oracle native sequencing, the sequence name refers to the Oracle
sequence object that has been created in the database. When using native sequencing
on other databases, the sequence name does not have any direct meaning, but should
still be set for compatibility.

The sequence name can also refer to a custom sequence defined in the project.

For more information, see Section 18.2, "Sequencing in Relational Projects".

23.3.1 How to Configure Sequencing at the Descriptor Level Using TopLink Workbench
To configure sequencing for a descriptor, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Configuring Sequencing at the Descriptor Level

Configuring a Relational Descriptor 23-5

Figure 23–2 Descriptor Info Tab, Sequencing Options

Use the following information to specify sequencing options:

Field Description

Use Sequencing Specify if this descriptor uses sequencing. If selected, specify the
Name, Table, and Field for sequencing.

Name Enter the name of the sequence.

■ For table sequencing: Enter the name of the value in the
sequence name column (for default table sequencing, the
column named SEQ_NAME) of the sequence table (for default
table sequencing, the table named SEQUENCE) that TopLink
uses to look up the corresponding sequence count value (for
default table sequencing, the corresponding value in the SEQ_
COUNT column) for this descriptor’s reference class. For more
information, see Section 18.2.2.1, "Table Sequencing".

■ For native sequencing (Oracle platform): Enter the name of
the sequence object that Oracle Database creates to manage
sequencing for this descriptor’s reference class. For more
information, see Section 18.2.2.5, "Native Sequencing with an
Oracle Database Platform"

■ For native sequencing (non-Oracle platform): For database
compatibility, enter a generic name for the sequence, such as
SEQ. For more information, see Section 18.2.2.6, "Native
Sequencing with a Non-Oracle Database Platform".

Table Specify the name of the database table that contains the field (see
Field) into which TopLink is to write the sequence value when a
new instance of this descriptor’s reference class is created. This is
almost always this descriptor’s primary table.

Field Specify the name of the field in the specified table (see Table) into
which TopLink is to write the sequence value when a new instance
of this descriptor’s reference class is created. This field is almost
always the class’s primary key (see Section 119.2, "Configuring
Primary Keys").

■ For native sequencing (non-Oracle platform): Ensure that
your database schema specifies the correct type for this field
(see Section 18.2.2.6, "Native Sequencing with a Non-Oracle
Database Platform").

Configuring Sequencing at the Descriptor Level

23-6 Developer's Guide for Oracle TopLink

23.3.2 How to Configure Sequencing at the Descriptor Level Using Java
Using Java, you can configure sequencing to use multiple different types of sequence
for different descriptors. You configure the sequence objects on the session's login and
reference them from the descriptor by their name. The descriptor's sequence name
refers to the sequence object's name you register in the session's login.

The following examples assume the session sequence configuration shown in
Example 23–1.

Example 23–1 Example Sequences

dbLogin.addSequence(new TableSequence("EMP_SEQ", 25));
dbLogin.addSequence(new DefaultSequence("PHONE_SEQ", 30));
dbLogin.addSequence(new UnaryTableSequence("ADD_SEQ", 55));
dbLogin.addSequence(new NativeSequence("NAT_SEQ", 10));
Using Java code, you can perform the following sequence configurations:

■ Configuring a Sequence by Name

■ Configuring the Same Sequence for Multiple Descriptors

■ Configuring the Platform Default Sequence

23.3.2.1 Configuring a Sequence by Name
As Example 23–2 shows, you associate a sequence with a descriptor by sequence
name. The sequence EMP_SEQ was added to the login for this project in Example 23–1.
When a new instance of the Employee class is created, the TopLink runtime will use
the sequence named EMP_SEQ (in this example, a TableSequence) to obtain a value
for the EMP_ID field.

Example 23–2 Associating a Sequence with a Descriptor

empDescriptor.setSequenceNumberFieldName("EMP_ID"); // primary key field
empDescriptor.setSequenceNumberName("EMP_SEQ");

23.3.2.2 Configuring the Same Sequence for Multiple Descriptors
As Example 23–3 shows, you can associate the same sequence with more than one
descriptor. In this example, both the Employee descriptor and Phone descriptor use
the same NativeSequence. Having descriptors share the same sequence can
improve pre-allocation performance. For more information on pre-allocation, see
Section 18.2.3, "Sequencing and Preallocation Size".

Example 23–3 Configuring a Sequence for Multiple Descriptors

empDescriptor.setSequenceNumberFieldName("EMP_ID"); // primary key field
empDescriptor.setSequenceNumberName("NAT_SEQ");
phoneDescriptor.setSequenceNumberFieldName("PHONE_ID"); // primary key field
phoneDescriptor.setSequenceNumberName("NAT_SEQ");

23.3.2.3 Configuring the Platform Default Sequence
In Example 23–4, you associate a nonexistent sequence (NEW_SEQ) with a descriptor.
Because you did not add a sequence named NEW_SEQ to the login for this project in
Example 23–1, the TopLink runtime will create a DefaultSequence named NEW_SEQ
for this descriptor. For more information about DefaultSequence, see
Section 18.2.2.4, "Default Sequencing".

Configuring Custom SQL Queries for Basic Persistence Operations

Configuring a Relational Descriptor 23-7

Example 23–4 Configuring a Default Sequence

descriptor.setSequenceNumberFieldName("EMP_ID"); // primary key field
descriptor.setSequenceNumberName("NEW_SEQ");

23.4 Configuring Custom SQL Queries for Basic Persistence Operations
You can use TopLink to define an SQL query for each basic persistence operation
(insert, update, delete, read-object, read-all, or does-exist) so that when you query and
modify your relational-mapped objects, the TopLink runtime will use the appropriate
SQL query instead of the default SQL query.

SQL strings can include any fields that the descriptor maps, as well as arguments. You
specify arguments in the SQL string using #<arg-name>, such as:

select * from EMP where EMP_ID = #EMP_ID
The insert and update SQL strings can take any field that the descriptor maps as an
argument.

The read-object, delete and does-exist SQL strings can only take the primary key fields
as arguments.

The read-all SQL string must return all instances of the class and thus can take no
arguments.

You can define a custom SQL string for insert, update, delete, read-object, and read-all
using Oracle JDeveloper TopLink Editor or TopLink Workbench (see Section 23.4.1,
"How to Configure Custom SQL Queries for Basic Persistence Operations Using
TopLink Workbench").

You can define a custom SQL string or Call object for insert, update, delete,
read-object, read-all, and does-exist using Java (see Section 23.4.2, "How to Configure
Custom SQL Queries for Basic Persistence Operations Using Java"). Using a Call, you
can define more complex SQL strings and invoke custom stored procedures.

For CMP projects, the ejb-jar.xml file stores query lists. You can define the queries
in the file and then read them into Oracle JDeveloper or TopLink Workbench, or define
them on the Queries tab of TopLink Workbench and write them to the file (see
Section 19.7, "Working with the ejb-xml.File").

Note: When you customize the update persistence operation for
an application that uses optimistic locking (see Section 119.26,
"Configuring Locking Policy"), the custom update string must not
write the object if the row version field has changed since the initial
object was read. In addition, it must increment the version field if it
writes the object successfully.

For example:

update Employee set F_NAME = #F_NAME, VERSION = VERSION + 1
where (EMP_ID = #EMP_ID) AND (VERSION = #VERSION)

The update string must also maintain the row count of the
database.

Note: TopLink does not validate the SQL code that you enter.
Enter the SQL code appropriate for your database platform (see
Section 96.1.3, "Data Source Platform Types").

Configuring Custom SQL Queries for Basic Persistence Operations

23-8 Developer's Guide for Oracle TopLink

23.4.1 How to Configure Custom SQL Queries for Basic Persistence Operations Using
TopLink Workbench

To configure custom SQL queries for basic persistence operations:

1. In the Navigator, select a descriptor in a relational database project.

2. Click the Queries tab in the Editor.

3. Click the Custom SQL tab.

Figure 23–3 Queries, Custom SQL Tab

Click the appropriate SQL function tab and type your own SQL string to control these
actions for a descriptor. Use the following information to complete the tab:

Tab Description

Insert Defines the insert SQL that TopLink uses to insert a new object’s data into
the database.

Update Defines the update SQL that TopLink uses to update any changed existing
object’s data in the database.

When you define a descriptor’s update query, you must conform to the
following:

■ If the application uses optimistic locking, you must ensure that the row
is not written if the version field has changed since the object was read.

■ The update query must increment the version field if the row is
written.

■ The update string must maintain the row count of the database.

Delete Defines the delete SQL that TopLink uses to delete an object.

Read Object Defines the read SQL that TopLink uses in any ReadObjectQuery, whose
selection criteria is based on the object’s primary key.

When you define a descriptor’s read-object query, your implementation
overrides any ReadObjectQuery, whose selection criteria is based on the
object’s primary key. TopLink generates dynamic SQL for all other
Session readObject method signatures.

To customize other Session readObject method signatures, define
additional named queries and use them in your application instead of the
Session methods.

Configuring Custom SQL Queries for Basic Persistence Operations

Configuring a Relational Descriptor 23-9

23.4.2 How to Configure Custom SQL Queries for Basic Persistence Operations Using
Java

The DescriptorQueryManager generates default SQL for the following persistence
operations:

■ Insert

■ Update

■ Delete

■ Read-object

■ Read-all

■ Does-exist

Using Java code, you can use the descriptor query manager to provide custom SQL
strings to perform these functions on a class-by-class basis.

Use ClassDescriptor method getQueryManager to acquire the
DescriptorQueryManager, and then use the DescriptorQueryManager
methods that Table 23–2 lists.

Read All Defines the read-all SQL that TopLink uses when you call Session
method readAllObjects(java.lang.Class) passing in the
java.lang.Class that this descriptor represents.

When you define a descriptor’s read-all query, your implementation
overrides only the Session method readAll(java.lang.Class), not
the version that takes a Class and Expression. As a result, this query
reads every single instance. TopLink generates dynamic SQL for all other
Session readAll method signatures.

To customize other Session readAll method signatures, define
additional named queries and use them in your application instead of the
Session methods.

Table 23–2 Descriptor Query Manager Methods for Configuring Custom SQL

To Change the Default SQL for... Use Descriptor Query Manager Method...

Insert setInsertQuery (InsertObjectQuery query)

setInsertSQLString (String sqlString)

setInsertCall(Call call)

Update setUpdateQuery (UpdateObjectQuery query)

setUpdateSQLString (String sqlString)

setUpdateCall(Call call)

Delete setDeleteQuery (DeleteObjectQuery query)

setDeleteSQLString (String sqlString)

setDeleteCall(Call call)

Read setReadObjectQuery (ReadObjectQuery query)

Tab Description

Configuring Custom SQL Queries for Basic Persistence Operations

23-10 Developer's Guide for Oracle TopLink

Example 23–5 shows how to implement an amendment method to configure a
descriptor query manager to use custom SQL strings. Alternatively, using an
SQLCall, you can specify more complex SQL strings using features such as in, out,
and in-out parameters and parameter types (see Section 109.4, "Using a SQLCall").

Example 23–5 Configuring a Descriptor Query Manager with Custom SQL Strings

public static void addToDescriptor(ClassDescriptor descriptor) {

// Read-object by primary key procedure
descriptor.getQueryManager().setReadObjectSQLString(

"select * from EMP where EMP_ID = #EMP_ID");

// Read-all instances procedure
descriptor.getQueryManager().setReadAllSQLString(

"select * from EMP");

// Insert procedure
descriptor.getQueryManager().setInsertSQLString(

"insert into EMP (EMP_ID, F_NAME, L_NAME, MGR_ID) values
(#EMP_ID, #F_NAME, #L_NAME, #MGR_ID)");

// Update procedure
descriptor.getQueryManager().setUpdateSQLString(

"update EMP set (F_NAME, L_NAME, MGR_ID) values
(#F_NAME, #L_NAME, #MGR_ID) where EMP_ID = #EMP_ID");

}
Example 23–6 shows how to implement an amendment method to configure a
descriptor query manager to use Oracle stored procedures using a
StoredProcedureCall (see Section 109.5, "Using a StoredProcedureCall"). This
example uses output cursors to return the result set (see Section 111.11, "Handling
Cursor and Stream Query Results").

Example 23–6 Configuring a Descriptor Query Manager with Custom Stored Procedure
Calls

public static void addToDescriptor(ClassDescriptor descriptor) {

// Read-object by primary key procedure
StoredProcedureCall readCall = new StoredProcedureCall();

setReadObjectSQLString (String sqlString)

setReadObjectCall(Call call)

Read all setReadAllQuery (ReadAllQuery query)

setReadAllSQLString (String sqlString)

setReadAllCall(Call call)

Does exist setDoesExistQuery(DoesExistQuery query)

setDoesExistSQLString(String sqlString)

setDoesExistCall(Call call)

Table 23–2 (Cont.) Descriptor Query Manager Methods for Configuring Custom SQL

To Change the Default SQL for... Use Descriptor Query Manager Method...

Configuring Interface Alias

Configuring a Relational Descriptor 23-11

readCall.setProcedureName("READ_EMP");
readCall.addNamedArgument("P_EMP_ID", "EMP_ID");
readCall.useNamedCursorOutputAsResultSet("RESULT_CURSOR");
descriptor.getQueryManager().setReadObjectCall(readCall);

// Read-all instances procedure
StoredProcedureCall readAllCall = new StoredProcedureCall();
readAllCall.setProcedureName("READ_ALL_EMP");
readAllCall.useNamedCursorOutputAsResultSet("RESULT_CURSOR");
descriptor.getQueryManager().setReadAllCall(readAllCall);

// Insert procedure
StoredProcedureCall insertCall = new StoredProcedureCall();
insertCall.setProcedureName("INSERT_EMP");
insertCall.addNamedArgument("P_EMP_ID", "EMP_ID");
insertCall.addNamedArgument("P_F_NAME", "F_NAME");
insertCall.addNamedArgument("P_L_NAME", "L_NAME");
insertCall.addNamedArgument("P_MGR_ID", "MGR_ID");
descriptor.getQueryManager().setInsertCall(insertCall);

// Update procedure
StoredProcedureCall updateCall = new StoredProcedureCall();
updateCall.setProcedureName("UPDATE_EMP");
updateCall.addNamedArgument("P_EMP_ID", "EMP_ID");
updateCall.addNamedArgument("P_F_NAME", "F_NAME");
updateCall.addNamedArgument("P_L_NAME", "L_NAME");
updateCall.addNamedArgument("P_MGR_ID", "MGR_ID");
descriptor.getQueryManager().setUpdateCall(updateCall);

}

23.5 Configuring Interface Alias
An interface alias allows an interface to be used to refer to a descriptor instead of the
implementation class. This can be useful for classes that have public interface and the
applications desire to refer to the class using the public interface. Specifying the
interface alias allows any queries executed on a TopLink session to use the interface as
the reference class instead of the implementation class.

Each descriptor can have one interface alias. Use the interface in queries and
relationship mappings.

This section includes information on configuring an interface alias. Interfaces cannot
be created in Oracle JDeveloper or TopLink Workbench; you must add the Java package
or class to your Oracle JDeveloper or TopLink Workbench project before configuring it.

23.5.1 How to Configure Interface Alias Using TopLink Workbench
To specify an interface alias, use this procedure:

1. In the Navigator, select a descriptor.

If the Interface Alias advanced property is not visible for the descriptor, right-click
the descriptor and choose Select Advanced Properties > Interface Alias from
context menu or from the Selected menu.

Note: If you use an interface alias, do not associate an interface
descriptor with the interface.

Configuring a Relational Descriptor as a Class or Aggregate Type

23-12 Developer's Guide for Oracle TopLink

2. Click the Interface Alias tab.

Figure 23–4 Interface Alias Tab

In the Interface Alias field, click Browse and select an interface.

23.5.2 How to Configure Interface Alias Using Java
To configure a descriptor with an interface alias using Java, create an amendment
method (see Section 119.35, "Configuring Amendment Methods") and use
InterfacePolicy method addParentInterface as Example 23–7 shows.

Example 23–7 Configuring an Interface Alias

public static void addToDescriptor(Descriptor descriptor) {
descriptor.getInterfacePolicy().addParentInterface(MyInterface.class);

}

23.6 Configuring a Relational Descriptor as a Class or Aggregate Type
By default, when you add a Java class to a relational project (see Section 117.3,
"Configuring Project Classpath"), Oracle JDeveloper or TopLink Workbench create a
relational class descriptor for it. A class descriptor is applicable to any persistent object
except an object that is owned by another in an aggregate relationship. In this case,
you must describe the owned object with an aggregate descriptor. Using a class
descriptor, you can configure any relational mapping except aggregate collection and
aggregate object mappings.

An aggregate object is an object that is strictly dependent on its owning object.
Aggregate descriptors do not define a table, primary key, or many of the standard
descriptor options as they obtain these from their owning descriptor. If you want to
configure an aggregate mapping to associate data members in a target object with
fields in a source object’s underlying database tables (see Chapter 35, "Configuring a
Relational Aggregate Collection Mapping" and Chapter 37, "Configuring a Relational
Aggregate Object Mapping"), you must designate the target object’s descriptor as an
aggregate.

Alternatively, you can remove the aggregate designation from a relational descriptor
and return it to its default type.

You can configure inheritance for a descriptor designated as an aggregate (see
Section 119.20, "Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor"), however, in this case, all the descriptors in the inheritance tree must be
aggregates. Aggregate and class descriptors cannot exist in the same inheritance tree.
For more information, see Section 16.3.4, "Aggregate and Composite Descriptors and
Inheritance".

If you configure a descriptor as an aggregate, you cannot configure the descriptor with
EJB information (see Section 119.18, "Configuring a Descriptor with EJB CMP and BMP
Information").

Configuring Multitable Information

Configuring a Relational Descriptor 23-13

For more information, see Section 50.1.1, "XML Descriptors and Aggregation".

23.6.1 How to Configure a Relational Descriptor as a Class or Aggregate Type Using
TopLink Workbench

To configure a relational descriptor as class or aggregate, use this procedure.

1. In the Navigator, select a relational descriptor.

2. Click the Class or Aggregate descriptor button on the mapping toolbar.

You can also select the descriptor and choose Selected > Descriptor Type > Class
or Aggregate from the menu or by right-clicking on the descriptor in the
Navigator window and selecting Descriptor Type > Class or Aggregate from the
context menu.

3. If you select Aggregate, specify each of the aggregate descriptor’s attributes as a
direct to field mapping. See Chapter 29, "Configuring a Relational Direct-to-Field
Mapping" for more information.

Specify each of the aggregate descriptor’s attributes as a direct to field mapping. See
Chapter 29, "Configuring a Relational Direct-to-Field Mapping" for more information.

Although the attributes of a target class are not mapped directly to a data source until
you configure an aggregate object mapping, you must still specify their mapping type
in the target class’s descriptor. This tells TopLink what type of mapping to use when
you do configure the aggregate mapping in the source object’s descriptor. For more
information, see Section 21.2, "Aggregate and Composite Descriptors in Relational
Projects".

23.6.2 How to Configure a Relational Descriptor as a Class or Aggregate Type Using
Java

Using Java, to configure a relational descriptor as an aggregate, use
ClassDescriptor method descriptorIsAggregate.

To configure a relational descriptor for use in an aggregate collection mapping, use
ClassDescriptor method descriptorIsAggregateCollection.

To configure a relational descriptor as a nonaggregate, use ClassDescriptor
method descriptorIsNormal.

23.7 Configuring Multitable Information
Descriptors can use multiple tables in mappings. Use multiple tables when either of
the following occurs:

■ A subclass is involved in inheritance, and its superclass is mapped to one table,
while the subclass has additional attributes that are mapped to a second table.

■ A class is not involved in inheritance and its data is spread out across multiple
tables.

When a descriptor has multiple tables, you must be able to join a row from the
primary table to all the additional tables. By default, TopLink assumes that the
primary key of the first, or primary, table is included in the additional tables, thereby
joining the tables. TopLink also supports custom methods for joining tables. If the
primary key field names of the multiple tables do not match, a foreign key can be used
to join the tables. The foreign key can either be from the primary table to the secondary
table, or from the secondary table to the primary table, or between two of the

Configuring Multitable Information

23-14 Developer's Guide for Oracle TopLink

secondary tables (see Section 23.7.1, "How to Configure Multitable Information Using
TopLink Workbench").

For complex multitable situations, a more complex join expression may be required.
These include requiring the join to also check a type code, or using an outer-join.
TopLink provides support for a multiple-table-join-expression for these cases (see
Section 23.7.2, "How to Configure Multitable Information Using Java").

23.7.1 How to Configure Multitable Information Using TopLink Workbench
To associate multiple tables with a descriptor, use this procedure.

1. In the Navigator, select a descriptor.

If the Multitable Info advanced property is not visible for the descriptor,
right-click the descriptor and choose Select Advanced Properties > Multitable
Info from the context menu or from the Selected menu.

2. Click the Multitable Info tab.

Figure 23–5 Multitable Info Tab

Use the following information to enter data in each field of the tab:

Associating Tables with References
When associating a table using Reference, additional options appear. You must choose
a reference that relates the correct fields in the primary table to the primary keys in the
selected table.

Field Description

Primary Table The primary table for this descriptor. This field is for display only.

Additional Tables Use Add and Remove to add or remove additional tables.

Association to
Primary Table

Specify how each Additional Table is associated to the Primary
Table:

■ Primary Keys Have Same Names–when associating tables by
identically named primary keys, TopLink requires no
additional configuration.

■ Reference–when associating an additional table to the
primary table with a Reference (that is, a foreign key), you
can specify the Table Reference, as well as the Source and
Target fields. Continue with Section , "Associating Tables with
References".

Configuring Multitable Information

Configuring a Relational Descriptor 23-15

Figure 23–6 Multitable Info Tab, Associated by Reference

Choose a Table Reference that defines how the primary keys of the primary table
relate to the primary keys of the selected table. Click Add to add a primary key
association.

23.7.2 How to Configure Multitable Information Using Java
Using Java, configure a descriptor with multitable information using the following
oracle.toplink.descriptors.ClassDescriptor methods:

■ addTableName(java.lang.String tableName)

■ addForeignKeyFieldNameForMultipleTable(java.lang.String
sourceForeignKeyFieldName, java.lang.String
targetPrimaryKeyFieldName)

To specify a complex multiple-table-join-expression, create a descriptor amendment
method (see Section 119.35, "Configuring Amendment Methods") and add the join
expression using oracle.toplink.descriptors.DescriptorQueryManager
method setMultipleTableJoinExpression. For more information, see
Section 111.7, "Appending Additional Join Expressions".

Configuring Multitable Information

23-16 Developer's Guide for Oracle TopLink

Part XI
Part XI Object-Relational Data Type Descriptors

This part contains general information about object-relational data type descriptors, as
well as detailed information on how to create and configure these descriptors.

This part includes the following chapters:

■ Chapter 24, "Introduction to Object-Relational Data Type Descriptors"

This chapter introduces concepts of object-relational data type descriptors.

■ Chapter 25, "Creating an Object-Relational Data Type Descriptor"

This chapter explains how to create object-relational data type descriptors.

■ Chapter 26, "Configuring an Object-Relational Data Type Descriptor"

This chapter explains how to configure descriptor options specific to an
object-relational data type descriptor.

24

Introduction to Object-Relational Data Type Descriptors 24-1

24Introduction to Object-Relational Data Type
Descriptors

This chapter provides an overview of object-relational data type descriptors.

This chapter includes the following section:

■ Object-Relational Data Type Descriptors

For information on descriptor concepts and features common to more than one type of
TopLink descriptors, see Chapter 16, "Introduction to Descriptors".

24.1 Object-Relational Data Type Descriptors
The object-relational data type paradigm extends traditional relational databases to
include object-oriented functions. Oracle, IBM DB2, Informix, and other DBMS
databases allow users to store, access, and use complex data in more sophisticated
ways.

The object-relational data type standard is an evolving standard concerned mainly
with extending the database data structures and SQL (SQL 3).

Object-relational data type descriptors describe Java objects that you map to special
relational database types that correspond more closely to object types. Using these
special object-relational data type database types can simplify mapping objects to
relational database tables. Not all relational databases support these special
object-relational data type database types.

Using object-relational data type descriptors in a relational project, you can configure
object-relational data type mappings to these special object-relational data type
database data types (see Section 40.1, "Object-Relational Data Type Mapping Types").

For more information, see the following:

■ Section 25.2, "Creating an Object-Relational Data Type Descriptor"

■ Chapter 26, "Configuring an Object-Relational Data Type Descriptor"

Object-Relational Data Type Descriptors

24-2 Developer's Guide for Oracle TopLink

25

Creating an Object-Relational Data Type Descriptor 25-1

25Creating an Object-Relational Data Type
Descriptor

This chapter describes how to create relational and object-relational data type
descriptors.

This chapter includes the following sections:

■ Introduction to Object-Relational Data Type Descriptor Creation

■ Creating an Object-Relational Data Type Descriptor

For information on how to create more than one type of descriptors, see Chapter 118,
"Creating a Descriptor".

25.1 Introduction to Object-Relational Data Type Descriptor Creation
After you create a descriptor, you must configure its various options (see Chapter 119,
"Configuring a Descriptor") and use it to define mappings.

For complete information on the various types of mapping that TopLink supports, see
Chapter 17, "Introduction to Mappings" and Chapter 120, "Creating a Mapping".

For complete information on the various types of descriptor that TopLink supports,
see Section 16.1, "Descriptor Types".

For more information, see Chapter 24, "Introduction to Object-Relational Data Type
Descriptors".

25.2 Creating an Object-Relational Data Type Descriptor
You cannot create an object-relational data type descriptor using Oracle JDeveloper or
TopLink Workbench: you must use Java code. For more information on creating
descriptors in Java code, see the Oracle Fusion Middleware Java API Reference for Oracle
TopLink.

For more information, see Section 24.1, "Object-Relational Data Type Descriptors".

25.2.1 How to Create an Object-Relational Data Type Descriptor Using Java
Use the ObjectRelationalDescriptor class to define an object-relational data
type descriptor. This class extends RelationalDescriptor to add the following
methods:

■ setStructureName: call this method to set the name of the object-relational data
type structure that represents the object class in the data source.

Creating an Object-Relational Data Type Descriptor

25-2 Developer's Guide for Oracle TopLink

■ addFieldOrdering: call this method repeatedly to define the order in which
object attributes are persisted to the data source. This defines a field index that
TopLink uses if your object-relational data type data source driver uses JDBC
indexed arrays.

Example 25–1 shows an Employee object that is mapped to an Oracle Database using
its object-relational data type features.

Example 25–1 Employee Class

public class Employee {
Long id;
String firstName;
String lastName;

...
}
Example 25–2 shows the object-relational data type database type (Employee_t)
created to model the Employee object within the database. Such an object-relational
data type database type is also known as a structure. This example also shows how to
create and populate a database table (called department) that stores instances of the
Employee_t audio tape.

Example 25–2 Employee Object-Relational Data Type Data Model

CREATE TYPE EMPLOYEE_T AS OBJECT(ID NUMBER(10),
F_NAME VARCHAR2(100),
L_NAME VARCHAR2(100),) NOT FINAL;

CREATE TABLE EMPLOYEES OF EMPLOYEE_T;
Example 25–3 shows how to code an object-relational data type descriptor in Java to
describe the object-relational data type database type Employee_t.

Example 25–3 Creating an Object-Relational Data Type Descriptor in Java

import oracle.toplink.objectrelational.*;
...
ObjectRelationalDescriptor descriptor = new ObjectRelationalDescriptor();
descriptor.setJavaClass(Employee.class);
descriptor.setTableName("EMPLOYEES");
descriptor.setStructureName("EMPLOYEE_T");
descriptor.setPrimaryKeyFieldName("ID");
descriptor.addFieldOrdering("ID");
descriptor.addFieldOrdering("F_NAME");
descriptor.addFieldOrdering("L_NAME");
descriptor.addDirectMapping("id", "OBJECT_ID");
descriptor.addDirectMapping("firstName", "F_NAME");
descriptor.addDirectMapping("lastName", "L_NAME");
For more information on configuring object-relational data type descriptors, see
Chapter 26, "Configuring an Object-Relational Data Type Descriptor".

For more information on the object-relational data type mappings that TopLink
supports, see Chapter 40, "Introduction to Object-Relational Data Type Mappings".

26

Configuring an Object-Relational Data Type Descriptor 26-1

26Configuring an Object-Relational Data Type
Descriptor

This chapter describes the various components that you must configure to be able to
use an object-relational data type descriptor.

This chapter includes the following sections:

■ Introduction to Object-Relational Data Type Descriptor Configuration

■ Configuring Field Ordering

For information on how to configure TopLink descriptor options common to two or
more descriptor types, see Chapter 119, "Configuring a Descriptor".

26.1 Introduction to Object-Relational Data Type Descriptor Configuration
Table 26–1 lists the configurable options for an object-relational data type descriptor.

Table 26–1 Configurable Options for Object-Relational Data Type Descriptor

Option to Configure JDeveloper
TopLink
Workbench Java

Field ordering (see Section 26.2, "Configuring Field Ordering")

Primary keys (see Section 119.2, "Configuring Primary Keys")

Read-only descriptors (see Section 119.3, "Configuring
Read-Only Descriptors")

Unit of work conforming (see Section 119.4, "Configuring Unit
of Work Conforming at the Descriptor Level")

Query keys (see Section 119.10, "Configuring Query Keys")

Cache expiration (see Section 119.16, "Configuring Cache
Expiration at the Descriptor Level")

Amendment methods (see Section 119.35, "Configuring
Amendment Methods")

Reading subclasses on queries (see Section 119.19, "Configuring
Reading Subclasses on Queries")

Inheritance for a child class descriptor (see Section 119.20,
"Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor")

Inheritance for a parent class descriptor (see Section 119.21,
"Configuring Inheritance for a Parent (Root) Descriptor")

Inheritance expressions for a parent class descriptor (see
Section 119.22, "Configuring Inheritance Expressions for a
Parent (Root) Class Descriptor"

Configuring Field Ordering

26-2 Developer's Guide for Oracle TopLink

For more information, see Chapter 21, "Introduction to Relational Descriptors".

26.2 Configuring Field Ordering
If your object-relational data type data source driver uses JDBC indexed arrays, you
can specify the order in which TopLink persists object attributes to define the field
index.

26.2.1 How to Configure Field Ordering Using Java
Use ObjectRelationalDescriptor method addFieldOrdering to specify the
field ordering. Example 26–1 shows how to specify the order of the object-relational
data type database fields OBJECT_ID, F_NAME, and L_NAME for the Employee
descriptor.

Example 26–1 Field Ordering

descriptor.addFieldOrdering("ID");
descriptor.addFieldOrdering("F_NAME");
descriptor.addFieldOrdering("L_NAME");

Inherited attribute mapping in a subclass (see Section 119.23,
"Configuring Inherited Attribute Mapping in a Subclass")

Cache type and size (see Section 119.12, "Configuring Cache
Type and Size at the Descriptor Level")

Domain object method as an event handler (see Section 119.24,
"Configuring a Domain Object Method as an Event Handler")

Descriptor event listener as an event handler (see
Section 119.25, "Configuring a Descriptor Event Listener as an
Event Handler")

Locking policy (see Section 119.26, "Configuring Locking
Policy")

Copy policy (see Section 119.29, "Configuring Copy Policy")

Instantiation policy (see Section 119.28, "Configuring
Instantiation Policy")

Wrapper policy (see Section 119.32, "Configuring Wrapper
Policy")

History policy (see Section 119.31, "Configuring a History
Policy")

Returning policy (see Section 119.27, "Configuring Returning
Policy")

Table 26–1 (Cont.) Configurable Options for Object-Relational Data Type Descriptor

Option to Configure JDeveloper
TopLink
Workbench Java

Part XII
Part XII Relational Mappings

A relational mapping transforms any object data member type to a corresponding
relational database (SQL) data source representation in any supported relational
database. Relational mappings let you map an object model into a relational data
model.

This part contains the following chapters:

■ Chapter 27, "Introduction to Relational Mappings"

This chapter describes each of the different TopLink relational mapping types and
important relational mapping concepts.

■ Chapter 28, "Configuring a Relational Mapping"

This chapter explains how to configure TopLink relational mapping options
common to two or more relational mapping types.

■ Chapter 29, "Configuring a Relational Direct-to-Field Mapping"

This chapter explains how to configure a direct to field relational database
mapping.

■ Chapter 30, "Configuring a Relational Direct-to-XMLType Mapping"

This chapter explains how to configure a direct mapping to an Oracle XDB XML
type field.

■ Chapter 31, "Configuring a Relational One-to-One Mapping"

This chapter explains how to configure a one-to-one relational database mapping.

■ Chapter 32, "Configuring a Relational Variable One-to-One Mapping"

This chapter explains how to configure a variable one-to-one relational database
mapping.

■ Chapter 33, "Configuring a Relational One-to-Many Mapping"

This chapter explains how to configure a one-to-many relational database
mapping.

■ Chapter 34, "Configuring a Relational Many-to-Many Mapping"

This chapter explains how to configure a many-to-many relational database
mapping.

■ Chapter 35, "Configuring a Relational Aggregate Collection Mapping"

This chapter explains how to configure an aggregate collection relational database
mapping.

■ Chapter 36, "Configuring a Relational Direct Collection Mapping"

This chapter explains how to configure a direct collection relational database
mapping.

■ Chapter 37, "Configuring a Relational Aggregate Object Mapping"

This chapter explains how to configure an aggregate object relational database
mapping.

■ Chapter 38, "Configuring a Relational Direct Map Mapping"

This chapter explains how to configure a direct map relational database mapping.

■ Chapter 39, "Configuring a Relational Transformation Mapping"

This chapter explains how to configure a transformation relational database
mapping.

27

Introduction to Relational Mappings 27-1

27Introduction to Relational Mappings

A relational mapping transforms any object data member type to a corresponding
relational database (SQL) data source representation in any supported relational
database. Relational mappings let you map an object model into a relational data
model.

Relational mappings transform object data members to relational database fields. Use
them to map simple data types including primitives (such as int), JDK classes (such
as String), and large object (LOB) values. You can also use them to transform object
data members that reference other domain objects by way of association where data
source representations require object identity maintenance (such as sequencing and
back references) and possess various types of multiplicity and navigability. The
appropriate mapping class is chosen primarily by the cardinality of the relationship.

Do not confuse relational mappings with object-relational data type mappings (see
Chapter 40, "Introduction to Object-Relational Data Type Mappings"). An
object-relational data type mapping transforms certain object data member types to
structured data source representations optimized for storage in specialized
object-relational data type databases, such as Oracle Database. Object-relational data
type mappings let you map an object model into an object-relational data type data
model. In general, you can use relational mappings with any supported relational
database. You can only use object-relational data type mappings with specialized
object-relational data type databases optimized to support object-relational data type
data source representations.

This chapter includes the following sections:

■ Relational Mapping Types

■ Relational Mapping Concepts

■ Direct-to-Field Mapping

■ Direct-to-XMLType Mapping

■ One-to-One Mapping

■ Variable One-to-One Mapping

■ One-to-Many Mapping

■ Many-to-Many Mapping

■ Aggregate Collection Mapping

■ Direct Collection Mapping

■ Direct Map Mapping

■ Aggregate Object Mapping

Relational Mapping Types

27-2 Developer's Guide for Oracle TopLink

■ Transformation Mapping

For information on mapping concepts and features common to more than one type of
TopLink mappings, see Chapter 17, "Introduction to Mappings".

27.1 Relational Mapping Types
TopLink supports the relational mappings listed in Table 27–1.

27.2 Relational Mapping Concepts
This section introduces direct mapping concepts unique to TopLink, including the
following:

■ Directionality

■ Converters and Transformers

■ Relational Mappings and EJB 2.n CMP

27.2.1 Directionality
The direction of a relationship may be either unidirectional or bidirectional. In a
unidirectional relationship, only one entity bean has a relationship field that refers to
the other. All TopLink relational mappings are unidirectional, from the class being
described (the source class) to the class with which it is associated (the target class). The

Table 27–1 TopLink Relational Mapping Types

Type of Mapping Description
Oracle
JDeveloper

TopLink
Workbench Java

Direct-to-field (see Section 27.3,
"Direct-to-Field Mapping")

Map a Java attribute directly to a database
field.

Direct-to-XMLType (see
Section 27.4, "Direct-to-XMLType
Mapping")

Map Java attributes to an XMLType
column in an Oracle Database (introduced
in version 9.2.0.1).

One-to-one (see Section 27.5,
"One-to-One Mapping")

Map a reference to another persistent Java
object to the database.

Variable one-to-one (see
Section 27.6, "Variable One-to-One
Mapping")

Map a reference to an interface to the
database.

One-to-many (see Section 27.7,
"One-to-Many Mapping")

Map Java collections of persistent objects
to the database.

Many-to-many (see Section 27.8,
"Many-to-Many Mapping")

Use an association table to map Java
collections of persistent objects to the
database.

Aggregate collection (see
Section 27.9, "Aggregate Collection
Mapping")

Map Java collections of persistent objects
to the database.

Direct collection (see Section 27.10,
"Direct Collection Mapping")

Map Java collections of objects that do not
have descriptors.

Direct map (see Section 27.11,
"Direct Map Mapping")

Direct map mappings store instances that
implement java.util.Map.

Aggregate object (see Section 27.12,
"Aggregate Object Mapping")

Create strict one-to-one mappings that
require both objects to exist in the same
database row.

Transformation (see Section 27.13,
"Transformation Mapping")

Create custom mappings where one or
more fields can be used to create the object
to be stored in the attribute.

Relational Mapping Concepts

Introduction to Relational Mappings 27-3

target class does not have a reference to the source class in a unidirectional
relationship.

In a bidirectional relationship, each entity bean has a relationship field that refers to
the other bean. Through the relationship field, an entity bean's code can access its
related object. To implement a bidirectional relationship (classes that reference each
other), use two unidirectional mappings with the sources and targets reversed.

27.2.2 Converters and Transformers
You can store object attributes directly in a database table as follows:

■ Direct mapping (see Section 27.2.2.1, "Using a Direct Mapping")

■ Converter Mapping (see Section 27.2.2.2, "Using a Converter Mapping")

■ Transformation mapping (see Section 27.2.2.3, "Using a Transformation Mapping")

27.2.2.1 Using a Direct Mapping
If the attribute type is comparable to a database type, the information can be stored
directly simply by using a direct-to-field mapping (see Section 27.3, "Direct-to-Field
Mapping").

27.2.2.2 Using a Converter Mapping
If the attribute type is comparable to a database type but requires conversion, the
information can be stored directly by using a direct-to-field mapping (see Section 27.3,
"Direct-to-Field Mapping") and an appropriate Converter instance.

In the previous release, TopLink provided subclasses of DirectToFieldMapping for
object type direct mappings, serialized object direct mappings, and type conversion
direct mappings. In this release, these subclasses are deprecated. In their place, Oracle
recommends that you use the DirectToFieldMapping method setConverter and
the corresponding Converter instance. Table 27–2 summarizes these changes.

If the application’s objects contain attributes that cannot be represented as
direct-to-field with an existing converter, use a direct-to-field mapping with a custom
converter.

Note: Maintenance of bidirectional relationships presents a number
of technical challenges. For more information, see the following:

■ Section 2.14.3.4, "Maintaining Bidirectional Relationships"

■ Section 121.18, "Configuring Bidirectional Relationship"

■ Section 17.2.4, "Indirection (Lazy Loading)"

Table 27–2 Using a Converter for Direct-to-Field Mappings

Deprecated
DirectToFieldMapping subclass... Replaced by Converter instance...

ObjectTypeMapping ObjectTypeConverter (see Section 17.2.6.3, "Object
Type Converter")

SerializedObjectMapping SerializedObjectConverter (see Section 17.2.6.1,
"Serialized Object Converter")

TypeConversionMapping TypeConversionConverter (see Section 17.2.6.2,
"Type Conversion Converter"

Direct-to-Field Mapping

27-4 Developer's Guide for Oracle TopLink

27.2.2.3 Using a Transformation Mapping
If there is no database primitive type that is logically comparable to the attribute’s
type, or, if an attribute requires data from multiple fields, it must be transformed on its
way to and from the database.

In this case, use a transformation mapping (see Section 27.13, "Transformation
Mapping").

27.2.3 Relational Mappings and EJB 2.n CMP
Use direct mappings to map the (non-CMR) CMF attributes of a bean.

In EJB CMP projects, the bean class does not define real variables in the class – only
abstract getter and setter methods. To map the bean’s attributes, you must import
ejb-jar.xml file into TopLink Workbench (see Section 117.5, "Configuring
Persistence Type").

You can map entity bean attributes using direct mappings without any special
considerations.

There are some special considerations when using one-to-one mappings (see
Section 27.5.1, "One-to-One Mappings and EJB 2.n CMP"), one-to-many mappings (see
Section 27.7.1, "One-to-Many Mappings and EJB 2.n CMP"), and many-to-many
mappings (see Section 27.8.1, "Many-to-Many Mappings and EJB 2.n CMP").

27.3 Direct-to-Field Mapping
Use direct-to-field mappings to map primitive object attributes, or non persistent
regular objects, such as the JDK classes. For example, use a direct-to-field mapping to
store a String attribute in a VARCHAR field.

Example 27–1 Direct-to-Field Mapping Example

Figure 27–1 illustrates a direct-to-field mapping between the Java attribute city and
the relational database column CITY. Similarly, direct-to-field mappings could be
defined from country to COUNTRY, id to ADDRESS_ID, established to EST_DATE,
and province to PROVINCE.

Figure 27–1 Direct-to-Field Mapping

You can use a direct-to-field mapping with any of the following Converter instances:

■ Object type converter (see Section 17.2.6.3, "Object Type Converter")

■ Serialized object converter (see Section 17.2.6.1, "Serialized Object Converter")

■ Type conversion converter (see Section 17.2.6.2, "Type Conversion Converter")

Note: When you work with EJB, do not map the entity context
attribute (type javax.ejb.EntityContext).

One-to-One Mapping

Introduction to Relational Mappings 27-5

You can use a direct-to-field mapping with a change policy (see Section 119.30,
"Configuring Change Policy".

See Chapter 29, "Configuring a Relational Direct-to-Field Mapping" for more
information.

27.4 Direct-to-XMLType Mapping
Using a direct-to-XMLType mapping, you can map XML data in the form of a String
or an org.w3c.dom.Document object to an XMLType column in an Oracle Database
(introduced in version 9.2.0.1).

If you plan to use direct-to-XMLType mappings in TopLink Workbench and the
TopLink runtime, you must include the Oracle Database xdb.jar file in the TopLink
Workbench classpath (see Section 5.2, "Configuring the TopLink Workbench
Environment").

The TopLink query framework provides a number of expression operators you can use
to create queries based on the content of that XML data (see Section 110.2.4, "XMLType
Functions").

See Chapter 30, "Configuring a Relational Direct-to-XMLType Mapping" for more
information.

27.5 One-to-One Mapping
One-to-one mappings represent simple pointer references between two Java objects. In
Java, a single pointer stored in an attribute represents the mapping between the source
and target objects. Relational database tables implement these mappings using foreign
keys.

Figure 27–2 illustrates a one-to-one relationship from the address attribute of an
Employee object to an Address object. To store this relationship in the database,
create a one-to-one mapping between the address attribute and the Address class.
This mapping stores the id of the Address instance in the EMPLOYEE table when the
Employee instance is written. It also links the Employee instance to the Address
instance when the Employee is read from the database. Because an Address does not
have any references to the Employee, it does not have to provide a mapping to
Employee.

For one-to-one mappings, the source table normally contains a foreign key reference to
a record in the target table. In Figure 27–2, the ADDR_ID field of the EMPLOYEE table is
a foreign key.

One-to-One Mapping

27-6 Developer's Guide for Oracle TopLink

Figure 27–2 One-to-One Mappings

You can also implement a one-to-one mapping where the target table contains a
foreign key reference to the source table. In Figure 27–2, the database design would
change such that the ADDRESS row would contain the EMP_ID to identify the
Employee to which it belonged. In this case, the target must also have a relationship
mapping to the source.

The update, insert and delete operations, which are normally done for the target
before the source for privately owned one-to-one relationships, are performed in the
opposite order when the target owns the foreign key. Target foreign keys normally
occur in bidirectional one-to-one mappings (see Section 27.2.1, "Directionality"),
because one side has a foreign key and the other shares the same foreign key in the
other’s table.

Target foreign keys can also occur when large cascaded composite primary keys exist
(that is, one object’s primary key is composed of the primary key of many other
objects). In this case it is possible to have a one-to-one mapping that contains both
foreign keys and target foreign keys.

In a foreign key, TopLink automatically updates the foreign key value in the object’s
row. In a target foreign key, it does not. In TopLink, use the Target Foreign Key option
when a target foreign key relationship is defined.

When mapping a relationship, you must understand these differences between a
foreign key and a target foreign key, to ensure that the relationship is defined correctly.

In a bidirectional relationship where the two classes in the relationship reference each
other, only one of the mappings should have a foreign key. The other mapping should
have a target foreign key. If one of the mappings in a bidirectional relationship is a
one-to-many mapping, see Chapter 32, "Configuring a Relational Variable One-to-One
Mapping" for details.

You can use a one-to-one mapping with a change policy (see Section 119.30,
"Configuring Change Policy".

See Section 31, "Configuring a Relational One-to-One Mapping" for more information.

27.5.1 One-to-One Mappings and EJB 2.n CMP
To maintain EJB compliance, the object attribute that points to the target of the
relationship must be the local interface type–not the bean class.

TopLink provides variations on one-to-one mappings that lets you define complex
relationships when the target of the relationship is a dependent Java object. For
example, variable one-to-one mappings enable you to specify variable target objects in the

One-to-Many Mapping

Introduction to Relational Mappings 27-7

relationship. These variations are not available for entity beans, but are valid for
dependent Java objects.

For more information, see the Chapter 32, "Configuring a Relational Variable
One-to-One Mapping".

27.6 Variable One-to-One Mapping
Variable class relationships are similar to polymorphic relationships, except that in this
case the target classes are not related through inheritance (and thus not good
candidates for an abstract table), but through an interface.

To define variable class relationships in TopLink Workbench, use the variable
one-to-one mapping selection, but choose the interface as the reference class. This
makes the mapping a variable one-to-one. When defining mappings in Java code, use
the VariableOneToOneMapping class.

TopLink supports variable relationships only in one-to-one mappings. It handles this
relationship in two ways:

■ Through the class indicator field (see Section 32.2, "Configuring Class Indicator").

■ Through unique primary key values among target classes implementing the
interface (see Section 32.3, "Configuring Unique Primary Key").

Figure 27–3 Variable One-to-One Mappings with Class Indicator

See Chapter 32, "Configuring a Relational Variable One-to-One Mapping" for more
information.

27.7 One-to-Many Mapping
One-to-many mappings are used to represent the relationship between a single source
object and a collection of target objects. They are a good example of something that is

One-to-Many Mapping

27-8 Developer's Guide for Oracle TopLink

simple to implement in Java using a Collection (or other collection types) of target
objects, but difficult to implement using relational databases.

In a Java Collection, the owner references its parts. In a relational database, the
parts reference their owner. Relational databases use this implementation to make
querying more efficient.

The purpose of creating this one-to-one mapping in the target is so that the foreign key
information can be written when the target object is saved. Alternatives to the
one-to-one mapping back reference include the following:

■ Use a direct-to-field mapping to map the foreign key and maintain its value in the
application. Here the object model does not require a back reference, but the data
model still requires a foreign key in the target table.

■ Use a many-to-many mapping to implement a logical one-to-many. This has the
advantage of not requiring a back reference in the object model and not requiring a
foreign key in the data model. In this model the many-to-many relation table
stores the collection. It is possible to put a constraint on the join table to enforce
that the relation is a logical one-to-many relationship.

Figure 27–4 One-to-Many Relationships

You can use a many-to-many mapping with a change policy (see Section 119.30,
"Configuring Change Policy".

See Chapter 33, "Configuring a Relational One-to-Many Mapping" for more
information.

27.7.1 One-to-Many Mappings and EJB 2.n CMP
Use one-to-many mappings for relationships between entity beans or between an
entity bean and a collection of privately owned regular Java objects. When you create
one-to-many mappings, also create a one-to-one mapping from the target objects back
to the source. The object attribute that contains a pointer to the bean must be the local
interface type–not the bean class.

Note: The phone attribute shown in Figure 27–4 is of type
Vector. You can use a Collection interface (or any class that
implements the Collection interface) for declaring the collection
attribute. See Section 121.14, "Configuring Container Policy" for
details.

Many-to-Many Mapping

Introduction to Relational Mappings 27-9

TopLink automatically maintains back-pointers when you create or update
bidirectional relationships between beans.

For more information, see Section 121.18, "Configuring Bidirectional Relationship".

27.8 Many-to-Many Mapping
Many-to-many mappings represent the relationships between a collection of source
objects and a collection of target objects. They require the creation of an intermediate
table for managing the associations between the source and target records.

Figure 27–5 illustrates a many-to-many mapping in Java and in relational database
tables.

Figure 27–5 Many-to-many Relationships

Many-to-many mappings are implemented using a relation table. This table contains
columns for the primary keys of the source and target tables. Composite primary keys
require a column for each field of the composite key. The intermediate table must be
created in the database before using the many-to-many mapping.

The target class does not have to implement any behavior for the many-to-many
mappings. If the target class also creates a many-to-many mapping back to its source,
then it can use the same relation table, but one of the mappings must be set to
read-only. If both mappings write to the table, they can cause collisions.

Note: The projects attribute shown inFigure 27–5 is of type
Vector. You can use a Collection interface (or any class that
implements the Collection interface) for declaring the collection
attribute. See Section 121.14, "Configuring Container Policy" for
details.

Aggregate Collection Mapping

27-10 Developer's Guide for Oracle TopLink

Indirection (lazy loading) is enabled by default in a many-to-many mapping, which
requires that the attribute have the ValueHolderInterface type or transparent
collections. For more information on indirection, see Section 17.2.4, "Indirection (Lazy
Loading)".

You can use a many-to-many mapping with a change policy (see Section 119.30,
"Configuring Change Policy".

See Chapter 34, "Configuring a Relational Many-to-Many Mapping" for more
information.

27.8.1 Many-to-Many Mappings and EJB 2.n CMP
When you use CMP, many-to-many mappings are valid only between entity beans,
and cannot be privately owned. The only exception is when a many-to-many mapping
is used to implement a logical one-to-many mapping with a relation table.

TopLink automatically maintains back-pointers when you create or update
bidirectional relationships.

For more information, see Section 121.18, "Configuring Bidirectional Relationship".

27.9 Aggregate Collection Mapping
Aggregate collection mappings are used to represent the aggregate relationship
between a single-source object and a collection of target objects. Unlike the TopLink
one-to-many mappings, in which there should be a one-to-one back reference mapping
from the target objects to the source object, there is no back reference required for the
aggregate collection mappings, because the foreign key relationship is resolved by the
aggregation.

Although aggregate collection mappings are similar to one-to-many mappings, they
are not replacements for one-to-many mappings. Use aggregate collections only in
situations where the target collections are of a reasonable size and if having a
one-to-one back mapping is difficult.

Because one-to-many relationships offer better performance and are more robust and
scalable, consider using a one-to-many relationship rather than an aggregate
collection. In addition, aggregate collections are privately owned by the source of the
relationship and must not be shared or referenced by other objects.

This section describes the following:

■ Aggregate Collection Mappings and Inheritance

■ Aggregate Collection Mappings and EJB

■ How to Implement Aggregate Collection Mappings

See Chapter 35, "Configuring a Relational Aggregate Collection Mapping" for more
information.

Note: To use aggregate collections with TopLink Workbench, you
must use an amendment method (see Section 119.35, "Configuring
Amendment Methods"), or manually edit the project source to add
the mapping.

Direct Collection Mapping

Introduction to Relational Mappings 27-11

27.9.1 Aggregate Collection Mappings and Inheritance
Aggregate collection descriptors can use inheritance. You must also declare subclasses
as aggregate collection. The subclasses can have their own mapped tables, or share the
table with their parent class. See Section 16.2.2, "Descriptors and Inheritance" for more
information on inheritance.

In a Java Collection, the owner references its parts. In a relational database, the
parts reference their owners. Relational databases use this implementation to make
querying more efficient.

Aggregate collection mappings require a target table for the target objects.

To implement an aggregate collection mapping, the following must take place:

■ The descriptor of the target class must declare itself as an aggregate collection
object. Unlike the aggregate object mapping, in which the target descriptor does
not have a specific table to associate with, there must be a target table for the target
object.

■ The descriptor of the source class must add an aggregate collection mapping that
specifies the target class.

27.9.2 Aggregate Collection Mappings and EJB
You can use aggregate collection mappings with entity beans if the source of the
relationship is an entity bean or Java object, and the mapping targets are regular Java
objects. Entity beans cannot be the target of an aggregate object mapping.

27.9.3 How to Implement Aggregate Collection Mappings
To implement an aggregate collection mapping, the following must take place:

■ The descriptor of the target class must declare itself to be an aggregate collection
object. Unlike the aggregate object mapping, in which the target descriptor does
not have a specific table to associate with, there must be a target table for the target
object.

■ The descriptor of the source class must add an aggregate collection mapping that
specifies the target class.

27.10 Direct Collection Mapping
Direct collection mappings store collections of Java objects that are not
TopLink-enabled. The object type stored in the direct collection is typically a Java type,
such as String.

It is also possible to use direct collection mappings to map a collection of non-String
objects. For example, it is possible to have an attribute that contains a collection of
Integer or Date instances. The instances stored in the collection can be any type
supported by the database and has a corresponding wrapper class in Java.

Support for primitive data types such as int is not provided, because Java
Collection holds only objects.

Figure 27–6 illustrates how a direct collection is stored in a separate table with two
fields. The first field is the reference key field, which contains a reference to the
primary key of the instance owning the collection. The second field contains an object
in the collection and is called the direct field. There is one record in the table for each
object in the collection.

Direct Map Mapping

27-12 Developer's Guide for Oracle TopLink

Figure 27–6 Direct Collection Mappings

Maps are not supported for direct collection because there is no key value.

You can use a direct collection mapping with any of the following Converter
instances:

■ Section 17.2.6.3, "Object Type Converter"

■ Section 17.2.6.1, "Serialized Object Converter"

■ Section 17.2.6.2, "Type Conversion Converter"

You can use a direct collection mapping with a change policy (see Section 119.30,
"Configuring Change Policy").

See Chapter 36, "Configuring a Relational Direct Collection Mapping" for more
information.

27.11 Direct Map Mapping
Direct map mappings store instances that implement java.util.Map. Unlike
one-to-many or many-to-many mappings, the keys and values of the map in this type
of mapping are Java objects that do not have descriptors. The object type stored in the
key and the value of direct map are Java primitive wrapper types such as String
objects.

Figure 27–7 illustrates how a direct map is stored in a separate table with three fields.
The first field (EMPID) is the reference key field, which contains a reference to the
primary key of the instance owning the collection. The second field (ADDRESS)
contains an object in the collection and is called the direct value field. The third field
(TYPE) contains the direct key field. In this example, the direct map uses a object type
converter for the direct key field, converting the single character W in the database to
the full string Work in the object (and H to Home).

Figure 27–7 Direct Map Mappings

Note: The responsibilities attribute shown inFigure 27–6 is
of type Vector. You can use a Collection interface (or any class
that implements the Collection interface) for declaring the
collection attribute. See Section 121.14, "Configuring Container
Policy" for details.

Aggregate Object Mapping

Introduction to Relational Mappings 27-13

You can use a direct collection mapping with any of the following Converter
instances:

■ Section 17.2.6.3, "Object Type Converter"

■ Section 17.2.6.1, "Serialized Object Converter"

■ Section 17.2.6.2, "Type Conversion Converter"

You can use a direct map mapping with a change policy (see Section 119.30,
"Configuring Change Policy").

See Chapter 38, "Configuring a Relational Direct Map Mapping" for more information.

27.12 Aggregate Object Mapping
Two objects–a source (parent or owning) object and a target (child or owned)
object–are related by aggregation if there is a strict one-to-one relationship between
them and all the attributes of the target object can be retrieved from the same table(s)
as the source object. This means that if the source object exists, then the target object
must also exist and if the source object is destroyed, then the target object is also
destroyed.

An aggregate mapping allows you to associate data members in the target object with
fields in the source object’s underlying database tables.

You configure the aggregate mapping in the source object’s descriptor. However,
before doing so, you must designate the target object’s descriptor as an aggregate (see
Section 23.6, "Configuring a Relational Descriptor as a Class or Aggregate Type").

Aggregate objects are privately owned and should not be shared or referenced by
other objects.

You cannot configure one-to-one, one-to-many, or many-to-many mappings from a
nonaggregate object to an aggregate target object.

You can configure such mappings from an aggregate target object to another
nonaggregate object. If you configure a one-to-many mapping from an aggregate
target object to another nonaggregate object, you must configure a one-to-one
mapping from the other object back to the source object that owns the aggregate
(instead of to the aggregate target object itself). This is because the source object
contains the table and primary key information of the aggregate target.

You can configure inheritance for a descriptor designated as an aggregate (see
Section 16.2.2, "Descriptors and Inheritance"), however, in this case, all the descriptors
in the inheritance tree must be aggregates. Aggregate and class descriptors cannot
exist in the same inheritance tree.

This section describes the following:

■ Aggregate Object Mappings with a Single Source Object

■ Aggregate Object Mappings with Multiple Source Objects

■ How to Implement an Aggregate Object Relationship Mapping

You can use an aggregate object mapping with a change policy (see Section 119.30,
"Configuring Change Policy".

For more information on configuring an aggregate object relationship mapping, see
Chapter 37, "Configuring a Relational Aggregate Object Mapping".

Aggregate Object Mapping

27-14 Developer's Guide for Oracle TopLink

27.12.1 Aggregate Object Mappings with a Single Source Object
Figure 27–8 shows an example aggregate object mapping between source object
Employee and target object Period. In this example, the target object is not shared by
other types of source object.

Figure 27–8 Aggregate Object Mapping with a Single Source Object

Aggregate target classes not shared among multiple source classes can have any type
of mapping, including other aggregate object mappings.

27.12.2 Aggregate Object Mappings with Multiple Source Objects
Figure 27–9 shows an example aggregate object mapping in which different source
objects–Employee and Project–map instances of the same type of target object,
Period.

Figure 27–9 Aggregate Object Mapping with Multiple Source Objects

When you configure the aggregate object mapping in the source object, you choose the
source object table for that particular mapping. This allows different source types to
store the same target information within their tables. Each source object’s table may
use different field names. TopLink automatically manages the case where multiple
source object tables use different field names.

For example, in Figure 27–9, The Employee attribute employPeriod is mapped by
an aggregate object mapping to target object Period. This mapping associates
Period attribute startDate with EMPLOYEE table field START_DATE. The Project
attribute projectPeriod is also mapped by an aggregate object mapping to target

Transformation Mapping

Introduction to Relational Mappings 27-15

object Period. This mapping associates Period attribute startDate with PROJECT
table field S_DATE.

Aggregate target classes shared with multiple source classes cannot have one-to-many
or many-to-many mappings.

27.12.3 How to Implement an Aggregate Object Relationship Mapping
You must ensure that the following takes place:

■ The descriptor of the target class declares itself to be an aggregate object. Because
all its information comes from its parent’s table(s), the target descriptor does not
have a specific table associated with it. You must, however, choose one or more
candidate table(s) from which you can use fields in mapping the target.

In the example above, you could choose the EMPLOYEE table so that the START_
DATE and END_DATE fields are available during mapping.

■ The descriptor of the source class adds an aggregate object mapping that specifies
the target class.

 In the example above, the Employee class has an attribute called employPeriod
that would be mapped as an aggregate object mapping with Period as the
reference class.

The source class must ensure that its table has fields that correspond to the field
names registered with the target class.

■ If a source object has a null target reference, TopLink writes NULLs to the
aggregate database fields (see Section 37.3, "Configuring Allowing Null Values").
When the source is read from the database, it can handle this null target in one of
two ways:

■ Create an instance of the object with all its attributes equal to null.

■ Put a null reference in the source object without instantiating a target. (This is
the default method of handling null targets.)

27.13 Transformation Mapping
Use transformation mappings for specialized translations for how a value is
represented in Java and how it is represented in the database.

Figure 27–10 illustrates a transformation mapping. The values from the B_DATE and
B_TIME fields are used to create a java.util.Date to be stored in the birthDate
attribute.

Tip: Use transformation mappings only when mapping multiple
fields into a single attribute. Because of the complexity of
transformation mappings, it is often easier to perform the
transformation with a converter or getter and setter methods of a
direct-to-field mapping. See Chapter 29, "Configuring a Relational
Direct-to-Field Mapping" for more information.

Transformation Mapping

27-16 Developer's Guide for Oracle TopLink

Figure 27–10 Transformation Mappings

Often, a transformation mapping is appropriate when values from multiple fields are
used to create an object. This type of mapping requires that you provide an attribute
transformation that is invoked when reading the object from the database. This must
have at least one parameter that is an instance of Record. In your attribute
transformation, you can use Record method get to retrieve the value in a specific
column. Your attribute transformation can specify a second parameter, when it is an
instance of Session. The Session performs queries on the database to get additional
values needed in the transformation. The transformation should return the value to be
stored in the attribute.

Transformation mappings also require a field transformation for each field, to be written
to the database when the object is saved. The transformation returns the value to be
stored in that field.

See Chapter 39, "Configuring a Relational Transformation Mapping" for more
information.

28

Configuring a Relational Mapping 28-1

28Configuring a Relational Mapping

This chapter describes how to configure a relational mapping.

This chapter includes the following sections:

■ Introduction to Relational Mapping Configuration

■ Configuring Common Relational Mapping Options

■ Configuring a Database Field

■ Configuring Reference Descriptor

■ Configuring Batch Reading

■ Configuring Query Key Order

■ Configuring Table and Field References (Foreign and Target Foreign Keys)

■ Configuring Joining at the Mapping Level

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

28.1 Introduction to Relational Mapping Configuration
Table 28–1 lists the types of relational mappings that you can configure and provides a
cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Table 28–1 Configuring Relational Mappings

If you are creating... See...

Direct-to-Field Mapping Chapter 29, "Configuring a Relational Direct-to-Field Mapping"

Transformation Mapping Chapter 39, "Configuring a Relational Transformation Mapping"

Direct-to-XMLType Mapping Chapter 30, "Configuring a Relational Direct-to-XMLType Mapping"

One-to-One Mapping Chapter 31, "Configuring a Relational One-to-One Mapping"

Variable One-to-One Mapping Chapter 32, "Configuring a Relational Variable One-to-One Mapping"

One-to-Many Mapping Chapter 33, "Configuring a Relational One-to-Many Mapping"

Many-to-Many Mapping Chapter 34, "Configuring a Relational Many-to-Many Mapping"

Aggregate Collection Mapping Chapter 35, "Configuring a Relational Aggregate Collection Mapping"

Direct Collection Mapping Chapter 36, "Configuring a Relational Direct Collection Mapping"

Direct Map Mapping Chapter 38, "Configuring a Relational Direct Map Mapping"

Configuring Common Relational Mapping Options

28-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Chapter 17, "Introduction to Mappings"

■ Chapter 27, "Introduction to Relational Mappings"

28.2 Configuring Common Relational Mapping Options
Table 28–2 lists the configurable options shared by two or more relational mapping
types.

Aggregate Object Mapping Chapter 37, "Configuring a Relational Aggregate Object Mapping"

Table 28–2 Common Relational Mapping Options

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Database field (see Section 28.3, "Configuring a Database
Field")

Reference descriptor (see Section 28.4, "Configuring
Reference Descriptor")

Container policy (see Section 121.14, "Configuring
Container Policy")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Default null value (see Section 121.5, "Configuring a
Default Null Value at the Mapping Level")

Read-only mapping (see Section 121.2, "Configuring
Read-Only Mappings")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

Private or Independent relationships (see Section 121.7,
"Configuring Private or Independent Relationships")

Mapping comments (see Section 121.8, "Configuring
Mapping Comments")

Serialized object converter (see Section 121.9, "Configuring
a Serialized Object Converter")

Type conversion converter (see Section 121.10,
"Configuring a Type Conversion Converter")

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

Bidirectional relationship (see Section 121.18, "Configuring
Bidirectional Relationship")

Batch reading (see Section 28.5, "Configuring Batch
Reading")

Query key order (see Section 28.6, "Configuring Query Key
Order")

Table and field references (see Section 28.7, "Configuring
Table and Field References (Foreign and
Target Foreign Keys)")

Joining (see Section 28.8, "Configuring Joining at the
Mapping Level")

Table 28–1 (Cont.) Configuring Relational Mappings

If you are creating... See...

Configuring a Database Field

Configuring a Relational Mapping 28-3

28.3 Configuring a Database Field
You can associate an object attribute with a database field.

Table 28–3 summarizes which relational mappings support this option.

When choosing the database field, you must consider Java and database field type
compatibility.

TopLink supports the following Java types:

■ java.lang: Boolean, Float, Integer, String, Double, Long, Short, Byte,
Byte[], Character, Character[]; all the primitives associated with these
classes

■ java.math: BigInteger, BigDecimal

■ java.sql: Date, Time, Timestamp

■ java.util: Date, Calendar

While executing reads, the mappings in Table 28–6 perform the simple one-way data
conversions that Table 28–4 describes. For two-way or more complex conversions, you
must use converters (see Section 27.2.2, "Converters and Transformers").

The mappings in Table 28–3 also allow you to specify a null value. This may be
required if primitive types are used in the object, and the database field allows null
values. For more information, see Section 121.5, "Configuring a Default Null Value at
the Mapping Level".

Table 28–3 Relational Mapping Support for Database Field

Mapping

How to Use
Oracle
JDeveloper

How to
Configure a
Database Field
Using TopLink
Workbench How to Use Java

Direct-to-Field Mapping

Direct-to-XMLType Mapping

Table 28–4 Type Conversions Provided by Direct-to-Field Mappings

Java type Database type

Integer, Float, Double, Byte, Short,
BigDecimal, BigInteger, int, float,
double, byte, short

NUMBER, NUMERIC, DECIMAL, FLOAT,
DOUBLE, INT, SMALLINT, BIT, BOOLEAN

Boolean, boolean BOOLEAN, BIT, SMALLINT, NUMBER,
NUMERIC, DECIMAL, FLOAT, DOUBLE, INT

String VARCHAR, CHAR, VARCHAR2, CLOB, TEXT,
LONG, LONG VARCHAR, MEMO

The following types apply only to Oracle9:
NVARCHAR2, NCLOB, NCHAR

byte[] BLOB, LONG RAW, IMAGE, RAW, VARBINARY,
BINARY, LONG VARBINARY

Time TIME

java.sql.Date DATE

Timestamp, java.util.Date,
Calendar

TIMESTAMP

Configuring a Database Field

28-4 Developer's Guide for Oracle TopLink

Support for oracle.sql.TimeStamp
TopLink provides additional support for mapping Java date and time data types to
Oracle Database DATE, TIMESTAMP, and TIMESTAMPTZ data types when you use the
Oracle JDBC driver with Oracle9i Database or later and the Oracle9Platform in
TopLink.

In a direct-to-field mapping, you are not required to specify the database type of the
field value; TopLink determines the appropriate data type conversion.

Table 28–5 lists the supported direct-to-field mapping combinations.

Note that some of these mappings result in a loss of precision: avoid these
combinations if you require this level of precision. For example, if you create a
direct-to-field mapping between a java.sql.Date attribute and a TIMESTAMPTZ
database field, there is no loss of precision. However, if you create a direct-to-field
mapping between a java.sql.Timestamp attribute and a DATE database field, the
nanoseconds or milliseconds of the attribute are not stored in the database.

28.3.1 How to Configure a Database Field Using TopLink Workbench
Use this procedure to select a specific database field for a direct mapping.

1. Select the direct mapping attribute in the Navigator. Its properties appear in the
Editor.

Table 28–5 Supported Oracle Database Date and Time Direct-to-Field Mappings

Java Type Database Type Description

java.sql.Time TIMESTAMP Full bidirectional support.

TIMESTAMPTZ Full bidirectional support.

DATE Full bidirectional support.

java.sql.Date TIMESTAMP Full bidirectional support.

TIMESTAMPTZ Full bidirectional support.

DATE Full bidirectional support.

java.sql.Timestamp TIMESTAMP Full bidirectional support.

TIMESTAMPTZ Full bidirectional support.

DATE Nanoseconds are not stored in the database.

java.util.Date TIMESTAMP Full bidirectional support.

TIMESTAMPTZ Full bidirectional support.

DATE Milliseconds are not stored in the database.

java.util.Calendar TIMESTAMP Native SQL or binding gives Calendar timezone.

Note: The TIMESTAMP database value has no timezone
– the Calendar object provides the local timezone by
default. If the database is not in this timezone, you must
obtain the database timezone by some other means and
update the Calendar object accordingly. For this reason,
TIMESTAMPTZ may be a better choice.

TIMESTAMPTZ Native SQL or binding stores timezone; standard SQL is
based on the local timezone.

DATE Neither timezone nor milliseconds are stored in the
database.

Configuring Reference Descriptor

Configuring a Relational Mapping 28-5

2. Click the General tab. The General tab appears.

Figure 28–1 Direct Mapping General Tab, Database Field Option

Use the Database Field field to select a field for this direct mapping. You must have
previously associated the descriptor with a database table as described in Section 23.2,
"Configuring Associated Tables".

28.4 Configuring Reference Descriptor
In relational mappings that extend
oracle.toplink.mappings.ForeignReferenceMapping, attributes reference
other TopLink descriptors–not the data source. You can select any descriptor in the
project.

Table 28–6 summarizes which relational mappings support this option.

Note: For direct-to-field mappings of an aggregate descriptor (see
Section 23.6, "Configuring a Relational Descriptor as a Class or
Aggregate Type"), this field is for display only and cannot be changed.

Table 28–6 Relational Mapping Support for Reference Descriptor

Mapping

How to Use
Oracle
JDeveloper

How to
Configure a
Reference
Descriptor Using
TopLink
Workbench How to Use Java

One-to-one (see Section 27.5,
"One-to-One Mapping")

Variable one-to-one (see
Section 27.6, "Variable
One-to-One Mapping")

One-to-many (see Section 27.7,
"One-to-Many Mapping")

Many-to-many (see Section 27.8,
"Many-to-Many Mapping")

Configuring Reference Descriptor

28-6 Developer's Guide for Oracle TopLink

28.4.1 How to Configure a Reference Descriptor Using TopLink Workbench
To specify a reference descriptor for a relational mapping, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 28–2 General Tab, Reference Descriptor Field

Use the Reference Descriptor field to select the descriptor referenced by this
relationship mapping.

Aggregate collection (see
Section 27.9, "Aggregate
Collection Mapping")

Aggregate object (see
Section 27.12, "Aggregate Object
Mapping")

Note: For aggregate mappings the Reference Descriptor must be an
aggregate. See Section 23.6, "Configuring a Relational Descriptor as a
Class or Aggregate Type" for more information.

For variable one-to-one mappings, the Reference Descriptor must be
an interface. See Chapter 32, "Configuring a Relational Variable
One-to-One Mapping" for more information.

Table 28–6 (Cont.) Relational Mapping Support for Reference Descriptor

Mapping

How to Use
Oracle
JDeveloper

How to
Configure a
Reference
Descriptor Using
TopLink
Workbench How to Use Java

Configuring Batch Reading

Configuring a Relational Mapping 28-7

You can specify a reference descriptor that is not in the current TopLink Workbench
project. For example, to create a mapping to an Employee class that does not exist in
the current project, do the following:

1. Add the Employee class to your current project. See Section 116.2, "Working with
Projects".

2. Create the relationship mapping to the Employee descriptor.

3. Deactivate the Employee descriptor. See Active and Inactive Descriptors.

When you generate the deployment XML for your project, the mapping to the
Employee class will be included, but not the Employee class.

28.5 Configuring Batch Reading
Batch reading can be used in most of the relational mappings. This feature should be
used only if it is known that the related objects are always required with the source
object.

Table 28–7 summarizes which relational mappings support this option.

28.5.1 How to Configure Batch Reading Using TopLink Workbench
To use batch reading in a relationship mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Table 28–7 Relational Mapping Support for Batch Reading

Mapping
How to Use Oracle
JDeveloper

How to
Configure Batch
Reading Using
TopLink
Workbench

How to
Configure Batch
Reading Using
Java

One-to-one (see Section 27.5,
"One-to-One Mapping")

One-to-many (see Section 27.7,
"One-to-Many Mapping")

Many-to-many (see
Section 27.8, "Many-to-Many
Mapping")

Direct collection (see
Section 27.10, "Direct
Collection Mapping")

Direct map (see Section 27.11,
"Direct Map Mapping")

Aggregate object (see
Section 27.12, "Aggregate
Object Mapping")

Configuring Query Key Order

28-8 Developer's Guide for Oracle TopLink

Figure 28–3 General Tab, Batch Reading Option

To specify that this mapping using batch reading, select the Batch Reading option.

28.5.2 How to Configure Batch Reading Using Java
Example 28–1 shows how to use a DescriptorCustomizer class to add batch
reading to a mapping.

Example 28–1 Query Optimization Using Batching

public void customize(ClassDescriptor descriptor) {
OneToManyMapping phoneNumbersMapping = new OneToManyMapping();
phoneNumbersMapping =

(OneToManyMapping)descriptor.getMappingForAttributeName("phones");
phoneNumbersMapping.useBatchReading();

// add mapping to descriptor
descriptor.addMapping(phoneNumbersMapping);

}

28.6 Configuring Query Key Order
You can configure TopLink to maintain collections in order by query key.

Table 28–8 summarizes which relational mappings support this option.

Table 28–8 Relational Mapping Support for Query Key Order

Mapping

How to Use
Oracle
JDeveloper

How to
Configure Query
Key Order Using
TopLink
Workbench

How to
Configure Query
Key Order Using
Java

Many-to-many (see Section 27.8,
"Many-to-Many Mapping")

Configuring Query Key Order

Configuring a Relational Mapping 28-9

28.6.1 How to Configure Query Key Order Using TopLink Workbench
To specify the order of a mapping’s query keys, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Ordering tab. The Ordering tab appears.

Figure 28–4 Ordering Tab

28.6.2 How to Configure Query Key Order Using Java
Example 28–2 shows how to use the DescriptorCustomizer class to add complex
ordering to a mapping.

Example 28–2 Configuring Query Key Order

public void customize(ClassDescriptor descriptor) {

OneToManyMapping phoneNumbersMapping = new OneToManyMapping();

phoneNumbersMapping =
(OneToManyMapping)descriptor.getMappingForAttributeName("phones");

One-to-many (see Section 27.7,
"One-to-Many Mapping")

Aggregate collection (see
Section 27.9, "Aggregate
Collection Mapping")

Field Description

Query Key Specify the query key to order by.

Click Add to add query keys to, or Remove to remove query
keys from the ordering operation.

Click Up or Down to change the sort order of selected query
keys.

Order Specify if TopLink orders the selected query key in Ascending or
Descending (alphabetical) order.

Table 28–8 (Cont.) Relational Mapping Support for Query Key Order

Mapping

How to Use
Oracle
JDeveloper

How to
Configure Query
Key Order Using
TopLink
Workbench

How to
Configure Query
Key Order Using
Java

Configuring Table and Field References (Foreign and Target Foreign Keys)

28-10 Developer's Guide for Oracle TopLink

phoneNumbersMapping.addAscendingOrdering("areaCode");

ExpressionBuilder phone =
phoneNumbersMapping.getSelectionQuery().getExpressionBuilder();

phoneNumbersMapping.getSelectionQuery().addOrdering(
phone.get("type").toUpperCase().ascending());

// add mapping to descriptor
descriptor.addMapping(phoneNumbersMapping);

}

28.7 Configuring Table and Field References (Foreign and
Target Foreign Keys)

A foreign key is a combination of one or more database columns that reference a
unique key, usually the primary key, in another table. Foreign keys can be any number
of fields (similar to a primary key), all of which are treated as a unit. A foreign key and
the parent key it references must have the same number and type of fields.

Mappings that extend oracle.toplink.mappings.ForeignReferenceMapping
use foreign keys to find information in the database so that the target object(s) can be
instantiated. For example, if every Employee has an attribute address that contains
an instance of Address (which has its own descriptor and table) then, the one-to-one
mapping for the address attribute would specify foreign key information to find an
Address for a particular Employee.

TopLink classifies foreign keys into two categories in mappings–foreign keys and
target foreign keys:

■ In a foreign key, the key is found in the table associated with the mapping’s own
descriptor. For example, an Employee foreign key to ADDRESS would be in the
EMPLOYEE table.

■ In a target foreign key, the reference is from the target object’s table back to the key
from the mapping’s descriptor’s table. For example, the ADDRESS table would
have a foreign key to EMPLOYEE.

The table reference is the database table that contains the foreign key references.

Table 28–9 summarizes which relational mappings support this option.

Note: You can provide the same functionality by using a descriptor
amendment method (see Section 13.6, "Using the Descriptor
Amendment Methods").

Caution: Make sure you fully understand the distinction between
foreign key and target foreign key before defining a mapping.

Configuring Table and Field References (Foreign and Target Foreign Keys)

Configuring a Relational Mapping 28-11

Using TopLink Workbench, you can either import this table from your database or
create it. If you import tables from the database (see Section 5.5.1.3, "Importing Tables
from a Database"), TopLink creates references that correspond to existing database
constraints (if supported by the driver). You can also define references in TopLink
without creating similar constraints on the database.

28.7.1 How to Configure Table and Field References (Foreign and Target Foreign Keys)
Using TopLink Workbench

To specify a table for a mapping reference, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Table Reference tab. The Reference tab appears.

Figure 28–5 Table Reference Tab, Table Reference Field

Use the following information to select the field references on the tab:

Table 28–9 Relational Mapping Support for Table Reference

Mapping

How to Use
Oracle
JDeveloper

How to
Configure Table
and Field
References
(Foreign and
Target Foreign
Keys) Using
TopLink
Workbench

How to
Configure Table
and Field
References
(Foreign and
Target Foreign
Keys) Using
Java

One-to-one (see Section 27.5,
"One-to-One Mapping")

One-to-many (see Section 27.7,
"One-to-Many Mapping")

Many-to-many (see Section 27.8,
"Many-to-Many Mapping")

Aggregate collection (see
Section 27.9, "Aggregate
Collection Mapping")

Direct collection (see
Section 27.10, "Direct Collection
Mapping")

Direct map (see Section 27.11,
"Direct Map Mapping")

Configuring Table and Field References (Foreign and Target Foreign Keys)

28-12 Developer's Guide for Oracle TopLink

28.7.2 How to Configure Table and Field References (Foreign and Target Foreign Keys)
Using Java

Use the addTargetForeignKeyFieldName method (and pass the name of the field
name of the target foreign key and the source of the primary key in the source table) to
specify foreign key information.

For composite source primary keys, use the addTargetForeignKeyFieldName
method for each of the fields that comprise the primary key.

Example 28–3 shows how to use the DescriptorCustomizer class to add complex
join to a mapping.

Example 28–3 Adding Complex Join to a Mapping

public void customize(ClassDescriptor descriptor) {

OneToManyMapping phoneNumbersMapping = new OneToManyMapping();
phoneNumbersMapping =

(OneToManyMapping)descriptor.getMappingForAttributeName("cellPhones");

ExpressionBuilder phone =
phoneNumbersMapping.getSelectionQuery().getExpressionBuilder();

phoneNumbersMapping.addTargetForeignKeyFieldName("PHONE.EMP_ID", "EMP.ID");

phoneNumbersMapping.getSelectionQuery(
phone.getField("PHONE.EMP_ID").equal(phone.getParameter("EMP.ID").
and(phone.getField("PHONE.TYPE').equal("CELL")));

// add mapping to descriptor
descriptor.addMapping(phoneNumbersMapping);

}

Field Description

Table Reference Select an existing table, or click New to create a new table
reference.

Source and Target Field Click Add to create new foreign key reference.

To delete an existing key pair reference, select the Source
and Target fields and click Remove.

Source Field Select the database field from the source table for this
foreign key reference.

Target Field Select the database field from the target table for this
foreign key reference.

Target Foreign Key Specify whether or not the reference is from the target
object’s table back to the key from the mapping’s
descriptor’s table.

Note: You can provide the same functionality by using a descriptor
amendment method (see Section 13.6, "Using the Descriptor
Amendment Methods").

Configuring Joining at the Mapping Level

Configuring a Relational Mapping 28-13

28.8 Configuring Joining at the Mapping Level
TopLink supports configuring an inner or outer join at the mapping level for a
ForeignReferenceMapping. When a class that owns the mapping is read, the
TopLink runtime will always get the class and the target of the reference mapping with
one database hit.

Use this feature only if the target object is always required with the source object, or
when indirection (lazy loading) is not used. For more information, see Section 17.2.4,
"Indirection (Lazy Loading)".

You can also configure join reading at the query level. For more information, see
Section 108.7.1.5, "Join Reading and Object-Level Read Queries".

You can use Oracle JDeveloper, TopLink Workbench, or Java to configure joining at the
mapping level.

For more information about joins, see Section 110.2.7, "Expressions for Joining and
Complex Relationships".

28.8.1 How to Configure Joining at the Mapping Level Using TopLink Workbench
To use joining in a relationship mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 28–6 General Tab, Use Joining Option

To use joining with this relationship, select the appropriate join-fetch method:

■ Inner

■ Outer

■ None (default)

Configuring Joining at the Mapping Level

28-14 Developer's Guide for Oracle TopLink

28.8.2 How to Configure Joining at the Mapping Level Using Java
Example 28–4 shows how to use the DescriptorCustomizer class to add complex
join at the mapping level.

Example 28–4 Adding Join at the Mapping Level

public void customize(ClassDescriptor descriptor) {

OneToManyMapping addressMapping = new OneToManyMapping();
addressMapping =

(OneToManyMapping)descriptor.getMappingForAttributeName("address");
addressMapping.useJoining();
...
// add mapping to descriptor
descriptor.addMapping(addressMapping);

}

Note: You can provide the same functionality by using a descriptor
amendment method (see Section 13.6, "Using the Descriptor
Amendment Methods").

29

Configuring a Relational Direct-to-Field Mapping 29-1

29Configuring a Relational Direct-to-Field
Mapping

This chapter describes the various components that you must configure in order to use
a relational direct-to-field mapping.

This chapter includes the following section:

■ Introduction to Relational Direct-to-Field Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

29.1 Introduction to Relational Direct-to-Field Mapping Configuration
Table 29–1 lists the configurable options for a relational direct-to-field mapping.

Example 29–1 shows how to create a direct-to-field mapping and add it to a descriptor
using Java code.

Table 29–1 Configurable Options for Relational Direct-to-Field Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Database field (see Section 28.3, "Configuring a Database
Field")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Default null value (see Section 121.5, "Configuring a Default
Null Value at the Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Mapping comments (see Section 121.8, "Configuring Mapping
Comments")

Serialized object converter (see Section 121.9, "Configuring a
Serialized Object Converter")

Type conversion converter (see Section 121.10, "Configuring a
Type Conversion Converter")

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

Introduction to Relational Direct-to-Field Mapping Configuration

29-2 Developer's Guide for Oracle TopLink

Example 29–1 Direct-to-Field Mapping

public void customize(ClassDescriptor descriptor) {
DirectToFieldMapping mapping = new DirectToFieldMapping();

// configure mapping
...

// add mapping to descriptor
descriptor.addMapping(mapping);

}
For more information, see the following:

■ Section 27.3, "Direct-to-Field Mapping"

■ Chapter 28, "Configuring a Relational Mapping"

■ Part XXVIII, "Creation and Configuration of Mappings"

30

Configuring a Relational Direct-to-XMLType Mapping 30-1

30Configuring a Relational Direct-to-XMLType
Mapping

This chapter describes the various components that you must configure in order to use
a relational direct-to-XMLType mapping.

This chapter includes the following sections:

■ Introduction to Relational Direct-to-XMLType Mapping

■ Configuring Read Whole Document

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

30.1 Introduction to Relational Direct-to-XMLType Mapping
Table 30–1 lists the configurable options for a relational direct-to-XMLType mapping.

Example 30–1 shows how to create a direct-to-XMLType mapping and add it to a
descriptor using Java code.

Example 30–1 Direct-to-XMLType Mapping

public void customize(ClassDescriptor descriptor) {
DirectToXMLTypeMapping mapping = new DirectToXMLTypeMapping();

// configure mapping
...

Table 30–1 Configurable Options for Relational Direct-To-XMLType Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Database field (see Section 28.3, "Configuring a Database Field")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Read whole document (see Section 30.2, "Configuring Read
Whole Document")

Mapping comments (see Section 121.8, "Configuring Mapping
Comments")

Configuring Read Whole Document

30-2 Developer's Guide for Oracle TopLink

// add mapping to descriptor
descriptor.addMapping(mapping);

}
For more information, see the following:

■ Section 27.4, "Direct-to-XMLType Mapping"

■ Chapter 28, "Configuring a Relational Mapping"

■ Part XXVIII, "Creation and Configuration of Mappings"

30.2 Configuring Read Whole Document
When mapping an XML Type to a Document Object Model (DOM), by default
TopLink uses the database representation of the DOM. This allows for lazy loading of
the XML data from the database.

However, if you require the entire DOM, (or if you require the DOM to be available in
a disconnected fashion from the database connection) use the Read Whole option to
retrieve the entire DOM from the database.

30.2.1 How to Configure Read Whole Document Using TopLink Workbench
To specify that this mapping reads the whole XML document, use this procedure:

1. Select the mapping in the Navigator. Its properties appear in the Editor.

2. Click General. The General tab appears.

Figure 30–1 DIrect to XML Mapping Property Sheet, Read Whole Document Option

Choose the Read Whole Document option to read the whole XML document. If you
do not select this option, the connection must remain open for TopLink to read the
database values.

30.2.2 How to Configure Read Whole Document Using Java
Use the following DirectToXMLTypeMapping methods:

■ setShouldReadWholeDocument

■ shouldReadWholeDocument

For more information about the available methods for DirectToXMLTypeMapping,
see the Oracle Fusion Middleware Java API Reference for Oracle TopLink.

31

Configuring a Relational One-to-One Mapping 31-1

31Configuring a Relational One-to-One
Mapping

This chapter describes the various components that you must configure in order to use
a relational one-to-one mapping.

This chapter includes the following sections:

■ Introduction to Relational One-to-One Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

31.1 Introduction to Relational One-to-One Mapping Configuration
Table 31–1 lists the configurable options for a relational one-to-one mapping.

Table 31–1 Configurable Options for Relational One-to-One Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Reference descriptor (see Section 28.4, "Configuring Reference
Descriptor")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Read-only mapping (see Section 121.2, "Configuring Read-Only
Mappings")

Private or Independent relationships (see Section 121.7,
"Configuring Private or Independent Relationships")

Batch reading (see Section 28.5, "Configuring Batch Reading")

Joining (see Section 28.8, "Configuring Joining at the Mapping
Level")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

Bidirectional relationship (see Section 121.18, "Configuring
Bidirectional Relationship")

Mapping comments (see Section 121.8, "Configuring Mapping
Comments")

Table and field references (see Section 28.7, "Configuring Table
and Field References (Foreign and Target Foreign Keys)")

Introduction to Relational One-to-One Mapping Configuration

31-2 Developer's Guide for Oracle TopLink

Example 31–1 shows how to create a one-to-one mapping and add it to a descriptor
using Java code.

Example 31–1 One-to-One Mapping

public void customize(ClassDescriptor descriptor) {
OneToOneMapping mapping = new OneToOneMapping();

// configure mapping
...

// add mapping to descriptor
descriptor.addMapping(mapping);

}
For more information, see the following:

■ Section 27.5, "One-to-One Mapping"

■ Chapter 28, "Configuring a Relational Mapping"

■ Part XXVIII, "Creation and Configuration of Mappings"

For information on using JPA to configure one-to-one mappings, see "@OneToOne"
section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Introduction_to_EclipseLink_JPA_
%28ELUG%29#.40OneToOne.

32

Configuring a Relational Variable One-to-One Mapping 32-1

32Configuring a Relational Variable
One-to-One Mapping

This chapter describes the various components that you must configure in order to use
a relational variable one-to-one mapping.

This chapter includes the following sections:

■ Introduction to Relational Variable One-to-One Mapping Configuration

■ Configuring Class Indicator

■ Configuring Unique Primary Key

■ Configuring Query Key Association

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

32.1 Introduction to Relational Variable One-to-One Mapping
Configuration

Table 32–1 lists the configurable options for a relational variable one-to-one mapping.

Table 32–1 Configurable Options for Relational Variable One-to-One Mapping

Option
Oracle
JDeveloper

TopLink
Workbench Java

Section 28.4, "Configuring Reference Descriptor"

Section 121.6, "Configuring Method or Direct Field
Accessing at the Mapping Level"

Section 121.2, "Configuring Read-Only Mappings"

Section 121.7, "Configuring Private or Independent
Relationships"

Section 121.3, "Configuring Indirection (Lazy Loading)"

Section 121.8, "Configuring Mapping Comments"

Section 32.4, "Configuring Query Key Association"

Section 32.2, "Configuring Class Indicator"

Section 32.3, "Configuring Unique Primary Key"

Configuring Class Indicator

32-2 Developer's Guide for Oracle TopLink

Example 32–1 shows how to create a variable one-to-one mapping and add it to a
descriptor using Java code.

Example 32–1 Variable One-to-One Mapping

public void customize(ClassDescriptor descriptor) {
VariableOneToOneMapping mapping = new VariableOneToOneMapping();

// configure mapping
...

// add mapping to descriptor
descriptor.addMapping(mapping);

}
For more information, see the following:

■ Section 27.6, "Variable One-to-One Mapping"

■ Chapter 28, "Configuring a Relational Mapping"

■ Part XXVIII, "Creation and Configuration of Mappings"

32.2 Configuring Class Indicator
In variable one-to-one mappings, you can use an indicator column in the source table
to specify the correct target table, as illustrated in Figure 32–1. This section includes
information on implementing class indicators.

A source table has an indicator column that specifies the target table through the class
indicator field.

Figure 32–1 illustrates the EMPLOYEE table that has a TYPE column that indicates the
target for the row (either PHONE or EMAIL).

Figure 32–1 Variable One-to-One Mapping using Class indicator Field

The principles of defining such a variable class relationship are similar to defining a
normal one-to-one relationship, except:

■ The reference class is a Java interface, not a Java class. However, the method to set
the interface is identical.

■ You must specify a type indicator field.

■ You specify the class indicator values on the mapping so that mapping can
determine the class of object to create.

■ You must specify the foreign key names and the respective abstract query keys
from the target interface descriptor.

Configuring Class Indicator

Configuring a Relational Variable One-to-One Mapping 32-3

Alternatively, you can use unique primary keys to specify the correct target. See
Section 32.3, "Configuring Unique Primary Key" for more information.

32.2.1 How to Configure a Class Indicator Using TopLink Workbench
To specify the class indicators for a variable one-to-one mapping, use this procedure:

1. Select the variable one-to-one mapping in the Navigator. Its attributes appear in
the Editor.

2. Click the Class Indicator Info tab. The Class Indicator Info tab appears.

Figure 32–2 Class Indicator Info Tab

Use the Class Indicator Field to select the field on the database table (associated with
the mapping’s descriptor) to use as the indicator for the variable mapping.

Use the Indicator Type to specify the data type of the class indicator field by selecting
the data type from the list.

To specify the specific class indicator field values for each (nonabstract) child class,
click Edit and enter the appropriate value for each child class.

32.2.2 How to Configure a Class Indicator Using Java
Example 32–2 illustrates how to define a variable one-to-one mapping using a class
(type) indicator in Java code.

Example 32–2 Defining Variable One-to-One Mapping Using a Class Indicator

public void customize(ClassDescriptor descriptor) {
VariableOneToOneMapping variableOneToOneMapping =

new VariableOneToOneMapping();
variableOneToOneMapping.setAttributeName("contact");
variableOneToOneMapping.setReferenceClass (Contact.class);
variableOneToOneMapping.setForeignQueryKeyName ("C_ID", "id");
variableOneToOneMapping.setTypeFieldName("TYPE");

// configure class indicators
variableOneToOneMapping.addClassIndicator(Email.class, "Email");
variableOneToOneMapping.addClassIndicator(Phone.class, "Phone");

variableOneToOneMapping.dontUseIndirection();
variableOneToOneMapping.privateOwnedRelationship();

// add mapping to descriptor
descriptor.addMapping(variableOneToOneMapping);

}

Configuring Unique Primary Key

32-4 Developer's Guide for Oracle TopLink

For more information about the available methods for VariableOneToOneMapping,
see the Oracle Fusion Middleware Java API Reference for Oracle TopLink.

32.3 Configuring Unique Primary Key
In variable one-to-one mappings, you can use a unique primary key in the source table
to specify the correct target table, as illustrated in Figure 32–4. This section includes
information on implementing class indicators.

Alternatively, you can use a class indicator to specify the correct target. See
Section 32.2, "Configuring Class Indicator" for more information.

32.3.1 How to Configure a Unique Primary Key UsingTopLink Workbench
To specify the variable one-to-one mapping with a primary key, use this procedure:

1. Select the variable one-to-one mapping in the Navigator. Its attributes appear in
the Editor.

2. Click the Class Indicator Info tab. The Class Indicator Info tab appears.

Figure 32–3 Class Indicator Info Tab, Configuring Primary Key

Use the Class Indicator Field to select none.

Use the Indicator Type to select none.

Use the Indicator Value column to specify none.

After choosing the reference descriptor for the mapping, deselect the Include check
boxes.

32.3.2 How to Configure a Unique Primary Key Using Java
Example 32–3 illustrates how to define a variable one-to-one mapping using a unique
primary key in Java code.

Example 32–3 Defining Variable One-to-One Mapping Using a Unique Primary Key

public void customize(ClassDescriptor descriptor) {
VariableOneToOneMapping variableOneToOneMapping =

new VariableOneToOneMapping();
variableOneToOneMapping.setAttributeName("contact");

Note: You cannot deselect the value in the Class Indicator Field,
unless the foreign key values in the source table are unique.

Configuring Query Key Association

Configuring a Relational Variable One-to-One Mapping 32-5

variableOneToOneMapping.setReferenceClass(Contact.class);
variableOneToOneMapping.setForeignQueryKeyName("C_ID", "id");
variableOneToOneMapping.dontUseIndirection();
variableOneToOneMapping.privateOwnedRelationship();

// add mapping to descriptor
descriptor.addMapping(variableOneToOneMapping);

}
For more information about the available methods for VariableOneToOneMapping,
see the Oracle Fusion Middleware Java API Reference for Oracle TopLink.

32.3.3 What You May Need to Know About Unique Primary Keys
As Figure 32–4 illustrates, the value of the foreign key in the source table (C_ID)
mapped to the primary key of the target table is unique. No primary key values
among the target tables are the same, so primary key values are not unique just in the
table, but also among the tables.

Figure 32–4 Variable One-to-One Relationship with Unique Primary Key

If there is no indicator stored in the source table, TopLink cannot determine to which
target table the foreign key value is mapped. Therefore, TopLink reads through all the
target tables until it finds an entry in one of the target tables. This is an inefficient way
of setting up a relation model. The class indicator is much more efficient as it reduces
the number of reads performed on the tables to get the data. In the class indicator
method, TopLink knows exactly which target table to look into for the data.

The principles of defining such a variable class relationship are similar to defining
class indicator variable one-to-one relationships, except the following:

■ A type indicator field is not specified.

■ The class indicator values are not specified.

The type indicator field and its values are not needed, because TopLink goes through
all the target tables until data is finally found.

32.4 Configuring Query Key Association
This section includes information on configuring query key associations using
development tools, as well as Java.

32.4.1 How to Configure a Query Key Association Using TopLink Workbench
To specify the query keys used for a variable one-to-one mapping, use this procedure:

1. Select the variable one-to-one mapping in the Navigator. Its attributes appear in
the Editor.

Configuring Query Key Association

32-6 Developer's Guide for Oracle TopLink

2. Click the Query Key Associations tab. The Query Key Associations tab appears

Figure 32–5 Query Key Associations Tab

Use the following information to enter data in each field on the tab:

Use the Indicator Type to specify the data type of the class indicator field by selecting
the data type from the list.

32.4.2 How to Configure a Query Key Association Using Java
The API to configure query key associations is
oracle.toplink.mappings.VariableOneToOneMapping method
addForeingQueryKeyName(String, String).

For more information about the available methods for VariableOneToOneMapping,
see the Oracle Fusion Middleware Java API Reference for Oracle TopLink.

Field Description

Foreign Key The field from the database table to use as the foreign key in this
relationship.

Query Key Name The name of the query key (from the referenced descriptor) for
this association. See Section 119.10, "Configuring Query Keys"
for more information.

33

Configuring a Relational One-to-Many Mapping 33-1

33Configuring a Relational One-to-Many
Mapping

This chapter describes the various components that you must configure in order to use
a relational one-to-many mapping.

This chapter includes the following section:

■ Introduction to Relational One-to-Many Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

33.1 Introduction to Relational One-to-Many Mapping Configuration
Table 33–1 lists the configurable options for a relational one-to-many mapping.

Table 33–1 Configurable Options for Relational One-to-Many Mapping

Option
Oracle
JDeveloper

TopLink
Workbench Java

Reference descriptor (see Section 28.4, "Configuring
Reference Descriptor")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Read-only mapping (see Section 121.2, "Configuring
Read-Only Mappings")

Private or Independent relationships (see Section 121.7,
"Configuring Private or Independent Relationships")

Batch reading (see Section 28.5, "Configuring Batch
Reading")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

Bidirectional relationship (see Section 121.18, "Configuring
Bidirectional Relationship")

Container policy (see Section 121.14, "Configuring Container
Policy")

Mapping comments (see Section 121.8, "Configuring
Mapping Comments")

Table and field references (see Section 28.7, "Configuring
Table and Field References (Foreign and
Target Foreign Keys)")

Introduction to Relational One-to-Many Mapping Configuration

33-2 Developer's Guide for Oracle TopLink

Example 33–1 shows how to create a one-to-many mapping and add it to a descriptor
using Java code.

Example 33–1 One-to-Many Mapping

public void customize(ClassDescriptor descriptor) {
OneToManyMapping mapping = new OneToManyMapping();

// configure mapping
...

// add mapping to descriptor
descriptor.addMapping(mapping);

}
For more information, see the following:

■ Section 27.7, "One-to-Many Mapping"

■ Chapter 28, "Configuring a Relational Mapping"

■ Part XXVIII, "Creation and Configuration of Mappings"

For information on using JPA to configure one-to-many mappings, see "@OneToMany"
section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Introduction_to_EclipseLink_JPA_
%28ELUG%29#.40OneToMany.

Query key order (see Section 28.6, "Configuring Query Key
Order")

Table 33–1 (Cont.) Configurable Options for Relational One-to-Many Mapping

Option
Oracle
JDeveloper

TopLink
Workbench Java

34

Configuring a Relational Many-to-Many Mapping 34-1

34Configuring a Relational Many-to-Many
Mapping

This chapter describes the various components that you must configure in order to use
a relational many-to-many mapping.

This chapter includes the following sections:

■ Introduction to Relational Many-to-Many Mapping Configuration

■ Configuring a Relation Table

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

34.1 Introduction to Relational Many-to-Many Mapping Configuration
Table 34–1 lists the configurable options for a relational many-to-many mapping.

Table 34–1 Configurable Options for Relational Many-to-Many Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Reference descriptor (see Section 28.4, "Configuring
Reference Descriptor")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Read-only mapping (see Section 121.2, "Configuring
Read-Only Mappings")

Private or Independent relationships (see Section 121.7,
"Configuring Private or Independent Relationships")

Batch reading (see Section 28.5, "Configuring Batch Reading")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

Bidirectional relationship (see Section 121.18, "Configuring
Bidirectional Relationship")

Container policy (see Section 121.14, "Configuring Container
Policy")

Mapping comments (see Section 121.8, "Configuring
Mapping Comments")

Relational table (see Section 34.2, "Configuring a Relation
Table")

Configuring a Relation Table

34-2 Developer's Guide for Oracle TopLink

Example 34–1 shows how to create a many-to-many mapping and add it to a
descriptor using Java code.

Example 34–1 Many-to-Many Mapping

public void customize(ClassDescriptor descriptor) {
ManyToManyMapping mapping = new ManyToManyMapping();

// configure mapping
...

// add mapping to descriptor
descriptor.addMapping(mapping);

}
For more information, see the following:

■ Section 27.8, "Many-to-Many Mapping"

■ Chapter 28, "Configuring a Relational Mapping"

■ Part XXVIII, "Creation and Configuration of Mappings"

For information on using JPA to configure many-to-many mappings, see
"@ManyToMany" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Introduction_to_EclipseLink_JPA_
%28ELUG%29#.40ManyToMany.

34.2 Configuring a Relation Table
The relation table contains the columns for the primary keys of the source table and
target table involved in the many-to-many mapping. You must create this table in the
database before completing the mapping. See Section 5.5, "Using Databases" for
information on creating database tables.

In Figure 27–5, the PROJ_EMP table serves as the relation table between the PROJECT
and EMPLOYEE tables.

34.2.1 How to Configure a Relation Table Using TopLink Workbench
To select a relation table for a mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Table and field references (see Section 28.7, "Configuring
Table and Field References (Foreign and
Target Foreign Keys)") (Source)

Table and field references (see Section 28.7, "Configuring
Table and Field References (Foreign and
Target Foreign Keys)") (Target)

Query key order (see Section 28.6, "Configuring Query Key
Order")

Table 34–1 (Cont.) Configurable Options for Relational Many-to-Many Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Configuring a Relation Table

Configuring a Relational Many-to-Many Mapping 34-3

Figure 34–1 Table Reference Tab, Relation Table Option

Use the Relation Table field to select a database table to define this mapping.

34.2.2 How to Configure a Relation Table Using Java
Many-to-many mappings represent the relationships between a collection of source
objects and a collection of target objects. This requires an intermediate table that
manages the associations between the source and target records.

Many-to-many mappings are instances of the ManyToManyMapping class and
requires the following elements:

■ The attribute mapped, set by using the setAttributeName method.

■ The reference class, set by using the setReferenceClass method.

■ The relation table, set by using the setRelationTableName() method.

■ The foreign key information (for noncomposite target primary keys), which you
specify by calling the setSourceRelationKeyFieldName and
setTargetRelationKeyFieldName methods.

■ The foreign key information if the source or target primary keys are composite,
which you specify by sending the addSourceRelationKeyFieldName or
addTargetRelationKeyFieldName methods.

Example 34–2 Configuring a Relational Table

public void customize(ClassDescriptor descriptor) {
// In the Employee class, create the mapping that references Project class
ManyToManyMapping manyToManyMapping = new ManyToManyMapping();
manyToManyMapping.setAttributeName("projects");
manyToManyMapping.setReferenceClass(Project.class);

// Configure the relational table
manyToManyMapping.setRelationTableName("PROJ_EMP");
manyToManyMapping.setSourceRelationKeyFieldName ("EMPID");
manyToManyMapping.setTargetRelationKeyFieldName ("PROJID");

// Add mapping to descriptor

Configuring a Relation Table

34-4 Developer's Guide for Oracle TopLink

descriptor.addMapping(manyToManyMapping);
}
In addition to the API that Example 34–2 illustrates, other common API for use with
many-to-many mappings include the following:

■ useBasicIndirection: implements TopLink value holder indirection.

■ useTransparentCollection: if you use transparent indirection, this element
places a special collection in the source object's attribute.

■ dontUseIndirection: implements no indirection.

For more information about the available methods for ManyToManyMapping, see the
Oracle Fusion Middleware Java API Reference for Oracle TopLink.

35

Configuring a Relational Aggregate Collection Mapping 35-1

35Configuring a Relational Aggregate
Collection Mapping

This chapter describes the various components that you must configure in order to use
a relational aggregate collection mapping.

This chapter includes the following section:

■ Introduction to Relational Aggregate Collection Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

35.1 Introduction to Relational Aggregate Collection Mapping
Configuration

Table 35–1 lists the configurable options for a relational aggregate collection mapping.

Note: To use a relational aggregate collection mapping with
TopLink Workbench, you must use an amendment method (see
Section 119.35, "Configuring Amendment Methods").

Table 35–1 Configurable Options for Relational Aggregate Collection Mapping

Option
Oracle
JDeveloper

TopLink
Workbench Java

Database field (see Section 28.3, "Configuring a Database
Field")

Reference descriptor (see Section 28.4, "Configuring Reference
Descriptor")

Container policy (see Section 121.14, "Configuring Container
Policy")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Read-only mapping (see Section 121.2, "Configuring
Read-Only Mappings")

Batch reading (see Section 28.5, "Configuring Batch Reading")

Bidirectional relationship (see Section 121.18, "Configuring
Bidirectional Relationship")

Introduction to Relational Aggregate Collection Mapping Configuration

35-2 Developer's Guide for Oracle TopLink

Example 35–1 shows how to create an aggregate collection mapping and add it to a
descriptor using Java code.

Example 35–1 Aggregate Collection Mapping

public void customize(ClassDescriptor descriptor) {
AggregateCollectionMapping mapping = new AggregateCollectionMapping();

// configure mapping
...

// add mapping to descriptor
descriptor.addMapping(mapping);

}
For more information, see the following:

■ Section 27.9, "Aggregate Collection Mapping"

■ Chapter 28, "Configuring a Relational Mapping"

■ Part XXVIII, "Creation and Configuration of Mappings"

Query key order (see Section 28.6, "Configuring Query Key
Order")

Table and field references (see Section 28.7, "Configuring
Table and Field References (Foreign and
Target Foreign Keys)")

Table 35–1 (Cont.) Configurable Options for Relational Aggregate Collection Mapping

Option
Oracle
JDeveloper

TopLink
Workbench Java

36

Configuring a Relational Direct Collection Mapping 36-1

36Configuring a Relational Direct Collection
Mapping

This chapter describes the various components that you must configure in order to use
a relational direct collection mapping.

This chapter includes the following sections:

■ Introduction to Relational Direct Collection Mapping Configuration

■ Configuring Target Table

■ Configuring Direct Value Field

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

36.1 Introduction to Relational Direct Collection Mapping Configuration
Table 36–1 lists the configurable options for a relational direct collection mapping.

Table 36–1 Configurable Options for Relational Direct Collection Mapping

Option
Oracle
JDeveloper

TopLink
Workbench Java

Target table (see Section 36.2, "Configuring Target Table")

Direct value field (see Section 36.3, "Configuring Direct Value
Field")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Read-only mapping (see Section 121.2, "Configuring
Read-Only Mappings")

Batch reading (see Section 28.5, "Configuring Batch Reading")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

Container policy (see Section 121.14, "Configuring Container
Policy")

Mapping comments (see Section 121.8, "Configuring Mapping
Comments")

Serialized object converter (see Section 121.9, "Configuring a
Serialized Object Converter")

Type conversion converter (see Section 121.10, "Configuring a
Type Conversion Converter")

Configuring Target Table

36-2 Developer's Guide for Oracle TopLink

Example 36–1 shows how to create a direct collection mapping and add it to a
descriptor using Java code.

Example 36–1 Direct Collection Mapping

public void customize(ClassDescriptor descriptor) {
DirectCollectionMapping mapping = new DirectCollectionMapping();

// configure mapping
...

// add mapping to descriptor
descriptor.addMapping(mapping);

}
For more information, see the following:

■ Section 27.10, "Direct Collection Mapping"

■ Chapter 28, "Configuring a Relational Mapping"

■ Part XXVIII, "Creation and Configuration of Mappings"

For information on using JPA to configure direct collection mappings, see "How to Use
the @BasicCollection Annotation" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Use_the_.40BasicCollection_Annotation.

36.2 Configuring Target Table
Each direct collection stores reference information in a target table. In Figure 27–6, the
RESPONS table contains the primary key and object of the instance owning the
collection. You must create this table in your database.

36.2.1 How to Configure a Target Table Using TopLink Workbench
To specify the direct collection specifics, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

Table and field references (see Section 28.7, "Configuring Table
and Field References (Foreign and Target Foreign Keys)")

Table 36–1 (Cont.) Configurable Options for Relational Direct Collection Mapping

Option
Oracle
JDeveloper

TopLink
Workbench Java

Configuring Target Table

Configuring a Relational Direct Collection Mapping 36-3

Figure 36–1 General Tab, Target Table Options

Use the Target Table list to select the table that contains the reference fields for the
direct collection mapping.

36.2.2 How to Configure a Target Table Using Java
Direct collection mappings store collections of Java objects that are not
TopLink-enabled. Direct collections usually store Java types, such as String.

Direct collection mappings are instances of the DirectCollectionMapping class
and require the following elements:

■ The attribute mapped, set by using the setAttributeName method.

■ The database table that holds the values to be stored in the collection, set by using
the setReferenceTableName method.

■ The field in the reference table from which the values are read and placed into the
collection; this is called the direct field. Set it using the setDirectFieldName
method.

■ The foreign key information, which you specify using the
setReferenceKeyFieldName method and passing the name of the field that is
a foreign reference to the primary key of the source object

Example 36–2 Configuring a Simple Direct Collection Mapping

public void customize(ClassDescriptor descriptor) {
DirectCollectionMapping directCollectionMapping =

new DirectCollectionMapping();
directCollectionMapping.setAttributeName ("responsibilitiesList");
directCollectionMapping.setReferenceTableName ("RESPONS"); // target table
directCollectionMapping.setDirectFieldName ("DESCRIP");
directCollectionMapping.setReferenceKeyFieldName ("EMP_ID");
directCollectionMapping.useCollectionClass (Collection.class); // default

Note: If the target primary key is composite, call the
addReferenceKeyFieldName method for each of the fields that make
up the key.

Configuring Direct Value Field

36-4 Developer's Guide for Oracle TopLink

// add this mapping to descriptor
descriptor.addMapping (directCollectionMapping);

}
In addition to the API that Example 36–2 illustrates, other common API for use with
direct collection mappings include the following:

■ useBasicIndirection: implements TopLink value holder indirection.

■ useTransparentCollection: if you use transparent indirection, this element
places a special collection in the source object's attribute.

■ dontUseIndirection: implements no indirection.

For more information about the available methods for DirectCollectionMapping,
see the Oracle Fusion Middleware Java API Reference for Oracle TopLink.

36.3 Configuring Direct Value Field
The direct value field, located in the reference table, stores the primitive data value. In
Figure 27–6, the DESCRIP field stores the collection.

36.3.1 How to Configure a Direct Value Field Using TopLink Workbench
To specify the direct collection specifics, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 36–2 General Tab, Direct Value Field

Use the Direct Value Field list to select the field from the Target Table table that
contains the object of the collection.

36.3.2 How to Configure Direct Value Field Using Java
Example 36–2, "Configuring a Simple Direct Collection Mapping" demonstrates how
to create and configure a direct collection mapping, including the setting of a direct
field. The example also shows how to add this mapping to the descriptor.

37

Configuring a Relational Aggregate Object Mapping 37-1

37Configuring a Relational Aggregate Object
Mapping

This chapter describes the various components that you must configure in order to use
a relational aggregate object mapping.

This chapter includes the following sections:

■ Introduction to Relational Aggregate Object Mapping Configuration

■ Configuring Aggregate Fields

■ Configuring Allowing Null Values

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

37.1 Introduction to Relational Aggregate Object Mapping Configuration
Table 37–1 lists the configurable options for a relational aggregate object mapping.

Note: You configure the relational aggregate object mapping in the
source object’s descriptor. However, before doing so, you must
designate the target object’s descriptor as an aggregate (see
Section 23.6, "Configuring a Relational Descriptor as a Class or
Aggregate Type").

Table 37–1 Configurable Options for Relational Aggregate Object Mapping

Option
Oracle
JDeveloper

TopLink
Workbench Java

Reference descriptor (see Section 28.4, "Configuring
Reference Descriptor")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Read-only mapping (see Section 121.2, "Configuring
Read-Only Mappings")

Allowing null values (see Section 37.3, "Configuring
Allowing Null Values")

Mapping comments (see Section 121.8, "Configuring
Mapping Comments")

Configuring Aggregate Fields

37-2 Developer's Guide for Oracle TopLink

Example 37–1 shows how to create an aggregate object mapping and add it to a
descriptor using Java code.

Example 37–1 Aggregate Object Mapping

public void customize(ClassDescriptor descriptor) {
AggregateObjectMapping mapping = new AggregateObjectMapping();

// configure mapping
...

// add mapping to descriptor
descriptor.addMapping(mapping);

}
For more information, see the following:

■ Section 27.12, "Aggregate Object Mapping"

■ Chapter 28, "Configuring a Relational Mapping"

■ Part XXVIII, "Creation and Configuration of Mappings"

37.2 Configuring Aggregate Fields
When you designate a descriptor as an aggregate, TopLink allows you to specify a
mapping type for each field in the target class, but defers associating the field with a
database table until you configure the aggregate object mapping in the source class
descriptor. In other words, the target class descriptor defines how each target class
field is mapped but the source class descriptor defines where each target class field is
mapped.

This section explains how to configure the source class descriptor to define where each
target class field is mapped.

For more information on how to configure the target class descriptor to define how
each target class field is mapped, see Section 23.6, "Configuring a Relational Descriptor
as a Class or Aggregate Type".

37.2.1 How to Configure Aggregate Fields Using TopLink Workbench
To specify the mapped fields of an aggregate mapping, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Fields tab. The Fields tab appears.

Aggregate fields (see Section 37.2, "Configuring Aggregate
Fields")

Table 37–1 (Cont.) Configurable Options for Relational Aggregate Object Mapping

Option
Oracle
JDeveloper

TopLink
Workbench Java

Configuring Allowing Null Values

Configuring a Relational Aggregate Object Mapping 37-3

Figure 37–1 Fields Tab

Use the following information to complete each field on the tab:

37.2.2 How to Configure Aggregate Fields Using Java
Using the AggregateObjectMapping method addFieldNameTranslation you
can set a field name translation that maps from a field name in the source table to a
field name in the aggregate descriptor

For more information about the available methods for AggregateObjectMapping,
see the Oracle Fusion Middleware Java API Reference for Oracle TopLink.

37.3 Configuring Allowing Null Values
If all the fields in the database row for the aggregate object are null, then, by default,
TopLink places null in the appropriate source object, as opposed to filling an
aggregate object with null values.

37.3.1 How to Configure Allowing Null Values Using TopLink Workbench
To allow a mapping to contain a null value, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Field Description

Field Description This column shows the name of the fields from the target
object, whose descriptor is designated as an aggregate (see
Section 23.6, "Configuring a Relational Descriptor as a Class
or Aggregate Type"). These are for display only and cannot
be changed.

Fields Use this column to select the source object database table
field that TopLink will map to the corresponding target
object field.

Configuring Allowing Null Values

37-4 Developer's Guide for Oracle TopLink

Figure 37–2 General Tab, Allow Null Option

Select the Allows Null option to allow this mapping to contain a null value.

37.3.2 How to Configure Allowing Null Values Using Java
You can configure whether or not to allow null values using the
AggregateObjectMapping methods allowNull and dontAllowNull.

For more information about the available methods for AggregateObjectMapping,
see the Oracle Fusion Middleware Java API Reference for Oracle TopLink.

38

Configuring a Relational Direct Map Mapping 38-1

38Configuring a Relational Direct Map Mapping

This chapter describes the various components that you must configure in order to use
a relational direct map mapping.

This chapter includes the following sections:

■ Introduction to Relational Direct Map Mapping Configuration

■ Configuring Direct Value Field

■ Configuring Direct Key Field

■ Configuring Key Converters

■ Configuring Value Converters

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

38.1 Introduction to Relational Direct Map Mapping Configuration
Table 38–1 lists the configurable options for a relational direct map mapping.

Table 38–1 Configurable Options for Relational Direct Map Mapping

Option
Oracle
JDeveloper

TopLink
Workbench Java

Target table (see Section 36.2, "Configuring Target Table")

Direct value field (see Section 38.2, "Configuring Direct Value
Field")

Direct key field (see Section 38.3, "Configuring Direct Key
Field")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Read-only mapping (see Section 121.2, "Configuring
Read-Only Mappings")

Batch reading (see Section 28.5, "Configuring Batch Reading")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

Container policy (see Section 121.14, "Configuring Container
Policy")

Mapping comments (see Section 121.8, "Configuring Mapping
Comments")

Configuring Direct Value Field

38-2 Developer's Guide for Oracle TopLink

Example 38–1 shows how to create a direct map mapping and add it to a descriptor
using Java code.

Example 38–1 Direct Map Mapping

public void customize(ClassDescriptor descriptor) {
DirectMapMapping mapping = new DirectMapMapping();

// configure mapping
...

// add mapping to descriptor
descriptor.addMapping(mapping);

}
For more information, see the following:

■ Section 27.11, "Direct Map Mapping"

■ Chapter 28, "Configuring a Relational Mapping"

■ Part XXVIII, "Creation and Configuration of Mappings"

For information on using JPA to configure direct map mappings, see "How to Use the
@BasicMap Annotation" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Use_the_.40BasicMap_Annotation.

38.2 Configuring Direct Value Field
The direct value field in the reference table stores the primitive data value of the map
value. If the value’s object value and database value are different types, use a
converter (see Section 38.5, "Configuring Value Converters").

38.2.1 How to Configure Direct Value Fields Using TopLink Workbench
1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Key converters (see Section 38.4, "Configuring Key
Converters")

Value converters (see Section 38.5, "Configuring Value
Converters")

Table and field references (see Section 28.7, "Configuring Table
and Field References (Foreign and Target Foreign Keys)")

Table 38–1 (Cont.) Configurable Options for Relational Direct Map Mapping

Option
Oracle
JDeveloper

TopLink
Workbench Java

Configuring Direct Key Field

Configuring a Relational Direct Map Mapping 38-3

Figure 38–1 General Tab, Direct Value Field

Use the Direct Value Field list to select the field from the Target Table table that
contains the object of the direct map mapping.

38.2.2 How to Configure Direct Value Fields Using Java
Use the DirectMapMapping method setDirectFieldName to set the direct fields
for your mapping.

For more information about the available methods for DirectMapMapping, see the
Oracle Fusion Middleware Java API Reference for Oracle TopLink.

38.3 Configuring Direct Key Field
The direct key field in the reference table stores the primitive data value of the map
key. If the key’s object value and database value are different types, use a converter
(see Section 38.4, "Configuring Key Converters").

38.3.1 How to Configure Direct Key Field Using TopLink Workbench
To specify the direct key field in the reference table, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Configuring Key Converters

38-4 Developer's Guide for Oracle TopLink

Figure 38–2 General Tab, Direct Key Field

Use the Direct Key Field list to select the key from the Target Table table that contains
the object of the direct map mapping.

38.3.2 How to Configure Direct Key Field Using Java
Use the DirectMapMapping method setDirectKeyFieldName to set the direct
key field for your mapping.

For more information about the available methods for DirectMapMapping, see the
Oracle Fusion Middleware Java API Reference for Oracle TopLink.

38.4 Configuring Key Converters
If the key’s object value and database value are different types, use a converter.
TopLink supports the following key converters:

■ Section 17.2.6.1, "Serialized Object Converter"

■ Section 17.2.6.2, "Type Conversion Converter"

■ Section 17.2.6.3, "Object Type Converter"

38.4.1 How to Configure Key Converters Using TopLink Workbench
Use this procedure to specify the converter for a direct map mapping key:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Converter tab. The Converter tab appears.

3. Click the Key Converter tab. The Key Converter tab appears.

Configuring Value Converters

Configuring a Relational Direct Map Mapping 38-5

Figure 38–3 Converter Tab, Key Converter Subtab

38.4.2 How to Configure Key Converters Using Java
You can configure whether or not to allow null values using the DirectMapMapping
method setKeyConverter.

For more information about the available methods for DirectMapMapping, see the
Oracle Fusion Middleware Java API Reference for Oracle TopLink.

38.5 Configuring Value Converters
If the value’s object value and database value are different types, use a converter.
TopLink supports the following value converters:

■ Section 17.2.6.1, "Serialized Object Converter"

■ Section 17.2.6.2, "Type Conversion Converter"

■ Section 17.2.6.3, "Object Type Converter"

38.5.1 How to Configure Value Converters Using TopLink Workbench
1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Converter tab. The Converter tab appears.

3. Click the Value Converter tab. The Value Converter tab appears.

Converter Description

No Converter Do not use a Key Converter for this mapping.

Serialized Object Converter See Section 121.9, "Configuring a Serialized Object
Converter".

Type Conversion Converter See Section 121.10, "Configuring a Type Conversion
Converter".

Object Type Converter See Section 121.11, "Configuring an Object Type
Converter".

Configuring Value Converters

38-6 Developer's Guide for Oracle TopLink

Figure 38–4 Converter Tab, Value Converter Subtab

Converter Description

No Converter Do not use a Value Converter for this mapping.

Serialized Object Converter See Section 121.9, "Configuring a Serialized Object
Converter".

Type Conversion Converter See Section 121.10, "Configuring a Type Conversion
Converter".

Object Type Converter See Section 121.11, "Configuring an Object Type
Converter".

39

Configuring a Relational Transformation Mapping 39-1

39Configuring a Relational Transformation
Mapping

This chapter describes the various components that you must configure in order to use
a relational transformation mapping.

This chapter includes the following section:

■ Introduction to Relational Transformation Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

39.1 Introduction to Relational Transformation Mapping Configuration
Table 39–1 lists the configurable options for a relational transformation mapping.

Example 39–1 shows how to create a transformation mapping and add it to a
descriptor using Java code.

Example 39–1 Transformation Mapping

public void customize(ClassDescriptor descriptor) {
TransformationMapping mapping = new TransformationMapping();

Table 39–1 Configurable Options for Relational Transformation Mapping

Option
Oracle
JDeveloper

TopLink
Workbench Java

Attribute transformer (see Section 121.15, "Configuring
Attribute Transformer")

Field transformer associations (see Section 121.16,
"Configuring Field Transformer Associations")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

Mutable Section 121.17, "Configuring Mutable Mappings"

Mapping comments (see Section 121.8, "Configuring Mapping
Comments")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Read-only mapping (see Section 121.2, "Configuring
Read-Only Mappings")

Introduction to Relational Transformation Mapping Configuration

39-2 Developer's Guide for Oracle TopLink

// configure mapping
...

// add mapping to descriptor
descriptor.addMapping(mapping);

}
For more information, see the following:

■ Section 27.13, "Transformation Mapping"

■ Chapter 28, "Configuring a Relational Mapping"

■ Part XXVIII, "Creation and Configuration of Mappings"

Part XIII
Part XIII Object-Relational Data Type Mappings

An object-relational data type mapping transforms certain object data member types to
structured data source representations optimized for storage in specialized
object-relational data type databases (such as Oracle Database). Object-relational data
type mappings let you map an object model into an object-relational data type data
model.

This part contains the following chapters:

■ Chapter 40, "Introduction to Object-Relational Data Type Mappings"

This chapter describes each of the different TopLink object-relational data type
mapping types and important object-relational data type mapping concepts.

■ Chapter 41, "Configuring an Object-Relational Data Type Mapping"

This chapter explains how to configure TopLink object-relational data type
mapping options common to two or more object-relational data type mapping
types.

■ Chapter 42, "Configuring an Object-Relational Data Type Structure Mapping"

This chapter explains how to configure a structure object-relational data type
mapping.

■ Chapter 43, "Configuring an Object-Relational Data Type Reference Mapping"

This chapter explains how to configure a reference object-relational data type
mapping.

■ Chapter 44, "Configuring an Object-Relational Data Type Array Mapping"

This chapter explains how to configure an array object-relational data type
mapping.

■ Chapter 45, "Configuring an Object-Relational Data Type Object Array Mapping"

This chapter explains how to configure an object array object-relational data type
mapping.

■ Chapter 46, "Configuring an Object-Relational Data Type Nested Table Mapping"

This chapter explains how to configure a nested table object-relational data type
mapping.

40

Introduction to Object-Relational Data Type Mappings 40-1

40Introduction to Object-Relational Data Type
Mappings

An object-relational data type mapping transforms certain object data member types to
structured data source representations optimized for storage in specialized
object-relational data type databases (such as Oracle Database). Object-relational data
type mappings let you map an object model into an object-relational data type data
model.

Do not confuse object-relational data type mappings with relational mappings (see
Chapter 27, "Introduction to Relational Mappings"). A relational mapping transforms
any object data member type to a corresponding relational database (SQL) data source
representation in any supported relational database. Relational mappings let you map
an object model into a relational data model. In general, you can use relational
mappings with any supported relational database. You can only use object-relational
data type mappings with specialized object-relational data type databases optimized
to support object-relational data type data source representations.

This chapter includes the following section:

■ Object-Relational Data Type Mapping Types

For information on mapping concepts and features common to more than one type of
TopLink mappings, see Chapter 17, "Introduction to Mappings".

40.1 Object-Relational Data Type Mapping Types
TopLink supports the object-relational data type mappings listed in Table 40–1.

These mappings allow for an object model to persist in an object-relational data type
data model. Currently, neither Oracle JDeveloper TopLink Editor nor TopLink
Workbench support object-relational data type mappings–they must be defined in
code or through amendment methods.

Object-Relational Data Type Mapping Types

40-2 Developer's Guide for Oracle TopLink

40.1.1 Object-Relational Data Type Structure Mapping
In an object-relational data type data model, structures are user-defined data types or
object types. This is similar to a Java class–it defines attributes or fields in which each
attribute is one of the following:

■ A primitive data type.

■ Another structure.

■ Reference to another structure.

TopLink maps nested structures with the StructureMapping class. The structure
mapping supports null values and shared aggregates without requiring additional
settings (because of the object-relational data type support of the database).

See Chapter 42, "Configuring an Object-Relational Data Type Structure Mapping" for
more information.

40.1.2 Object-Relational Data Type Reference Mapping
In an object-relational data type data model, structures reference each other through
refs–not through foreign keys (as in a traditional data model). Refs are based on the
target structure’s ObjectID. They represent an object reference in Java.

TopLink maps refs with the ReferenceMapping class. The reference mapping does
not require foreign key information (because of the object-relational data type support
of the database).

See Chapter 43, "Configuring an Object-Relational Data Type Reference Mapping" for
more information.

Table 40–1 TopLink Object-Relationship Mapping Types

Type of Mapping Description
Oracle
JDeveloper

TopLink
Workbench Java

Object-relational data type
structure mapping (see
Section 40.1.1,
"Object-Relational Data Type
Structure Mapping")

Map to object-relational data type aggregate
structures (the Struct type in JDBC and the
OBJECT type in Oracle Databasei)

Object-relational data type
reference mapping (see
Section 40.1.2,
"Object-Relational Data Type
Reference Mapping")

Map to object-relational data type references (the
Ref type in JDBC and the REF type in Oracle
Database)

Object-relational data type
array mapping (see
Section 40.1.3,
"Object-Relational Data Type
Array Mapping")

Map a collection of primitive data to
object-relational data type array data types (the
Array type in JDBC and the VARRAY type in
Oracle Database).

Object-relational data type
object array mapping (see
Section 40.1.4,
"Object-Relational Data Type
Object Array Mapping")

Map to object-relational data type array data types
(the Array type in JDBC and the VARRAY type in
Oracle Database).

Object-relational data type
nested table mapping (see
Section 40.1.5,
"Object-Relational Data Type
Nested Table Mapping"

Map to object-relational data type nested tables
(the Array type in JDBC and the NESTED TABLE
type in Oracle Database)

Object-Relational Data Type Mapping Types

Introduction to Object-Relational Data Type Mappings 40-3

40.1.3 Object-Relational Data Type Array Mapping
In an object-relational data type data model, structures can contain arrays (collections
of other data types). These arrays can contain primitive data types or collections of
other structures.

TopLink maps arrays of primitive data types with the ArrayMapping class. An array
mapping maps to object-relational data type array data types (the Array type in JDBC
and the VARRAY type in Oracle Database). To map a collection of aggregate structures,
use an object array mapping (see Section 40.1.4, "Object-Relational Data Type Object
Array Mapping").

The object-relational data type database stores the arrays with their parent structure in
the same table. To store information in a separate table from the parent structure’s
table, use a nested table mapping (see Section 40.1.5, "Object-Relational Data Type
Nested Table Mapping").

All elements in the array must be the same data type. The number of elements in an
array controls the size of the array. An Oracle Database allows arrays of variable sizes
(the VARRAY type).

See Chapter 44, "Configuring an Object-Relational Data Type Array Mapping" for
more information.

40.1.4 Object-Relational Data Type Object Array Mapping
In an object-relational data type data model, structures can contain arrays (collections
of other data types). These arrays can contain primitive data types or collections of
other structures.

TopLink maps arrays of structures with the ObjectArrayMapping class. An object
array mapping defines a collection-aggregated relationship, in which the target objects
share the same row as the source object.

You must associate this mapping to an attribute in the parent class.

See Chapter 45, "Configuring an Object-Relational Data Type Object Array Mapping"
for more information.

40.1.5 Object-Relational Data Type Nested Table Mapping
Nested table types model an unordered set of elements. These elements may be
built-in or user-defined types. You can view a nested table as a single-column table or,
if the nested table is an object type, as a multicolumn table (with a column for each
attribute of the object type).

TopLink maps nested tables with the NestedTableMapping class. It represents a
collection of object references in Java. Because of the object-relational data type
support of the database, nested table mapping does not require foreign key
information (as with a one-to-many mapping) or a relational table (as with a
many-to-many mapping).

Typically, nested tables represent a one-to-many or many-to-many relationship of
references to another independent structure. They support querying and joining better
than the VARRAY types that are in-lined to the parent table. TopLink supports mapping
a nested table of REF types only. TopLink does not support nested tables of basic or
other structured data types–use array (see Section 40.1.3, "Object-Relational Data Type
Array Mapping") or object array (see Section 40.1.4, "Object-Relational Data Type
Object Array Mapping") mappings instead.

Object-Relational Data Type Mapping Types

40-4 Developer's Guide for Oracle TopLink

See Chapter 46, "Configuring an Object-Relational Data Type Nested Table Mapping"
for more information.

41

Configuring an Object-Relational Data Type Mapping 41-1

41Configuring an Object-Relational Data Type
Mapping

This chapter describes how to configure an object-relational data type mapping.

This chapter includes the following sections:

■ Introduction to Object-Relational Data Type Mapping Configuration

■ Configuring Common Object-Relational Data Type Mapping Options

■ Configuring Reference Class

■ Configuring Attribute Name

■ Configuring Field Name

■ Configuring Structure Name

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

41.1 Introduction to Object-Relational Data Type Mapping Configuration
Table 41–1 lists the types of object-relational data type mappings that you can
configure and provides a cross-reference to the type-specific chapter that lists the
configurable options supported by that type.

Table 41–1 Configuring Object-Relational Data Type Mappings

If you are creating... See Also...

Object-relational data type
structure mapping (see
Section 40.1.1,
"Object-Relational Data Type
Structure Mapping")

Chapter 42, "Configuring an Object-Relational Data Type Structure
Mapping"

Object-relational data type
reference mapping (see
Section 40.1.2,
"Object-Relational Data Type
Reference Mapping")

Chapter 43, "Configuring an Object-Relational Data Type Reference
Mapping"

Object-relational data type
array mapping (see
Section 40.1.3,
"Object-Relational Data Type
Array Mapping")

Chapter 44, "Configuring an Object-Relational Data Type Array
Mapping"

Configuring Common Object-Relational Data Type Mapping Options

41-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Chapter 17, "Introduction to Mappings"

■ Chapter 27, "Introduction to Relational Mappings"

41.2 Configuring Common Object-Relational Data Type Mapping Options
Table 41–2 lists the configurable options shared by two or more object-relational data
type mapping types. In addition to the configurable options described here, you must
also configure the options described for the specific object-relational data type
mapping types (see Section 40.1, "Object-Relational Data Type Mapping Types"), as
shown in Table 41–1.

41.3 Configuring Reference Class
When mapping an attribute that involves a relationship to another class, you must
specify the reference class–the Java class to which the mapped attribute refers.

Table 41–3 summarizes which object-relational data type mappings support this
option.

Object-relational data type
object array mapping (see
Section 40.1.4,
"Object-Relational Data Type
Object Array Mapping")

Chapter 45, "Configuring an Object-Relational Data Type Object Array
Mapping"

Object-relational data type
nested table mapping (see
Section 40.1.5,
"Object-Relational Data Type
Nested Table Mapping")

Chapter 46, "Configuring an Object-Relational Data Type Nested Table
Mapping"

Table 41–2 Common Options for Object-Relational Data Type Mappings

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Reference class (see Section 41.3, "Configuring Reference
Class")

Attribute name (see Section 41.4, "Configuring Attribute
Name")

Field name (see Section 41.5, "Configuring Field Name")

Structure name (see Section 41.6, "Configuring Structure
Name")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

Container policy (see Section 121.14, "Configuring
Container Policy")

Table 41–1 (Cont.) Configuring Object-Relational Data Type Mappings

If you are creating... See Also...

Configuring Attribute Name

Configuring an Object-Relational Data Type Mapping 41-3

41.3.1 How to Configure Reference Class Using Java
Use oracle.toplink.mappings.ForeignReferenceMapping method
setReferenceClass to specify the target class of the attribute being mapped.

Example 41–1 shows how to use this method with a ReferenceMapping that maps
the manager attribute of the Employee class.

Example 41–1 Configuring Reference Class in Java

public void customize(ClassDescriptor descriptor) {
ReferenceMapping managerMapping = new ReferenceMapping();

managerMapping.setReferenceClass("Employee.class"); // set reference class
managerMapping.setAttributeName("manager");

// add this mapping to descriptor
descriptor.addMapping(managerMapping);

}
For more information, see the Oracle Fusion Middleware Java API Reference for Oracle
TopLink.

41.4 Configuring Attribute Name
All object-relational data type mappings map an attribute in a Java object to field in the
database. The attribute name is the name of the attribute being mapped. The name is
as specified in the reference class (see Section 41.3, "Configuring Reference Class").

Table 41–4 summarizes which object-relational data type mappings support this
option.

Table 41–3 Mapping Support for Reference Class

Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
Reference
Class Using
Java

Object-relational data type structure
mapping (see Section 40.1.1,
"Object-Relational Data Type Structure
Mapping")

Object-relational data type reference
mapping (see Section 40.1.2,
"Object-Relational Data Type Reference
Mapping")

Object-relational data type array mapping
(see Section 40.1.3, "Object-Relational Data
Type Array Mapping")

Object-relational data type object array
mapping (see Section 40.1.4,
"Object-Relational Data Type Object Array
Mapping")

Object-relational data type nested table
mapping (see Section 40.1.5,
"Object-Relational Data Type Nested Table
Mapping")

Configuring Field Name

41-4 Developer's Guide for Oracle TopLink

41.4.1 How to Configure Attribute Name Using Java
Use oracle.toplink.mappings.DatabaseMapping method
setAttributeName to specify the name of the attribute being mapped.

Example 41–2 shows how to use this method with a ReferenceMapping that maps
the manager attribute of the Employee class.

Example 41–2 Configuring Attribute Name in Java

public void customize(ClassDescriptor descriptor) {
ReferenceMapping managerMapping = new new ReferenceMapping();
managerMapping.setReferenceClass("Employee.class");
managerMapping.setAttributeName("manager"); // set attribute name

// add this mapping to descriptor
descriptor.addMapping (managerMapping);

}
For more information, see the Oracle Fusion Middleware Java API Reference for Oracle
TopLink.

41.5 Configuring Field Name
All object-relational data type mappings require the name of database field to which
their specified attribute is mapped. This field name can be the column name of a
database table or the name of a field in an object type created on the database.

Table 41–5 summarizes which object-relational data type mappings support this
option.

Table 41–4 Mapping Support for Attribute Name

Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
Attribute
Name Using
Java

Object-relational data type structure
mapping (see Section 40.1.1,
"Object-Relational Data Type Structure
Mapping")

Object-relational data type reference
mapping (see Section 40.1.2,
"Object-Relational Data Type Reference
Mapping")

Object-relational data type array mapping
(see Section 40.1.3, "Object-Relational Data
Type Array Mapping")

Object-relational data type object array
mapping (see Section 40.1.4,
"Object-Relational Data Type Object Array
Mapping")

Object-relational data type nested table
mapping (see Section 40.1.5,
"Object-Relational Data Type Nested Table
Mapping")

Configuring Structure Name

Configuring an Object-Relational Data Type Mapping 41-5

41.5.1 How to Configure Field Name Using Java
Use the object-relational data type mapping method setFieldName to specify the
database field to which the attribute is mapped.

Example 41–3 shows how to use this method with an ObjectArrayMapping that
maps the Employee class attribute phone to database field name PHONE_NUMBER.

Example 41–3 Configuring Field Name in Java

public void customize(ClassDescriptor descriptor) {
ObjectArrayMapping phonesMapping = new ObjectArrayMapping();
phonesMapping.setReferenceClass("Employee.class");
phonesMapping.setAttributeName("phone");
phonesMapping.setFieldName("PHONE_NUMBER"); // set field name

// add this mapping to descriptor
descriptor.addMapping (phonesMapping);

}
For more information, see the Oracle Fusion Middleware Java API Reference for Oracle
TopLink.

41.6 Configuring Structure Name
Certain object-relational data type mappings require the specification of the data type
or structure name of the field being mapped. The structure name is the name of the
array or table type that defines the field.

Table 41–6 summarizes which object-relational data type mappings support this
option.

Table 41–5 Mapping Support for Field Name

Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
Field Name
Using Java

Object-relational data type structure
mapping (see Section 40.1.1,
"Object-Relational Data Type Structure
Mapping")

Object-relational data type reference
mapping (see Section 40.1.2,
"Object-Relational Data Type Reference
Mapping")

Object-relational data type array mapping
(see Section 40.1.3, "Object-Relational Data
Type Array Mapping")

Object-relational data type object array
mapping (see Section 40.1.4,
"Object-Relational Data Type Object Array
Mapping")

Object-relational data type nested table
mapping (see Section 40.1.5,
"Object-Relational Data Type Nested Table
Mapping")

Configuring Structure Name

41-6 Developer's Guide for Oracle TopLink

41.6.1 How to Configure Structure Name Using Java
Use the object-relational data type mapping method setStructureName to specify
the structure of the attribute being mapped.

Example 41–4 shows how to use this method with an ObjectArrayMapping that
maps the Employee class attribute phones to database field name PHONE_NUMBERS
of type PHONE_ARRAY_TYPE.

Example 41–4 Configuring Structure Name in Java

public void customize(ClassDescriptor descriptor) {
ObjectArrayMapping phonesMapping = new ObjectArrayMapping();
phonesMapping.setReferenceClass("Employee.class");
phonesMapping.setAttributeName("phones");
phonesMapping.setFieldName("PHONE_NUMBERS");
phonesMapping.setStructureName("PHONE_ARRAY_TYPE"); // set structure name

// add this mapping to descriptor
descriptor.addMapping (phonesMapping);

}
For more information, see the Oracle Fusion Middleware Java API Reference for Oracle
TopLink.

Table 41–6 Mapping Support for Structure Name

Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
Structure
Name Using
Java

Object-relational data type structure
mapping (see Section 40.1.1,
"Object-Relational Data Type Structure
Mapping")

Object-relational data type reference
mapping (see Section 40.1.2,
"Object-Relational Data Type Reference
Mapping")

Object-relational data type array mapping
(see Section 40.1.3, "Object-Relational Data
Type Array Mapping")

Object-relational data type object array
mapping (see Section 40.1.4,
"Object-Relational Data Type Object Array
Mapping")

Object-relational data type nested table
mapping (see Section 40.1.5,
"Object-Relational Data Type Nested Table
Mapping")

42

Configuring an Object-Relational Data Type Structure Mapping 42-1

42Configuring an Object-Relational Data Type
Structure Mapping

This chapter describes the various components that you must configure in order to use
an object-relational data type structure mapping.

This chapter includes the following section:

■ Introduction to Object-Relational Data Type Structure Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

42.1 Introduction to Object-Relational Data Type Structure Mapping
Configuration

Table 42–1 lists the configurable options for an object-relational data type structure
mapping.

For more information, see the following:

■ Section 40.1.1, "Object-Relational Data Type Structure Mapping"

■ Chapter 41, "Configuring an Object-Relational Data Type Mapping"

Table 42–1 Configurable Options for Object-Relational Data Type Structure Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Reference class (see Section 41.3, "Configuring Reference
Class")

Attribute name (see Section 41.4, "Configuring Attribute
Name")

Field name (see Section 41.5, "Configuring Field Name")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Introduction to Object-Relational Data Type Structure Mapping Configuration

42-2 Developer's Guide for Oracle TopLink

43

Configuring an Object-Relational Data Type Reference Mapping 43-1

43Configuring an Object-Relational Data Type
Reference Mapping

This chapter describes the various components that you must configure in order to use
an object-relational data type reference mapping.

This chapter includes the following section:

■ Introduction to Object-Relational Data Type Reference Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

43.1 Introduction to Object-Relational Data Type Reference Mapping
Configuration

Table 43–1 lists the configurable options for an object-relational data type reference
mapping.

For more information, see the following:

■ Section 40.1.2, "Object-Relational Data Type Reference Mapping"

■ Chapter 41, "Configuring an Object-Relational Data Type Mapping"

Table 43–1 Configurable Options for Object-Relational Data Type Reference Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Reference class (see Section 41.3, "Configuring Reference Class")

Attribute name (see Section 41.4, "Configuring Attribute
Name")

Field name (see Section 41.5, "Configuring Field Name")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Private or independent relationships (see Section 121.7,
"Configuring Private or Independent Relationships")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

Introduction to Object-Relational Data Type Reference Mapping Configuration

43-2 Developer's Guide for Oracle TopLink

44

Configuring an Object-Relational Data Type Array Mapping 44-1

44Configuring an Object-Relational Data Type
Array Mapping

This chapter describes the various components that you must configure in order to use
an object-relational data type array mapping.

This chapter includes the following section:

■ Introduction to Object-Relational Data Type Array Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

44.1 Introduction to Object-Relational Data Type Array Mapping
Configuration

Table 44–1 lists the configurable options for an object-relational data type array
mapping.

Note: To map a collection of aggregate structures, use an
object-relational data type object array mapping (see Section 40.1.4,
"Object-Relational Data Type Object Array Mapping"). To store
information in a separate table from the parent structure’s table, use
an object-relational data type nested table mapping (see Section 40.1.5,
"Object-Relational Data Type Nested Table Mapping").

Table 44–1 Configurable Options for Object-Relational Data Type Array Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Attribute name (see Section 41.4, "Configuring Attribute
Name")

Field name (see Section 41.5, "Configuring Field Name")

Structure name (see Section 41.6, "Configuring Structure
Name")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Introduction to Object-Relational Data Type Array Mapping Configuration

44-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Section 40.1.3, "Object-Relational Data Type Array Mapping"

■ Chapter 41, "Configuring an Object-Relational Data Type Mapping"

Serialized object converter (see Section 121.9,
"Configuring a Serialized Object Converter")

Type conversion converter (see Section 121.10,
"Configuring a Type Conversion Converter")

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

Container policy (see Section 121.14, "Configuring
Container Policy")

Table 44–1 (Cont.) Configurable Options for Object-Relational Data Type Array Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

45

Configuring an Object-Relational Data Type Object Array Mapping 45-1

45Configuring an Object-Relational Data Type
Object Array Mapping

This chapter describes the various components that you must configure in order to use
an object-relational data type object array mapping.

This chapter includes the following section:

■ Introduction to Object-Relational Data Type Object Array Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

45.1 Introduction to Object-Relational Data Type Object Array Mapping
Configuration

Table 45–1 lists the configurable options for an object-relational data type object array
mapping.

For more information, see the following:

■ Section 40.1.4, "Object-Relational Data Type Object Array Mapping"

■ Chapter 41, "Configuring an Object-Relational Data Type Mapping"

Table 45–1 Configurable Options for Object-Relational Data Type Object Array Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Reference class (see Section 41.3, "Configuring Reference
Class")

Attribute name (see Section 41.4, "Configuring Attribute
Name")

Field name (see Section 41.5, "Configuring Field Name")

Structure name (see Section 41.6, "Configuring Structure
Name")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Container policy (see Section 121.14, "Configuring Container
Policy")

Introduction to Object-Relational Data Type Object Array Mapping Configuration

45-2 Developer's Guide for Oracle TopLink

46

Configuring an Object-Relational Data Type Nested Table Mapping 46-1

46Configuring an Object-Relational Data Type
Nested Table Mapping

This chapter describes the various components that you must configure in order to use
an object-relational data type nested table mapping.

This chapter includes the following section:

■ Introduction to Object-Relational Data Type Nested Table Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

46.1 Introduction to Object-Relational Data Type Nested Table Mapping
Configuration

Table 46–1 lists the configurable options for an object-relational data type nested table
mapping.

Note: For an equivalent mapping for basic or other structured data
types, use object-relational data type array (see Section 40.1.3,
"Object-Relational Data Type Array Mapping") or object array (see
Section 40.1.4, "Object-Relational Data Type Object Array Mapping")
mappings.

Table 46–1 Configurable Options for Object-Relational Data Type Nested Table Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Reference class (see Section 41.3, "Configuring Reference
Class")

Attribute name (see Section 41.4, "Configuring Attribute
Name")

Field name (see Section 41.5, "Configuring Field Name")

Structure name (see Section 41.6, "Configuring Structure
Name")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Introduction to Object-Relational Data Type Nested Table Mapping Configuration

46-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Section 40.1.5, "Object-Relational Data Type Nested Table Mapping"

■ Chapter 41, "Configuring an Object-Relational Data Type Mapping"

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

Container policy (see Section 121.14, "Configuring
Container Policy")

Table 46–1 (Cont.) Configurable Options for Object-Relational Data Type Nested Table

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Part XIV
Part XIV XML Projects

This part describes XML projects and contains the following chapters:

■ Chapter 47, "Introduction to XML Projects"

This chapter introduces XML project concepts.

■ Chapter 48, "Creating an XML Project"

This chapter explains how to create XML projects.

■ Chapter 49, "Configuring an XML Project"

This chapter explains how to configure XML projects.

47

Introduction to XML Projects 47-1

47 Introduction to XML Projects

This chapter provides an overview of XML projects and their components.

This chapter includes the following section:

■ XML Project Concepts

For information on project concepts and features common to more than one type of
TopLink projects, see Chapter 15, "Introduction to Projects".

47.1 XML Project Concepts
Use an XML project for nontransactional, nonpersistent (in-memory) conversions
between Java objects and XML documents using JAXB (see Section 47.1.1, "TopLink
Support for Java Architecture for XML Binding (JAXB)" and Section 47.1.2, "JAXB
Validation"). Both Oracle JDeveloper TopLink Editor and TopLink Workbench provide
complete support for creating XML projects.

The TopLink runtime performs XML data conversion based on one or more XML
schemas. In an XML project, TopLink Workbench directly references schemas in the
deployment XML, and exports mappings configured with respect to the schemas you
specify. For information on how to use TopLink Workbench with XML schemas, see
Section 5.6, "Using XML Schemas". For information on how TopLink supports XML
namespaces, see Section 15.4, "XML Namespaces Overview".

Table 47–1 describes the components of an XML project.

Table 47–1 XML Project Components

Component Supported Types

Data Source None

Descriptors For more information, see Section 50.1, "XML Descriptor
Concepts".

Mappings For more information, see the following:

■ Part VIII, "Mappings"

■ Part XVI, "XML Mappings"

Note: In an XML project, you do not use TopLink queries and
expressions.

XML Project Concepts

47-2 Developer's Guide for Oracle TopLink

47.1.1 TopLink Support for Java Architecture for XML Binding (JAXB)
JAXB defines annotations to control the mapping of Java objects to XML, but it also
defines a default set of mappings. Using the defaults, TopLink can marshall a set of
objects into XML, and unmarshall an XML document into objects. JAXB provides a
standard Java object-to-XML API. For more information, see
http://java.sun.com/xml/jaxb/index.html.

TopLink provides an extra layer of functions on top of JAXB. It allows for the creation
and subsequent manipulation of mappings (in the form of a TopLink runtime project
or TopLink Workbench project) from an existing object model, without requiring the
recompilation of the JAXB object model.

An essential component of this function is the TopLink JAXB compiler. Using the
TopLink JAXB compiler, you can generate both a TopLink XML project and
JAXB-compliant object model classes from your XML schema.

The TopLink JAXB compiler simplifies JAXB application development with TopLink
by automatically generating (see Section 48.2, "Creating an XML Project from an XML
Schema") both the required JAXB files (see Section 47.1.1.2, "Working with
JAXB-Specific Generated Files") and the TopLink files from your XML schema (XSD)
document.

For more information on using the JAXB and TopLink-specific run-time classes, see
Section 47.1.1.3, "Using TopLink JAXB Compiler-Generated Files at Run Time".

For information on marshalling POJOs with JAXB, see
http://www.oracle.com/technology/products/ias/toplink/preview/ho
w-to/JAXBwithPOJOs.html.

47.1.1.1 Generating TopLink Project and XML Schema Using JAXB Annotations
The TopLink JAXB compiler generates a TopLink project and an XML schema using
JAXB annotations that Table 47–2 lists.

Table 47–2 JAXB Annotations Supported by TopLink

Annotation Description Level

XmlRootElement Indicates that a class should be mapped to
a root-level element in a schema.

The element name and namespace are
specified in this annotation.

Class

XmlElement Indicates that a particular attribute on a
Java class should be mapped to an XML
element in the schema.

The name and namespace can be specified
by this annotation.

Field

XmlAttribute Indicates that the Java attribute should
map to an XML attribute in the schema.

Name and namespace should be provided.

Field

XmlElementWrapper Specifies a wrapper element around
another element or attribute.

You can use this annotation to create a
grouping element around a collection.

Field

XmlList Indicates that a collection property should
map to a space-separated list in XML.

Field

XML Project Concepts

Introduction to XML Projects 47-3

XmlType Defines the complex-type for a class.

Using this annotation’s propOrder
property, you can specify the order in
which to map elements. The propOrder
property also determines if the schema
should contain a sequence or an all.
Depending on the structure of the class, it
will either map to a ComplexType, a
SimpleType, or a ComplexType with
SimpleContent.

Class

XmlTransient Indicates that a mapping should not be
generated for a particular field.

This is a marker annotation.

Field

XmlSchema Specifies the target namespace for a
schema.

You can also use this annotation to
configure namespace prefix mappings
with the XmlNs annotation.

Package

XmlNs Appears only in an XmlSchema
annotation to specify namespace-prefix
mappings.

Package

XmlValue Maps an attribute to a text node under the
parent class (for example, an Xpath of
"text()").

Also indicates that the owning class
should map to either a SimpleType or a
ComplexType with SimpleContent.

Field

XmlEnum Indicates that a JDK 1.5 Enum type should
map to a simple type with enumeration
facets in the schema.

The base schema type is specified on this
annotation.

Field

XmlEnumValue Lets you specify the enumeration facets to
be used in the schema, if they are to be
different from the string values of the
Enum constants specified in Java.

Field

XmlAccessorType Specifies how the classes’ attributes should
be processed.

The following are valid values:

■ FIELD–Process all the public and/or
private fields of the class.

■ PROPERTY–Process all the public or
private get and set method pairs on
the class.

■ PUBLIC_MEMBER–Process all the
public fields and public get and set
method pairs on the class.

■ NONE–Only process members that are
annotated with JAXB annotations.

Package or class

Table 47–2 (Cont.) JAXB Annotations Supported by TopLink

Annotation Description Level

XML Project Concepts

47-4 Developer's Guide for Oracle TopLink

For more information, see Chapter 8 of JAXB 2.0 Specification at
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html

47.1.1.2 Working with JAXB-Specific Generated Files
The TopLink JAXB compiler generates the following JAXB-specific files from your
XSD:

■ Implementation Classes

The JAXB runtime uses these files as specified by the JAXB specification.

All JAXB-specific files are generated in the output directory you define, and in the
subdirectories implied by the target package name you define. For more information
about TopLink JAXB binding compiler options, see Section 48.2, "Creating an XML
Project from an XML Schema".

Before you compile your generated classes, be sure to configure your IDE classpath to
include <ORACLE_HOME>\lib\xml.jar. For an example, see Chapter 7, "Using an
Integrated Development Environment".

47.1.1.2.1 Implementation Classes All implementation classes are named according to
the content, element, or implementation name attribute defined in the XSD.

XmlAccessorOrder Specifies the order in which properties are
to be processed.

The following are valid values:

■ DEFAULT

■ ALPHABETICAL

Package or class

XmlSchemaType If specified at a property level, indicates
the schema type that should be used in
schema generation.

If used as part of an XmlSchemaTypes
annotation, overrides default schema types
at a package level.

Property or package

XmlSchemaTypes Contains a collection of XmlSchemaType
annotations. Each one specifies a Java class
and a XML schema type pair that should
be used as a default for this package.

Package

XmlAnyAttribute Specifies that a Map property should be
mapped to an xs:any attribute in the
schema. For more information, see
XMLAnyAttributeMapping (see
Section 53.18, "XML Any Attribute
Mapping")

Field

Note: The TopLink project is generated from a collection of
annotated Java classes with support for relationships, collection-style
mappings, and JDK 1.5 enumerations.

The schema is generated from a set of annotated Java classes with
support for relationships.

Table 47–2 (Cont.) JAXB Annotations Supported by TopLink

Annotation Description Level

XML Project Concepts

Introduction to XML Projects 47-5

The generated implementation classes are simple domain classes, with private
attributes for each JAXB property, and public get and set methods that return or set
attribute values.

47.1.1.3 Using TopLink JAXB Compiler-Generated Files at Run Time
At run time, you can access the TopLink JAXB compiler-generated files by doing the
following:

■ Using TopLink XMLContext (see Section 47.1.1.3.1, "How to Use TopLink
XMLContext")

■ Using TopLink XMLBinder (see Section 47.1.1.3.3, "How to Use TopLink
XMLBinder")

■ Using TopLink JAXBContext (see Section 47.1.1.3.4, "How to Use JAXBContext")

47.1.1.3.1 How to Use TopLink XMLContext TopLink provides an
oracle.toplink.ox.XMLContext class using which you can create instances of
TopLink XMLMarshaller, XMLUnmarshaller, XMLBinder (see Section 47.1.1.3.3,
"How to Use TopLink XMLBinder"), and XMLValidator.

The XMLContext is thread-safe. For example, if multiple threads accessing the same
XMLContext object request an XMLMarshaller, each will receive their own instance
of XMLMarshaller, so any state that the XMLMarshaller maintains will be unique
to that process. By using the XMLContext, you can use TopLink XML in
multithreaded architectures, such as the binding layer for Web services.

Create the XMLContext using its constructor method and by passing in the session
name defined in the sessions.xml file, as the following example shows:

XMLContext context = new XMLContext("mysession");
You can also create the XMLContext from multiple sessions using a colon separated
list of session names, as the following example shows:

XMLContext context = new XMLContext("session1:session2:session3");
Use the XMLContext to create a TopLink XMLMarshaller, XMLUnmarshaller,
XMLBinder, and XMLValidator, as follows:

XMLMarshaller marshaller = context.createMarshaller();
marshaller.marshal(myObject, outputStream);
marshaller.setFormattedOutput(true);

XMLUnmarshaller unmarshaller = context.createUnmarshaller();
Employee emp = (Employee)unmarshaller.unmarshal(new File("employee.xml"));

XMLBinder binder = context.createBinder();
Address add = (Address)binder.unmarshal(myElement);

XMLValidator validator = context.createValidator();
boolean isValid = validator.validate(emp);
Using the XMLContext getDocumentPreservationPolicy method, you can
retrieve this context’s document preservation policy in a form of the
DocumentPreservationPolicy object. This object’s API lets you specify the
position of newly added to the node elements, as well as disable the addition of new
elements.

47.1.1.3.2 How to Use Marshal and Unmarshall Events You can provide TopLink
XMLMarshaller and XMLUnmarshaller with additional functionality at run time
by registering them with a listener to handle specific event callbacks. This allows for

XML Project Concepts

47-6 Developer's Guide for Oracle TopLink

extra processing on a business object either immediately before, or immediately after
an object is written to or read from XML.

There are two types of event callbacks that you can handle in two different ways:

1. To handle listener-based callbacks, set an event handler on an instance of
XMLMarshaller or XMLUnmarshaller that implements a required interface,
such as XMLMarshalListener or XMLUnmarshalListener. The events are
triggered on the marshaller or unmarshaller's listener for any classes being
marshalled or unmarshalled.

2. To handle class-specific callbacks, you need to provide the required callback
methods on your business objects.

Example 47–1 shows how to create your custom event listeners.

Example 47–1 Implementing the TopLink XMLMarhsalListener and
XMLUnmarhsalListener Interfaces

public class EmployeeMarshalListener implements XMLMarshalListener {

public void beforeMarshal(Object target) {
// do something

}

public void afterMarshal(Object target) {
// do something

}
)

public class EmployeeUnmarshalListener implements XMLUnmarshalListener {

public void beforeUnmarshal(Object target, Object parent) {
// do something

}

public void afterUnmarshal(Object target, Object parent) {
// do something

}
)
Example 47–2 and Example 47–3 show how to use the listeners in your application.

Example 47–2 Using the Marshal Listener

...
XMLMarshaller marshaller = context.createMarshaller();
marshaller.setMarshalListener(new EmployeeMarshalListener());
marshaller.marshal(myObject, System.out);
...

Example 47–3 Using the Unmarshall Listener

...
XMLUnmarshaller unmarshaller = context.createUnmarshaller();

Note: If you specify both the listener and the business object
callbacks, the class-specific method will be invoked before the listener
event.

XML Project Concepts

Introduction to XML Projects 47-7

unmarshaller.setUnmarshalListener(new EmployeeUnmarshalListener());
Object myObject = unmarshaller.unmarshal(myFile);
...

47.1.1.3.3 How to Use TopLink XMLBinder XMLBinder is a run-time class that allows you
to preserve a document that you have unmarshalled, as well as to resynchronize that
document with the unmarshalled objects at any time.

When the XMLBinder unmarshalls XML nodes into mapping objects, and then
performs an update operation, it preserves not only the order of elements, but also the
comments from an original XML document using the cached value. This way, both the
returned node and the cached node are identical and reflect the preserved document.
When adding new elements, TopLink XMLBinder places them at the correct location
(relative to other mapped content) in the node.

When unmarshalling a document that contains only unmapped content, setting some
values and then marshalling, the XMLBinder adds new elements before existing
unmapped data, such as comments and processing instructions.

Example 47–4 demonstrates how you can unmarshall a document using an instance of
an XMLBinder.

Example 47–4 Unmarshalling a Document Using XMLBinder

XMLContext conext = new XMLContext(myProject);
XMLBinder binder = context.createBinder();
Employee emp = (Employee) binder.unmarshal(myDocument);
In the preceding example, emp is the root object that was unmarshalled from the
provided document. The binder maintains references to the original XML document as
well as objects generated during the unmarshall operation.

Example 47–5 demonstrates how you can make changes to the object (Employee) and
update the XML document using an instance of an XMLBinder.

Example 47–5 Making Changes to an Object and to Updating XML Using XMLBinder

...
emp.setPhoneNumber("123-4567");
binder.updateXML(emp);
In the preceding example, the updateXML method will update the cached node in the
binder. Note that the cached node preserves the document, including comments, as the
following example shows:

<employee>
<!--comment1 -->

<name>John Smith </name>
<phone-number>123-4567</phone-number>

<!--comment2 -->
</employee>
Example 47–6 demonstrates how you can obtain an associated node for a subobject
(Address) of the Employee using an instance of an XMLBinder.

Example 47–6 Obtaining an Associated Node Using XMLBinder

...

Note: This functionality is based on the JAXB binder API
(javax.xml.bind.Binder<XmlNode>). This is an addition to the
design-time method of document preservation.

XML Project Concepts

47-8 Developer's Guide for Oracle TopLink

Address addr = emp.getAddress();
Node addressNode = binder.getXMLNode(addr);
In the preceding example, the returned node (addressNode) is the XML node in the
original XML document that was used to build this employee's Address object.

Example 47–7 demonstrates how you can make changes to an XML node and update
objects (Address) of the Employee using an instance of an XMLBinder.

Example 47–7 Making Changes to an XML Node and Updating Objects Using XMLBinder

...
addressNode.setAttribute("apt-no", "1527");
Address updatedAddressNode = binder.updateObject(addressNode);
In the preceding example, the address returned from the binder operation is the
original Address object created during the unmarshall operation, but now it contains
the updated apartment number information from the XML document.

47.1.1.3.4 How to Use JAXBContext You can create an instance of JAXBContext from a
collection of classes that are to be bound to XML. This will generate a TopLink project
from the classes dynamically at run time.

Using the instance of JAXBContext you can obtain Marshaller and
Unmarshaller instances to operate on those classes, as Example 47–8 demonstrates.
Note that this example assumes that you configure your application classpath to
include your domain object class files.

Example 47–8 Creating and Using JAXBContext

Class[] classes = {Employee.class, Address.class, Department.class};
JAXBContext jaxbContext = JAXBContext.newInstance(classes);
Marshaller marshaller = jaxbContext.createMarshaller();
marshaller.marshal(myEmployee, myOutput);

47.1.1.3.5 How to Use JAXBElement TopLink lets you marshal to and unmarshall from
JAXBElement types. The javax.xml.bind.JAXBElement class provides access to
the following basic properties of an XML element:

■ its qualified name, which is composed of {target namespace} and {name}

■ its value, which is an instance of the Java class binding of its {type
definition}

■ whether or not the element's content is {nillable}

TopLink supports the following JAXB element marshal API defined in the
Marshaller:

■ marshal(java.lang.Object jaxbElement, java.io.Writer writer)

■ marshal(java.lang.Object jaxbElement,

java.io.OutputStream os)

■ marshal(java.lang.Object jaxbElement,

org.xml.sax.ContentHandler)

■ marshal(java.lang.Object jaxbElement,

javax.xml.transform.Result)

Note: The JAXBContext object is thread-safe.

XML Project Concepts

Introduction to XML Projects 47-9

■ marshal(java.lang.Object jaxbElement, org.w3c.dom.Node)

■ marshal(java.lang.Object jaxbElement,

javax.xml.stream.XMLStreamWriter writer)

TopLink provides implementation of the following JAXB element unmarshall API
defined in the Unarshaller:

■ <T> JAXBElement<T> unmarshal(

org.w3c.dom.Node node, Class<T> declaredType)

■ <T> JAXBElement<T> unmarshal(

javax.xml.transform.Source source,

Class<T> declaredType)

■ <T> JAXBElement<T> unmarshal(

javax.xml.stream.XMLStreamReader streamReader,

Class<T> declaredType)

■ <T> JAXBElement<T> unmarshal(

javax.xml.stream.XMLEventReader eventReader,

Class<T> declaredType)

47.1.2 JAXB Validation
TopLink can validate both complete object trees and subtrees against the XML schema
that was used to generate the implementation classes. In addition, TopLink will
validate both root objects (objects that correspond to the root element of the XML
document) and nonroot objects against the schema used to generate the object’s
implementation class.

When validating an object tree, TopLink performs the following checks (in order):

1. Check that element appears in the document at the specified location.

2. If maxOccurs or minOccurs is specified, check number of elements.

3. If type is specified, check that element value satisfies the type constraints.

4. If a fixed value is specified, check that the element value matches it.

5. If restrictions (length, patterns, enumerations, and so on) are specified, check that
the element value satisfies it.

6. If an ID type is specified during a validateRoot operation, check that the ID
value is unique in the document.

7. If an IDREF type is specified during a validateRoot operation, check that the
ID referenced exists in the document.

Note: If the first parameter is not a JAXBElement, the marshal
operation will throw an
oracle.toplink.exceptions.XMLMarshalException.MARSHA
L_EXCEPTION.

XML Project Concepts

47-10 Developer's Guide for Oracle TopLink

If validation errors are encountered, TopLink stops validating the object tree and
creates a Validation object, according to the JAXB specification. If an error occurs in
a subobject, TopLink will not validate further down that object’s subtree.

For more information on using TopLink XML to perform validation, see
Section 47.1.1.3, "Using TopLink JAXB Compiler-Generated Files at Run Time".

For additional information on JAXB and validation, refer to the JAXB specification at
http://java.sun.com/xml/jaxb/.

48

Creating an XML Project 48-1

48Creating an XML Project

This chapter describes the various components that you must configure in order to
create an XML project.

This chapter includes the following sections:

■ Introduction to XML Project Creation

■ Creating an XML Project from an XML Schema

For information on how to create more than one type of TopLink projects, see
Chapter 116, "Creating a Project".

48.1 Introduction to XML Project Creation
You can create a project using Oracle JDeveloper, TopLink Workbench, or Java code.

Oracle recommends using either Oracle JDeveloper or TopLink Workbench to create
projects and generate deployment XML or Java source versions of the project for use at
run time. For more information on how to create a project using TopLink Workbench,
see Section 116.1.2, "How to Create a Project Using TopLink Workbench". For
information on how to create a project using Java, see Section 116.1.3, "How to Create a
Project Using Java".

You can use TopLink to create an XML project, if you have an XML schema (XSD)
document, but no object model yet (see Section 48.2, "Creating an XML Project from an
XML Schema"). If you have both XSD and object model classes, you can create an XML
project using the procedure described in Section 116.1.2, "How to Create a Project
Using TopLink Workbench".

For more information, see Chapter 47, "Introduction to XML Projects".

48.2 Creating an XML Project from an XML Schema
If you have an existing data model (XML schema document), but you do not have a
corresponding object model (Java classes for domain objects), use this procedure to
create your TopLink project and automatically generate the corresponding object
model.

Note: If you have both XSD and object model classes, you can create
an XML project using the procedure described in Section 116.1.2,
"How to Create a Project Using TopLink Workbench".

Creating an XML Project from an XML Schema

48-2 Developer's Guide for Oracle TopLink

Using the TopLink JAXB compiler simplifies JAXB application development with
TopLink by automatically generating both the required JAXB files and the TopLink
files from your XML schema (XSD) document. Once generated, you can open the
Oracle JDeveloper or TopLink Workbench project to fine-tune XML mappings without
having to recompile your JAXB object model.

You can use the TopLink JAXB compiler from Oracle JDeveloper TopLink Editor,
TopLink Workbench (see Section 48.2.1, "How to Create an XML Project from an XML
Schema Using TopLink Workbench"), or from the command line (see Section 48.2.2,
"How to Create an XML Project from an XML Schema Using the Command Line").

For more information, see the following:

■ Section 47.1.1, "TopLink Support for Java Architecture for XML Binding (JAXB)"

■ Section 47.1.1.3, "Using TopLink JAXB Compiler-Generated Files at Run Time"

48.2.1 How to Create an XML Project from an XML Schema Using TopLink Workbench
To create a new, mapped TopLink Workbench project from an XML schema using
JAXB, use this procedure:

1. From TopLink Workbench, select File > New > Project > From XML Schema
(JAXB).

Figure 48–1 Create TopLink Workbench Project using JAXB Dialog Box

Use the following information to enter data in each field of this dialog box:

Note: Before you compile your generated classes, be sure to
configure your IDE classpath to include <ORACLE_
HOME>\lib\xml.jar. For example, see Chapter 7, "Using an
Integrated Development Environment".

Creating an XML Project from an XML Schema

Creating an XML Project 48-3

The TopLink JAXB compiler generates JAXB-specific files (see Section 47.1.1.2,
"Working with JAXB-Specific Generated Files") and TopLink-specific files.

48.2.2 How to Create an XML Project from an XML Schema Using the Command Line
To create a new, mapped Oracle TopLink Workbench project from an XML schema
using JAXB from the command line, use the tljaxb.cmd or tljaxb.sh file (located
in the <TOPLINK_HOME>/bin directory) as follows:

1. Using a text editor, edit the tljaxb.cmd or tljaxb.sh file to set proxy settings
(if required).

If you are using a schema that imports another schema by URL and you are
operating behind a proxy, then you must uncomment the lines shown in
Example 48–1 or Example 48–2 and edit them to set your proxy host (name or IP
address) and port:

Example 48–1 Proxy Settings in tljaxb.cmd

@REM set JVM_ARGS=%JVM_ARGS% -DproxySet=true -Dhttp.proxyHost= -Dhttp.proxyPort=

Example 48–2 Proxy Settings in tljaxb.sh

JVM_ARGS="${JVM_ARGS} -DproxySet=true -Dhttp.proxyHost= -Dhttp.proxyPort="

Field Description

From Use these fields to specify your existing JAXB information.

Schema File Click Browse and select the fully qualified path to your XSD file.

JAXB Customization File This in an optional setting. It can be used if you have a standard
JAXB configuration file that you wish to use to override the
default JAXB compiler behavior. The JAXB customization file
contains binding declarations for customizing the default binding
between an XSD component and its Java representation.

To Use these fields to specify the location and options of the TopLink
Workbench project.

Output Directory Click Browse and select the path to the directory into which
generated files are written. All paths used in the project are
relative to this directory.

Output Source Directory Click Browse and select the path to the directory (relative to the
Output Directory) into which generated interfaces,
implementation classes, and deployment files are written. Default:
directory named source in the specified output directory.

Output Workbench Project Directory Click Browse and select the path to the directory (relative to the
Output Directory) into which the TopLink Workbench project
files are written. Default: directory named mw in the specified
output directory.

Package Name for Generated Interfaces The optional name of the package to which generated interfaces
belong. This defines your context path. If it is not specified, a
package name of jaxbderived.<schema name> is used where
<schema name> is the name of the schema specified by the
Schema File field.

Package Name for Generated
Implementation Classes

The optional name of the package to which generated
implementation classes belong. This defines your context path. If
it is not specified, a package name of jaxbderived.<schema
name> is used where <schema name> is the name of the schema
specified by the Schema File field.

Creating an XML Project from an XML Schema

48-4 Developer's Guide for Oracle TopLink

2. Execute the tljaxb.cmd or tljaxb.sh file (located in the <TOPLINK_
HOME>/bin directory).

The TopLink JAXB compiler generates JAXB-specific files (see Section 47.1.1.2,
"Working with JAXB-Specific Generated Files") and TopLink-specific files.

Example 48–3 illustrates how to generate an object model from a schema using the
Toplink JAXB compiler. Table 48–1 lists the compiler arguments.

Example 48–3 Generating an Object Model from a Schema with tljaxb.cmd

tljaxb.cmd -sourceDir ./app/src -generateWorkbench -workbenchDir ./app/mw -schema
purchaseOrder.xsd -targetPkg examples.ox.model.if -implClassPkg
examples.ox.model.impl

Table 48–1 TopLink JAXB Binding Compiler Arguments

Argument Description Optional?

-help Prints this usage information. Yes

-version Prints the release version of the TopLink JAXB compiler. Yes

-sourceDir The path to the directory into which generated interfaces,
implementation classes, and deployment files are written.

Default: directory named source in the specified output directory.

Yes

-generateWorkbench Generate a TopLink Workbench project and necessary project files.
If omitted, only runtime information is generated.

Yes

-workbenchDir The path to the directory into which the TopLink Workbench
project files are written. This argument requires the
-generateWorkbench argument.

Default: directory named mw in the specified output directory.

Yes

-schema The fully qualified path to your XSD file. No

-targetPkg The name of the package to which both generated interfaces and
classes belong. This defines your context path. To specify a
different package for implementation classes, set the
-implClassPkg argument.

Default: a package name of jaxbderived.<schema name>
where <schema name> is the name of the schema specified by the
-schema argument.

Yes

-implClassPkg The name of the package to which generated implementation
classes belong. If this option is set, interfaces belong to the package
specified by the -targetPkg argument. This defines your context
path.

Yes

-interface Generate only interfaces. This argument is optional.

Default: generate both interfaces and implementation classes.

Yes

-verbose The interfaces and classes generated. This argument is optional.

Default: not verbose.

Yes

-customize The fully qualified path and file name of a standard JAXB
customization file that you can use to override default JAXB
compiler behavior.

Yes

49

Configuring an XML Project 49-1

49Configuring an XML Project

This chapter describes the various components that you must configure to use an XML
project.

This chapter includes the following section:

■ Introduction to XML Project Configuration

For information on how to configure TopLink project options common to two or more
project types, see Chapter 117, "Configuring a Project".

49.1 Introduction to XML Project Configuration
Table 49–1 lists the configurable options for XML projects.

For more information, see Chapter 47, "Introduction to XML Projects".

Table 49–1 Configurable Options for XML Projects

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Project save location (see Section 117.2, "Configuring Project
Save Location")

Project classpath (see Section 117.3, "Configuring Project
Classpath")

Project comments (see Section 117.14, "Configuring Project
Comments")

Method or direct field access (see Section 117.4, "Configuring
Method or Direct Field Access at the Project Level")

Project deployment XML options (see Section 117.8,
"Configuring Project Deployment XML Options")

XML parser platform (see Section 8.2.2.1, "Configuring XML
Parser Platform")

Importing an XML schema (see Section 5.6.3, "How to Import
an XML Schema")

XML schema namespace (see Section 5.6.5, "How to Configure
XML Schema Namespace")

Model Java source code options (see Section 117.9,
"Configuring Model Java Source Code Options")

Default descriptor advanced properties (see Section 117.6,
"Configuring Default Descriptor Advanced Properties")

Introduction to XML Project Configuration

49-2 Developer's Guide for Oracle TopLink

Part XV
Part XV XML Descriptors

This part contains general information about XML descriptors, as well as detailed
information on how to create and configure these descriptors.

This part contains the following chapters:

■ Chapter 50, "Introduction to XML Descriptors"

This chapter introduces options specific to an XML descriptor.

■ Chapter 51, "Creating an XML Descriptor"

This chapter explains how to create descriptor options specific to an XML
descriptor.

■ Chapter 52, "Configuring an XML Descriptor"

This chapter explains how to configure descriptor options specific to an XML
descriptor.

50

Introduction to XML Descriptors 50-1

50Introduction to XML Descriptors

This chapter introduces options specific to an XML descriptor.

This chapter includes the following section:

■ XML Descriptor Concepts

For information on descriptor concepts and features common to more than one type of
TopLink descriptors, see Chapter 16, "Introduction to Descriptors".

50.1 XML Descriptor Concepts
XML descriptors describe Java objects that you map to simple and complex types
defined by an XML schema document (XSD).

Using XML descriptors in an XML project, you can configure XML mappings (see
Section 53.1, "XML Mapping Types"), in memory, to XML elements defined by an XSD.

For more information, see the following:

■ Chapter 51, "Creating an XML Descriptor"

■ Chapter 52, "Configuring an XML Descriptor"

50.1.1 XML Descriptors and Aggregation
When working with descriptors for a parent (source) and a child (target) objects, you
have to accomplish the following:

■ if the source object exists, then you must ensure that the target object also exists;

■ if the source object is destroyed, then you must ensure that the target object is also
destroyed.

For more information, seeSection 16.2.5, "Descriptors and Aggregation".

In your XML project, designate the descriptors for the source and target objects to
reflect this relationship as Composite Descriptors in XML Projects.

50.1.1.1 Composite Descriptors in XML Projects
In an XML project, descriptors are always composites.

Because XML descriptors are always composites, you can configure inheritance for an
XML descriptor without considering its type (see Section 16.3, "Descriptors and
Inheritance").

XML Descriptor Concepts

50-2 Developer's Guide for Oracle TopLink

51

Creating an XML Descriptor 51-1

51Creating an XML Descriptor

This chapter explains how to create descriptor options specific to an XML descriptor.

This chapter includes the following sections:

■ Introduction to XML Descriptor Creation

■ Creating an XML Descriptor

For information on how to create more than one type of descriptor, see Chapter 118,
"Creating a Descriptor".

51.1 Introduction to XML Descriptor Creation
After you create a descriptor, you must configure its various options (see Chapter 119,
"Configuring a Descriptor") and use it to define mappings.

For complete information on the various types of mapping that TopLink supports, see
Chapter 17, "Introduction to Mappings" and Chapter 120, "Creating a Mapping".

For complete information on the various types of descriptor that TopLink supports,
see Section 16.1, "Descriptor Types".

For more information, see the following:

■ Chapter 16, "Introduction to Descriptors"

■ Chapter 50, "Introduction to XML Descriptors"

51.2 Creating an XML Descriptor
You can create an XML descriptor using Oracle JDeveloper TopLink Editor, TopLink
Workbench (see Section 51.2.1, "How to Create an XML Descriptor Using TopLink
Workbench"), or Java code (see Section 51.2.2, "How to Create an XML Descriptor
Using Java").

51.2.1 How to Create an XML Descriptor Using TopLink Workbench
When you add a class to an XML project (see Section 117.3, "Configuring Project
Classpath"), TopLink Workbench creates an XML descriptor for the class.

An XML descriptor is always a composite type.

51.2.2 How to Create an XML Descriptor Using Java
Example 51–1 shows how to create an XML descriptor using Java code.

Creating an XML Descriptor

51-2 Developer's Guide for Oracle TopLink

Example 51–1 Creating an XML Descriptor in Java

XMLDescriptor descriptor = new XMLDescriptor();
descriptor.setJavaClass(YourClass.class);

Note: Use the oracle.toplink.ox.XMLDescriptor class. Do
not use the deprecated oracle.toplink.xml.XMLDescriptor
class.

52

Configuring an XML Descriptor 52-1

52Configuring an XML Descriptor

This chapter explains how to configure descriptor options specific to an XML
descriptor.

This chapter includes the following sections:

■ Introduction to XML Descriptor Configuration

■ Configuring Schema Context for an XML Descriptor

■ Configuring for Complex Type of anyType

■ Configuring Default Root Element

■ Configuring Document Preservation

For information on how to configure descriptor options common to two or more
descriptor types, see Chapter 119, "Configuring a Descriptor".

52.1 Introduction to XML Descriptor Configuration
Table 52–1 lists the default configurable options for an XML descriptor.

Table 52–1 Configuration Options for XML Descriptors

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XML schema namespace (see Section 5.6.5, "How to
Configure XML Schema Namespace")

XML schema reference (see Section 5.6.4, "How to Configure
an XML Schema Reference")

Schema context (see Section 52.2, "Configuring Schema
Context for an XML Descriptor")

Complex type of anyType (see Section 52.3, "Configuring for
Complex Type of anyType")

Default root element (see Section 52.4, "Configuring Default
Root Element")

Document preservation (see Section 52.5, "Configuring
Document Preservation")

Comments (see Section 119.6, "Configuring Descriptor
Comments")

Classes (see Section 5.7.2, "How to Configure Classes")

Inheritance for a child class descriptor (see Section 119.20,
"Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor")

Inheritance for a parent descriptor (see Section 119.21,
"Configuring Inheritance for a Parent (Root) Descriptor")

Configuring Schema Context for an XML Descriptor

52-2 Developer's Guide for Oracle TopLink

For more information, see Chapter 50, "Introduction to XML Descriptors".

52.2 Configuring Schema Context for an XML Descriptor
Oracle JDeveloper TopLink Editor and TopLink Workbench use the schema context to
associate the XML descriptor reference class with a simple or complex type in one of
the schemas associated with the XML project (see Section 5.6.4, "How to Configure an
XML Schema Reference"). This allows Oracle JDeveloper TopLink Editor and TopLink
Workbench to display the appropriate attributes available for mapping in that context.

You must configure the schema context for an XML descriptor regardless of whether
or not you are using Oracle JDeveloper or TopLink Workbench.

The TopLink runtime uses the schema context to validate XML fragments.

52.2.1 How to Configure Schema Context for an XML Descriptor Using TopLink
Workbench

To associate an XML descriptor with a specific schema complex type, use this
procedure:

1. Select an XML descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 52–1 Descriptor Info Tab, Schema Context Option

Click Browse to select the schema element to associate with this descriptor. For more
information, see Section 52.2.1.1, "Choosing a Schema Context".

Inherited attribute mapping in a subclass (see
Section 119.23, "Configuring Inherited Attribute Mapping in
a Subclass")

Instantiation policy (see Section 119.28, "Configuring
Instantiation Policy")

Copy policy (see Section 119.29, "Configuring Copy Policy")

Amendment methods (see Section 119.35, "Configuring
Amendment Methods")

Mapping (see Section 121, "Configuring a Mapping")

Table 52–1 (Cont.) Configuration Options for XML Descriptors

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Configuring for Complex Type of anyType

Configuring an XML Descriptor 52-3

52.2.1.1 Choosing a Schema Context
Use the Choose Schema Context dialog box to select a specific schema element (such
as when mapping an element).

Figure 52–2 Choose Schema Context Dialog Box

Select a schema element and click OK.

52.2.2 How to Configure Schema Context for an XML Descriptor Using Java
To configure an XML descriptor with a schema context using Java, create a descriptor
amendment method (see Section 119.35, "Configuring Amendment Methods") that
uses XMLSchemaReference method setSchemaContext, as Example 52–1 shows.

Example 52–1 Configuring Schema Context

public void addToDescriptor(ClassDescriptor descriptor) {
descriptor.getSchemaReference().setSchemaContext(xPath);

}

52.3 Configuring for Complex Type of anyType
This attribute applies only to TopLink Workbench. Use this option to solve "No
schema context is specified" problems (see Section 5.3.5, "How to Use the Problems
Window") for an XML descriptor that does not represent an element in your XML
schema.

In general, TopLink Workbench assumes that every XML descriptor must have a
schema context (see Section 52.2, "Configuring Schema Context for an XML
Descriptor"). However, if a class in your project does not relate to an element in your
schema, then it does not have a schema context.

For example, consider the schema that Example 52–2 shows.

Example 52–2 Schema Using xsd:anyType

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="contact-method" type="xsd:anyType"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="address">

<xsd:complexType>
<xsd:sequence>

Configuring for Complex Type of anyType

52-4 Developer's Guide for Oracle TopLink

<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="phone-number" type="xsd:string"/>

</xsd:schema>

Because element contact-method is of type xsd:anyType, your project requires a
class to represent that type, such as class AnyTypeImpl shown in Figure 52–3.
Because this class does not relate to any complex type in your schema, it has no
schema context. In this example, you would select this option for the AnyTypeImpl
class.

Figure 52–3 Class Representing xsd:anyType

For more information, see Section 53.2.5, "xs:any and xs:anyType Support".

52.3.1 How to Configure Complex Type of anyType Using TopLink Workbench
To specify that the descriptor represents a complex type of anyType, use this
procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Note: See also Section 54.4, "Configuring Maps to Wildcard".

Configuring Default Root Element

Configuring an XML Descriptor 52-5

Figure 52–4 Descriptor Info Tab, Complex Type "anyType" Option

Select the Descriptor Represents Complex Type "anyType" option to specify this
descriptor as the root element.

52.4 Configuring Default Root Element
The default root element is the name that TopLink uses for the root element when
marshalling objects for this descriptor to, and unmarshalling from, an XML document.
Descriptors used only in composite relationship mappings do not require a default
root element.

For more information, see Section 16.2.12, "Default Root Element".

52.4.1 How to Configure Default Root Element Using TopLink Workbench
To specify a schema element as the default root element for the descriptor, use this
procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 52–5 Descriptor Info Tab, Default Root Option

Select the Default Root Element option to specify this descriptor as the root element.

Click Browse to select the schema element to identify as the root element for this
descriptor. See Section 52.4.1.1, "Choosing a Root Element" for more information.

52.4.1.1 Choosing a Root Element
Use the Choose Root Element dialog box to select a specific root element.

Configuring Document Preservation

52-6 Developer's Guide for Oracle TopLink

Figure 52–6 Choose Root Element Dialog Box

Select the root element and click OK.

52.5 Configuring Document Preservation
TopLink lets you preserve any "extra" data in your XML source that is not required to
map to an object model (such as comments, processing instructions, or unmapped
elements).

This permits round-tripping from XML to objects and back to XML without losing any
data.

52.5.1 How to Configure Document Preservation Using TopLink Workbench
To preserve the entire XML source document, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 52–7 Descriptor Info Tab, Preserve Document Option

Select the Preserve Document option to maintain any extra information from the
source XML document that TopLink does not require (such as comments).

52.5.2 How to Configure Document Preservation Using Java
To configure an XML descriptor to maintain any extra information from the source
XML document that TopLink does not require (such as comments) using Java, create a
descriptor amendment method (see Section 119.35, "Configuring Amendment
Methods") that configures the descriptor using XMLDescriptor method
setShouldPreserveDocument.

Part XVI
Part XVI XML Mappings

An XML mapping transforms object data members to the XML nodes of an XML
document, whose structure is defined by an XML schema document (XSD).

This part contains the following chapters:

■ Chapter 53, "Introduction to XML Mappings"

This chapter describes each of the different TopLink XML mapping types and
important XML mapping concepts.

■ Chapter 54, "Configuring an XML Mapping"

This chapter explains how to configure TopLink XML mapping options common
to two or more XML mapping types.

■ Chapter 55, "Configuring an XML Direct Mapping"

This chapter explains how to configure a direct XML mapping.

■ Chapter 56, "Configuring an XML Composite Direct Collection Mapping"

This chapter explains how to configure a composite direct collection XML
mapping.

■ Chapter 57, "Configuring an XML Composite Object Mapping"

This chapter explains how to configure a composite object XML mapping
including an XML mapping to a single named complex type of type xs:anyType.

■ Chapter 58, "Configuring an XML Composite Collection Mapping"

This chapter explains how to configure a composite collection XML mapping.

■ Chapter 59, "Configuring an XML Any Object Mapping"

This chapter explains how to configure an XML mapping to a single unnamed
complex type specified as xs:any.

■ Chapter 60, "Configuring an XML Any Collection Mapping"

This chapter explains how to configure an XML mapping to an unnamed sequence
of complex types specified as xs:any, an unnamed sequence of complex types of
type xs:anyType, or a root element of type xs:anyType.

■ Chapter 61, "Configuring an XML Transformation Mapping"

This chapter explains how to configure a transformation XML mapping.

53

Introduction to XML Mappings 53-1

53Introduction to XML Mappings

An XML mapping transforms object data members to the XML nodes of an XML
document whose structure is defined by an XML schema document (XSD).

This chapter includes the following sections:

■ XML Mapping Types

■ XML Mapping Concepts

■ XML Direct Mapping

■ XML Composite Direct Collection Mapping

■ XML Composite Object Mapping

■ XML Composite Collection Mapping

■ XML Any Object Mapping

■ XML Any Collection Mapping

■ XML Transformation Mapping

■ XML Object Reference Mapping

■ XML Collection Reference Mapping

■ XML Binary Data Mapping

■ XML Binary Data Collection Mapping

■ XML Fragment Mapping

■ XML Fragment Collection Mapping

■ XML Choice Object Mapping

■ XML Choice Collection Mapping

■ XML Any Attribute Mapping

For information on mapping concepts and features common to more than one type of
TopLink mappings, see Chapter 17, "Introduction to Mappings".

53.1 XML Mapping Types
TopLink supports the XML mappings listed in Table 53–1.

XML Mapping Types

53-2 Developer's Guide for Oracle TopLink

Table 53–1 TopLink XML Mapping Types

Mapping Type Description
Oracle
JDeveloper

TopLink
Workbench Java

XML direct mapping (see
Section 53.3, "XML Direct
Mapping")

Map a simple object attribute to an XML
attribute or text node.

XML composite direct collection
mapping (see Section 53.4, "XML
Composite Direct Collection
Mapping")

Map a collection of simple object attributes
to XML attributes or text nodes.

XML composite object mapping
(see Section 53.5, "XML
Composite Object Mapping")

Map any attribute that contains a single
object to an XML element. The TopLink
runtime uses the descriptor for the
referenced object to populate the contents
of that element.

XML composite collection
mapping (see Section 53.6, "XML
Composite Collection Mapping")

Map an attribute that contains a
homogenous collection of objects to
multiple XML elements. The TopLink
runtime uses the descriptor for the
referenced object to populate the contents
of those elements.

XML any object mapping (see
Section 53.7, "XML Any Object
Mapping")

The any object XML mapping is similar to
the composite object XML mapping (see
Section 53.5, "XML Composite Object
Mapping"), except that the reference object
may be of different types (including
String), not necessarily related to each
other through inheritance or a common
interface.

XML any collection mapping
(see Section 53.8, "XML Any
Collection Mapping")

The any collection XML mapping is
similar to the composite collection XML
mapping (see Section 53.6, "XML
Composite Collection Mapping") except
that the referenced objects may be of
different types (including String), not
necessarily related to each other through
inheritance or a common interface.

XML transformation mapping
(see Section 53.9, "XML
Transformation Mapping")

Create custom mappings where one or
more XML nodes can be used to create the
object to be stored in a Java class’s
attribute.

XML object reference mapping
(see Section 53.10, "XML Object
Reference Mapping")

Map a given element in an XML document
to another element in that same XML
document using key(s).

Use this mapping when several objects
reference the same instance of another
object.

XML collection reference
mapping (see Section 53.11,
"XML Collection Reference
Mapping"

This mapping is similar to the XML object
reference mapping (see Section 53.10,
"XML Object Reference Mapping"), except
that it deals with collections instead of
single objects.

Use this mapping when several objects
reference the same instance of another
object.

XML binary data mapping (see
Section 53.12, "XML Binary Data
Mapping"

Handle binary data: this mapping maps
binary data in the object model to XML.

Use this mapping to enable writing of
binary data directly as inline binary data
(base64 BLOB), or passing through as a
MtOM or SwaRef attachment.

XML Mapping Concepts

Introduction to XML Mappings 53-3

53.2 XML Mapping Concepts
You can map the attributes of a Java object to a combination of XML simple and
complex types using a wide variety of XML mapping types.

TopLink stores XML mappings for each class in the class descriptor. TopLink uses the
descriptor to instantiate objects mapped from an XML document and to store new or
modified objects as an XML document.

To configure XML mappings, Oracle recommends that you use Oracle JDeveloper
TopLink Editor or TopLink Workbench and their GUI environment to set the
descriptor properties and configure the mappings.

This section describes concepts unique to TopLink XML mappings, including the
following:

■ Mapping to Simple and Complex Types

■ Mapping Order

■ XPath Support

■ xsd:list and xsd:union Support

■ xs:any and xs:anyType Support

■ jaxb:class Support

■ Typesafe Enumeration Support

■ Mapping Extensions

■ Key On Source-Based Mapping Support

■ Substitution Groups

XML binary data collection
mapping (see Section 53.13,
"XML Binary Data Collection
Mapping"

This mapping is similar to the XML binary
data mapping (see Section 53.12, "XML
Binary Data Mapping"), except that it
maps a collection of binary data in the
object model to XML.

XML fragment mapping (see
Section 53.14, "XML Fragment
Mapping"

Keep a part of an XML tree as a node.

XML fragment collection
mapping (see Section 53.15,
"XML Fragment Collection
Mapping"

This mapping is similar to the XML
fragment mapping (see Section 53.14,
"XML Fragment Mapping"), except that it
allows you to keep a part of an XML tree
as a collection of nodes.

XML choice object mapping (see
Section 53.16, "XML Choice
Object Mapping"

Map a single attribute to a number of
different elements in an XML document.

Use this mapping to map to single choices
or substitution groups in an XML schema.

XML choice collection mapping
(see Section 53.17, "XML Choice
Collection Mapping"

This mapping is similar to the XML choice
object mapping (see Section 53.16, "XML
Choice Object Mapping"), except that you
use it to handle reading and writing of
XML documents containing a collection of
choice or substitution group elements.

XML any attribute mapping (see
Section 53.18, "XML Any
Attribute Mapping"

Map to an attribute in an object to any
XML attributes contained on a specific
element in the XML document.

Table 53–1 (Cont.) TopLink XML Mapping Types

Mapping Type Description
Oracle
JDeveloper

TopLink
Workbench Java

XML Mapping Concepts

53-4 Developer's Guide for Oracle TopLink

■ Mixed Content Mapping

■ XML Adapter

53.2.1 Mapping to Simple and Complex Types
Consider the XML document shown in Example 53–1.

Example 53–1 XML Document

<EMPLOYEE ID="123">
<NAME>Jane Doe</NAME>
<ADDRESS>

<STREET>123 Any St.</STREET>
<CITY>MyCity</CITY>

</ADDRESS>
</EMPLOYEE>
In general, using TopLink XML mappings, you can map a Java class to a simple type
(such as NAME) or to a complex type (such as ADDRESS).

Specifically, you can map a Java object’s simple attributes to XML attributes (such as
ID) and text nodes (such as NAME). You can also map a Java object’s relationships to
XML elements (such as ADDRESS).

Table 53–2 summarizes the XML simple and complex types supported by each
TopLink XML mapping.

Table 53–2 XML Mapping Support for XML Simple and Complex Types

Mapping
XML
Attribute

XML Text
Node

XML
Element

XML direct (see Section 53.3, "XML Direct
Mapping")

XML composite direct collection (see
Section 53.4, "XML Composite Direct
Collection Mapping")

XML composite object (see Section 53.5,
"XML Composite Object Mapping")

XML composite collection (see Section 53.6,
"XML Composite Collection Mapping")

XML any object (see Section 53.7, "XML Any
Object Mapping")

XML any collection (see Section 53.8, "XML
Any Collection Mapping")

XML transformation (see Section 53.9, "XML
Transformation Mapping")

XML object reference (see Section 53.10,
"XML Object Reference Mapping")

XML collection reference (see Section 53.11,
"XML Collection Reference Mapping")

XML binary data (see Section 53.12, "XML
Binary Data Mapping")

XML binary data collection (see
Section 53.13, "XML Binary Data Collection
Mapping")

XML Mapping Concepts

Introduction to XML Mappings 53-5

53.2.2 Mapping Order
Unlike relational database mappings, the order in which mappings are persisted in
XML is significant.

The order in which you define XML mappings in TopLink (whether in Oracle
JDeveloper TopLink Editor, TopLink Workbench, or in Java code) including the order
in which you define mapping components such as Transformers (see Section 53.9,
"XML Transformation Mapping") is reflected in the order, in which TopLink persists
data in an XML document.

53.2.3 XPath Support
TopLink uses XPath statements to efficiently map the attributes of a Java object to
locations in an XML document.

The following are main characteristics of XPath:

■ Each XPath statement is relative to the context node specified in the descriptor.

■ The XPath may contain node type, path, and positional information.

■ The XPath is specified on a mapping using the setXPath method.

For more information about using XPath with XML mappings, see Section 17.2.7,
"Mappings and XPath".

53.2.4 xsd:list and xsd:union Support
You can use XML direct (see Section 53.3, "XML Direct Mapping") and composite
direct collection (see Section 53.4, "XML Composite Direct Collection Mapping")
mappings, as well as their subclasses, to map to xsd:list and xsd:union types in
an XML document.

For more information, see Section 17.2.8, "Mappings and xsd:list and xsd:union Types".

53.2.5 xs:any and xs:anyType Support
In an XML schema, you can define elements and complex types that correspond to any
data type using xs:any and xs:anyType. You can map objects to such elements and
complex types using XML mappings XMLAnyObjectMapping and
XMLAnyCollectionMapping.

XML fragment (see Section 53.14, "XML
Fragment Mapping")

XML fragment collection (see Section 53.15,
"XML Fragment Collection Mapping")

XML choice object (see Section 53.16, "XML
Choice Object Mapping")

XML choice collection (see Section 53.17,
"XML Choice Collection Mapping")

XML any attribute (see Section 53.18, "XML
Any Attribute Mapping")

Table 53–2 (Cont.) XML Mapping Support for XML Simple and Complex Types

Mapping
XML
Attribute

XML Text
Node

XML
Element

XML Mapping Concepts

53-6 Developer's Guide for Oracle TopLink

Table 53–3 lists the XML mappings to use with common applications of xs:any and
xs:anyType. For more details, see the specified XML mapping type.

53.2.6 jaxb:class Support
You can configure an XML composite object mapping (see Section 53.5, "XML
Composite Object Mapping") and its subclasses to accommodate jaxb:class
customizations with the following XSD structures:

■ all

■ sequence

■ choice

■ group

For more information, see Section 17.2.9, "Mappings and the jaxb:class Customization".

53.2.7 Typesafe Enumeration Support
You can map a Java attribute to such a typesafe enumeration using the
JAXBTypesafeEnumConverter with an XMLDirectMapping,
XMLCompositeDirectCollectionMapping or their subclasses with XML
documents.

For more information, see Section 17.2.10, "Mappings and JAXB Typesafe
Enumerations"

53.2.8 Mapping Extensions
If existing TopLink XML mappings do not meet your needs, you can create custom
XML mappings using XML mapping extensions, including object type, serialized
object, type conversion converters, and a simple type translator. For more information,
see Section 17.2.6, "Mapping Converters and Transformers".

53.2.9 Key On Source-Based Mapping Support
TopLink XML support for key on source-based mapping lets you use one-to-one and
one-to-many mappings to map a given element in an XML document to another
element in that same XML document using key(s).

You use this mapping when several objects reference the same instance of another
object.

Table 53–3 XML Mappings and XML Schema xs:any and xs:anyType

Use XML Mapping... To Map XML Schema Definition...

See Section 53.7, "XML Any Object
Mapping"

Element with a single1 unnamed complex type
specified as xs:any.

1 minOccurs and maxOccurs are both equal to 1.

See Section 53.8, "XML Any Collection
Mapping"

Element with an unnamed sequence2 of complex
types specified as xs:any.

Element with a named sequence2 of complex types
of type xs:anyType.

Root element of type xs:anyType.

2 maxOccurs is greater than 1.

XML Direct Mapping

Introduction to XML Mappings 53-7

Use the oracle.toplink.ox.mappings.XMLObjectReferenceMapping and
XMLCollectionReferenceMapping for the key on source.

You configure this mappings using the deployment XML and a project class.

For more information, see the following:

■ XML Object Reference Mapping

■ XML Collection Reference Mapping

53.2.10 Substitution Groups
Substitution groups is a mechanism provided by the XML schema. Using substitution
groups, you can substitute elements for other elements. For more information, see
XML Schema Primer at
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/#SubsGroups

Use TopLink XMLChoiceObjectMapping (see Section 53.16, "XML Choice Object
Mapping") and XMLChoiceCollectionMapping (see Section 53.17, "XML Choice
Collection Mapping") to handle substitution groups.

53.2.11 Mixed Content Mapping
To handle mixed content, such as reading in XML text nodes as strings, use TopLink
XMLAnyCollectionMapping (see Section 53.8, "XML Any Collection Mapping").

Enable this functionality through the setMixedContent method.

53.2.12 XML Adapter
TopLink supports the use of the
javax.xml.bind.annotation.adapters.XmlAdapter<ValueType,BoundTyp
e> and its subclasses, which allow for arbitrary Java classes to be used with JAXB.

The XmlAdapter enables adaptation of a Java type for custom marshaling through its
marshal and unmarshal methods.

For more information, refer to JAXB 2.0 Specification at
https://jaxb.dev.java.net/nonav/jaxb20-pfd/api/index.html

53.3 XML Direct Mapping
XML direct mappings map a Java attribute directly to XML text nodes. You can use an
XML direct mapping in the following scenarios:

■ Mapping to a Text Node

■ Mapping to an Attribute

■ Mapping to a Specified Schema Type

■ Mapping to a List Field with an XML Direct Mapping

■ Mapping to a Union Field with an XML Direct Mapping

■ Mapping to a Union of Lists with an XML Direct Mapping

■ Mapping to a Union of Unions with an XML Direct Mapping

■ Mapping with a Simple Type Translator

See Chapter 55, "Configuring an XML Direct Mapping" for more information.

XML Direct Mapping

53-8 Developer's Guide for Oracle TopLink

53.3.1 Mapping to a Text Node
This section describes using an XML direct mapping when:

■ Mapping to a Simple Text Node

■ Mapping to a Text Node in a Simple Sequence

■ Mapping to a Text Node in a Subelement

■ Mapping to a Text Node by Position

53.3.1.1 Mapping to a Simple Text Node
Given the XML schema in Example 53–2, Figure 53–1 illustrates an XML direct
mapping to a simple text node in a corresponding XML document. Example 53–3
shows how to configure this mapping in Java.

Example 53–2 Schema for XML Direct Mapping to Simple Text Node

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="phone-number" type="xsd:string"/>
</xsd:schema>

Figure 53–1 XML Direct Mapping to Simple Text Node

Example 53–3 Java for XML Direct Mapping to Simple Text Node

XMLDirectMapping numberMapping = new XMLDirectMapping();
numberMapping.setAttributeName("number");
numberMapping.setXPath("text()");

53.3.1.2 Mapping to a Text Node in a Simple Sequence
Given the XML schema in Example 53–4, Figure 53–2 illustrates an XML direct
mapping to individual text nodes in a sequence in a corresponding XML document.
Example 53–5 shows how to configure this mapping in Java.

Example 53–4 Schema for XML Direct Mapping to a Text Node in a Simple Sequence

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="first-name" type="xsd:string"/>

Note: Do not confuse an XML direct mapping with a relational
direct-to-XMLType mapping (see Section 27.4, "Direct-to-XMLType
Mapping").

XML Direct Mapping

Introduction to XML Mappings 53-9

<xsd:element name="last-name" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Figure 53–2 XML Direct Mapping to a Text Node in a Simple Sequence

Example 53–5 Java for XML Direct Mapping to a Text Node in a Simple Sequence

XMLDirectMapping firstNameMapping = new XMLDirectMapping();
firstNameMapping.setAttributeName("firstName");
firstNameMapping.setXPath("first-name/text()");

XMLDirectMapping lastNameMapping = new XMLDirectMapping();
lastNameMapping.setAttributeName("lastName");
lastNameMapping.setXPath("last-name/text()");

53.3.1.3 Mapping to a Text Node in a Subelement
Given the XML schema in Example 53–6, Figure 53–3 illustrates an XML direct
mapping to a text node in a subelement in a corresponding XML document.
Example 53–7 shows how to configure this mapping in Java.

Example 53–6 Schema for XML Direct Mapping to a Text Node in a Subelement

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="personal-info">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="first-name" type="xsd:string"/>
<xsd:element name="last-name" type="xsd:string"/>

<xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

XML Direct Mapping

53-10 Developer's Guide for Oracle TopLink

Figure 53–3 XML Direct Mapping to a Text Node in a Subelement

Example 53–7 Java for XML Direct Mapping to a Text Node in a Subelement

XMLDirectMapping firstNameMapping = new XMLDirectMapping();
firstNameMapping.setAttributeName("firstName");
firstNameMapping.setXPath("personal-info/first-name/text()");

XMLDirectMapping lastNameMapping = new XMLDirectMapping();
lastNameMapping.setAttributeName("lastName");
lastNameMapping.setXPath("personal-info/last-name/text()");

53.3.1.4 Mapping to a Text Node by Position
Given the XML schema in Example 53–8, Figure 53–4 illustrates an XML direct
mapping to a text node by position in a corresponding XML document. Example 53–9
shows how to configure this mapping in Java.

Example 53–8 Schema for XML Direct Mapping to Text Node by Position

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string" maxOccurs="2"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Figure 53–4 XML Direct Mapping to Text Node by Position

XML Direct Mapping

Introduction to XML Mappings 53-11

Example 53–9 Java for XML Direct Mapping to Text Node by Position

XMLDirectMapping firstNameMapping = new XMLDirectMapping();
firstNameMapping.setAttributeName("firstName");
firstNameMapping.setXPath("name[1]/text()");

XMLDirectMapping lastNameMapping = new XMLDirectMapping();
lastNameMapping.setAttributeName("lastName");
lastNameMapping.setXPath("name[2]/text()");

53.3.2 Mapping to an Attribute
Given the XML schema in Example 53–10, Figure 53–5 illustrates an XML direct
mapping to a text node by position in a corresponding XML document. Example 53–11
shows how to configure this mapping in Java.

Example 53–10 Schema for XML Direct Mapping to an Attribute

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:attribute name="id" type="xsd:integer"/>
</xsd:complexType>

</xsd:schema>

Figure 53–5 XML Direct Mapping to an Attribute

Example 53–11 Java for XML Direct Mapping to an Attribute

XMLDirectMapping idMapping = new XMLDirectMapping();
idMapping.setAttributeName("id");
idMapping.setXPath("@id");

53.3.3 Mapping to a Specified Schema Type
In most cases, TopLink can determine the target format in the XML document.
However, there are cases where you must specify which one of a number of possible
targets TopLink should use. For example, a java.util.Calendar could be
marshalled to a schema date, time, or dateTime node, or a byte[] could be
marshalled to a schema hexBinary or base64Binary node.

Given the XML schema in Example 53–12, Figure 53–6 illustrates an XML direct
mapping to a text node by position in a corresponding XML document. Example 53–13
shows how to configure this mapping in Java.

Example 53–12 Schema for XML Direct Mapping to a Specified Schema Type

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>

XML Direct Mapping

53-12 Developer's Guide for Oracle TopLink

<xsd:element name="picture" type="xsd:hexBinary"/>
<xsd:element name="resume" type="xsd:base64Binary"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Figure 53–6 XML Direct Mapping to a Specified Schema Type

Example 53–13 Java for XML Direct Mapping to a Specified Schema Type

XMLDirectMapping pictureMapping = new XMLDirectMapping();
pictureMapping.setAttributeName("picture");
pictureMapping.setXPath("picture/text()");
XMLField pictureField = (XMLField) pictureMapping.getField();
pictureField.setSchemaType(XMLConstants.HEX_BINARY_QNAME);

XMLDirectMapping resumeMapping = new XMLDirectMapping();
resumeMapping.setAttributeName("resume");
resumeMapping.setXPath("resume/text()");
XMLField resumeField = (XMLField) resumeMapping.getField();
resumeField.setSchemaType(XMLConstants.BASE_64_BINARY_QNAME);

53.3.4 Mapping to a List Field with an XML Direct Mapping
Given the XML schema in Example 53–14, Figure 53–7 illustrates an XML direct
mapping to an xsd:list type in a corresponding XML document when you
represent the list in your object model as a String of white space delimited tokens.
Example 53–15 shows how to configure this mapping in Java.

Example 53–14 Schema for XML Direct Mapping to a List Field

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="tasks" type="tasks-type"/>

</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="tasks-type">

<xsd:list itemType="xsd:string"/>
</xsd:simpleType>

</xsd:schema>

XML Direct Mapping

Introduction to XML Mappings 53-13

Figure 53–7 XMLDirect Mapping to a List Field

Example 53–15 Java for XML Direct Mapping to a List Field Node

XMLDirectMapping tasksMapping = new XMLDirectMapping();
tasksMapping.setAttributeName("tasks");
XMLField myField = new XMLField("tasks/text()"); // pass in the XPath
myField.setUsesSingleNode(true);
tasksMapping.setField(myField);

53.3.5 Mapping to a Union Field with an XML Direct Mapping
Given the XML schema in Example 53–16, Figure 53–8 illustrates a Java class that can
be mapped to a corresponding XML document. Note the shoeSize attribute in this
class: when using a union field, the corresponding attribute must be able to store all
possible values.

Example 53–16 Schema for XML Direct Mapping to a Union Field

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="shoe-size" type="size-type"/>

</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="size-type">

<xsd:union memberTypes="xsd:decimal xsd:string"/>
</xsd:simpleType>

</xsd:schema>

Figure 53–8 Java Class for XML Direct Mapping to a Union Field

Figure 53–9 illustrates an XML direct mapping to a union field in an XML document
that conforms to the schema in Example 53–16. When TopLink unmarshalls the XML
document, it tries each of the union types until it can make a successful conversion.
The first schema type in the union is xsd:decimal. Because "10.5" is a valid decimal,
TopLink converts the value to the appropriate type. If the Object attribute is specific
enough to trigger an appropriate value, TopLink will use that type instead. Otherwise,
TopLink uses a default (in this case BigDecimal). You can override this behavior in
Java code.

XML Direct Mapping

53-14 Developer's Guide for Oracle TopLink

Figure 53–9 XML Direct Mapping to the First Valid Union Type

Figure 53–10 illustrates an XML direct mapping to union field in another XML
document that conforms to the schema in Example 53–16. In this document, the value
"M" is not a valid xsd:decimal type so the next union type is tried. The next union
type is xsd:string and a conversion can be done.

Figure 53–10 XML Direct Mapping to Another Valid Union Type

Example 53–17 shows how to configure this mapping in Java.

Example 53–17 Java for XML Direct Mapping to a Union Type

XMLDirectMapping shoeSizeMapping = new XMLDirectMapping();
shoeSizeMapping.setAttributeName("shoeSize");
XMLUnionField shoeSizeField = new XMLUnionField();
shoeSizeField.setXPath("shoe-size/text()");
shoeSizeField.addSchemaType(XMLConstants.DECIMAL_QNAME);
shoeSizeField.addSchemaType(XMLConstants.STRING_QNAME);
shoeSizeMapping.setField(shoeSizeField);

To override the default conversion, use the XMLUnionField method
addConversion:

shoeSizeField.addConversion(XMLConstants.DECIMAL_QNAME, Float.class);

53.3.6 Mapping to a Union of Lists with an XML Direct Mapping
Given the XML schema in Example 53–18, Figure 53–11 illustrates an XML direct
mapping to a union of lists in a corresponding XML document. Example 53–19 shows
how to configure this mapping in Java.

Example 53–18 Schema for XML Direct Mapping to Union of Lists

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="vacation" type="unionOfLists"/>
<xsd:simpleType name="unionOfLists">

<xsd:union memberTypes="xsd:double">
<xsd:simpleType>

<xsd:list itemType="xsd:date"/>
</xsd:simpleType>
<xsd:simpleType>

<xsd:list itemType="xsd:integer"/>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

</xsd:schema>

XML Direct Mapping

Introduction to XML Mappings 53-15

Figure 53–11 XML Direct Mapping to Union of Lists

Note that in this example, valid XML documents contain either all xsd:double, all
xsd:date, or all xsd:integer values.

Example 53–19 Java for XML Direct Mapping to Union of Lists

XMLDirectMapping mapping = new XMLDirectMapping();
mapping.setAttributeName("vacation");
mapping.setXPath("UnionOfLists/text()");

53.3.7 Mapping to a Union of Unions with an XML Direct Mapping
Given the XML schema in Example 53–20, Figure 53–12 illustrates a Java class that can
be mapped to a corresponding XML document. Example 53–21 shows how to
configure this mapping in Java.

Example 53–20 Schema for XML Direct Mapping to a Union of Unions

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="vacation" type="unionOfUnions"/>
<xsd:simpleType name="unionOfUnions">

<xsd:union>
<xsd:simpleType>

<xsd:union>
<xsd:simpleType>

<xsd:list itemType="xsd:date"/>
</xsd:simpleType>
<xsd:simpleType>

<xsd:list itemType="xsd:integer"/>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>
<xsd:simpleType>

<xsd:union>
<xsd:simpleType>

<xsd:list itemType="xsd:string"/>
</xsd:simpleType>
<xsd:simpleType>

<xsd:list itemType="xsd:float"/>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

</xsd:schema>

XML Direct Mapping

53-16 Developer's Guide for Oracle TopLink

Figure 53–12 Java Class for XML Direct Mapping to a Union of Unions

Example 53–21 Java for XML Direct Mapping to a Union of Unions

XMLDirectMapping vacationMapping = new XMLDirectMapping();
vacationMapping.setAttributeName("vacation");
XMLUnionField vacationField = new XMLUnionField();
vacationField.setXPath("vacation/text()");
vacationField.addSchemaType(XMLConstants.DATE_QNAME);
vacationField.addSchemaType(XMLConstants.INTEGER_QNAME);
vacationField.addSchemaType(XMLConstants.STRING_QNAME);
vacationField.addSchemaType(XMLConstants.FLOAT_QNAME);
vacationMapping.setField(vacationField);

53.3.8 Mapping with a Simple Type Translator
If the type of a node is not defined in your XML schema, you can configure an XML
direct mapping to use the xsi:type attribute to provide type information.

Given the XML schema fragment in Example 53–22, Figure 53–13 illustrates a Java
class that can be mapped to a corresponding XML document.

Example 53–22 Schema for XML Direct Mapping with Simple Type Translator

...
<xs:element name="area-code" type="anySimpleType"/>
<xs:element name="number" type="anySimpleType"/>

...

Figure 53–13 Java Class for XML Direct Mapping with Simple Type Translator

Figure 53–14 illustrates an XML direct mapping with a simple type translator in an
XML document that conforms to the schema in Example 53–22.

Figure 53–14 XML Direct Mapping with a Simple Type Translator

Example 53–23 shows how to configure this mapping in Java.

XML Composite Direct Collection Mapping

Introduction to XML Mappings 53-17

Example 53–23 Java for XML Direct Mapping with Simple Type Translator

XMLDirectMapping numberMapping = new XMLDirectMapping();
numberMapping.setAttributeName("number");
numberMapping.setXPath("number/text()");
XMLField numberField = (XMLField) numberMapping.getField();
numberField.setIsTypedTextField(true);

For more information, see Section 17.2.6.4, "Simple Type Translator".

53.4 XML Composite Direct Collection Mapping
XML composite direct collection mappings map a Java collection of simple object
attributes to XML attributes and text nodes. Use multiplicity settings to specify an
element as a collection. The XML schema allows you to define minimum and
maximum occurrences. You can use a composite direct collection XML mapping in the
following scenarios:

■ Mapping to Multiple Text Nodes

■ Mapping to Multiple Attributes

■ Mapping to a Single Text Node with an XML Composite Direct Collection
Mapping

■ Mapping to a Single Attribute with an XML Composite Direct Collection Mapping

■ Mapping to a List of Unions with an XML Composite Direct Collection Mapping

■ Mapping to a Union of Lists with an XML Composite Direct Collection Mapping

■ Specifying the Content Type of a Collection with an XML Composite Direct
Collection Mapping

See Chapter 56, "Configuring an XML Composite Direct Collection Mapping" for more
information.

53.4.1 Mapping to Multiple Text Nodes
This section describes using a composite direct collection XML mapping when doing
the following:

■ Mapping to a Simple Sequence

■ Mapping to a Sequence in a Subelement

53.4.1.1 Mapping to a Simple Sequence
Given the XML schema in Example 53–24, Figure 53–15 illustrates a composite direct
collection XML mapping to a simple sequence of text nodes in a corresponding XML
document. Example 53–25 shows how to configure this mapping in Java.

Example 53–24 Schema for Composite Direct Collection XML Mapping to a Simple
Sequence

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="task" type="xsd:string" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

XML Composite Direct Collection Mapping

53-18 Developer's Guide for Oracle TopLink

Figure 53–15 Composite Direct Collection XML Mapping to a Simple Sequence

Example 53–25 Java for Composite Direct Collection XML Mapping to a Simple
Sequence

XMLCompositeDirectCollectionMapping tasksMapping = new XMLCompositeDirectCollectionMapping();
tasksMapping.setAttributeName("tasks");
tasksMapping.setXPath("task/text()");

53.4.1.2 Mapping to a Sequence in a Subelement
Given the XML schema in Example 53–26, Figure 53–16 illustrates a composite direct
collection XML mapping to a sequence of text nodes in a subelement in a
corresponding XML document. Example 53–27 shows how to configure this mapping
in Java.

Example 53–26 Schema for Composite Direct Collection XML Mapping to a Subelement
Sequence

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="tasks">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="task" type="xsd:string" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Figure 53–16 Composite Direct Collection XML Mapping to a Subelement Sequence

Example 53–27 Java for Composite Direct Collection XML Mapping to a Subelement
Sequence

XMLCompositeDirectCollectionMapping tasksMapping = new XMLCompositeDirectCollectionMapping();
tasksMapping.setAttributeName("tasks");
tasksMapping.setXPath("tasks/task/text()");

XML Composite Direct Collection Mapping

Introduction to XML Mappings 53-19

53.4.2 Mapping to Multiple Attributes
Given the XML schema in Example 53–28, Figure 53–17 illustrates a composite direct
collection XML mapping to a sequence of text nodes in a subelement in a
corresponding XML document. Example 53–29 shows how to configure this mapping
in Java.

Example 53–28 Schema for Composite Direct Collection XML Mapping to Multiple
Attributes

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="tasks" maxOccurs="unbounded">

<xsd:complexType>
<xsd:attribute name="task" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Figure 53–17 Composite Direct Collection XML Mapping to Multiple Attributes

Example 53–29 Java for Composite Direct Collection XML Mapping to Multiple Attributes

XMLCompositeDirectCollectionMapping tasksMapping = new XMLCompositeDirectCollectionMapping();
tasksMapping.setAttributeName("tasks/@task");
tasksMapping.setXPath("task/text()");

53.4.3 Mapping to a Single Text Node with an XML Composite Direct Collection
Mapping

When you map a collection to a single node, the contents of the node is treated as a
space-separated list.

Given the XML schema in Example 53–30, Figure 53–18 illustrates a composite direct
collection XML mapping to a single text node in a corresponding XML document.
Example 53–31 shows how to configure this mapping in Java.

Example 53–30 Schema for XML Composite Direct Collection Mapping to a Single Text
Node

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="tasks" type="tasks-type"/>

</xsd:sequence>

XML Composite Direct Collection Mapping

53-20 Developer's Guide for Oracle TopLink

</xsd:complexType>
<xsd:simpleType name="tasks-type">

<xsd:list itemType="xsd:string"/>
</xsd:simpleType>

</xsd:schema>

Figure 53–18 XML Composite Direct Collection Mapping to a Single Text Node

Example 53–31 Java for XML Composite Direct Collection Mapping to a Single Text
Node

XMLCompositeDirectCollectionMapping tasksMapping = new XMLCompositeDirectCollectionMapping();
tasksMapping.setAttributeName("tasks");
tasksMapping.setXPath("tasks/text()");
tasksMapping.setUsesSingleNode(true);

53.4.4 Mapping to a Single Attribute with an XML Composite Direct Collection Mapping
Given the XML schema in Example 53–32, Figure 53–19 illustrates a composite direct
collection XML mapping to a single attribute in a corresponding XML document.
Example 53–33 shows how to configure this mapping in Java.

Example 53–32 Schema for XML Composite Direct Collection Mapping to a Single
Attribute

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:attribute name="tasks" type="tasks-type"/>
</xsd:complexType>
<xsd:simpleType name="tasks-type">

<xsd:list itemType="xsd:string"/>
</xsd:simpleType>

</xsd:schema>

Figure 53–19 XML Composite Direct Collection Mapping to a Single Attribute

Example 53–33 Java for XML Composite Direct Collection Mapping to a Single Attribute

XMLCompositeDirectCollectionMapping tasksMapping = new XMLCompositeDirectCollectionMapping();
tasksMapping.setAttributeName("tasks");

XML Composite Direct Collection Mapping

Introduction to XML Mappings 53-21

tasksMapping.setXPath("@tasks");
tasksMapping.setUsesSingleNode(true);

53.4.5 Mapping to a List of Unions with an XML Composite Direct Collection Mapping
Given the XML schema in Example 53–34, Figure 53–20 illustrates a composite direct
collection XML mapping to a list of unions in a corresponding XML document.
Example 53–35 shows how to configure this mapping in Java.

Example 53–34 Schema for XML Composite Direct Collection Mapping to List of Unions

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="vacation" type="listOfUnions"/>
<xsd:simpleType name="listOfUnions">

<xsd:list>
<xsd:simpleType>

<xsd:union memberTypes="xsd:date xsd:integer"/>
</xsd:simpleType>

</xsd:list>
</xsd:simpleType>

</xsd:schema>

Figure 53–20 Composite XML Direct Collection Mapping to List of Unions

Example 53–35 Java for XML Composite Direct Collection Mapping to List of Unions

XMLCompositeDirectCollectionMapping mapping = new XMLCompositeDirectCollectionMapping();
mapping.setAttributeName("myattribute");
XMLUnionField field = new XMLUnionField("listOfUnions/text()");
mapping.addSchemaType(new Qname(url,"int"));
mapping.addSchemaType(new Qname(url,"date"));
mapping.setField(field);
mapping.useSingleElement(false);

53.4.6 Mapping to a Union of Lists with an XML Composite Direct Collection Mapping
Given the XML schema in Example 53–36, Figure 53–21 illustrates an XML composite
direct collection mapping to a union of lists in a corresponding XML document.
Example 53–37 shows how to configure this mapping in Java.

Example 53–36 Schema for XML Composite Direct Collection Mapping to a Union of
Lists

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="vacation" type="unionOfLists"/>
<xsd:simpleType name="unionOfLists">

<xsd:union memberTypes="xsd:double">
<xsd:simpleType>

<xsd:list itemType="xsd:date"/>
</xsd:simpleType>
<xsd:simpleType>

<xsd:list itemType="xsd:integer"/>
</xsd:simpleType>

XML Composite Direct Collection Mapping

53-22 Developer's Guide for Oracle TopLink

</xsd:union>
</xsd:simpleType>

</xsd:schema>

Figure 53–21 XML Composite Direct Collection Mapping to a Union of Lists

Note that in this example, valid XML documents contain either all xsd:double, all
xsd:date, or all xsd:integer values.

Example 53–37 Java for XML Composite Direct Collection Mapping to a Union of Lists

XMLCompositeDirectCollectionMapping mapping = new XMLCompositeDirectCollectionMapping();
mapping.setAttributeName("myattribute");
mapping.useSingleElement(false);
XMLUnionField unionField = new XMLUnionField("UnionOfLists/text()");
field.addSchemaType(new Qname(url," integer"))
field.addSchemaType (new Qname(url," date"))
field.addSchemaType (new Qname(url," double"))
field.setUsesSingleNode(false);

53.4.7 Specifying the Content Type of a Collection with an XML Composite Direct
Collection Mapping

By default, TopLink will treat the node values read by a composite direct collection
XML mapping as objects of type String. You can override this behavior by specifying
the type of the collection’s contents.

Given the XML schema in Example 53–38, Figure 53–22 illustrates an XML composite
direct collection mapping to a simple sequence in a corresponding XML document.
The mapping is configured to specify the content type of the collection as Calendar.
Example 53–39 shows how to configure this mapping in Java.

Example 53–38 Schema for XML Composite Direct Collection Mapping with Specified
Content Type

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="employee" type="employee-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="vacation" type="xsd:string" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

XML Composite Object Mapping

Introduction to XML Mappings 53-23

Figure 53–22 XML Composite Direct Collection Mapping with Specified Content Type

Example 53–39 Java for XML Composite Direct Collection Mapping with Specified
Content Type

XMLCompositeDirectCollectionMapping tasksMapping = new XMLCompositeDirectCollectionMapping();
tasksMapping.setAttributeName("vacationDays");
tasksMapping.setXPath("vacation/text()");
tasksMapping.setAttributeElementClass(Calendar.class);

53.5 XML Composite Object Mapping
XML composite object mappings represent a relationship between two classes. In
XML, the "owned" class may be nested with the element tag representing the "owning"
class. You can use a composite object XML mapping in the following scenarios:

■ Mapping into the Parent Record

■ Mapping to an Element

■ Mapping to Different Elements by Element Name

■ Mapping to Different Elements by Element Position

See Chapter 57, "Configuring an XML Composite Object Mapping" for more
information.

53.5.1 Mapping into the Parent Record
The composite object may be mapped to the same record as the parent.

Given the XML schema in Example 53–40, Figure 53–23 illustrates an XML composite
object mapping into the parent record in a corresponding XML document.
Example 53–41 shows how to configure this mapping in Java.

Example 53–40 Schema for XML Composite Object Mapping into the Parent Record

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="first-name" type="xsd:string"/>
<xsd:element name="last-name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

Note: The nodes mapped to by the composite object must be
sequential.

XML Composite Object Mapping

53-24 Developer's Guide for Oracle TopLink

</xsd:schema>

Figure 53–23 XML Composite Object Mapping into the Parent Record

Example 53–41 Java for XML Composite Object Mapping into the Parent Record

XMLCompositeObjectMapping addressMapping = new XMLCompositeObjectMapping();
addressMapping.setAttributeName("address");
addressMapping.setXPath(".");
addressMapping.setReferenceClass(Address.class);

53.5.2 Mapping to an Element
Given the XML schema in Example 53–42, Figure 53–24 illustrates an XML composite
object mapping to an element in a corresponding XML document. Example 53–43
shows how to configure this mapping in Java.

Example 53–42 Schema for XML Composite Object Mapping to an Element

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="first-name" type="xsd:string"/>
<xsd:element name="last-name" type="xsd:string"/>
<xsd:element name="address">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

XML Composite Object Mapping

Introduction to XML Mappings 53-25

Figure 53–24 XML Composite Object Mapping to an Element

Example 53–43 Java for XML Composite Object Mapping to an Element

XMLCompositeObjectMapping addressMapping = new XMLCompositeObjectMapping();
addressMapping.setAttributeName("address");
addressMapping.setXPath("address");
addressMapping.setReferenceClass(Address.class);

53.5.3 Mapping to Different Elements by Element Name
An object may have multiple composite object mappings to the same reference class.
Each composite object mapping must have a unique XPath. This example uses unique
XPaths by name.

Given the XML schema in Example 53–44, Figure 53–25 illustrates an XML composite
object mapping to different elements by name in a corresponding XML document.
Example 53–45 shows how to configure this mapping in Java.

Example 53–44 Schema for XML Composite Object Mapping to Elements by Name

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="first-name" type="xsd:string"/>
<xsd:element name="last-name" type="xsd:string"/>
<xsd:element name="billing-address" type="address-type"/>
<xsd:element name="shipping-address" type="address-type"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="address-type">

<xsd:sequence>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

XML Composite Object Mapping

53-26 Developer's Guide for Oracle TopLink

Figure 53–25 XML Composite Object Mapping to Elements by Name

Example 53–45 Java for XML Composite Object Mapping to Elements by Name

XMLCompositeObjectMapping billingAddressMapping = new XMLCompositeObjectMapping();
billingAddressMapping.setAttributeName("billingAddress");
billingAddressMapping.setXPath("billing-address");
billingAddressMapping.setReferenceClass(Address.class);

XMLCompositeObjectMapping shippingAddressMapping = new XMLCompositeObjectMapping();
shippingAddressMapping.setAttributeName("shippingAddress");
shippingAddressMapping.setXPath("shipping-address");
shippingAddressMapping.setReferenceClass(Address.class);

53.5.4 Mapping to Different Elements by Element Position
An object may have multiple composite object mappings to the same reference class.
Each composite object mapping must have a unique XPath. This example uses unique
XPaths by position.

Given the XML schema in Example 53–46, Figure 53–26 illustrates an XML composite
object mapping to different elements by position in a corresponding XML document.
Example 53–47 shows how to configure this mapping in Java.

Example 53–46 Schema for XML Composite Object Mapping to Elements by Position

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="first-name" type="xsd:string"/>
<xsd:element name="last-name" type="xsd:string"/>
<xsd:element name="address" maxOccurs="2">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="street" type="xsd:string"/>

XML Composite Collection Mapping

Introduction to XML Mappings 53-27

<xsd:element name="city" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Figure 53–26 XML Composite Object Mapping to Elements by Position

Example 53–47 Java for XML Composite Object Mapping to Elements by Position

XMLCompositeObjectMapping billingAddressMapping = new XMLCompositeObjectMapping();
billinAddressMapping.setAttributeName("billingAddress");
billinAddressMapping.setXPath("address[1]");
billinAddressMapping.setReferenceClass(Address.class);

XMLCompositeObjectMapping shippingAddressMapping = new XMLCompositeObjectMapping();
shippingAddressMapping.setAttributeName("shippingAddress");
shippingAddressMapping.setXPath("address[2]");
shippingAddressMapping.setReferenceClass(Address.class);

53.6 XML Composite Collection Mapping
Use XML composite collection mappings to represent one-to-many relationships.
Composite collection XML mappings can reference any class that has a TopLink
descriptor. The attribute in the object mapped must implement either the Java
Collection interface (for example, Vector or HashSet) or Map interface (for
example, Hashtable or TreeMap). The XMLCompositeCollectionMapping class
allows a reference to the mapped class and the indexing type for that class.

Given the XML schema in Example 53–48, Figure 53–27 illustrates an XML composite
collection mapping to different elements by position in a corresponding XML
document. Example 53–49 shows how to configure this mapping in Java for a

XML Composite Collection Mapping

53-28 Developer's Guide for Oracle TopLink

Collection attribute, and Example 53–50 shows how to configure this mapping in
Java for a Map attribute.

Example 53–48 Schema for XML Composite Collection Mapping

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="first-name" type="xsd:string"/>
<xsd:element name="last-name" type="xsd:string"/>
<xsd:element name="phone-number">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="number" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="type" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Figure 53–27 XML Composite Collection Mapping

Example 53–49 Java for XML Composite Collection Mapping for a Collection Attribute

XMLCompositeCollectionMapping phoneNumbersMapping = new XMLCompositeCollectionMapping();
phoneNumbersMapping.setAttributeName("phoneNumbers");
phoneNumbersMapping.setXPath("phone-number");
phoneNumbersMapping.setReferenceClass(PhoneNumber.class);

Example 53–50 Java for XML Composite Collection Mapping for a Map Attribute

XMLCompositeCollectionMapping phoneNumbersMapping = new XMLCompositeCollectionMapping();
phoneNumbersMapping.setAttributeName("phoneNumbers");

XML Any Object Mapping

Introduction to XML Mappings 53-29

phoneNumbersMapping.setXPath("phone-number");
phoneNumbersMapping.setReferenceClass(PhoneNumber.class);
phoneNumbersMapping.useMapClass(HashMap.class, "getType");

See Chapter 58, "Configuring an XML Composite Collection Mapping" for more
information.

53.7 XML Any Object Mapping
The XML any object mapping is similar to the composite object XML mapping (see
Section 53.5, "XML Composite Object Mapping") except that the reference object may
be of any type (including String). This type does not need to be related to any other
particular type through inheritance or a common interface.

The corresponding object attribute value can be an instance of any object with a
Descriptor, a java.lang.Object, a java.lang.String, a primitive object
(such as java.lang.Integer), or a user defined type generic enough for all possible
application values.

This mapping is useful with the following XML schema constructs:

■ any

■ choice

■ substitution groups

Referenced objects can specify a default root element on their descriptor (see
Section 16.2.12, "Default Root Element").

Given the XML schema in Example 53–51, Figure 53–28 illustrates the Java classes
used in this example. A single XML any object mapping is used to map Customer
attribute contactMethod. This attribute must be generic enough to reference all
possible values: in this example, instances of Address, PhoneNumber, and String.

Example 53–51 Schema for XML Any Object Mapping

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="contact-method" type="xsd:anyType"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="address">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="phone-number" type="xsd:string"/>

</xsd:schema>

Note: The undefined document root element of a referenced object is
ignored during marshalling with an any collection mapping and
object mapping.

XML Any Object Mapping

53-30 Developer's Guide for Oracle TopLink

Figure 53–28 Java Classes for XML Any Object Mapping

Figure 53–29, Figure 53–30, and Figure 53–31 illustrate how the XML any object
mapping maps to an Address, PhoneNumber, and String (respectively) in XML
documents that conform to the schema in Example 53–51.

Figure 53–29 XML Any Object Mapping to Address Type

Figure 53–30 XML Any Object Mapping to PhoneNumber Type

XML Any Collection Mapping

Introduction to XML Mappings 53-31

Figure 53–31 XML Any Object Mapping to String Type

Example 53–52 shows how to configure this mapping in Java.

Example 53–52 Java for XML Any Object Mapping

XMLAnyObjectMapping contactMethodMapping = new XMLAnyObjectMapping();
contactMethodMapping.setAttributeName("contactMethod");
contactMethodMapping.setXPath("contact-method");

For more information about TopLink XML mapping support for xs:any and
xs:anyType, see Section 53.2.5, "xs:any and xs:anyType Support".

See Chapter 59, "Configuring an XML Any Object Mapping" for more information.

53.8 XML Any Collection Mapping
The XML any collection mapping is similar to the composite collection XML mapping
(see Section 53.6, "XML Composite Collection Mapping"), except that the referenced
objects may be of different types (including String). These types need not be related
to each other through inheritance or a common interface.

The corresponding object attribute value can be an instance of any object with a
Descriptor, a java.lang.Object, a java.lang.String, a primitive object
(such as java.lang.Integer), or a user-defined type generic enough for all possible
application values.

This mapping is useful with the following XML schema constructs:

■ any

■ choice

■ substitution groups

Each of the referenced objects (except String) must specify a default root element on
their descriptor (see Section 16.2.12, "Default Root Element").

Given the XML schema in Example 53–53, Figure 53–32 illustrates the Java classes
used in this example. A single XML any collection mapping is used to map Customer
attribute contactMethods. This attribute must be generic enough to reference all
possible values: in this example, instances of Address, PhoneNumber, and String.

Example 53–53 Schema for XML Any Collection Mapping

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="customer" type="customer-type"/>
<xsd:complexType name="customer-type">

<xsd:sequence>
<xsd:element name="contact-methods" type="xsd:anyType"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="address">

<xsd:complexType>

XML Any Collection Mapping

53-32 Developer's Guide for Oracle TopLink

<xsd:sequence>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="phone-number" type="xsd:string"/>

</xsd:schema>

Figure 53–32 Java Classes for XML Any Collection Mapping

Figure 53–33 illustrate how the XML any collection mapping maps to a collection of
Address, PhoneNumber, and String objects in an XML document that conforms to
the schema in Example 53–53.

Figure 53–33 XML Any Collection Mapping

Example 53–54 shows how to configure this mapping in Java.

XML Object Reference Mapping

Introduction to XML Mappings 53-33

Example 53–54 Java for XML Any Collection Mapping

XMLAnyCollectionMapping contactMethodsMapping = new XMLAnyCollectionMapping();
contactMethodsMapping.setAttributeName("contactMethods");
contactMethodsMapping.setXPath("contact-methods");

For more information about TopLink XML mapping support for xs:any and
xs:anyType, see Section 53.2.5, "xs:any and xs:anyType Support".

See Chapter 60, "Configuring an XML Any Collection Mapping" for more information.

53.9 XML Transformation Mapping
You can use an XML transformation mapping to create a custom mapping where one
or more XML nodes can be used to create the object to be stored in a Java class’s
attribute. To handle the custom requirements at marshall (write) and unmarshall
(read) time, a transformation mapping takes instances of
oracle.toplink.mappings.transformers (such as AttributeTransformer
and FieldTransformer) that you provide. This provides a nonintrusive solution
that avoids the need for your domain objects to implement special interfaces for this
purpose.

As Figure 53–34 illustrates, you configure the transformation mapping with an
oracle.toplink.mappings.transformers.AttributeTransformer instance
to perform the XML instance-to-Java attribute transformation at unmarshall time. In
this example, the AttributeTransformer combines two XML text nodes into a
single Java object.

Similarly, you also configure the transformation mapping with one or more
oracle.toplink.mappings.transformers.FieldTransformer instances to
perform the Java attribute-to-XML instance transformation at marshall time. In this
example, each FieldTransformer is responsible for mapping one of the Java object
values to an XML text node.

Figure 53–34 XML Transformation Mappings

See Chapter 61, "Configuring an XML Transformation Mapping" for more information.

53.10 XML Object Reference Mapping
The oracle.toplink.ox.mappings.XMLObjectReferenceMapping is a key on
source-based aggregate mapping. It allows you to use one-to-one mappings to map a
given element in an XML document to another element in that same XML document
using one or more keys.

XML Object Reference Mapping

53-34 Developer's Guide for Oracle TopLink

Use this mapping when several objects reference the same instance of another object.
In this case, one and only one of the mappings is to be a composite–the remaining
mappings must be reference mappings. These references will be created based on one
or more key values.

XML object reference mapping is fully supported in the deployment XML.

With this mapping, TopLink provides support for composite keys, as well as for
foreign key grouping elements.

The XMLObjectReferenceMapping captures the following information:

■ Attribute name.

■ Reference class.

■ Map of source and target key pairs, such as XPath values (see Section 53.2.3,
"XPath Support") in the following format:

["project-id/text()","@id"]
Use the addSourceToTargetKeyFieldAssociation method to add a source
and target XPath pair to the map.

■ List of source keys to maintain order.

See Chapter 62, "Configuring an XML Object Reference Mapping" for more
information.

53.10.1 Mapping Using a Single Key
Figure 53–35, Example 53–55, Example 53–56 and Example 53–57 demonstrate how to
map one element to another using a single key.

Figure 53–35 Class Diagram

Example 53–55 Using Single Key - Instance Document

...
<employee id="12">

<name>Joe Brown</name>
<project-id>99</project-id>

</employee>
<project id="99">

<name>Big Project</name>
<budget>100,000</budget>

</project>
...

Note: You should group together elements mapped to keys. Also,
TopLink supports grouping elements that wrap all of the keys (not the
ones that wrap each individual key).

XML Object Reference Mapping

Introduction to XML Mappings 53-35

Example 53–56 shows how to create an XMLObjectReferenceMapping, set a single
key on source, and then add the mapping to the descriptor.

Example 53–56 Using Single Key - Project Class - Employee Descriptor

...
XMLObjectReferenceMapping emp = new XMLObjectReferenceMapping();
emp.setAttributeName("project");
emp.setReferenceClass(Project.class);
emp.addSourceToTargetKeyFieldAssociation("project-id/text()","@id");
empDescriptor.addMapping(emp);
...
Example 53–57 shows how to define the primary key field on the descriptor.

Example 53–57 Using Single Key - Project Class - Project Descriptor

...
XMLDescriptor prjDescriptor = new XMLDescriptor();
prjDescriptor.setJavaClass(Project.class);
prjDescriptor.addPrimaryKeyField("@id");
...

53.10.2 Mapping Using a Composite Key
Figure 53–35, Example 53–58, Example 53–59 and Example 53–60 demonstrate how to
map one element to another using a composite key.

Example 53–58 Using Composite Key - Instance Document

...
<employee id="12">

<name>Joe Brown</name>
<prj-name>Big Project</prj-name>
<prj-budget>100,000</prj-budget>

</employee>
<project id="99">

<name>Big Project</name>
<budget>100,000</budget>

</project>
...
Example 53–59 shows how to create an XMLObjectReferenceMapping, set a
composite key on source, and then add the mapping to the descriptor.

Example 53–59 Using Composite Key - Project Class - Employee Descriptor

...
XMLObjectReferenceMapping emp = new XMLObjectReferenceMapping();
emp.setAttributeName("project");
emp.setReferenceClass(Project.class);
emp.addSourceToTargetKeyFieldAssociation("prj-name/text()","name/text()");
emp.addSourceToTargetKeyFieldAssociation("prj-budget/text()","budget/text()");
empDescriptor.addMapping(emp);
...
Example 53–60 shows how to define a composite primary key field on the descriptor.

Example 53–60 Using Composite Key - Project Class - Project Descriptor

...
XMLDescriptor prjDescriptor = new XMLDescriptor();
prjDescriptor.setJavaClass(Project.class);

XML Object Reference Mapping

53-36 Developer's Guide for Oracle TopLink

prjDescriptor.addPrimaryKeyField("name");
prjDescriptor.addPrimaryKeyField("budget");
...

53.10.3 Mapping Using JAXB
The JAXB generator generates a deployment descriptor based on annotations and
default values.

Figure 53–35, Example 53–61, Example 53–62, Example 53–63 and Example 53–64
demonstrate how to map one XML element to another using JAXB annotations.

Example 53–61 Using JAXB - Object Model

public class Employee {

@XmlAttribute(name="id")
public String id;
public String name;

@XmlElement(name="project-id")
@XmlIDREF
public Project project;
...

}

public class Project {

@XmlElement(name="project-id")
@XmlID
public String id;

public String name;
public String budget;
...

}

Example 53–62 Using JAXB - Instance Document

...
<employee id="12">

<name>Joe Brown</name>
<project-id>99</project-id>

</employee>
<project project-id="99">

<name>Big Project</name>
<budget>100,000</budget>

</project>
...
Example 53–63 shows how to create an XMLObjectReferenceMapping, set a key on
source, and then add the mapping to the descriptor.

Note: The JAXB specification states that for the @XmlID annotation,
the following restrictions apply:

■ The field type must be String.

■ The use of composite keys is not allowed.

XML Collection Reference Mapping

Introduction to XML Mappings 53-37

Example 53–63 Using JAXB - Project Class - Employee Descriptor

...
XMLObjectReferenceMapping emp = new XMLObjectReferenceMapping();
emp.setAttributeName("project");
emp.setReferenceClass(Project.class);
emp.addSourceToTargetKeyFieldAssociation("project-id/text()","@pid");
empDescriptor.addMapping(emp);
...
Example 53–64 shows how to define the primary key field on the descriptor.

Example 53–64 Using JAXB - Project Class - Project Descriptor

...
XMLDescriptor prjDescriptor = new XMLDescriptor();
prjDescriptor.setJavaClass(Project.class);
prjDescriptor.addPrimaryKeyField("@pid");
...
For more information, see the following:

■ JAXB 2.0 Specification at
http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.ht
ml

■ Chapter 47, "Introduction to XML Projects"

53.11 XML Collection Reference Mapping
The oracle.toplink.ox.mappings.XMLCollectionReferenceMapping is a
key on source-based aggregate mapping, It allows you to use one-to-many mappings
to map a given element in an XML document to another element in that same XML
document using one or more keys.

With this mapping, TopLink provides support for foreign key grouping elements.

The XMLCollectionReferenceMapping captures the following information:

■ Attribute name.

■ Reference class.

■ Map of source and target key pairs, such as XPath values (see Section 53.2.3,
"XPath Support") in the following format:

["project-id/text()","@id"]
Use the addSourceToTargetKeyFieldAssociation method to add a source
and target XPath pair to the map.

■ List of source keys to maintain order.

Figure 53–36, Example 53–65, Example 53–66 and Example 53–67 demonstrate how to
map one element to another using a single key.

Note: You should group together elements mapped to keys. Also,
TopLink supports grouping elements that wrap all of the keys (not the
ones that wrap each individual key).

XML Collection Reference Mapping

53-38 Developer's Guide for Oracle TopLink

Figure 53–36 Class Diagram

Example 53–65 Using a Single Key - Instance Document

...
<employee id="12">

<name>Joe Brown</name>
<project-id>99</project-id>
<project-id>199</project-id>

</employee>
<project id="99">

<name>Big Project</name>
<budget>100,000</budget>

</project>
<project id="199">

<name>Bigger Project</name>
<budget>100,000,000</budget>

</project>
...
Example 53–66 shows how to create an XMLCollectionReferenceMapping, set a
single key on source, and then add the mapping to the descriptor.

Example 53–66 Using a Single Key - Project Class - Employee Descriptor

...
XMLCollectionReferenceMapping prj = new XMLCollectionReferenceMapping();
prj.useCollectionClass(ArrayList.class);
prj.setAttributeName("projects");
prj.setReferenceClass(Project.class);
prj.addSourceToTargetKeyFieldAssociation("project-id/text()","@id");
empDescriptor.addMapping(prj);
...
Example 53–67 shows how to define the primary key field on the descriptor.

Example 53–67 Using a Single Key - Project Class - Project Descriptor

...
XMLDescriptor prjDescriptor = new XMLDescriptor();
prjDescriptor.setJavaClass(Project.class);
prjDescriptor.addPrimaryKeyField("@id");
...
Figure 53–36, Example 53–68, Example 53–69 and Example 53–70 demonstrate how to
map one element to another using a single key as a space-separated list.

Example 53–68 Using a Single Key as Space-Separated List - Instance Document

...
<employee id="12" project-ids="99 199">

<name>Joe Brown</name>
</employee>
<project id="99">

<name>Big Project</name>

XML Binary Data Mapping

Introduction to XML Mappings 53-39

<budget>100,000</budget>
</project>
<project id="199">

<name>Bigger Project</name>
<budget>100,000,000</budget>

</project>
...
Example 53–69 shows how to create an XMLCollectionReferenceMapping, set a
single key on source as a space-separated list, and then add the mapping to the
descriptor.

Example 53–69 Using a Single Key as Space-Separated List - Project Class - Employee
Descriptor

...
XMLCollectionReferenceMapping prj = new XMLCollectionReferenceMapping();
prj.useCollectionClass(ArrayList.class);
prj.setAttributeName("projects");
prj.setReferenceClass(Project.class);
prj.addSourceToTargetKeyFieldAssociation("project-ids","@id");
empDescriptor.addMapping(prj);
...
Example 53–70 shows how to define the primary key field on the descriptor.

Example 53–70 Using a Single Key as Space-Separated List - Project Class - Project
Descriptor

...
XMLDescriptor prjDescriptor = new XMLDescriptor();
prjDescriptor.setJavaClass(Project.class);
prjDescriptor.addPrimaryKeyField("@id");
...
See Chapter 63, "Configuring an XML Collection Reference Mapping" for more
information.

53.12 XML Binary Data Mapping
The oracle.toplink.ox.mappings.XMLBinaryDataMapping is a direct
mapping (see Section 53.3, "XML Direct Mapping") that you use for handling binary
data: it maps binary data in the object model to XML. This allows you to enable
writing of binary data directly as inline binary data (base64 BLOB), or passing through
as a MtOM or SwaRef attachment. For more information, see Section 12.16,
"Optimizing Storage and Retrieval of Binary Data in XML".

The XMLBinaryDataMapping also lets you make callbacks to an attachment
marshaller and unmarshaller (see Section 12.16.1, "How to Use an Attachment
Marshaller and Unmarshaller"), as well as set XPath (see Section 53.2.3, "XPath
Support").

Example 53–71 shows how to create an XMLBinaryDataMapping, set some of its
properties, and then add the mapping to a descriptor.

Example 53–71 Creating an XML Binary Data Mapping

XMLBinaryDataMapping addressMapping = new XMLBinaryDataMapping();
addressMapping.setXPath("address");
addressMapping.setShouldInlineBinaryData(true);
descriptor.addMapping(addressMapping);
...

XML Binary Data Collection Mapping

53-40 Developer's Guide for Oracle TopLink

See Chapter 64, "Configuring an XML Binary Data Mapping" for more information.

53.13 XML Binary Data Collection Mapping
The oracle.toplink.ox.mappings.XMLBinaryDataCollectionMapping is
very similar to the XMLBinaryDataMapping (see Section 53.12, "XML Binary Data
Mapping"), except that it maps a collection of binary data in the object model to XML.

For more information, see the following:

■ Section 12.16, "Optimizing Storage and Retrieval of Binary Data in XML"

■ Section 53.12, "XML Binary Data Mapping"

Example 53–72 shows how to create an XMLBinaryDataCollectionMapping, set
some of its properties, and then add the mapping to a descriptor.

Example 53–72 Creating an XML Binary Data Collection Mapping

XMLBinaryDataCollectionMapping addressMapping =
new XMLBinaryDataCollectionMapping();

addressMapping.setCollectionContentType(type);
addressMapping.setXPath("address");
addressMapping.setShouldInlineBinaryData(true);
descriptor.addMapping(addressMapping);
...
For more information, see the following:

■ Chapter 65, "Configuring an XML Binary Data Collection Mapping"

■ Section 53.4, "XML Composite Direct Collection Mapping"

53.14 XML Fragment Mapping
The oracle.toplink.ox.mappings.XMLFragmentMapping is a direct mapping
(see Section 53.3, "XML Direct Mapping") that provides you a means to keep a part of
an XML tree as a node.

The XMLFragmentMapping also lets you set the XPath (see Section 53.2.3, "XPath
Support").

Example 53–73 shows how to create an XMLFragmentMapping, set some of its
properties, and then add the mapping to a descriptor.

Example 53–73 Creating an XML Fragment Mapping

XMLFragmentMapping addressMapping = new XMLFragmentMapping();
addressMapping.setXPath("address");
descriptor.addMapping(addressMapping);
...
See Chapter 66, "Configuring an XML Fragment Mapping" for more information.

53.15 XML Fragment Collection Mapping
The oracle.toplink.ox.mappings.XMLFragmentCollectionMapping is
similar to the XMLFragmentMapping (see Section 53.14, "XML Fragment Mapping,"),
except that it allows you to keep a part of an XML tree as a collection of nodes.

Example 53–74 shows how to create an XMLFragmentMapping, set the XPath (see
Section 53.2.3, "XPath Support"), and then add the mapping to a descriptor.

XML Choice Collection Mapping

Introduction to XML Mappings 53-41

Example 53–74 Creating an XML Fragment Collection Mapping

XMLFragmentCollectionMapping addressMapping =
new XMLFragmentCollectionMapping();

addressMapping.setXPath("address");
descriptor.addMapping(addressMapping);
...
See Chapter 67, "Configuring an XML Fragment Collection Mapping" for more
information.

53.16 XML Choice Object Mapping
The oracle.toplink.ox.mappings.XMLChoiceObjectMapping lets you map a
single attribute to a number of different elements in an XML document.

Unlike other TopLink XML mappings, instead of setting a single XPath, you use the
addChoiceElement method to specify an XPath as well as the type associated with
this XPath, as follows:

xmlChoiceObjectMapping.addChoiceElement("mystring/text()", String.class);
xmlChoiceObjectMapping.addChoiceElement("myaddress", Address.class);
When any of these elements are encountered in the XML document, they are read in
and set in the object as correct types.

Use this mapping to map to single choices or substitution groups (see Section 53.2.10,
"Substitution Groups") in an XML schema.

Example 53–75 shows how to create an XMLChoiceObjectMapping, set the XPath
(see Section 53.2.3, "XPath Support"), and then add the mapping to a descriptor.

Example 53–75 Creating an XML Choice Object Mapping

XMLChoiceObjectMapping addressMapping = new XMLChoiceObjectMapping();
addressMapping.setXPath("address", Address.class);
descriptor.addMapping(addressMapping);
...
See Chapter 68, "Configuring an XML Choice Object Mapping" for more information.

53.17 XML Choice Collection Mapping
The oracle.toplink.ox.mappings.XMLChoiceCollectionMapping is similar
to XMLChoiceObjectMapping (see Section 53.16, "XML Choice Object Mapping"),
except that you use it to handle reading and writing of XML documents containing a
collection of choice or substitution group (see Section 53.2.10, "Substitution Groups")
elements.

Example 53–76 shows how to create an XMLChoiceCollectionMapping, set the
XPath, and then add the mapping to a descriptor.

Example 53–76 Creating an XML Choice Collection Mapping

XMLChoiceCollectionMapping addressMapping = new XMLChoiceCollectionMapping();
addressMapping.setXPath("address", Address.class);
descriptor.addMapping(addressMapping);
...
See Chapter 69, "Configuring an XML Choice Collection Mapping" for more
information.

XML Any Attribute Mapping

53-42 Developer's Guide for Oracle TopLink

53.18 XML Any Attribute Mapping
The oracle.toplink.ox.mappings.XMLAnyAttributeMapping is a database
mapping that you can use to map to an attribute in an object to any XML attributes
contained on a specific element in the XML document. The attribute in the object will
contain a map of attribute values keyed on a qualified name
(javax.xml.namespace.QName). If one or more of the attributes found on the
specified element is already mapped to another attribute in the object, TopLink will
ignored that attribute during the unmarshall operation.

The XMLAnyAttributeMapping lets you set the XPath (see Section 53.2.3, "XPath
Support"), however, this operation is optional for this type of mapping: if you do not
set the XPath, the mapping will look for any attribute children directly owned by the
current element.

Example 53–77 shows how to create an XMLAnyAttributeMapping, set the XPath,
and then add the mapping to a descriptor.

Example 53–77 Creating an XML Any Attribute Mapping

XMLAnyAttributeMapping addressMapping = new XMLAnyAttributeMapping();
addressMapping.setXPath("address", Address.class);
descriptor.addMapping(addressMapping);
...
See Chapter 70, "Configuring an XML Any Attribute Mapping" for more information.

54

Configuring an XML Mapping 54-1

54Configuring an XML Mapping

This chapter describes how to configure an XML mapping.

This chapter includes the following sections:

■ Introduction to XML Mapping Configuration

■ Configuring Common XML Mapping Options

■ Configuring Reference Descriptor

■ Configuring Maps to Wildcard

■ Configuring Source to Target Key Field Association

■ Configuring Reference Class

■ Configuring the Use of Inline Binary Data

■ Configuring the Use of SwaRef Type

■ Configuring the Choice Element

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

54.1 Introduction to XML Mapping Configuration
Table 54–1 lists the types of XML mappings that you can configure and provides a
cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Table 54–1 Configuring XML Mappings

Mapping Type See Also...

XML direct mapping (see
Section 53.3, "XML Direct
Mapping")

Chapter 55, "Configuring an XML Direct Mapping"

XML composite direct collection
mapping (see Section 53.4, "XML
Composite Direct Collection
Mapping")

Chapter 56, "Configuring an XML Composite Direct Collection
Mapping"

XML composite object mapping
(see Section 53.5, "XML
Composite Object Mapping")

Chapter 57, "Configuring an XML Composite Object Mapping"

Configuring Common XML Mapping Options

54-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Chapter 17, "Introduction to Mappings"

■ Chapter 53, "Introduction to XML Mappings"

54.2 Configuring Common XML Mapping Options
Table 54–2 lists the configurable options shared by two or more XML mapping types.
In addition to the configurable options described here, you must also configure the
options described for the specific XML Mapping Types, as shown in Table 54–1.

XML composite collection
mapping (see Section 53.6, "XML
Composite Collection Mapping")

Chapter 58, "Configuring an XML Composite Collection
Mapping"

XML any object mapping (see
Section 53.7, "XML Any Object
Mapping")

Chapter 59, "Configuring an XML Any Object Mapping"

XML any collection mapping (see
Section 53.8, "XML Any
Collection Mapping")

Chapter 60, "Configuring an XML Any Collection Mapping"

XML transformation mapping
(see Section 53.9, "XML
Transformation Mapping")

Chapter 61, "Configuring an XML Transformation Mapping"

XML object reference mapping
(see Section 53.10, "XML Object
Reference Mapping")

Chapter 62, "Configuring an XML Object Reference Mapping"

XML collection reference
mapping (see Section 53.10,
"XML Object Reference
Mapping")

Chapter 62, "Configuring an XML Object Reference Mapping"

XML binary data mapping (see
Section 53.10, "XML Object
Reference Mapping")

Chapter 62, "Configuring an XML Object Reference Mapping"

XML binary data collection
mapping (see Section 53.10,
"XML Object Reference
Mapping")

Chapter 62, "Configuring an XML Object Reference Mapping"

XML fragment mapping (see
Section 53.10, "XML Object
Reference Mapping")

Chapter 62, "Configuring an XML Object Reference Mapping"

XML fragment collection
mapping (see Section 53.10,
"XML Object Reference
Mapping")

Chapter 62, "Configuring an XML Object Reference Mapping"

XML choice object mapping (see
Section 53.10, "XML Object
Reference Mapping")

Chapter 62, "Configuring an XML Object Reference Mapping"

XML choice collection mapping
(see Section 53.10, "XML Object
Reference Mapping")

Chapter 62, "Configuring an XML Object Reference Mapping"

XML any attribute mapping (see
Section 53.10, "XML Object
Reference Mapping")

Chapter 62, "Configuring an XML Object Reference Mapping"

Table 54–1 (Cont.) Configuring XML Mappings

Mapping Type See Also...

Configuring Reference Descriptor

Configuring an XML Mapping 54-3

54.3 Configuring Reference Descriptor
For XML attributes that reference other descriptors (instead of a schema element), you
may select a specific reference descriptor. If you do not specify a reference descriptor,
TopLink uses the xsi:Type attribute to determine the reference class object.

In TopLink versions prior to 11g (11.1.1.0), the reference class was required.

Table 54–3 summarizes which XML mappings support reference descriptor
configuration.

Table 54–2 Common Options for XML Mappings

Option
Oracle
JDeveloper

TopLink
Workbench Java

Section 121.4, "Configuring XPath"

Section 54.3, "Configuring Reference Descriptor"

Section 121.14, "Configuring Container Policy"

Section 121.6, "Configuring Method or Direct Field Accessing
at the Mapping Level"

Section 121.2, "Configuring Read-Only Mappings"

Section 54.4, "Configuring Maps to Wildcard"

Section 121.9, "Configuring a Serialized Object Converter"

Section 121.10, "Configuring a Type Conversion Converter"

Section 121.11, "Configuring an Object Type Converter"

Section 121.12, "Configuring a Simple Type Translator"

Section 121.19, "Configuring the Use of a Single Node"

Section 121.20, "Configuring the Use of CDATA"

Section 54.5, "Configuring Source to Target Key Field
Association"

Section 54.6, "Configuring Reference Class"

Section 54.7, "Configuring the Use of Inline Binary Data"

Section 54.8, "Configuring the Use of SwaRef Type"

Section 54.9, "Configuring the Choice Element"

Table 54–3 XML Mapping Support for Reference Descriptor Configuration

XML Mapping

How to Use
Oracle
JDeveloper

How to
Configure a
Reference
Descriptor Using
TopLink
Workbench

How to
Use
Java

XML direct mapping (see Section 53.3, "XML
Direct Mapping")

XML composite direct collection mapping (see
Section 53.4, "XML Composite Direct
Collection Mapping")

XML composite object mapping (see
Section 53.5, "XML Composite Object
Mapping")

XML composite collection mapping (see
Section 53.6, "XML Composite Collection
Mapping")

Configuring Reference Descriptor

54-4 Developer's Guide for Oracle TopLink

54.3.1 How to Configure a Reference Descriptor Using TopLink Workbench
To specify a reference descriptor for an XML mapping that references another
descriptor (instead of a schema element), use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

XML any object mapping (seeSection 53.7,
"XML Any Object Mapping")

XML any collection mapping (see Section 53.8,
"XML Any Collection Mapping")

XML transformation mapping (see
Section 53.9, "XML Transformation Mapping")

XML object reference mapping (see
Section 53.10, "XML Object Reference
Mapping")

XML object collection mapping (see
Section 53.11, "XML Collection Reference
Mapping")

XML binary data mapping (see Section 53.12,
"XML Binary Data Mapping")

XML binary data collection mapping (see
Section 53.13, "XML Binary Data Collection
Mapping")

XML fragment mapping (see Section 53.14,
"XML Fragment Mapping")

XML fragment collection mapping (see
Section 53.15, "XML Fragment Collection
Mapping")

XML choice object mapping (see Section 53.16,
"XML Choice Object Mapping")

XML choice collection mapping (see
Section 53.17, "XML Choice Collection
Mapping")

XML any attribute mapping (see Section 53.18,
"XML Any Attribute Mapping")

Table 54–3 (Cont.) XML Mapping Support for Reference Descriptor Configuration

XML Mapping

How to Use
Oracle
JDeveloper

How to
Configure a
Reference
Descriptor Using
TopLink
Workbench

How to
Use
Java

Configuring Maps to Wildcard

Configuring an XML Mapping 54-5

Figure 54–1 General Tab, Reference Descriptor Field

If this XML attribute refers to another descriptor (instead of a schema element), use the
Reference Descriptor field to select a descriptor in the project.

54.4 Configuring Maps to Wildcard
This attribute applies only to Oracle JDeveloper TopLink Editor and TopLink
Workbench. Use this option to solve "No XPath specified" problems (see Section 5.3.5,
"How to Use the Problems Window") for an XML mapping that does not need an
XPath (see Section 121.4, "Configuring XPath") for it maps to a wildcard.

If the XML mapping is owned by an anyType descriptor (see Section 52.3,
"Configuring for Complex Type of anyType"), it cannot map to a wildcard, and you
must specify an XPath.

Table 54–4 summarizes which XML mappings support maps to wildcard
configuration.

Table 54–4 XML Mapping Support for Maps to Wildcard Configuration

XML Mapping

How to Use
Oracle
JDeveloper

How to
Configure Maps
to Wildcard
Using TopLink
Workbench

How to
Use
Java

XML direct mapping (see Section 53.3, "XML
Direct Mapping")

XML composite direct collection mapping (see
Section 53.4, "XML Composite Direct
Collection Mapping")

XML composite object mapping (see
Section 53.5, "XML Composite Object
Mapping")

XML composite collection mapping (see
Section 53.6, "XML Composite Collection
Mapping")

XML any object mapping (seeSection 53.7,
"XML Any Object Mapping")

XML any collection mapping (see Section 53.8,
"XML Any Collection Mapping")

Configuring Maps to Wildcard

54-6 Developer's Guide for Oracle TopLink

54.4.1 How to Configure Maps to Wildcard Using TopLink Workbench
To specify a map a schema element using the xs:any declaration, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

Figure 54–2 Mapping Tab, Maps to Wildcard Option

XML transformation mapping (see
Section 53.9, "XML Transformation Mapping")

XML object reference mapping (see
Section 53.10, "XML Object Reference
Mapping")

XML object collection mapping (see
Section 53.11, "XML Collection Reference
Mapping")

XML binary data mapping (see Section 53.12,
"XML Binary Data Mapping")

XML binary data collection mapping (see
Section 53.13, "XML Binary Data Collection
Mapping")

XML fragment mapping (see Section 53.14,
"XML Fragment Mapping")

XML fragment collection mapping (see
Section 53.15, "XML Fragment Collection
Mapping")

XML choice object mapping (see Section 53.16,
"XML Choice Object Mapping")

XML choice collection mapping (see
Section 53.17, "XML Choice Collection
Mapping")

XML any attribute mapping (see Section 53.18,
"XML Any Attribute Mapping")

Table 54–4 (Cont.) XML Mapping Support for Maps to Wildcard Configuration

XML Mapping

How to Use
Oracle
JDeveloper

How to
Configure Maps
to Wildcard
Using TopLink
Workbench

How to
Use
Java

Configuring Source to Target Key Field Association

Configuring an XML Mapping 54-7

If the XML mapping is not owned by an anyType descriptor (see Section 52.3,
"Configuring for Complex Type of anyType") and maps to a wildcard, then you do not
need to specify an XPath (see Section 121.4, "Configuring XPath"). Select the Maps to
Wildcard (uses "any" tag) option to clear the missing XPath neediness message.

If the XML mapping is owned by an anyType descriptor, it cannot map to a wildcard
and you must specify an XPath. Deselect the Maps to Wildcard (Uses "any" tag)
option and ensure that you specify an XPath.

54.5 Configuring Source to Target Key Field Association
This option is applicable to key on source-based mappings. Use this option to add a
source and target XPath pair to the map of such key pairs.

Table 54–5 summarizes which XML mappings support source to target key field
association configuration.

Table 54–5 XML Mapping Support for Source to Target Key Field Association
Configuration

XML Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
Source to
Target Key
Field
Association
Using Java

XML direct mapping (see Section 53.3,
"XML Direct Mapping")

XML composite direct collection mapping
(see Section 53.4, "XML Composite Direct
Collection Mapping")

XML composite object mapping (see
Section 53.5, "XML Composite Object
Mapping")

XML composite collection mapping (see
Section 53.6, "XML Composite Collection
Mapping")

XML any object mapping (seeSection 53.7,
"XML Any Object Mapping")

XML any collection mapping (see
Section 53.8, "XML Any Collection
Mapping")

XML transformation mapping (see
Section 53.9, "XML Transformation
Mapping")

XML object reference mapping (see
Section 53.10, "XML Object Reference
Mapping")

XML object collection mapping (see
Section 53.11, "XML Collection Reference
Mapping")

XML binary data mapping (see
Section 53.12, "XML Binary Data
Mapping")

Configuring Reference Class

54-8 Developer's Guide for Oracle TopLink

54.5.1 How to Configure Source to Target Key Field Association Using Java
To configure the source to target key field association for your mapping, use the
XMLObjectReferenceMapping method
addSourceToTargetKeyFieldAssociation to add a specified source and target
XPath pair to the map.

54.6 Configuring Reference Class
This option is applicable to key on source-based mappings.

Use this option to define the reference class, whose instances your XML object
reference mapping will store in the domain objects.

Table 54–6 summarizes which XML mappings support source to target key field
association configuration.

XML binary data collection mapping (see
Section 53.13, "XML Binary Data Collection
Mapping")

XML fragment mapping (see Section 53.14,
"XML Fragment Mapping")

XML fragment collection mapping (see
Section 53.15, "XML Fragment Collection
Mapping")

XML choice object mapping (see
Section 53.16, "XML Choice Object
Mapping")

XML choice collection mapping (see
Section 53.17, "XML Choice Collection
Mapping")

XML any attribute mapping (see
Section 53.18, "XML Any Attribute
Mapping")

Table 54–6 XML Mapping Support for Reference Class Configuration

XML Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
Reference
Class
Using Java

XML direct mapping (see Section 53.3,
"XML Direct Mapping")

XML composite direct collection mapping
(see Section 53.4, "XML Composite Direct
Collection Mapping")

Table 54–5 (Cont.) XML Mapping Support for Source to Target Key Field Association
Configuration

XML Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
Source to
Target Key
Field
Association
Using Java

Configuring Reference Class

Configuring an XML Mapping 54-9

54.6.1 How to Configure Reference Class Using Java
To configure a reference class for your mapping, use the AggregateMapping method
setReferenceClass.

XML composite object mapping (see
Section 53.5, "XML Composite Object
Mapping")

XML composite collection mapping (see
Section 53.6, "XML Composite Collection
Mapping")

XML any object mapping (seeSection 53.7,
"XML Any Object Mapping")

XML any collection mapping (see
Section 53.8, "XML Any Collection
Mapping")

XML transformation mapping (see
Section 53.9, "XML Transformation
Mapping")

XML object reference mapping (see
Section 53.10, "XML Object Reference
Mapping")

XML object collection mapping (see
Section 53.11, "XML Collection Reference
Mapping")

XML binary data mapping (see
Section 53.12, "XML Binary Data
Mapping")

XML binary data collection mapping (see
Section 53.13, "XML Binary Data Collection
Mapping")

XML fragment mapping (see Section 53.14,
"XML Fragment Mapping")

XML fragment collection mapping (see
Section 53.15, "XML Fragment Collection
Mapping")

XML choice object mapping (see
Section 53.16, "XML Choice Object
Mapping")

XML choice collection mapping (see
Section 53.17, "XML Choice Collection
Mapping")

XML any attribute mapping (see
Section 53.18, "XML Any Attribute
Mapping")

Table 54–6 (Cont.) XML Mapping Support for Reference Class Configuration

XML Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
Reference
Class
Using Java

Configuring the Use of Inline Binary Data

54-10 Developer's Guide for Oracle TopLink

54.7 Configuring the Use of Inline Binary Data
This option is applicable to binary data mappings.

Use this option to define whether or not there should always be inline binary data for
this mapping.

Table 54–7 summarizes which XML mappings support the use of inline binary data
configuration.

Table 54–7 XML Mapping Support for the Use of Inline Binary Data Configuration

XML Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
the Use of
Inline
Binary Data
Using Java

XML direct mapping (see Section 53.3,
"XML Direct Mapping")

XML composite direct collection mapping
(see Section 53.4, "XML Composite Direct
Collection Mapping")

XML composite object mapping (see
Section 53.5, "XML Composite Object
Mapping")

XML composite collection mapping (see
Section 53.6, "XML Composite Collection
Mapping")

XML any object mapping (seeSection 53.7,
"XML Any Object Mapping")

XML any collection mapping (see
Section 53.8, "XML Any Collection
Mapping")

XML transformation mapping (see
Section 53.9, "XML Transformation
Mapping")

XML object reference mapping (see
Section 53.10, "XML Object Reference
Mapping")

XML object collection mapping (see
Section 53.11, "XML Collection Reference
Mapping")

XML binary data mapping (see
Section 53.12, "XML Binary Data
Mapping")

XML binary data collection mapping (see
Section 53.13, "XML Binary Data Collection
Mapping")

XML fragment mapping (see Section 53.14,
"XML Fragment Mapping")

XML fragment collection mapping (see
Section 53.15, "XML Fragment Collection
Mapping")

Configuring the Use of SwaRef Type

Configuring an XML Mapping 54-11

54.7.1 How to Configure the Use of Inline Binary Data Using Java
To configure the use of inline binary data for your mapping, use the
XMLBinaryDataMapping or XMLBinaryDataCollectionMapping method
setShouldInlineBinaryData. If you set it to true, you disable consideration for
attachment handling for this mapping and indicate that you only want inline data.

54.8 Configuring the Use of SwaRef Type
This option is applicable to binary data mappings.

Use this option to specify that the target node of this mapping is of type xs:swaref.

Table 54–8 summarizes which XML mappings support the use of SwaRef type
configuration.

XML choice object mapping (see
Section 53.16, "XML Choice Object
Mapping")

XML choice collection mapping (see
Section 53.17, "XML Choice Collection
Mapping")

XML any attribute mapping (see
Section 53.18, "XML Any Attribute
Mapping")

Table 54–8 XML Mapping Support for the Use of SwaRef Type Configuration

XML Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
the Use of
SwaRef
Type Using
Java

XML direct mapping (see Section 53.3,
"XML Direct Mapping")

XML composite direct collection mapping
(see Section 53.4, "XML Composite Direct
Collection Mapping")

XML composite object mapping (see
Section 53.5, "XML Composite Object
Mapping")

XML composite collection mapping (see
Section 53.6, "XML Composite Collection
Mapping")

XML any object mapping (seeSection 53.7,
"XML Any Object Mapping")

Table 54–7 (Cont.) XML Mapping Support for the Use of Inline Binary Data Configuration

XML Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
the Use of
Inline
Binary Data
Using Java

Configuring the Choice Element

54-12 Developer's Guide for Oracle TopLink

54.8.1 How to Configure the Use of SwaRef Type Using Java
To configure the use of SwaRef type for your mapping, use the
XMLBinaryDataMapping or XMLBinaryDataCollectionMapping method
setSwaRef. If you set it to true, you indicate that the target node of this mapping is
of type xs:swaref.

54.9 Configuring the Choice Element
This option is applicable to choice mappings.

Use this option to specify an XPath and the type associated with this XPath.

Table 54–9 summarizes which XML mappings support the choice element
configuration.

XML any collection mapping (see
Section 53.8, "XML Any Collection
Mapping")

XML transformation mapping (see
Section 53.9, "XML Transformation
Mapping")

XML object reference mapping (see
Section 53.10, "XML Object Reference
Mapping")

XML object collection mapping (see
Section 53.11, "XML Collection Reference
Mapping")

XML binary data mapping (see
Section 53.12, "XML Binary Data
Mapping")

XML binary data collection mapping (see
Section 53.13, "XML Binary Data Collection
Mapping")

XML fragment mapping (see Section 53.14,
"XML Fragment Mapping")

XML fragment collection mapping (see
Section 53.15, "XML Fragment Collection
Mapping")

XML choice object mapping (see
Section 53.16, "XML Choice Object
Mapping")

XML choice collection mapping (see
Section 53.17, "XML Choice Collection
Mapping")

XML any attribute mapping (see
Section 53.18, "XML Any Attribute
Mapping")

Table 54–8 (Cont.) XML Mapping Support for the Use of SwaRef Type Configuration

XML Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
the Use of
SwaRef
Type Using
Java

Configuring the Choice Element

Configuring an XML Mapping 54-13

Table 54–9 XML Mapping Support for the Choice Element Configuration

XML Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
the Choice
Element
Using Java

XML direct mapping (see Section 53.3,
"XML Direct Mapping")

XML composite direct collection mapping
(see Section 53.4, "XML Composite Direct
Collection Mapping")

XML composite object mapping (see
Section 53.5, "XML Composite Object
Mapping")

XML composite collection mapping (see
Section 53.6, "XML Composite Collection
Mapping")

XML any object mapping (seeSection 53.7,
"XML Any Object Mapping")

XML any collection mapping (see
Section 53.8, "XML Any Collection
Mapping")

XML transformation mapping (see
Section 53.9, "XML Transformation
Mapping")

XML object reference mapping (see
Section 53.10, "XML Object Reference
Mapping")

XML object collection mapping (see
Section 53.11, "XML Collection Reference
Mapping")

XML binary data mapping (see
Section 53.12, "XML Binary Data
Mapping")

XML binary data collection mapping (see
Section 53.13, "XML Binary Data Collection
Mapping")

XML fragment mapping (see Section 53.14,
"XML Fragment Mapping")

XML fragment collection mapping (see
Section 53.15, "XML Fragment Collection
Mapping")

XML choice object mapping (see
Section 53.16, "XML Choice Object
Mapping")

XML choice collection mapping (see
Section 53.17, "XML Choice Collection
Mapping")

XML any attribute mapping (see
Section 53.18, "XML Any Attribute
Mapping")

Configuring the Choice Element

54-14 Developer's Guide for Oracle TopLink

54.9.1 How to Configure the Choice Element Using Java
Use the following XMLChoiceObjectMapping or XMLChoiceCollectionMapping
methods to add choice element:

■ addChoiceElement(String xpath, Class elementType)

■ addChoiceElement(String xpath, String elementTypeName)

55

Configuring an XML Direct Mapping 55-1

55Configuring an XML Direct Mapping

This chapter describes the various components that you must configure in order to use
an XML direct mapping.

This chapter includes the following section:

■ Introduction to XML Direct Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

55.1 Introduction to XML Direct Mapping Configuration
Table 55–1 lists the configurable options for an XML direct mapping.

Table 55–1 Configurable Options for XML Direct Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Simple type translator (see Section 121.12, "Configuring a
Simple Type Translator")

Use of a single node (see Section 121.19, "Configuring the Use
of a Single Node")

Use of CDATA (see Section 121.20, "Configuring the Use of
CDATA")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Default null value (see Section 121.5, "Configuring a Default
Null Value at the Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Serialized object converter (see Section 121.9, "Configuring a
Serialized Object Converter")

Type conversion converter (see Section 121.10, "Configuring a
Type Conversion Converter")

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

Introduction to XML Direct Mapping Configuration

55-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Section 53.3, "XML Direct Mapping"

■ Chapter 54, "Configuring an XML Mapping"

JAXB typesafe enumeration converter (see Section 121.13,
"Configuring a JAXB Typesafe Enumeration Converter")

Table 55–1 (Cont.) Configurable Options for XML Direct Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

56

Configuring an XML Composite Direct Collection Mapping 56-1

56Configuring an XML Composite Direct
Collection Mapping

This chapter describes the various components that you must configure in order to use
an XML composite direct collection mapping.

This chapter includes the following section:

■ Introduction to XML Composite Direct Collection Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

56.1 Introduction to XML Composite Direct Collection Mapping
Configuration

Table 56–1 lists the configurable options for an XML direct collection mapping.

Table 56–1 Configurable Options for XML Direct Collection Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Simple type translator (see Section 121.12, "Configuring a
Simple Type Translator")

Use of a single node (see Section 121.19, "Configuring the Use
of a Single Node")

Use of CDATA (see Section 121.20, "Configuring the Use of
CDATA")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Container policy (see Section 121.14, "Configuring Container
Policy")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Serialized object converter (see Section 121.9, "Configuring a
Serialized Object Converter")

Type conversion converter (see Section 121.10, "Configuring a
Type Conversion Converter")

Introduction to XML Composite Direct Collection Mapping Configuration

56-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Section 53.4, "XML Composite Direct Collection Mapping"

■ Chapter 54, "Configuring an XML Mapping"

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

JAXB typesafe enumeration converter (see Section 121.13,
"Configuring a JAXB Typesafe Enumeration Converter")

Table 56–1 (Cont.) Configurable Options for XML Direct Collection Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

57

Configuring an XML Composite Object Mapping 57-1

57Configuring an XML Composite Object
Mapping

This chapter describes the various components that you must configure in order to use
an XML composite object mapping.

This chapter includes the following section:

■ Introduction to XML Composite Object Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

57.1 Introduction to XML Composite Object Mapping Configuration
Table 57–1 lists the configurable options for an XML composite object mapping.

For more information, see the following:

■ Section 53.5, "XML Composite Object Mapping"

■ Chapter 54, "Configuring an XML Mapping"

Table 57–1 Configurable Options for XML Composite Object Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Reference descriptor (see Section 54.3, "Configuring
Reference Descriptor")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Introduction to XML Composite Object Mapping Configuration

57-2 Developer's Guide for Oracle TopLink

58

Configuring an XML Composite Collection Mapping 58-1

58Configuring an XML Composite Collection
Mapping

This chapter describes the various components that you must configure in order to use
an XML composite collection mapping.

This chapter includes the following section:

■ Introduction to XML Composite Collection Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

58.1 Introduction to XML Composite Collection Mapping Configuration
Table 58–1 lists the configurable options for an XML composite collection mapping.

For more information, see the following:

■ Section 53.6, "XML Composite Collection Mapping"

■ Chapter 54, "Configuring an XML Mapping"

Table 58–1 Configurable Options for XML Composite Collection Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Reference descriptor (see Section 54.3, "Configuring
Reference Descriptor")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Container policy (see Section 121.14, "Configuring Container
Policy")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Introduction to XML Composite Collection Mapping Configuration

58-2 Developer's Guide for Oracle TopLink

59

Configuring an XML Any Object Mapping 59-1

59Configuring an XML Any Object Mapping

This chapter describes the various components that you must configure in order to use
an XML any object mapping.

This chapter includes the following section:

■ Introduction to XML Any Object Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

59.1 Introduction to XML Any Object Mapping Configuration
Table 59–1 lists the configurable options for an XML any object mapping.

For more information, see the following:

■ Section 53.7, "XML Any Object Mapping"

■ Chapter 54, "Configuring an XML Mapping"

Table 59–1 Configurable Options for XML Any Object Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Maps to wildcard (see Section 54.4, "Configuring Maps to
Wildcard")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Introduction to XML Any Object Mapping Configuration

59-2 Developer's Guide for Oracle TopLink

60

Configuring an XML Any Collection Mapping 60-1

60Configuring an XML Any Collection Mapping

This chapter describes the various components that you must configure in order to use
an XML any collection mapping.

This chapter includes the following section:

■ Introduction to XML Any Collection Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

60.1 Introduction to XML Any Collection Mapping Configuration
Table 60–1 lists the configurable options for an XML any collection mapping.

For more information, see the following:

■ Section 53.8, "XML Any Collection Mapping"

■ Chapter 54, "Configuring an XML Mapping"

Table 60–1 Configurable Options for XML Any Collection Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Maps to wildcard (see Section 54.4, "Configuring Maps to
Wildcard")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Container policy (see Section 121.14, "Configuring Container
Policy")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Introduction to XML Any Collection Mapping Configuration

60-2 Developer's Guide for Oracle TopLink

61

Configuring an XML Transformation Mapping 61-1

61Configuring an XML Transformation
Mapping

This chapter describes the various components that you must configure in order to use
an XML transformation mapping.

This chapter includes the following section:

■ Introduction to XML Transformation Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

61.1 Introduction to XML Transformation Mapping Configuration
Table 61–1 lists the configurable options for a XML transformation mapping.

For more information, see the following:

■ Section 53.9, "XML Transformation Mapping"

■ Chapter 54, "Configuring an XML Mapping"

Table 61–1 Configurable Options for XML Transformation Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Attribute transformer (see Section 121.15, "Configuring
Attribute Transformer")

Field transformer associations (see Section 121.16,
"Configuring Field Transformer Associations")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Mutable mappings (see Section 121.17, "Configuring Mutable
Mappings")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

Introduction to XML Transformation Mapping Configuration

61-2 Developer's Guide for Oracle TopLink

62

Configuring an XML Object Reference Mapping 62-1

62Configuring an XML Object Reference
Mapping

This chapter describes the various components that you must configure in order to use
an XML object reference mapping.

This chapter includes the following sections:

■ Introduction to XML Object Reference Mapping

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

62.1 Introduction to XML Object Reference Mapping
Table 62–1 lists the configurable options for an XML object reference mapping.

For more information, see the following:

■ Section 53.10, "XML Object Reference Mapping"

■ Chapter 54, "Configuring an XML Mapping"

Table 62–1 Configurable Options for XML Object Reference Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Source to target key field association (see
Section 54.5, "Configuring Source to Target Key Field
Association")

Reference class (see Section 54.6, "Configuring
Reference Class")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at
the Mapping Level")

Read-only (see Section 121.2, "Configuring
Read-Only Mappings")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Introduction to XML Object Reference Mapping

62-2 Developer's Guide for Oracle TopLink

63

Configuring an XML Collection Reference Mapping 63-1

63Configuring an XML Collection Reference
Mapping

This chapter describes the various components that you must configure in order to use
an XML collection reference mapping.

This chapter includes the following section:

■ Introduction to XML Collection Reference Mapping

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

63.1 Introduction to XML Collection Reference Mapping
Table 63–1 lists the configurable options for an XML collection reference mapping.

For more information, see the following:

■ Section 53.11, "XML Collection Reference Mapping"

■ Chapter 54, "Configuring an XML Mapping"

Table 63–1 Configurable Options for XML Collection Reference Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Source to target key field association (see Section 54.5,
"Configuring Source to Target Key Field Association")

Reference class (see Section 54.6, "Configuring Reference
Class")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Container policy (see Section 121.14, "Configuring
Container Policy")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Introduction to XML Collection Reference Mapping

63-2 Developer's Guide for Oracle TopLink

64

Configuring an XML Binary Data Mapping 64-1

64Configuring an XML Binary Data Mapping

This chapter describes the various components that you must configure in order to use
an XML binary data mapping.

This chapter includes the following section:

■ Introduction to XML Binary Data Mapping

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

64.1 Introduction to XML Binary Data Mapping
Table 64–1 lists the configurable options for an XML binary data mapping.

Table 64–1 Configurable Options for XML Binary Data Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Simple type translator (see Section 121.12, "Configuring a
Simple Type Translator")

Use of a single node (see Section 121.19, "Configuring the
Use of a Single Node")

Use of CDATA (see Section 121.20, "Configuring the Use
of CDATA")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Default null value (see Section 121.5, "Configuring a
Default Null Value at the Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Serialized object converter (see Section 121.9,
"Configuring a Serialized Object Converter")

Type conversion converter (see Section 121.10,
"Configuring a Type Conversion Converter")

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

Introduction to XML Binary Data Mapping

64-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Section 53.12, "XML Binary Data Mapping"

■ Chapter 54, "Configuring an XML Mapping"

JAXB typesafe enumeration converter (see Section 121.13,
"Configuring a JAXB Typesafe Enumeration Converter")

Use of inline binary data (see Section 54.7, "Configuring
the Use of Inline Binary Data")

Use of SwaRef (see Section 54.8, "Configuring the Use of
SwaRef Type")

Table 64–1 (Cont.) Configurable Options for XML Binary Data Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

65

Configuring an XML Binary Data Collection Mapping 65-1

65Configuring an XML Binary Data Collection
Mapping

This chapter describes the various components that you must configure in order to use
an XML binary data collection mapping.

This chapter includes the following section:

■ Introduction to XML Binary Data Collection Mapping

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

65.1 Introduction to XML Binary Data Collection Mapping
Table 65–1 lists the configurable options for an XML binary data collection mapping.

Table 65–1 Configurable Options for XML Binary Data Collection Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Simple type translator (see Section 121.12, "Configuring a
Simple Type Translator")

Use of a single node (see Section 121.19, "Configuring the
Use of a Single Node")

Use of CDATA (see Section 121.20, "Configuring the Use
of CDATA")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Default null value (see Section 121.5, "Configuring a
Default Null Value at the Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Serialized object converter (see Section 121.9,
"Configuring a Serialized Object Converter")

Type conversion converter (see Section 121.10,
"Configuring a Type Conversion Converter")

Introduction to XML Binary Data Collection Mapping

65-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Section 53.13, "XML Binary Data Collection Mapping"

■ Chapter 54, "Configuring an XML Mapping"

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

JAXB typesafe enumeration converter (see Section 121.13,
"Configuring a JAXB Typesafe Enumeration Converter")

Container policy (see Section 121.14, "Configuring
Container Policy")

Use of inline binary data (see Section 54.7, "Configuring
the Use of Inline Binary Data")

Use of SwaRef (see Section 54.8, "Configuring the Use of
SwaRef Type")

Table 65–1 (Cont.) Configurable Options for XML Binary Data Collection Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

66

Configuring an XML Fragment Mapping 66-1

66Configuring an XML Fragment Mapping

This chapter describes the various components that you must configure in order to use
an XML fragment mapping.

This chapter includes the following section:

■ Introduction to XML Fragment Mapping

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

66.1 Introduction to XML Fragment Mapping
Table 66–1 lists the configurable options for an XML fragment mapping.

For more information, see the following:

■ Section 53.14, "XML Fragment Mapping"

■ Chapter 54, "Configuring an XML Mapping"

Table 66–1 Configurable Options for XML Fragment Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Default null value (see Section 121.5, "Configuring a
Default Null Value at the Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Serialized object converter (see Section 121.9,
"Configuring a Serialized Object Converter")

Type conversion converter (see Section 121.10,
"Configuring a Type Conversion Converter")

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

JAXB typesafe enumeration converter (see Section 121.13,
"Configuring a JAXB Typesafe Enumeration Converter")

Introduction to XML Fragment Mapping

66-2 Developer's Guide for Oracle TopLink

67

Configuring an XML Fragment Collection Mapping 67-1

67Configuring an XML Fragment Collection
Mapping

This chapter describes the various components that you must configure in order to use
an XML fragment collection mapping.

This chapter includes the following section:

■ Introduction to XML Fragment Collection Mapping

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

67.1 Introduction to XML Fragment Collection Mapping
Table 67–1 lists the configurable options for an XML fragment collection mapping.

For more information, see the following:

■ Section 53.15, "XML Fragment Collection Mapping"

Table 67–1 Configurable Options for XML Fragment Collection Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Default null value (see Section 121.5, "Configuring a
Default Null Value at the Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Serialized object converter (see Section 121.9,
"Configuring a Serialized Object Converter")

Type conversion converter (see Section 121.10,
"Configuring a Type Conversion Converter")

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

JAXB typesafe enumeration converter (see Section 121.13,
"Configuring a JAXB Typesafe Enumeration Converter")

Introduction to XML Fragment Collection Mapping

67-2 Developer's Guide for Oracle TopLink

■ Chapter 54, "Configuring an XML Mapping"

68

Configuring an XML Choice Object Mapping 68-1

68Configuring an XML Choice Object Mapping

This chapter describes the various components that you must configure in order to use
an XML choice object mapping.

This chapter includes the following sections:

■ Introduction to XML Choice Object Mapping

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

68.1 Introduction to XML Choice Object Mapping
Table 68–1 lists the configurable options for an XML choice object mapping.

For more information, see the following:

■ Section 53.16, "XML Choice Object Mapping"

■ Chapter 54, "Configuring an XML Mapping"

Table 68–1 Configurable Options for XML Choice Object Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Choice element (see Section 54.9, "Configuring the
Choice Element")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at
the Mapping Level")

Read-only (see Section 121.2, "Configuring
Read-Only Mappings")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Introduction to XML Choice Object Mapping

68-2 Developer's Guide for Oracle TopLink

69

Configuring an XML Choice Collection Mapping 69-1

69Configuring an XML Choice Collection
Mapping

This chapter describes the various components that you must configure in order to use
an XML choice collection mapping.

This chapter includes the following section:

■ Introduction to XML Choice Collection Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

69.1 Introduction to XML Choice Collection Mapping Configuration
Table 69–1 lists the configurable options for an XML choice collection mapping.

For more information, see the following:

■ Section 53.17, "XML Choice Collection Mapping"

■ Chapter 54, "Configuring an XML Mapping"

Table 69–1 Configurable Options for XML Choice Collection Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Choice element (see Section 54.9, "Configuring the Choice
Element")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Container policy (see Section 121.14, "Configuring Container
Policy")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Introduction to XML Choice Collection Mapping Configuration

69-2 Developer's Guide for Oracle TopLink

70

Configuring an XML Any Attribute Mapping 70-1

70Configuring an XML Any Attribute Mapping

This chapter describes the various components that you must configure in order to use
an XML any attribute mapping.

This chapter includes the following section:

■ Introduction to XML Any Attribute Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

70.1 Introduction to XML Any Attribute Mapping Configuration
Table 70–1 lists the configurable options for an XML any attribute mapping.

For more information, see the following:

■ Section 53.18, "XML Any Attribute Mapping"

■ Chapter 54, "Configuring an XML Mapping"

Table 70–1 Configurable Options for XML Any Attribute Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Container policy (see Section 121.14, "Configuring
Container Policy")

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Introduction to XML Any Attribute Mapping Configuration

70-2 Developer's Guide for Oracle TopLink

Part XVII
Part XVII EIS Projects

This part describes EIS projects and contains the following chapters:

■ Chapter 71, "Introduction to EIS Projects"

This chapter introduces EIS project concepts.

■ Chapter 72, "Creating an EIS Project"

This chapter explains how to create EIS projects.

■ Chapter 73, "Configuring an EIS Project"

This chapter explains how to configure EIS projects.

71

Introduction to EIS Projects 71-1

71Introduction to EIS Projects

This chapter provides an overview of EIS projects and their components.

This chapter includes the following section:

■ EIS Project Concepts

For information on project concepts and features common to more than one type of
TopLink projects, see Chapter 15, "Introduction to Projects".

71.1 EIS Project Concepts
Use an EIS project for transactional persistence of Java objects to a nonrelational data
source accessed using a Java EE Connector Architecture (JCA) adapter and EIS
records.

JCA provides a Common Client Interface (CCI) API to access nonrelational EIS. This
provides a similar interface to nonrelational data sources as JDBC provides for
relational data sources. This API defines several types of nonrelational record types
including mapped and indexed. XML has emerged as the standard format to exchange
data, and most leading JCA adapter providers have extended the CCI API to define
XML data records.

To use a JCA adapter with TopLink EIS, the JCA adapter must support the JCA CCI
interface. At run time, your JCA adapter and the Java connector.jar file (that
contains the javax.resource.cci and javax.resource.spi interfaces that
TopLink EIS uses) must be on your application or application server classpath.

If you are using TopLink Workbench, you must add your JCA adapter to the TopLink
Workbench classpath. By default, TopLink Workbench updates its classpath to include
the Java 1.5.n connector.jar file from <ORACLE_HOME>/lib/java/api. If this
version of the connector.jar file is incompatible with your environment, edit the
workbench.cmd or workbench.sh file in <TOPLINK_HOME>/bin to change the
path to this file. For more information, see Section 5.2, "Configuring the TopLink
Workbench Environment".

EIS includes legacy data sources, enterprise applications, legacy applications, and
other information systems. These systems include such sources as Custormer
Information Control System (CICS), Virtual Storage Access Method (VSAM),
Information Management System (IMS), ADABASE database, and flat files.

Oracle recommends using EIS projects to integrate TopLink with a legacy or
nonrelational data source. Other methods of accessing EIS data sources include:

■ Using a specialized JDBC driver that allows connecting to an EIS system as if it
were a relational database. You could use a TopLink relational project with these
drivers (see Chapter 18, "Introduction to Relational Projects").

EIS Project Concepts

71-2 Developer's Guide for Oracle TopLink

■ Linking to or integrating with the EIS data from a relational database, such as
Oracle Database.

■ Using a proprietary API to access the EIS system. In this case it may be possible to
wrap the API with a JCA CCI interface to allow usage with a TopLink EIS project.

TopLink provides support for mapping Java objects to EIS mapped, indexed, and XML
records, through JCA, using the TopLink mappings described in Part XIX, "EIS
Mappings".

You configure a TopLink EIS descriptor to use a particular EIS record format (see
Section 76.4, "Configuring Record Format"). TopLink EIS mappings use their EIS
descriptor’s record format configuration to determine how to map their Java objects to
EIS records.

If you use XML records, the TopLink runtime performs XML data conversion based on
one or more XML schemas. In an EIS project that uses XML records, TopLink
Workbench directly references schemas in the deployment XML, and exports
mappings configured with respect to the schemas you specify. For information on how
to use TopLink Workbench with XML schemas, see Section 5.6, "Using XML Schemas".
For information on how TopLink supports XML namespaces, see Section 15.4, "XML
Namespaces Overview".

Table 71–1 describes the components of an EIS project.

You can create an EIS project with TopLink Workbench for use with EIS XML records
(see Section 72.2, "Creating an EIS Project with XML Records") or you can build an EIS
project in Java for use with any supported EIS record type (see Section 72.3, "Creating
an EIS Project with Indexed or Mapped Records").

In an EIS project, your EIS interactions (see Section 108.9.3, "Enterprise Information
System (EIS) Interactions") can make full use of TopLink queries (see Chapter 108,
"Introduction to TopLink Queries"). However, you cannot use TopLink expressions
with EIS: in an EIS project, interactions replace expressions.

Table 71–1 EIS Project Components

Component Supported Types

Data Source For more information, see the following:

■ Section 96.1.2.2, "EISLogin"

■ Section 96.1.3.2, "EIS Platforms"

Descriptors For more information, see Section 74.1, "EIS Descriptor
Concepts".

Mappings For more information, see the following:

■ Part VIII, "Mappings"

■ Part XIX, "EIS Mappings"

72

Creating an EIS Project 72-1

72Creating an EIS Project

This chapter describes the various components that you must configure in order to
create an EIS project.

This chapter includes the following sections:

■ Introduction to EIS Project Creation

■ Creating an EIS Project with XML Records

■ Creating an EIS Project with Indexed or Mapped Records

For information on how to create more than one type of TopLink projects, see
Chapter 116, "Creating a Project".

72.1 Introduction to EIS Project Creation
You can create a project using Oracle JDeveloper TopLink Editor, TopLink Workbench,
or Java code.

Oracle recommends using either Oracle JDeveloper or TopLink Workbench to create
projects and generate deployment XML, or Java source versions of the project for use
at run time. For more information on how to create a project using TopLink
Workbench, see Section 116.1.2, "How to Create a Project Using TopLink Workbench".
For more information on how to create a project using Oracle JDeveloper, see
Section 116.1.1, "How to Create a Project Using Oracle JDeveloper". For information on
how to create a project using Java, see Section 116.1.3, "How to Create a Project Using
Java".

For more information, see Chapter 71, "Introduction to EIS Projects".

For an EIS project that uses a record type other than XML, you must use Java code. For
more information, see the following:

■ Section 72.3, "Creating an EIS Project with Indexed or Mapped Records"

■ Section 116.1.3, "How to Create a Project Using Java"

■ Oracle Fusion Middleware Java API Reference for Oracle TopLink.

72.2 Creating an EIS Project with XML Records
TopLink Workbench provides complete support for creating EIS projects that map Java
objects to EIS XML records.

Using TopLink Workbench, you can create an EIS project for transactional persistence
of Java objects to a non-relational data source accessed using a JCA adapter and EIS
XML records.

Creating an EIS Project with Indexed or Mapped Records

72-2 Developer's Guide for Oracle TopLink

The TopLink runtime performs XML data conversions based on one or more XML
schemas. In an EIS project, TopLink Workbench does not directly reference schemas in
the deployment XML, but instead exports mappings configured in accordance to
specific schemas.

EIS queries use XMLInteraction. For more information, see Section 109.8, "Using
EIS Interactions".

72.2.1 How to Create an EIS Project with XML Records Using Oracle JDeveloper
Refer to Section 116.1.1, "How to Create a Project Using Oracle JDeveloper" for this
information.

72.2.2 How to Create an EIS Project with XML Records Using TopLink Workbench
Refer to Section 116.1.2, "How to Create a Project Using TopLink Workbench" for this
information.

72.3 Creating an EIS Project with Indexed or Mapped Records
TopLink Workbench does not currently support non-XML EIS projects. You must
create such an EIS project in Java.

Using Java, you can create an EIS project for transactional persistence of Java objects to
a nonrelational data source accessed using a JCA adapter and any supported EIS
record type including indexed, mapped, or XML records.

If you use XML records, the TopLink runtime performs XML data conversion based on
one or more XML schemas. When you create an EIS project in Java, you configure
mappings with respect to these schemas, but the TopLink runtime does not directly
reference them.

You can base queries on any supported EIS interaction: IndexedInteraction,
MappedInteraction (including QueryStringInteraction), or
XMLInteraction (including XQueryInteraction). For more information, see
Section 109.8, "Using EIS Interactions".

72.3.1 How to Create an EIS Project with Indexed or Mapped Records Using Java
Refer to Section 116.1.3, "How to Create a Project Using Java" for this information.

73

Configuring an EIS Project 73-1

73Configuring an EIS Project

This chapter describes the various components that you must configure in order to use
an EIS project.

This chapter includes the following sections:

■ Introduction to EIS Project Configuration

■ Configuring EIS Data Source Platform at the Project Level

■ Configuring EIS Connection Specification Options at the Project Level

For information on how to configure TopLink project options common to two or more
project types, see Chapter 117, "Configuring a Project".

73.1 Introduction to EIS Project Configuration
 lists the configurable options for EIS projects.

Table 73–1 Configurable Options for EIS Projects

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Project save location (see Section 117.2, "Configuring Project
Save Location")

Persistence type (see Section 117.5, "Configuring Persistence
Type")

Project classpath (see Section 117.3, "Configuring Project
Classpath")

Comments (see Section 117.14, "Configuring Project
Comments")

Method or direct field access (see Section 117.4, "Configuring
Method or Direct Field Access at the Project Level")

Default descriptor advanced properties (see Section 117.6,
"Configuring Default Descriptor Advanced Properties")

Existence checking (see Section 117.7, "Configuring Existence
Checking at the Project Level")

Project deployment XML options (see Section 117.8,
"Configuring Project Deployment XML Options")

Model Java source code options (see Section 117.9,
"Configuring Model Java Source Code Options")

EIS data source platform (see Section 73.2, "Configuring EIS
Data Source Platform at the Project Level")

EIS connection specification options (see Section 73.3,
"Configuring EIS Connection Specification Options at the
Project Level")

Configuring EIS Data Source Platform at the Project Level

73-2 Developer's Guide for Oracle TopLink

For more information, see Chapter 71, "Introduction to EIS Projects".

73.2 Configuring EIS Data Source Platform at the Project Level
For each EIS project, you must specify one of the following JCA data source platforms
that you will be using:

■ Oracle AQ

■ Attunity Connect

■ IBM MQSeries

■ JMS

■ Sun Black Box

■ XML File

This platform configuration is overridden by the session login, if configured.

For more information, see the following:

■ Section 99.2, "Configuring an EIS Data Source Platform at the Session Level"

■ Section 96.1.3, "Data Source Platform Types"

73.2.1 How to Configure EIS Data Source Platform at the Project Level Using TopLink
Workbench

To specify the data source platform of an EIS project, use this procedure:

1. Select an EIS project object in the Navigator.

2. Select the Connection Specifications tab in the Editor. The Connection
Specifications tab appears.

3. Select the Connection tab. The Connection tab appears.

XML parser platform (see Section 8.2.2.1, "Configuring XML
Parser Platform")

Importing an XML schema (see Section 5.6.3, "How to Import
an XML Schema")

XML schema namespace (see Section 5.6.5, "How to
Configure XML Schema Namespace")

Cache type and size (see Section 117.10, "Configuring Cache
Type and Size at the Project Level")

Cache isolation (see Section 117.11, "Configuring Cache
Isolation at the Project Level")

Cache coordination change propagation (see Section 117.12,
"Configuring Cache Coordination Change Propagation at the
Project Level")

Cache expiration (see Section 117.13, "Configuring Cache
Expiration at the Project Level")

Table 73–1 (Cont.) Configurable Options for EIS Projects

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Configuring EIS Connection Specification Options at the Project Level

Configuring an EIS Project 73-3

Figure 73–1 Connection Tab, Platform Option

Select the EIS platform for this project from the list of options. For more information,
see Section 96.1.3, "Data Source Platform Types".

73.3 Configuring EIS Connection Specification Options at the Project
Level

You can configure connection information at the project level for an EIS application.
This information is stored in the project.xml file. The Oracle TopLink runtime uses
this information as its deployment login: whenever your EIS application performs a
persistence operation when deployed in a Java EE application server.

This connection configuration is overridden by the connection information at the
session level, if configured. For more information about session level configuration,
see Section 99.3, "Configuring EIS Connection Specification Options at the Session
Level".

73.3.1 How to Configure EIS Connection Specification Options at the Project Level
Using TopLink Workbench

To specify the connection information for an EIS project, use this procedure.

1. Select an EIS project object in the Navigator.

2. Select the Connection Specifications tab in the Editor. The Connection
Specifications tab appears.

3. Select the Connection tab. The Connection tab appears.

Figure 73–2 Connection Tab, Connection Specification Options

Use this table to enter data in the following fields to configure the connection
specification options:

Configuring EIS Connection Specification Options at the Project Level

73-4 Developer's Guide for Oracle TopLink

Field Description

Connection Specification Class Specify the appropriate connection specification class for the
selected Platform. Click Browse to choose from all the
classes in the TopLink class path. (example: if Platform is
oracle.toplink.eis.aq.AQPlatform, use
oracle.toplink.eis.aq.AQEISConnectionSpec).

For more information on platform configuration, see
Section 99.2, "Configuring an EIS Data Source Platform at the
Session Level".

Connection Factory URL Specify the appropriate connection factory URL (as a Java EE
JNDI name) for the selected Connection Specification Class
(example: java:comp/env/eis/attuntiy).

Username Specify the name required to log in to the data source.

Password Specify the password required to log in to the data source.

Note: When exporting Java source and deployment XML
(see Section 116.3, "Exporting Project Information"), TopLink
Workbench writes the database password (if applicable)
using JCE encryption (when using JDK 1.4). For information
on how to specify password encryption options, see
Section 97.3, "Configuring Password Encryption".

Part XVIII
Part XVIII EIS Descriptors

This part contains general information about EIS descriptors, as well as detailed
information on how to create and configure these descriptors.

This part contains the following chapters:

■ Chapter 74, "Introduction to EIS Descriptors"

This chapter introduces concepts to an EIS descriptor.

■ Chapter 75, "Creating an EIS Descriptor"

This chapter explains how to create descriptor options specific to an EIS descriptor.

■ Chapter 76, "Configuring an EIS Descriptor"

This chapter explains how to configure descriptor options specific to an EIS
descriptor.

74

Introduction to EIS Descriptors 74-1

74Introduction to EIS Descriptors

This chapter introduces options specific to an EIS descriptor.

This chapter includes the following sections:

■ EIS Descriptor Concepts

■ EIS Descriptors and Aggregation

■ EIS Descriptors and Inheritance

For information on descriptor concepts and features common to more than one type of
TopLink descriptors, see Chapter 16, "Introduction to Descriptors".

74.1 EIS Descriptor Concepts
EIS descriptors describe Java objects that you map to an EIS data source by way of a
JCA adapter.

Using EIS descriptors in an EIS project created with TopLink Workbench, you can
configure EIS mappings (see Section 77.1, "EIS Mapping Types") to XML records.

Using EIS descriptors in an EIS project that you create in Java, you can configure EIS
mappings to any supported EIS record type: XML, mapped, or indexed.

See Part XXVII, "Creation and Configuration of Descriptors" for information on how to
create and configure descriptors regardless of their type.

For information specific to creation and configuration of EIS descriptors, see the
following:

■ Chapter 75, "Creating an EIS Descriptor"

■ Chapter 76, "Configuring an EIS Descriptor"

74.2 EIS Descriptors and Aggregation
When working with descriptors for a parent (source) and a child (target) objects, you
have to accomplish the following:

■ if the source object exists, then you must ensure that the target object also exists;

■ if the source object is destroyed, then you must ensure that the target object is also
destroyed.

For more information, see Section 16.2.5, "Descriptors and Aggregation".

In your EIS project, designate the descriptors for the source and target objects to reflect
this relationship as Root and Composite Descriptors in EIS Projects.

EIS Descriptors and Inheritance

74-2 Developer's Guide for Oracle TopLink

74.2.1 Root and Composite Descriptors in EIS Projects
In an EIS project, you can designate the descriptor as a composites (see Section 75.2.1.2,
"EIS Composite Descriptors").

The type of EIS mapping you whish to create will determine whether you configure an
EIS descriptor as a composite or root (see Section 77.2.6, "Composite and Reference EIS
Mappings").

For more information, see Section 76.6, "Configuring an EIS Descriptor as a Root or
Composite Type".

You cannot configure EJB information for an EIS descriptor designated as an
composite (see Section 16.2.3, "Descriptors and CMP and BMP").

You can configure inheritance for an EIS descriptor designated as a composite (see
Section 16.2.2, "Descriptors and Inheritance"), however, in this case, all the descriptors
in the inheritance tree must be composites. Composite and root descriptors cannot
exist in the same inheritance tree.

74.3 EIS Descriptors and Inheritance
You can use descriptors to describe the inheritance relationships between classes in
your EIS project. For more information, see the following:

■ Section 16.2.2, "Descriptors and Inheritance"

■ Section 119.20, "Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor"

■ Section 119.21, "Configuring Inheritance for a Parent (Root) Descriptor"

■ Section 119.22, "Configuring Inheritance Expressions for a Parent (Root) Class
Descriptor"

■ Section 119.23, "Configuring Inherited Attribute Mapping in a Subclass"

74.3.1 Inheritance and Primary Keys in EIS Projects
For EIS projects, TopLink assumes that all of the classes in an inheritance hierarchy
have the same primary key, as set in the root descriptor. Child descriptors associated
with data source representations that have different primary keys must define the
mapping between the root primary key and the local one.

For more information, see Section 119.2, "Configuring Primary Keys".

75

Creating an EIS Descriptor 75-1

75Creating an EIS Descriptor

This chapter explains how to create descriptor options specific to an EIS descriptor.

This chapter includes the following sections:

■ Introduction to EIS Descriptor Creation

■ Creating an EIS Descriptor

For information on how to create more than one type of descriptors, see Chapter 118,
"Creating a Descriptor".

75.1 Introduction to EIS Descriptor Creation
After you create a descriptor, you must configure its various options (see Chapter 119,
"Configuring a Descriptor") and use it to define mappings.

For complete information on the various types of mapping that TopLink supports, see
Chapter 17, "Introduction to Mappings" and Chapter 120, "Creating a Mapping".

For complete information on the various types of descriptor that TopLink supports,
see Section 16.1, "Descriptor Types".

For more information, see the following:

■ Chapter 16, "Introduction to Descriptors"

■ Chapter 74, "Introduction to EIS Descriptors"

75.2 Creating an EIS Descriptor
You can create an EIS descriptor using Oracle JDeveloper TopLink Editor, TopLink
Workbench (see Section 75.2.1, "How to Create an EIS Descriptor Using TopLink
Workbench"), or Java code (see Section 75.2.2, "How to Create an EIS Descriptor Using
Java"). Oracle recommends that you use either Oracle JDeveloper or TopLink
Workbench to create and manage your EIS descriptors.

75.2.1 How to Create an EIS Descriptor Using TopLink Workbench
Using TopLink Workbench, you can create the following types of EIS descriptor in an
EIS project:

■ EIS Root Descriptors

■ EIS Composite Descriptors

75.2.1.1 EIS Root Descriptors

Creating an EIS Descriptor

75-2 Developer's Guide for Oracle TopLink

You can modify an EIS descriptor’s behavior by configuring it as a root EIS descriptor
(see Section 76.6, "Configuring an EIS Descriptor as a Root or Composite Type"). When
you designate an EIS descriptor as a root, you tell the TopLink runtime that the EIS
descriptor’s reference class is a parent class: no other class will reference it by way of a
composite object mapping or composite collection mapping. Using an EIS root
descriptor, you can configure all supported mappings. You can also configure an EIS
root descriptor with EIS interactions (see Section 109.8, "Using EIS Interactions").
However, if you configure the EIS root descriptor with a composite object mapping or
composite collection mapping, the reference descriptor you define must be an EIS
composite descriptor; it cannot be another EIS root descriptor.

75.2.1.2 EIS Composite Descriptors
By default, when you add a class to an EIS project (see Section 117.3, "Configuring
Project Classpath"), TopLink Workbench creates an EIS descriptor for the class, and
designates the EIS descriptor as a composite. When you designate an EIS descriptor as
a composite, you tell the TopLink runtime that the EIS descriptor’s reference class may
be referenced by a composite object mapping or composite collection mapping. Using
an EIS composite descriptor, you can configure all supported mappings. However, you
cannot configure an EIS composite descriptor with EIS interactions: for this, you need
an EIS root descriptor (see Section 75.2.1.1, "EIS Root Descriptors").

75.2.2 How to Create an EIS Descriptor Using Java
Example 75–1 shows how to create a relational descriptor using Java code.

Example 75–1 Creating an EIS Descriptor in Java

EISDescriptor descriptor = new EISDescriptor();
descriptor.setJavaClass(YourClass.class);
To designate an EIS descriptor as a composite, use ClassDescriptor method
descriptorIsAggregate.

76

Configuring an EIS Descriptor 76-1

76Configuring an EIS Descriptor

This chapter describes the various components that you must configure in order to use
an EIS descriptor.

This chapter includes the following sections:

■ Introduction to EIS Descriptor Configuration

■ Configuring Schema Context for an EIS Descriptor

■ Configuring Default Root Element

■ Configuring Record Format

■ Configuring Custom EIS Interactions for Basic Persistence Operations

For information on how to configure descriptor options common to two or more
descriptor types, see Chapter 119, "Configuring a Descriptor".

76.1 Introduction to EIS Descriptor Configuration
Table 76–1 lists the default configurable options for an EIS descriptor.

Table 76–1 Configurable Options for EIS Descriptor

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XML schema namespace (see Section 5.6.5, "How to Configure
XML Schema Namespace")

XML schema reference (see Section 5.6.4, "How to Configure
an XML Schema Reference")

Shema context (see Section 76.2, "Configuring Schema Context
for an EIS Descriptor")

Default root element (see Section 76.3, "Configuring Default
Root Element")

Primary keys (see Section 119.2, "Configuring Primary Keys")1

Read-only (see Section 119.3, "Configuring Read-Only
Descriptors")1

Unit of work conforming (see Section 119.4, "Configuring Unit
of Work Conforming at the Descriptor Level")1

Alias (see Section 119.5, "Configuring Descriptor Alias")

Comments (see Section 119.6, "Configuring Descriptor
Comments")

Record format (see Section 76.4, "Configuring Record Format")

Creating classes (see Section 5.7.1, "How to Create Classes")

Introduction to EIS Descriptor Configuration

76-2 Developer's Guide for Oracle TopLink

For more information, see Chapter 74, "Introduction to EIS Descriptors".

Named queries (see Section 119.7, "Configuring Named
Queries at the Descriptor Level")1

Custom EIS interactions for basic persistence operations (see
Section 76.5, "Configuring Custom EIS Interactions for Basic
Persistence Operations")1

Cache refreshing (see Section 119.9, "Configuring Cache
Refreshing")1

Cache type and size (see Section 119.12, "Configuring Cache
Type and Size at the Descriptor Level")1

Cache isolation (see Section 119.13, "Configuring Cache
Isolation at the Descriptor Level")

Cache coordination change propagation (see Section 119.15,
"Configuring Cache Coordination Change Propagation at the
Descriptor Level")

Cache expiration (see Section 119.16, "Configuring Cache
Expiration at the Descriptor Level")

Cache existence checking (see Section 119.17, "Configuring
Cache Existence Checking at the Descriptor Level")

EJB information (see Section 119.18, "Configuring a Descriptor
with EJB CMP and BMP Information")

EIS descriptor as a root or composite type (see Section 76.6,
"Configuring an EIS Descriptor as a Root or Composite Type")

Inheritance for a child class descriptor (see Section 119.20,
"Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor")

Inheritance for a parent class descriptor (see Section 119.21,
"Configuring Inheritance for a Parent (Root) Descriptor"

Inherited attribute mapping in a subclass (see Section 119.23,
"Configuring Inherited Attribute Mapping in a Subclass")

Domain object method as an event handler (see Section 119.24,
"Configuring a Domain Object Method as an Event Handler")

Descriptor event listener as an event handler (see
Section 119.25, "Configuring a Descriptor Event Listener as an
Event Handler")

Locking policy (see Section 119.26, "Configuring Locking
Policy"1)

Returning policy (see Section 119.27, "Configuring Returning
Policy")

Instantiation policy (see Section 119.28, "Configuring
Instantiation Policy")

Copy policy (see Section 119.29, "Configuring Copy Policy")

Change policy (see Section 119.30, "Configuring Change
Policy")

Wrapper policy (see Section 119.32, "Configuring Wrapper
Policy")

Amendment methods (see Section 119.35, "Configuring
Amendment Methods")

Mapping (see Section 121, "Configuring a Mapping")

1 EIS root descriptors only (see Section 76.6, "Configuring an EIS Descriptor as a Root or Composite Type").

Table 76–1 (Cont.) Configurable Options for EIS Descriptor

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Configuring Schema Context for an EIS Descriptor

Configuring an EIS Descriptor 76-3

76.2 Configuring Schema Context for an EIS Descriptor
TopLink Workbench uses the schema context to associate the class that the EIS
descriptor describes with a simple or complex type in one of the schemas associated
with the EIS project (see Section 5.6.4, "How to Configure an XML Schema Reference").
This allows TopLink Workbench to display the appropriate attributes available for
mapping in that context.

You must configure the schema context for an EIS root descriptor (see Section 76.6,
"Configuring an EIS Descriptor as a Root or Composite Type") only if you are using
TopLink Workbench or Oracle JDeveloper TopLink Editor.

76.2.1 How to Configure Schema Context for an EIS Descriptor Using TopLink
Workbench

To associate an EIS descriptor with a simple or complex type in this project’s schema,
use this procedure:

1. Select an EIS descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 76–1 Descriptor Info Tab, Schema Context Option

Click Browse to select the schema element to associate with this descriptor. For more
information, see Section 76.2.1.1, "Choosing a Schema Context".

76.2.1.1 Choosing a Schema Context
Use the Choose Schema Context dialog box to select a specific schema element (such
as when mapping an element).

Configuring Default Root Element

76-4 Developer's Guide for Oracle TopLink

Figure 76–2 Choose Schema Context Dialog Box

Select the schema element and click OK.

76.2.2 How to Configure Schema Context for an EIS Descriptor Using Java
For an EIS descriptor, the TopLink runtime does not need the schema context: the
runtime can determine the schema context based on the mappings you configure on
the descriptor. No further configuration is required.

76.3 Configuring Default Root Element
You must configure the default root element for an EIS root descriptor (see
Section 75.2.1.1, "EIS Root Descriptors") so that the TopLink runtime knows the data
source data type associated with the class the descriptor describes. Descriptors used
only in composite relationship mappings do not require a default root element.

For more information, see Section 16.2.12, "Default Root Element".

76.3.1 How to Configure Default Root Element Using TopLink Workbench
When you create an EIS project using TopLink Workbench, you must use XML records.
Consequently, you must configure a default root element so that TopLink Workbench
knows what element to start with when persisting an instance of the class that the EIS
descriptor describes.

To specify a schema element as the default root element for the descriptor, use this
procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Note: Although you select an element from your project’s schema to
configure this attribute, you are choosing the element’s simple or
complex type.

Configuring Record Format

Configuring an EIS Descriptor 76-5

Figure 76–3 Descriptor Info Tab, Default Root Element Option

Use the Default Root Element option to select the root element for this descriptor.

 Click Browse to select the schema element to identify as the root element. See
Section 76.3.1.1, "Choosing a Root Element" for more information.

76.3.1.1 Choosing a Root Element
Use the Choose Root Element dialog box to select a specific root element.

Figure 76–4 Choose Root Element Dialog Box

Select the root element and click OK.

76.3.2 How to Configure Default Root Element Using Java
When you create an EIS project using Java code, use the EISDescriptor method
setDataTypeName to specify the XML schema complex type name (if you are using
XML records) or the JCA record name (if you are using indexed or mapped records)
corresponding to the class that the EIS descriptor describes. For more information, see
Oracle Fusion Middleware Java API Reference for Oracle TopLink.

76.4 Configuring Record Format
The EIS descriptor record format determines the EIS record type to which the
descriptor’s EIS mappings map.

When you create an EIS project using TopLink Workbench, TopLink configures all EIS
descriptors with a record format of XML.

Configuring Custom EIS Interactions for Basic Persistence Operations

76-6 Developer's Guide for Oracle TopLink

When you create an EIS project in Java, you can configure the EIS descriptor record
type to any of the supported types, as Table 76–2 shows.

For more information, see Section 77.2.1, "EIS Record Type".

76.4.1 How to Configure Record Format Using Java
To configure the EIS record format for an EIS descriptor, use one of the
EISDescriptor methods listed in Table 76–2, as shown in Example 76–1.

Example 76–1 Configuring EISDescriptor Record Format

EISDescriptor descriptor = new EISDescriptor();
descriptor.useIndexedRecordFormat();

76.5 Configuring Custom EIS Interactions for Basic Persistence
Operations

You can use TopLink to define an interaction for each basic persistence operation
(insert, update, delete, read object, read all, or does exist) so that when you query
and modify your EIS-mapped objects, the TopLink runtime will use the appropriate
EIS interaction instead of the default EIS interaction.

You can configure custom EIS interactions for basic persistence operations only for EIS
descriptors designated as root descriptors (Section 76.6, "Configuring an EIS
Descriptor as a Root or Composite Type").

For CMP projects, the ejb-jar.xml file stores query lists. You can define the queries
in the file and then read them into TopLink Workbench, or define them on the Queries
tab and write them to the file. For more information, see Section 19.7.1, "How to Write
to the ejb-jar.xml File Using TopLink Workbench" and Section 19.7.2, "How to Read
from the ejb-jar.xml File Using TopLink Workbench".

Using TopLink Workbench, you can create XMLInteraction objects, in which there
is a single query per interaction (see Section 76.5.1, "How to Configure Custom EIS
Interactions for Basic Persistence Operations Using TopLink Workbench").

Table 76–2 EIS Record Formats

EISDescriptor Method EIS Record Type

useMappedRecordFormat All EIS mappings owned by this descriptor map to EIS mapped
records.

useIndexedRecordFormat All EIS mappings owned by this descriptor map to EIS indexed
records.

useXMLRecordFormat All EIS mappings owned by this descriptor map to EIS XML
records.

If you use the XML record format, you must specify one or
more XML schemas in your EIS project (see Section 5.6.3, "How
to Import an XML Schema"). The TopLink runtime performs
XML data conversion based on one or more XML schemas. In
an EIS XML project, TopLink Workbench does not directly
reference schemas in the deployment XML, but instead

 exports mappings configured with respect to the schemas you
specify.

For information on TopLink support for XML namespaces, see
Section 15.2.7, "XML Namespaces".

Configuring Custom EIS Interactions for Basic Persistence Operations

Configuring an EIS Descriptor 76-7

Using Java, you can create any EISInteraction type. For some EIS projects, it is
common for multiple interactions to be used in a single query. For example, one
interaction–to enqueue a request, and another–to dequeue the response. Because
TopLink Workbench does not support setting multiple interactions on a single query,
you must use an amendment method to create and configure the interaction in Java
(see Section 76.5.2, "How to Configure Custom EIS Interactions for Basic Persistence
Operations Using Java").

76.5.1 How to Configure Custom EIS Interactions for Basic Persistence Operations
Using TopLink Workbench

To configure custom EIS interactions for basic persistence operations, use the
following procedure:

1. In the Navigator, select an EIS root descriptor in a EIS project.

2. Click the Queries tab in the Editor. The Queries tab appears.

3. Click the Custom Calls tab. The Custom Calls tab appears.

Figure 76–5 Queries, Custom Calls Tab for EIS Calls

Click the appropriate interaction type from the list (Insert, Update, Delete, Read
Object, Read All, or Does Exist) and use the following table to enter data in each field

Note: In a one-to-one or one-to-many EIS mapping, you must also
specify a selection interaction that TopLink uses to acquire target
objects. You can use either the target object’s read interaction (the
default) or specify a separate selection interaction, if necessary. For
more information, see Section 78.4, "Configuring Selection
Interaction").

Configuring Custom EIS Interactions for Basic Persistence Operations

76-8 Developer's Guide for Oracle TopLink

76.5.2 How to Configure Custom EIS Interactions for Basic Persistence Operations
Using Java

Using Java, you can create any type of EIS interaction that TopLink supports (see
Section 109.8, "Using EIS Interactions").

For some EIS projects, it is common for multiple interactions to be used in a single
query: for example, one interaction to enqueue a request and another to dequeue the
response. Because TopLink Workbench does not support setting multiple interactions
on a single query, you must use an amendment method to create and configure the
interaction in Java, as Example 76–2 shows.

Example 76–2 Creating an XML Interaction for an AQ Platform

public static void addXMLInteractions(ClassDescriptor descriptor) {
 // find order interaction
 XMLInteraction request = new XMLInteraction();
 request.setProperty(AQPlatform.QUEUE_OPERATION, AQPlatform.ENQUEUE);
 request.setProperty(AQPlatform.QUEUE, "ORDER_INBOUND_QUEUE");
 request.setProperty(AQPlatform.SCHEMA, "AQUSER");
 request.setInputRootElementName("READ_ORDER");

Field Description

Interaction Type Using TopLink Workbench, you can only use XML Interactions.
You cannot change this field.

Function Name The name of the EIS function that this call type (Read Object or
Read All) invokes on the EIS.

Input Record Name The name passed to the JCA adapter when creating the input
record.

Input Root Element The root element name to use for the input DOM.

Input Arguments The query argument name to map to the interaction field or XPath
nodes in the argument record.

For example, if you are using XML records, use this option to map
input argument name to the XPath name/first-name.

Output Arguments The result record field or XPath nodes to map to the correct nodes
in the record used by the descriptor's mappings.

For example, if you are using XML records, use this option to map
the output fname to name/first-name.

Output arguments are not required if the interaction returns an
XML result that matches the descriptor's mappings.

Input Result Path Use this option if the EIS interaction expects the interaction
arguments to be nested in the XML record.

For example, specify arguments, if the arguments were to be
nested under the root element exec-find-order, then under an
arguments element.

Output Result Path Use this option if the EIS interaction result record contains the
XML data that maps to the objects in a nested structure.

For example, specify order, if the results were return under a root
element results, then under an order element.

Properties Any properties required by your EIS platform. For example,
property name operation (from AQPlatform.QUEUE_
OPERATION) and property value enqueue (from
AQPlatform.ENQUEUE).

Configuring an EIS Descriptor as a Root or Composite Type

Configuring an EIS Descriptor 76-9

 request.addArgument("@id");

 XMLInteraction response = new XMLInteraction();
 response.setProperty(AQPlatform.QUEUE_OPERATION, AQPlatform.DEQUEUE);
 response.setProperty(AQPlatform.QUEUE, "ORDER_OUTBOUND_QUEUE");
 response.setProperty(AQPlatform.SCHEMA, "AQUSER");

 ReadObjectQuery query = new ReadObjectQuery();
 query.addCall(request);
 query.addCall(response);
 descriptor.getQueryManager().setReadObjectQuery(query);

 // place order interaction
 XMLInteraction insert = new XMLInteraction();
 insert.setProperty(AQPlatform.QUEUE_OPERATION, AQPlatform.ENQUEUE);
 insert.setProperty(AQPlatform.QUEUE, "ORDER_INBOUND_QUEUE");
 insert.setProperty(AQPlatform.SCHEMA, "AQUSER");
 insert.setInputRootElementName("INSERT_ORDER");

 descriptor.getQueryManager().setInsertCall(insert);
}

76.6 Configuring an EIS Descriptor as a Root or Composite Type
You can designate an EIS descriptor as root (see Section 75.2.1.1, "EIS Root
Descriptors") or composite (see Section 75.2.1.2, "EIS Composite Descriptors").

When you designate an EIS descriptor as a root, you tell the TopLink runtime that the
EIS descriptor’s reference class is a parent classš–no other class will reference it by way
of a composite object mapping or composite collection mapping. Using an EIS root
descriptor, you can configure all supported mappings and you can configure the
descriptor with EIS interactions (see Section 109.8, "Using EIS Interactions"). However,
if you configure the EIS root descriptor with a composite object mapping or composite
collection mapping, the reference descriptor you define must be an EIS composite
descriptor; it cannot be another EIS root descriptor.

When you designate an EIS descriptor as a composite (the default), you tell the
TopLink runtime that the EIS descriptor’s reference class may be referenced by a
composite object or composite collection mapping (see Chapter 81, "Configuring an
EIS Composite Object Mapping" and Chapter 82, "Configuring an EIS Composite
Collection Mapping"). Using an EIS composite descriptor, you can configure all
supported mappings, but you cannot configure it with EIS interactions.

You can configure inheritance for a descriptor designated as a composite (see
Section 119.20, "Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor"), however, in this case, all the descriptors in the inheritance tree must be
aggregates. Aggregate and class descriptors cannot exist in the same inheritance tree.
For more information, see Section 16.3.4, "Aggregate and Composite Descriptors and
Inheritance".

If you configure a descriptor as a composite using TopLink Workbench, you cannot
configure the descriptor with EJB information (see Section 119.18, "Configuring a
Descriptor with EJB CMP and BMP Information").

For more information, see the following:

■ Section 50.1.1, "XML Descriptors and Aggregation"

■ Section 77.2.6, "Composite and Reference EIS Mappings"

Configuring an EIS Descriptor as a Root or Composite Type

76-10 Developer's Guide for Oracle TopLink

76.6.1 How to Configure an EIS Descriptor as a Root or Composite Type Using TopLink
Workbench

To configure an EIS descriptor as a root or composite EIS descriptor, use this
procedure:

1. In the Navigator, select an EIS composite descriptor.

2. Click the Root or Composite descriptor button on the mapping toolbar.

You can also select the descriptor and choose Selected > Descriptor Type > Root
or Composite from the menu or by right-clicking on the descriptor in the
Navigator and selecting Descriptor Type > Root or Composite from the context
menu.

76.6.2 How to Configure an EIS Descriptor as a Root or Composite Type Using Java
To configure an EIS descriptor as root or composite using Java, create a descriptor
amendment method (see Section 119.35, "Configuring Amendment Methods") and use
the following EISDescriptor methods:

■ To designate an EIS descriptor as a root descriptor, use EISDescriptor method
descriptorIsNormal.

■ To designate an EIS descriptor as a composite (nonroot) descriptor, use
EISDescriptor method descriptorIsAggregate.

Part XIX
Part XIX EIS Mappings

TopLink enterprise information system (EIS) mappings provide support for accessing
legacy data sources and enterprise applications through Java EE Connector
architecture (JCA) adapter. TopLink EIS mappings use the JCA Common Client
Interface (CCI) to access the EIS through its resource adapter. This provides the ability
to directly map from an existing Java object model to any transactional data source,
such as mainframes with flat file/hierarchical data. An EIS mapping transforms object
data members to the EIS record format defined by the object’s descriptor.

This part contains the following chapters:

■ Chapter 77, "Introduction to EIS Mappings"

This chapter describes each of the different TopLink EIS mapping types and
important EIS mapping concepts.

■ Chapter 78, "Configuring an EIS Mapping"

This chapter explains how to configure TopLink EIS mapping options common to
two or more EIS mapping types.

■ Chapter 79, "Configuring an EIS Direct Mapping"

This chapter explains how to configure a direct EIS mapping.

■ Chapter 80, "Configuring an EIS Composite Direct Collection Mapping"

This chapter explains how to configure a direct collection EIS mapping.

■ Chapter 81, "Configuring an EIS Composite Object Mapping"

This chapter explains how to configure a composite object EIS mapping.

■ Chapter 82, "Configuring an EIS Composite Collection Mapping"

This chapter explains how to configure a composite collection EIS mapping.

■ Chapter 83, "Configuring an EIS One-to-One Mapping"

This chapter explains how to configure a one-to-one EIS mapping.

■ Chapter 84, "Configuring an EIS One-to-Many Mapping"

This chapter explains how to configure a one-to-many EIS mapping.

■ Chapter 85, "Configuring an EIS Transformation Mapping"

This chapter explains how to configure a transformation EIS mapping.

77

Introduction to EIS Mappings 77-1

77Introduction to EIS Mappings

TopLink enterprise information system (EIS) mappings provide support for accessing
legacy data sources and enterprise applications through Java EE Connector
architecture (JCA) adapter. TopLink EIS mappings use the JCA Common Client
Interface (CCI) to access the EIS through its resource adapter. This provides the ability
to directly map from an existing Java object model to any transactional data source,
such as mainframes with flat file/hierarchical data.

An EIS mapping transforms object data members to the EIS record format defined by
the object’s descriptor.

This chapter includes the following sections:

■ EIS Mapping Types

■ EIS Mapping Concepts

■ EIS Direct Mapping

■ EIS Composite Direct Collection Mapping

■ EIS Composite Object Mapping

■ EIS Composite Collection Mapping

■ EIS One-to-One Mapping

■ EIS One-to-Many Mapping

■ EIS Transformation Mapping

For information on mapping concepts and features common to more than one type of
TopLink mappings, see Chapter 17, "Introduction to Mappings".

77.1 EIS Mapping Types
TopLink supports the EIS mappings listed in Table 77–1.

EIS Mapping Concepts

77-2 Developer's Guide for Oracle TopLink

77.2 EIS Mapping Concepts
This section describes concepts unique to TopLink EIS mappings, including the
following:

■ EIS Record Type

■ XPath Support

■ xsd:list and xsd:union Support

■ jaxb:class Support

■ Typesafe Enumeration Support

■ Composite and Reference EIS Mappings

■ EIS Mapping Architecture

77.2.1 EIS Record Type
TopLink supports the following JCA EIS record types:

■ Indexed Records

■ Mapped Records

■ XML Records

You configure the record type at the EIS descriptor level (see Section 76.4, "Configuring
Record Format"). EIS mappings use the record type of their EIS descriptor to
determine how to map Java attributes. That is, you use the same EIS mapping
regardless of the record type, with which you configure an EIS descriptor.

Table 77–1 TopLink Object EIS Mapping Types

EIS Mapping Type Description
Oracle
JDeveloper

TopLink
Workbench Java

Direct mapping (see Section 77.3,
"EIS Direct Mapping")

Map a simple object attribute directly to an EIS
record.

Composite direct collection
mapping (see Section 77.4, "EIS
Composite Direct Collection
Mapping")

Map a collection of Java attributes directly to an
EIS record.

Composite object mapping (see
Section 77.5, "EIS Composite Object
Mapping")

Map a Java object to an EIS record in a privately
owned one-to-one relationship. Composite
object mappings represent a relationship
between two classes.

Composite collection mapping (see
Section 77.6, "EIS Composite
Collection Mapping")

Map a Map or Collection of Java objects to an
EIS record in a privately owned one-to-many
relationship.

One-to-one mapping (see
Section 77.7, "EIS One-to-One
Mapping")

Define a reference mapping that represents the
relationship between a single source object and
a single mapped persistent Java object.

One-to-many mapping (see
Section 77.8, "EIS One-to-Many
Mapping")

Define a reference mapping that represents the
relationship between a single source object and
a collection of mapped persistent Java objects.

Transformation mapping (see
Section 77.9, "EIS Transformation
Mapping")

Create custom mappings where one or more EIS
record fields can be used to create the object to
be stored in a Java class’s attribute.

EIS Mapping Concepts

Introduction to EIS Mappings 77-3

77.2.1.1 Indexed Records
The javax.resource.cci.IndexedRecord represents an ordered collection of
record elements based on the java.util.List interface.

The TopLink runtime maps Java objects to indexed record elements or subrecords of
an indexed record depending on the type of EIS mapping you use (see Section 77.2.6,
"Composite and Reference EIS Mappings").

77.2.1.2 Mapped Records
The javax.resource.cci.MappedRecord represents a key-value map-based
collection of record elements based on the java.util.Map interface.

The TopLink runtime maps Java objects to mapped record elements or subrecords of a
mapped record depending on the type of EIS mapping you use (see Section 77.2.6,
"Composite and Reference EIS Mappings").

77.2.1.3 XML Records
An XML record represents a javax.resource.cci.Record as an XML schema
(XSD)-based XML document. Not all JCA adapters support XML records.

The TopLink runtime maps Java objects to XML documents according to your XSD
and the behavior defined for XML mappings.

For more information, see Chapter 53, "Introduction to XML Mappings".

77.2.2 XPath Support
When using XML records, TopLink EIS mappings use XPath statements to efficiently
map the attributes of a Java object to locations in an XML record. For more information
about using XPath with XML mappings, see Section 17.2.7, "Mappings and XPath".

77.2.3 xsd:list and xsd:union Support
When using XML records, you can use EIS direct (see Section 77.3, "EIS Direct
Mapping") and composite direct collection (see Section 77.4, "EIS Composite Direct
Collection Mapping") mappings to map to xsd:list and xsd:union types in an
XML record.

For more information, see Section 17.2.8, "Mappings and xsd:list and xsd:union Types".

77.2.4 jaxb:class Support
When using XML records, you can configure an EIS composite object mapping (see
Section 77.5, "EIS Composite Object Mapping") to accommodate jaxb:class
customizations with the following XSD structures:

■ all

■ sequence

■ choice

■ group

Note: Not all JCA adapters support all record types. Consult your
JCA adapter documentation for details.

EIS Mapping Concepts

77-4 Developer's Guide for Oracle TopLink

For more information, see Section 17.2.9, "Mappings and the jaxb:class Customization".

77.2.5 Typesafe Enumeration Support
You can map a Java attribute to a typesafe enumeration using the
JAXBTypesafeEnumConverter with an EISDirectMapping or
EISCompositeDirectCollectionMapping with XML records.

For more information, see Section 17.2.10, "Mappings and JAXB Typesafe
Enumerations".

77.2.6 Composite and Reference EIS Mappings
TopLink supports composite and reference EIS mappings. Although there is a source
and target object in both mapping types, the TopLink runtime handles interactions
with each differently. This section explains how.

77.2.6.1 Composite EIS Mappings
In a composite EIS mapping (Section 77.4, "EIS Composite Direct Collection Mapping",
Section 77.5, "EIS Composite Object Mapping", and Section 77.6, "EIS Composite
Collection Mapping"), the source object contains (owns) the target object.

TopLink puts the attributes of the target (owned) object (or the owned collection of
objects) into the source (owning) object’s record as a subrecord. The target object needs
not be a root object type (see Section 76.6, "Configuring an EIS Descriptor as a Root or
Composite Type"): it needs not have interactions defined for it.

Figure 77–1 illustrates a read interaction on an instance of the Customer class using
indexed records. For the composite object EIS mapping defined for the address
attribute, TopLink creates an Address subrecord in the Customer record.

Figure 77–1 EIS Composite Mappings

77.2.6.2 Reference EIS Mappings
In a reference EIS mapping (Section 77.7, "EIS One-to-One Mapping" and Section 77.8,
"EIS One-to-Many Mapping"), the source object contains only a foreign key (pointer) to
the target object or, alternatively, the target object contains a foreign key to the source
object (key on target).

TopLink puts the foreign key of the target object into the source object’s record as a
simple value. When an interaction is executed on the source object, TopLink uses the
selection interaction that you define on its descriptor to retrieve the appropriate target
object instance and creates a record for it in the source object’s transaction. By default,
the selection interaction is the target object’s read interaction. If the read interaction is

EIS Mapping Concepts

Introduction to EIS Mappings 77-5

not sufficient, you can define a separate selection interaction (see Section 78.4,
"Configuring Selection Interaction"). Because both the source and target object use
interactions, they must both be of a root object type (see Section 76.6, "Configuring an
EIS Descriptor as a Root or Composite Type").

Figure 77–2 illustrates a read interaction on an instance of the Order class using
indexed records. For the one-to-one EIS mapping defined for the customer attribute,
TopLink puts the target Customer object’s foreign key into the Order record as a
simple value. TopLink then uses the selection interaction you configure on the Order
descriptor to retrieve the appropriate instance of Customer and creates a record for it
in the Order object’s transaction.

Figure 77–2 EIS Reference Mappings

77.2.7 EIS Mapping Architecture
Figure 77–3 illustrates the following possible TopLink EIS mapping architectures:

■ JDBC database gateway (such as Oracle Database 10g)

■ JDBC adapter

■ Proprietary adapter (such as Oracle Interconnect)

■ JCA

EIS Direct Mapping

77-6 Developer's Guide for Oracle TopLink

Figure 77–3 Possible EIS Mapping Architectures

The best solution may vary, depending on your specific EIS and infrastructure.

77.3 EIS Direct Mapping
An EIS direct mapping maps a simple object attribute directly to an EIS record
according to its descriptor’s record type, as shown in Table 77–2.

Figure 77–4 illustrates a direct EIS mapping between Order class attribute
orderedBy and XML record attribute ordered_by within the order element.

Figure 77–4 EIS Direct Mappings

See Chapter 79, "Configuring an EIS Direct Mapping" for more information.

77.4 EIS Composite Direct Collection Mapping
An EIS composite direct collection mapping maps a collection of Java attributes
directly to an EIS record according to its descriptor’s record type, as shown in
Table 77–3.

Table 77–2 EIS Direct Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed Maps directly to a field in the indexed record.

Mapped Maps directly to a field in the mapped record.

XML Maps directly to an attribute or text node in the XML record1.
1 See also Section 53.3, "XML Direct Mapping".

EIS Composite Object Mapping

Introduction to EIS Mappings 77-7

Figure 77–5 illustrates a composite direct collection mapping between Order class
attribute items and an XML record. The Order attribute items is a collection type
(such as Vector). It is mapped to an XML record composed of an order element that
contains a sequence of item elements.

Figure 77–5 EIS Composite Direct Collection Mapping

See Chapter 80, "Configuring an EIS Composite Direct Collection Mapping" for more
information.

77.5 EIS Composite Object Mapping
An EIS composite object mapping maps a Java object to a privately owned one-to-one
relationship in an EIS record according to its descriptor’s record type, as shown in
Table 77–4.

Figure 77–6 illustrates a composite object EIS mapping between Order class attribute
address and an XML record. Order attribute address is mapped to an XML record
composed of an order element that contains an address element.

Table 77–3 EIS Composite Direct Collection Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed Maps directly to a subrecord in the indexed record1.

1 See also Section 77.2.6.1, "Composite EIS Mappings".

Mapped Maps directly to a subrecord in the mapped record1.

XML Maps directly to an attribute or text node in the XML record2.

2 See also Section 53.4, "XML Composite Direct Collection Mapping".

Table 77–4 EIS Composite Object Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed Maps directly to a subrecord in the indexed record1.

1 See also Section 77.2.6.1, "Composite EIS Mappings".

Mapped Maps directly to a subrecord in the mapped record1.

XML Maps directly to an attribute or text node in the XML record2.

2 See also Section 53.5, "XML Composite Object Mapping".

EIS Composite Collection Mapping

77-8 Developer's Guide for Oracle TopLink

Figure 77–6 EIS Composite Object Mappings

You can use an EIS composite object mapping with a change policy (see Section 119.30,
"Configuring Change Policy".

See Chapter 81, "Configuring an EIS Composite Object Mapping" for more
information.

77.6 EIS Composite Collection Mapping
An EIS composite collection mapping maps a collection of Java objects to a privately
owned one-to-many relationship in an EIS record according to its descriptor’s record
type, as shown in Table 77–5. Composite collection mappings can reference any class
that has a TopLink descriptor.

Figure 77–7 illustrates a composite collection EIS mapping between Phone class
attribute phoneNumbers and an XML record. Employee attribute phoneNumbers is
mapped to an XML record composed of an EMPLOYEE element that contains a
sequence of PHONE_NUMBER elements.

Table 77–5 EIS Composite Collection Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed Maps directly to a subrecord in the indexed record1.

1 See also Section 77.2.6.1, "Composite EIS Mappings".

Mapped Maps directly to a subrecord in the mapped record1.

XML Maps directly to an attribute or text node in the XML record2.

2 See also Section 53.6, "XML Composite Collection Mapping".

EIS One-to-One Mapping

Introduction to EIS Mappings 77-9

Figure 77–7 EIS Composite Collection Mappings

See Chapter 82, "Configuring an EIS Composite Collection Mapping" for more
information.

77.7 EIS One-to-One Mapping
An EIS one-to-one mapping is a reference mapping that represents the relationship
between a single source and target object. The source object usually contains a foreign
key (pointer) to the target object (key on source). Alternatively, the target object may
contain a foreign key to the source object (key on target). Because both the source and
target object use interactions, they must both be of a root object type (see Section 76.6,
"Configuring an EIS Descriptor as a Root or Composite Type")

Table 77–6 summarizes the behavior of this mapping depending on the EIS record type
you are using.

This section describes the following:

Table 77–6 EIS One-to-One Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed A new indexed record is created for the target object1:

■ With the Key on Source use case, the foreign key(s) is added to
the record for the source object.

■ With the Key on Target use case, the foreign key(s) is added to
the record for the target object

1 See also Section 77.2.6.2, "Reference EIS Mappings".

Mapped A new mapped record is created for the target object1:

■ With the Key on Source use case, the foreign key(s) is added to
the record for the source object.

■ With the Key on Target use case, the foreign key(s) is added to
the record for the target object

XML .A new XML record is created for the target object:

■ With the Key on Source use case, the foreign key(s) is added to
the record for the source object.

■ With the Key on Target use case, the foreign key(s) is added to
the record for the target object

EIS One-to-One Mapping

77-10 Developer's Guide for Oracle TopLink

■ EIS One-to-One Mappings with Key on Source

■ EIS One-to-One Mappings with Key on Target

See Chapter 83, "Configuring an EIS One-to-One Mapping" for more information.

77.7.1 EIS One-to-One Mappings with Key on Source
Figure 77–8 illustrates a EIS one-to-one mapping between the Employee class
attribute project and the Project class using XML records in a key on source
design.

Figure 77–8 EIS One-to-One Mapping with Key on Source

When a read interaction is executed on the Employee object, TopLink puts the target
Project object’s primary key into the Employee record as a simple value. TopLink
then uses the selection interaction you configure on the Employee descriptor to
retrieve the appropriate instance of Project and creates a record for it in the
Employee object’s transaction. In this example, you can designate the Project class’s
read interaction as the selection interaction.

The general procedure for creating and configuring this mapping is as follows:

1. Create a one-to-one EIS mapping on Employee attribute project.

2. Configure the reference descriptor as Project (see Section 78.3, "Configuring
Reference Descriptors").

3. Configure the source and target foreign keys (see Section 83.2, "Configuring
Foreign Key Pairs").

In this example:

■ Source XML Field: @project-id

■ Target XML Field: @id

4. Configure the selection interaction (see Section 78.4, "Configuring Selection
Interaction").

In this example, you can designate the Project class’s read interaction as the
selection interaction.

Given the XSD shown in Example 77–1, you can configure an EIS one-to-one mapping
with key on source, as Example 77–2 shows. In this case, the source object contains a
foreign key reference to the target object. In the following example, the source object is

EIS One-to-One Mapping

Introduction to EIS Mappings 77-11

Employee and the target object is Project. Here, the Employee object has a
Project that is referenced using the project's id.

Example 77–1 XML Schema for EIS One-to-One Mapping with Key on Source

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:element name="employee" type="employee-type"/>
<xsd:element name="project" type="project-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="project">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="project-id" type="xsd:integer"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="project-type">

<xsd:sequence>
<xsd:element name="id" type="xsd:integer"/>
<xsd:element name="leader" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Example 77–2 EIS One-to-One Mapping with Key On Source

// Employee descriptor
EISDescriptor descriptor = new EISDescriptor();
descriptor.setJavaClass(Employee.class);
descriptor.setDataTypeName("employee");
descriptor.setPrimaryKeyFieldName("name/text()");

EISOneToOneMapping projectMapping = new EISOneToOneMapping();
projectMapping.setReferenceClass(Project.class);
projectMapping.setAttributeName("project");
projectMapping.dontUseIndirection();
projectMapping.addForeignKeyFieldName("project/project-id/text()", "id/text()");

77.7.2 EIS One-to-One Mappings with Key on Target
Figure 77–9 illustrates EIS one-to-one mapping between the Employee class attribute
project and the Project class using XML records in a key on target design. You
still configure a one-to-one EIS mapping between Employee and Project, but in this
design, the Project attribute leader contains the foreign key of the Employee
object.

EIS One-to-One Mapping

77-12 Developer's Guide for Oracle TopLink

Figure 77–9 EIS One-to-One Mapping with Key on Target

When a read interaction is executed on the Employee object, TopLink uses the
selection interaction you configure on the Employee descriptor to retrieve the
appropriate instance of Project and creates a record for it in the Employee object’s
transaction. In this example, the Project class’s read interaction is unlikely to be
sufficient: it is likely implemented to read based on Project attribute Id, not on
leader. If this is the case, you must define a separate selection interaction on the
Employee descriptor that does the following: finds the Project, whose leader
equals X, where X is the value of Employee attribute firstName.

Note that in this configuration, Project attribute leader is not persisted. If you
want this attribute persisted, you must configure a one-to-one EIS mapping from it to
Employee attribute firstName.

The general procedure for creating and configuring this mapping is as follows:

1. Create a one-to-one EIS mapping on Employee attribute project.

2. Configure the reference descriptor as Project (see Section 78.3, "Configuring
Reference Descriptors").

3. Configure the source and target foreign keys (see Section 83.2, "Configuring
Foreign Key Pairs").

In this example:

■ Source XML Field: firstName/text()

■ Target XML Field: leader/text()

4. Configure the selection interaction (see Section 78.4, "Configuring Selection
Interaction").

In this example, you must define a separate selection interaction on the Employee
descriptor.

Given the XSD shown in Example 77–3, you can configure an EIS one-to-one mapping
with key on target, as Example 77–4 shows. In this case, the target object contains a
foreign key reference to the source object. In the following example, the source object is
Employee, and the target object is Project. Here, a Project references its leader
using the employee's name.

Example 77–3 XML Schema for EIS One-to-One Mapping with Key on Target

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"

EIS One-to-Many Mapping

Introduction to EIS Mappings 77-13

attributeFormDefault="unqualified">
<xsd:element name="employee" type="employee-type"/>
<xsd:element name="project" type="project-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="project">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="project-id" type="xsd:integer"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="project-type">

<xsd:sequence>
<xsd:element name="id" type="xsd:integer"/>
<xsd:element name="leader" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Example 77–4 EIS One-to-One Mapping with Key on Target

// Project descriptor
EISDescriptor descriptor = new EISDescriptor();
descriptor.setJavaClass(Project.class);
descriptor.setDataTypeName("project");
descriptor.setPrimaryKeyFieldName("id/text()");

EISOneToOneMapping leaderMapping = new EISOneToOneMapping();
leaderMapping.setReferenceClass(Employee.class);
leaderMapping.setAttributeName("leader");
leaderMapping.dontUseIndirection();
leaderMapping.addForeignKeyFieldName("leader/text()", "name/text()");

77.8 EIS One-to-Many Mapping
An EIS one-to-many mapping is a reference mapping that represents the relationship
between a single source object and a collection of target objects. The source object
usually contains a foreign key (pointer) to the target objects (key on source);
alternatively, the target objects may contain a foreign key to the source object (key on
target). Because both the source and target objects use interactions, they must all be of
a root object type (see Section 76.6, "Configuring an EIS Descriptor as a Root or
Composite Type").

Table 77–7 summarizes the behavior of this mapping depending on the EIS record type
you are using.

Table 77–7 EIS One-to-Many Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed A new indexed record is created for each target object1:

■ With the Key on Source use case, the foreign key(s) is added to the
record for the source object for each target object.

■ With the Key on Target use case, the foreign key(s) is added to the
record for the target object

EIS One-to-Many Mapping

77-14 Developer's Guide for Oracle TopLink

This section describes the following:

■ EIS One-to-Many Mappings with Key on Source

■ EIS One-to-Many Mappings with Key on Target

See Chapter 84, "Configuring an EIS One-to-Many Mapping" for more information.

77.8.1 EIS One-to-Many Mappings with Key on Source
Figure 77–10 illustrates an EIS one-to-many mapping between the Employee class
attribute projects and multiple Project class instances using XML records in a key
on source design.

Figure 77–10 EIS One-to-Many Mapping with Key on Source

When a read interaction is executed on the Employee object, TopLink puts each target
Project object’s foreign key into the Employee record as a subelement. If you

Mapped A new mapped record is created for each target object1:

■ With the Key on Source use case, the foreign key(s) is added to the
record for the source object.

■ With the Key on Target use case, the foreign key(s) is added to the
record for the target object

XML .A new XML record is created for each target object:

■ With the Key on Source use case, the foreign key(s) is added to the
record for the source object for each target object.

■ With the Key on Target use case, the foreign key(s) is added to the
record for the target object

1 See also Section 77.2.6.2, "Reference EIS Mappings".

Table 77–7 (Cont.) EIS One-to-Many Mapping by EIS Record Type

EIS Record Type Mapping Behavior

EIS One-to-Many Mapping

Introduction to EIS Mappings 77-15

specify only one pair of source and target XML fields, by default, the foreign keys are
not grouped in the Employee record. If you specify more than one pair of source and
target XML fields, you must choose a grouping element (see Section 78.3, "Configuring
Reference Descriptors"). Figure 77–10 shows an Employee record with grouping
element Project. TopLink then uses the selection interaction you configure on the
Employee descriptor to retrieve the appropriate instances of Project and creates a
record for each in the Employee object’s transaction. In this example, you can
designate the Project class’s read interaction as the selection interaction.

The general procedure for creating and configuring this mapping is as follows:

1. Create a one-to-many EIS mapping on Employee attribute project.

2. Configure the reference descriptor as Project (see Section 78.3, "Configuring
Reference Descriptors").

3. Configure the source and target foreign keys (see Section 84.2, "Configuring
Foreign Key Pairs").

In this example:

■ Source XML Field: PROJECT

■ Target XML Field: @ID

4. Configure the selection interaction (see Section 78.4, "Configuring Selection
Interaction").

In this example, you can designate the Project class’s read interaction as the
selection interaction.

Given the XSD shown in Example 77–3, you can configure an EIS one-to-many
mapping with key on source, as Example 77–4 shows. In this case, the source object
contains a foreign key reference to the target object. In the following example, the
source object is Employee, and the target object is Project. Here, the Employee
object has one or more Project instances that are referenced by Project id.

Example 77–5 XML Schema for EIS One-to-Many Mapping with Key on Source

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:element name="employee" type="employee-type"/>
<xsd:element name="project" type="project-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="projects">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="project-id"
type="xsd:integer" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="project-type">

<xsd:sequence>
<xsd:element name="id" type="xsd:integer"/>
<xsd:element name="leader" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

EIS One-to-Many Mapping

77-16 Developer's Guide for Oracle TopLink

Example 77–6 EIS One-to-Many Mapping with Key on Source

// Employee descriptor
EISDescriptor descriptor = new EISDescriptor();
descriptor.setJavaClass(Employee.class);
descriptor.setDataTypeName("employee");
descriptor.setPrimaryKeyFieldName("name/text()");

EISOneToManyMapping projectMapping = new EISOneToManyMapping();
projectMapping.setReferenceClass(Project.class);
projectMapping.setAttributeName("projects");
projectMapping.setForeignKeyGroupingElement("projects");
projectMapping.setIsForeignKeyRelationship(true);
projectMapping.dontUseIndirection();
projectMapping.addForeignKeyFieldName("project-id/text()", "id/text()");

77.8.2 EIS One-to-Many Mappings with Key on Target
Figure 77–9 illustrates an EIS one-to-many mapping between the Employee class
attribute projects and multiple Project class instances using XML records in a key
on target design. You still configure a one-to-one EIS mapping between Employee and
Project but in this design, the Project attribute leader contains the foreign key of
the Employee object.

Figure 77–11 EIS One-to-Many Mapping with Key on Target

When a read interaction is executed on the Employee object, TopLink uses the
selection interaction you configure on the Employee descriptor to retrieve the
appropriate instances of Project and creates a record for each in the Employee
object’s transaction. In this example, the Project class’s read interaction is unlikely to
be sufficient: it is likely implemented to read based on Project attribute Id, not on
leader. If this is the case, you must define a separate selection interaction on the
Employee descriptor that does the following: finds the Project, whose leader
equals X, where X is "Jane".

Note that in this configuration, Project attribute leader is not persisted. If you
want this attribute persisted, you must configure a one-to-one EIS mapping from it to
Employee attribute firstName.

EIS One-to-Many Mapping

Introduction to EIS Mappings 77-17

The general procedure for creating and configuring this mapping is as follows:

1. Create a one-to-one EIS mapping on Employee attribute project.

2. Configure the reference descriptor as Project (see Section 78.3, "Configuring
Reference Descriptors").

3. Configure the source and target foreign keys (see Section 83.2, "Configuring
Foreign Key Pairs").

In this example, you select Foreign Keys Located On Source and specify one pair
of source and target XML fields:

■ Source XML Field:

■ Target XML Field:

4. Configure the selection interaction (see Section 78.4, "Configuring Selection
Interaction").

In this example, you must define a separate selection interaction on the Employee
descriptor.

Given the XSD shown in Example 77–3, you can configure an EIS one-to-many
mapping with key on target, as Example 77–4 shows. In this case, the target object
contains a foreign key reference to the source object. In the following example, the
source object is Employee, and the target object is Project. Here, each Project
references its leader using the employee's name.

Example 77–7 XML Schema for EIS One-to-Many Mapping with Key on Target

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:element name="employee" type="employee-type"/>
<xsd:element name="project" type="project-type"/>
<xsd:complexType name="employee-type">

<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="projects">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="project-id"
type="xsd:integer" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="project-type">

<xsd:sequence>
<xsd:element name="id" type="xsd:integer"/>
<xsd:element name="leader" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Example 77–8 EIS One-to-Many Mapping with Key on Target

// Project descriptor
EISDescriptor descriptor = new EISDescriptor();
descriptor.setJavaClass(Project.class);
descriptor.setDataTypeName("project");
descriptor.setPrimaryKeyFieldName("id/text()");

EIS Transformation Mapping

77-18 Developer's Guide for Oracle TopLink

EISOneToManyMapping leaderMapping = new EISOneToOneMapping();
leaderMapping.setReferenceClass(Employee.class);
leaderMapping.setAttributeName("leader");
leaderMapping.dontUseIndirection();
leaderMapping.addForeignKeyFieldName("leader/text()", "name/text()");

77.9 EIS Transformation Mapping
A transformation EIS mapping lets you create a custom mapping, where one or more
fields in an EIS record can be used to create the object to be stored in a Java class’s
attribute.

Table 77–8 summarizes the behavior of this mapping depending on the EIS record type
you are using.

As Figure 77–12 illustrates, you configure the transformation mapping with an
oracle.toplink.mappings.transformers.AttributeTransformer instance
to perform the XML instance-to-Java attribute transformation at unmarshall time. In
this example, the AttributeTransformer combines two XML text nodes into a
single Java object.

Figure 77–12 EIS Transformation Mappings

See Chapter 85, "Configuring an EIS Transformation Mapping" for more information.

Table 77–8 EIS Transformation Mapping by EIS Record Type

EIS Record Type Mapping Behavior

Indexed .The field transformer adds data to the indexed record (you have access to
the indexed record in the attribute transformer).

Mapped .The field transformer adds data to the mapped record (you have access to
the mapped record in the attribute transformer).

XML .The field transformer adds data to the XML record (you have access to the
XML record in the attribute transformer).

78

Configuring an EIS Mapping 78-1

78Configuring an EIS Mapping

This chapter describes how to configure an EIS mapping.

This chapter includes the following sections:

■ Introduction to EIS Mapping Configuration

■ Configuring Common EIS Mapping Options

■ Configuring Reference Descriptors

■ Configuring Selection Interaction

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

78.1 Introduction to EIS Mapping Configuration
Table 78–1 lists the types of EIS mappings that you can configure and provides a
cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Fore more information, see the following:

Table 78–1 Configuring EIS Mappings

If you are creating... See Also...

EIS direct mapping (see Section 77.3, "EIS
Direct Mapping")

Chapter 79, "Configuring an EIS Direct Mapping"

EIS composite direct collection mapping (see
Section 77.4, "EIS Composite Direct Collection
Mapping")

Chapter 80, "Configuring an EIS Composite Direct
Collection Mapping"

EIS composite object mapping (see
Section 77.5, "EIS Composite Object Mapping")

Chapter 81, "Configuring an EIS Composite
Object Mapping"

EIS composite collection mapping (see
Section 77.6, "EIS Composite Collection
Mapping")

Chapter 82, "Configuring an EIS Composite Collection
Mapping"

EIS one-to-one mapping (see Section 77.7, "EIS
One-to-One Mapping")

Chapter 83, "Configuring an EIS One-to-One Mapping"

EIS one-to-many mapping (see Section 77.8,
"EIS One-to-Many Mapping")

Chapter 84, "Configuring an EIS One-to-Many Mapping"

EIS transformation mapping (see Section 77.9,
"EIS Transformation Mapping")

Chapter 85, "Configuring an EIS Transformation
Mapping"

Configuring Common EIS Mapping Options

78-2 Developer's Guide for Oracle TopLink

■ Chapter 17, "Introduction to Mappings"

■ Chapter 77, "Introduction to EIS Mappings"

78.2 Configuring Common EIS Mapping Options
Table 78–2 lists the configurable options shared by two or more EIS mapping types. In
addition to the configurable options described here, you must also configure the
options described for the specific EIS mapping types (see Section 77.1, "EIS Mapping
Types"), as shown in Table 78–1.

78.3 Configuring Reference Descriptors
In EIS mappings that extend
oracle.toplink.mappings.ForeignReferenceMapping or
oracle.toplink.mappings.AggregateMapping class, attributes reference other
TopLink descriptors–not the data source. You can select a descriptor in the current
project, or a descriptor from some other project.

Table 78–3 summarizes which EIS mappings support this option.

Table 78–2 Common Options for EIS Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

XPath (see Section 121.4, "Configuring XPath")

Default null value (see Section 121.5, "Configuring a Default
Null Value at the Mapping Level")

Reference descriptors (see Section 78.3, "Configuring
Reference Descriptors")

Method or direct field access (see Section 121.6, "Configuring
Method or Direct Field Accessing at the Mapping Level")

Private or independent relationships (see Section 121.7,
"Configuring Private or Independent Relationships")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Serialized object converter (see Section 121.9, "Configuring a
Serialized Object Converter")

Type conversion converter (see Section 121.10, "Configuring
a Type Conversion Converter")

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

Simple type translator (see Section 121.12, "Configuring a
Simple Type Translator")

Container policy (see Section 121.14, "Configuring Container
Policy")

Selection interaction (see Section 78.4, "Configuring Selection
Interaction")

Use of a single node (see Section 121.19, "Configuring the
Use of a Single Node")

JAXB typesafe enumeration converter (see Section 121.13,
"Configuring a JAXB Typesafe Enumeration Converter")

Configuring Reference Descriptors

Configuring an EIS Mapping 78-3

78.3.1 How to Configure Reference Descriptors Using TopLink Workbench
To specify a reference descriptor for an EIS mapping, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 78–1 General Tab, Reference Descriptor Field

Table 78–3 Mapping Support for Reference Descriptor

Mapping

How to Use
Oracle
JDeveloper

How to
Configure
Reference
Descriptors
Using TopLink
Workbench

How to
Use
Java

Direct mapping (see Section 77.3, "EIS Direct
Mapping")

Composite direct collection mapping (see
Section 77.4, "EIS Composite Direct Collection
Mapping")

Composite object mapping (see Section 77.5,
"EIS Composite Object Mapping")

Composite collection mapping (see
Section 77.6, "EIS Composite Collection
Mapping")

One-to-one mapping (see Section 77.7, "EIS
One-to-One Mapping")

One-to-many mapping (see Section 77.8, "EIS
One-to-Many Mapping")

Transformation mapping (see Section 77.9,
"EIS Transformation Mapping")

Configuring Selection Interaction

78-4 Developer's Guide for Oracle TopLink

Use the Reference Descriptor field to select the descriptor referenced by this
relationship mapping.

You can specify a reference descriptor that is not in the current TopLink Workbench
project. For example, to create a mapping to an Employee class that does not exist in
the current project, do the following:

1. Add the Employee class to your current project. See Section 116.2, "Working with
Projects".

2. Create the relationship mapping to the Employee descriptor.

3. Deactivate the Employee descriptor. See Active and Inactive Descriptors.

When you generate the deployment XML for your project, the mapping to the
Employee class will be included, but not the Employee class itself.

78.4 Configuring Selection Interaction
In EIS mappings that extend
oracle.toplink.mappings.ForeignReferenceMapping class, TopLink uses a
selection interaction to acquire the instance of the target object to which the mapping
refers.

By default, TopLink uses the read interaction you define for the mapping’s reference
descriptor (see Section 78.3, "Configuring Reference Descriptors"). In most cases, this
interaction is sufficient. If the reference descriptor’s read interaction is not sufficient,
you can define a separate interaction.

Table 78–4 summarizes which EIS mappings support this option.

Note: For one-to-one and one-to-many EIS mappings, the reference
descriptor must be a root descriptor. See Section 76.6, "Configuring an
EIS Descriptor as a Root or Composite Type".

Table 78–4 Mapping Support for Selection Interaction

Mapping

How to Use
Oracle
JDeveloper

How to
Configure
Selection
Interaction
Using TopLink
Workbench

How to
Use
Java

Direct mapping (see Section 77.3, "EIS Direct
Mapping")

Composite direct collection mapping (see
Section 77.4, "EIS Composite Direct
Collection Mapping")

One-to-one mapping (see Section 77.7, "EIS
One-to-One Mapping")

One-to-many mapping (see Section 77.8,
"EIS One-to-Many Mapping")

Composite object mapping (see Section 77.5,
"EIS Composite Object Mapping")

Composite collection mapping (see
Section 77.6, "EIS Composite Collection
Mapping")

Configuring Selection Interaction

Configuring an EIS Mapping 78-5

For more information about how TopLink uses the selection criteria, see
Section 77.2.6.2, "Reference EIS Mappings".

78.4.1 How to Configure Selection Interaction Using TopLink Workbench
To specify the selection interaction (such as Read Object) for the EIS mapping, use this
procedure:

1. Select the one-to-many EIS mapping in the Navigator. Its properties appear in the
Editor.

2. Click the Selection Interaction tab. The Selection Interaction tab appears.

Figure 78–2 Selection Interaction Tab

Use the following information to enter data in each field on the tab:

Transformation mapping (see Section 77.9,
"EIS Transformation Mapping")

Field Description

Function Name The name of the EIS function that this call type (Read Object or
Read All) invokes on the EIS.

Input Record Name The name passed to the JCA adapter when creating the input
record.

Table 78–4 (Cont.) Mapping Support for Selection Interaction

Mapping

How to Use
Oracle
JDeveloper

How to
Configure
Selection
Interaction
Using TopLink
Workbench

How to
Use
Java

Configuring Selection Interaction

78-6 Developer's Guide for Oracle TopLink

Input Root Element Name The root element name to use for the input DOM.

Input Arguments The query argument name to map to the interaction field or XPath
nodes in the argument record.

For example, if you are using XML records, use this option to map
input argument name to the XPath name/first-name.

Output Arguments The result record field or XPath nodes to map to the correct nodes
in the record used by the descriptor's mappings.

For example, if you are using XML records, use this option to map
the output fname to name/first-name.

Output arguments are not required if the interaction returns an
XML result that matches the descriptor's mappings.

Input Result Path Use this option if the EIS interaction expects the interaction
arguments to be nested in the XML record.

For example, specify arguments, if the arguments were to be
nested under the root element exec-find-order, then under an
arguments element.

Output Result Path The name of the EIS function that this call type (Read Object or
Read All) invokes on the EIS.

Properties Any properties required by your EIS platform. For example,
property name operation (from AQPlatform.QUEUE_
OPERATION) and property value enqueue (from
AQPlatform.ENQUEUE).

Field Description

79

Configuring an EIS Direct Mapping 79-1

79Configuring an EIS Direct Mapping

This chapter describes the various components that you must configure in order to use
an EIS direct mapping.

This chapter includes the following section:

■ Introduction to EIS Direct Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

79.1 Introduction to EIS Direct Mapping Configuration
Table 79–1 lists the configurable options for an EIS direct mapping.

Table 79–1 Configurable Options for EIS Direct Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Use of a single node (see Section 121.19, "Configuring the
Use of a Single Node")

Simple type translator (see Section 121.12, "Configuring a
Simple Type Translator")

Method or direct field access at the mapping level (see
Section 121.6, "Configuring Method or Direct Field
Accessing at the Mapping Level")

Default null value at the mapping level (see Section 121.5,
"Configuring a Default Null Value at the Mapping Level")

Read-only mappings (see Section 121.2, "Configuring
Read-Only Mappings")

Mapping comments (see Section 121.8, "Configuring
Mapping Comments")

Serialized object converter (see Section 121.9, "Configuring a
Serialized Object Converter")

Type conversion converter (see Section 121.10, "Configuring
a Type Conversion Converter")

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

JAXB typesafe enumerated converter (see Section 121.13,
"Configuring a JAXB Typesafe Enumeration Converter")

Introduction to EIS Direct Mapping Configuration

79-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Section 77.3, "EIS Direct Mapping"

■ Chapter 78, "Configuring an EIS Mapping"

80

Configuring an EIS Composite Direct Collection Mapping 80-1

80Configuring an EIS Composite Direct
Collection Mapping

This chapter describes the various components that you must configure in order to use
an EIS composite direct collection mapping.

This chapter includes the following section:

■ Introduction to EIS Composite Direct Collection Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

80.1 Introduction to EIS Composite Direct Collection Mapping
Configuration

Table 80–1 lists the configurable options for an EIS composite direct collection
mapping.

Table 80–1 Configurable Options for EIS Composite Direct Collection Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Simple type translator (see Section 121.12, "Configuring a
Simple Type Translator")

Use of a single node (see Section 121.19, "Configuring the Use
of a Single Node")

Method or direct field access at the mapping level (see
Section 121.6, "Configuring Method or Direct Field Accessing
at the Mapping Level")

Read-only mappings (see Section 121.2, "Configuring
Read-Only Mappings")

Container policy (see Section 121.14, "Configuring Container
Policy")

Mapping comments (see Section 121.8, "Configuring Mapping
Comments")

Serialized object converter (see Section 121.9, "Configuring a
Serialized Object Converter")

Type conversion converter (see Section 121.10, "Configuring a
Type Conversion Converter")

Introduction to EIS Composite Direct Collection Mapping Configuration

80-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Section 77.4, "EIS Composite Direct Collection Mapping"

■ Chapter 78, "Configuring an EIS Mapping"

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

JAXB typesafe enumerated converter (see Section 121.13,
"Configuring a JAXB Typesafe Enumeration Converter")

Table 80–1 (Cont.) Configurable Options for EIS Composite Direct Collection Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

81

Configuring an EIS Composite Object Mapping 81-1

81Configuring an EIS Composite
Object Mapping

This chapter describes the various components that you must configure in order to use
an EIS composite object mapping.

This chapter includes the following section:

■ Introduction to EIS Composite Object Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

81.1 Introduction to EIS Composite Object Mapping Configuration
Table 81–1 lists the configurable options for an EIS composite object mapping.

For more information, see the following:

■ Section 77.5, "EIS Composite Object Mapping"

■ Chapter 78, "Configuring an EIS Mapping"

Table 81–1 Configurable Options for EIS Composite Object Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Section 78.3, "Configuring Reference Descriptors"

Method or direct field access at the mapping level (see
Section 121.6, "Configuring Method or Direct Field Accessing at
the Mapping Level")

Read-only mappings (see Section 121.2, "Configuring
Read-Only Mappings")

Mapping comments (see Section 121.8, "Configuring Mapping
Comments")

Introduction to EIS Composite Object Mapping Configuration

81-2 Developer's Guide for Oracle TopLink

82

Configuring an EIS Composite Collection Mapping 82-1

82Configuring an EIS Composite Collection
Mapping

This chapter describes the various components that you must configure in order to use
an EIS composite collection mapping.

This chapter includes the following section:

■ Introduction to EIS Composite Collection Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

82.1 Introduction to EIS Composite Collection Mapping Configuration
Table 82–1 lists the configurable options for an EIS composite collection mapping.

For more information, see the following:

■ Section 77.6, "EIS Composite Collection Mapping"

■ Chapter 78, "Configuring an EIS Mapping"

Table 82–1 Configurable Options for EIS Composite Collection Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

XPath (see Section 121.4, "Configuring XPath")

Reference descriptors (see Section 78.3, "Configuring Reference
Descriptors")

Method or direct field access at the mapping level (see
Section 121.6, "Configuring Method or Direct Field Accessing at
the Mapping Level")

Read-only mappings (see Section 121.2, "Configuring Read-Only
Mappings")

Configuring container policy (see Section 121.14, "Configuring
Container Policy")

Mapping comments (see Section 121.8, "Configuring Mapping
Comments")

Introduction to EIS Composite Collection Mapping Configuration

82-2 Developer's Guide for Oracle TopLink

83

Configuring an EIS One-to-One Mapping 83-1

83Configuring an EIS One-to-One Mapping

This chapter describes the various components that you must configure in order to use
an EIS one-to-one mapping.

This chapter includes the following sections:

■ Introduction to EIS One-to-One Mapping Configuration

■ Configuring Foreign Key Pairs

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

83.1 Introduction to EIS One-to-One Mapping Configuration
Table 83–1 lists the configurable options for an EIS one-to-one mapping.

For more information, see the following:

■ Section 77.7, "EIS One-to-One Mapping"

Table 83–1 Configurable Options for EIS One-to-One Mappings

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Reference descriptors (see Section 78.3, "Configuring Reference
Descriptors")

Foreign key pairs (see Section 83.2, "Configuring Foreign Key Pairs")

Bidirectional relationship (see Section 121.18, "Configuring
Bidirectional Relationship")

Method or direct field access at the mapping level (see Section 121.6,
"Configuring Method or Direct Field Accessing at the Mapping
Level")

Read-only mappings (see Section 121.2, "Configuring Read-Only
Mappings")

Private or independent relationships (see Section 121.7, "Configuring
Private or Independent Relationships")

Indirection (lazy loading) (see Section 121.3, "Configuring Indirection
(Lazy Loading)")

Mapping comments (see Section 121.8, "Configuring Mapping
Comments")

Selection interaction (see Section 78.4, "Configuring Selection
Interaction")

Configuring Foreign Key Pairs

83-2 Developer's Guide for Oracle TopLink

■ Chapter 78, "Configuring an EIS Mapping"

83.2 Configuring Foreign Key Pairs
In a one-to-one EIS mapping, you relate a source object attribute to a target object
attribute by specifying one or more pairs of source and target object fields.

In a one-to-one EIS mapping with key on source (see Section 77.7.1, "EIS One-to-One
Mappings with Key on Source") using XML records, TopLink puts the target XML field
value into the source object’s record as a simple value.

In a one-to-one EIS mapping with key on target (see Section 77.7.2, "EIS One-to-One
Mappings with Key on Target") using XML records, TopLink uses the source XML
field value in the selection interaction to acquire the appropriate instance of target
object.

83.2.1 How to Configure Foreign Key Pairs Using TopLink Workbench
To specify the source and target XML field pairs for a one-to-one EIS mapping, use this
procedure:

1. Select the one-to-one EIS mapping in the Navigator. Its properties appear in the
Editor.

2. Click the General tab. The General tab opens.

Figure 83–1 General Tab, Foreign Keys Field

3. Click Add in the Foreign Keys area to add a key pair. The Specify Field Pair dialog
box appears.

Configuring Foreign Key Pairs

Configuring an EIS One-to-One Mapping 83-3

Figure 83–2 Specify Field Pair Dialog Box

Click Browse to add a foreign key for the Source XPath and Target XPath fields.

Configuring Foreign Key Pairs

83-4 Developer's Guide for Oracle TopLink

84

Configuring an EIS One-to-Many Mapping 84-1

84Configuring an EIS One-to-Many Mapping

This chapter describes the various components that you must configure in order to use
an EIS one-to-many mapping.

This chapter includes the following sections:

■ Introduction to EIS One-to-Many Mapping Configuration

■ Configuring Foreign Key Pairs

■ Configuring Delete All Interactions

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

84.1 Introduction to EIS One-to-Many Mapping Configuration
Table 84–1 lists the configurable options for an EIS one-to-many mapping.

Table 84–1 Configurable Options for EIS One-to-Many Mappings

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Reference descriptors (see Section 78.3, "Configuring Reference
Descriptors")

Foreign key pairs (see Section 84.2, "Configuring Foreign Key
Pairs")

Bidirectional relationship (see Section 121.18, "Configuring
Bidirectional Relationship")

Method or direct field access at the mapping level (see
Section 121.6, "Configuring Method or Direct Field Accessing
at the Mapping Level")

Read-only mappings (see Section 121.2, "Configuring
Read-Only Mappings")

Private or independent relationships (see Section 121.7,
"Configuring Private or Independent Relationships")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

Container policy (see Section 121.14, "Configuring Container
Policy")

Mapping comments (see Section 121.8, "Configuring Mapping
Comments")

Configuring Foreign Key Pairs

84-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Section 77.8, "EIS One-to-Many Mapping"

■ Chapter 78, "Configuring an EIS Mapping"

84.2 Configuring Foreign Key Pairs
In a one-to-many EIS mapping, you relate a source object attribute to a target object
attribute by specifying one or more pairs of source and target object fields.

In a one-to-many EIS mapping with key on source (see Section 77.8.1, "EIS
One-to-Many Mappings with Key on Source") using XML records, TopLink puts the
target XML field value into the source object’s record as a simple value. By default,
these values are not grouped, as Example 84–1 shows.

Example 84–1 Source Object XML Record without Grouping

<employee>
<name>Jane</name>
<project-id>3</project-id>
<project-id>4</project-id>

</employee>
If you specify more than one source and target XML field pair, you must specify a
grouping element, as Example 84–2 shows.

Example 84–2 Source Object XML Record with Grouping

<employee>
<name>Jane</name>
<project>

<project-id>3</project-id>
<project-name>Project 3</project-name>

</project>
<project>

<project-id>4</project-id>
<project-name>Project 4</project-name>

</project>
</employee>
In a one-to-one EIS mapping with key on target (see Section 77.8.2, "EIS One-to-Many
Mappings with Key on Target") using XML records, TopLink uses the source XML
field value in the selection interaction to acquire the appropriate instances of target
object.

84.2.1 How to Configure Foreign Key Pairs Using TopLink Workbench
To specify the source and target XML field pairs for a one-to-many EIS mapping, use
this procedure:

1. Select the one-to-one EIS mapping in the Navigator. Its properties appear in the
Editor.

Selection interaction (see Section 78.4, "Configuring Selection
Interaction")

Delete all interactions (see Section 84.3, "Configuring Delete All
Interactions")

Table 84–1 (Cont.) Configurable Options for EIS One-to-Many Mappings

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Configuring Foreign Key Pairs

Configuring an EIS One-to-Many Mapping 84-3

2. Click the General tab. The General tab appears.

Figure 84–1 Foreign Keys Field on General Tab

Use the following information to complete the Foreign Keys fields on the General tab:

Field Description

Foreign Keys Located On Target Select if you are creating a one-to-many EIS mapping with
key on target (see Section 77.8.2, "EIS One-to-Many
Mappings with Key on Target").

Foreign Keys Located On Source Select if you are creating a one-to-many EIS mapping with
key on source (see Section 77.8.1, "EIS One-to-Many
Mappings with Key on Source").

Grouping Element Specify the element in which foreign key pairs are grouped
in the source object’s EIS record.

If you specify only one pair of source and target XML
fields, this is optional.

If you specify more than one pair of source and target XML
fields, this is required.

Field Pairs Click Add to add a pair of source and target XML fields.

Specify Field Pair dialog box opens. Click Browse to add a
foreign key for the Source XPath and Target XPath fields.

Configuring Delete All Interactions

84-4 Developer's Guide for Oracle TopLink

84.3 Configuring Delete All Interactions
The TopLink query and expression framework supports delete all queries. If your JCA
adapter provides access to an EIS Delete All function, you can configure a delete all
interaction to support TopLink delete all queries.

84.3.1 How to Configure Delete All Interactions Using TopLink Workbench
To specify the DeleteAll interaction for an EIS one-to-many mapping, use this
procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Delete All Interaction tab. The Delete All Interaction tab appears.

Figure 84–2 Delete All Interaction Tab

Use the following information to enter data in each field on the Delete All Interaction
tab:

Field Description

Function Name The name of the EIS function that this call type (Read Object or
Read All) invokes on the EIS.

Input Record Name The name passed to the JCA adapter when creating the input
record.

Input Root Element Name The root element name to use for the input DOM.

Input Arguments The query argument name to map to the interaction field or XPath
nodes in the argument record.

For example, if you are using XML records, use this option to map
input argument name to the XPath name/first-name.

Configuring Delete All Interactions

Configuring an EIS One-to-Many Mapping 84-5

Output Arguments The result record field or XPath nodes to map to the correct nodes
in the record used by the descriptor's mappings.

For example, if you are using XML records, use this option to map
the output fname to name/first-name.

Output arguments are not required if the interaction returns an
XML result that matches the descriptor's mappings.

Input Result Path Use this option if the EIS interaction expects the interaction
arguments to be nested in the XML record.

For example, specify arguments, if the arguments were to be
nested under the root element exec-find-order, then under an
arguments element.

Output Result Path The name of the EIS function that this call type (Read Object or
Read All) invokes on the EIS.

Properties Any properties required by your EIS platform. For example,
property name operation (from AQPlatform.QUEUE_
OPERATION) and property value enqueue (from
AQPlatform.ENQUEUE).

Field Description

Configuring Delete All Interactions

84-6 Developer's Guide for Oracle TopLink

85

Configuring an EIS Transformation Mapping 85-1

85Configuring an EIS Transformation Mapping

This chapter describes the various components that you must configure in order to use
an EIS transformation mapping.

This chapter includes the following sections:

■ Introduction EIS Transformation Mapping Configuration

For information on how to configure TopLink mappings options common to two or
more mapping types, see Chapter 121, "Configuring a Mapping".

For information on how to create TopLink mappings, see Chapter 120, "Creating a
Mapping".

85.1 Introduction EIS Transformation Mapping Configuration
Table 85–1 lists the configurable options for an EIS transformation mapping.

For more information, see the following:

■ Section 77.9, "EIS Transformation Mapping"

■ Chapter 78, "Configuring an EIS Mapping"

Table 85–1 Configurable Options for EIS Transformation Mapping

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Attribute transformer (see Section 121.15, "Configuring
Attribute Transformer")

Field transformer associations (see Section 121.16, "Configuring
Field Transformer Associations")

Method or direct field access at the mapping level (see
Section 121.6, "Configuring Method or Direct Field Accessing at
the Mapping Level")

Read-only mappings (see Section 121.2, "Configuring
Read-Only Mappings")

Mutable mappings (see Section 121.17, "Configuring Mutable
Mappings")

Mapping comments (see Section 121.8, "Configuring Mapping
Comments")

Introduction EIS Transformation Mapping Configuration

85-2 Developer's Guide for Oracle TopLink

Part XX
Part XX Using TopLink

This part describes how to associate a TopLink project with a particular instance of a
data source and use it to manage persistence in your application. It contains the
following chapters:

■ Chapter 86, "Introduction to Persistence Layer"

This chapter provides an overview of how to use sessions, queries, and
transactions in your application.

86

Introduction to Persistence Layer 86-1

86Introduction to Persistence Layer

This chapter provides the conceptual overview of the persistence layer of a TopLink
application.

This chapter includes the following section:

■ Persistence Layer Concepts

86.1 Persistence Layer Concepts
The purpose of your application’s persistence layer is to use a session (see
Section 86.1.1, "Sessions") at run time to associate mapping metadata (see
Section 2.4.3.1, "Mapping Metadata") and a data source (see Section 86.1.2, "Data
Access") in order to create, read, update, and delete persistent objects using the
TopLink cache (see Section 86.1.3, "Cache"), queries and expressions (see Section 86.1.4,
"Queries and Expressions"), as well as transactions (see Section 86.1.5, "Transactions").

This section introduces the following persistence layer concepts:

■ Sessions

■ Data Access

■ Cache

■ Queries and Expressions

■ Transactions

86.1.1 Sessions
A session is the primary interface between the client application and the TopLink
runtime, and represents the connection to the underlying data source.

For POJO projects, TopLink offers several different session types (see Chapter 87,
"Introduction to TopLink Sessions"), each optimized for different design requirements
and architectures. The most commonly used session is the server session–a session that
clients access on the server through a client session. The server session provides a
shared cache and shared connection resources.

For CMP projects, the TopLink runtime creates and uses a session internally, but your
application does not acquire or use this session directly. Depending on the application
server you use, you can specify some of the parameters for this internal session (see
Section 9.1.4, "JAVA-EE-CONTAINER-ejb-jar.xml File").

In JPA projects, sessions are used internally as follows:

■ an EntityManagerFactory wraps a ServerSession;

Persistence Layer Concepts

86-2 Developer's Guide for Oracle TopLink

■ an EntityManager wraps a UnitOfWork and a ClientSession.

86.1.2 Data Access
The login (if any) associated with a session determines how the TopLink runtime
connects to the project’s data source.

A login includes details of data source access, such as authentication, use of connection
pools, and use of external transaction controllers. A login (an instance of Login
interface) owns a data source platform.

A platform includes options, such as binding, use of native SQL, use of batch writing,
and sequencing, that are specific to a particular data source. For more information
about platforms, see Section 96.1.3, "Data Source Platform Types".

For projects that do not persist to a data source, a login is not required. For projects
that do persist to a data source, a login is always required.

For relational and For more information, see Chapter 96, "Introduction to Data Access"

86.1.3 Cache
By default, a TopLink session provides an object level cache that guarantees object
identity and enhances performance by reducing the number of times the application
needs to access the data source. TopLink provides a variety of cache options, including
locking, refresh, invalidation, isolation, and coordination. Using cache coordination,
you can configure TopLink to synchronize changes with other instances of the
deployed application. You configure most cache options at the session level. You can
also configure cache options on a per-query basis, or on a descriptor to apply to all
queries on the reference class.

For more information, see Chapter 102, "Introduction to Cache"

86.1.4 Queries and Expressions
TopLink provides several object and data query types, and offers flexible options for
query selection criteria, including the following:

■ TopLink expressions

■ JP QL

■ SQL

■ Stored procedures

■ Query by example

With these options, you can build any type of query. Oracle recommends using
predefined queries to define application queries. Predefined queries are held in the
project metadata and referenced by name. This simplifies application development
and encapsulates the queries to reduce maintenance costs.

Regardless of the architecture or persistent entity type, you are free to use any of the
query options. Oracle JDeveloper TopLink Editor and TopLink Workbench provide the
simplest way to define queries. Alternatively, you can build queries in code, using the
TopLink API.

For more information, see the following:

■ Chapter 108, "Introduction to TopLink Queries"

■ Chapter 110, "Introduction to TopLink Expressions"

Persistence Layer Concepts

Introduction to Persistence Layer 86-3

86.1.5 Transactions
TopLink provides the ability to write transactional code isolated from the underlying
database and schema by using a unit of work.

The unit of work isolates changes in a transaction from other threads until it
successfully commits the changes to the database. Unlike other transaction
mechanisms, the unit of work automatically manages changes to the objects in the
transaction, the order of the changes, and changes that might invalidate other TopLink
caches. The unit of work manages these issues by calculating a minimal change set,
ordering the database calls to comply with referential integrity rules and deadlock
avoidance, and merging changed objects into the shared cache. In a clustered
environment, the unit of work also synchronizes changes with the other servers in the
coordinated cache.

If an application uses EJB entity beans, you do not access the unit of work API directly,
but you still benefit from its features: the integration between the TopLink runtime and
the Java EE container automatically uses the unit of work.

For more information, see Chapter 113, "Introduction to TopLink Transactions".

Persistence Layer Concepts

86-4 Developer's Guide for Oracle TopLink

Part XXI
Part XXI TopLink Sessions

This part describes the TopLink artifact used to associate a TopLink project with a
particular instance of a data source. It contains the following chapters:

■ Chapter 87, "Introduction to TopLink Sessions"

This chapter describes each of the different TopLink session types and important
session concepts.

■ Chapter 88, "Creating a Session"

This chapter contains procedures for creating TopLink sessions.

■ Chapter 89, "Configuring a Session"

This chapter explains how to configure TopLink session options common to two or
more session types.

■ Chapter 90, "Acquiring and Using Sessions at Run Time"

This chapter explains how to acquire and use a TopLink session at runtime.

■ Chapter 91, "Configuring Server Sessions"

This chapter explains how to configure TopLink server and client sessions.

■ Chapter 92, "Configuring Exclusive Isolated Client Sessions for Virtual Private
Database"

This chapter explains how to configure a TopLink isolated client session.

■ Chapter 93, "Configuring Historical Sessions"

This chapter explains how to configure a TopLink historical session.

■ Chapter 94, "Configuring Session Broker and Client Sessions"

This chapter explains how to configure TopLink session broker and client sessions.

■ Chapter 95, "Configuring Database Sessions"

This chapter explains how to configure a TopLink database session suitable for
simple single-user, single-data source and prototyping applications.

87

Introduction to TopLink Sessions 87-1

87Introduction to TopLink Sessions

A TopLink session provides the primary access to the TopLink runtime. It is the means
by which your application performs all persistence operations with the data source
that contains persistent objects.

A session associates data source platform information, data source login information,
and mapping metadata for a particular application. You can reuse mapping metadata
in different applications by defining different sessions.

TopLink provides different session types, each optimized for different design
requirements and data access strategies. You can combine different session types in the
same application.

This chapter includes the following sections:

■ Session Types

■ Session Concepts

■ Server and Client Sessions

■ Unit of Work Sessions

■ Isolated Client Sessions

■ Historical Sessions

■ Session Broker and Client Sessions

■ Database Sessions

■ Remote Sessions

■ Sessions and the Cache

■ Session API

87.1 Session Types
Table 87–1 lists the session types that you can use in a POJO TopLink application and
classifies them as basic or advanced. See Section 87.2.11, "Sessions and CMP" for
information on using Oracle TopLink with CMP.

Session Concepts

87-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Chapter 88, "Creating a Session"

■ Chapter 89, "Configuring a Session"

■ Chapter 90, "Acquiring and Using Sessions at Run Time"

87.2 Session Concepts
This section describes concepts unique to TopLink sessions, including the following:

■ Session Architecture

■ Session Configuration and the sessions.xml File

■ Session Customization

■ Acquiring a Session at Run Time with the Session Manager

Table 87–1 TopLink Session Types

Session Type Description
Oracle
JDeveloper

TopLink
Workbench Java

Server and
client sessions
(see
Section 87.3,
"Server and
Client
Sessions")

Server sessions provide session management to a single data source
(including shared object cache and connection pools) for multiple
clients in a three-tier architecture using database or EIS platforms.
This is the most flexible, scalable, and commonly used session.

You acquire a client session from a server session at run time to
provide access to a single data source for each client.

Unit of work
sessions (see
Section 87.4,
"Unit of Work
Sessions")

Acquired from any session type (directly, or by way of an external
transaction controller) to transactionally modify objects.

Isolation
client sessions
(see
Section 87.5,
"Isolated
Client
Sessions")

A special type of client session that uses a session cache isolated from
the shared object cache of its parent server session.

Historical
sessions (see
Section 87.6,
"Historical
Sessions")

A special type of client session that provides a read-only snapshot of
object versions as of a specified time and uses a session cache isolated
from the shared object cache of its parent server session.

Session broker
and client
sessions (see
Section 87.7,
"Session
Broker and
Client
Sessions")

Provides session management to multiple data sources for multiple
clients by aggregating two or more server sessions (can also be used
with database sessions).

You acquire a client session from a session broker at run-time to
provide access to all the data sources managed by the session broker
for each client.

Database
sessions (see
Section 87.8,
"Database
Sessions")

Provides session management to a single database for a single client
suitable for simple or two-tiered applications. Oracle does not
recommend this session type in three-tiered applications because it
does not offer the same flexibility and scalability as the server session.

Remote
sessions (see
Section 87.9,
"Remote
Sessions")

A client-side session that communicates over RMI with a
corresponding dedicated client session and shared server session.
Remote sessions handle object identity and marshalling and
unmarshalling between client-side and server-side.

Session Concepts

Introduction to TopLink Sessions 87-3

■ Managing Session Events with the Session Event Manager

■ Logging

■ Profiler

■ Integrity Checker

■ Exception Handlers

■ Registering Descriptors

■ Sessions and CMP

■ Sessions and Sequencing

87.2.1 Session Architecture
As Figure 87–1 illustrates, a session instance is composed of the following components:

■ Object Cache

■ Connection Pools

■ Query Mechanism

■ Java Object Builder

Figure 87–1 Simple TopLink Session Architecture

How these session components are implemented and how they interact depends on
the type of session. For example, for server and client sessions, the server session
provides a connection pool and shared object cache on behalf of all client sessions
acquired from it.

87.2.1.1 Object Cache
TopLink sessions provide an object cache. This cache, known as the session cache,
retains information about objects that are read from or written to the database, and is a
key element for improving the performance of a TopLink application.

Typically, a server session’s object cache is shared by all client sessions acquired from
it. That is, for a Server session myServerSession, each client session acquired by
calling server session method acquireClientSession shares the same object cache
as myServerSession.

Session Concepts

87-4 Developer's Guide for Oracle TopLink

Isolated and historical sessions provide their own session cache isolated from the
shared object cache of their parent server session. For more information, see
Section 87.5, "Isolated Client Sessions" and Section 87.6, "Historical Sessions".

You can easily manage concurrent access to this shared cache by using a unit of work
session acquired from any session. For more information, see Section 87.4, "Unit of
Work Sessions".

For more information, see Section 87.10, "Sessions and the Cache".

87.2.1.2 Connection Pools
A connection pool is a collection of reusable connections to a single data source.

Because creating a data source connection is usually expensive, a properly configured
connection pool significantly improves performance.

You can configure your session to use internal connection pools provided by TopLink
or external connection pools provided by a JDBC driver or Java EE container. By
default, TopLink uses internal connection pools.

Internal connection pools are usually used in non-EJB applications, or when an
external transaction controller (JTA) is not used. If you configure your session to use
internal connection pools, you can configure its default read and write connection
pools. You can create special purpose connection pools for application-specific
purposes (named connection pools) or exclusively for sequencing (sequence
connection pool). For more information, see Section 96.1.6.1, "Internal Connection
Pools".

External connection pools are usually used in EJB applications and when an external
transaction controller (JTA) is used. For more information, see Section 96.1.6.2,
"External Connection Pools".

For more information about data access configuration in general, see Chapter 96,
"Introduction to Data Access".

87.2.1.3 Query Mechanism
At run time, your application uses a session to perform all persistence operations:
creating, reading, updating, and deleting objects. You perform these operations using
TopLink queries and expressions with the session query API.

For more information, see Chapter 108, "Introduction to TopLink Queries".

87.2.1.4 Java Object Builder
When you use object-level read queries, TopLink automatically builds Java objects
from the data retrieved. When you use object-level write queries, TopLink
automatically converts the affected Java objects into the appropriate data native to
your data source.

Note: To simultaneously access multiple databases from within a
single session, use a session broker. For more information, see
Section 87.7, "Session Broker and Client Sessions".

Session Concepts

Introduction to TopLink Sessions 87-5

87.2.2 Session Configuration and the sessions.xml File
TopLink provides two ways to configure your sessions: through Java code using the
Session API, or using TopLink Workbench to build a session configuration file, the
sessions.xml file.

In most cases, you configure sessions for the application using the sessions.xml
file. This file is an Extensible Markup Language (XML) file that contains all sessions
that are associated with the application. The sessions.xml file can contain any
number of sessions and session types.

Oracle recommends that you use the sessions.xml file to deploy a TopLink
application, because it provides the following advantages:

■ It is easy to create and maintain in TopLink Workbench.

■ It is easy to troubleshoot.

■ It provides access to most session configuration options.

■ It offers excellent flexibility, including the ability to modify deployed applications
without recompiling.

For more information on creating a session in the sessions.xml file, see Section 88.1,
"Introduction to the Session Creation".

87.2.3 Session Customization
You can customize a session at run time by specifying a session customizer–a Java
class that implements the
oracle.toplink.tools.sessionconfiguration.SessionCustomizer
interface and provides a default (zero-argument) constructor.

Since the sessions.xml file is not used for CMP projects, use
oracle.toplink.ejb.cmp.DeploymentCustomization interface as a
customizer when creating a CMP project to specify your database login information.

You use a session customizer to customize a session at run time through code API
similar to how you use an amendment method to customize a descriptor (see
Section 16.2.7, "Amendment and After-Load Methods").

For more information, see Section 89.8, "Configuring a Session Customizer Class".

87.2.4 Acquiring a Session at Run Time with the Session Manager
The TopLink session manager lets you build a series of sessions that are maintained
under a singleton object called the session manager.

The session manager is a static utility class that loads TopLink sessions from the
sessions.xml file (see Section 87.2.2, "Session Configuration and the sessions.xml
File"), caches the sessions by name in memory, and provides a single access point for
TopLink sessions.

At run time, TopLink will attempt to load the sessions.xml file from the two
following default resource names: sessions.xml and META-INF/sessions.xml.
Refer to Chapter 10, "Packaging a TopLink Application" for additional information.

The session manager supports the following session types:

■ ServerSession (see Section 87.3, "Server and Client Sessions")

■ SessionBroker (see Section 87.7, "Session Broker and Client Sessions")

■ DatabaseSession (see Section 87.8, "Database Sessions")

Session Concepts

87-6 Developer's Guide for Oracle TopLink

The session manager has two main functions: it creates instances of these sessions and
it ensures that only a single instance of each named session exists for any instance of a
session manager.

The session manager instantiates sessions as follows:

1. The client application requests a session by name.

2. The session manager looks up the session name in the sessions.xml file. If the
session name exists, the session manager instantiates the specified session;
otherwise, it raises an exception.

3. After instantiation, the session remains viable until you shut down the application.

Once you have a session instance, you can use it to acquire additional types of sessions
for special tasks. For example, you can acquire a unit of work from any session to
perform transactional operations. You can acquire a client session from a server session
to perform client operations in a three-tier architecture.

For more information, see Chapter 90, "Acquiring and Using Sessions at Run Time".

87.2.5 Managing Session Events with the Session Event Manager
Sessions raise session events for most session operations. Session events help you
debug or coordinate the actions of multiple sessions.

The session event manager handles information about session events. Applications
register session event listeners with the session event manager to receive session
events.

For example, session event listeners play an important role in the configuration of
isolated sessions (see Chapter 92, "Configuring Exclusive Isolated Client Sessions for
Virtual Private Database"). In an isolated session, if the TopLink runtime raises a
SessionEvent.NoRowsModified event, it is handled by your
SessionEventListener (see Section 92.4, "Using NoRowsModifiedSessionEvent
Event Handler"). This event listener is your opportunity to determine whether the
update failure was due to a security violation (in which case you should not retry the
operation) or due to an optimistic lock issue (in which case a retry may be
appropriate). See Section 87.2.6, "Logging" for information on adding logging to your
event listeners.

Another example is the use of session event listeners to configure proxy authentication
in Oracle Database. (see Section 98.8, "Configuring Oracle Database Proxy
Authentication").

87.2.5.1 Session Event Manager Events
The session event manager supports the session events listed in the following tables:

■ Table 87–2, " Session Events"

■ Table 87–3, " Unit of Work Events"

Table 87–2 Session Events

Event Description

MissingDescriptor Raised if a descriptor is missing for a class being persisted. You can use
this event to lazy register the descriptor or set of descriptors.

MoreRowsDetected Raised when a ReadObjectQuery detects more than one row
returned from the database. This event can indicate a possible error
condition in your application.

Session Concepts

Introduction to TopLink Sessions 87-7

NoRowsModified Raised after update or delete SQL has been sent to the database and a
row count of zero is returned.

OutputParametersDetected Raised after a stored procedure call with output parameters executes.
This event enables you to retrieve a result set and output parameters
from a single stored procedure.

PostAcquireClientSession Raised after a client Session is acquired

PostAcquireConnection Raised after acquiring a connection

PostAcquireExclusiveConnection Raised when a client Session, with isolated data, acquires an exclusive
connection.

PostBeginTransaction Raised after a database transaction starts

PostCommitTransaction Raised after a database transaction commits

PostConnect Raised after connecting to the database

PostExecuteQuery Raised after the execution of every query on the session

PostLogin Raised after the Session initializes and acquires connections

PostReleaseClientSession Raised after releasing a client Session

PostRollbackTransaction Raised after a database transaction rolls back

PreBeginTransaction Raised before a database transaction starts

PreCommitTransaction Raised before a database transaction commits

PreExecuteQuery Raised before the execution of every query on the session

PreLogin Raised before the Session initializes and acquires connections

PreReleaseClientSession Raised before releasing a client Session

PreReleaseConnection Raised before releasing a connection

PreReleaseExclusiveConnection Raised before a client Session, with isolated data, releases its exclusive
connection.

PreRollbackTransaction Raised before a database transaction rolls back

Table 87–3 Unit of Work Events

Event Description

PostAcquireUnitOfWork Raised after a UnitOfWork is acquired

PostCalculateUnitOfWorkChangeSet Raised after the commit has begun on the UnitOfWork
and after the changes are calculated. The
UnitOfWorkChangeSet, at this point, will contain
change sets without the version fields updated and
without identity field type primary keys. These will be
updated after the insert, or update, of the object.

PostCommitUnitOfWork Raised after a UnitOfWork commits

PostDistributedMergeUnitOfWorkChangeSet Raised after a UnitOfWork change set has been merged
when that change set has been received from a distributed
session.

PostMergeUnitOfWorkChangeSet Raised after a UnitOfWork change set has been merged.

PostReleaseUnitOfWork Raised on a UnitOfWork after it is released.

PostResumeUnitOfWork Raised on a UnitOfWork after it resumes.

PreCalculateUnitOfWorkChangeSet Raised after the commit has begun on the UnitOfWork
but before the changes are calculated.

PreCommitUnitOfWork Raised before a UnitOfWork commits.

PreDistributedMergeUnitOfWorkChangeSet Raised before a UnitOfWork change set has been merged
when that change set has been received from a distributed
session.

Table 87–2 (Cont.) Session Events

Event Description

Session Concepts

87-8 Developer's Guide for Oracle TopLink

87.2.5.2 Session Event Listeners
You can create session event listeners in two ways: either by implementing the
SessionEventListener interface, or by extending the SessionEventAdapter
class.

To register a SessionEventListener for session events, register it with a session
using the SessionEventManager method addListener.

For more information, see Section 89.10, "Configuring Session Event Listeners".

87.2.6 Logging
You can configure a session to write run-time information to a TopLink log. This
information includes status, diagnostic, SQL, and, when profiling is enabled,
performance data (see Section 12.3, "Measuring TopLink Performance with the
TopLink Profiler" or Section 12.4, "Measuring TopLink Performance with the Oracle
Dynamic Monitoring System (DMS)").

Logging options are configurable at the session level (see Section 89.4, "Configuring
Logging").

87.2.6.1 Log Types
TopLink supports the following types of logging:

■ TopLink Native Logging

■ java.util Logging

■ Server Logging

87.2.6.1.1 TopLink Native Logging

PreMergeUnitOfWorkChangeSet Raised before a UnitOfWork change set has been merged.

PrepareUnitOfWork Raised after the a UnitOfWork flushes its SQL, but before
it commits its transaction.

PreReleaseUnitOfWork Raised on a UnitOfWork before it is released.

Note: To facilitate debugging, you can add logging to your listeners
to only log the events that are of the interest to your application.
Within the session context, use the following logging utility:

Session.getSessionLog().log(int level, String message)

Without the session context, use the following logging utility:

AbstractSessionLog.getLog().log(int level, String message)

Both the getSessionLog and getLog methods return a session log
(an instance of a SessionLog interface) loaded with an accessor’s log
messages and SQL. Then the session log performs logging at the level
that you specify.

For more information on session event listeners, see Section 87.2.5.2,
"Session Event Listeners".

Table 87–3 (Cont.) Unit of Work Events

Event Description

Session Concepts

Introduction to TopLink Sessions 87-9

TopLink native logging is the default session log type. It is provided by
oracle.toplink.logging.DefaultSessionLog. Example 87–1 shows a typical
TopLink native log message.

You can configure TopLink native logging options using TopLink Workbench (see
Section 89.4.1, "How to Configure Logging Using TopLink Workbench").

Example 87–1 Sample TopLink Log Message

[TopLink Info]: DATE
TIME-DatabaseSession(12345)-Thread(12345)-TopLink, version: Oracle TopLink - 10g (Build
031203)
[TopLink Config]: DATE
TIME-DatabaseSession(12345)-Thread(12345)-Connection(12345)-
connecting(DatabaseLogin(

platform=>Oracle9Platform
user name=> "username"
datasource URL=> "jdbc:oracle:thin:@144.23.214.115:1521:toplink"

))
[TopLink Config]: DATE
TIME-DatabaseSession(12345)-Thread(12345)-Connection(12345)-
Connected: jdbc:oracle:thin:@144.23.214.115:1521:toplink
User: USERNAME
Database: Oracle Version: Oracle9i Enterprise Edition - Production

With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.3.0 - Production
Driver: Oracle JDBC driver Version: 9.2.0.3.0

[TopLink Info]: DATE
TIME-DatabaseSession(12345)-Thread(12345)-loggingTestSession login
successful

87.2.6.1.2 java.util Logging

This type of logging makes TopLink conform to the java.util.logging package. It
is provided by oracle.toplink.logging.JavaLog. Logging options are
configured in the <JRE_HOME>/lib/logging.properties file. Messages are
written to any number of destinations based on this configuration. Example 87–2
shows a typical java.util.logging log message.

For more information on using java.util.logging package, see Section 89.4.5,
"How to Configure a Session to use the java.util.logging Package".

Example 87–2 Sample java.util.logging Log Messages

Dec 9, 2003 2:05:05 PM oracle.toplink.loggingTestSession DatabaseSession(32603767) Thread(10)
INFO: TopLink, version: Oracle TopLink - 10g (10.0.3) Developer Preview (Build 031203)
Dec 9, 2003 2:05:07 PM oracle.toplink.loggingTestSession.connection DatabaseSession(32603767)
Connection(927929) Thread(10)
CONFIG: connecting(DatabaseLogin(

platform=>Oracle9Platform
user name=> "coredev8"
datasource URL=> "jdbc:oracle:thin:@144.23.214.115:1521:toplink"

))
Dec 9, 2003 2:05:08 PM oracle.toplink.loggingTestSession.connection DatabaseSession(32603767)
Connection(927929) Thread(10)
CONFIG: Connected: jdbc:oracle:thin:@144.23.214.115:1521:toplink

User: COREDEV8
Database: Oracle Version: Oracle9i Enterprise Edition Release 9.2.0.3.0 - Production

With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.3.0 - Production

Driver: Oracle JDBC driver Version: 9.2.0.3.0
Dec 9, 2003 2:05:08 PM oracle.toplink.loggingTestSession DatabaseSession(32603767) Thread(10)
INFO: loggingTestSession login successful

Session Concepts

87-10 Developer's Guide for Oracle TopLink

87.2.6.1.3 Server Logging

Server logging is used to integrate TopLink logging with an application server log.

The TopLink runtime determines the server log type to use given the server platform
you configure when you create your project (Section 116.1, "Introduction to the Project
Creation").

For example, if your project uses the WebLogic platform, TopLink uses the
oracle.toplink.platform.server.wls.WlsLog; if your project uses the OC4J
platform, TopLink uses the oracle.toplink.platform.server.oc4j.OjdlLog.

For more information, see the following:

■ Section 89.4.4, "How to Configure Logging in a Java EE Container"

87.2.6.2 Log Output
If you are using TopLink native logging, you can configure TopLink to write log
messages to a file or to the console (see Section 89.4, "Configuring Logging").

If you are using java.util.logging, TopLink writes log messages to the
destinations you configure in the <JRE_HOME>/lib/logging.properties file (see
Section 89.4.5, "How to Configure a Session to use the java.util.logging Package").

If you are using server logging, TopLink writes log messages to the application
server's log file (there is no separate TopLink log file in this case).

87.2.6.3 Log Level
You can control the amount and detail of log output by configuring the log level (in
ascending order of information) in the following way:

■ SEVERE–Logs exceptions indicating TopLink cannot continue, as well as any
exceptions generated during login. This includes a stack trace.

■ WARNING–Logs exceptions that do not force TopLink to stop, including all
exceptions not logged with severe level. This does not include a stack trace.

■ INFO (default)–Logs the login/logout per server session, including the user name.
After acquiring the session, detailed information is logged.

■ CONFIG–Logs only login, JDBC connection, and database information.

■ FINE–Logs SQL (including thread information).

■ FINER–Similar to warning. Includes stack trace.

■ FINEST–Includes additional low level information

■ ALL–Logs everything.

By default, TopLink logs at the oracle.toplink.logging.SessionLog.INFO
level so that some information is logged by default.

At run time, set the log level using Session method setLogLevel, passing in one of
the log level constants provided by oracle.toplink.logging.SessionLog.

87.2.6.4 Logging SQL
In a relational project, TopLink accesses the database using SQL strings that it
generates internally. This feature enables applications to use the session methods or
query objects without having to perform their own SQL translation.

If, for debugging purposes, you want to review a record of the SQL that is sent to the
database, set the session log level to

Session Concepts

Introduction to TopLink Sessions 87-11

oracle.toplink.logging.SessionLog.FINE–the session will log all executed
SQL to the session log.

Example 87–3 shows how to configure the log destination using the setLog method
on the session.

Example 87–3 Configuring the Log Destination

private static SessionEventListener buildListener() {
return new SessionEventAdapter() {

public void preLogin(SessionEvent event) {
File file = new
File("C:\\oracle\\904\\toplink\\examples\\jdev\\2-TierEmployee\\toplin

k.log");
try {

System.out.println("FILE: " + file.getAbsolutePath());
FileWriter writer = new FileWriter(file);
event.getSession().setLog(writer);
} catch (IOException ioe) {
ioe.printStackTrace();
throw new RuntimeException("Failed to setup logging to: " +

file.getAbsolutePath());
}

}
};

}

87.2.6.5 Logging Chained Exceptions
The logging chained exception facility enables you to log causality when one exception
causes another as part of the standard stack back-trace. Causal chains appear
automatically in your logs.

87.2.6.6 Logging Inside a Java EE Container
When you deploy a TopLink- enabled application to an application server or EJB
container, TopLink CMP and EclipseLink JPA default to ServerLog with no log level
so that TopLink uses the configuration in j2ee-logging.xml.

For more information, see Section 89.4, "Configuring Logging".

87.2.6.7 Logging Outside of a Java EE Container
 When you deploy a TopLink-enabled application outside of an EJB container, the
logging defaults revert to DefaultSessionLog and INFO log level.

If you are using TopLink native logging (to a file) or the java.util.logging
package outside of a Java EE container, you control logging using the <JRE_
HOME>/lib/logging.properties file.

For more information, see the following:

■ Section 89.4, "Configuring Logging"

■ Section 89.4.5, "How to Configure a Session to use the java.util.logging Package"

87.2.7 Profiler
The TopLink session provides profiling API that lets you identify performance
bottlenecks in your application (see Section 89.6, "Configuring a Performance
Profiler"). When enabled, the profiler logs a summary of the performance statistics for
every query that the application executes.

Session Concepts

87-12 Developer's Guide for Oracle TopLink

TopLink allows you to measure application performance using TopLink Profiler or
Oracle Dynamic Monitoring System (DMS).

87.2.7.1 TopLink Profiler
The TopLink profiler is a high-level logging service. Instead of logging SQL
statements, the profiler logs a summary of each query you execute. The summary
includes a performance breakdown of the query that lets you identify performance
bottlenecks. The profiler also provides a report summarizing the query performance
for an entire session.

Access profiler reports and profiles through the Profile tab in the TopLink Web client,
or create your own application or applet to view the profiler logs. For more
information, see Section 12.3.2, "How to Access the TopLink Profiler Results".

For more information, see Section 12.3, "Measuring TopLink Performance with the
TopLink Profiler".

87.2.7.2 Oracle Dynamic Monitoring System (DMS)
Oracle DMS is a library that enables application and system developers to use a
variety of DMS sensors to measure and export customized performance metrics for
specific software components (called nouns).

TopLink includes DMS instrumentation in essential objects to provide efficient
monitoring of runtime data in TopLink enabled applications, including both Java EE
and non-Java EE applications.

By enabling DMS profiling in a TopLink application, you can collect and easily access
run-time data that can help you with application administration tasks and
performance tuning.

You can easily access DMS data at run time using a management application that
supports the Java Management Extensions (JMX) API (see Section 12.4.2, "How to
Access Oracle DMS Profiler Data Using JMX"), or using any Web browser and the
DMS Spy servlet (see Section 12.4.3, "How to Access Oracle DMS Profiler Data Using
the DMS Spy Servlet").

For more information, see Section 12.4, "Measuring TopLink Performance with the
Oracle Dynamic Monitoring System (DMS)".

87.2.8 Integrity Checker
When you log into a session, TopLink initializes and validates the descriptors you
registered with it. By configuring the integrity checker, you can customize this
validation process.

For more information, see Section 89.11, "Configuring the Integrity Checker".

87.2.9 Exception Handlers
Exception handlers allow any exception that occurs in a session to be caught and
processed. Exception handlers can be used for debugging purposes, or to resolve
database timeouts or failures.

To use exception handlers, register an implementor of the
oracle.toplink.exceptions.ExceptionHandler interface with the session
(see Section 89.7, "Configuring an Exception Handler").

If an exception occurs during a session operation, such as executing a query, the
exception is passed to the exception handler. The exception handler can either rethrow

Session Concepts

Introduction to TopLink Sessions 87-13

the exception, or handle the exception and retry the operation. When handling
exceptions, ensure that the following conditions are met:

■ If you are performing a write query and you are within a transaction, you should
not retry the operation.

■ If you are performing a read query, you may retry the operation, and, if successful,
return the query result.

If your exception handler cannot proceed, you should throw an appropriate
application-specific exception.

For more information on the types of exceptions that TopLink can throw, see
Appendix A, "Troubleshooting a TopLink Application".

87.2.10 Registering Descriptors
You use a session to perform persistence operations on the objects described by
TopLink mapping metadata represented as a TopLink project (see Chapter 15,
"Introduction to Projects"). Each session must therefor be associated with the
descriptors of at least one TopLink project. You associate descriptors with a session by
registering them with the session.

The preferred way to register descriptors with a session is to use Oracle JDeveloper
TopLink Editor or TopLink Workbench to configure the session with a mapping project
(see Section 89.2, "Configuring a Primary Mapping Project" and Section 89.5,
"Configuring Multiple Mapping Projects").

87.2.11 Sessions and CMP
Although TopLink is an integral part of a Java EE application, in most cases the client
does not interact with TopLink directly. Instead, TopLink features are invoked
indirectly by way of EJB container callbacks.

In a CMP TopLink project, you do not explicitly create, configure, or acquire a session.
The TopLink runtime creates, configures, acquires and uses a session itself internally.
For more information, see Section 2.9.3, "Creating Session Metadata". Similarly, in a
CMP TopLink project, how metadata is deployed depends on the EJB container and
application server you use (see Section 2.9.4, "Deploying Metadata").

87.2.12 Sessions and Sequencing
An essential part of maintaining object identity is managing the assignment of unique
values to distinguish one instance from another. For more information, see
Section 15.2.6, "Projects and Sequencing".

Sequencing options you configure in a sessions.xml (or project.xml) file
determine the type of sequencing that TopLink uses.

In a CMP project, you do not configure a sessions.xml file directly: in this case you
must configure the sequence type in the project.xml file (see Section 20.3,
"Configuring Sequencing at the Project Level").

In a POJO project, you can use session-level sequence configuration to override
project-level sequence configuration, on a session-by-session basis, if required (see
Section 98.4, "Configuring Sequencing at the Session Level").

After configuring the sequence type at the session (or project) level, for each descriptor
you must also configure sequencing options for that descriptor to use sequencing (see
Section 16.2.10, "Descriptors and Sequencing").

Server and Client Sessions

87-14 Developer's Guide for Oracle TopLink

87.3 Server and Client Sessions
A server session manages the server side of client/server communications, providing
shared resources, including a shared object cache and connection pools to a single data
source.

A client session is a server-side communications mechanism that works together with
the server session to provide the client/server connection. You acquire client sessions
from a server session at run time as required. By default, a client session shares the
session cache of its parent server session. Each client session serves one client. A client
session communicates with the server session on behalf of the client application.

Each client session can have only one associated server session, but a server session
can support any number of client sessions.

As Figure 87–2 illustrates, together, the client session and server session provide a
three-tier architecture that you can scale easily, by adding more client sessions. A
server session is the most common TopLink session type because it supports this
three-tier architecture that is common in enterprise applications. Because of this
scalability, Oracle recommends that you use the three-tier architecture to build your
TopLink applications.

Figure 87–2 Typical TopLink Server Session with Client Session Architecture

This section explains the advantages of using server sessions and client sessions in
your TopLink application, including the following:

■ Three-Tier Architecture Overview

■ Advantages of the TopLink Three-Tier Architecture

For more information, see the following:

■ Section 88.4, "Creating a Server Session"

■ Chapter 91, "Configuring Server Sessions"

■ Section 90.3, "Acquiring a Session from the Session Manager"

■ Section 90.4, "Acquiring a Client Session"

87.3.1 Three-Tier Architecture Overview
In a TopLink three-tier architecture, client sessions and server sessions both reside on
the server. Client applications access the TopLink application through a client session,
and the client session communicates with the database using the server session.

Server and Client Sessions

Introduction to TopLink Sessions 87-15

Figure 87–3 Server Session and Client Session Usage

87.3.2 Advantages of the TopLink Three-Tier Architecture
Although the server session and the client session are two different session types, you
can treat them as a single unit in most cases, because they are both required to provide
three-tier functionality to the application. The server session provides the client session
to client applications, and also supplies the majority of the session functionality.

This section discusses some of the advantages and general concepts associated with
the TopLink three-tier design, including the following:

■ Shared Resources

■ Providing Read Access

■ Providing Write Access

■ Security and User Privileges

■ Concurrency

■ Connection Allocation

87.3.2.1 Shared Resources
The three-tier design enables multiple clients to share persistent resources. The server
session provides its client sessions with a shared live object cache, read and write
connection pooling, and parameterized named queries. Client sessions also share
descriptor metadata.

You can use client sessions and server sessions in any application server architecture
that allows for shared memory and supports multiple clients. These architectures can
include HyperText Markup Language (HTML), Servlet, JavaServer Pages (JSP),
Remote Method Invocation (RMI), Common Object Request Broker Architecture
(CORBA), Web services, and EJB.

To support a shared object cache, client sessions must do the following:

■ Implement any changes to the database with the TopLink unit of work.

Server and Client Sessions

87-16 Developer's Guide for Oracle TopLink

■ Share a common database login for reading (you can implement separate logins
for writing).

87.3.2.2 Providing Read Access
To read objects from the database, the client must first acquire a client session from the
server session. Acquiring a client session gives the client access to the session cache
and the database through the server session. The server session behaves as follows:

■ If the object or data is in the session cache, then the server session returns the
information back to the client.

■ If the object or data is not in the cache, then the server session reads the
information from the database and stores the object in the session cache. The
objects are then available for retrieval from the cache.

Because a server session processes each client request in a separate thread, this enables
multiple clients to access the database connection pool concurrently.

Figure 87–4 illustrates how multiple clients read from the database using the server
session.

Figure 87–4 Multiple Client Sessions Reading the Database Using the Server Session

To read objects from the database using a client session, do the following:

1. Acquire a Session from the Server:

Server server =
(Server) SessionManager.getManager().getSession(

sessionName, MyServerSession.class.getClassLoader()
);

Session clientSession = (Session) server.acquireClientSession();
For more information, see Chapter 90, "Acquiring and Using Sessions at Run
Time".

2. Use the Session object to perform read operations (for more information, see
Chapter 108, "Introduction to TopLink Queries" and Chapter 110, "Introduction to
TopLink Expressions").

Server and Client Sessions

Introduction to TopLink Sessions 87-17

87.3.2.3 Providing Write Access
Because the client session disables all database modification methods, a client session
cannot create, change, or delete objects directly. Instead, the client must obtain a unit of
work from the client session to perform database modification methods.

To write to the database, the client acquires a client session from the server session and
then acquires a unit of work within that client session. The unit of work acts as an
exclusive transactional object space, and also ensures that any changes that are
committed to the database also occur in the session cache.

Figure 87–5 illustrates how to write to the database using a client session acquired
from a server session.

Figure 87–5 Writing with Client Sessions and Server Sessions

To write to the database using a unit of work, use this procedure:

1. Acquire a session from the server session:

Server server =
(Server) SessionManager.getManager().getSession(

sessionName, MyServerSession.class.getClassLoader()
);

Session clientSession = (Session) server.acquireClientSession();

For more information, see Chapter 90, "Acquiring and Using Sessions at Run
Time".

Note: Oracle recommends that you do not use the Server session
object directly to read objects from the database.

Note: Although client sessions are thread-safe, do not use them to write
across multiple threads. Multithread write operations from the same
client session can result in errors and a loss of data. For more
information, see Section 87.3.2.5, "Concurrency".

Server and Client Sessions

87-18 Developer's Guide for Oracle TopLink

2. Acquire a UnitOfWork object from the Session object.

UnitOfWork uow = clientSession.acquireUnitOfWork();

For more information, see Section 87.4, "Unit of Work Sessions".

3. Use the unit of work to perform the required updates and then commit the
UnitOfWork.

For more information, see the following:

■ Chapter 108, "Introduction to TopLink Queries"

■ Chapter 110, "Introduction to TopLink Expressions")

■ Chapter 113, "Introduction to TopLink Transactions"

87.3.2.4 Security and User Privileges
You can define several different server sessions in your application to support users
with different data access rights. For example, your application may serve a group
called "Managers," who has access rights to salary information, and a group called
"Employees," who do not. Because each session you define in the sessions.xml file
has its own login information, you can create multiple sessions, each with its own
login credentials, to meet the needs of both of these groups.

When you use internal TopLink connection pools (see Section 96.1.6, "Connection
Pools"), each server session provides a read connection pool and a write connection
pool. All read queries use connections from the read connection pool and all queries
that write changes to the data store use connections from the write connection pool.
This ensures that connections for one session are kept separate from the connections
used in another.

To further isolate users from one another, you can use an isolated session: a special
type of client session that provides its own session cache isolated from the shared
object cache of its parent server session to provide improved user-based security, or to
avoid caching highly volatile data. For more information, see Section 87.5, "Isolated
Client Sessions".

87.3.2.5 Concurrency
The server session supports concurrent clients by providing each client with a
dedicated thread of execution. Dedicated threads enable clients to operate
asynchronously–that is, client processes execute as they are called and do not wait for
other client processes to complete.

TopLink safeguards thread safety with a concurrency manager. The concurrency
manager ensures that no two threads interfere with each other when performing
operations such as creating new objects, executing a transaction on the database, or
accessing value holders.

For more information about handling concurrency issues, see Section 102.2.3,
"Handling Stale Data".

87.3.2.6 Connection Allocation
When you instantiate the server session, it creates a pool of data source connections.
The session then manages the connection pool based on your session configuration,
and shares the connections among its client sessions. When the client session releases
the connection, the server session recovers the connection and makes it available to
other client processes. Reusing connections reduces the number of connections

Isolated Client Sessions

Introduction to TopLink Sessions 87-19

required by the application and allows a server session to support a larger number of
clients.

The server session provides connections to client sessions as needed. By default, the
server session does not allocate a data source connection for a client session until a
transaction starts (a lazy data source connection). Alternatively, you can acquire a
client session that allocates a connection immediately (see Section 90.4.5, "How to
Acquire a Client Session that Does Not Use Lazy Connection Allocation").

The server session allocates read connections from its read connection pool to all client
sessions. If your application requires multiple read security levels then you must use
multiple server sessions or TopLink isolated sessions (see Section 87.5, "Isolated Client
Sessions").

The server session also supports multiple write connection pools and nonpooled
connections. Be default, all client sessions use the default write connection pool.
However, if your application requires multiple security levels or user logins for write
access, then you can use multiple write connection pools. You can configure a client
session to use a specific write connection pool or nonpooled connection when it is
acquired (see Section 90.4.4, "How to Acquire a Client Session that Uses a Named
Connection Pool"). This connection is only used for writes, not reads (reads still go
through the server session read connection pool).

For more information, see the following:

■ Section 96.1.6.1, "Internal Connection Pools"

■ Section 96.1.6.2, "External Connection Pools"

87.4 Unit of Work Sessions
The unit of work ensures that the client edits objects in a separate object transaction
space. This feature lets clients perform object transactions in parallel. When
transactions are committed, the unit of work makes any required changes in the
database, and then merges the changes into the shared TopLink session cache. The
modified objects are then available to all other users.

For information on creating, configuring, and using a unit of work, see Chapter 113,
"Introduction to TopLink Transactions".

87.5 Isolated Client Sessions
An isolated client session is a special type of client session that provides its own
session cache. This session cache is isolated from the shared session cache of its parent
server session.

If in your TopLink project you configure all classes as isolated (see Section 117.11,
"Configuring Cache Isolation at the Project Level"), or one or more classes as isolated
(see Section 119.13, "Configuring Cache Isolation at the Descriptor Level"), then all
client sessions that you acquire from a parent server session will be isolated client
sessions.

Figure 87–6 illustrates the relationship between a parent server session’s shared
session cache and its child isolated client sessions.

Isolated Client Sessions

87-20 Developer's Guide for Oracle TopLink

Figure 87–6 Isolated Client Sessions

Each isolated client session owns an initially empty cache and identity maps used
exclusively for isolated objects that the isolated client session accesses while it is active.
The isolated client session’s isolated session cache is discarded when the isolated client
session is released.

When you use an isolated client session to read an isolated class, the client session
reads the isolated object directly from the database and stores it in that client session’s
isolated session cache. When you use the client session to read a shared class, the client
session reads the shared object from the parent server session’s shared session cache. If
the shared object is not in the parent server session’s shared session cache, it will read
it from the database and store it in the parent server session’s shared session cache.

Isolated objects in an isolated client session’s isolated session cache may reference
shared objects in the parent server session’s shared session cache, but shared objects in
the parent server session’s shared session cache cannot reference isolated objects in an
isolated client session’s isolated session cache.

Client sessions can access the data source using a connection pool, or an exclusive
connection. To use an exclusive connection, acquire the isolated client session using a
ConnectionPolicy (see Section 90.4.2, "How to Acquire a Client Session that Uses
Exclusive Connections"). Using an exclusive connection provides improved user-based
security for reads and writes. Named queries can also use an exclusive connection (see
Section 119.7.1.10, "Configuring Named Query Advanced Options").

Note: You cannot define mappings from shared classes to isolated
classes. If using CMP, you also cannot define references from isolated
enterprise beans to shared EJB.

Isolated Client Sessions

Introduction to TopLink Sessions 87-21

Use isolated client sessions to do the following:

■ avoid caching highly volatile data in the shared session cache;

■ achieve serializable transaction isolation (see Section 115.15.1.5.1, "Isolated Client
Session Cache");

■ use the Oracle Virtual Private Database (VPD) feature in your TopLink-enabled
application (see Section 87.5.1, "Isolated Client Sessions and Oracle Virtual Private
Database (VPD)").

For more information, see the following:

■ Section 87.5.2, "Isolated Client Session Limitations"

■ Section 90.4.1, "How to Acquire an Isolated Client Session"

■ Chapter 92, "Configuring Exclusive Isolated Client Sessions for Virtual Private
Database"

87.5.1 Isolated Client Sessions and Oracle Virtual Private Database (VPD)
Oracle9i Database (and later) provides a server-enforced, fine-grained access control
mechanism called Virtual Private Database (VPD). VPD ties a security policy to a table
by dynamically appending SQL statements with a predicate to limit data access at the
row level. You can create your own security policies, or use Oracle’s custom
implementation of VPD called Oracle Label Security (OLS). For more information on
VPD and OLS, see the following:

http://www.oracle.com/technology/deploy/security/index.html.

To use Oracle Database VPD feature in your TopLink-enabled application, use isolated
client sessions.

Any class that maps to a table that uses VPD must have the descriptor configured as
isolated (see Section 119.13, "Configuring Cache Isolation at the Descriptor Level").

When you use isolated client sessions with VPD, you typically use exclusive
connections (see Section 90.4.2, "How to Acquire a Client Session that Uses Exclusive
Connections").

To support VPD, you are responsible for implementing session event handlers that the
TopLink runtime invokes during the isolated client session life cycle (see
Section 87.5.1.3, "Isolated Client Session Life Cycle"). The session event handler you
must implement depends on whether or not you are using Oracle Database proxy
authentication (see Section 87.5.1.1, "VPD with Oracle Database Proxy Authentication"
and Section 87.5.1.2, "VPD Without Oracle Database Proxy Authentication").

For information, see Chapter 92, "Configuring Exclusive Isolated Client Sessions for
Virtual Private Database".

Note: If an isolated session contains an exclusive connection, you
must release the session when you are finished using it. Oracle does
not recommend relying on the finalizer to release the connection when
the session is garbage -collected. If you are using an active unit of
work in a JTA transaction, you do not need to release the client
session–the unit of work will release it after the JTA transaction
completes.

Isolated Client Sessions

87-22 Developer's Guide for Oracle TopLink

87.5.1.1 VPD with Oracle Database Proxy Authentication
If you are using Oracle Database proxy authentication (Section 96.1.4.2, "Oracle
Database Proxy Authentication"), you must implement a session event handler for the
following session events:

■ noRowsModifiedSessionEvent (see Section 92.4, "Using
NoRowsModifiedSessionEvent Event Handler")

By using Oracle Database proxy authentication, you can set up VPD support entirely
in the database. That is, rather than making the isolated client session execute SQL (see
Section 92.2, "Using PostAcquireExclusiveConnection Event Handler" and
Section 92.3, "Using PreReleaseExclusiveConnection Event Handler"), the database
performs the required setup in an after login trigger using the proxy session_user.

87.5.1.2 VPD Without Oracle Database Proxy Authentication
If you are not using Oracle Database proxy authentication, you must implement
session event handlers for the following session events:

■ postAcquireExclusiveConnection (see Section 92.2, "Using
PostAcquireExclusiveConnection Event Handler"): used to perform VPD setup at
the time TopLink allocates a dedicated connection to an isolated session and before
the isolated session user uses the connection to interact with the database.

■ preReleaseExclusiveConnection (see Section 92.3, "Using
PreReleaseExclusiveConnection Event Handler"): used to perform VPD cleanup at
the time the isolated session is released and after the user is finished interacting
with the database.

■ noRowsModifiedSessionEvent (see Section 92.4, "Using
NoRowsModifiedSessionEvent Event Handler")

In your implementation of these handlers, you obtain the required user credentials
from the ConnectionPolicy associated with the session (see Section 90.4.3, "How to
Acquire a Client Session that Uses Connection Properties").

87.5.1.3 Isolated Client Session Life Cycle
This section provides an overview of the key phases in the life cycle of an isolated
session, including the following:

■ Setup required before using an isolated session

■ Interaction among isolated session objects

■ Clean-up required after using an isolated session

To enable the life cycle of an isolated session, use this procedure:

1. Prepare VPD configuration in the database.

2. Configure your project and session:

■ Designate descriptors as isolated (see Section 119.13, "Configuring Cache
Isolation at the Descriptor Level").

■ Configure your server session to allocate exclusive connections (see
Section 89.12, "Configuring Connection Policy").

■ Implement session event listeners for the required connection events

– If you are using Oracle Database proxy authentication (see
Section 96.1.4.2, "Oracle Database Proxy Authentication"), see Section 92.4,
"Using NoRowsModifiedSessionEvent Event Handler".

Isolated Client Sessions

Introduction to TopLink Sessions 87-23

– If you are not using Oracle Database proxy authentication, see
Section 92.2, "Using PostAcquireExclusiveConnection Event Handler",
Section 92.3, "Using PreReleaseExclusiveConnection Event Handler", and
Section 92.4, "Using NoRowsModifiedSessionEvent Event Handler"

■ Implement exception handlers for the appropriate exceptions (see Section 92.5,
"Accessing Indirection").

3. Acquire an isolated session:

■ If you are using Oracle Database proxy authentication (see Section 96.1.4.2,
"Oracle Database Proxy Authentication"):

Session myIsolatedClientSession = server.acquireClientSession();
Because you configured one or more descriptors as isolated,
myIsolatedClientSession is an isolated session with an exclusive
connection.

■ If you are not using Oracle Database proxy authentication:

ConnectionPolicy myConnPolicy =
(ConnectionPolicy)server.getDefaultConnectionPolicy().clone();

myConnectionPolicy.setProperty("credentials", myUserCredentials);
Session myIsolatedClientSession =

server.acquireClientSession(myConnectionPolicy);
Set the user’s credentials as appropriate properties on
myConnectionPolicy. Because you configured one or more descriptors as
isolated, myIsolatedClientSession is an isolated session with an
exclusive connection.

The TopLink runtime raises a
SessionEvent.PostAcquireExclusiveConnection event handled by your
SessionEventListener (see Section 92.2, "Using
PostAcquireExclusiveConnection Event Handler").

4. Use myIsolatedClientSession to interact with the database.

If the TopLink runtime raises a SessionEvent.NoRowsModified event, it is
handled by your SessionEventListener (see Section 92.4, "Using
NoRowsModifiedSessionEvent Event Handler").

5. When you are finished using myIsolatedClientSession, release the isolated
session:

myIsolatedClientSession.release();
The TopLink runtime prepares to destroy the isolated cache and to close the
exclusive connection associated with this isolated session.

The TopLink runtime raises a
SessionEvent.PreReleaseExclusiveConnection event handled by your
SessionEventListener (see Section 92.3, "Using
PreReleaseExclusiveConnection Event Handler").

6. Repeat steps 3 to 5 (as required) until the application exits.

Note: You must add these session event listeners to the server
session from which you acquire your isolated client session. You
cannot add them to the isolated client session itself. For more
information, see Section 89.10, "Configuring Session Event Listeners"

Isolated Client Sessions

87-24 Developer's Guide for Oracle TopLink

87.5.2 Isolated Client Session Limitations
For the purposes of security as well as efficiency, observe the limitations described in
the following section, when you use isolated client sessions in your TopLink three-tier
application:

■ Mapping

■ Inheritance

■ Caching and Cache Coordination

■ Sequencing

■ CMP

■ Transactions and JTA

Mapping
Consider the following mapping and relationship restrictions when using isolated
sessions with your relational model:

■ Isolated objects may be related to shared objects, but shared objects cannot have
any relationships with isolated objects.

■ If a table has a VPD security policy associated with it, then the class mapped to
that table must be isolated.

■ If one of the tables in a multiple table mapping is isolated, then the main class
must also be isolated.

The TopLink runtime enforces these restrictions during descriptor initialization.

Inheritance
Aggregates and aggregate mappings inherit the isolated configuration of their parents.

If a class is isolated, then all inheriting classes should be isolated. Otherwise, if you
relate a shared class to a shared superclass with isolated subclasses, it is possible that
some of the isolated subclasses will lose object identity when the isolated session is
released.

To give you the flexibility to mix shared and isolated classes, the TopLink runtime does
not enforce these restrictions during descriptor initialization. If you wish to mix shared
and isolated classes in your inheritance hierarchy, then you must be prepared to deal
with this possible loss of object identity.

Caching and Cache Coordination
Isolated classes are never loaded into the shared cache of a parent server session.
Isolated classes cannot be used with cache coordination.

Sequencing
Oracle recommends that you do not configure a sequencing object as isolated. TopLink
does not access sequencing objects using the isolated session’s dedicated connection,
and so the sequence values are not available to the isolated session.

CMP
For CMP, relationships between isolated and shared data is not allowed. This is
because of the relationship maintenance requirements of having bidirectional
references for all relationships.

Session Broker and Client Sessions

Introduction to TopLink Sessions 87-25

Transactions and JTA
Oracle recommends that you explicitly release an isolated session when you are
finished using it, rather than wait for the Java garbage collector to invoke the finalizer.
The finalizer is provided as a last resort: waiting for the garbage collector may cause
errors when dealing with a JTA transaction.

87.6 Historical Sessions
By default, a session represents a view of the most current version of objects, and
when you execute a query in that session, it returns the most current version of
selected objects.

If your data source maintains past versions of objects, you can configure TopLink to
access this historical data so that you can express read queries conditional on how
your objects are changing over time. You can also do the following:

■ Make series of queries relative to any point in time–not just the time of the first
query.

■ Provide read consistency so that a series of read operations or report queries all
execute as if at the same time.

■ Use the mergeClone method to provide deep recovery of an object by passing in
a past version of it.

In addition, you can express query selection criteria as either of the following:

■ A condition at a past time: for example, "employees who used to...".

■ A change over time: for example, "employees who recently...".

For more information, see the following:

■ Section 87.6.1, "Historical Session Limitations"

■ Chapter 93, "Configuring Historical Sessions"

■ Section 90.5, "Acquiring a Historical Session"

■ Section 108.11, "Historical Queries".

87.6.1 Historical Session Limitations
The HistoryPolicy provides a very flexible means of accommodating a wide
variety of historical schemas. However, be aware of the following restrictions:

■ You cannot use the HistoryPolicy, if your design combines both current and
historical data in a single schema.

■ You cannot use historical sessions, nor historical queries, with EJB entity beans.

■ TopLink assumes that the current version of an object corresponds to the row in
the historical table whose row end field is NULL.

■ You cannot directly map the start and end fields of a history table because they do
not exist in the regular schema.

■ You cannot query on ranges of historical objects, only as of a specific point in time.

87.7 Session Broker and Client Sessions
The TopLink session broker is a mechanism that enables client applications to
transparently access multiple databases through a single TopLink session.

Session Broker and Client Sessions

87-26 Developer's Guide for Oracle TopLink

The TopLink session broker enables client applications to access two or more databases
through a single session. If your application stores objects in multiple databases, the
session broker, which provides seamless communication for client applications,
enables the client to view multiple databases as if they were a single database.

When a three-tier session broker application uses server sessions to communicate with
the database, clients require a client session to access the database. Similarly, when you
implement a session broker, the client requires a client session broker to access the
database.

A client session broker is a collection of client sessions, one from each server session
associated with the session broker. When a client acquires a client session broker, the
session broker collects one client session from each associated server session, and
wraps the client sessions so that they appear to be a single client session to the client
application.

As Figure 87–7 illustrates, a session broker connects to the databases through two or
more server sessions or database sessions.

Figure 87–7 TopLink Session Broker with Server Session Architecture

This section explains the following:

■ Session Broker Architecture

■ Committing a Transaction with a Session Broker

■ Session Broker Session Limitations

■ Session Broker Alternatives

For information, see the following:

■ Section 88.5, "Creating Session Broker and Client Sessions"

■ Chapter 94, "Configuring Session Broker and Client Sessions"

■ Section 90.3, "Acquiring a Session from the Session Manager"

■ Section 90.4, "Acquiring a Client Session"

87.7.1 Session Broker Architecture
As Figure 87–7 illustrates, a session broker contains a broker object that acts as an
intermediary between the application and the multiple sessions added to the session
broker.

To construct a session broker, use TopLink Workbench to modify your sessions.xml
file as follows:

1. Define two or more sessions (of the same type, either server sessions or database
sessions).

2. Define a session broker.

Session Broker and Client Sessions

Introduction to TopLink Sessions 87-27

3. Add the sessions to the session broker.

When you use SessionManager method getSession(sessionBrokerName)
where sessionBrokerName is the name of the session broker you defined, the
session manager returns the corresponding session broker session (call it
mySessionBroker) that contains an instance of each of the sessions you added to it.
When you use mySessionBroker method login, it logs into each defined session.
Thereafter, you use mySessionBroker as you would any other session: TopLink
transparently handles access to the multiple databases.

In the case of a three-tier architecture where the session broker contains two or more
server sessions, you use session broker method acquireClientSessionBroker to
acquire a single client session that lets you query across all the data sources managed
by the various server sessions. You use this client session as you would any other
client session.

87.7.2 Committing a Transaction with a Session Broker
By default, when you commit a transaction with a session broker session, a two-stage
commit is performed.

Ideally, you should incorporate a JTA external transaction controller in order to benefit
from its two-phase commit.

87.7.2.1 Committing a Session with a JTA Driver: Two-Phase Commits
If you use a session broker, incorporate a JTA external transaction controller wherever
possible. The external transaction controller provides a two-phase commit, which passes
the SQL statements that are required to commit the transaction to the JTA driver. The
JTA driver handles the entire commit process.

JTA guarantees that the transaction commits or rolls back completely, even if the
transaction involves more than one database. If the commit operation to any one
database fails, then all database transactions roll back. The two-phase commit
operation is the safest method available to commit a transaction to the database.

Two-phase commit support requires integration with a compliant JTA driver.

87.7.2.2 Committing a Session Without a JTA Driver: Two-Stage Commits
If there is no JTA driver available, then the session broker provides a two-stage commit
algorithm. A two-stage commit differs from a two-phase commit in that it guarantees
data integrity only up to the point of the final commit of the transaction. If the SQL
script executes successfully on all databases, but the commit operation then fails on
one database, only the database that experiences the commit failure rolls back.

Although unlikely, this scenario is possible. As a result, if your system does not
include a JTA driver and you use a two-stage commit, build a mechanism into your
application to deal with this type of potential problem.

87.7.3 Session Broker Session Limitations
Although the session broker is a powerful tool that lets you use data that is distributed
across multiple databases from a single application, it has some limitations including
the following:

■ It may not meet the needs of your particular distributed data application (see
Section 87.7.4, "Session Broker Alternatives").

■ You cannot split multiple table descriptors across databases.

Session Broker and Client Sessions

87-28 Developer's Guide for Oracle TopLink

■ Each class must reside on only one database.

■ You cannot use joins through expressions across databases.

■ Many-to-many join tables must reside on the same database as the target object
(See Section 87.7.3.1, "Many-to-Many Join Tables and Direct Collection Tables" for
a work-around for this limitation).

87.7.3.1 Many-to-Many Join Tables and Direct Collection Tables
By default, TopLink assumes that many-to-many and direct collection tables are on the
same database as the source object. If they are on a different database, then you must
configure the mapping's session name using ManyToManyMapping or
DirectCollectionMapping method setSessionName, as Example 87–4
illustrates.

Note that a many-to-many join table must still reside on the same database as the
target object.

Example 87–4 Using Mapping setSessionName in a Descriptor Amendment Method

public void addToDescriptor(ClassDescriptor descriptor) {
descriptor.getMappingForAttributeName("projects").setSessionName("branch-database");

}

To work around this problem for data-level queries, use the DatabaseQuery method
setSessionName.

87.7.4 Session Broker Alternatives
When evaluating whether or not to use a session broker in your application, consider
the following alternatives:

■ Database Linking

■ Multiple Sessions

87.7.4.1 Database Linking
Most enterprise databases, such as the Oracle Database, support linking other
databases on the database server. This allows querying and two-phase commit across
linked databases. Using the session broker is not the same as linking databases. If your
database allows linking, Oracle recommends that you use that functionality to provide
multiple database access instead of using a session broker.

87.7.4.2 Multiple Sessions
An alternative to the session broker is to use multiple sessions to work with multiple
databases, as follows:

■ If the data on each database is unrelated to data on the other databases, and
relationships do not cross database boundaries, then you can create a separate
session for each database. For example, you might have individual databases and
associated sessions dedicated to each department.

This arrangement requires that you to manage each session manually and ensure
that the class descriptors for your project reside in the correct session.

■ You can use additional sessions to house a standard batch job. In this case, you can
create two or more sessions on the same database. In addition to the main session
that supports client queries, you create other sessions that support batch inserts at
low-traffic times in your system. This lets you maintain the client cache.

Remote Sessions

Introduction to TopLink Sessions 87-29

87.8 Database Sessions
A database session provides a client application with a single data source connection,
for simple, standalone applications in which a single connection services all data
source requests for one user.

Figure 87–8 TopLink Database Session Architecture

A database session is the simplest session TopLink offers. It provides both client and
server communications and supports only a single client and a single database
connection. It is suitable for simple applications or 2-tier applications.

A database session contains and manages the following information:

■ An instance of Project and DatabaseLogin, which store database login and
configuration information

■ The JDBC connection and the database access

■ The descriptors for each of the application persistent classes

■ Identity maps that maintain object identity and act as a cache

For more information, see the following:

■ Section 88.6, "Creating Database Sessions"

■ Chapter 95, "Configuring Database Sessions"

■ Section 90.3, "Acquiring a Session from the Session Manager"

87.9 Remote Sessions
A remote session is a client-side session that communicates over RMI with a
corresponding client session and server session on the server-side. Remote sessions
handle object identity and marshalling and unmarshalling between client-side and
server-side.

A remote session resides on the client rather than the TopLink server. The remote
session does not replace the client session; rather, a remote session requires a client
session to communicate with the server session.

Note: Oracle does not recommend using this session type in a 3-tier
application because it is not as flexible or scalable as a server and client
session. Oracle recommends that you use server sessions and client
sessions (see Section 87.3, "Server and Client Sessions"). Applications that
are built using database sessions may be difficult to migrate to a scalable
architecture in the future.

Remote Sessions

87-30 Developer's Guide for Oracle TopLink

Figure 87–9 Typical TopLink Server Session with Remote Session Architecture

The remote session provides a full TopLink session, complete with a session cache, on
the client system. TopLink manages the remote session cache and enables client
applications to execute operations on the server.

A remote session offers database access to clients that do not reside on the server. The
remote session resides on the client and connects by way of RMI to a corresponding
client session, which, in turn, connects to its server session on the server.

This section describes the following:

■ Architectural Overview

■ Remote Session Concepts

For more information, see Section 88.7, "Creating Remote Sessions".

87.9.1 Architectural Overview
As Figure 87–10 illustrates, the remote session model consists of the following layers:

■ The application layer–a client-side application talking to a remote session

■ The transport layer–a communication layer, RMI or RMI-IIOP

■ The server layer–a TopLink session communicating with a database

The request from the client application to the server travels down through the layers of
a distributed system. A client that makes a request to the server session uses the
remote session as a conduit to the server session. The client references the remote
session, and the remote session forwards a request to the server session through the
transport layer.

At run time, the remote session builds its knowledge base by reading descriptors and
mappings from the server side as they are needed. These descriptors and mappings
are lightweight, because not all information is passed on to the remote session. The
information needed to traverse an object tree and to extract primary keys from the
given object is passed with the mappings and descriptors.

Figure 87–10 An Architectural Overview of the Remote Session

Remote Sessions

Introduction to TopLink Sessions 87-31

87.9.1.1 Application Layer
The application layer includes the application client and the remote session. The
remote session is a subclass of Session and maintains all the public protocols of the
session, giving the appearance of working with the corresponding client session.

The remote session maintains its own identity map and a project of all the descriptors
read from the server. If the remote session can handle a request by itself, the request is
not passed to the server. For example, a request for an object that is in the remote
session cache is processed by the remote session. However, if the object is not in the
remote session cache, the request passes to the server session.

87.9.1.2 Transport Layer
The transport layer is responsible for carrying the semantics of the invocation. It is a
layer that hides all the protocol dependencies from the application and server layers.

The transport layer includes a remote connection that is an abstract entity, through
which all requests to the server are forwarded. Each remote session maintains a single
remote connection that marshals and unmarshals all requests and responses on the
client side.

The remote session supports communications over RMI.

87.9.1.3 Server Layer
The server layer includes a remote session controller dispatcher and a TopLink
sessions: Figure 87–10 illustrates a three-tier server and its client sessions. The remote
session controller dispatcher is an interface between the session and transport layers: it
marshals and unmarshals all responses and requests between the sessions on the
server and their corresponding remote sessions on the client.

87.9.2 Remote Session Concepts
When using remote sessions, consider the following:

■ Securing Remote Session Access

■ Queries

■ Refreshing

■ Indirection

■ Cursored Streams

■ Unit of Work

87.9.2.1 Securing Remote Session Access
The remote session represents a potential security risk because it requires you to
register a remote session controller dispatcher as a service that anyone can access. This
can expose the entire database to nonprivileged access.

To reduce this threat, run a server manager as a service to hold the remote session
controller dispatcher. All the clients must then communicate through the server
manager, which implements the security model for accessing the remote session
controller dispatcher.

On the client side, the user requests the remote session controller dispatcher. The
manager returns a remote session controller dispatcher only if the user has access
rights according to the security model built into the server manager.

Sessions and the Cache

87-32 Developer's Guide for Oracle TopLink

To access the system, the remote session controller dispatcher on the client side creates
a remote connection, and acquires a remote session from the remote connection. The
API for the remote session is the same as for the session, and there is no user-visible
difference between working on a session or a remote session.

87.9.2.2 Queries
Read queries are publicly available on the client side, but queries that modify objects
must be performed using the unit of work.

87.9.2.3 Refreshing
Calling refresh methods on the remote session causes database read operations, and
may also cause cache updates if the data being refreshed is modified in the database.
This can lead to poor performance.

To improve performance, configure refresh methods to run against the server session
cache, by configuring the descriptor to always remotely refresh the objects in the cache
on all queries. This technique ensures that all queries against the remote session
refresh the objects from the server session cache, without the database access.

Cache hits on remote sessions still occur on read object queries based on the primary
keys. To avoid this, disable the remote session cache hits on read object queries based
on the primary key.

For more information, see Section 119.9, "Configuring Cache Refreshing".

87.9.2.4 Indirection
The remote session supports indirection (lazily loaded) objects. An indirection object is
a value holder that can be invoked remotely on the client side. When invoked, the
value holder first checks to see if the requested object exists on the remote session. If
not, then the associated value holder on the server is instantiated to get the value that
is then passed back to the client. Remote value holders are used automatically; the
application’s code does not change.

87.9.2.5 Cursored Streams
A remote session supports both cursored streams and scrollable cursors.

For more information, see Section 108.5.3, "Stream and Cursor Query Results".

87.9.2.6 Unit of Work
Use a unit of work acquired from the remote session to modify objects on the database.
A unit of work acquired from the remote session offers the user the same functionality
as a unit of work acquired from the client session or the database session.

87.10 Sessions and the Cache
Server, database, isolated, and historical sessions include an identity map that
maintains object identity, and acts as a cache.

This section explains how the cache differs between the following sessions:

■ Server and Database Session Cache

■ Isolated Session Cache

■ Historical Session Cache

For more information, see Chapter 102, "Introduction to Cache".

Session API

Introduction to TopLink Sessions 87-33

87.10.1 Server and Database Session Cache
When a server or database session reads objects from the database, it instantiates them
and stores them in its identity map (cache). When the application subsequently queries
for the same object, TopLink returns the object in the cache, rather than read the object
from the database again.

This cache plays an important role in the performance of your application.

In the case of a server session, all client sessions acquired from it share the server
session’s cache.

To define how the cache manages objects, specify a strategy for cache management in
TopLink Workbench.

87.10.2 Isolated Session Cache
When an isolated session reads an object, whose descriptor is configured as isolated,
that object is instantiated and stored in the isolated session’s cache only–it is not stored
in the parent server session’s shared object cache. Objects in the isolated session’s
cache may reference objects in the parent server session’s shared object cache, but
objects in the parent server session’s shared object cache can never reference objects in
the isolated session’s cache.

87.10.3 Historical Session Cache
When a historical session reads objects, it does so only from its static, read-only cache,
which is populated with all objects as of a specified time.

87.11 Session API
The session API is defined by the following interfaces:

■ oracle.toplink.sessions.Session

■ oracle.toplink.sessions.DatabaseSession

■ oracle.toplink.sessions.UnitOfWork

■ oracle.toplink.threetier.Server

These APIs are used at run time to access objects and the data source. Always use the
session public interfaces, not the corresponding implementation classes.

You should use the Session interface when reading and querying with any of client
sessions, session brokers, isolated client sessions, historical sessions, remote sessions,
and database sessions.

You should use the UnitOfWork interface for all units of work acquired from any type
of session.

You should use the Server interface to configure and acquire a client session from a
Server session.

The DatabaseSession interface can be used for a database session.

Typically, you define server sessions, database sessions, and session broker sessions in
a sessions.xml file and acquire them at run time using the SessionManager. You
can also acquire a server session or database session from a Project. The only session
that should ever be instantiated directly is the SessionBroker, and only when not
using the SessionManager.

Session API

87-34 Developer's Guide for Oracle TopLink

You acquire a client session from a server session.

You can also acquire a client session broker from a session broker composed of server
sessions.

You acquire a unit of work from any session instance, client session broker, or session
broker which contains DatabaseSession instances.

Example 87–5 illustrates the session interfaces that derive from
oracle.toplink.sessions.Session interface.

Example 87–5 Session Interface Inheritance Hierarchy

oracle.toplink.sessions.Session
oracle.toplink.sessions.DatabaseSession

oracle.toplink.threetier.Server
oracle.toplink.sessions.UnitOfWork

88

Creating a Session 88-1

88Creating a Session

This chapter explains how to create TopLink sessions.

This chapter includes the following sections:

■ Introduction to the Session Creation

■ Creating a Sessions Configuration

■ Configuring a Sessions Configuration

■ Creating a Server Session

■ Creating Session Broker and Client Sessions

■ Creating Database Sessions

■ Creating Remote Sessions

For information on the various types of session available, see Section 87.1, "Session
Types".

88.1 Introduction to the Session Creation
Each TopLink session is contained within a sessions configuration (sessions.xml)
file. You can create a sessions configuration using Oracle JDeveloper TopLink Editor,
TopLink Workbench, or Java code. Oracle recommends that you use Oracle JDeveloper
to create and manage your sessions (see Section 88.2, "Creating a Sessions
Configuration").

Alternatively, you can create sessions in Java. For more information on creating
sessions in Java, see Oracle Fusion Middleware Java API Reference for Oracle TopLink.

After you create a session, you must configure its various options (see Chapter 89,
"Configuring a Session"). After configuring the session, you can use it in your
application to manage persistence (see Chapter 90, "Acquiring and Using Sessions at
Run Time").

88.2 Creating a Sessions Configuration
Oracle JDeveloper TopLink Editor and TopLink Workbench let you create session
instances and save them in the sessions.xml file. These tools represent the
sessions.xml file as a sessions configuration. Individual session instances are
contained within the sessions configuration. You can create multiple sessions
configurations, each corresponding to its own uniquely named sessions.xml file.

Oracle recommends that you use Oracle JDeveloper to create and manage sessions. It
is the most efficient and flexible approach to session management. For more

Configuring a Sessions Configuration

88-2 Developer's Guide for Oracle TopLink

information about the advantages of this approach, see Section 87.2.2, "Session
Configuration and the sessions.xml File".

TopLink Workbench displays sessions configurations and their contents in the
Navigator window. When you select a session configuration, its attributes are
displayed in the Editor window.

Figure 88–1 calls out the following user interface elements:

1. Sessions Configuration

2. Database Session

3. Relational Server Session

4. Connection Pool

5. EIS Server Session

6. XML Session

7. Session Broker

Figure 88–1 Sessions Configurations in Navigator Window

88.2.1 How to Create a Sessions Configuration Using TopLink Workbench
To create a TopLink sessions configuration (sessions.xml file), use this procedure:

1. Click New on the toolbar and select Sessions Configuration.

You can also create a new sessions configuration by selecting File > New >
Session Configuration from the menu, or by clicking Create New Sessions
Configuration in the standard toolbar.

2. The new sessions configuration element appears in the Navigator window; the
Sessions Configuration property sheet appears in the Editor window.

Enter data in each field on the Sessions Configuration property sheet as
Section 88.3, "Configuring a Sessions Configuration" describes.

88.3 Configuring a Sessions Configuration
Each TopLink sessions configuration (sessions.xml file) can contain multiple
sessions and session brokers. In addition, you can specify a classpath for each sessions
configuration that applies to all the sessions it contains.

Configuring a Sessions Configuration

Creating a Session 88-3

88.3.1 How to Configure a Sessions Configuration Using TopLink Workbench
To configure a session configuration, use this procedure:

1. Select the session configuration in the Navigator. Its properties appear in the
Editor.

Figure 88–2 Sessions Configuration Property Sheet

Use the following information to enter data in each field of the Sessions configuration
property sheet:

Field Description

Project Save Location Click Change and select the directory in which to save the
sessions configuration.

Classpath Lists the JAR or ZIP files that contain the compiled Java classes
on which this sessions configuration depends for features that
require an external Java class (for example, session event
listeners).

■ To add a JAR or ZIP file, click Add Entries or Browse add
the file.

■ To remove a JAR or ZIP file, select the file and click
Remove.

■ To change the order in which TopLink searches these JAR or
ZIP files, select a file and click Up to move it forward or
click Down to move it back in the list.

Sessions for <sessions
configuration name>

Lists the available sessions defined in this sessions
configuration:

■ To add a session, click Add Session.

■ To remove a session, select the session and click Remove.

■ To rename a session, select the session and click Rename.

For more information on creating sessions using TopLink
Workbench, seen the following:

■ Section 88.4, "Creating a Server Session"

■ Section 88.5, "Creating Session Broker and Client Sessions"

■ Section 88.6, "Creating Database Sessions"

Creating a Server Session

88-4 Developer's Guide for Oracle TopLink

88.4 Creating a Server Session
Oracle recommends that you create server sessions using Oracle JDeveloper or
TopLink Workbench (see Section 88.4.1, "How to Create a Server Session Using
TopLink Workbench").

After you create a server session, you create a client session by acquiring it from the
server session (see Section 90.4, "Acquiring a Client Session").

88.4.1 How to Create a Server Session Using TopLink Workbench
Before you create a server session, you must first create a sessions configuration (see
Section 88.2, "Creating a Sessions Configuration").

To create a new TopLink server session, use this procedure:

1. Select the sessions configuration in the Navigator window in which you want to
create a session.

2. Click Add Session on the toolbar. The Create New Session dialog box appears.

You can also create a new server session by right-clicking the sessions
configuration in the Navigator and selecting New > Session from the context
menu, or by clicking Add Session on the Sessions Configuration property sheet.

Figure 88–3 Create New Session Dialog Box, Server Session Option

Use the following information to enter data in each field of the dialog box:

Field Description

Name Specify the name of the new session.

Use Server Platform Check this field if you intend to deploy your application to a Java
EE application server.

If you check this field, you must configure the target application
server by selecting a Platform.

Creating a Server Session

Creating a Session 88-5

88.4.2 How to Create a Server Session Using Java
You can create a server session in Java code using a project. You can create a project in
Java code, or read a project from a project.xml file.

Example 88–1 illustrates creating an instance (called serverSession) of a Server
class using a Project class.

Example 88–1 Creating a Server Session from a Project Class

Project myProject = new Project();
Server serverSession = myProject.createServerSession();

Example 88–2 illustrates creating an instance (called serverSession) of a Server
class using a Project read in from a project.xml file.

Example 88–2 Creating a Server Session from a project.xml File Project

Project myProject = XMLProjectReader.read("myproject.xml");
Server serverSession = myProject.createServerSession();

Example 88–3 illustrates creating a server session with a specified write connection
pool minimum and maximum size (when using TopLink internal connection pooling).
The default write connection pool minimum size is 5 and maximum size is 10.

Platform This option is only available if you check Use Server Platform.

Select the Java EE application server to which you will deploy your
application.

TopLink supports the following Java EE application servers:

■ WebLogic 10.n

■ WebLogic 9.n

■ OC4J 10.1.3.n

■ SunAS 9.0

■ WebSphere 6.1

■ JBoss

■ Custom

The server platform you select is the default server platform for all
sessions you create in this sessions configuration. At the session
level, you can override this selection or specify a custom server
platform class (see Section 89.9, "Configuring the Server Platform").

Select Data Source Select the data source for this session configuration. Each session
configuration must contain one data source. Choose one of the
following:

■ Database to create a session for a relational project.

■ EIS to create a session for an EIS project.

■ XML to create a session for an XML project1.

See Section 15.1, "TopLink Project Types" for more information.

Select Session Select Server Session to create a session for a single data source
(including shared object cache and connection pools) for multiple
clients in a three-tier application.

1 You cannot create a server session for an XML project.

Field Description

Creating Session Broker and Client Sessions

88-6 Developer's Guide for Oracle TopLink

Example 88–3 Creating a Server Session with Custom Write Connection Pool Size

XMLProjectReader.read("myproject.xml");
Server serverSession = myProject.createServerSession(32, 32);

88.5 Creating Session Broker and Client Sessions
A session broker may contain both server sessions and database sessions. Oracle
recommends that you use the session broker with server sessions because server
sessions are the most scalable session type.

Oracle recommends that you create server sessions using Oracle JDeveloper or
TopLink Workbench (see Section 88.5.1, "How to Create a Session Broker and Client
Sessions Using TopLink Workbench").

After you create and configure a session broker with server sessions, you can acquire a
client session from the session broker at run time to provide a dedicated connection to
all the data sources managed by the session broker for each client. For more
information, see Section 90.4, "Acquiring a Client Session".

88.5.1 How to Create a Session Broker and Client Sessions Using TopLink Workbench
Before you create a session broker session, you must first create a sessions
configuration (see Section 88.2, "Creating a Sessions Configuration") and one or more
server sessions (Section 88.4, "Creating a Server Session"), or one or more database
sessions (Section 88.6, "Creating Database Sessions").

To create a new TopLink session broker, use this procedure:

1. Select the sessions configuration in the Navigator window in which you want to
create a session broker.

2. Click Add Session Broker on the toolbar. The Create New Session Broker dialog
box appears.

You can also create a new session broker by right-clicking the sessions
configuration in the Navigator window and selecting Add Session Broker from
the context menu or by clicking Add Session Broker on the Sessions
Configuration property sheet.

Figure 88–4 Create New Session Broker Dialog Box

Creating Session Broker and Client Sessions

Creating a Session 88-7

Use the following information to enter data in each field of the dialog box:

Continue with Chapter 89, "Configuring a Session".

88.5.2 How to Create a Session Broker and Client Sessions Using Java
Example 88–4 illustrates how you can create a session broker in Java code by
instantiating a SessionBroker and registering the brokered sessions with it.

Because the session broker references other sessions, configure these sessions before
instantiating the session broker. Add all required descriptors to the session, but do not
initialize the descriptors or log the sessions. The session broker manages these issues
when you instantiate it.

Example 88–4 Creating a Session Broker

Project databaseProject = new MyDatabaseProject();
Server databaseSession = databaseProject.createServerSession();

Project eisProject = new MyEISProject();
Server eisSession = eisProject.createServerSession();

SessionBroker sessionBroker = new SessionBroker();
sessionBroker.registerSession("myDatabase", databaseSession);
sessionBroker.registerSession("myEIS", eisSession);

Field Description

Name Specify the name of the new session broker.

Use Server Platform Check this field if you intend to deploy your application to a Java
EE application server.

If you check this field, you must configure the target application
server by selecting a Platform.

Platform This option is available only if you check Use Server Platform.

Select the Java EE application server to which you will deploy
your application.

TopLink supports the following Java EE application servers:

■ WebLogic 10.n

■ WebLogic 9.n

■ OC4J 10.1.3.n

■ SunAS 9.0

■ WebSphere 6.1

■ JBoss

■ Custom

The server platform you select is the default server platform for all
sessions you create in this sessions configuration. At the session
level, you can override this selection or specify a custom server
platform class (see Section 89.9, "Configuring the Server
Platform").

Select the sessions to
Manage

Select sessions to be managed by this new session broker (from the
list of available sessions) and click OK.

Note: This field appears only if the configuration contains valid
sessions.

Creating Database Sessions

88-8 Developer's Guide for Oracle TopLink

sessionBroker.login();

88.6 Creating Database Sessions
Oracle recommends that you create database sessions using Oracle JDeveloper or
TopLink Workbench (see Section 88.6.1, "How to Create Database Sessions Using
TopLink Workbench").

After you create a database session, you can acquire and use it at run time. For more
information on acquiring a database session, see Section 90.3, "Acquiring a Session
from the Session Manager".

88.6.1 How to Create Database Sessions Using TopLink Workbench
Before you create a database session, you must first create a sessions configuration (see
Section 88.2, "Creating a Sessions Configuration").

To create a new TopLink database session, use this procedure:

1. Select the session configuration in the Navigator window in which you want to
create a session.

2. Click Add Session on the toolbar. The Create New Session dialog box appears.

You can also create a new configuration by right-clicking the sessions
configuration in the Navigator window and selecting New > Session from the
context menu.

Figure 88–5 Create New Session Dialog Box, Database Session Option

Use the following information to enter data in each field of the dialog box:

Field Description

Name Specify the name of the new session.

Creating Database Sessions

Creating a Session 88-9

Enter the necessary information and click OK.

TopLink Workbench window appears, showing the database session in the Navigator
window.

Continue with Chapter 89, "Configuring a Session".

88.6.2 How to Create Database Sessions Using Java
You can create an instance of the DatabaseSession class in Java code using a
Project. You can create a project in Java code or read a project from a project.xml
file.

Example 88–5 illustrates creating a DatabaseSession using a Project class.

Example 88–5 Creating a Database Session from a Project Class

Project myProject = new Project();
DatabaseSession databaseSession = myProject.createDatabaseSession();

Example 88–6 illustrates creating a DatabaseSession using a Project read in from
a project.xml file.

Use Server Platform Check this field if you intend to deploy your application to a Java
EE application server.

If you check this field, you must configure the target application
server by selecting a Platform.

Platform This option is available only if you check Use Server Platform.

Select the Java EE application server to which you will deploy your
application.

TopLink supports the following Java EE application servers:

■ WebLogic 10.n

■ WebLogic 9.n

■ OC4J 10.1.3.n

■ SunAS 9.0

■ WebSphere 6.1

■ JBoss

■ Custom

The server platform you select is the default server platform for all
sessions you create in this sessions configuration. At the session
level, you can override this selection or specify a custom server
platform class (see Section 89.9, "Configuring the Server Platform").

Select Data Source Select the data source for this session configuration. Each session
configuration must contain one data source. Choose one of the
following:

■ Database to create a session for a relational project.

■ EIS to create a session for an EIS project.

■ XML to create a session for an XML project.

See Section 15.1, "TopLink Project Types" for more information.

Select Session Select Database Session to create a session for a single database
(including shared object cache and connection pools) for a single
client suitable for simple applications or prototyping.

Field Description

Creating Remote Sessions

88-10 Developer's Guide for Oracle TopLink

Example 88–6 Creating a Database Session from a project.xml File Project

Project myProject = XMLProjectReader.read("myproject.xml");
DatabaseSession databaseSession = myProject.createDatabaseSession();

88.7 Creating Remote Sessions
Remote sessions are acquired through a remote connection to their server-side session.
Remote sessions are acquired through Java code on the remote client. The server-side
session must also be registered with an
oracle.toplink.remote.ejb.RemoteSessionController and accessible from
the RMI naming service.

You create remote sessions entirely in Java code (see Section 88.7.1, "How to Create
Remote Sessions Using Java").

88.7.1 How to Create Remote Sessions Using Java
Example 88–7 and Example 88–8 demonstrate how to create a remote TopLink session
on a client that communicates with a remote session controller on a server that uses
RMI. After creating the connection, the client application uses the remote session as it
does with any other TopLink session.

88.7.1.1 Server
Example 88–7 shows the code you add to your application's RMI service
(MyRMIServerManagerImpl) to create and return an instance of an
RMIRemoteSessionController to the client. The controller sits between the remote
client and the local TopLink session.

The RMIRemoteSessionController you create on the server is based on a TopLink
server session. You create and configure this server session as described in
Section 88.4, "Creating a Server Session" and Section 91, "Configuring Server Sessions".

Example 88–7 Server Creating RMIRemoteSessionController for Client

RMIRemoteSessionController controller = null;
try {

// Create instance of RMIRemoteSessionControllerDispatcher which implements
// RMIRemoteSessionController. The constructor takes a TopLink session as a parameter
controller = new RMIRemoteSessionControllerDispatcher (localTopLinkSession);

}
catch (RemoteException exception) {

System.out.println("Error in invocation " + exception.toString());
}
return controller;

88.7.1.2 Client
The client-side code gets a reference to the application's RMI service (in this example it
is called MyRMIServerManager) and uses this code to get the
RMIRemoteSessionController running on the server. The reference to the session
controller is then used to create the RMIConnection from which it acquires a remote
session.

Example 88–8 Client Acquiring RMIRemoteSessionController from Server

MyRMIServerManager serverManager = null;
// Set the client security manager
try {

System.setSecurityManager(new MyRMISecurityManager());

Creating Remote Sessions

Creating a Session 88-11

}
catch(Exception exception) {

System.out.println("Security violation " + exception.toString());
}
// Get the remote factory object from the Registry
try {

serverManager = (MyRMIServerManager) Naming.lookup("SERVER-MANAGER");
}
catch (Exception exception) {

System.out.println("Lookup failed " + exception.toString());
}
// Start RMIRemoteSession on the server and create an RMIConnection
RMIConnection rmiConnection = null;
try {

rmiConnection = new RMIConnection(
serverManager.createRemoteSessionController()

);
}
catch (RemoteException exception) {

System.out.println("Error in invocation " + exception.toString());
}
// Create a remote session which we can use as a normal TopLink session
Session session = rmiConnection.createRemoteSession();

Creating Remote Sessions

88-12 Developer's Guide for Oracle TopLink

89

Configuring a Session 89-1

89Configuring a Session

This chapter describes how to configure TopLink sessions.

This chapter includes the following sections:

■ Configuring Common Session Options

■ Configuring a Primary Mapping Project

■ Configuring a Session Login

■ Configuring Logging

■ Configuring Multiple Mapping Projects

■ Configuring a Performance Profiler

■ Configuring an Exception Handler

■ Configuring a Session Customizer Class

■ Configuring the Server Platform

■ Configuring Session Event Listeners

■ Configuring the Integrity Checker

■ Configuring Connection Policy

■ Configuring Named Queries at the Session Level

Table 89–1 lists the types of TopLink sessions that you can configure and provides a
cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Table 89–1 Configuring TopLink Sessions

If you are creating... See...

Server and client sessions (see
Section 87.3, "Server and
Client Sessions")

Chapter 91, "Configuring Server Sessions"

Unit of work sessions (see
Section 87.4, "Unit of Work
Sessions")

Chapter 113, "Introduction to TopLink Transactions"

Isolated client sessions (see
Section 87.5, "Isolated Client
Sessions")

Chapter 92, "Configuring Exclusive Isolated Client Sessions
for Virtual Private Database"

Historical sessions (see
Section 87.6, "Historical
Sessions")

Chapter 93, "Configuring Historical Sessions"

Configuring Common Session Options

89-2 Developer's Guide for Oracle TopLink

Table 89–2 lists the configurable options shared by two or more TopLink sessions
types.

For more information, see the following:

■ Chapter 87, "Introduction to TopLink Sessions"

■ Chapter 88, "Creating a Session"

89.1 Configuring Common Session Options
Table 89–2 lists the configurable options shared by two or more TopLink session types.
In addition to the configurable options described here, you must also configure the
options described for the specific Session Types, as shown in Table 89–1

Session broker and client
sessions (see Section 87.7,
"Session Broker and Client
Sessions")

Chapter 94, "Configuring Session Broker and Client Sessions"

Database sessions (see
Section 87.8, "Database
Sessions")

Chapter 95, "Configuring Database Sessions"

Table 89–2 Configurable Options for Session

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Primary mapping project (see Section 89.2, "Configuring a
Primary Mapping Project")

Session login (see Section 89.3, "Configuring a Session
Login")

Logging (see Section 89.4, "Configuring Logging")

Multiple mapping projects (see Section 89.5, "Configuring
Multiple Mapping Projects")

Performance profiler (see Section 89.6, "Configuring a
Performance Profiler")

Exception handler (see Section 89.7, "Configuring an
Exception Handler")

Session customizer class (see Section 89.8, "Configuring a
Session Customizer Class")

Server platform (see Section 89.9, "Configuring the Server
Platform")

Session event listener (see Section 89.10, "Configuring
Session Event Listeners")

Coordinated cache (see Section 103, "Configuring a
Coordinated Cache")

Integrity checker (see Section 89.11, "Configuring the
Integrity Checker")

Connection policy (see Section 89.12, "Configuring
Connection Policy")

Named queries (see Section 89.13, "Configuring Named
Queries at the Session Level")

Table 89–1 (Cont.) Configuring TopLink Sessions

If you are creating... See...

Configuring a Primary Mapping Project

Configuring a Session 89-3

89.2 Configuring a Primary Mapping Project
The mapping project contains your TopLink mapping metadata (see Chapter 15,
"Introduction to Projects"), including descriptors and mappings. Each session is
associated with at least one project so that the session can register the descriptors.

Table 89–3 summarizes which sessions support a primary mapping project
configuration.

Using Oracle JDeveloper TopLink Editor or TopLink Workbench, you can export your
mapping metadata as either a deployment XML file or as a Java class. Consequently, in
a session, you can specify the mapping project as an XML file or as a Java class.

Oracle recommends that you export your mapping metadata from Oracle JDeveloper
as a deployment XML file (see Section 116.3, "Exporting Project Information").

If you export your mapping metadata as a Java class, you must compile it and add it to
the session configuration classpath (see Section 88.3, "Configuring a Sessions
Configuration") before adding it to a session.

See Section 89.5, "Configuring Multiple Mapping Projects" for information on
configuring additional TopLink projects for the session.

89.2.1 How to Configure a Primary Mapping Project Using TopLink Workbench
To specify the primary TopLink project metadata for your session, use this procedure:

1. Select a server or database session in the Navigator. Its properties appear in the
Editor.

Table 89–3 Session Support for Primary Mapping Project

Session
How to Use Oracle
JDeveloper

How to
Configure a
Primary
Mapping
Project Using
TopLink
Workbench

How to
Configure a
Primary
Mapping
Project Using
Java

Server and client sessions (see
Section 87.3, "Server and Client
Sessions")

Session broker and client sessions
(see Section 87.7, "Session Broker and
Client Sessions")

Database sessions (see Section 87.8,
"Database Sessions")

Note: When specifying the mapping project using XML, you can
specify the Java resource path. In most applications, the
sessions.xml and project.xml files are deployed inside the JAR
file, and the project XML path is specified as a Java resource path.

 When specifying the Java resource path, ensure that you are using the
forward slash character (/) for directories, not the back slash (\).
For example, com/myapp/mypersistence/my-project.xml, or
META-INF/my-project.xml.

Configuring a Primary Mapping Project

89-4 Developer's Guide for Oracle TopLink

2. Click the General tab. The General tab appears.

3. Click the Project subtab. The Project subtab appears.

Figure 89–1 General Tab, Project Subtab, Primary Project Option

4. Select the following options:

■ Click Edit to define the primary project. The Edit PrimaryProject dialog box
appears.

■ Select the Multiple Projects option to add additional projects to the session.
See Section 89.5, "Configuring Multiple Mapping Projects" for more
information.

Figure 89–2 Edit Primary Project Dialog Box

Use this information to enter date in each field of the Edit Primary Project dialog box:

89.2.2 How to Configure a Primary Mapping Project Using Java
Using Java, you can register descriptors with a session using the following API:

■ Project API–Read your project.xml file (or instantiate your project class) and
create your session using Project method createServerSession or
createDatabaseSession.

■ Session API–Add a descriptor or set of descriptors to a session using the
DatabaseSession API that Table 89–4 lists. Descriptors should be registered
before login, but independent sets of descriptors can be added after login.

Field Description

XML Select XML to add a mapping project as a deployment XML file. Click
Browse to select the file.

Class Select Class to add a mapping project as a compiled Java class file. Click
Browse to select the file.

Configuring Logging

Configuring a Session 89-5

89.3 Configuring a Session Login
A session login encapsulates details of data source access for any session that persists
to a data source. The session login overrides any other login configuration.

Table 89–5 summarizes which sessions support session login configuration.

The session login provides access to a variety of features, including the following:

■ Connection configuration such as whether or not to use external connection
pooling.

■ Sequencing configuration (that overrides sequencing configuration made at the
project level, if any).

■ Miscellaneous options specific to your chosen data source.

■ Properties (arbitrary, application-specific named values).

For more information, see the following:

■ Section 96.1.2, "Data Source Login Types"

■ Chapter 97, "Configuring a Data Source Login"

89.4 Configuring Logging
Use the TopLink logging framework to record TopLink behavior to a log file or session
console.

Table 89–6 summarizes which sessions support logging configuration.

Table 89–4 DatabaseSession API for Registering Descriptors

Session Method Description

addDescriptors(Project) Add to the session all the descriptors owned by the
passed in Project.

addDescriptors(Vector) Add to the session all the descriptors in the passed in
Vector.

addDescriptor(Descriptor) Add an individual descriptor to the session.

Table 89–5 Session Support for Session Login

Session Session Login

Server and Client Sessions

Session Broker and Client Sessions

Database Sessions

Configuring Logging

89-6 Developer's Guide for Oracle TopLink

By default, TopLink uses its own native logger. Alternatively, you can configure
TopLink to use the java.util.logging package (see Section 89.4.5, "How to
Configure a Session to use the java.util.logging Package").

For more information, see Section 87.2.6, "Logging".

89.4.1 How to Configure Logging Using TopLink Workbench
To specify the logging information for a session, use this procedure:

1. Select a database session in the Navigator. Its properties appear in the Editor.

2. Click the Logging tab. The Logging tab appears.

Figure 89–3 Logging Tab

Table 89–6 Session Support for Logging

Session
How to Use Oracle
JDeveloper

How to Configure
Logging Using
TopLink Workbench

How to Configure
Logging Using
Session API in
Java

How to Configure
Logging in a Java
EE Container

Server and client sessions (see
Section 87.3, "Server and Client
Sessions")

Unit of work sessions (see
Section 87.4, "Unit of Work
Sessions")

Session broker and client sessions
(see Section 87.7, "Session Broker
and Client Sessions")

Database sessions (see
Section 87.8, "Database Sessions")

Note: If the session belongs to a session broker, you must specify the
logging information in the session broker–not in the session itself.

Configuring Logging

Configuring a Session 89-7

Use the following information to enter data in each field of the Logging tab to select
the profiler option to use with this session:

Option Description

No Logging Select this option to specify that nothing is logged for
this session.

Server Select this option to use logging capabilities of the
application server to which you are deploying this
application.

Java Select this option to use java.util.logging package.

Standard Select this option to use the TopLink logging framework.

When selected, you can optionally configure the
following options.

Logging Level Define the amount of logging information to record (in
ascending order of information):

■ Config–Log only login, JDBC connection, and
database information.

■ Info (default)–Log the login/logout per sever
session, with user name. After acquiring the session,
detailed information is logged.

■ Warning–Log exceptions that do not force TopLink
to stop, including all exceptions not logged with
Severe level. This does not include a stack trace.

■ Severe –Log exceptions indicating TopLink cannot
continue, and any exceptions generated during
login. This includes a stack trace.

■ Fine–Log SQL (including thread information).

■ Finer–Similar to warning. Includes stack trace.

■ Finest–Includes additional low-level information.

■ All–Log everything.

Console Select this option to display logging information to the
standard console output.

File Select this option to record logging information in a file.
Click Browse to specify the name and location of the log
file.

Options Select this option to override additional logging option
defaults for Java and Standard logging only.

Log Exception Stack Trace Select this option to include the stack trace with any
exception written to the log.

Default: For SEVERE messages, log stack trace. For
WARNING messages, only log stack trace at log level
FINER or lower.

Print Connection Select this option to include the connection identifier in
any connection related log messages.

Default: Enabled for all message and log levels.

Print Date Select this option to include the date and time at which
the log message was generated.

Default: Enabled for all message and log levels.

Configuring Logging

89-8 Developer's Guide for Oracle TopLink

89.4.2 How to Configure Logging Using Session API in Java
If you use TopLink native logging (the default), then at run time, you can configure
logging options using oracle.toplink.sessions.Session logging API.

The Session interface defines the following logging methods:

■ setSessionLog–specify the type of logging to use (any implementor of
oracle.toplink.logging.SessionLog)

■ dontLogMessages–disable logging

■ setLog–specify the java.io.Writer to which the session logs messages

■ setLogLevel– specify the level at which the session logs using
oracle.toplink.logging.SessionLog constants:

– OFF

– SEVERE

– WARNING

– INFO

– CONFIG

– FINE

– FINER

– FINEST

– ALL

Example 89–1 illustrates how to configure a session to use java.util.logging
package.

Example 89–1 Configuring a Session to Use java.util.logging

session.setSessionLog(new JavaLog());
Example 89–2 illustrates how to configure a session to use the server log that OC4J
provides. For more information about server logging, see Section 87.2.6.1.3, "Server
Logging".

Example 89–2 Configuring a Session to Use Application Server Logging

session.setSessionLog(new OjdlLog());
Example 89–3 illustrates how to configure a session to log to a java.io.Writer:

Example 89–3 Configuring a Session to Log to a java.io.Writer

session.setLog(myWriter);

Print Session Select this option to include the session name in any
session related log messages.

Default: Enabled for all message and log levels.

Print Thread Select this option to include the thread name in any
thread related log messages.

Default: Log only at log level FINER or lower.

Option Description

Configuring Logging

Configuring a Session 89-9

89.4.3 How to Configure Logging Using Oracle Enterprise Manager
When you deploy a EclipseLink JPA or TopLink CMP application to Oracle
Application Server, you can use Oracle Enterprise Manager to configure TopLink
logging.

For more information, see the following:

■ Section A.1, "TopLink Support for Oracle Application Server Manageability and
Diagnosability""

■ Oracle Fusion Middleware Administrator's Guide

89.4.4 How to Configure Logging in a Java EE Container
For a TopLink-enabled CMP application deployed to an application server, you do not
configure a session directly. In this case, you specify the type of logging by configuring
system property toplink.log.destination with one of the following values:

■ fully qualified file specification (for example, C:\logs\toplink.log)–use
TopLink native logging to write log messages to the specified file.

■ JAVA–use java.util.logging package to write log messages to any
destination you configure in the <JRE_HOME>/lib/logging.properties file.

■ SERVER–use server logging to write log messages to the application server's log
file (there is no separate TopLink log file in this case).

■ SYSOUT–write log messages to System.out.

You can set the log level for TopLink standard (default) logging through the
toplink.log.level system property.

To configure other logging options, use a customization-class (see Section 9.9.1.1,
"Configuring pm-properties").

89.4.5 How to Configure a Session to use the java.util.logging Package
If you use java.util.logging package, then you configure logging options in the
<JRE_HOME>/lib/logging.properties file. Messages are written to zero or
multiple destinations based on this configuration file.

If you configure a session to use java.util.logging package, consider the
following:

■ logging.properties

■ Formatters

■ Namespace

89.4.5.1 logging.properties
Configure the logging.properties file as Example 89–4 illustrates:

Example 89–4 java.util.logging Configuration in logging.properties

handlers = java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level = CONFIG
java.util.logging.ConsoleHandler.formatter = oracle.toplink.logging.TopLinkSimpleFormatter
oracle.toplink.LoggingSession.connection.level = CONFIG

For information about the types of formatters available, see Section 89.4.5.2,
"Formatters".

Configuring Multiple Mapping Projects

89-10 Developer's Guide for Oracle TopLink

89.4.5.2 Formatters
TopLink provides two formatters: TopLinkSimpleFormatter and
TopLinkXMLFormatter. They override the corresponding java.util.logging
formatters and always log session and connection info when available. They also log
thread and exception stack trace information at certain levels as specified by the
logging level.

89.4.5.3 Namespace
Namespace is supported for java.util.logging. Table 89–7 lists the static
constants defined in oracle.toplink.sessions.SessionLog for TopLink
components and the corresponding strings in logging.properties.

In the logging.properties names listed in Table 89–7, note that <sessionname>
is the name of the session that the application is running in. For example, if the name
of the session is MyApplication, then you would use
oracle.toplink.MyApplication.sql for the SQL logging property.

An application can also define its own namespace and write to it through the logging
API, as long as the logger for that namespace is defined in the logging configuration.
Otherwise messages are written to the parent logger,
oracle.toplink.<sessionname>.

89.5 Configuring Multiple Mapping Projects
Each session is associated with at least one mapping project (see Section 89.2,
"Configuring a Primary Mapping Project"). You can include additional TopLink
mapping projects for a session.

Table 89–7 Logging Property FIle Names

SessionLog logging.properites

Not Applicable oracle.toplink

Not Applicable oracle.toplink.<sessionname>

SQL oracle.toplink.<sessionname>.sql

TRANSACTION oracle.toplink.<sessionname>.transaction

EVENT oracle.toplink.<sessionname>.event

CONNECTION oracle.toplink.<sessionname>.connection

QUERY oracle.toplink.<sessionname>.query

CACHE oracle.toplink.<sessionname>.cache

PROPAGATION oracle.toplink.<sessionname>.propagation

SEQUENCING oracle.toplink.<sessionname>.sequencing

EJB oracle.toplink.<sessionname>.ejb

DMS oracle.toplink.<sessionname>.dms

EJB_OR_METADATA oracle.toplink.<sessionname>.ejb_or_metadata

WEAVER oracle.toplink.<sessionname>.weaver

PROPERTIES oracle.toplink.<sessionname>.properties

SERVER oracle.toplink.<sessionname>.server

Configuring Multiple Mapping Projects

Configuring a Session 89-11

Table 89–8 summarizes which sessions support additional mapping project
configuration.

89.5.1 How to Configure Multiple Mapping Projects Using TopLink Workbench
To specify additional TopLink projects for your session, use this procedure:

1. Select a server or database session in the Navigator. Its properties appear in the
Editor.

2. Click the General tab. The General tab appears.

3. Click the Project subtab. The Project subtab appears.

Figure 89–4 General Tab, Project Subtab, Multiple Projects Options

4. Select Multiple Projects option. The Multiple Projects subtab appears.

5. Click the Multiple Projects subtab.

Figure 89–5 General Tab, Multiple Projects Subtab

Table 89–8 Session Support for Additional Mapping Project

Session

How to Use
Oracle
JDeveloper

How to
Configure
Multiple
Mapping
Projects Using
TopLink
Workbench

How to
Configure
Multiple
Mapping
Projects Using
Java

Server and client sessions (see
Section 87.3, "Server and Client
Sessions")

Session broker and client sessions
(see Chapter 87.7, "Session Broker
and Client Sessions")

Database sessions (see Section 87.8,
"Database Sessions")

Configuring a Performance Profiler

89-12 Developer's Guide for Oracle TopLink

To add an additional mapping project to this session, click Add. For more information,
see Section 89.2, "Configuring a Primary Mapping Project".

To remove TopLink mapping projects, select the project file and click Remove.

89.5.2 How to Configure Multiple Mapping Projects Using Java
Using Java, you can register descriptors from more than one project with a session
using the DatabaseSession API that Table 89–9 lists. You can register descriptors
before login, but you can add independent sets of descriptors after login.

89.6 Configuring a Performance Profiler
To successfully improve the performance of a TopLink application, you must measure
performance before and after each optimization. TopLink provides a variety of built-in
performance measuring features (known as profilers) that you can configure at the
session level.

Table 89–10 summarizes which sessions support performance profiler configuration.

 TopLink provides the following profilers:

■ TopLink profiler: logs performance statistics for every executed query in a given
session (see Section 12.3, "Measuring TopLink Performance with the TopLink
Profiler")

■ Oracle Dynamic Monitoring System (DMS): includes DMS instrumentation in
essential objects to provide efficient Web browser based monitoring of run-time
data in TopLink-enabled applications (see Section 12.4, "Measuring TopLink
Performance with the Oracle Dynamic Monitoring System (DMS)")

Table 89–9 DatabaseSession API for Registering Descriptors

Session Method Description

addDescriptors(Project) Add additional descriptor to the session in the form of a
project.

addDescriptors(Vector) Add a vector of individual descriptor files to the session
in the form of a project.

addDescriptor(Descriptor) Add individual descriptor to the session.

Table 89–10 Session Support for Performance Profiler Configuration

Session

How to Use
Oracle
JDeveloper

How to
Configure a
Performance
Profiler Using
TopLink
Workbench

How to
Configure a
Performance
Profiler Using
Java

Server and client sessions (see
Section 87.3, "Server and Client
Sessions")

Session broker and client sessions
(see Section 87.7, "Session Broker and
Client Sessions")

Database sessions (see Section 87.8,
"Database Sessions")

Configuring an Exception Handler

Configuring a Session 89-13

89.6.1 How to Configure a Performance Profiler Using TopLink Workbench
To specify the type of profiler in a session, use this procedure:

1. Select a session in the Navigator. Its properties appear in the Editor.

2. Click the Options tab. The Options tab appears.

Figure 89–6 Options Tab, Profiler Options

Use the following information to select the profiler option to use with this session:

89.6.2 How to Configure a Performance Profiler Using Java
You can use Java to configure a session with a profiler using Session method
setProfiler, as Example 89–5 shows.

Example 89–5 Configuring a Session with a TopLink Profiler

session.setProfiler(new PerformanceProfiler());
To end a profiling session, use Session method clearProfiler.

89.7 Configuring an Exception Handler
You can associate a single exception handling class with each session. This class must
implement the oracle.toplink.exceptions.ExceptionHandler interface.

Table 89–11 summarizes which sessions support exception handler configuration.

Option Description

No Profiler Disable all profiling.

DMS Enable Oracle Dynamic Monitoring (DMS) profiling. For more
information, see the following:

■ Section 12.4.1, "How to Configure the Oracle DMS Profiler"

■ Section 12.4, "Measuring TopLink Performance with the Oracle
Dynamic Monitoring System (DMS)".

Standard (TopLink) Enable TopLink profiling. For more information, see the following:

■ Section 12.3.1, "How to Configure the TopLink Performance
Profiler"

■ Section 12.3, "Measuring TopLink Performance with the TopLink
Profiler"

Configuring an Exception Handler

89-14 Developer's Guide for Oracle TopLink

For an example exception handler implementation, see Section 89.7.2, "How to
Configure an Exception Handler Using Java".

For more information, see Section 87.2.9, "Exception Handlers".

89.7.1 How to Configure an Exception Handler Using TopLink Workbench
To specify the exception handler class in a session, use this procedure:

1. Select a session in the Navigator. Its properties appear in the Editor.

2. Click the Options tab. The Options tab appears.

Figure 89–7 Options Tab, Exception Handler Field

3. Complete the Exception Handler field.

Click Browse and select the exception handler class for this session.

89.7.2 How to Configure an Exception Handler Using Java
Example 89–6 shows an example exception handler implementation. In this
implementation, the exception handler always tries to reestablish the connection if it
has been reset by peer, but only retries a query if it is an instance of ReadQuery. Note
that this exception handler either returns the result of the reexecuted ReadQuery or
throws an exception.

Example 89–6 Implementing an Exception Handler

session.setExceptionHandler(
new ExceptionHandler() {

Table 89–11 Session Support for Exception Handler Configuration

Session

How to Use
Oracle
JDeveloper

How to
Configure an
Exception
Handler Using
TopLink
Workbench

How to
Configure an
Exception
Handler Using
Java

Server and client sessions (see
Section 87.3, "Server and Client
Sessions")

Session broker and client sessions
(see Section 87.7, "Session Broker and
Client Sessions")

Database sessions (see Section 87.8,
"Database Sessions")

Configuring a Session Customizer Class

Configuring a Session 89-15

public Object handleException(RuntimeException exception) {
if (exception instanceof DatabaseException) {
DatabaseException dbex = (DatabaseException) exception;
if ((dbex.getInternalException() instanceof SQLException) &&

(((SQLException) dbex.getInternalException()).getErrorCode() == MyDriver.CONNECTION_RESET_BY_PEER)) {
dbex.getAccessor().reestablishConnection(dbex.getSession());
if (dbex.getQuery() instanceof ReadQuery) {
return dbex.getSession().executeQuery(dbex.getQuery(), dbex.getQuery().getTranslationRow());

}
throw exception;

}
}
throw exception;

}
}

);

89.8 Configuring a Session Customizer Class
A session customizer class is a Java class that implements the
oracle.toplink.tools.sessionconfiguration.SessionCustomizer
interface and provides a default (zero-argument) constructor. You can use a session
customizer to customize a session at run time on a loaded session before login occurs,
similar to how you can use an amendment method to customize a descriptor (see
Section 119.35, "Configuring Amendment Methods"). For example, you can use a
session customizer class to define and register session event listeners with the session
event manager (see Section 89.10, "Configuring Session Event Listeners").

Table 89–12 summarizes which sessions support customizer class configuration.

For more information, see Section 87.2.3, "Session Customization".

89.8.1 How to Configure Customizer Class Using TopLink Workbench
To specify the session customizer class in a session, use this procedure:

1. Select a session in the Navigator. Its properties appear in the Editor.

2. Click the Options tab. The Options tab appears.

Note: Unhandled exceptions must be rethrown by the exception
handler code.

Table 89–12 Session Support for Customizer Class Configuration

Session
How to Use Oracle
JDeveloper

How to
Configure
Customizer
Class Using
TopLink
Workbench

How to Use
Java

Server and client sessions (see
Section 87.3, "Server and Client
Sessions")

Session broker and client sessions (see
Section 87.7, "Session Broker and
Client Sessions")

Database sessions (see Section 87.8,
"Database Sessions")

Configuring the Server Platform

89-16 Developer's Guide for Oracle TopLink

Figure 89–8 Options Tab, Session Customizer Class Field

Click Browse and select the customizer class for this session.

89.8.2 How to Configure Customizer Class Using Java
When using Java, create a customize class that implements the
oracle.toplink.tools.sessionconfiguration.SessionCustomizer
interface. Example 89–7 illustrates the creation of the session customizer. The
customize method contains the configuration of the Login owned by the Session
with the appropriate transaction isolation.

Example 89–7 Creating a SessionCustomizer Class

import oracle.toplink.tools.sessionconfiguration.SessionCustomizer;
import oracle.toplink.sessions.Session;
import oracle.toplink.sessions.DatabaseLogin;

public class EmployeeSessionCustomizer implements SessionCustomizer {

public void customize(Sesssion session) {
DatabaseLogin login = (DatabaseLogin)session.getDatasourceLogin();
login.setTransactionIsolation(DatabaseLogin.TRANSACTION_READ_UNCOMMITTED);

}
}

89.9 Configuring the Server Platform
The TopLink server platform defines how a session integrates with a Java EE server
including the following:

■ Run-time services: Enables the deployment of a Java Management Extensions
(JMX) MBean that allows monitoring of the TopLink session.

■ External transaction controller: Integrates the TopLink session with the server's
Java Transaction API (JTA) service. This should always be used when using EJB or
JTA transactions. You configure TopLink to integrate with the container’s external
transaction service by specifying a TopLink external transaction controller. For
more information on external transaction services, see Section 113.1.2, "Unit of
Work Transaction Demarcation".

Table 89–8 summarizes which sessions support a server platform.

Configuring the Server Platform

Configuring a Session 89-17

If the primary mapping project that you associate with a session has a persistence type
of bean-managed persistence (BMP) or Java objects, you may configure a server
platform using Oracle JDeveloper or TopLink Workbench. For more information on
primary mapping project, see Section 89.2, "Configuring a Primary Mapping Project".

If the primary mapping project you associate with a session has a persistence type of
container-managed persistence (CMP), by default, the TopLink runtime automatically
configures a server platform to accommodate the application server on which it is
deployed.

89.9.1 How to Configure the Server Platform Using TopLink Workbench
To specify the server platform options for a session, use this procedure:

1. Select a session in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

3. Click the Server Platform subtab. The Server Platform subtab appears.

Figure 89–9 General Tab, Server Platform Subtab

Use the following information to enter data in each field of the Server Platform subtab:

Table 89–13 Session Support for Server Platform

Session

How to Use
Oracle
JDeveloper

How to
Configure the
Server Platform
Using TopLink
Workbench

How to
Configure the
Server
Platform
Using Java

Server and client sessions (see
Section 87.3, "Server and Client
Sessions")

Session broker and client sessions (see
Section 87.7, "Session Broker and
Client Sessions")

Database sessions (see Section 87.8,
"Database Sessions")

Configuring the Server Platform

89-18 Developer's Guide for Oracle TopLink

89.9.2 How to Configure the Server Platform Using Java
When using Java, you must pass the session in a server platform constructor.
Example 89–8 illustrates using a session customizer (see Section 13.4, "Using the

Field Description

Server Platform Check this field if you intend to deploy your application to a Java
EE application server.

If you check this field, you must configure the target application
server by selecting a Platform.

Platform Select the Java EE application server to which you will deploy your
application.

TopLink supports the following Java EE application servers:

■ WebLogic 10.n

■ WebLogic 9.n

■ OC4J 10.1.3.n

■ SunAS 9

■ WebSphere 6.1

■ Custom

For detailed information about supported application server
versions and configuration requirements, see Chapter 8,
"Integrating TopLink with an Application Server".

Select Custom if you have created your own
oracle.toplink.platform.server.ServerPlatform class
to use an application server not currently supported by TopLink or
to override an existing ServerPlatform. If you select Custom,
you must specify your custom ServerPlatform class by selecting
a Server Platform Class.

The server platform you select overrides the default server platform
set at the sessions configuration level (see Section 88.2, "Creating a
Sessions Configuration").

Enable Runtime
Services

Check this field to configure the TopLink runtime to enable the
deployment of a JMX MBean that allows monitoring of the TopLink
session.

To use this feature, you must enable DMS data collection. For more
information, see Section 12.4.1, "How to Configure the Oracle DMS
Profiler".

Enable External
Transaction Controller
(JTA)

Check this field if you intend to integrate your application with an
external transaction controller. For more information, see
Section 113.1.2, "Unit of Work Transaction Demarcation".

If you configure Platform for a Java EE application server that
TopLink supports, the TopLink runtime will automatically select
the appropriate external transaction controller class.

If you configure Platform as Custom, you must specify an external
transaction controller class by selecting an External Transaction
Controller.

Server Platform Class This option is only available if you configure Platform as Custom.

Click Browse to select your custom ServerPlatform class.

Transaction Controller
Class (JTA)

This option is only available if you configure Platform as Custom.

If you checked Enable External Transaction Controller (JTA), click
Browse to select the transaction controller class that corresponds
with your custom ServerPlatform class.

Configuring Session Event Listeners

Configuring a Session 89-19

Session Customizer Class") to configure a session with a server platform from the
oracle.toplink.platform.server package.

Example 89–8 Configuring a Session with a Server Platform

import oracle.toplink.tools.sessionconfiguration.SessionCustomizer;
...
public class MySessionCustomizer implements SessionCustomizer {

public void customize (Session session) {
Server server = (Server)session;
server.setServerPlatform(new WebLogic_10_Platform(DatabaseSession)server)):

}
}

89.10 Configuring Session Event Listeners
As you perform persistence operations with a session, the session produces various
events (see Section 87.2.5.1, "Session Event Manager Events") that the TopLink runtime
uses to coordinate its various components. You can configure a session with one or
more session event listeners (see Section 87.2.5.2, "Session Event Listeners") to
customize session behavior and debug session operations. For example, session event
listeners play an important role in the configuration of isolated sessions (see
Chapter 92, "Configuring Exclusive Isolated Client Sessions for Virtual Private
Database").

Table 89–14 summarizes which sessions support event listeners.

89.10.1 How to Configure Session Event Listeners Using TopLink Workbench

Session Event Listeners
To specify the event listener class in a session, use this procedure:

1. Select a session in the Navigator. Its properties appear in the Editor.

2. Click the Options tab. The Options tab appears.

Table 89–14 Session Support for Event LIsteners

Session

How to Use
Oracle
JDeveloper

How to
Configure
Session Event
Listeners Using
TopLink
Workbench

How to
Configure
Session
Event
Listeners
Using Java

Server and client sessions (see
Section 87.3, "Server and Client
Sessions")

Session broker and client sessions (see
Section 87.7, "Session Broker and
Client Sessions")

Database sessions (see Section 87.8,
"Database Sessions")

Configuring the Integrity Checker

89-20 Developer's Guide for Oracle TopLink

Figure 89–10 Options Tab, Event Listeners field

To add a new event listener, click Add, then select the event listener class for this
session.

To remove an existing event listener, select the Event Listener and click Remove.

89.10.2 How to Configure Session Event Listeners Using Java
Example 89–9 illustrates how to use Java to register a session event listener with a
session. TopLink provides a SessionEventAdapter to simplify creating a
SessionEventListener. The SessionEventAdapter provides a default
implementation of all the methods of the SessionEventListener interface. You
need only override the specific methods of interest. Typically, you would define
session event listeners in a session customizer class (see Section 89.8, "Configuring a
Session Customizer Class").

Example 89–9 Using the Session Event Adapter to Create a Session Event Listener

...
SessionEventAdapter myEventListener = new SessionEventAdapter() {

// Listen for PostCommitUnitOfWork events
public void postCommitUnitOfWork(SessionEvent event) {

// Call the handler routine
unitOfWorkCommitted();

}
};
mySession.getEventManager().addListener(myEventListener);
...
For information on how to add logging to your listeners, see Section 87.2.6, "Logging".

89.11 Configuring the Integrity Checker
When you log into a session, TopLink initializes and validates the descriptors you
registered with it. By configuring the integrity checker, you can customize this
validation process to do the following:

■ Check Database

■ Catch All Exceptions

■ Catch Instantiation Policy Exceptions

Table 89–15 summarizes which sessions support descriptor integrity checking
configuration.

Configuring Connection Policy

Configuring a Session 89-21

Check Database
The IntegrityChecker method setShouldCheckDatabase specifies whether or
not the integrity checker should verify the descriptor's metadata against the database
metadata. This will report any errors due to missing or incorrect table or fields
specified in the descriptors. This is turned off by default as it adds a significant
overhead to connecting a session.

Catch All Exceptions
By default, the integrity checker catches all exceptions that occur during initialization,
and throws a single exception at the end of initialization reporting all of the errors
detected. If you only want the first exception encountered, you can disable this feature
using IntegrityChecker method setShouldCatchExceptions(false).

Catch Instantiation Policy Exceptions
By default, the integrity checker tests the default or configured constructor for each
descriptor initialized in the session. To disable this feature, use IntegrityChecker
method setShouldCheckInstantiationPolicy(false).

89.11.1 How to Configure the Integrity Checker Using Java
As Example 89–10 shows, you can configure the integrity checker validation process.

Example 89–10 Configuring the Integrity Checker

session.getIntegrityChecker().setShouldCheckDatabase(true);
session.getIntegrityChecker().setShouldCatchExceptions(false);
session.getIntegrityChecker().setShouldCheckInstantiationPolicy(false);
session.login();

89.12 Configuring Connection Policy
Using a connection policy, you can control how a TopLink session acquires and uses
read and write connections, including the following:

■ Exclusive Write Connections

■ Lazy Connection Acquisition

Table 89–15 summarizes which sessions support connection policy configuration.

Table 89–15 Session Support for Checking Descriptor Integrity

Session

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to Configure
the Integrity
Checker Using
Java

Server and client sessions (see
Section 87.3, "Server and Client
Sessions")

Session broker and client sessions (see
Section 87.7, "Session Broker and
Client Sessions")

Database sessions (see Section 87.8,
"Database Sessions")

Configuring Connection Policy

89-22 Developer's Guide for Oracle TopLink

Exclusive Write Connections
An exclusive connection is one that TopLink allocates to a client session for reading (of
isolated data) and writing for the duration of the client session's life cycle.

By default, exclusive connections are not used and a client session uses the server
session's read connection pool for all non-pessimistic read queries. A connection is
obtained from the read connection pool for each read query execution and released
back to the pool after the query is executed. A connection is only obtained from the
write connection pool for the unit of work commit operation, or, potentially, earlier if
data modify queries, or read queries using pessimistic locking are used. The
connection will be release back to the write connection pool after the unit of work is
committed or released.

Exclusive connections are provided for use with database read security or Virtual
Private Database (VPD) support. When using an exclusive connection, you will obtain
it from the server session's write connection pool. When you acquire the client, the
exclusive connection will be used for read queries to isolated classes (see Section 87.5,
"Isolated Client Sessions"), exclusive read queries, pessimistic read queries, and for the
unit of work commit operation. The exclusive connection will only be released when
the client session is released. TopLink still acquires a shared connection from the read
connection pool for reading nonisolated data. If you use a JTA-managed external
connection pool with exclusive connections, do not reuse a client session across JTA
transaction boundaries, as the physical JTA database connection is released and
acquired from the connection pool relative to the JTA transaction life cycle. A new
client session, or the active unit of work, should be used for each JTA transaction. For
more information, see Section 101.6, "Configuring Exclusive Read Connections".

You can also configure exclusive connections on a client-session-by-client-session basis
(see Section 90.4.2, "How to Acquire a Client Session that Uses Exclusive Connections")
and for named queries (see Section 119.7.1.10, "Configuring Named Query Advanced
Options").

Table 89–16 Session Support for Connection Policy

Session

How to Use
Oracle
JDeveloper

How to
Configure
Connection
Policy Using
TopLink
Workbench

How to
Configure
Connection
Policy Using
Java

Server and client sessions (see
Section 87.3, "Server and Client
Sessions")

Session broker and client sessions (see
Section 87.7, "Session Broker and Client
Sessions")

Database sessions (see Section 87.8,
"Database Sessions")

Note: If any client session contains an exclusive connection, you
must release the session (see Section 90.8, "Logging Out of a Session")
when you are finished using it. Oracle does not recommend relying on
the finalizer to release the connection when the session is garbage
-collected. If you are using an active unit of work in a JTA transaction,
you do not need to release the client session–the unit of work will
release it after the JTA transaction completes.

Configuring Connection Policy

Configuring a Session 89-23

Lazy Connection Acquisition
By default, TopLink acquires write connections lazily, when you perform the first unit
of work commit operation, exclusive read query, or pessimistic read query with your
client session. The write connection will also be released after each unit of work it
committed or released.

Alternatively, you can configure TopLink to acquire the write connection at the time
you acquire a client session, and release the connection when you release the client
session.

You can also configure lazy connection acquisition on a client-session-by-client-session
basis (see Section 90.4.5, "How to Acquire a Client Session that Does Not Use Lazy
Connection Allocation").

89.12.1 How to Configure Connection Policy Using TopLink Workbench
To specify the connection policy in a session, use this procedure:

1. Select a session in the Navigator. Its properties appear in the Editor.

2. Click the Connection Policy tab. The Connection Policy tab appears.

Figure 89–11 Connection Policy Tab

89.12.2 How to Configure Connection Policy Using Java
To configure whether or not an exclusive connection is allocated to a particular
isolated session, use ConnectionPolicy method
setShouldUseExclusiveConnection.

To define a map of properties used to support an isolated session, use the following
ConnectionPolicy methods:

■ setProperty(Object key, Object value): Adds the property value to
the Map under key, overwriting the existing value if key already exists in the Map.

■ Object getProperty(Object key): Returns the value associated with key as
an Object.

■ boolean hasProperties: Returns true if one or more properties exist in the
Map; otherwise returns false.

The TopLink runtime passes this Map into SessionEvent events
PostAcquireExclusiveConnection and PreReleaseExclusiveConnection
so that your implementation can make the appropriate PL/SQL calls to the underlying
database platform (see Section 92.2, "Using PostAcquireExclusiveConnection Event
Handler" and Section 92.3, "Using PreReleaseExclusiveConnection Event Handler").

To configure the session to use a named connection pool, use the ConnectionPool
constructor that takes a String connection pool name as an argument:

Session clientSession = server.acquireClientSession(
new ConnectionPolicy("myConnectionPool")

);

Configuring Named Queries at the Session Level

89-24 Developer's Guide for Oracle TopLink

89.13 Configuring Named Queries at the Session Level
A named query is a TopLink query that you create and store, by name, in a session for
later retrieval and execution. Named queries improve application performance,
because they are prepared once and they (and all their associated supporting objects)
can be efficiently reused thereafter making them well-suited for frequently executed
operations.

If a named query is global to a project, configure it at the session level. Alternatively,
you can configure a named query at the descriptor level (see Section 119.7,
"Configuring Named Queries at the Descriptor Level").

Use named queries to specify SQL, EJB QL, or TopLink Expression queries to access
your data source.

Table 89–17 summarizes which sessions support named query configuration.

After you create a named query, you can execute it by name on the TopLink session
(see Section 109.3, "Using Named Queries").

For more information about named queries, see Section 108.8, "Named Queries".

89.13.1 How to Configure Named Queries at the Session Level Using Java
You can store a query by name in a Session using Session method
addQuery(String name, DatabaseQuery query).

Table 89–17 Session Support for Named Queries

Session

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to Configure
Named Queries at
the Session Level
Using Java

Server and client sessions (see
Section 87.3, "Server and Client
Sessions")

Session broker and client sessions
(see Section 87.7, "Session Broker and
Client Sessions")

Database sessions (see Section 87.8,
"Database Sessions")

90

Acquiring and Using Sessions at Run Time 90-1

90Acquiring and Using Sessions at Run Time

After you create and configure sessions, you can use the session manager to acquire a
session instance at run time.

This chapter includes the following sections:

■ Introduction to Session Acquisition

■ Acquiring the Session Manager

■ Acquiring a Session from the Session Manager

■ Acquiring a Client Session

■ Acquiring a Historical Session

■ Logging In to a Session

■ Using Session API

■ Logging Out of a Session

■ Storing Sessions in the Session Manager Instance

■ Destroying Sessions in the Session Manager Instance

90.1 Introduction to Session Acquisition
Oracle recommends that you export session instances from Oracle JDeveloper TopLink
Editor or TopLink Workbench to one or more uniquely named sessions.xml files
and then use the session manager to load sessions from these sessions.xml files.

The TopLink session manager lets you build a series of sessions that are maintained
under a single entity. The session manager is a static utility class that loads TopLink
sessions from the sessions.xml file, caches the sessions by name in memory, and
provides a single access point for TopLink sessions.

The session manager supports the following session types:

■ Server Session

■ Database Session

■ SessionBroker

See Chapter 87, "Introduction to TopLink Sessions" for detailed information on these
available sessions.

The session manager has two main functions: it creates instances of the sessions and it
ensures that only a single instance of each named session exists for any instance of a
session manager.

Acquiring the Session Manager

90-2 Developer's Guide for Oracle TopLink

This is particularly useful for EJB applications in that an enterprise bean can acquire
the session manager and acquire the desired session from it.

90.1.1 Session Manager
When a client application requires a session, it requests the session from the TopLink
session manager. The two main functions of the session manager are to instantiate
TopLink sessions for the server, and to hold the sessions for the life of the application.
The session manager instantiates database sessions, server sessions, or session brokers
based on the configuration information in the sessions.xml file.

The session manager instantiates sessions as follows:

■ The client application requests a session by name.

■ The session manager looks up the session name in the sessions.xml file. If the
session name exists, the session manager instantiates the specified session;
otherwise, it throws an exception.

■ After instantiation, the session remains viable until the application is shut down.

90.1.2 Multiple Sessions
Oracle recommends that you acquire sessions from the session manager and perform
all persistence operations using a client session or the unit of work.

Note that in the case of a server session or a session broker that contains server
sessions, after you acquire the session you will acquire a client session from it. From a
given server session (or session broker that contains server sessions), you can acquire
as many client sessions as you have clients.

Each client can easily manage concurrent access and referential constraints by
acquiring a unit of work from its client session and performing all persistence
operations using the unit of work.

90.2 Acquiring the Session Manager
TopLink maintains only one instance of the session manager class. The singleton
session manager maintains all the named TopLink sessions at run time. When an
application requests a session by name, the session manager retrieves the specified
session from the appropriate configuration file.

As Example 90–1 illustrates, to access the session manager instance, use the
oracle.toplink.tools.sessionmanagement.SessionManager method
getManager. You can then use the session manager instance to load TopLink
sessions.

Example 90–1 Acquiring a Session Manager Instance

import oracle.toplink.tools.sessionmanagement.SessionManager;
SessionManager sessionManager = SessionManager.getManager();

90.3 Acquiring a Session from the Session Manager
When the session manager loads a session that is not yet in its cache, the session
manager creates an instance of the appropriate session type and configures it
according to the sessions.xml file configuration.

Acquiring a Session from the Session Manager

Acquiring and Using Sessions at Run Time 90-3

This section explains the following:

■ How to Load a Session from sessions.xml Using Defaults

■ How to Load a Session from sessions.xml with an Alternative Class Loader

■ How to Load a Session from an Alternative Session Configuration File

■ How to Load a Session Without Logging In

■ How to Reload and Refresh Session Configuration

■ How to Refresh a Session when the Class Loader Changes

90.3.1 How to Load a Session from sessions.xml Using Defaults
If you have a single sessions configuration file (sessions.xml) that contains all the
session instances created by Oracle JDeveloper or TopLink Workbench, then you can
load a session by name, as Example 90–2 illustrates.

Example 90–2 Acquiring a Named Session from Session Manager Using Defaults

// Load a named session (mysession) defined in the sessions.xml file
SessionManager manager = SessionManager.getManager();
Session session = manager.getSession("mysession");
In this example, the following session manager default configuration applies:

■ Class loader–The thread-based class loader is used to find and load the
sessions.xml resource and resolve any classes referenced in the
sessions.xml and project.xml files.

If you acquire the session in an application class, this will typically be the
application's class loader, which is correct. In a Java EE application, it is best to
specify this as the class loader from a class in the same JAR file that the
sessions.xml file is deployed in.

■ File–By default, the file named sessions.xml in the root directory relative to the
class loader is used.

If the file is named differently, or not in the root directory, the relative path must be
specified. Relative resource paths in Java must use " / ", not " \ ".

■ Session name–The name passed into the getSession call.

This name must be unique for the entire application server, not just unique within
the application.

■ Login–true. The session will be connected by default.

If you must manually configure the session before login, set this option to false
(see Section 90.3.4, "How to Load a Session Without Logging In").

■ Refresh–false. If already loaded, the same session will be returned.

Refresh should only be used, if it is known that the existing session is not being
used, and the configuration has changed, such as in a Java EE environment
redeployment scenario.

Note: To best use the methods associated with the session type
that is being instantiated, cast the session that is returned from the
getSession method. This type must match the session type that is
defined in the sessions.xml file for the named session.

Acquiring a Session from the Session Manager

90-4 Developer's Guide for Oracle TopLink

■ Verify class loader–false. The session manager will not refresh the session if the
class loader changes.

This should normally be set to true. It must be set to true in a Java EE
environment, if hot deployment or redeployment to a running application server
is required (see Section 90.3.6, "How to Refresh a Session when the Class Loader
Changes").

90.3.2 How to Load a Session from sessions.xml with an Alternative Class Loader
You can use an alternative class loader to load sessions. This is common when your
TopLink application integrates with a Java EE container. The session manager uses the
class loader to find and load the sessions.xml resource and resolve any classes
referenced in the sessions.xml and project.xml files.

In most cases, you use the class loader from the current thread context, as
Example 90–3 illustrates. In this example, the session named mysession is loaded
from the first file in the application classpath named sessions.xml using the class
loader associated with the current thread context.

Example 90–3 Loading a Session Using the Current Thread Context Class Loader

/* Use the specified ClassLoader to load a session (mysession) defined in the
sessions.xml file */
SessionManager manager = SessionManager.getManager();
Session session = manager.getSession(

"mysession", // session name to load
Thread.current().getContextClassLoader() // ClassLoader instance to use

);
However, if your Java EE container does not support using the current thread context
class loader, you can use the class loader from the current class, as Example 90–4
illustrates.

Example 90–4 Loading a Session Using the Current Class’s Class Loader

/* Use the specified ClassLoader to load a session (mysession) defined in the
sessions.xml file */
SessionManager manager = SessionManager.getManager();
Session session = manager.getSession(

"mysession", // session name to load
this.getClass().getClassLoader() // ClassLoader instance to use

);

90.3.3 How to Load a Session from an Alternative Session Configuration File
If your session instances are contained in multiple, uniquely named session
configuration files (sessions.xml files), then you must explicitly create an
XMLSessionConfigLoader object initialized with the name of the sessions.xml
file and pass that XMLSessionConfigLoader into the SessionManager method
getSession, as Example 90–5 illustrates.

The file path you specify is relative to the class loader root directory. Relative resource
paths in Java must use the forward slash (/), not back slash (\).

Note: Oracle Containers for Java EE supports the use of the class
loader from the current thread.

Acquiring a Session from the Session Manager

Acquiring and Using Sessions at Run Time 90-5

In this example, the session named mysession is loaded by the specified class loader
from the first file in the application classpath named toplink-sessions.xml.

Example 90–5 Loading a Session from an Alternative Configuration File

// XMLSessionConfigLoader loads the toplink-sessions.xml file
SessionManager manager = SessionManager.getManager();
manager.getSession(

new XMLSessionConfigLoader("toplink-sessions.xml"),
"mysession",
this.class.getClassLoader()

);

90.3.4 How to Load a Session Without Logging In
The XMLSessionConfigLoader (see Section 90.3.3, "How to Load a Session from an
Alternative Session Configuration File") lets you call a session using the
SessionManager method getSession, without invoking the Session method
login, as Example 90–6 shows. This lets you prepare a session for use and leave login
to the application.

Example 90–6 Open Session with No Login

SessionManager manager = SessionManager.getManager();
Session session = manager.getSession(

new XMLSessionConfigLoader(), // XMLSessionConfigLoader (sessions.xml file)
"mysession", // session name
YourApplicationClass.getClassLoader(), // class loader
false, // do not log in session
false); // do not refresh session

90.3.5 How to Reload and Refresh Session Configuration
You can tell the session manager to refresh an existing session from the
sessions.xml file. Typically, this would only ever be used in a Java EE environment
at redeployment time, or after a reset of a running server. You should only use this
option when you know that the existing session is not being used.

Example 90–7 Forcing a Reparse of the sessions.xml File

//In this example, XMLSessionConfigLoader loads sessions.xml from the classpath
SessionManager manager = SessionManager.getManager();
Session session = manager.getSession(

new XMLSessionConfigLoader(), // XMLSessionConfigLoader (sessions.xml file)
"mysession", // session name
YourApplicationClass.getClassLoader(), // class loader
true, // log in session
true // refresh session

);

90.3.6 How to Refresh a Session when the Class Loader Changes
In an unmanaged (POJO) Java EE environment, if you require hot deployment or
redeployment to a running application server, you must tell the session manager to
refresh your session if the class loader changes, as Example 90–8 shows. This option
makes the session manager refresh the session if the class loader changes, which
occurs when the application is redeployed. When this option is set to true, the same
class loader must always be used to retrieve the session.

Acquiring a Client Session

90-6 Developer's Guide for Oracle TopLink

Example 90–8 Forcing a Reparse of the sessions.xml File

//In this example, XMLSessionConfigLoader loads sessions.xml from the classpath
SessionManager manager = SessionManager.getManager();
Session session = manager.getSession(

new XMLSessionConfigLoader(), // XMLSessionConfigLoader (sessions.xml file)
"mysession", // session name
YourApplicationClass.getClassLoader(), // class loader
true, // log in session
false, // do not refresh session when loaded
true // do refresh session if class loader changes

);
In a CMP Java EE environment, the TopLink runtime and CMP integration handles
this for you automatically.

90.4 Acquiring a Client Session
Before you can acquire a client session, you must first use the session manager to
acquire a server session or a session broker that contains server sessions (see
Section 90.3, "Acquiring a Session from the Session Manager").

Table 90–1 summarizes the methods used to acquire various types of client sessions
from a server session and a session broker session that contains server sessions.

The acquireClientSession method returns a session of type ClientSession.

The acquireClientSessionBroker method returns a session of type
SessionBroker.

In both cases, you should cast the returned object to type Session and use it as you
would any other session.

For more information, see the following:

■ Section 90.4.1, "How to Acquire an Isolated Client Session"

■ Section 90.5, "Acquiring a Historical Session"

■ Section 90.4.2, "How to Acquire a Client Session that Uses Exclusive Connections"

■ Section 90.4.3, "How to Acquire a Client Session that Uses Connection Properties"

■ Section 90.4.4, "How to Acquire a Client Session that Uses a Named Connection
Pool"

■ Section 90.4.5, "How to Acquire a Client Session that Does Not Use Lazy
Connection Allocation"

90.4.1 How to Acquire an Isolated Client Session
If in your TopLink project you configure all classes as isolated (see Section 117.11,
"Configuring Cache Isolation at the Project Level"), or one or more classes as isolated

Table 90–1 Method Used to Acquire a Client Session

Client
Session Server Session Method Session Broker Session Method

Regular or
Isolated

acquireClientSession() acquireClientSessionBroker()

Regular or
Isolated

acquireClientSession(ConnectionPolicy) not applicable

Historical acquireHistoricalSession(AsOfClause) acquireHistoricalSession(AsOfClause)

Acquiring a Client Session

Acquiring and Using Sessions at Run Time 90-7

(see Section 119.13, "Configuring Cache Isolation at the Descriptor Level"), then all
client sessions that you acquire from a parent server session will be isolated client
sessions (see Section 87.5, "Isolated Client Sessions").

Using a ConnectionPolicy, you can acquire an isolated client session that uses
exclusive connections (see Section 90.4.2, "How to Acquire a Client Session that Uses
Exclusive Connections"). This isolated client session can be configured with connection
properties for use with the Oracle Virtual Private Database (VPD) feature (see
Section 90.4.3, "How to Acquire a Client Session that Uses Connection Properties").
Typically, you use Oracle Database proxy authentication to pass user credentials to the
Oracle Database. For more information about Oracle Database proxy authentication,
see Section 96.1.4.2, "Oracle Database Proxy Authentication".

For more information about VPD, see Section 87.5.1, "Isolated Client Sessions and
Oracle Virtual Private Database (VPD)".

90.4.2 How to Acquire a Client Session that Uses Exclusive Connections
Example 90–9 illustrates how to configure a ConnectionPolicy and use it to acquire
a client session that uses exclusive connections.

Example 90–9 Acquiring a Client Session that Uses Connection Properties

ConnectionPolicy connectionPolicy = new ConnectionPolicy();
// Use an exclusive connection for the session
connectionPolicy.setShouldUseExclusiveConnection(true);

Session clientSession = server.acquireClientSession(connectionPolicy);
// By default, an exclusive connection will be acquired lazily

An exclusive connection is allocated from a shared connection pool. The connection is
dedicated to the client session that acquires it.

A named query can also use an exclusive connection (see Section 119.7.1.10,
"Configuring Named Query Advanced Options").

For more information, see the following:

Note: Typically, the life cycle of a client session is the duration of a
server request. However, if you are using JTA, it is the life cycle of a
JTA transaction.

You cannot hold the client session across the JTA transaction
boundaries. If you are not using a unit of work in your transaction
and you are configuring a client session to use an exclusive connection
(see Chapter 92, "Configuring Exclusive Isolated Client Sessions for
Virtual Private Database"), you must explicitly acquire and release the
session when you are finished using it. Although client sessions have
a finalizer that would release the session when it is garbage-collected,
you must not rely on the finalizer and release the exclusive client
session (or a non-lazy session) in the application to release the data
source connection. Note that the requirement to release the session is
not JTA-specific.

If you are using a unit of work (see Chapter 115, "Using Advanced
Unit of Work API"), you do not have to worry about releasing its client
session, as the unit of work always automatically releases it at the end
of the JTA transaction.

Acquiring a Client Session

90-8 Developer's Guide for Oracle TopLink

■ Section 90.4.5, "How to Acquire a Client Session that Does Not Use Lazy
Connection Allocation"

■ Section 89.12, "Configuring Connection Policy".

90.4.3 How to Acquire a Client Session that Uses Connection Properties
Example 90–10 illustrates how to configure a ConnectionPolicy and use it to
acquire a client session that uses connection properties. In this example, the properties
are used by the Oracle VPD feature (see Section 87.5.1, "Isolated Client Sessions and
Oracle Virtual Private Database (VPD)"). You can use connection properties for other
application purposes.

Example 90–10 Acquiring an Isolated Session Using Connection Properties

ConnectionPolicy connectionPolicy = new ConnectionPolicy();
// Set VPD specific properties to be used in the events
connectionPolicy.setProperty("userLevel", new Integer(5));

Session clientSession = server.acquireClientSession(connectionPolicy);

For more information, see Section 89.12, "Configuring Connection Policy".

90.4.4 How to Acquire a Client Session that Uses a Named Connection Pool
Before you can acquire a client session that uses a named connection pool, you must
configure your session with a named connection pool. For more information on named
connection pools, see Section 96.1.6.5, "Application-Specific Connection Pools". For
more information on creating a named connection pool, see Section 100.1,
"Introduction to the Internal Connection Pool Creation".

To acquire a client session that uses a named connection pool, use Server method
acquireClientSession, passing in a ConnectionPolicy configured with the
desired connection pool. The acquired ClientSession uses connections from the
specified pool for writes (reads still go through the Server read connection pool).

Example 90–11 illustrates how to configure a ConnectionPolicy to specify a named
connection pool named myConnectionPool.

Example 90–11 Acquiring a Client Session that Uses a Named Connection Pool

// Assuming you created a connection pool named "myConnectionPool"
Session clientSession = server.acquireClientSession(

new ConnectionPolicy("myConnectionPool")
);

For more information, see Section 89.12, "Configuring Connection Policy".

90.4.5 How to Acquire a Client Session that Does Not Use Lazy Connection Allocation
By default, the server session does not allocate a data source connection for a client
session until a transaction starts (a lazy data source connection). Alternatively, you can
acquire a client session that allocates a connection immediately.

Example 90–12 illustrates how to configure a ConnectionPolicy to specify that lazy
connection allocation is not used.

Example 90–12 Acquiring a Client Session that Does Not Use Lazy Connections

ConnectionPolicy connectionPolicy = new ConnectionPolicy();
connectionPolicy.setIsLazy(false);
Session clientSession = server.acquireClientSession(connectionPolicy);

For more information, see Section 89.12, "Configuring Connection Policy".

Using Session API

Acquiring and Using Sessions at Run Time 90-9

90.5 Acquiring a Historical Session
After you configure TopLink to access historical data (see Section 93.1, "Introduction to
Historical Session Configuration"), you can query historical data using any session
type.

When you query historical data using a regular client session or database session, you
must always set ObjectLevelReadQuery method maintainCache to false in
order to prevent old (historical) data from corrupting the session cache. However, you
can query both current and historical object versions.

As a convenience, TopLink provides a historical session to simplify this process. When
you query historical data using a historical session, you do not need to set
ObjectLevelReadQuery method maintainCache to false. However, you can
query objects only as of the specified time.

Before you can acquire a historical session, you must first use the session manager to
acquire a server session.

To acquire a historical session, use Server method acquireHistoricalSession
passing in an AsOfClause.

The AsOfClause specifies a point in time that applies to all queries and expressions
subsequently executed on the historical session. The historical session’s cache is a
read-only snapshot of object versions as of the specified time. Its cache is isolated from
its parent server session’s shared object cache.

90.6 Logging In to a Session
Before you can use a session, you must first log in to the session using Session
method login.

By default, when you load a session using the session manager, TopLink automatically
logs in to the session using the zero-argument login method. For information on
loading a session without automatically logging into the session, see Section 90.3.4,
"How to Load a Session Without Logging In".

If you load a session without logging in, you can choose from the following signatures
of the login method:

■ login(): Use the Login, user name, and password defined in the corresponding
sessions.xml file.

■ login(Login login): Override the Login defined in the corresponding
sessions.xml file with the specified Login.

■ login(String username, String password): Override the user name and
password defined in the corresponding sessions.xml file with the specified
user name and password.

When you log in to a session broker, the session broker logs in all contained sessions
and initializes the descriptors in the sessions. After login, the session broker appears
and functions as a regular session. TopLink handles the multiple database access
transparently.

90.7 Using Session API
For more information on using session API, for caching, see Chapter 102, "Introduction
to Cache".

Logging Out of a Session

90-10 Developer's Guide for Oracle TopLink

For more information on using session API for queries, see Chapter 108, "Introduction
to TopLink Queries".

For more information on using session API for transactions, see Chapter 113,
"Introduction to TopLink Transactions".

90.8 Logging Out of a Session
When you are finished using a server session, session broker session, or database
session, you must log out of the session using Session method logout. Logging out
of a session broker session logs out of all sessions registered with the session broker.

When you are finished using a client session, you must release the session using
Session method release.

You can configure a Session with a finalizer to release the session using Session
method setIsFinalizersEnabled(true). By default, finalizers are disabled. If
you choose to enable a finalizer for a session, you should do so only as a last resort.
Oracle recommends that you always log out of or release your sessions.

90.9 Storing Sessions in the Session Manager Instance
Although Oracle recommends that you export all session instances from Oracle
JDeveloper or TopLink Workbench to one or more sessions.xml files, alternatively,
you can manually create a session in your application and, as Example 90–13
illustrates, manually store it in the session manager using SessionManager method
addSession. Then, you can acquire a session by name using the SessionManager
method getSession.

Example 90–13 Storing Sessions Manually in the Session Manager

// create and log in to the session programmatically
Session theSession = project.createDatabaseSession();
theSession.login();
// store the session in the SessionManager instance
SessionManager manager = SessionManager.getManager();
manager.addSession("mysession", theSession);
// retrieve the session
Session session = SessionManager.getManager().getSession("mysession");

90.10 Destroying Sessions in the Session Manager Instance
You can destroy sessions individually by name or destroy all sessions.

Note: The addSession method is not necessary if you are
loading sessions from a session configuration file.

Note: You should only do this when a Java EE application is
un-deployed, or when the entire application is shut down and only
when it is known that the session is no longer in use. You should log
out of a session before destroying it (see Section 90.8, "Logging Out of
a Session"). If you do not log out of a session, the session manager will
at the time you use it to destroy a session.

Destroying Sessions in the Session Manager Instance

Acquiring and Using Sessions at Run Time 90-11

To destroy one session instance by name, use SessionManager method
destroySession, as Example 90–14 illustrates. If the specified session is not in the
session manager cache, a ValidationException is thrown.

Example 90–14 Destroying a Session in the Session Manager

SessionManager manager = SessionManager.getManager();
Server server = (Server) manager.getSession("myserversession");
…
// Destroy session by name. If the session named myserversession is not in the
// session manager cache, throw a ValidationException
manager.destroySession("myserversession");

To destroy all session instances, use the SessionManager method
destoryAllSessions, as Example 90–15 illustrates.

Example 90–15 Destroying All Sessions in the Session Manager

SessionManager manager = SessionManager.getManager();
Server server = (Server) manager.getSession("myserversession");
SessionBroker broker = (SessionBroker) manager.getSession("mysessionbroker");
…
// Destroy all sessions stored in the session manager
manager.destroyAllSessions();

Destroying Sessions in the Session Manager Instance

90-12 Developer's Guide for Oracle TopLink

91

Configuring Server Sessions 91-1

91Configuring Server Sessions

This chapter describes the various components that you must configure to use server
and client sessions.

This chapter includes the following sections:

■ Introduction to Server Session Configuration

■ Configuring Internal Connection Pools

■ Configuring External Connection Pools

91.1 Introduction to Server Session Configuration
Table 91–1 lists the configurable options for server sessions.

Table 91–1 Configurable Options for Server Sessions

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Internal connection pools (see Section 91.2, "Configuring Internal
Connection Pools")

Primary mapping project (see Section 89.2, "Configuring a
Primary Mapping Project")

Session login (see Section 89.3, "Configuring a Session Login")

Logging (see Section 89.4, "Configuring Logging")

External connection pools (see Section 91.3, "Configuring
External Connection Pools")

Multiple mapping projects (see Section 89.5, "Configuring
Multiple Mapping Projects")

Performance profiler (see Section 89.6, "Configuring a
Performance Profiler")

Exception handler (see Section 89.7, "Configuring an Exception
Handler")

Session customizer class (see Section 89.8, "Configuring a Session
Customizer Class")

Server platform (see Section 89.9, "Configuring the Server
Platform")

Session event listener (see Section 89.10, "Configuring Session
Event Listeners")

Coordinated cache (see Section 103, "Configuring a Coordinated
Cache")

Integrity checker (see Section 89.11, "Configuring the Integrity
Checker")

Configuring Internal Connection Pools

91-2 Developer's Guide for Oracle TopLink

91.2 Configuring Internal Connection Pools
An internal connection pool is a collection of reusable connections to a single data
source provided by any session that persists to a data source. By default, such a
session provides both an internal read and write connection pool.

In this case, you can do the following:

■ Configure read and write connection pool options such as minimum and
maximum number of connections, alternate connection configuration, and
properties (arbitrary, application-specific named values).

■ Create named connection pools for whatever application-specific purpose you
choose.

■ Create sequence connection pools that TopLink uses exclusively for obtaining
object identifiers.

For more information about creating and configuring internal connection pools, see
the following:

■ Chapter 100, "Creating an Internal Connection Pool"

■ Chapter 101, "Configuring an Internal Connection Pool"

For more information about configuring the type of connection pool your session uses,
see Section 97.4, "Configuring External Connection Pooling".

91.3 Configuring External Connection Pools
An external connection pool is a collection of reusable connections to a single data
source provided by a JDBC driver or Java EE container.

By default, a session uses internal connection pools (see Section 91.2, "Configuring
Internal Connection Pools"). For more information about configuring a session to use
an external connection pool, see Section 97.4, "Configuring External Connection
Pooling".

Named queries (see Section 89.13, "Configuring Named Queries
at the Session Level")

Table 91–1 (Cont.) Configurable Options for Server Sessions

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

92

Configuring Exclusive Isolated Client Sessions for Virtual Private Database 92-1

92Configuring Exclusive Isolated Client
Sessions for Virtual Private Database

This chapter describes the various components that you must configure before you can
acquire an exclusive isolated client session from a server session.

This chapter includes the following sections:

■ Introduction to Exclusive Isolated Client Session Configuration

■ Using PostAcquireExclusiveConnection Event Handler

■ Using PreReleaseExclusiveConnection Event Handler

■ Using NoRowsModifiedSessionEvent Event Handler

■ Accessing Indirection

92.1 Introduction to Exclusive Isolated Client Session Configuration
Table 92–1 lists the configurable options for isolated sessions.

These options are used throughout the isolated session life cycle (see Section 87.5.1.3,
"Isolated Client Session Life Cycle").

Table 92–1 Configurable Options for Isolated Client Sessions

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Cache isolation at the descriptor level (see Section 119.13,
"Configuring Cache Isolation at the Descriptor Level")

Connection policy (see Section 89.12, "Configuring
Connection Policy")

Oracle Database proxy authentication using Java (see
Section 98.8.1, "How to Configure Oracle Database Proxy
Authentication Using Java")

PostAcquiredExclusiveConnection event handler (see
Section 92.2, "Using PostAcquireExclusiveConnection
Event Handler")

PreReleaseExclusiveConnection event handler (see
Section 92.3, "Using PreReleaseExclusiveConnection Event
Handler")

NoRowsModifiedSessionEvent event handler (see
Section 92.4, "Using NoRowsModifiedSessionEvent Event
Handler")

ValidationException handler (see Section 92.5, "Accessing
Indirection")

Using PostAcquireExclusiveConnection Event Handler

92-2 Developer's Guide for Oracle TopLink

92.2 Using PostAcquireExclusiveConnection Event Handler
TopLink raises this event after an exclusive connection is allocated to an isolated
session after the user has logged in to the database with it.

If you are using Oracle Database proxy authentication (see Section 96.1.4.2, "Oracle
Database Proxy Authentication"), then you do not need to implement this session
event handler.

If you are not using Oracle Database proxy authentication, then, as part of the isolated
session life cycle, you must implement a SessionEventListener for
SessionEvent.PostAcquireExclusiveConnection.

92.2.1 How to Use Java
The SessionEvent.PostAcquireExclusiveConnection event listener is your
opportunity to authenticate your user and interact with the underlying database
platform: for example, to execute PL/SQL to create VPD packages and set VPD
context information.

Example 92–1 illustrates a typical session event listener used to handle
postAcquireExclusiveConnection events for an isolated session.

Example 92–1 Session Event Listener for an Isolated Session

class VPDEventListener extends SessionEventAdaptor{
public void postAcquireExclusiveConnection(SessionEvent event){

ClientSession session = (ClientSession)event.getSession();
// Get property set on the ConnectionPolicy prior to acquiring the connection
String userLevel = session.getConnectionPolicy().getProperty("userLevel");
// Make the Stored Procedure call for VPD to set up the Context Information
session.executeNonSelectingSQL("StoreProcSetContextUser("+ userLevel + ")");

}
}

To get the required user credentials, use ClientSession method
getConnectionPolicy to get the associated ConnectionPolicy, and then use
ConnectionPolicy method getProperty. The ConnectionPolicy associated
with the ClientSession should contain all required user credentials (see
Section 89.12, "Configuring Connection Policy").

After you implement the required SessionEventListener, add it to the parent
server session from which you acquire your isolated client session. For more
information, see Section 89.10, "Configuring Session Event Listeners".

92.3 Using PreReleaseExclusiveConnection Event Handler
TopLink raises a SessionEvent.PreReleaseExclusiveConnection event after
you call the isolated session method release.

If you are using Oracle Database proxy authentication (see Section 96.1.4.2, "Oracle
Database Proxy Authentication"), then you do not need to implement this session
event handler.

Note: You must add this session event listener to the server session
from which you acquire your isolated client session. You cannot add
them to the isolated client session itself. For more information, see
Section 89.10, "Configuring Session Event Listeners"

Using NoRowsModifiedSessionEvent Event Handler

Configuring Exclusive Isolated Client Sessions for Virtual Private Database 92-3

If you are not using Oracle Database proxy authentication, then as part of the isolated
session life cycle, you must implement a SessionEventListener for
SessionEvent.PreReleaseExclusiveConnection.

92.3.1 How to Use Java
The SessionEvent.PreReleaseExclusiveConnection event listener gives you
an opportunity to interact with the underlying database platform: for example, to
perform any VPD-specific cleanup such as executing PL/SQL to delete VPD packages
or context information.

Example 92–1 illustrates a typical session event listener used to handle
preReleaseExclusiveConnection events for an isolated session.

Example 92–2 Session Event Listener for an Isolated Session

class VPDEventListener extends SessionEventAdaptor{
public void preReleaseExclusiveConnection(SessionEvent event){

Session session event.getSession();
// Make the Stored Procedure call for VPD to reset the Context Information
session.executeNonSelectingSQL("StoreProcResetContext()");

}
}

To get the required user credentials, use ClientSession method
getConnectionPolicy to get the associated ConnectionPolicy, and then use
ConnectionPolicy method getProperty. The ConnectionPolicy associated
with the ClientSession should contain all required user credentials (see
Section 89.12, "Configuring Connection Policy").

After you implement the required SessionEventListener, add it to the parent
server session, from which you acquire your isolated client session. For more
information, see Section 89.10, "Configuring Session Event Listeners".

92.4 Using NoRowsModifiedSessionEvent Event Handler
As part of your general error handling strategy, you should implement a
SessionEventListener for SessionEvent.NoRowsModifiedSessionEvent.

TopLink raises this event when an update or delete query is executed against the
database, but no rows are updated, that is, a zero row count is returned.

If optimistic locking is not enabled and you query the database and violate your VPD
security configuration, no exception is thrown: the query simply returns zero rows
updated.

If optimistic locking is enabled and you query the database and violate your VPD
security configuration, an OptimisticLockException is thrown even though the
root cause of the failure was a security violation, not an optimistic locking issue.

Note: You must add this session event listener to the server session
from which you acquire your isolated client session. You cannot add
them to the isolated client session itself. For more information, see
Section 89.10, "Configuring Session Event Listeners"

Accessing Indirection

92-4 Developer's Guide for Oracle TopLink

92.4.1 How to Use Java
This event listener gives you an opportunity to determine whether the update failure
was due to a security violation (in which case you should not retry the operation), or
due to an optimistic lock issue (in which case a retry may be appropriate).

You can use the existing session event API, such as getQuery().getResult(), to
get the affected object, if any.

After you implement the required SessionEventListener, add it to the parent
server session, from which you acquire your isolated client session. For more
information, see Section 89.10, "Configuring Session Event Listeners".

92.5 Accessing Indirection
As part of your general error handling strategy, your application should be prepared
to handle a ValidationException of type ISOLATED_SESSION_IS_NO_LONGER_
AVAILABLE.

TopLink throws an ISOLATED_SESSION_IS_NO_LONGER_AVAILABLE when a client
triggers the indirection (lazy loading) on an isolated object when the isolated session
used to load that object is no longer available, that is, after you call the isolated session
method release.

Fore more information, see the following:

■ Section 87.2.9, "Exception Handlers"

■ Section 89.7, "Configuring an Exception Handler"

Note: You must add this session event listener to the server session
from which you acquire your isolated client session. You cannot add
them to the isolated client session itself. For more information, see
Section 89.10, "Configuring Session Event Listeners"

Note: Ensure that you have instantiated every relationship that you
need prior to calling the release method: to instantiate a one-to-one
relationship, call the get method; to instantiate a one-to-many
relationship, call the size method on the collection.

93

Configuring Historical Sessions 93-1

93Configuring Historical Sessions

This chapter describes the various components that you must configure in order to be
able to use historical sessions.

This chapter includes the following section:

■ Introduction to Historical Session Configuration

For more information about historical sessions, see Section 87.6, "Historical Sessions".

93.1 Introduction to Historical Session Configuration
There are two following ways to configure TopLink to access the historical versions of
objects maintained by your data source:

■ using an Oracle platform (see Section 93.1.1, "How to Configure Historical
Sessions Using an Oracle Platform")

■ using TopLink HistoryPolicy (see Section 93.1.2, "How to Configure Historical
Sessions Using a TopLink HistoryPolicy")

93.1.1 How to Configure Historical Sessions Using an Oracle Platform
Oracle9i Database (or later) automatically maintains historical versions of objects and
extends SQL with an AS_OF clause used to query this historical data. Oracle refers to
these as flashback queries.

If you configure your Session with an OraclePlatform (see Section 98.2,
"Configuring a Relational Database Platform at the Session Level") for Oracle9i
Database (or later), you can query the historical versions of objects automatically
maintained by Oracle Database.

No further session configuration is required.

For more information, see the following:

■ Section 90.5, "Acquiring a Historical Session"

■ Section 108.11, "Historical Queries".

93.1.2 How to Configure Historical Sessions Using a TopLink HistoryPolicy
If you use a schema that you designed to maintain historical versions of objects and if
that schema can be described by TopLink HistoryPolicy, you can query the
historical versions of objects maintained by your database in accordance with your
schema.

For more information, see the following:

Introduction to Historical Session Configuration

93-2 Developer's Guide for Oracle TopLink

■ Section 119.31, "Configuring a History Policy"

■ Section 90.5, "Acquiring a Historical Session"

■ Section 108.11, "Historical Queries".

94

Configuring Session Broker and Client Sessions 94-1

94Configuring Session Broker and
Client Sessions

This chapter describes the various components that you must configure in order to use
session broker sessions.

This chapter includes the following sections:

■ Introduction to Session Broker and Client Session Configuration

■ Removing, Renaming, or Adding Sessions

94.1 Introduction to Session Broker and Client Session Configuration
Table 94–1 lists the configurable options for session broker sessions.

Table 94–1 Configurable Options for Session Broker Session

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Removing, renaming, or adding sessions (see Section 94.2,
"Removing, Renaming, or Adding Sessions")

Primary mapping project (see Section 89.2, "Configuring a
Primary Mapping Project")

Session login (see Section 89.3, "Configuring a Session Login")

Logging (see Section 89.4, "Configuring Logging")

Multiple mapping projects (see Section 89.5, "Configuring
Multiple Mapping Projects")

Performance profiler (see Section 89.6, "Configuring a
Performance Profiler")

Exception handler (see Section 89.7, "Configuring an Exception
Handler")

Session customizer class (see Section 89.8, "Configuring a Session
Customizer Class")

Server platform (see Section 89.9, "Configuring the Server
Platform")

Session event listeners (see Section 89.10, "Configuring Session
Event Listeners")

Coordinated cache (see Section 103, "Configuring a Coordinated
Cache")

Integrity checker (see Section 89.11, "Configuring the Integrity
Checker")

Named queries (see Section 89.13, "Configuring Named Queries at
the Session Level")

Removing, Renaming, or Adding Sessions

94-2 Developer's Guide for Oracle TopLink

94.2 Removing, Renaming, or Adding Sessions
You can manage the sessions contained by a session broker with Oracle JDeveloper or
TopLink Workbench.

94.2.1 How to Use TopLink Workbench to Remove, Rename, or Add Sessions
To add sessions to, remove sessions from, or rename sessions in a session broker, use
this procedure:

1. Select a session broker in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

3. Click the Sessions subtab. The Sessions subtab appears.

Figure 94–1 General Tab, Sessions Subtab

To manage the sessions in this session broker, choose one of the following:

■ To remove a session, select the session in the Sessions tab’s list and click Remove.

■ To rename a session, select the session in the Sessions tab’s list and click Rename.
The Rename dialog box appears. Enter a new name and click OK.

■ To add a session, click Add Session. The Sessions dialog box appears showing a
list of all the sessions currently configured in the session configuration that owns
this session broker.

Figure 94–2 Sessions Dialog Box

Check the sessions in the Session dialog that you want to add to the session broker
and click OK.

Note: Add only sessions of the same type to any given session
broker. Do not mix sessions of different types within a session broker.

95

Configuring Database Sessions 95-1

95Configuring Database Sessions

This chapter describes the various components that you must configure in order to use
database sessions.

This chapter includes the following sections:

■ Introduction to Database Session Configuration

■ Configuring External Connection Pools

95.1 Introduction to Database Session Configuration
Table 95–1 lists the configurable options for database sessions.

Table 95–1 Configurable Options for Database Session

Option
Oracle
JDeveloper

TopLink
Workbench Java

External connection pools (see Section 95.2, "Configuring
External Connection Pools")

Primary mapping project (see Section 89.2, "Configuring a
Primary Mapping Project")

Session login (see Section 89.3, "Configuring a Session Login")

Logging (see Section 89.4, "Configuring Logging")

Multiple mapping projects (see Section 89.5, "Configuring
Multiple Mapping Projects")

Performance profiler (see Section 89.6, "Configuring a
Performance Profiler")

Exception handler (see Section 89.7, "Configuring an Exception
Handler")

Session customizer class (see Section 89.8, "Configuring a
Session Customizer Class")

Server platform (see Section 89.9, "Configuring the Server
Platform")

Session event listeners (see Section 89.10, "Configuring Session
Event Listeners")

Coordinated cache (see Chapter 103, "Configuring a
Coordinated Cache")

Integrity checker (see Section 89.11, "Configuring the Integrity
Checker")

Named queries (see Section 89.13, "Configuring Named
Queries at the Session Level")

Configuring External Connection Pools

95-2 Developer's Guide for Oracle TopLink

95.2 Configuring External Connection Pools
Unlike a server session, a database session does not provide internal connection pools.
A database session only has a single database connection that it uses for its life cycle.

Oracle recommends that you use a server and client session in a three-tier
environment. Alternatively, you can use a database session with an external
connection pool (see Section 97.4, "Configuring External Connection Pooling"): in this
case, you should allocate a new database session per user/thread or request.

The usage of an external connection pool reduces the number of the database session
login and logout attempts to acquire the database connection.

WARNING: Do not allow the concurrent use of a database session
by multiple users/threads.

Part XXII
Part XXII Data Access

This part describes how TopLink defines connections to a data source. It contains the
following chapters:

■ Chapter 96, "Introduction to Data Access"

This chapter describes each of the different TopLink data source login types and
important data access concepts.

■ Chapter 97, "Configuring a Data Source Login"

This chapter explains how to configure TopLink data source login options
common to two or more data source login types.

■ Chapter 98, "Configuring a Database Login"

This chapter explains how to configure a TopLink database login for a session
used in a relational project.

■ Chapter 99, "Configuring an EIS Login"

This chapter explains how to configure a TopLink EIS login for a session used in
an EIS project.

■ Chapter 100, "Creating an Internal Connection Pool"

This chapter explains how to create an internal connection pool.

■ Chapter 101, "Configuring an Internal Connection Pool"

This chapter explains how to configure an internal connection pool.

96

Introduction to Data Access 96-1

96Introduction to Data Access

One of the most important functions of a session is to provide access to a data source.
This chapter explains session components specific to accessing a data source.

This chapter includes the following sections:

■ Data Access Concepts

■ Data Access API

96.1 Data Access Concepts
This section describes concepts unique to TopLink data access, including the
following:

■ Externally Managed Transactional Data Sources

■ Data Source Login Types

■ Data Source Platform Types

■ Authentication

■ Connections

■ Connection Pools

96.1.1 Externally Managed Transactional Data Sources
A TopLink transactional data source is externally managed if the connection pool is
managed by a transaction service (such as an application server controlled transaction
or a JTA transaction). A JTA managed data source or connection pool is commonly
used in Java EE applications and normally required in EJB applications. Use an
externally-managed connection pool as follows:

■ Configure the session to use an ExternalTransactionController to
integrate TopLink’s unit of work with the external transaction service (see
Section 115.13, "Integrating the Unit of Work with an External Transaction
Service").

■ Use the external-transaction-control option to specify the connection’s
login and inform TopLink that the connection is maintained by the external
controller (see Section 97.4, "Configuring External Connection Pooling").

■ You may need to configure the TopLink read connection pool or sequence
connection pool to use a non-JTA connection pool in order to avoid transactional
overhead (see Section 96.1.6.3, "Default (Write) and Read Connection Pools").

For more information on transactional data sources, see the following:

Data Access Concepts

96-2 Developer's Guide for Oracle TopLink

■ Section 113.1.2.1, "JTA Controlled Transactions"

■ Section 113.1.2.2, "OTS Controlled Transactions"

■ Section 113.1.2.3, "CMP-Controlled Transactions"

Refer to Chapter 113, "Introduction to TopLink Transactions" for more information on
TopLink transactions.

96.1.2 Data Source Login Types
The login (if any) associated with a session determines how the TopLink runtime
connects to the project’s data source.

A login includes details of data source access, such as authentication, use of connection
pools, and use of external transaction controllers. A Login owns a data source
platform.

A data source platform includes options specific to a particular data source including
such as binding, use of native SQL, use of batch writing, and sequencing. For more
information about platforms, see Section 96.1.3, "Data Source Platform Types".

For projects that do not persist to a data source, a login is not required. For projects
that do persist to a data source, a login is always required.

In TopLink Workbench, the project type determines the type of login that the project
uses, if applicable.

You can use a login in a variety of roles. A login’s role determines where and how you
create it. The login role you choose depends on the type of project you are creating and
how you intend to use the login, as follows:

■ Section 15.2.4.1, "POJO Session Role"

■ Section 15.2.4.2, "CMP Deployment Role"

■ Section 15.2.4.3, "Development Role"

There is a session login type for each project type that persists to a data source. The
following are the types:

■ DatabaseLogin

■ EISLogin

Note that there is no XML login. TopLink XML projects are used for nonpersistent,
in-memory object to XML data transformation and consequently there is no data
source to log in to. For more information about persistent and nonpersistent projects,
see Section 15.2.3, "Persistent and Nonpersistent Projects".

For additional information, see the following:

■ Section 15.2.4, "Projects and Login"

■ Section 97.1, "Configuring Common Data Source Login Options"

96.1.2.1 DatabaseLogin
If you are creating a project that accesses a relational database, you must configure the
project with a DatabaseLogin. Your choice of DatabasePlatform further
customizes your project for a particular type of database (see Section 96.1.3.1,
"Database Platforms").

For more information, see Section 98.1, "Introduction to Database Login
Configuration".

Data Access Concepts

Introduction to Data Access 96-3

96.1.2.2 EISLogin
If you are creating a project that accesses a nonrelational data source using a JCA
adapter, you must configure the project with an EISLogin. Your choice of
EISPlatform further customizes your project for a particular JCA adapter and
specifies what record type TopLink uses to exchange data with the EIS (see
Section 96.1.3.2, "EIS Platforms").

For more information, see Section 99.1, "Introduction to EIS Login Configuration".

96.1.3 Data Source Platform Types
TopLink abstracts the details of your underlying data source using data source
platform classes. TopLink provides the following data source platforms:

■ Database Platforms

■ EIS Platforms

A data source platform is owned by your project’s Login. For more information about
logins, see Section 96.1.2, "Data Source Login Types".

To configure most platform options, you must use an amendment method (see
Section 119.35, "Configuring Amendment Methods"), or a preLogin event listener
(see Section 87.2.5, "Managing Session Events with the Session Event Manager").

96.1.3.1 Database Platforms
TopLink interacts with databases using structured query language (SQL). Because each
database platform uses its own variation on the basic SQL language, TopLink must
adjust the SQL it uses to communicate with the database to ensure that the application
runs smoothly.

The type of database platform you choose determines the specific means by which the
TopLink runtime accesses the database, including the type of Java Database
Connectivity (JDBC) driver to use. JDBC is an application programming interface
(API) that gives Java applications access to a database. TopLink relational projects rely
on JDBC connections to read objects from, and write objects to, the database. TopLink
applications use either individual JDBC connections or a JDBC connection pool (see
Section 96.1.6, "Connection Pools"), depending on the application architecture.

TopLink provides a variety of database-specific platforms that let you customize your
project for your target database.

Oracle Database platforms are located in
oracle.toplink.platform.database.oracle package and include the
following:

■ Oracle8Platform

■ Oracle9Platform

■ Oracle10Platform

■ Oracle11Platform

Non-Oracle Database platforms are located in
oracle.toplink.platform.database package and include the following:

■ AccessPlatform for Microsoft Access databases

■ AttunityPlatform for Attunity Connect JDBC drivers

■ CloudscapePlatform

Data Access Concepts

96-4 Developer's Guide for Oracle TopLink

■ DB2MainframePlatform

■ DB2Platform

■ DBasePlatform

■ DerbyPlatform

■ HSQLPlatform

■ InformixPlatform

■ JavaDBPlatform

■ MySQL4Platform

■ PointBasePlatform

■ PostgreSQLPlatform

■ SQLAnyWherePlatform

■ SQLServerPlatform

■ SybasePlatform

■ TimesTen7Platform for TimesTen 7 database

Specify your database platform at the project level (see Section 20.2, "Configuring
Relational Database Platform at the Project Level") for all sessions, or override this
project-level configuration at the session level (see Section 98.2, "Configuring a
Relational Database Platform at the Session Level").

If you set your database platform in TopLink Workbench, then TopLink Workbench
manages the database platform configuration for you automatically.

96.1.3.2 EIS Platforms
TopLink interacts with an EIS data source indirectly by way of a JCA adapter. TopLink
abstracts the details of an EIS data source using the
oracle.toplink.eis.EISPlatform class.

The type of EIS platform you choose determines the specific means by which the
TopLink runtime accesses the EIS, including the type of JCA adapter to use. TopLink
EIS projects rely on EIS connections to read objects from, and write objects to, the EIS.
TopLink applications use individual EIS connections returned by the EIS connection
factory specified by the EIS platform.

TopLink provides a variety of EISPlaform classes that let you customize your project
for your target EIS.

EIS platforms for production are located in oracle.toplink.eis.adapters
package and include the following:

■ oracle.toplink.eis.adapters.aq.AQPlatform to access an EIS using
Oracle Advanced Queuing messages.

■ oracle.toplink.eis.adapters.attunity.AttunityPlatform to access
an EIS using an Attunity JCA adapter.

■ oracle.toplink.eis.adapters.jms.JMSPlatform to access an EIS using
JMS messages.

■ oracle.toplink.eis.adapters.mqseries.MQPlatform to access an EIS
using IBM MQSeries messages.

Data Access Concepts

Introduction to Data Access 96-5

EIS platforms for testing are also located in oracle.toplink.eis.adapters and
include the following:

■ oracle.toplink.eis.adapters.blackbox.BlackBoxPlatform for testing
your EIS project with the Sun BlackBox reference adapter using indexed records
only.

■ oracle.toplink.eis.adapters.xmlfile.XMLFilePlatform for testing
your EIS project with an EIS emulated as one or more XML files in the local file
system using XML records.

Specify your EIS platform at the session level (see Section 99.2, "Configuring an EIS
Data Source Platform at the Session Level").

If you set your platform in TopLink Workbench, then TopLink Workbench manages
the EIS platform configuration for you automatically.

96.1.4 Authentication
Authentication is the means by which a data source validates a user’s identity and
determines whether or not the user has sufficient privileges to perform a given action.

For two-tier applications, simple JDBC authentication is usually sufficient (see
Section 96.1.4.1, "Simple JDBC Authentication").

For three-tier applications, you can use simple JDBC authentication or, proxy
authentication (see Section 96.1.4.2, "Oracle Database Proxy Authentication") when
using the Oracle Call Interface (OCI) JDBC driver.

Authentication plays a central role in data security and user accountability and
auditing (see Section 96.1.4.3, "Auditing").

96.1.4.1 Simple JDBC Authentication
When you configure a TopLink database login with a user name and password
(Section 97.2, "Configuring User Name and Password"), TopLink provides these
credentials to the JDBC driver that you configure your application to use (see
Section 98.3, "Configuring Database Login Connection Options").

By default, TopLink writes passwords to and reads them from the sessions.xml file
in encrypted form using JCE encryption. Optionally, you can configure a different
encryption class (see Section 97.3, "Configuring Password Encryption").

96.1.4.2 Oracle Database Proxy Authentication
TopLink supports proxy authentication with Oracle Database in JSE applications and
JEE applications using OC4J native or managed data sources with Oracle JDBC driver
release 10.1.0.2.0 or later and external connection pools (see Section 96.1.6.2, "External
Connection Pools") only.

Oracle Database proxy authentication delivers the following security benefits:

■ A limited trust model, by controlling the users on whose behalf middle tiers can
connect, and the roles the middle tiers can assume for the user.

■ Scalability, by supporting user sessions through Oracle Call Interface (OCI) and
thick JDBC, and eliminating the overhead of reauthenticating clients.

Note: TopLink does not support Oracle Database proxy
authentication with JTA.

Data Access Concepts

96-6 Developer's Guide for Oracle TopLink

■ Accountability, by preserving the identity of the real user through to the database,
and enabling auditing of actions taken on behalf of the real user.

■ Flexibility, by supporting environments in which users are known to the database,
and in which users are merely "application users" of which the database has no
awareness.

For more information about authentication in Oracle Database, see "Preserving User
Identity in Multitiered Environments" in the Oracle Database Security Guide.

Configure your TopLink database login to use proxy authentication (see Section 98.8,
"Configuring Oracle Database Proxy Authentication") to do the following:

■ address the complexities of authentication in a three-tier architecture (such as
client-to-middle-tier and middle-tier-to-database authentication, and client
reauthentication through the middle -tier to the database)

■ enhance database audit information (for even triggers and stored procedures) by
using a specific user for database operations, rather than the generic pool user

■ simplify VPD/OLS configuration (see Section 87.5.1, "Isolated Client Sessions and
Oracle Virtual Private Database (VPD)") by using a proxy user, rather than setting
user information directly in the session context with stored procedures

96.1.4.3 Auditing
Regardless of what type of authentication you choose, TopLink logs the name of the
user associated with all database operations. Example 96–1 shows the CONFIG level
TopLink logs when a ServerSession connects through the main connection for the
sample user "scott", and a ClientSession uses proxy connection "jeff".

Example 96–1 TopLink Logs with Oracle Database Proxy Authentication

[TopLink
Config]--ServerSession(13)--Connection(14)--Thread(Thread[main,5,main])--connecting(DatabaseL
ogin(platform=>Oracle9Platform user name=> "scott" connector=>OracleJDBC10_1_0_
2ProxyConnector datasource name=>DS))
[TopLink Config]--ServerSession(13)--Connection(34)--Thread(Thread[main,5,main])--Connected:
jdbc:oracle:thin:@localhost:1521:orcl
User: SCOTT
[TopLink
Config]--ClientSession(53)--Connection(54)--Thread(Thread[main,5,main])--connecting(DatabaseL
ogin(platform=>Oracle9Platform user name=> "scott" connector=>OracleJDBC10_1_0_
2ProxyConnector datasource name=>DS))
[TopLink Config]--ClientSession(53)--Connection(56)--Thread(Thread[main,5,main])--Connected:
jdbc:oracle:thin:@localhost:1521:orcl
User: jeff

For more information on configuring TopLink log level and log options, see
Section 89.4, "Configuring Logging".

Your database server likely provides additional user auditing options. Consult your
database server documentation for details.

Alternatively, you may consider using the TopLink unit of work in conjunction with
your database schema for auditing purposes (see Section 115.12, "Implementing User
and Date Auditing with the Unit of Work").

Note: Oracle Database supports proxy authentication in three-tiers
only; it does not support it across multiple middle tiers.

Data Access Concepts

Introduction to Data Access 96-7

96.1.5 Connections
A connection is an object that provides access to a data source by way of the driver
you configure your application to use (see Section 98.3, "Configuring Database Login
Connection Options"). Relational projects use JDBC to connect to the data source; EIS
and XML projects use JCA. TopLink uses the interface
oracle.toplink.internal.databaseaccess.Accessor to wrap data source
connections. This interface is accessible from certain events (see Section 16.2.8,
"Descriptor Event Manager").

Typically, when using a server session, TopLink uses a a different connection for both
reading and writing. This lets you use nontransactional connections for reading and
avoid maintaining connections when not required. See Section 115.15.1.4, "Reading
Through the Write Connection" and Exclusive Write Connections for more
information.

By default, a TopLink server session acquires connections lazily: that is, only during
the commit operation of a unit of work. Alternatively, you can configure TopLink to
acquire a write connections at the time you acquire a client sessions (see Lazy
Connection Acquisition).

Connections can be allocated from internal or external connection pools (see
Section 96.1.6, "Connection Pools").

96.1.6 Connection Pools
A connection pool is a service that creates and maintains a shared collection (pool) of
data source connections on behalf of one or more clients. The connection pool provides
a connection to a process on request, and returns the connection to the pool when the
process is finished using it. When it is returned to the pool, the connection is available
for other processes. Because establishing a connection to a data source can be
time-consuming, reusing such connections in a connection pool can improve
performance.

TopLink uses connection pools to manage and share the connections used by server
and client sessions. This feature reduces the number of connections required and
allows your application to support many clients.

You can configure your session to use internal connection pools provided by TopLink
or external connection pools provided by a JDBC driver or Java EE container.

You can use connection pools in your TopLink application for a variety of purposes,
such as reading, writing, sequencing, and other application-specific functions.

This section describes the following:

■ Internal Connection Pools

■ External Connection Pools

■ Default (Write) and Read Connection Pools

■ Sequence Connection Pools

■ Application-Specific Connection Pools

96.1.6.1 Internal Connection Pools
For non-Java EE applications, you typically use internal connection pools. By default,
TopLink sessions use internal connection pools.

Using internal connection pools, you can use TopLink Workbench to configure the
default (write) and read connection pools (see Section 96.1.6.3, "Default (Write) and

Data Access Concepts

96-8 Developer's Guide for Oracle TopLink

Read Connection Pools") and you can create additional connection pools for object
identity (see Section 96.1.6.4, "Sequence Connection Pools"), or any other purpose (see
Section 96.1.6.5, "Application-Specific Connection Pools").

Using internal connection pools, you can optimize the creation of read connections for
applications that read data only to display it and only infrequently modify data (see
Section 101.4, "Configuring a Nontransactional Read Login").

For information on selecting the type of connection pool to use, see Section 97.4,
"Configuring External Connection Pooling".

For more information on creating and configuring internal connection pools, see the
following:

■ Section 100.1, "Introduction to the Internal Connection Pool Creation"

■ Section 101.1, "Introduction to the Internal Connection Pool Configuration"

96.1.6.2 External Connection Pools
For Java EE applications, you typically use external connection pools.

If you are using an external transaction controller (JTA), you must use external
connection pools to integrate with the JTA (see Section 115.13, "Integrating the Unit of
Work with an External Transaction Service").

Using external connection pools, you can use either TopLink Workbench or Java to
configure the default (write) and read connection pools (see Section 96.1.6.3, "Default
(Write) and Read Connection Pools") and create additional connection pools for object
identity (see Section 96.1.6.4, "Sequence Connection Pools"), or any other purpose (see
Section 96.1.6.5, "Application-Specific Connection Pools").

For more information on selecting the type of connection pool to use, see Section 97.4,
"Configuring External Connection Pooling".

96.1.6.3 Default (Write) and Read Connection Pools
A server session provides a read connection pool and a write connection pool. These
could be different pools, or if you use external connection pooling, the same
connection pool.

All read queries use connections from the read connection pool and all queries that
write changes to the data source use connections from the write connection pool. You
can configure attributes of the default read and write connection pools.

Whenever a new connection is established, TopLink uses the connection configuration
you specify in your session’s DatasourceLogin. Alternatively, when you use an
external transaction controller, you can define a separate connection configuration for
a read connection pool to avoid the additional overhead, if appropriate (see
Section 101.4, "Configuring a Nontransactional Read Login").

For more information on configuring read and write connection pools, see
Section 101.1, "Introduction to the Internal Connection Pool Configuration".

96.1.6.4 Sequence Connection Pools
An essential part of maintaining object identity (see Section 102.2.1, "Cache Type and
Object Identity") is sequencing–managing the assignment of unique values to
distinguish one instance from another. For more information, see Section 15.2.6,
"Projects and Sequencing".

Sequencing involves reading and writing a special sequence resource maintained by
your data source.

Data Access Concepts

Introduction to Data Access 96-9

By default, TopLink includes sequence operations in a separate transaction. This
avoids complications during the write transaction, which may lead to deadlocks over
the sequence resource. However, when using an external transaction controller (such
as a JTA data source or connection pool), TopLink cannot use a different transaction for
sequencing. Use a sequence connection pool to configure a non-JTA transaction pool
for sequencing. This is required only for table sequencing–not native sequencing.

In each server session, you can create one connection pool, called a sequence
connection pool, that TopLink uses exclusively for sequencing. With a sequence
connection pool, TopLink satisfies a request for a new object identifier outside of the
transaction from which the request originates. This allows TopLink to immediately
commit an update to the sequence resource, which avoids deadlocks.

You should use a sequence connection pool, if the following applies:

■ You use table sequencing (that is, non-native sequencing). See Section 18.2.2.1,
"Table Sequencing" and Section 18.2.2.2, "Unary Table Sequencing" for more
information.

■ You use external transaction controller (JTA).

You should not use a sequence connection pool, if the following applies:

■ You do not use sequencing, or use the data source’s native sequencing (see
Section 18.2.2.5, "Native Sequencing with an Oracle Database Platform" and
Section 18.2.2.6, "Native Sequencing with a Non-Oracle Database Platform").

■ You have configured the sequence table to avoid deadlocks.

■ You use non-JTA data sources.

For more information, see the following:

■ Section 100.1, "Introduction to the Internal Connection Pool Creation"

■ Section 101.1, "Introduction to the Internal Connection Pool Configuration"

96.1.6.5 Application-Specific Connection Pools
When you use internal TopLink connection pools in a session, you can create one or
more connection pools that you can use for any application purpose. These are called
named connection pools, as you can give them any name you want and use them for
any purpose.

Typically, use these named connection pools to provide pools of different security
levels. For example, the "default" connection pool may only allow access to specific
tables but the "admin" connection pool may allow access to all tables.

For more information, see the following:

■ Section 100.1, "Introduction to the Internal Connection Pool Creation"

■ Section 101.1, "Introduction to the Internal Connection Pool Configuration"

■ Section 90.4.4, "How to Acquire a Client Session that Uses a Named Connection
Pool"

Note: If you use a sequence connection pool and the original
transaction fails, the sequence operation does not roll back.

Data Access API

96-10 Developer's Guide for Oracle TopLink

96.2 Data Access API
This section describes the following:

■ Login Inheritance Hierarchy

■ Platform Inheritance Hierarchy

96.2.1 Login Inheritance Hierarchy
Example 96–2 illustrates the login types that are derived from abstract class
oracle.toplink.sessions.DatasourceLogin.

Example 96–2 Login Inheritance Hierarchy

class oracle.toplink.sessions.DatasourceLogin
class oracle.toplink.sessions.DatabaseLogin
class oracle.toplink.eis.EISLogin

96.2.2 Platform Inheritance Hierarchy
Example 96–3 illustrates the platform type class hierarchy.

Example 96–3 Platform Inheritance Hierarchy

oracle.toplink.platform.database
AccessPlatform
AttunityPlatform
CloudscapePlatform
DatabasePlatform
DB2MainframePlatform
DB2Platform
DBasePlatform
Derbylatform
HSQLPlatform
InformixPlatform
JavaDBPlatform
PointBasePlatform
PostgreeSQLPlatform
SQLAnyWherePlatform
SQLServerPlatform
SybasePlatform
TimesTen7Platform

oracle.toplink.platform.database.oracle
Oracle8Platform
Oracle9Platform
Oracle10Platform
Oracle11Platform
OraclePlatform

97

Configuring a Data Source Login 97-1

97Configuring a Data Source Login

This chapter describes how to configure TopLink data source logins.

This chapter includes the following sections:

■ Configuring Common Data Source Login Options

■ Configuring User Name and Password

■ Configuring Password Encryption

■ Configuring External Connection Pooling

■ Configuring Properties

■ Configuring a Default Null Value at the Login Level

Table 97–1 lists the types of TopLink data source logins that you can configure and
provides a cross-reference to the type-specific chapter that lists the configurable
options supported by that type.

Table 97–2 lists the configurable options shared by two or more TopLink data source
login types.

When using the sessions.xml file to configure login information, TopLink will
override any login information in the project.xml and instead use the information
from the sessions.xml configuration.

For more information, see the following:

■ Chapter 96, "Introduction to Data Access"

■ Section 20.4, "Configuring Login Information at the Project Level"

97.1 Configuring Common Data Source Login Options
Table 97–2 lists the configurable options shared by two or more TopLink data source
login types. In addition to the configurable options described here, you must also
configure the options described for the specific data source login types (see
Section 96.1.2, "Data Source Login Types"), as shown in Table 97–1

Table 97–1 Configuring TopLink Data Source Logins

If you are configuring a... See...

DatabaseLogin Chapter 98, "Configuring a Database Login"

EISLogin Chapter 99, "Configuring an EIS Login"

Configuring User Name and Password

97-2 Developer's Guide for Oracle TopLink

97.2 Configuring User Name and Password
Optionally, you can specify the user name and password of a login.

Oracle recommends that you do not save the password with a deployment login.

If you specify a password, using a TopLink tool or Java, enter the plain text (not
encrypted) value. TopLink will encrypt the password using JCE encryption.

By default, TopLink writes passwords to and read passwords from the
sessions.xml file in encrypted form using JCE encryption.

By default, TopLink does not write passwords to and read passwords from the
project.xml file unless you configure your project-level data source login
accordingly. When you configure TopLink to write passwords and read passwords
from the project.xml file, by default, it does so in encrypted form using JCE
encryption.

For more information, see the following:

■ Section 20.4, "Configuring Login Information at the Project Level"

■ Section 97.3, "Configuring Password Encryption"

97.2.1 How to Configure User Name and Password Using TopLink Workbench
To specify a user name and password, use this procedure:

1. Select a server or database session in the Navigator. Its properties appear in the
Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Connection subtab. The Connection subtab appears.

Table 97–2 Common Data Source Login Options

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

User name and password (see Section 97.2, "Configuring User
Name and Password")

Password encryption (see Section 97.3, "Configuring
Password Encryption")

External connection pooling (see Section 97.4, "Configuring
External Connection Pooling")

Properties (see Section 97.5, "Configuring Properties")

Default null value (see Section 97.6, "Configuring a Default
Null Value at the Login Level")

Configuring Password Encryption

Configuring a Data Source Login 97-3

Figure 97–1 Login Tab, Connection Subtab, User Name and Password Fields

4. Enter a user name and password in plain text (not encrypted).

Enter a user name and password in plain text (not encrypted).

See Also
Configuring User Name and Password

See Also
Configuring User Name and Password

97.3 Configuring Password Encryption
By default, TopLink writes passwords to and read passwords from the
sessions.xml file in encrypted form using JCE encryption.

By default, TopLink does not write passwords to and read passwords from the
project.xml file unless you configure your project-level data source login
accordingly. When you configure TopLink to write passwords and read passwords
from the project.xml file, by default, it does so in encrypted form using JCE
encryption.

You can implement your own encryption class and configure your session
DatasourceLogin to use it.

Currently, neither Oracle JDeveloper nor TopLink Workbench support specifying the
encryption class used. To change the encryption class used, you must modify the login
in Java.

For more information, see the following:

■ Section 20.4, "Configuring Login Information at the Project Level"

■ Section 97.2, "Configuring User Name and Password"

97.3.1 How to Configure Password Encryption Using Java
To configure a password encryption class, follow this procedure:

1. Create your encryption class.

Your encryption class must implement the
oracle.toplink.internal.security.Securable interface, as
Example 97–1 shows.

Configuring External Connection Pooling

97-4 Developer's Guide for Oracle TopLink

Example 97–1 Custom Encryption Class Implementing Securable

import oracle.toplink.internal.security.Securable;

public class MyEncryptor implements Securable {

public String encryptPassword(String pswd) {
...
}

public String decryptPassword(String encryptedPswd) {
...
}

}

2. Create a session event listener class for the preLogin event that calls
DatasourceLogin method setEncryptionClassName to configure your
session with your encryption class.

Use the SessionEventAdapter to simplify your session event listener, as
Example 97–2 shows.

Example 97–2 Specifying a Custom Encryption Class in a Session Event Listener

import oracle.toplink.tools.sessionconfiguration.SessionEventAdapter;
import oracle.toplink.sessions.SessionEvent;
import oracle.toplink.sessions.Session;
import oracle.toplink.sessions.DatasourceLogin;

public class MySessionEventListener extends SessionEventAdapter {

public void preLogin(SessionEvent event) {
Session session = event.getSession();
DatasourceLogin login = session.getDatasourceLogin();
login.setEncryptionClassName(MyEncryptor.class.getName());

}
}

3. Associate your session event listener class with your session.

For more information, see Section 89.10, "Configuring Session Event Listeners".

97.4 Configuring External Connection Pooling
For non-Java EE applications, you typically use internal connection pools provided by
TopLink (see Section 96.1.6.1, "Internal Connection Pools"). In this case, you can use
Oracle JDeveloper or TopLink Workbench to configure connection pool options and to
create a sequence connection pool and application-specific (named) connection pools.

For Java EE applications, you typically use external connection pools provided by a
JDBC driver or Java EE container (see Section 96.1.6.2, "External Connection Pools").
Optionally, you can configure a read connection pool to use a nontransactional login,
and you can configure a sequence connection pool to use a separate (preferably
nontransactional) login of its own.

Because JTA external transaction controllers are dependent upon the external
transaction service that the application server provides, you must configure TopLink
to use external connection pools if you are using an external transaction controller (see
Section 115.13, "Integrating the Unit of Work with an External Transaction Service").

External connection pools enable your TopLink application to do the following:

■ Integrate into a Java EE-enabled system.

Configuring External Connection Pooling

Configuring a Data Source Login 97-5

■ Integrate with JTA transactions (JTA transactions require a JTA-enabled data
source).

■ Leverage a shared connection pool in which multiple applications use the same
data source.

■ Use a data source configured and managed directly on the server.

For more information about connection pools, see Section 96.1.6, "Connection Pools".

97.4.1 How to Configure External Connection Pooling Using TopLink Workbench
To specify if the session login uses external connection pooling, use this procedure:

1. Configure a data source on the application server.

If you are using the external connection pool with an external transaction
controller (see Section 89.9, "Configuring the Server Platform"), be sure to
configure a JTA-enabled data source.

For more information, see your Java EE container documentation.

2. Select a server or database session in the Navigator. Its properties appear in the
Editor.

3. Click the Login tab. The Login tab appears.

4. Click the Connection subtab. The Connection subtab appears.

Figure 97–2 Login Tab, Connection Subtab, External Connection Pooling Field,
Database Driver

Figure 97–3 Connection Tab, External Connection Pooling Field, Java EE Data Source

Configuring Properties

97-6 Developer's Guide for Oracle TopLink

Specify if this login uses External Connection Pooling. For a database driver, external
connection pooling is optional. For a Java EE data source, external connection pooling
is mandatory.

97.4.2 How to Configure External Connection Pooling Using Java
To configure the use of an external connection pool in Java, do the following:

1. Configure the data source on the application server.

If you are using the external connection pool with an external transaction
controller (see Section 89.9, "Configuring the Server Platform"), be sure to
configure a JTA-enabled data source.

For more information, see your Java EE container documentation.

2. Configure the DatasourceLogin to specify the data source and to use an
external connection pool by using the useExternalConnectionPooling
method.

97.5 Configuring Properties
For all DatasourceLogin types, you can specify custom named values, called
properties. Some data sources require additional, driver-specific properties not
supported in the DatasourceLogin API (for example, see Section 12.11.1, "How to
Optimize JDBC Driver Properties"). Add these properties to the DatasourceLogin
so that TopLink can pass them to the driver.

For relational sessions, you must first enable advanced option Use Properties (see
Section 98.7, "Configuring Advanced Options").

For EIS sessions, properties are always enabled.

When using TopLink Workbench, you can only set character values, which TopLink
returns as String objects (see Section 97.5.1, "How to Configure Properties Using
TopLink Workbench").

When using Java, you can set any Object value (see Section 97.5.2, "How to
Configure Properties Using Java").

97.5.1 How to Configure Properties Using TopLink Workbench
To specify arbitrary named value pairs that TopLink associates with a
DatasourceLogin, use this procedure:

1. Select a server or database session in the Navigator. Its properties appear in the
Editor.

2. Click the Login tab. The Login tab appears.

3. If necessary, enable support for properties:

■ for relational sessions, you must first enable advanced option Use Properties
(see Section 98.7, "Configuring Advanced Options");

Note: Do not set a password as a property. Always use Oracle
JDeveloper, TopLink Workbench, or DatabaseLogin method
setPassword. For more information on configuring a password, see
Section 97.2, "Configuring User Name and Password".

Configuring a Default Null Value at the Login Level

Configuring a Data Source Login 97-7

■ for EIS sessions, properties are always enabled.

4. Click the Properties subtab. The Properties subtab appears.

Figure 97–4 Login Tab, Properties Subtab

To add (or change) a new Name/Value property, click Add (or Edit). Add Property
dialog box appears.

Use the following information to add or edit a login property on the Add Property
dialog box:

To delete an existing property, select the Name/Value row and click Remove.

97.5.2 How to Configure Properties Using Java
Using Java, you can set any Object value using DatasourceLogin method
setProperty. To remove a property, use DatasourceLogin method
removeProperty.

97.6 Configuring a Default Null Value at the Login Level
A default null value is the Java Object type and value that TopLink uses instead of
null when TopLink reads a null value from a data source.

When you configure a default null value at the login level, it applies to all mappings
used in a session. In this case, TopLink uses it to translate in one direction only: when
TopLink reads null from the data source, it converts this null to the specified type
and value.

You can also use TopLink to set a default null value on a per-mapping basis (see
Section 121.5, "Configuring a Default Null Value at the Mapping Level").

Option Description

Name The name by which TopLink retrieves the property value using
the DatasourceLogin method getProperty.

Value The value TopLink retrieves using the DatasourceLogin
method getProperty passing in the corresponding property
name.

Using TopLink Workbench, you can set only character values
that TopLink returns as String objects.

Configuring a Default Null Value at the Login Level

97-8 Developer's Guide for Oracle TopLink

97.6.1 How to Configure a Default Null Value at the Login Level Using Java
Using Java API, you can configure a default null value for all mappings used in a
session with the DatabaseLogin method
setDefaultNullValue(Class,Object).

For example:

// Defaults all null String values read from the database to empty String
session.getLogin().setDefaultNullValue(String.class, "");

Note: A default null value must be an Object. To specify a
primitive value (such as int), you must use the corresponding
Object wrapper (such as Integer).

98

Configuring a Database Login 98-1

98Configuring a Database Login

In a relational database project, TopLink retrieves the table information from the
database, for each descriptor. Each TopLink Workbench project contains an associated
database. You can create multiple logins for each database.

This chapter includes the following sections:

■ Introduction to Database Login Configuration

■ Configuring a Relational Database Platform at the Session Level

■ Configuring Database Login Connection Options

■ Configuring Sequencing at the Session Level

■ Configuring a Table Qualifier

■ Configuring JDBC Options

■ Configuring Advanced Options

■ Configuring Oracle Database Proxy Authentication

98.1 Introduction to Database Login Configuration
Table 98–1 lists the configurable options for a database login.

Table 98–1 Configurable Options for Database Login

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Relational database (see Section 98.2, "Configuring a Relational
Database Platform at the Session Level")

Database login connection options (see Section 98.3, "Configuring
Database Login Connection Options")

Sequencing (see Section 98.4, "Configuring Sequencing at the
Session Level")

JDBC options (see Section 98.6, "Configuring JDBC Options")

User name and password (see Section 97.2, "Configuring User
Name and Password")

Table qualifier (see Section 98.5, "Configuring a Table Qualifier")

Advanced options (see Section 98.7, "Configuring Advanced
Options")

Password encryption (see Section 97.3, "Configuring Password
Encryption")

External connection pooling (see Section 97.4, "Configuring
External Connection Pooling")

Configuring a Relational Database Platform at the Session Level

98-2 Developer's Guide for Oracle TopLink

98.2 Configuring a Relational Database Platform at the Session Level
For each database session, you must specify the database platform (such as Oracle
Database). This platform configuration overrides the platform at the project level, if
configured.

For more information, see the following:

■ Section 20.2, "Configuring Relational Database Platform at the Project Level"

■ Section 96.1.3, "Data Source Platform Types"

98.2.1 How to Configure a Relational Database Platform at the Session Level Using
TopLink Workbench

To specify the database platform options for a relational server (or database) session
login, use this procedure:

1. Select a relational server (or database) session in the Navigator. Its properties
appear in the Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Connection subtab. The Connection subtab appears.

Figure 98–1 Login Tab, Connection Subtab, Database Platform Option

Select the database platform from the menu of options. This menu includes all
instances of DatabasePlatform in the TopLink classpath.

98.3 Configuring Database Login Connection Options
You configure connection information at the session level for a POJO TopLink
application. This information is stored in the sessions.xml file. The TopLink
runtime uses this information whenever you perform a persistence operation using the
session in your POJO TopLink application.

Properties (see Section 97.5, "Configuring Properties")

Oracle Database proxy authentication (see Section 98.8,
"Configuring Oracle Database Proxy Authentication")

Table 98–1 (Cont.) Configurable Options for Database Login

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Configuring Database Login Connection Options

Configuring a Database Login 98-3

This connection configuration overrides the connection information at the project
level, if configured. For more information about project-level configuration, see
Section 20.5, "Configuring Development and Deployment Logins".

This connection configuration is overridden by the connection information at the
connection pool level. For more information, see Section 101.5, "Configuring
Connection Pool Connection Options".

98.3.1 How to Configure Database Login Connection Options Using TopLink
Workbench

To specify the connection options for a relational server (or database) session login, use
this procedure:

1. Select a relational server (or database) session in the Navigator. Its properties
appear in the Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Connection subtab. The Connection subtab appears.

Figure 98–2 Login Tab, Connection Subtab, Database Driver

Figure 98–3 Login Tab, Connection Subtab

Use the following information to enter data in the driver fields on the tab:

Configuring Sequencing at the Session Level

98-4 Developer's Guide for Oracle TopLink

98.4 Configuring Sequencing at the Session Level
You configure TopLink sequencing at the session or project level to tell TopLink how to
obtain sequence values: that is, what type of sequences to use.

In a CMP project, you do not configure a session directly: in this case, you must
configure sequences at the project level (see Section 20.3, "Configuring Sequencing at
the Project Level"). In a POJO project, you can configure a session directly: in this case,
you can use session-level sequence configuration to override project-level sequence
configuration, on a session-by-session basis, if required.

You can configure sequencing at the session level using Oracle JDeveloper.

Using TopLink Workbench (see Section 98.4.1, "How to Configure Sequencing at the
Session Level Using TopLink Workbench"), you can configure table sequencing (see
Section 18.2.2.1, "Table Sequencing") and native sequencing (Section 18.2.2.5, "Native
Sequencing with an Oracle Database Platform" and Section 18.2.2.6, "Native
Sequencing with a Non-Oracle Database Platform"), and you can configure a
preallocation size that applies to all sequences (see Section 18.2.3, "Sequencing and
Preallocation Size").

Field Description

Database Driver Specify the appropriate database driver:

■ Driver Manager: specify this option to configure the driver
class and URL used to connect to the database. In this case,
you must configure the Driver Class and Driver URL
fields.

■ J2EE Data Source: specify this option to use a Java EE data
source already configured on your target application server.
In this case, you must configure the Datasource Name field.

Note: If you select J2EE Datasource, you must use external
connection pooling. You cannot use internal connection pools
with this Database Driver option (for more information, see
Section 97.4, "Configuring External Connection Pooling").

Driver Class1

1 Applicable only when Database Driver is set to Driver Manager.

Configure this field when Database Driver is set to Driver
Manager. Select from the menu of options. This menu includes
all JDBC drivers in the TopLink classpath.

Driver URL1 Configure this field when Database Driver is set to Driver
Manager. Select from the menu of options relevant to the
selected Driver Class, and edit the URL to suit your data source.

Data Source Name2

2 Applicable only when Database Driver is set to J2EE Datasource.

Configure this field when Database Driver is set to J2EE
Datasource. Specify any valid JNDI name that identifies the Java
EE data source preconfigured on your target application server
(example: jdbc/EmployeeDB).

By convention, all such names should resolve to the JDBC
subcontext (relative to the standard java:comp/env naming
context that is the root of all provided resource factories).

Lookup Type2 Configure this field when Database Driver is set to J2EE
Datasource. Specify the lookup method for determining the
JNDI name:

■ Composite Name

■ Compound Name

■ String

Configuring Sequencing at the Session Level

Configuring a Database Login 98-5

Using Java (see Section 98.4.2, "How to Configure Sequencing at the Session Level
Using Java"), you can configure any sequence type that TopLink supports
(Section 18.2.2, "Sequencing Types"). You can create any number and combination of
sequences. You can create a sequence object explicitly or use the default sequence that
the platform creates. You can associate the same sequence with more than one
descriptor and you can configure a separate preallocation size for each descriptor’s
sequence.

After configuring the sequence type at the session (or project) level, to enable
sequencing, you must configure a descriptor with a sequence field and a sequence
name (see Section 23.3, "Configuring Sequencing at the Descriptor Level").

For more information about sequencing, see Section 18.2, "Sequencing in Relational
Projects".

98.4.1 How to Configure Sequencing at the Session Level Using TopLink Workbench
To specify the sequencing information for a relational server (or database) session, use
this procedure:

1. Select the session object in the Navigator.

2. Click the Login tab in the Editor.

3. Click the Sequencing subtab. The Sequencing subtab appears.

Figure 98–4 Login Tab, Sequencing Subtab

Use the following information to enter data in each field of the Sequencing subtab to
configure the persistence type:

Field Description

Preallocation Size Select the default preallocation size (see Section 18.2.3, "Sequencing
and Preallocation Size"). Default is 50. The preallocation size you
configure applies to all sequences.

Default Sequence Table Select this option to use table sequencing (see Section 18.2.2.1, "Table
Sequencing") with default sequence table name SEQUENCE, default
sequence name field SEQ_NAME, and default sequence count field
SEQ_COUNT.

Native Sequencing Select this option to use a sequencing object (see Section 18.2.2.5,
"Native Sequencing with an Oracle Database Platform" or
Section 18.2.2.6, "Native Sequencing with a Non-Oracle Database
Platform") created by the database platform. This option applies to
supported database platforms (see Section 96.1.3.1, "Database
Platforms").

Configuring Sequencing at the Session Level

98-6 Developer's Guide for Oracle TopLink

98.4.2 How to Configure Sequencing at the Session Level Using Java
Using Java, you can perform the following sequence configurations:

■ Using the Platform Default Sequence

■ Configuring Multiple Sequences

■ Configuring Query Sequencing

98.4.2.1 Using the Platform Default Sequence
After you configure your login with a platform (see Section 98.2, "Configuring a
Relational Database Platform at the Session Level"), you can use the default sequence
that the platform provides.

If you associate a descriptor with an unspecified sequence, the TopLink runtime will
create an instance of DefaultSequence to provide sequencing for that descriptor.
For more information, see Section 23.3.2.3, "Configuring the Platform Default
Sequence".

You can access the default platform sequence directly as Example 98–1 shows. For
example, by default, a DatabasePlatform creates a table sequence using the default
table and column names (see Section 18.2.2.1, "Table Sequencing").

Example 98–1 Accessing the Platform Default Sequence

// assume that dbLogin owns a DatabasePlatform
TableSequence tableSeq2 = ((TableSequence)dbLogin.getDefaultSequence()).clone();
tableSeq2.setName("EMP_SEQ");
tableSeq2.setPreallocationSize(75);
dbLogin.addSequence(tableSeq2);
To avoid having to clone the platform default sequence, you can use the
DefaultSequence class–a wrapper for the platform default sequence–as
Example 98–2 shows. The new sequence named EMP_SEQ will be of the same type as
the platform default sequence.

Example 98–2 Using the DefaultSequence Class

login.addSequence(
new DefaultSequence("EMP_SEQ", 75)

);
You can override the default platform sequence, as Example 98–3 shows. In this
example, dbLogin owns a DatabasePlatform that provides a default sequence of
type TableSequence. After setting the default sequence to type
UnaryTableSequence, when you use the DefaultSequence class, it will access the
new default sequence type. In this example, the sequence named EMP_SEQ will be of
type UnaryTableSequence and have a preallocation size of 75.

Custom Sequence Table Select this option to use table sequencing (see Section 18.2.2.1, "Table
Sequencing") with a sequence table name, sequence name field, and
sequence count field name that you specify.

Name Select the name of the sequence table.

Name Field Select the name of the column used to store the sequence name.

Counter Field Select the name of the column used to store the sequence count.

Field Description

Configuring Sequencing at the Session Level

Configuring a Database Login 98-7

Example 98–3 Overriding the Platform Default Sequence

// assume that dbLogin owns a DatabasePlatform
Sequence unaryTableSequence = new UnaryTableSequence();
unaryTableSequence.setPreallocationSize(40);
dbLogin.setDefaultSequence(unaryTableSequence);
dbLogin.addSequence(

new DefaultSequence("EMP_SEQ", 75) // UnaryTableSequence
);

98.4.2.2 Configuring Multiple Sequences
In addition to using the platform default sequence (see Section 98.4.2.1, "Using the
Platform Default Sequence"), you can explicitly create sequence instances and
configure a Login with any combination of sequence types, each with their own
preallocation size, as Example 98–4 shows. In this example, the sequence named EMP_
SEQ will provide sequence values exclusively for instances of the Employee class and
ADD_SEQ will provide sequence values exclusively for instances of the Address class.
The sequence named PHONE_SEQ will use the platform default sequence with a
preallocation size of 30 to provide sequence values for the Phone class.

Example 98–4 Configuring Multiple Sequences Explicitly

login.addSequence(new TableSequence("EMP_SEQ", 25));
login.addSequence(new DefaultSequence("PHONE_SEQ", 30));
login.addSequence(new UnaryTableSequence("ADD_SEQ", 55));
login.addSequence(new NativeSequence("NAT_SEQ", 10));
If login owned a DatabasePlatform (whose default sequence type is
TableSequence), you could configure your sequences using the platform default
sequence type, as Example 98–5 shows. In this example, sequences EMP_SEQ and
PHONE_SEQ share the same TableSequence table: EMP_SEQ and PHONE_SEQ
represent rows in this table.

Example 98–5 Configuring Multiple Sequences Using the Default Sequence Type

login.addSequence(new DefaultSequence("EMP_SEQ", 25));
login.addSequence(new DefaultSequence("PHONE_SEQ", 30));
login.addSequence(new UnaryTableSequence("ADD_SEQ", 55));
login.addSequence(new NativeSequence("NAT_SEQ", 10));

98.4.2.3 Configuring Query Sequencing
You can configure the query that TopLink uses to update or read a sequence value for
any sequence type that extends QuerySequence.

In most applications, the queries that TopLink automatically uses are sufficient.
However, if your application has special sequencing needs–for example, if you want to
use stored procedures for sequencing–then you can configure the update and read
queries that the TopLink sequence uses.

Example 98–7 illustrates how to specify a stored procedure that updates a sequence
and returns the new sequence value with a single SQL select query. In this example,
the stored procedure is named UPDATE_SEQ. It contains one input argument–the
name of the sequence to update (SEQ_NAME), and one output argument–the value of
the sequence after the updated (SEQ_COUNT). The stored procedure increments the
sequence value associated with the sequence named SEQ_NAME and returns the new
sequence value in the output argument named SEQ_COUNT.

Configuring a Table Qualifier

98-8 Developer's Guide for Oracle TopLink

Example 98–6 Using a Stored Procedure for both Sequence Update and Select

ValueReadQuery seqReadQuery = new ValueReadQuery();
StoredProcedureCall spCall = new StoredProcedureCall();
spCall.setProcedureName("UPDATE_SEQ");
seqReadQuery.addNamedArgument("SEQ_NAME");
seqReadQuery.addNamedOutputArgument("SEQ_COUNT");
seqReadQuery.setCall(spCall);
((QuerySequence)login.getDefaultSequence()).setSelectQuery(seqReadQuery);
Example 98–7 and Example 98–8 illustrate how to specify separate stored procedures
for sequence update and select actions.

In Example 98–7, the stored procedure is named UPDATE_SEQ and it contains one
input argument: the name of the sequence to update (SEQ_NAME). The stored
procedure increments the sequence value associated with the sequence named SEQ_
NAME.

Example 98–7 Using a Stored Procedure for Sequence Updates Only

DataModifyQuery seqUpdateQuery = new DataModifyQuery();
StoredProcedureCall spCall = new StoredProcedureCall();
spCall.setProcedureName("UPDATE_SEQ");
seqUpdateQuery.addNamedArgument("SEQ_NAME");
seqUpdateQuery.setCall(spCall);
((QuerySequence)login.getDefaultSequence()).setUpdateQuery(seqUpdateQuery);
In Example 98–8, the stored procedure is named SELECT_SEQ and it takes one
argument: the name of the sequence to select from (SEQ_NAME). The stored procedure
reads one data value: the current sequence value associated with the sequence name
SEQ_NAME.

Example 98–8 Using a Stored Procedure for Sequence Selects Only

ValueReadQuery seqReadQuery = new ValueReadQuery();
StoredProcedureCall spCall = new StoredProcedureCall();
spCall.setProcedureName("SELECT_SEQ");
seqReadQuery.addArgument("SEQ_NAME");
seqReadQuery.setCall(spCall);
login.((QuerySequence)getDefaultSequence()).setSelectQuery(seqReadQuery)
You can also create a QuerySequence directly and add it to your login, as
Example 98–9 shows.

Example 98–9 Using the QuerySequence Class

// Use the two-argument constructor: pass in sequence name and preallocation size.
// Alternatively, you can use zero- or one-argument (sequence name) constructor
login.addSequence(new QuerySequence("SEQ1", 75));

98.5 Configuring a Table Qualifier
Some databases (such as Oracle Database and DB2) require that all tables be qualified
by an identifier. This can be the creator of the table or database name on which the
table exists. When you specify a table qualifier, TopLink uses this qualifier for all of the
tables it references. Specify a table qualifier only if required and only if all of the tables
have the same qualifier.

98.5.1 How to Configure a Table Qualifier Using TopLink Workbench
To specify a table qualifier, use this procedure:

Configuring JDBC Options

Configuring a Database Login 98-9

1. Select a relational server (or database) session in the Navigator. Its properties
appear in the Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Options subtab. The Options subtab appears.

Figure 98–5 Login Tab, Options Subtab, Table Qualifier Field

In the Table Qualifier field enter the identifier used to qualify references to all tables
in this database.

98.5.2 How to Configure a Table Qualifier Using Java
To set the default qualifier for all tables, use the DatabaseLogin method
setTableQualifier.

98.6 Configuring JDBC Options
Most JDBC drivers support the run-time configuration of various options to customize
driver operation to meet user needs. TopLink provides direct support (in API, Oracle
JDeveloper and TopLink Workbench) for many of the most important options, as this
section describes, as well as more advanced options (see Section 98.7, "Configuring
Advanced Options").

You can also configure additional options by specifying properties (see Section 97.5,
"Configuring Properties").

98.6.1 How to Configure JDBC Options Using TopLink Workbench
To specify the JDBC options for a relational server (or database) session login, use this
procedure:

Note: Not all drivers support all JDBC options. Selecting a
combination of options may result in different behavior from one
driver to another. Before selecting JDBC options, consult your JDBC
driver documentation.

Configuring JDBC Options

98-10 Developer's Guide for Oracle TopLink

1. Select a relational server (or database) session in the Navigator. Its properties
appear in the Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Options subtab. The Options subtab appears.

Figure 98–6 Login Tab, Options Subtab, JDBC Options

Use this table to enter data in the fields on the Options subtab to select the JDBC
options to use with this session login:

Option Description

Queries Should Bind All
Parameters1

By default, TopLink binds all of the query’s parameters.

Deselect this option if you do not want TopLink to bind
parameters.

Cache All Statements1 When selected, TopLink caches each prepared statement so
that when reexecuted, you avoid the SQL preparation time
which improves performance.

Byte Array Binding1 Select this option if you query binary large object (BLOB) data.

Streams for Binding1 Select this option if you use a JDBC driver that is more efficient
at handling BLOB data using java.io.InputStream and
java.io.OutputStream.

Native SQL By default, TopLink generates SQL using JDBC SQL grammar.
Select this option if you want TopLink to use database-specific
SQL grammar, for example, if your database driver does not
support the full JDBC SQL grammar.

Configuring Advanced Options

Configuring a Database Login 98-11

98.6.2 How to Configure JDBC Options Using Java
To enable prepared statement caching for all queries, configure at the Login level, as
Example 98–10 shows. For more information, see Section 12.11.5, "How to Use
Parameterized SQL (Parameter Binding) and Prepared Statement Caching for
Optimization".

Example 98–10 Prepared Statement Caching at the Login Level

databaseLogin.cacheAllStatements();
databaseLogin.setStatementCacheSize(100);
Parameter binding is enabled by default in TopLink. To disable binding, configure at
the Login level, as Example 98–11 shows. For more information, see Section 12.11.5,
"How to Use Parameterized SQL (Parameter Binding) and Prepared Statement
Caching for Optimization".

Example 98–11 Disabling Parameter Binding at the Login Level

databaseLogin.dontBindAllParameters();
To enable JDBC batch writing, use Login method useBatchWriting, as
Example 98–12 shows:

Example 98–12 Using JDBC Batch Writing

project.getLogin().useBatchWriting();
project.getLogin().setMaxBatchWritingSize(100);

98.7 Configuring Advanced Options
Most JDBC drivers support the run-time configuration of various options to customize
driver operation to meet user needs. TopLink provides direct support (in API, Oracle
JDeveloper and TopLink Workbench) for many of the most important options (see
Section 98.6, "Configuring JDBC Options"), as well as more advanced options, as this
section describes.

Batch Writing2 Select this option if you use a JDBC driver that supports
sending groups of INSERT, UPDATE, and DELETE statements
to the database in a single transaction, rather than individually.

Select JDBC to use the batch writing capabilities of your JDBC
driver.

Select TopLink to use the batch writing capabilities that
TopLink provides. Select this option if your JDBC driver does
not support batch writing.

Note: if you are using Oracle 9 Database platform, and you
want to use TopLink batch writing in combination with
optimistic locking, then you must enable parameter binding.

String Binding1 Select this option if you query large java.lang.String
objects.

You can configure the maximum String length (default:
32000 characters).

1 For more information, see Section 12.11.5, "How to Use Parameterized SQL (Parameter Binding) and
Prepared Statement Caching for Optimization".

2 If you are using the MySQL4 database platform (see Section 96.1.3, "Data Source Platform Types"), use
JDBC batch writing (do not use TopLink batch writing). For more information, see Section 12.11.3, "How
to Use Batch Writing for Optimization".

Option Description

Configuring Advanced Options

98-12 Developer's Guide for Oracle TopLink

You can also configure additional options by specifying properties (see Section 97.5,
"Configuring Properties").

98.7.1 How to Configure Advanced Options Using TopLink Workbench
To specify the advanced options for a relational server (or database) session login, use
this procedure:

1. Select a relational server (or database) session in the Navigator. Its properties
appear in the Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Options subtab. The Options subtab appears.

Figure 98–7 Login Tab, Options Subtab, Advanced Options

Use this table to enter data in the fields on the Options subtab to select the advanced
options to use with this session login:

Note: Not all drivers support all JDBC options. Selecting a
combination of options may result in different behavior from one
driver to another. Before selecting JDBC options, consult your JDBC
driver documentation.

Option Description

Force Field Names to
Uppercase

By default, TopLink uses the case of field names as returned by
the database. If your application expects field names to be
uppercase but the database does not return consistent case (for
example, if you accessing different databases), enable this
option.

Optimize Data Conversion By default, TopLink optimizes data access by accessing the
data from JDBC in the format the application requires. If you
are using an older JDBC driver that does not perform data
conversion correctly and conflicts with this optimization,
disable this optimization.

Configuring Oracle Database Proxy Authentication

Configuring a Database Login 98-13

98.7.2 How to Configure Advanced Options Using Java
Use the following methods of DatabaseLogin to configure advanced options:

■ setShouldForceFieldNamesToUpperCase–By default, TopLink uses the case
of field names as returned by the database. If your application expects field names
to be uppercase but the database does not return consistent case (for example, if
you accessing different databases), use this method.

■ setShouldOptimizeDataConversion–By default, TopLink optimizes data
access by accessing the data from JDBC in the format the application requires. If
you are using an older JDBC driver that does not perform data conversion
correctly and conflicts with this optimization, set this to false.

■ setShouldTrimStrings–By default, TopLink discards the trailing blanks from
CHAR field values. To read and write CHAR field values literally (including any
trailing blanks), set this to false.

■ setProperties–Set this to true to enable the use of properties for this
DatabaseLogin (see Section 97.5, "Configuring Properties").

98.8 Configuring Oracle Database Proxy Authentication
You can configure a database login to use Oracle Database proxy authentication with
an Oracle Database platform in JSE applications and JEE applications using OC4J
native or managed non-JTA (you set this using tx-level=local) data sources with
Oracle JDBC driver release 10.1.0.2.0 or later and external connection pools only.

There is no Oracle JDeveloper or TopLink Workbench support for this feature. To
configure TopLink to use Oracle Database proxy authentication, you must use Java
(see Section 98.8.1, "How to Configure Oracle Database Proxy Authentication Using
Java").

For more information, see Section 96.1.4.2, "Oracle Database Proxy Authentication".

You can use TopLink support for Oracle Database proxy authentication by doing the
following:

■ Providing Authenticated Reads and Writes of Secured Data Through the Use of an
Exclusive Isolated Client Session

■ Providing Authenticated Writes for Database Auditing Purposes with a Client
Session

■ Providing Authenticated Reads and Writes with a Database Session

Providing Authenticated Reads and Writes of Secured Data Through the Use of
an Exclusive Isolated Client Session
In this configuration, the client session is an isolated client session (see Section 87.5,
"Isolated Client Sessions") that uses an exclusive proxy connection. You must acquire
the client session using a ConnectionPolicy that specifies the proxy authentication
user credentials.

Trim String By default, TopLink discards the trailing blanks from CHAR
field values. To read and write CHAR field values literally
(including any trailing blanks), disable this option.

Properties Check this option to enable the use of properties for this
DatabaseLogin (see Section 97.5, "Configuring Properties").

Option Description

Configuring Oracle Database Proxy Authentication

98-14 Developer's Guide for Oracle TopLink

Reads and writes of secured data are performed through the proxy-authenticated
connection. Reads of nonsecured data occur through nonproxy-authenticated
connections.

If you are using Oracle Virtual Private Database (VPD) (see Section 87.5.1, "Isolated
Client Sessions and Oracle Virtual Private Database (VPD)"), use this configuration to
set up VPD support entirely in the database. That is, rather than making the isolated
client session execute SQL (see Section 92.2, "Using PostAcquireExclusiveConnection
Event Handler" and Section 92.3, "Using PreReleaseExclusiveConnection Event
Handler"), the database performs the required set up in an after login trigger using the
proxy session_user.

Providing Authenticated Writes for Database Auditing Purposes with a Client
Session
In this configuration, isolated data or exclusive connections are not required. You must
acquire client session using a ConnectionPolicy that specifies the proxy
authentication user credentials.

Writes are performed through the proxy-authenticated connection. Reads occur
through nonproxy-authenticated connections. This enables the database auditing
process to access the user that performed the write operations.

Providing Authenticated Reads and Writes with a Database Session
In this configuration, you use a DatabaseSession object with a proxy-authenticated
login. All reads and writes occur through the proxy-authenticated connection.

98.8.1 How to Configure Oracle Database Proxy Authentication Using Java
You configure Oracle Database proxy authentication by customizing your session in
your Java code, such as through a SessionCustomizer when using the
sessions.xml file. You can wrap a configured TopLink DatasourceLogin
JNDIConnector with a TopLink proxy connector instance (from
oracle.toplink.platform.database.oracle) appropriate for your JDBC
driver and to configure proxy authentication properties.

Regardless of whether you are using the Oracle JDBC Thin driver or OCI driver, use
the OracleJDBC10_1_0_2ProxyConnector and the property constants defined in
oracle.jdbc.OracleConnection.

The properties to set are shown in Tables 98–2 through 98–5.

Note: Oracle recommends that you exclusively use server and client
sessions in a three-tier environment.

Do not use database sessions in a three-tier environment. Ensure that a
database session is used by a single user and not accessed
concurrently.

Configuring Oracle Database Proxy Authentication

Configuring a Database Login 98-15

To configure TopLink to use Oracle Database proxy authentication, do the following:

1. Decide on the proxy type you want to use and create appropriate users and roles.

a. User Name Authentication:

To authenticate a proxy user sarah by user name only, create the user account
on Oracle Database using the following:

alter user sarah grant connect through dbadminuser
with roles clerk, reports;

In this case, you will need to set the proxy properties shown in Table 98–2.

b. User Name and Password Authentication:

To authenticate a proxy user sarah by user name and password, create the
user account on Oracle Database using the following:

alter user sarah grant connect through dbadminuser
authenticated using password
with roles clerk, reports;

In this case, you will need to set the proxy properties shown in Table 98–3.

c. Distinguished Name Authentication:

To authenticate a proxy user sarah by globally unique distinguished name,
create the user account on Oracle Database using the following:

create user sarah identified globally as
'CN=sarah,OU=americas,O=oracle,L=city,ST=ca,C=us';

Note: Property constant names and values are consistent between
the two classes except for PROXYTYPE_ constants (such as
PROXYTYPE_USER_NAME). In OracleOCIConnectionPool these
are of type String and in OracleConnection they are of type int.
If you are using the Oracle JDBC Thin driver and OracleJDBC10_1_
0_2ProxyConnector, you must always set these properties as a
String. For example:

login.setProperty(
"proxytype", Integer.toString(OracleConnection.PROXYTYPE_USER_NAME));

Table 98–2 Proxy Properties for User Name Authentication

Property Name Property Value

"proxytype" PROXYTYPE_USER_NAME

PROXY_USER_NAME "sarah"

PROXY_ROLES String[] {"role1", "role2", ...}

Table 98–3 Proxy Properties for User Name and Password Authentication

Property Name Property Value

"proxytype" PROXYTYPE_USER_NAME

PROXY_USER_NAME "sarah"

PROXY_PASSWORD "passwordforsarah"

PROXY_ROLES String[] {"role1", "role2", ...}

Configuring Oracle Database Proxy Authentication

98-16 Developer's Guide for Oracle TopLink

alter user sarah grant connect through dbadminuser
authenticated using distinguished name
with roles clerk, reports;

In this case, you will need to set the proxy properties shown in Table 98–4.

d. Certificate Authentication:

To authenticate a proxy user sarah by encrypted distinguished name, create
the user account on Oracle Database using the following:

alter user sarah grant connect through dbadminuser
authenticated using certificate
with roles clerk, reports;

In this case, you will need to set the proxy properties shown in Table 98–2.

2. Configure your session login using Java code. Do this through a
SessionCustomizer when using the sessions.xml file.

The following example demonstrates how you can wrap the already specified
JNDIConnector with the appropriate TopLink proxy authentication connector.
You can set the server session's default connection policy to the same proxy
authenticated login.

If you use Oracle VPD (Section 87.5.1, "Isolated Client Sessions and Oracle Virtual
Private Database (VPD)"), you should set the connection policy to use exclusive
connections, and the descriptor for secured data to isolated (Section 119.13,
"Configuring Cache Isolation at the Descriptor Level").

Login login = server.getDatasourceLogin();
// Make sure that external connection pooling is used
login.setUsesExternalConnectionPooling(true);
// Wrap JNDIConnector with OracleJDBC10_1_0_2ProxyConnector
login.setConnector(

new OracleJDBC10_1_0_2ProxyConnector(
((JNDIConnector)login.getConnector()).getName()));

ConnectionPolicy policy = server.getDefaultConnectionPolicy();
policy.setPoolName(null);
policy.setLogin(login);
// If using Oracle VPD support, set the connection policy to exclusive

policy.setShouldUseExclusiveConnection(true);

Table 98–4 Proxy Properties for Distinguished Name Authentication

Property Name Property Value

"proxytype" PROXYTYPE_DISTINGUISHED_NAME

PROXY_DISTINGUISHED_NAME "CN=sarah,OU=americas,O=oracle,L=city,ST=c
a,C=us"

PROXY_ROLES String[] {"role1", "role2", ...}

Table 98–5 Proxy Properties for User Name Authentication

Property Name Property Value

"proxytype" PROXYTYPE_CERTIFICATE

PROXY_CERTIFICATE byte[] {EncryptedCertificate}

PROXY_ROLES String[] {"role1", "role2", ...}

Configuring Oracle Database Proxy Authentication

Configuring a Database Login 98-17

Note that you may experience problems when using a data source provided by the
application server. In this case, instead of using

login.setConnector(new OracleJDBC10_1_0_2ProxyConnector
(((JNDIConnectorlogin.getConnector()).getName()));

create the data source, as follows:

oracle.jdbc.pool.OracleDataSource ds = new oracle.jdbc.pool.OracleDataSource();
ds.setUser("MyMainUser");
ds.setPassword("MyPassword");
ds.setUrl("jdbc:oracle:thin:@MyServer:1521:MyDb");
login.setConnector(new OracleJDBC10_1_0_2ProxyConnector(ds));

3. Acquire a proxy-authenticated client session through specifying a
ConnectionPolicy with this user's credentials.

ConnectionPolicy policy =
(ConnectionPolicy)server.getDefaultConnectionPolicy().clone();

Login login = (Login)policy.getLogin().clone;
// Set proxy properties into connection policy's login
login.setProperty("proxytype" , OracleOCIConnectionPool.PROXYTYPE_USER_NAME);
login.setProperty(OracleOCIConnectionPool.PROXY_USER_NAME ,"sarah");
policy.setLogin(login);
Session session = server.acquireClientSession(policy);

Configuring Oracle Database Proxy Authentication

98-18 Developer's Guide for Oracle TopLink

99

Configuring an EIS Login 99-1

99Configuring an EIS Login

This chapter describes the various components that you must configure to use an EIS
login.

This chapter includes the following sections:

■ Introduction to EIS Login Configuration

■ Configuring an EIS Data Source Platform at the Session Level

■ Configuring EIS Connection Specification Options at the Session Level

99.1 Introduction to EIS Login Configuration
Table 99–1 lists the configurable options for an EIS login.

99.2 Configuring an EIS Data Source Platform at the Session Level
For each EIS session, you must specify the platform (such as AQ, for example). This
platform configuration overrides the platform at the project level, if configured.

For more information, see the following:

■ Section 20.2, "Configuring Relational Database Platform at the Project Level"

■ Section 96.1.2, "Data Source Login Types"

Table 99–1 Configurable Options for EIS Login

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Data source platform at the session level (see Section 99.2,
"Configuring an EIS Data Source Platform at the Session Level")

Connection specification options at the session level (see
Section 99.3, "Configuring EIS Connection Specification Options
at the Session Level")

User name and password (see Section 97.2, "Configuring User
Name and Password")

Password encryption (see Section 97.3, "Configuring Password
Encryption")

External connection pooling (see Section 97.4, "Configuring
External Connection Pooling")

Properties (see Section 97.5, "Configuring Properties")

Configuring EIS Connection Specification Options at the Session Level

99-2 Developer's Guide for Oracle TopLink

99.2.1 How to Configure an EIS Data Source Platform at the Session Level Using
TopLink Workbench

To specify the database platform options for an EIS session login, use this procedure:

1. Select an EIS session in the Navigator. Its properties appear in the Editor.

2. Click the Login tab. The Login tab appears.

3. Click the Connection subtab. The Connection subtab appears.

Figure 99–1 Login Tab, Connection Subtab, Platform Options

Use the following information to enter data in the Platform field on the Connection tab
to configure the platform:

99.3 Configuring EIS Connection Specification Options at the Session
Level

You can configure connection information at the session level for an EIS application.
This information is stored in the sessions.xml file. The Oracle TopLink runtime
uses this information whenever you perform a persistence operation using the session
in your EIS application.

This connection configuration overrides the connection information at the project
level, if configured. For more information about project-level configuration, see
Section 20.5, "Configuring Development and Deployment Logins" and Section 73.3,
"Configuring EIS Connection Specification Options at the Project Level".

This connection configuration is overridden by the connection information at the
connection pool level. For more information about connection pool-level
configuration, see Section 101.5, "Configuring Connection Pool Connection Options".

99.3.1 How to Configure EIS Connection Specification Options at the Session Level
Using TopLink Workbench

Use this procedure to specify the connection options for an EIS session login.

1. Select an EIS session in the Navigator window. Its properties appear in the Editor
window.

2. Click the Login tab. The Login tab appears.

Field Description

Platform The EIS platform for the session. Select from the menu of options.
This menu includes all instances of EISPlatform in the TopLink
classpath.

Configuring EIS Connection Specification Options at the Session Level

Configuring an EIS Login 99-3

3. Click the Connection subtab. The Connection tab appears.

Figure 99–2 Login Tab, Connection Subtab

Use the following information to enter data in the connection fields on the tab:

Field Description

Connection Specification Class Specify the appropriate connection specification class for the
selected Platform. Click Browse to choose from all the classes
in the TopLink classpath. (For example: if Platform is
oracle.toplink.eis.aq.AQPlatform, use
oracle.toplink.eis.aq.AQEISConnectionSpec).

For more information on platform configuration, see
Section 99.2, "Configuring an EIS Data Source Platform at the
Session Level".

Connection Factory URL Specify the appropriate connection factory URL for the
selected Connection Specification Class (For example:
jdbc:oracle:thin@:localhost:1521:orcl).

Configuring EIS Connection Specification Options at the Session Level

99-4 Developer's Guide for Oracle TopLink

100

Creating an Internal Connection Pool 100-1

100Creating an Internal Connection Pool

This chapter explains how to create TopLink internal connection pools.

This chapter includes the following sections:

■ Introduction to the Internal Connection Pool Creation

■ Creating an Internal Connection Pool

100.1 Introduction to the Internal Connection Pool Creation
You can create internal connection pools (see Section 96.1.6.1, "Internal Connection
Pools") only for server sessions. For more information, see Section 100.2, "Creating an
Internal Connection Pool".

After you create an internal connection pool, you must configure its various options
(see Chapter 101, "Configuring an Internal Connection Pool")

After you create and configure a sequence connection pool (see Section 96.1.6.4,
"Sequence Connection Pools"), TopLink will use this pool whenever it needs to assign
an identifier to a new object.

After you create and configure a named connection pool (see Section 96.1.6.5,
"Application-Specific Connection Pools"), you use it in your application by passing in
a ConnectionPolicy when you acquire a client session (see Section 90.4.4, "How to
Acquire a Client Session that Uses a Named Connection Pool").

100.2 Creating an Internal Connection Pool
You can create an internal connection pool using Oracle JDeveloper, TopLink
Workbench, or Java code.

100.2.1 How to Create an Internal Connection Pool Using TopLink Workbench
Before you create a connection pool, you must first create a server session (see
Section 88.4, "Creating a Server Session").

To create a new TopLink internal connection pool, use this procedure:

1. Select the server session in the Navigator in which you want to create a connection
pool.

2. Click the appropriate button on the toolbar to create the type of connection pool
you want:

■ To create a named connection pool, select Create a New Named Connection
Pool, enter a name, and then click OK.

Creating an Internal Connection Pool

100-2 Developer's Guide for Oracle TopLink

■ To create a sequence connection pool, select Add the Sequence Connection
Pool.

■ To create a write connection pool, select Add the Write Connection Pool.

You can also create a new internal connection pool by right-clicking the server
session configuration in the Navigator and selecting New > Named Connection
Pool, Sequence Connection Pool, or Write Connection Pool from the menu.

100.2.2 How to Create an Internal Connection Pool Using Java
Using Java, you can create read, write, and named connection pools.

Example 100–1 shows how to create connection pools. Example 100–2 shows an
optimized connection pool, using the same connection for both read and write
operations.

Example 100–1 Creating Connection Pools

// Read
ConnectionPool pool = new ConnectionPool();
pool.setName("read");
pool.setLogin(login);
pool.setMaxNumberOfConnections(50);
pool.setMinNumberOfConnections(50);
serverSession.setReadConnectionPool(pool);

// Write
ConnectionPool pool = new ConnectionPool();
pool.setName("default");
pool.setLogin(login);
pool.setMaxNumberOfConnections(50);
pool.setMinNumberOfConnections(50);
serverSession.addConnectionPool(pool);

// Named
ConnectionPool pool = new ConnectionPool();
pool.setName("admin");
pool.setLogin(login);
pool.setMaxNumberOfConnections(2);
pool.setMinNumberOfConnections(2);
serverSession.addConnectionPool(pool);
You can also use a single connection pools for both read and write operations, when
the read and write pools use the same login information. This method requires fewer
connections

Example 100–2 Using a Single Pool for Read and Write

ConnectionPool pool = new ConnectionPool();
pool.setName("default");
pool.setLogin(login);
pool.setMaxNumberOfConnections(50);
pool.setMinNumberOfConnections(50);
serverSession.setReadConnectionPool(pool);
serverSession.addConnectionPool(pool);

101

Configuring an Internal Connection Pool 101-1

101Configuring an Internal Connection Pool

This chapter describes the various components that you must configure to use an
internal connection pool.

This chapter includes the following sections:

■ Introduction to the Internal Connection Pool Configuration

■ Configuring Connection Pool Sizes

■ Configuring Properties

■ Configuring a Nontransactional Read Login

■ Configuring Connection Pool Connection Options

■ Configuring Exclusive Read Connections

101.1 Introduction to the Internal Connection Pool Configuration
When you are using server sessions, you can configure the default read connection
pool and write connection pool. You can also configure the optional named connection
pools and sequence connection pool you may have created (see Section 100.1,
"Introduction to the Internal Connection Pool Creation").

Table 101–1 lists the configurable options for an internal connection pool.

Table 101–1 Configurable Options for Connection Pool

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Connection pool sizes (see Section 101.2, "Configuring
Connection Pool Sizes")

Exclusive read connections (see Section 101.6, "Configuring
Exclusive Read Connections")1

Nontransactional read login (see Section 101.4, "Configuring
a Nontransactional Read Login")1

1 Read connection pools only.

Properties (see Section 101.3, "Configuring Properties")

Connection pool connection options (see Section 101.5,
"Configuring Connection Pool Connection Options")2 3

2 Not applicable to write connection pools.
3 Applicable for sequence connection pools.

Configuring Connection Pool Sizes

101-2 Developer's Guide for Oracle TopLink

101.2 Configuring Connection Pool Sizes
By default, if using TopLink internal connection pooling, the TopLink write connection
pool maintains a minimum of five connections and a maximum of ten. The read
connection pool maintains a minimum and maximum of two connections.

Connection pool size can significantly influence the concurrency of your application
and should be set to be large enough to handle your expected application load.

The smallest value you can enter is 0. Setting the maximum number of connections to
0 will make it impossible for TopLink to allocate any connections.

The minimum number of connections should always be less than or equal to the
maximum number of connections.

If the maximum number of connections is in use, the next connection request will be
blocked until a connection is available.

You can configure the connection pool size using Oracle JDeveloper TopLink Editor,
TopLink Workbench (see Section 101.2.1, "How to Configure Connection Pool Size
Using TopLink Workbench"), or Java (see Section 101.2.2, "How to Configure
Connection Pool Size Using Java").

101.2.1 How to Configure Connection Pool Size Using TopLink Workbench
To specify the minimum and maximum number of connections in a TopLink internal
connection pool, use this procedure:

1. Expand a server session to reveal its connection pools in the Navigator.

2. Select a connection pool in the Navigator. Its properties appear in the Editor.

3. Click the General tab. The General tab appears.

Figure 101–1 General Tab, Connection Count Options

Enter the desired minimum and maximum number of connections and press Enter or
use the increment and decrement arrows.

101.2.2 How to Configure Connection Pool Size Using Java
Using Java, you can set the connection pool size by using the
setMaxNumberOfConnections and setMinNumberOfConnection method.

Tip: To maintain compatibility with JDBC drivers that do not
support many connections, the default number of connections is
small. If your JDBC driver supports it, use a larger number of
connections for reading and writing.

Configuring Properties

Configuring an Internal Connection Pool 101-3

Example 101–1 shows how to configure the connection pool size for a read connection.

Example 101–1 Configuring Connection Pool Size

ConnectionPool pool = new ConnectionPool();
pool.setName("read");
pool.setLogin(login);
pool.setMaxNumberOfConnections(50);
pool.setMinNumberOfConnections(50);
serverSession.setReadConnectionPool(pool);

101.3 Configuring Properties
For all connection pools, except write connection pools, you can specify arbitrary
named values, called properties.

Some data sources require additional, driver-specific properties not supported in the
ConnectionPool API. Add these properties to the ConnectionPool so that
TopLink can pass them to the driver.

You can configure properties using Oracle JDeveloper TopLink Editor, TopLink
Workbench (see Section 101.3.1, "How to Configure Properties Using TopLink
Workbench"), or Java (see Section 101.3.2, "How to Configure Properties Using Java").

101.3.1 How to Configure Properties Using TopLink Workbench
To specify arbitrary named value pairs that TopLink associates with a
ConnectionPool, use this procedure:

1. Expand a server session to reveal its connection pools in the Navigator.

2. Select a read, named, or sequence connection pool in the Navigator. Its properties
appear in the Editor.

3. Click the Login tab. The Login tab appears.

4. Click the Properties subtab. The Properties subtab appears.

Figure 101–2 Login Tab, Properties Subtab

Complete the Add Property dialog box.

Use the following information to add or edit a login property on the Add Property
dialog box to add or edit a login property:

Configuring a Nontransactional Read Login

101-4 Developer's Guide for Oracle TopLink

To add (or change) a new Name/Value property, click Add (or Edit).

To delete an existing property, select the Name/Value row and click Remove.

101.3.2 How to Configure Properties Using Java
Using Java, you can set any Object value using the DatasourceLogin method
setProperty. To remove a property, use the DatasourceLogin method
removeProperty.

101.4 Configuring a Nontransactional Read Login
When you use an external transaction controller (see Section 89.9, "Configuring the
Server Platform"), establishing a connection requires not only the usual connection
setup overhead, but also transactional overhead. If your application reads data only to
display it and only infrequently modifies data, you can configure an internal read
connection pool to use its own connection specification that does not use the external
transaction controller. This may improve performance by reducing the time it takes to
establish a new read connection.

You can configure the nontransactional read login using Oracle JDeveloper TopLink
Editor, TopLink Workbench (see Section 101.4.1, "How to Configure Nontransactional
Read Login Using TopLink Workbench"), or Java (see Section 101.4.2, "How to
Configure Nontransactional Read Login Using Java").

101.4.1 How to Configure Nontransactional Read Login Using TopLink Workbench
To enable the configuration of nontransactional connection information for a TopLink
read connection pool, use this procedure:

1. Expand a server session to reveal its connection pools in the Navigator.

2. Select a read connection pool in the Navigator. Its properties appear in the Editor.

3. Click the Login tab. The Login tab appears.

4. Click the Connection subtab. The Connection subtab appears.

Option Description

Name The name by which TopLink retrieves the property value using
the DatasourceLogin method getProperty.

Value The value TopLink retrieves using the DatasourceLogin
method getProperty passing in the corresponding property
name.

Using TopLink Workbench, you can set only character values
which TopLink returns as String objects.

Configuring Connection Pool Connection Options

Configuring an Internal Connection Pool 101-5

Figure 101–3 Login Tab, Connection Subtab

To enable a nontransactional read login, select the Use Non-Transactional Read Login
option (see Section 96.1.1, "Externally Managed Transactional Data Sources"). Continue
with Section 101.5, "Configuring Connection Pool Connection Options" to specify the
connection information.

101.4.2 How to Configure Nontransactional Read Login Using Java
Use the getLogin method of your connection pool to obtain a DatabaseLogin, and
then use the following DatabaseLogin methods to configure the nontransactional
read login options:

■ useExternalTransactionController

■ setDriverClass

■ setDriverClassName

■ setDriverURLHeader

101.5 Configuring Connection Pool Connection Options
By default, connection pools use the login configuration specified for their session (see
Section 98.3, "Configuring Database Login Connection Options" and Section 99.3,
"Configuring EIS Connection Specification Options at the Session Level").

For read, named, and sequence connection pools, you can override the session login
configuration on a per-connection pool basis.

To configure login configuration for a read connection pool, you must first enable it for
a nontransactional read login (see Section 101.4, "Configuring a Nontransactional Read
Login").

You can configure the connection pool connection options using Oracle JDeveloper
TopLink Editor or TopLink Workbench (see Section 101.5.1, "How to Configure
Connection Pool Connection Options Using TopLink Workbench").

101.5.1 How to Configure Connection Pool Connection Options Using TopLink
Workbench

To configure connection information for a TopLink read, named, or sequence
connection pool, use this procedure:

Configuring Connection Pool Connection Options

101-6 Developer's Guide for Oracle TopLink

1. Expand a server session to reveal its connection pools in the Navigator.

2. Select a read, named, or sequence connection pool in the Navigator. Its properties
appear in the Editor.

3. Click the Login tab. The Login tab appears.

4. Click the Connection subtab. The Connection subtab appears.

Figure 101–4 Login Tab, Connection Subtab, Relational Session Connection Pool
Options

Figure 101–5 Login Tab, Connection Subtab, EIS Session Connection Pool Options

5. Ensure the Use Non-Transaction Read Login option is selected.

Use the following information to complete fields on the Connection subtab:

Field Description

Database Driver1 Specify the appropriate database driver:

■ Driver Manager: Specify this option to configure the
driver class and URL used to connect to the database.
In this case, you must configure the Driver Class and
Driver URL fields.

■ J2EE Datasource: Specify this option to use a Java EE
data source already configured on your target
application server. In this case, you must configure the
Datasource Name field.

Note: If you select J2EE Datasource, you must use external
connection pooling. You cannot use internal connection
pools with this Database Driver option (for more
information, see Section 97.4, "Configuring External
Connection Pooling").

Configuring Exclusive Read Connections

Configuring an Internal Connection Pool 101-7

101.6 Configuring Exclusive Read Connections
An exclusive connection is one that TopLink allocates specifically to a given session
and one that is never used by any other session.

Allowing concurrent reads on the same connection reduces the number of read
connections required and reduces the risk of having to wait for an available
connection. However, many JDBC drivers do not support concurrent reads.

If you are using internal connection pools (see Section 96.1.6.1, "Internal Connection
Pools"), you can configure TopLink to acquire an exclusive connection from the read
connection pool.

By default, TopLink acquires exclusive read connections.

If you are using external connection pools, read connections are always exclusive.

You can configure the connection pool size using Oracle JDeveloper TopLink Editor or
TopLink Workbench (see Section 101.6.1, "How to Configure Exclusive Read
Connections Using TopLink Workbench").

101.6.1 How to Configure Exclusive Read Connections Using TopLink Workbench
To configure a TopLink read connection pool to allocate exclusive connections, use this
procedure:

1. Expand a server session to reveal its connection pools in the Navigator.

Driver Class1 Configure this field when Database Driver is set to Driver
Manager. Select from the menu of options. This menu
includes all JDBC drivers in the TopLink application
classpath.

URL1 Configure this field when Database Driver is set to Driver
Manager. Select from the menu of options relevant to the
selected Driver Class and edit the URL to suit your data
source.

Datasource Name1 Configure this field when Database Driver is set to J2EE
Datasource. Specify any valid JNDI name that identifies the
Java EE data source preconfigured on your target
application server (For example: jdbc/EmployeeDB).

By convention, all such names should resolve to the JDBC
subcontext (relative to the standard java:comp/env
naming context that is the root of all provided resource
factories).

Connection Specification Class2 Specify the appropriate connection specification class for the
selected Platform. Click Browse to choose from all the
classes in the TopLink classpath. (For example: if Platform is
oracle.toplink.eis.aq.AQPlatform, use
oracle.toplink.eis.aq.AQEISConnectionSpec).

For more information on platform configuration, see
Section 99.2, "Configuring an EIS Data Source Platform at
the Session Level".

Connection Factory URL2 Specify the appropriate connection factory URL for the
selected Connection Specification Class (For example:
jdbc:oracle:thin@:localhost:1521:orcl).

1 For sessions that contain a DatabaseLogin.
2 For sessions that contain an EISLogin.

Field Description

Configuring Exclusive Read Connections

101-8 Developer's Guide for Oracle TopLink

2. Select a read connection pool in the Navigator. Its properties appear in the Editor.

3. Click the Login tab. The Login tab appears.

4. Click the Connection subtab. The Connection subtab appears.

Figure 101–6 Login Tab, Connection Subtab, Exclusive Connections Option

Select the Exclusive Connections option to configure TopLink to acquire an exclusive
connection from the read connection pool.

Deselect the Exclusive Connections option to configure TopLink to share read
connections and allow concurrent reads. Before selecting this option, ensure that your
JDBC driver supports concurrent reads.

Part XXIII
Part XXIII Cache

This part describes using the TopLink object cache in both distributed and
nondistributed applications. It contains the following chapters:

■ Chapter 102, "Introduction to Cache"

This chapter describes each of the different TopLink cache types and important
cache concepts.

■ Chapter 103, "Configuring a Coordinated Cache"

This chapter explains how to configure TopLink coordinated cache options
common to two or more coordinated cache types.

■ Chapter 104, "Configuring a JMS Coordinated Cache"

This chapter explains how to configure a TopLink JMS coordinated cache.

■ Chapter 105, "Configuring an RMI Coordinated Cache"

This chapter explains how to configure a TopLink RMI coordinated cache.

■ Chapter 106, "Configuring a CORBA Coordinated Cache"

This chapter explains how to configure a TopLink CORBA coordinated cache.

■ Chapter 107, "Configuring a Custom Coordinated Cache"

This chapter explains how to configure a custom TopLink coordinated cache.

102

Introduction to Cache 102-1

102Introduction to Cache

The TopLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values. TopLink uses the cache to do the
following:

■ Improve performance by holding recently read or written objects and accessing
them in-memory to minimize database access.

■ Manage locking and isolation level.

■ Manage object identity.

This chapter includes the following sections:

■ Cache Architecture

■ Cache Concepts

■ Cache Coordination

■ Cache API

102.1 Cache Architecture
TopLink uses two types of cache: the session cache maintains objects retrieved from
and written to the data source; and the unit of work cache holds objects while they
participate in transactions. When a unit of work successfully commits to the data
source, TopLink updates the session cache accordingly.

As Figure 102–1 shows, the session cache and the unit of work cache work together
with the data source connection to manage objects in a TopLink application. The object
life cycle relies on these three mechanisms.

Note: You can also configure a query to cache its results (see
Section 111.13.1, "How to Cache Results in a ReadQuery")

Cache Concepts

102-2 Developer's Guide for Oracle TopLink

Figure 102–1 Object Life Cycle and the TopLink Caches

102.1.1 Session Cache
The session cache is a shared cache that services clients attached to a given session.
When you read objects from or write objects to the data source using a client session,
TopLink saves a copy of the objects in the parent server session’s cache and makes
them accessible to all other processes in the session.

TopLink adds objects to the session cache from the following:

■ The data store, when TopLink executes a read operation

■ The unit of work cache, when a unit of work successfully commits a transaction

An isolated client session is a special type of client session that provides its own
session cache isolated from the shared object cache of its parent server session. The
isolated client session cache can be used to improve user-based security or to avoid
caching highly volatile data. For more information, see Section 87.5, "Isolated Client
Sessions".

102.1.2 Unit of Work Cache
The unit of work cache services operations within the unit of work. It maintains and
isolates objects from the session cache, and writes changed or new objects to the
session cache after the unit of work commits changes to the data source.

102.2 Cache Concepts
This section describes concepts unique to the TopLink cache, including the following:

■ Cache Type and Object Identity

■ Querying and the Cache

■ Handling Stale Data

■ Explicit Query Refreshes

■ Cache Invalidation

■ Cache Coordination

■ Cache Isolation

Cache Concepts

Introduction to Cache 102-3

■ Cache Locking and Transaction Isolation

■ Cache Optimization

102.2.1 Cache Type and Object Identity
TopLink preserves object identity through its cache using the primary key attributes of
a persistent entity. These attributes may or may not be assigned through sequencing
(see Section 15.2.6, "Projects and Sequencing"). In a Java application, object identity is
preserved if each object in memory is represented by one, and only one, object
instance. Multiple retrievals of the same object return references to the same object
instance–not multiple copies of the same object.

Maintaining object identity is extremely important when the application’s object
model contains circular references between objects. You must ensure that the two
objects are referencing each other directly, rather than copies of each other. Object
identity is important when multiple parts of the application may be modifying the
same object simultaneously.

Oracle recommends that you always maintain object identity. Disable object identity
only if absolutely necessary, for example, for read-only objects (see Section 119.3,
"Configuring Read-Only Descriptors").

You can configure how object identity is managed on a class-by-class basis. The
ClassDescriptor object provides the cache and identity map options described in
Table 102–1.

For more information, see Section 102.2.1.6, "Guidelines for Configuring the Cache and
Identity Maps".

102.2.1.1 Full Identity Map
This option provides full caching and guaranteed identity: objects are never flushed
from memory unless they are deleted.

It caches all objects and does not remove them. Cache size doubles whenever the
maximum size is reached. This method may be memory-intensive when many objects
are read. Do not use this option on batch operations.

Oracle recommends using this identity map when the data set size is small and
memory is in large supply.

102.2.1.2 Weak Identity Map
This option is similar to the full identity map, except that the map holds the objects by
using weak references. This method allows full garbage collection and provides full
caching and guaranteed identity.

Table 102–1 Cache and Identity Map Options

Option (Identity Map) Caching
Guaranteed
Identity Memory Use

Full Identity Map Yes Yes Very High

Weak Identity Map Yes Yes Low

Soft Identity Map Yes Yes High

Soft Cache Weak Identity Map and
Hard Cache Weak Identity Map

Yes Yes Medium-high

No Identity Map No No None

Cache Concepts

102-4 Developer's Guide for Oracle TopLink

The weak identity map uses less memory than full identity map but also does not
provide a durable caching strategy across client/server transactions. Objects are
available for garbage collection when the application no longer references them on the
server side (that is, from within the server JVM).

102.2.1.3 Soft Identity Map
This option is similar to the weak identity map, except that the map uses soft
references instead of weak references. This method allows full garbage collection and
provides full caching and guaranteed identity.

The soft identity map allows for optimal caching of the objects, while still allowing the
JVM to garbage collect the objects if memory is low.

102.2.1.4 Soft Cache Weak Identity Map and Hard Cache Weak Identity Map
These options are similar to the weak identity map, except that they maintains the
most frequently used subcache. The subcache uses soft or hard references to ensure
that these objects are garbage-collected only if the system is low on memory.

The soft cache weak identity map and hard cache weak identity map provide more
efficient memory use. They release objects as they are garbage-collected, except for a
fixed number of most recently used objects. Note that weakly cached objects might be
flushed if the transaction spans multiple client-server invocations. The size of the
subcache is proportional to the size of the identity map, as specified by the
ClassDescriptor method setIdentityMapSize. You should set this cache size to
be as large as the maximum number of objects (of the same type) referenced within a
transaction (see Section 119.12, "Configuring Cache Type and Size at the Descriptor
Level").

Oracle recommends using this identity map in most circumstances as a means to
control memory used by the cache.

For more information, see Section 102.2.1.7, "What You May Need to Know About the
Internals of Weak, Soft, and Hard Identity Maps".

102.2.1.5 No Identity Map
This option does not preserve object identity and does not cache objects.

Oracle does not recommend using the no identity map option. Instead, review the
alternatives of cache invalidation and isolated caching.

102.2.1.6 Guidelines for Configuring the Cache and Identity Maps
You can configure the cache at the project (Section 117.10, "Configuring Cache Type
and Size at the Project Level") or descriptor (Section 119.12, "Configuring Cache Type
and Size at the Descriptor Level") level.

Use the following guidelines when configuring your cache and identity map:

■ If objects with a long life span and object identity are important, use a
SoftIdentityMap, SoftCacheWeakIdentityMap or
HardCacheWeakIdentityMap policy. For more information on when to choose
one or the other, see Section 102.2.1.7, "What You May Need to Know About the
Internals of Weak, Soft, and Hard Identity Maps".

■ If object identity is important, but caching is not, use a WeakIdentityMap policy.

■ If an object has a long life span or requires frequent access, or object identity is
important, use a FullIdentityMap policy.

Cache Concepts

Introduction to Cache 102-5

■ If an object has a short life span or requires frequent access, and identity is not
important, use a CacheIdentityMap policy.

■ If objects are discarded immediately after being read from the database, such as in
a batch operation, use a NoIdentityMap policy. The NoIdentityMap does not
preserve object identity.

102.2.1.7 What You May Need to Know About the Internals of Weak, Soft, and Hard
Identity Maps
The WeakIdentiyMap and SoftIdentityMap use JVM weak and soft references to
ensure that any object referenced by the application is held in the cache. Once the
application releases its reference to the object, the JVM is free to garbage-collect the
objects. The timing of a weak and soft reference garbage collection is determined by
the JVM. In general, you could expect a weak reference to be garbage-collected on each
JVM garbage collection, and a soft reference to be garbage-collected when the JVM
determines memory is low.

The SoftCacheWeakIdentityMap and HardCacheWeakIdentityMap types of
identity map contain the following two caches:

■ Reference cache: implemented as a LinkedList that contains soft or hard
references, respectively.

■ Weak cache: implemented as a HashMap that contains weak references.

When you create a SoftCacheWeakIdentityMap or
HardCacheWeakIdentityMap with a specified size, the reference cache
LinkedList is exactly this size. The weak cache HashMap is initialized to 100 percent
of the specified size: the weak cache will grow when more objects than the specified
size are read in. Because TopLink does not control garbage collection, the JVM can reap
the weakly held objects whenever it sees fit.

Because the reference cache is implemented as a LinkedList, new objects are added
to the end of the list. Because of this, it is by nature a least recently used (LRU) cache:
fixed size, object at the top of the list is deleted, provided the maximum size has been
reached.

The SoftCacheWeakIdentityMap and HardCacheWeakIdentityMap are
essentially the same type of identity map, with the former being the subclass of the
latter. The HardCacheWeakIdentityMap was constructed to work around an issue
with some JVMs; the SoftCacheWeakIdentityMap inherits this feature.

If your application reaches a low system memory condition frequently enough, or if
your platform's JVM treats weak and soft references the same, the objects in the
reference cache may be garbage-collected so often that you will not benefit from the
performance improvement provided by it. If this is the case, Oracle recommends that
you use the HardCacheWeakIdentityMap. It is identical to the
SoftCacheWeakIdentityMap except that it uses hard references in the reference
cache. This guarantees that your application will benefit from the performance
improvement provided by it.

WARNING: Use the FullIdentityMap only if the class has a small
number of finite instances. Otherwise, a memory leak will occur.

Note: Oracle does not recommend the use of CacheIdentityMap
and NoIdentityMap policies.

Cache Concepts

102-6 Developer's Guide for Oracle TopLink

When an object in a HardCacheWeakIdentityMap or
SoftCacheWeakIdentityMap is pushed out of the reference cache, it gets put in the
weak cache. Although it is still cached, TopLink cannot guarantee that it will be there
for any length of time because the JVM can decide to garbage-collect weak references
at anytime.

102.2.2 Querying and the Cache
A query that is run against the shared session cache is known as an in-memory query.
Careful configuration of in-memory querying can improve performance (see
Section 108.16.2, "How to Use In-Memory Queries").

By default, a query that looks for a single object based on primary key attempts to
retrieve the required object from the cache first, searches the data source only if the
object is not in the cache. All other query types search the database first, by default.
You can specify whether a given query runs against the in-memory cache, the
database, or both.

For more information, see Section 108.16, "Queries and the Cache".

102.2.3 Handling Stale Data
Stale data is an artifact of caching, in which an object in the cache is not the most
recent version committed to the data source. To avoid stale data, implement an
appropriate cache locking strategy.

By default, TopLink optimizes concurrency to minimize cache locking during read or
write operations. Use the default TopLink isolation level, unless you have a very
specific reason to change it. For more information on isolation levels in TopLink, see
Section 102.2.7, "Cache Isolation".

Cache locking regulates when processes read or write an object. Depending on how
you configure it, cache locking determines whether a process can read or write an
object that is in use within another process.

A well-managed cache makes your application more efficient. There are very few cases
in which you turn the cache off entirely, because the cache reduces database access,
and is an important part of managing object identity.

To make the most of your cache strategy and to minimize your application’s exposure
to stale data, Oracle recommends the following:

■ Configuring a Locking Policy

■ Configuring the Cache on a Per-Class Basis

■ Forcing a Cache Refresh when Required on a Per-Query Basis

■ Configuring Cache Invalidation

■ Configuring Cache Coordination

102.2.3.1 Configuring a Locking Policy
Make sure you configure a locking policy so that you can prevent or at least identify
when values have already changed on an object you are modifying. Typically, this is
done using optimistic locking. TopLink offers several locking policies such as numeric
version field, time-stamp version field, and some or all fields.

For more information, see Section 119.26, "Configuring Locking Policy".

Cache Concepts

Introduction to Cache 102-7

102.2.3.2 Configuring the Cache on a Per-Class Basis
If other applications can modify the data used by a particular class, use a weaker style
of cache for the class. For example, the SoftCacheWeakIdentityMap or
WeakIdentityMap minimizes the length of time the cache maintains an object whose
reference has been removed.

For more information, see Section 119.12, "Configuring Cache Type and Size at the
Descriptor Level".

102.2.3.3 Forcing a Cache Refresh when Required on a Per-Query Basis
Any query can include a flag that forces TopLink to go to the data source for the most
up-to-date version of selected objects and update the cache with this information.

For more information, see the following:

■ Section 102.4.2, "Cache Refresh API"

■ Section 109.2, "Using DatabaseQuery Queries"

■ Section 109.3, "Using Named Queries"

102.2.3.4 Configuring Cache Invalidation
Using descriptor API, you can designate an object as invalid: when any query attempts
to read an invalid object, TopLink will go to the data source for the most up to date
version of that object and update the cache with this information. You can manually
designate an object as invalid or use a CacheInvalidationPolicy to control the
conditions under which an object is designated invalid.

For more information, see Section 102.2.5, "Cache Invalidation".

102.2.3.5 Configuring Cache Coordination
If your application is primarily read-based and the changes are all being performed by
the same Java application operating with multiple, distributed sessions, you may
consider using the TopLink cache coordination feature. Although this will not prevent
stale data, it should greatly minimize it.

For more information, see Section 102.2.6, "Cache Coordination".

102.2.4 Explicit Query Refreshes
Some distributed systems require only a small number of objects to be consistent
across the servers in the system. Conversely, other systems require that several specific
objects must always be guaranteed to be up-to-date, regardless of the cost. If you build
such a system, you can explicitly refresh selected objects from the database at
appropriate intervals, without incurring the full cost of distributed cache coordination.

To implement this type of strategy, do the following:

1. Configure a set of queries that refresh the required objects.

2. Establish an appropriate refresh policy.

3. Invoke the queries as required to refresh the objects.

102.2.4.1 Refresh Policy
When you execute a query, if the required objects are in the cache, TopLink returns the
cached objects without checking the database for a more recent version. This reduces
the number of objects that TopLink must build from database results, and is optimal

Cache Concepts

102-8 Developer's Guide for Oracle TopLink

for noncoordinated cache environments. However, this may not always be the best
strategy for a coordinated cache environment.

To override this behavior, set a refresh policy that specifies that the objects from the
database always take precedence over objects in the cache. This updates the cached
objects with the data from the database.

You can implement this type of refresh policy on each TopLink descriptor, or just on
certain queries, depending upon the nature of the application.

For more information, see the following:

■ Section 119.9, "Configuring Cache Refreshing"

■ Section 108.16.5, "How to Refresh the Cache"

102.2.4.2 EJB 2.n CMP Finders and Refresh Policy
When you invoke a findByPrimaryKey finder, if the object exists in the cache,
TopLink returns that copy. This is the default behavior, regardless of the refresh policy.
To force a database query, you can configure the query to refresh by calling
refreshIdentityMapResult method on it.

For more information, see the following:

■ Section 108.16, "Queries and the Cache"

■ Section 119.7.1.9, "Configuring Named Query Options"

102.2.5 Cache Invalidation
By default, objects remain in the session cache until they are explicitly deleted (see
Section 114.7, "Deleting Objects") or garbage collected when using a weak identity map
(see Section 117.10, "Configuring Cache Type and Size at the Project Level").

Alternatively, you can configure any object with a CacheInvalidationPolicy that
lets you specify, either automatically or manually, under what circumstances a cached
object is invalid: when any query attempts to read an invalid object, TopLink will go to
the data source for the most up-to-date version of that object, and update the cache
with this information.

You can use any of the following CacheInvalidationPolicy instances:

■ DailyCacheInvalidationPolicy: the object is automatically flagged as
invalid at a specified time of day.

■ NoExpiryCacheInvalidationPolicy: the object can only be flagged as
invalid by explicitly calling
oracle.toplink.sessions.IdentityMapAccessor method
invalidateObject.

■ TimeToLiveCacheInvalidationPolicy: the object is automatically flagged as
invalid after a specified time period has elapsed since the object was read.

You can configure a cache invalidation policy in the following ways:

■ At the project level that applies to all objects (Section 117.13, "Configuring Cache
Expiration at the Project Level")

Note: Refreshing does not prevent phantom reads from occurring. See
Section 108.16.8.3, "Refreshing Finder Results".

Cache Concepts

Introduction to Cache 102-9

■ At the descriptor level to override the project level configuration on a per-object
basis (Section 119.16, "Configuring Cache Expiration at the Descriptor Level")

■ At the query level that applies to the results returned by the query
(Section 111.13.2, "How to Configure Cache Expiration at the Query Level")

If you configure a query to cache results in its own internal cache (see Section 108.16.7,
"How to Cache Query Results in the Query Cache"), the cache invalidation policy you
configure at the query level applies to the query’s internal cache in the same way it
would apply to the session cache.

If you are using a coordinated cache (see Section 102.2.6, "Cache Coordination"), you
can customize how TopLink communicates the fact that an object has been declared
invalid. For more information, see Section 119.15, "Configuring Cache Coordination
Change Propagation at the Descriptor Level".

102.2.6 Cache Coordination
The need to maintain up-to-date data for all applications is a key design challenge for
building a distributed application. The difficulty of this increases as the number of
servers within an environment increases. TopLink provides a distributed cache
coordination feature that ensures data in distributed applications remains current.

Cache coordination reduces the number of optimistic lock exceptions encountered in a
distributed architecture, and decreases the number of failed or repeated transactions in
an application. However, cache coordination in no way eliminates the need for an
effective locking policy. To effectively ensure working with up-to-date data, cache
coordination must be used with optimistic or pessimistic locking. Oracle recommends
that you use cache coordination with an optimistic locking policy (see Section 119.26,
"Configuring Locking Policy").

You can use cache invalidation to improve cache coordination efficiency. For more
information, see Section 102.2.5, "Cache Invalidation".

For more information, see Section 102.3, "Cache Coordination".

102.2.7 Cache Isolation
Isolated client sessions provide a mechanism for disabling the shared server session
cache. Any classes marked as isolated only cache objects relative to the life cycle of
their client session. These classes never utilize the shared server session cache. This is
the best mechanism to prevent caching as it is configured on a per-class basis allowing
caching for some classes, and denying for others.

For more information, see Section 87.5, "Isolated Client Sessions".

102.2.8 Cache Locking and Transaction Isolation
By default, TopLink optimizes concurrency to minimize cache locking during read or
write operations. Use the default TopLink transaction isolation configuration unless
you have a very specific reason to change it.

For more information, see Section 115.15, "Database Transaction Isolation Levels".

102.2.9 Cache Optimization
Tune the TopLink cache for each class to help eliminate the need for distributed cache
coordination. Always tune these settings before implementing cache coordination.

For more information, see Section 12.10, "Optimizing Cache".

Cache Coordination

102-10 Developer's Guide for Oracle TopLink

102.3 Cache Coordination
As Figure 102–2 shows, cache coordination is a session feature that allows multiple,
possibly distributed, instances of a session to broadcast object changes among each
other so that each session’s cache is either kept up-to-date or notified that the cache
must update an object from the data source the next time it is read.

Figure 102–2 Cache Coordination

When sessions are distributed, that is, when an application contains multiple sessions
(in the same JVM, in multiple JVMs, possibly on different servers), as long as the
servers hosting the sessions are interconnected on the network, sessions can
participate in cache coordination. Coordinated cache types that require discovery
services also require the servers to support User Datagram Protocol (UDP)
communication and multicast configuration (for more information, see Section 102.3.2,
"Coordinated Cache Architecture").

This section describes the following:

■ When to Use Cache Coordination

■ Coordinated Cache Architecture

■ Coordinated Cache Types

■ Custom Coordinated Cache

For more information, see Section 103, "Configuring a Coordinated Cache".

102.3.1 When to Use Cache Coordination
Cache coordination can enhance performance and reduce the likelihood of stale data
for applications that have the following characteristics:

■ Changes are all being performed by the same Java application operating with
multiple, distributed sessions

■ Primarily read-based

■ Regularly requests and updates the same objects

Note: You cannot use isolated client sessions (see Section 87.5,
"Isolated Client Sessions") with cache coordination.

Cache Coordination

Introduction to Cache 102-11

To maximize performance, avoid cache coordination for applications that do not have
these characteristics. For more information about alternatives to cache coordination,
see Section 12.10, "Optimizing Cache".

Cache coordination enhances performance mainly by avoiding data source access.

Cache coordination reduces the occurrence of stale data by increasing the likelihood
that distributed caches are kept up-to-date with changes and are notified when one of
the distributed caches must update an object from the data source the next time it is
read.

Cache coordination reduces the number of optimistic lock exceptions encountered in a
distributed architecture, and decreases the number of failed or repeated transactions in
an application. However, cache coordination in no way eliminates the need for an
effective locking policy. To effectively ensure working with up-to-date data, cache
coordination must be used with optimistic or pessimistic locking. Oracle recommends
that you use cache coordination with an optimistic locking policy (see Section 119.26,
"Configuring Locking Policy").

For other options to reduce the likelihood of stale data, see Section 102.2.3, "Handling
Stale Data".

102.3.2 Coordinated Cache Architecture
TopLink provides coordinated cache implementations that perform discovery and
message transport services using various technologies including the following:

■ Java Message Service (JMS)–See Section 102.3.3.1, "JMS Coordinated Cache"

■ Remote Method Invocation (RMI)–See Section 102.3.3.2, "RMI Coordinated Cache"

■ Common Object Request Broker Architecture (CORBA)–See Section 102.3.3.3,
"CORBA Coordinated Cache"

Regardless of the type of discovery and message transport you choose to use, the
following are the principal objects that provide coordinated cache functionality:

■ Session

■ Descriptor

■ Unit of Work

102.3.2.1 Session
When you enable a session for change propagation, the session provides discovery
and message transport services using either JMS, RMI, CORBA, or Oracle Application
Server Cluster.

Discovery services ensure that sessions announce themselves to other sessions
participating in cache coordination. Discovery services use UDP communication and
multicast configuration to monitor sessions as they join and leave the coordinated
cache. All coordinated cache types (except JMS) require discovery services.

Message transport services allow the session to broadcast object change notifications to
other sessions participating in cache coordination when a unit of work from this
session commits a change.

102.3.2.2 Descriptor
You can configure how object changes are broadcast on a descriptor-by-descriptor
basis. This lets you fine-tune the type of notification to make.

Cache Coordination

102-12 Developer's Guide for Oracle TopLink

For example, for an object with few attributes, you can configure its descriptor to send
object changes. For an object with many attributes, it may be more efficient to
configure its descriptor so that the object is flagged as invalid (so that other sessions
will know to update the object from the data source the next time it is read).

102.3.2.3 Unit of Work
Only changes committed by a unit of work are subject to propagation when cache
coordination is enabled. The unit of work computes the appropriate change set based
on the descriptor configuration of affected objects.

102.3.3 Coordinated Cache Types
You can create the following types of coordinated cache:

■ JMS Coordinated Cache

■ RMI Coordinated Cache

■ CORBA Coordinated Cache

102.3.3.1 JMS Coordinated Cache
For a JMS coordinated cache, when a particular session’s coordinated cache starts up,
it uses its JNDI naming service information to locate and create a connection to the
JMS server. The coordinated cache is ready when all participating sessions are
connected to the same topic on the same JMS server. At this point, sessions can start
sending and receiving object change messages. You can then configure all sessions that
are participating in the same coordinated cache with the same JMS and JNDI naming
service information.

Because you must supply the necessary information to connect to the JMS Topic, a JMS
coordinated cache does not use a discovery service.

If you do use cache coordination, Oracle recommends that you use JMS cache
coordination: JMS is robust, easy to configure, and provides efficient support for
asynchronous change propagation.

For more information, see Chapter 104, "Configuring a JMS Coordinated Cache".

For more information on configuring JMS, see Oracle Fusion Middleware Services Guide
for Oracle Containers for Java EE.

102.3.3.2 RMI Coordinated Cache
For an RMI coordinated cache, when a particular session’s coordinated cache starts up,
the session binds its connection in its naming service (either an RMI registry or JNDI),
creates an announcement message (that includes its own naming service information),
and broadcasts the announcement to its multicast group (see Section 103.4,
"Configuring a Multicast Group Address" and Section 103.5, "Configuring a Multicast
Port"). When a session that belongs to the same multicast group receives this
announcement, it uses the naming service information in the announcement message
to establish bidirectional connections with the newly announced session’s coordinated
cache. The coordinated cache is ready when all participating sessions are
interconnected in this way, at which point sessions can start sending and receiving
object change messages. You can then configure each session with naming information
that identifies the host on which the session is deployed.

If you do use cache coordination, Oracle recommends that you use RMI cache
coordination only if you require synchronous change propagation (see Section 103.2,
"Configuring the Synchronous Change Propagation Mode").

Cache API

Introduction to Cache 102-13

TopLink also supports cache coordination using RMI over the Internet Inter-ORB
Protocol (IIOP). An RMI/IIOP coordinated cache uses RMI (and a JNDI naming
service) for discovery and message transport services.

For more information, see Chapter 105, "Configuring an RMI Coordinated Cache".

102.3.3.3 CORBA Coordinated Cache
For a CORBA coordinated cache, when a particular session’s coordinated cache starts
up, the session binds its connection in JNDI, creates an announcement message (that
includes its own JNDI naming service information), and broadcasts the announcement
to its multicast group (see Section 103.4, "Configuring a Multicast Group Address" and
Section 103.5, "Configuring a Multicast Port"). When a session that belongs to the same
multicast group receives this announcement, it uses the naming service information in
the announcement message to establish bidirectional connections with the newly
announced session’s coordinated cache. The coordinated cache is ready when all
participating sessions are interconnected in this way, at which point, sessions can start
sending and receiving object change messages. You can then configure each session
with naming information that identifies the host on which the session is deployed.

Currently, TopLink provides support for the Sun Object Request Broker.

For more information on configuring a CORBA coordinated cache, see Chapter 106,
"Configuring a CORBA Coordinated Cache".

102.3.4 Custom Coordinated Cache
Using the classes in oracle.toplink.remotecommand package, you can define
your own coordinated cache for custom solutions. For more information, contact your
TopLink support representative.

Once you have created the required cache coordination classes, for more information
on configuring a user-defined coordinated cache, see Chapter 107, "Configuring a
Custom Coordinated Cache".

102.4 Cache API
To configure the TopLink cache, you use the appropriate API in the following objects:

■ Object Identity API

■ Cache Refresh API

■ Cache Invalidation API

■ Cache Coordination API

102.4.1 Object Identity API
You configure object identity using the ClassDescriptor API summarized in
Example 102–1.

For more information, see Section 119.12, "Configuring Cache Type and Size at the
Descriptor Level".

Note: If you use an RMI coordinated cache, Oracle recommends that
you use RMI/IIOP only if absolutely necessary.

Cache API

102-14 Developer's Guide for Oracle TopLink

Example 102–1 Object Identity ClassDescriptor API

useCacheIdentityMap
useFullIdentityMap
useHardCacheWeakIdentityMap
useNoIdentityMap
useSoftCacheWeakIdentityMap
useWeakIdentityMap
useSoftIdentityMap

102.4.2 Cache Refresh API
You configure cache refresh using the ClassDescriptor API summarized in
Example 102–2.

Example 102–2 Cache Refresh ClassDescriptor API

alwaysRefreshCache
alwaysRefreshCacheOnRemote
disableCacheHits
disableCacheHitsOnRemote
onlyRefreshCacheIfNewerVersion
You can also configure cache refresh using the following API calls:

■ Session: refreshObject method

■ DatabaseSession and UnitOfWork: refreshAndLockObject methods

■ ObjectLevelReadQuery: refreshIdentityMapResult and
refreshRemoteIdentityMapResult methods

For more information, see Section 119.9, "Configuring Cache Refreshing".

102.4.3 Cache Invalidation API
You configure cache invalidation using ClassDescriptor methods
getCacheInvalidationPolicy and setCacheInvalidationPolicy to
configure an
oracle.toplink.descriptors.invalidation.CacheInvalidationPolicy.

You can use any of the following CacheInvalidationPolicy instances:

■ DailyCacheInvalidationPolicy: The object is automatically flagged as
invalid at a specified time of day.

■ NoExpiryCacheInvalidationPolicy: The object can only be flagged as
invalid by explicitly calling
oracle.toplink.sessions.IdentityMapAccessor method
invalidateObject.

■ TimeToLiveCacheInvalidationPolicy: The object is automatically flagged
as invalid after a specified time period has elapsed since the object was read.

You can also configure cache invalidation using a variety of API calls accessible
through the Session. The oracle.toplink.sessions.IdentityMapAccessor
provides the following methods:

■ getRemainingValidTime: Returns the remaining life of the specified object.
This time represents the difference between the next expiry time of the object and
its read time.

■ invalidateAll: Sets all objects for all classes to be invalid in TopLink identity
maps.

Cache API

Introduction to Cache 102-15

■ invalidateClass(Class klass) and invalidateClass(Class klass,
boolean recurse): Set all objects of a specified class to be invalid in TopLink
identity maps.

■ invalidateObject(Object object), invalidateObject(Record
rowWithPrimaryKey, Class klass) and invalidateObject(Vector
primaryKey, Class klass): Set an object to be invalid in TopLink identity
maps.

■ invalidateObjects(Expression selectionCriteria) and
invalidateObjects(Vector collection): Set all objects from the specified
Expression/collection to be invalid in TopLink identity maps.

■ isValid(Record recordContainingPrimaryKey, Class theClass),
isValid(Object object) and isValid(java.util.Vector
primaryKey, Class theClass): Return true if the object is valid in TopLink
identity maps.

For more information, see the following:

■ Section 117.13, "Configuring Cache Expiration at the Project Level"

■ Section 119.16, "Configuring Cache Expiration at the Descriptor Level"

■ Section 111.13.2, "How to Configure Cache Expiration at the Query Level"

102.4.4 Cache Coordination API
You configure cache coordination using the Session methods summarized in
Example 102–3.

You configure how object changes are propagated using the ClassDescriptor
methods summarized in Example 102–4.

For more information, see Section 103.1, "Configuring Common Coordinated Cache
Options".

Example 102–3 Cache Coordination Session API

Session.getCommandManager().
setShouldPropagateAsynchronously(boolean)

Session.getCommandManager().getDiscoveryManager().
setAnnouncementDelay()
setMulticastGroupAddress()
setMulticastPort()
setPacketTimeToLive()

Session.getCommandManager().getTransportManager().
setEncryptedPassword()
setInitialContextFactoryName()
setLocalContextProperties(Hashtable)
setNamingServiceType() passing in one of:

TransportManager.JNDI_NAMING_SERVICE
TransportManager.REGISTRY_NAMING_SERVICE

setPassword()
setRemoteContextProperties(Hashtable)
setShouldRemoveConnectionOnError()
setUserName()

Example 102–4 Cache Coordination ClassDescriptor API

setCacheSynchronizationType() passing in one of:
ClassDescriptor.DO_NOT_SEND_CHANGES

Cache API

102-16 Developer's Guide for Oracle TopLink

ClassDescriptor.INVALIDATE_CHANGED_OBJECTS
ClassDescriptor.SEND_NEW_OBJECTS_WITH_CHANGES
ClassDescriptor.SEND_OBJECT_CHANGES

Configuring a Coordinated Cache 103-1

103
Configuring a Coordinated Cache

This chapter describes how to configure a TopLink coordinated cache.

This chapter includes the following sections:

■ Configuring Common Coordinated Cache Options

■ Configuring the Synchronous Change Propagation Mode

■ Configuring a Service Channel

■ Configuring a Multicast Group Address

■ Configuring a Multicast Port

■ Configuring a Naming Service Type

■ Configuring JNDI Naming Service Information

■ Configuring RMI Registry Naming Service Information

■ Configuring an Announcement Delay

■ Configuring Connection Handling

■ Configuring Context Properties

■ Configuring a Packet Time-to-Live

For more information, see Section 102.3, "Cache Coordination".

103.1 Configuring Common Coordinated Cache Options
Table 103–1 lists the configurable options shared by two or more TopLink coordinated
cache types. In addition to the configurable options described here, you must also
configure the options described for the specific Coordinated Cache Types, as shown in
Table 103–2.

Table 103–1 Configuring TopLink Coordinated Caches

If you are configuring a... See...

JMS Coordinated Cache Chapter 104, "Configuring a JMS Coordinated Cache"

RMI Coordinated Cache Chapter 105, "Configuring an RMI Coordinated Cache"

CORBA Coordinated Cache Chapter 106, "Configuring a CORBA Coordinated Cache"

Custom Coordinated Cache Chapter 107, "Configuring a Custom Coordinated Cache"

Configuring the Synchronous Change Propagation Mode

103-2 Developer's Guide for Oracle TopLink

103.2 Configuring the Synchronous Change Propagation Mode
You can configure whether the coordinated cache should propagate object changes
asynchronously or synchronously.

Table 103–3 summarizes which coordinated caches support propagation mode
configuration.

Synchronous propagation mode forces the session to wait for an acknowledgement
before sending the next object change notification: this reduces the likelihood of stale
data at the expense of performance.

Asynchronous propagation mode allows the session to create separate threads to
propagate changes to remote servers. TopLink returns control to the client
immediately after the local commit operation, whether or not the changes merge

Table 103–2 Common Coordinated Cache Options

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Cache coordination change propagation at the descriptor level
(see Section 119.15, "Configuring Cache Coordination Change
Propagation at the Descriptor Level")

Synchronous change propagation mode (see Section 103.2,
"Configuring the Synchronous Change Propagation Mode")

Service channel (see Section 103.3, "Configuring a Service
Channel")

Multicast group address (see Section 103.4, "Configuring a
Multicast Group Address")

Multicast port (see Section 103.5, "Configuring a Multicast
Port")

Naming service type (see Section 103.6, "Configuring a Naming
Service Type")

Announcement delay (see Section 103.9, "Configuring an
Announcement Delay")

Connection handling (see Section 103.10, "Configuring
Connection Handling")

Context properties (see Section 103.11, "Configuring Context
Properties")

Packet time-to-live (see Section 103.12, "Configuring a Packet
Time-to-Live")

Table 103–3 Coordinated Cache Support for Propagation Mode Configuration

Coordinated Cache

How to Use
Oracle
JDeveloper

How to
Configure the
Synchronous
Change
Propagation
Mode Using
TopLink
Workbench

How to
Configure
the
Synchronou
s Change
Propagation
Mode Using
Java

JMS Coordinated Cache (asynchronous only)

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Configuring a Service Channel

Configuring a Coordinated Cache 103-3

successfully on the remote servers. This offers superior performance for applications
that are somewhat tolerant of stale data.

For more information, Section 102.2.3, "Handling Stale Data".

103.2.1 How to Configure the Synchronous Change Propagation Mode Using TopLink
Workbench

To specify the change propagation mode, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 103–3). The cache coordination
options appear on the tab.

Figure 103–1 Cache Coordination Tab, Synchronous Field

4. Select the Synchronous option to use synchronous change propagation. Do not
select this option to use asynchronous change propagation.

103.2.2 How to Configure the Synchronous Change Propagation Mode Using Java
Use the oracle.toplink.remotecommand.RemoteCommandManager method
setShouldPropagateAsynchronously to define whether changes should be
propagated synchronously or asynchronously for this coordinated cache.

For more information, see Section 102.4.4, "Cache Coordination API".

103.3 Configuring a Service Channel
The service channel is the name of the TopLink coordinated cache channel to which
sessions subscribe in order to participate in the same coordinated cache. Such sessions

Configuring a Service Channel

103-4 Developer's Guide for Oracle TopLink

use the service channel to exchange messages with each other. Messages sent on other
service channels will not be exchanged with this coordinated cache.

Table 103–4 summarizes which coordinated caches support service channel
configuration.

103.3.1 How to Configure a Service Channel Using TopLink Workbench
To specify the service channel, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 103–4). The cache coordination
options appear on the tab.

Figure 103–2 Cache Coordination Tab, Channel Field

Table 103–4 Coordinated Cache Support for Service Channel Configuration

Coordinated Cache

How to Use
Oracle
JDeveloper

How to
Configure a
Service
Channel Using
TopLink
Workbench

How to
Configure a
Service
Channel
Using Java

JMS Coordinated Cache

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Configuring a Multicast Group Address

Configuring a Coordinated Cache 103-5

4. In the Channel field, enter the name of the service channel for this coordinated
cache.

103.3.2 How to Configure a Service Channel Using Java
Use the oracle.toplink.remotecommand.RemoteCommandManager method
setChannel to set the name of the service channel for this coordinated cache.

For more information, see Section 102.4.4, "Cache Coordination API".

103.4 Configuring a Multicast Group Address
A multicast group address is an Internet Protocol (IP) address in the range 224.0.0.0 to
239.255.255.255 that identifies the members of an IP multicast group. To efficiently
broadcast the same message to all members of an IP multicast group, you configure
each recipient with the same multicast group address and send the message to that
address.

Table 103–5 summarizes which coordinated caches support multicast group address
configuration.

In addition to configuring the multicast group address, you must also configure the
multicast port (see Section 103.5, "Configuring a Multicast Port") for the coordinated
cache types shown in Table 103–5.

103.4.1 How to Configure a Multicast Group Address Using TopLink Workbench
To specify the multicast group address, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 103–5). The cache coordination
options appear on the tab.

Table 103–5 Coordinated Cache Support for Multicast Group Address Configuration

Coordinated Cache

How to Use
Oracle
JDeveloper

How to Configure
a Multicast Group
Address Using
TopLink
Workbench

How to
Configure a
Multicast
Group
Address Using
Java

JMS Coordinated Cache

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Note: Ensure your host and network are configured to support
multicast operation before configuring this option.

Configuring a Multicast Port

103-6 Developer's Guide for Oracle TopLink

Figure 103–3 Cache Coordination Tab, Multicast Group Address Field

4. Enter the multicast group address in the range 224.0.0.0 to 239.255.255.255 to
subscribe this session to a given coordinated cache.

103.4.2 How to Configure a Multicast Group Address Using Java
Use the oracle.toplink.remotecommand.DiscoveryManager method
setMulticastGroupAddress to subscribe this session to a given coordinated cache.

For more information, see Section 102.4.4, "Cache Coordination API".

103.5 Configuring a Multicast Port
The multicast port is the port on which multicast messages are received. Members of a
multicast group (see Section 103.4, "Configuring a Multicast Group Address") rely on
messages broadcast to their multicast group address to communicate with one another.

Table 103–6 summarizes which coordinated caches support multicast port
configuration.

Note: Ensure that the address falls in the range of 224.0.0.0 to
239.255.255.255

Table 103–6 Coordinated Cache Support for Multicast Port Configuration

Coordinated Cache

How to Use
Oracle
JDeveloper

How to Configure
a Multicast Port
Using TopLink
Workbench

How to
Configure a
Multicast Port
Using Java

JMS Coordinated Cache

Configuring a Multicast Port

Configuring a Coordinated Cache 103-7

103.5.1 How to Configure a Multicast Port Using TopLink Workbench
To specify the multicast port, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 103–6). The cache coordination
options appear on the tab.

Figure 103–4 Cache Coordination Tab, Multicast Port Field

4. Enter the multicast port on which messages broadcast to the multicast group
address are received.

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Note: Ensure your host and network are configured to support
multicast operation before configuring this option

Table 103–6 (Cont.) Coordinated Cache Support for Multicast Port Configuration

Coordinated Cache

How to Use
Oracle
JDeveloper

How to Configure
a Multicast Port
Using TopLink
Workbench

How to
Configure a
Multicast Port
Using Java

Configuring a Naming Service Type

103-8 Developer's Guide for Oracle TopLink

103.5.2 How to Configure a Multicast Port Using Java
Use the oracle.toplink.remotecommand.DiscoveryManager method
setMulticastPort to define the multicast port on which messages broadcast to the
multicast group address are to be received.

For more information, see Section 102.4.4, "Cache Coordination API".

103.6 Configuring a Naming Service Type
The session’s message transport service uses a naming service when it looks up
connections to other sessions in the coordinated cache. You can configure the message
transport service to look up remote objects using an RMI registry or Java Naming and
Directory Interface (JNDI). By default, JNDI is used.

Table 103–7 summarizes which coordinated caches support naming service
configuration.

For information, see the following:

■ Section 103.8, "Configuring RMI Registry Naming Service Information"

■ Section 103.7, "Configuring JNDI Naming Service Information"

103.7 Configuring JNDI Naming Service Information
The session’s message transport service uses a naming service when it looks up
connections to other sessions in the coordinated cache. If you choose to use a JNDI
naming service, you must configure JNDI naming service information.

Table 103–8 summarizes which coordinated caches support JNDI naming service
configuration.

Table 103–7 Coordinated Cache Support for Naming Service Configuration

Coordinated Cache
JNDI Naming
Service

RMI Registry
Naming Service

JMS Coordinated Cache

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Table 103–8 Coordinated Cache Support for JNDI Naming Service Configuration

Coordinated Cache

How to Use
Oracle
JDeveloper

How to
Configure JNDI
Naming Service
Information
Using TopLink
Workbench

How to
Configure
JNDI Naming
Service
Information
Using Java

JMS Coordinated Cache

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Configuring JNDI Naming Service Information

Configuring a Coordinated Cache 103-9

TopLink uses JNDI naming service information differently, depending on the type of
coordinated cache.

For a JMS coordinated cache, when a particular session’s coordinated cache starts up,
it uses its JNDI naming service information to locate and create a connection to the
JMS server. The coordinated cache is ready when all participating sessions are
connected to the JMS server. At this point, sessions can start sending and receiving
object change messages. You can then configure all sessions that are participating in
the same coordinated cache with the same JNDI naming service information.

For an RMI or CORBA coordinated cache, when a particular session’s coordinated
cache starts up, the session binds its connection in JNDI, creates an announcement
message (that includes its own JNDI naming service information), and broadcasts the
announcement to its multicast group (see Section 103.4, "Configuring a Multicast
Group Address" and Section 103.5, "Configuring a Multicast Port"). When a session
that belongs to the same multicast group receives this announcement, it uses the JNDI
naming service information in the announcement message to establish bidirectional
connections with the newly announced session’s coordinated cache. The coordinated
cache is ready when all participating sessions are interconnected in this way, at which
point, sessions can start sending and receiving object change messages. You can then
configure each session with JNDI naming information that identifies the host on which
the session is deployed.

103.7.1 How to Configure JNDI Naming Service Information Using TopLink Workbench
To specify the sessions’s JNDI naming service, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 103–8). The cache coordination
options appear on the tab.

Configuring JNDI Naming Service Information

103-10 Developer's Guide for Oracle TopLink

Figure 103–5 Cache Coordination Tab, JNDI Naming Service Options

Use the following information to enter data in the fields of the Cache Coordination tab
to configure the naming service options:

Field Description

URL The location of the JNDI naming service.

For a JMS coordinated cache: If you are using the Oracle
Containers for Java EE (OC4J) JNDI naming service and all the
hosts in your coordinated cache can communicate using the
OC4J proprietary RMI protocol ORMI, use a URL similar to the
following:

ormi://<JMS-host-IP>:<JMS-host-port>

where JMS-host-IP is the IP address of the host on which the
JMS service provider is running, and JMS-host-port is the
port on which the JMS service provider is listening for JMS
requests.

For an RMI or CORBA coordinated cache: If you are using the
OC4J JNDI naming service and all the hosts in your coordinated
cache can communicate using the OC4J proprietary RMI
protocol ORMI on OC4J default port 23791, use a URL similar to
the following:

ormi://<session-host-IP>:23791

where session-host-IP is the IP address of the host on
which this session is deployed.

Username The user name required to log in to the JNDI naming service.

The value you enter defines the Context.SECURITY_
PRINCIPAL environment property.

Configuring JNDI Naming Service Information

Configuring a Coordinated Cache 103-11

103.7.2 How to Configure JNDI Naming Service Information Using Java
Use the oracle.toplink.remotecommand.TransportManager method
setNamingServiceType as follows:

setNamingServiceType(TransportManager.JNDI_NAMING_SERVICE)
Then use the following TransportManager methods to configure the JNDI naming
service options:

■ setUserName–Set the user name required to log in to the JNDI naming service.
The value you enter defines the Context.SECURITY_PRINCIPAL environment
property.

■ setPassword–Set the unencrypted password required to log in to the JNDI
naming service. The value you enter defines the Context.SECURITY_
CREDENTIALS in the cached context properties.

■ setEncriptedPassword–Set the encrypted password required to log in to the
JNDI naming service. The value you enter defines the Context.SECURITY_
CREDENTIALS in the cached context properties.

■ setInitialContextFactoryName–The name of the factory class, provided by
your JNDI naming service provider, that implements the
javax.naming.spi.InitialContextFactory interface. This factory class is
used to create a javax.naming.Context instance that can access the JNDI
naming service provider’s context implementation. The value you enter defines
the Context.INITIAL_CONTEXT_FACTORY in the cached context properties.

■ setLocalContextProperties–Set the properties that will be used to create the
initial context for local JNDI access.

Do not forget to specify the location of the JNDI naming service by providing its URL.
Consider the following:

■ For a JMS coordinated cache, if you are using the OC4J JNDI naming service and
all the hosts in your coordinated cache can communicate using the OC4J
proprietary RMI protocol ORMI, use a URL similar to the following:

ormi://<JMS-host-IP>:<JMS-host-port>

Password The plain text (unencrypted) password required to log in to the
JNDI naming service. The password appears in plain text in
TopLink Workbench, but it is encrypted when written to the
sessions.xml file.

The value you enter defines the Context.SECURITY_
CREDENTIALS environment property.

Initial Context Factory The name of the factory class, provided by your JNDI naming
service provider, that implements the
javax.naming.spi.InitialContextFactory interface.
This factory class is used to create a javax.naming.Context
instance that can access the JNDI naming service provider’s
context implementation.

The value you enter defines the Context.INITIAL_CONTEXT_
FACTORY environment property.

Properties The JNDI context properties.

Click Properties to configure custom JNDI context properties
(see Section 103.11, "Configuring Context Properties").

Field Description

Configuring RMI Registry Naming Service Information

103-12 Developer's Guide for Oracle TopLink

where JMS-host-IP is the IP address of the host on which the JMS service
provider is running, and JMS-host-port is the port on which the JMS service
provider is listening for JMS requests.

■ For an RMI or CORBA coordinated cache, if you are using the OC4J JNDI naming
service and all the hosts in your coordinated cache can communicate using the
OC4J proprietary RMI protocol ORMI on OC4J default port 23791, use a URL
similar to the following:

ormi://<session-host-IP>:23791

where session-host-IP is the IP address of the host on which this session is
deployed.

Note that the default protocol value is "ormi", and the default port value is "23791".
You can also use the TransportManager.DEFAULT_URL_PROTOCOL and DEFAULT_
URL_PORT.

For more information, see Section 102.4.4, "Cache Coordination API".

103.8 Configuring RMI Registry Naming Service Information
The session’s message transport service uses a naming service when it looks up
connections to other sessions in the coordinated cache. If you choose to use an RMI
registry naming service, you can configure RMI registry naming service options.

Table 103–8 summarizes which coordinated caches support RMI registry naming
service configuration.

For an RMI coordinated cache, when a particular session’s coordinated cache starts up,
the session binds its connection in its RMI registry, creates an announcement message
(that includes its own naming service information), and broadcasts the announcement
to its multicast group (see Section 103.4, "Configuring a Multicast Group Address" and
Section 103.5, "Configuring a Multicast Port"). When a session that belongs to the same
multicast group receives this announcement, it uses the JNDI naming service
information in the announcement message to establish bidirectional connections with
the newly announced session’s coordinated cache. The coordinated cache is ready
when all participating sessions are interconnected in this way, at which point, sessions
can start sending and receiving object change messages. You can then configure each
session with RMI registry naming information that identifies the host on which the
session is deployed.

Table 103–9 Coordinated Cache Support for RMI Registry Naming Service
Configuration

Coordinated Cache

How to Use
Oracle
JDeveloper

How to
Configure RMI
Registry Naming
Service
Information
Using TopLink
Workbench

How to
Configure
RMI Registry
Naming
Service
Information
Using Java

JMS Coordinated Cache

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Configuring RMI Registry Naming Service Information

Configuring a Coordinated Cache 103-13

103.8.1 How to Configure RMI Registry Naming Service Information Using TopLink
Workbench

To specify the sessions’s registry naming service, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor window.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 103–9). The cache coordination
options appear on the tab.

Figure 103–6 Cache Coordination Tab, Naming Service Options

Use the following information to configure the naming service options:

103.8.2 How to Configure RMI Registry Naming Service Information Using Java
Use the oracle.toplink.remotecommand.TransportManager method
setNamingServiceType as follows:

setNamingServiceType(TransportManager.REGISTRY_NAMING_SERVICE)

Field Description

URL Assuming that you are using the OC4J JNDI naming service and
that all the hosts in your coordinated cache can communicate
using the OC4J proprietary RMI protocol ORMI on OC4J default
port 23791, use a URL similar to the following:

ormi://<session-host-IP>:23791

where session-host-IP is the IP address of the host on
which this session is deployed.

Configuring an Announcement Delay

103-14 Developer's Guide for Oracle TopLink

Then specify the location of the JNDI naming service by providing its URL. Consider
the following:

For an RMI or CORBA coordinated cache, if you are using the OC4J JNDI naming
service and all the hosts in your coordinated cache can communicate using the OC4J
proprietary RMI protocol ORMI on OC4J default port 23791, use a URL similar to the
following:

ormi://<session-host-IP>:23791

where session-host-IP is the IP address of the host on which this session is
deployed.

Note that the default protocol value is "ormi", and the default port value is "23791".
You can also use the TransportManager.DEFAULT_URL_PROTOCOL and DEFAULT_
URL_PORT constants.

For more information, see Section 102.4.4, "Cache Coordination API".

103.9 Configuring an Announcement Delay
Use the announcement delay option to set the amount of time (in milliseconds) that a
session should wait between the time that it is available and the time that it broadcasts
its announcement message to the members of the coordinated cache. This additional
delay may be necessary to give some systems more time to post their connections into
the naming service (see Section 103.6, "Configuring a Naming Service Type").

Table 103–10 summarizes which coordinated caches support announcement delay
configuration.

In addition to announcement delay, you may also need to consider packet time-to-live
configuration (see Section 103.12, "Configuring a Packet Time-to-Live").

103.9.1 How to Configure an Announcement Delay Using TopLink Workbench
To specify the announcement delay (in milliseconds) for an RMI coordinated cache,
use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 103–10). The cache coordination
options appear on the tab.

Table 103–10 Coordinated Cache Support for Announcement Delay Configuration

Coordinated Cache
How to Use Oracle
JDeveloper

How to
Configure an
Announcement
Delay Using
TopLink
Workbench

How to
Use Java

JMS Coordinated Cache

RMI Coordinated Cache

CORBA Coordinated Cache

Custom Coordinated Cache

Configuring Connection Handling

Configuring a Coordinated Cache 103-15

Figure 103–7 Cache Coordination Tab, Announcement Delay Field

4. Select the amount of time (in milliseconds) that this session should wait between
the time that it is available and the time that it broadcasts its announcement
message to the members of the coordinated cache.

103.9.2 How to Configure an Announcement Delay Using Java
Use the oracle.toplink.remotecommand.DiscoveryManager method
setAnnouncementDelay to select the amount of time (in milliseconds) that this
session should wait between the time that it is available and the time that it broadcasts
its announcement message to the members of the coordinated cache

For more information, see Section 102.4.4, "Cache Coordination API".

103.10 Configuring Connection Handling
The session’s transport manager creates connections to the various members of the
coordinated cache. If a communication error occurs on one of these connections, you
can configure the session to either ignore the error or remove the connection.

Table 103–11 summarizes which coordinated caches support connection handling
configuration.

Table 103–11 Coordinated Cache Support for Connection Handling Configuration

Coordinated Cache

How to Use
Oracle
JDeveloper

How to
Configure
Connection
Handling
Using TopLink
Workbench

How to
Configure
Connection
Handling
Using Java

JMS Coordinated Cache

RMI Coordinated Cache

Configuring Connection Handling

103-16 Developer's Guide for Oracle TopLink

If you configure the session to remove the connection on error, the next time the
session tries to communicate with that coordinated cache member, it will construct a
new connection.

If you configure the session to ignore the error, the next time the session tries to
communicate with that coordinated cache member, it will continue to use the same
connection.

103.10.1 How to Configure Connection Handling Using TopLink Workbench
To specify how TopLink handles session connections in the event of an error, use this
procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 103–11). The cache coordination
options appear on the tab.

Figure 103–8 Cache Coordination Tab, Remove Connection on Error Option

4. Select the Remove Connection on Error option to configure the session to remove
the data source connection in the event of an error.

CORBA Coordinated Cache

Custom Coordinated Cache

Table 103–11 (Cont.) Coordinated Cache Support for Connection Handling

Coordinated Cache

How to Use
Oracle
JDeveloper

How to
Configure
Connection
Handling
Using TopLink
Workbench

How to
Configure
Connection
Handling
Using Java

Configuring Context Properties

Configuring a Coordinated Cache 103-17

103.10.2 How to Configure Connection Handling Using Java
Use the oracle.toplink.remotecommand.TransportManager method
setShouldRemoveConnectionOnError to configure the session to remove the data
source connection if an error occurs.

For more information, see Section 102.4.4, "Cache Coordination API".

103.11 Configuring Context Properties
When you configure a coordinated cache to use a JNDI naming service (see
Section 103.6, "Configuring a Naming Service Type"), you can add new environment
properties to the environment of the initial JNDI context.

Table 103–12 summarizes which coordinated caches support context properties.

Using TopLink Workbench, TopLink uses the new environment properties you add to
create the initial context for both local and remote JNDI access.

Using Java, you can configure different properties for local and remote JNDI access
using a session customizer class to call TransportManager methods
setLocalContextProperties and setRemoteContectProperties (for more
information, see Section 89.8, "Configuring a Session Customizer Class").

103.11.1 How to Configure Context Properties Using TopLink Workbench
To define JNDI context properties, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 103–12). The cache coordination
options appear on the tab.

3. Ensure the JNDI Naming Service option is selected. See Section 103.6,
"Configuring a Naming Service Type".

4. In the JNDI Naming Service area, click Properties. The Edit Properties dialog box
appears.

Table 103–12 Coordinated Cache Support for Context Properties

Coordinated Cache

How to Use
Oracle
JDeveloper

How to
Configure
Context
Properties
Using TopLink
Workbench

How to
Configure
Context
Properties
Using
Java

JMS Coordinated Cache

RMI Coordinated Cache1

1 When JNDI naming service is selected (see Section 103.6, "Configuring a Naming Service Type").

CORBA Coordinated Cache1

Custom Coordinated Cache

Configuring a Packet Time-to-Live

103-18 Developer's Guide for Oracle TopLink

Figure 103–9 Edit Properties Dialog Box

Use this table to enter data in the following fields on the dialog box.

To change (or delete) an existing property, select the property and click Edit (or
Remove).

103.11.2 How to Configure Context Properties Using Java
Use the oracle.toplink.remotecommand.TransportManager method
setLocalContextProperties to define a Hashtable of the JNDI context
properties that will be used to create the initial context for the local JNDI access. Note
that the "dedicated.connection" is the default key with the default value of "true".

For more information, see Section 102.4.4, "Cache Coordination API".

103.12 Configuring a Packet Time-to-Live
The packet time-to-live is the number of hops that session data packets can take
before expiring. The default is 2. This allows for a hub and an interface card, and
prevents the data packets from leaving the local network. If sessions are hosted on
different local area networks (LANs) that are part of wide area network (WAN), or if a
firewall configuration prevents it, the announcement sent by one session may not
reach the other sessions in the coordinated cache. In this case, consult your network
administrator for the correct time-to-live value.

Table 103–13 summarizes which coordinated caches support packet time-to-live
configuration.

Field Description

Name The name of the property.

Value The value of the property.

Table 103–13 Coordinated Cache Support for Packet Time-to-Live Configuration

Coordinated Cache

How to Use
Oracle
JDeveloper

How to
Configure a
Packet
Time-to-Live
Using TopLink
Workbench

How to
Use Java

JMS Coordinated Cache

RMI Coordinated Cache

Configuring a Packet Time-to-Live

Configuring a Coordinated Cache 103-19

In addition to configuring packet time-to-live, you may also need to configure
announcement delay (see Section 103.9, "Configuring an Announcement Delay").

103.12.1 How to Configure a Packet Time-to-Live Using TopLink Workbench
To specify the number of hops that session data packets can take before expiring, use
this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (see Table 103–12). The cache coordination
options appear on the tab.

Figure 103–10 Cache Coordination Tab, Packet Time to Live Field

In the Packet Time to Live field, specify the number of hops (default = 2) that session
data packets can take before expiring.

CORBA Coordinated Cache

Custom Coordinated Cache

Table 103–13 (Cont.) Coordinated Cache Support for Packet Time-to-Live Configuration

Coordinated Cache

How to Use
Oracle
JDeveloper

How to
Configure a
Packet
Time-to-Live
Using TopLink
Workbench

How to
Use Java

Configuring a Packet Time-to-Live

103-20 Developer's Guide for Oracle TopLink

103.12.2 How to Configure a Packet Time-to-Live Using Java
Use the oracle.toplink.remotecommand.DiscoveryManager method
setPacketTimeToLive to specify the number of hops (default = 2) that session data
packets can take before expiring.

For more information, see Section 102.4.4, "Cache Coordination API".

104

Configuring a JMS Coordinated Cache 104-1

104Configuring a JMS Coordinated Cache

This chapter describes the various components that you must configure in order to use
a JMS coordinated cache.

This chapter includes the following sections:

■ Introduction to JMS Coordinated Cache Configuration

■ Configuring a Topic Name

■ Configuring a Topic Connection Factory Name

■ Configuring a Topic Host URL

■ Configuring Connection Handling

104.1 Introduction to JMS Coordinated Cache Configuration
Table 104–1 lists the configurable options for a JMS coordinated cache.

Table 104–1 Configurable Options for a JMS Coordinated Cache

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Cache coordination change propagation at the descriptor level
(see Section 119.15, "Configuring Cache Coordination Change
Propagation at the Descriptor Level")

Synchronous change propagation mode (see Section 103.2,
"Configuring the Synchronous Change Propagation Mode")

JNDI naming service (see Section 103.7, "Configuring JNDI
Naming Service Information")

Topic name (see Section 104.2, "Configuring a Topic Name")

Topic connection factory name (see Section 104.3,
"Configuring a Topic Connection Factory Name")

Topic host URSL (see Section 104.4, "Configuring a Topic Host
URL")

Connection handling (see Section 104.5, "Configuring
Connection Handling")

Context properties (see Section 103.11, "Configuring Context
Properties")

Packet time-to-live (see Section 103.12, "Configuring a Packet
Time-to-Live")

Configuring a Topic Name

104-2 Developer's Guide for Oracle TopLink

104.2 Configuring a Topic Name
A JMS topic identifies a publish/subscribe destination for a JMS server. JMS users who
wish to share messages subscribe to the same JMS topic.

The topic name you configure is the name that TopLink uses to look up the
javax.jms.Topic instance from the JNDI service. You must provide a fully
qualified JNDI name, such as jms/<topic_name>.

All the members of the same JMS coordinated cache must use the same JMS topic.

104.2.1 How to Configure a Topic Name Using TopLink Workbench
To specify the topic name for JMS cache coordination, use this procedure:

1. Select a server session in the Navigator. Its properties appear in the Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure Enable Cache Coordination is selected and the Type is JMS (see
Section 102.3, "Cache Coordination" for more information).

Figure 104–1 Cache Coordination Tab, Topic Name Field, JMS

4. Enter the topic name to use with the JMS coordinated cache for this session. This
must be a fully qualified JNDI name, such as jms/<topic_name>.

Enter the topic name to use with the JMS coordinated cache for this session. This must
be a fully qualified JNDI name, such as jms/<topic_name>.

104.2.2 How to Configure a Topic Name Java
User the
oracle.toplink.remotecommand.broadcast.BroadcastTransportManager
method setTopicName to configure the Topic name for the Topic to which this
transport manager will be connecting.

You obtain the BroadcastTransportManager using the following Session API:

Session.getCommandManager().getTransportManager()

Configuring a Topic Connection Factory Name

Configuring a JMS Coordinated Cache 104-3

104.3 Configuring a Topic Connection Factory Name
A JMS topic connection factory creates connections with the JMS provider for a specific
JMS destination. Each connection factory contains the specific configuration
information to create a connection to a JMS destination.

The topic connection factory name you configure is the name that TopLink uses to look
up the javax.jms.TopicConnectionFactory instance from the JNDI service.
This must be a fully qualified JNDI name, such as jms/<resource_name>.

104.3.1 How to Configure a Topic Connection Factory Name Using TopLink Workbench
To specify the topic connection factory for a JMS coordinated cache, use this
procedure:

1. Select a server session in the Navigator. Its properties appear in the Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure Enable Cache Coordination is selected and the Type is JMS (see
Section 102.3, "Cache Coordination" for more information).

Figure 104–2 Cache Coordination Tab, Topic Connection Factory Name Field

4. Enter the topic connection factory name to use with the JMS coordinated cache for
this session. This must be a fully qualified JNDI name, such as jms/<resource_
name>.

Enter the topic connection factory name to use with the JMS coordinated cache for this
session. This must be a fully qualified JNDI name, such as jms/<resource_name>.

104.3.2 How to Configure a Topic Connection Factory Name Using Java
Use the oracle.toplink.remotecommand.jms.JMSTopicTransportManager
method setTopicConnectionFactoryName to configure the JMS Topic connection
factory name for the JMS Topic connections.

You obtain the JMSTopicTransportManager using the following Session API:

Session.getCommandManager().getTransportManager()

Configuring a Topic Host URL

104-4 Developer's Guide for Oracle TopLink

104.4 Configuring a Topic Host URL
The JMS topic host URL is the URL of the machine on the network that hosts the JMS
topic (see Section 104.2, "Configuring a Topic Name").

104.4.1 How to Configure a Topic Host URL Using TopLink Workbench
To specify the topic host URL for a JMS coordinated cache, use this procedure:

1. Select a server session in the Navigator. Its properties appear in the Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure Enable Cache Coordination is selected and the Type is JMS (see
Section 102.3, "Cache Coordination" for more information).

Figure 104–3 Cache Coordination Tab, Topic Host URL Field

Enter the URL of the machine on the network that hosts the JMS topic (see
Section 104.2, "Configuring a Topic Name") to use with the JMS coordinated cache for
this session.

104.4.2 How to Configure a Topic Host URL Using Java
Use the oracle.toplink.remotecommand.jms.JMSTopicTransportManager
method setTopicHostURL to configure the URL of the computer on the network
that hosts the JMS Topic.

You obtain the JMSTopicTransportManager using the following Session API:

Session.getCommandManager().getTransportManager()

104.5 Configuring Connection Handling
The session’s transport manager creates connections to the various members of the
coordinated cache. If a communication error occurs on one of these connections, you
can configure the session to either ignore the error or remove the connection.

If you configure the session to remove the connection on error, the next time the
session tries to communicate with that coordinated cache member, it will construct a
new connection. If an error occurs during the connection creation phase, TopLink will
either throw a RemoteCommandManagerException.ERROR_CREATING_JMS_

Configuring Connection Handling

Configuring a JMS Coordinated Cache 104-5

CONNECTION (if the error occurred while sending a message) or a
RemoteCommandManagerException.ERROR_CREATING_LOCAL_JMS_
CONNECTION (if the error occurred while receiving a message). If you want to recover
from this failure, consider the following options:

■ You may choose to take no action: messages will not be sent or received.

■ You may choose to handle the exception. You may do so by changing some of the
oracle.toplink.remotecommand.jms.JMSTopicTransportManager
settings and calling the createExternalConnection or
createInternalConnection method of the JMSTopicTransportManager.

If you configure the session to ignore the error, the next time the session tries to
communicate with that coordinated cache member, it will continue to use the same
connection. In this case, if the listening (local) connection gets a
RemoteCommandManagerException.ERROR_RECEIVING_JMS_MESSAGE
exception, the coordinated cache waits for 10 seconds before resuming listening. If you
want to recover from this failure, consider the following options:

■ You may choose to take no action (wait for the connection recovery).

■ You may choose to handle the RemoteCommandManagerException.ERROR_
PROPAGATING_COMMAND or RemoteCommandManagerException.ERROR_
RECEIVING_JMS_MESSAGE exception. You may do so by shutting down the
remote command manager.

In either case, if the coordinated cache receives a null JMS message, it will throw a
RemoteCommandManagerException.ERROR_RECEIVED_JMS_MESSAGE_IS_NULL
exception.

104.5.1 How to Configure Connection Handling Using TopLink Workbench
To specify how TopLink handles session connections in the event of an error, use this
procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected, then select the
appropriate coordinated cache Type (JMS). The cache coordination options appear
on the tab.

Configuring Connection Handling

104-6 Developer's Guide for Oracle TopLink

Figure 104–4 Cache Coordination Tab, Remove Connection on Error Option

4. Select the Remove Connection on Error option to configure the session to remove
the data source connection in the event of an error.

Select the Remove Connection on Error option to configure the session to remove the
data source connection in the event of an error.

104.5.2 How to Configure Connection Handling Using Java
Use the oracle.toplink.remotecommand.TransportManager method
setShouldRemoveConnectionOnError to define whether connections to remote
services should be disconnected when an error occurs.

You obtain the TransportManager using the following Session API:

Session.getCommandManager().getTransportManager()

105

Configuring an RMI Coordinated Cache 105-1

105Configuring an RMI Coordinated Cache

This chapter describes the various components that you must configure in order to use
an RMI coordinated cache.

This chapter includes the following sections:

■ Introduction to RMI Coordinated Cache Configuration

105.1 Introduction to RMI Coordinated Cache Configuration
Table 105–1 lists the configurable options for an RMI coordinated cache.

Table 105–1 Configurable Options for an RMI Coordinated Cache

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Cache coordination change propagation at the descriptor level
(see Section 119.15, "Configuring Cache Coordination Change
Propagation at the Descriptor Level")

Synchronous change propagation mode (see Section 103.2,
"Configuring the Synchronous Change Propagation Mode")

Service channel (see Section 103.3, "Configuring a Service
Channel")

Multicast group address (see Section 103.4, "Configuring a
Multicast Group Address")

Multicast port (see Section 103.5, "Configuring a Multicast Port")

Naming service type (see Section 103.6, "Configuring a Naming
Service Type")

Announcement delay (see Section 103.9, "Configuring an
Announcement Delay")

Connection handling (see Section 103.10, "Configuring
Connection Handling")

Context properties (see Section 103.11, "Configuring Context
Properties")

Packet time-to-live (see Section 103.12, "Configuring a Packet
Time-to-Live")

Introduction to RMI Coordinated Cache Configuration

105-2 Developer's Guide for Oracle TopLink

106

Configuring a CORBA Coordinated Cache 106-1

106Configuring a CORBA Coordinated Cache

This chapter describes the various components that you must configure to use a
CORBA coordinated cache.

This chapter includes the following sections:

■ Introduction to CORBA Coordinated Cache Configuration

106.1 Introduction to CORBA Coordinated Cache Configuration
Table 106–1 lists the configurable options for a CORBA coordinated cache.

Table 106–1 Configurable Options for a CORBA Coordinated Cache

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Cache coordination change propagation at the descriptor level
(see Section 119.15, "Configuring Cache Coordination Change
Propagation at the Descriptor Level")

Synchronous change propagation mode (see Section 103.2,
"Configuring the Synchronous Change Propagation Mode")

Service channel (see Section 103.3, "Configuring a Service
Channel")

Multicast group address (see Section 103.4, "Configuring a
Multicast Group Address")

Multicast port (see Section 103.5, "Configuring a Multicast
Port")

Naming service type (see Section 103.6, "Configuring a Naming
Service Type")

Announcement delay (see Section 103.9, "Configuring an
Announcement Delay")

Connection handling (see Section 103.10, "Configuring
Connection Handling")

Context properties (see Section 103.11, "Configuring Context
Properties")

Packet time-to-live (see Section 103.12, "Configuring a Packet
Time-to-Live")

Introduction to CORBA Coordinated Cache Configuration

106-2 Developer's Guide for Oracle TopLink

107

Configuring a Custom Coordinated Cache 107-1

107Configuring a Custom Coordinated Cache

This chapter describes the various components that you must configure to use a
custom, user-defined coordinated cache. For more information, see Section 102.3.4,
"Custom Coordinated Cache".

This chapter includes the following sections:

■ Introduction to Custom Coordinated Cache Configuration

■ Configuring Transport Class

107.1 Introduction to Custom Coordinated Cache Configuration
Table 107–1 lists the configurable options for a custom coordinated cache.

107.2 Configuring Transport Class
To configure a custom coordinated cache, you must specify your custom instance of
oracle.toplink.remotecommand.TransportManager.

This section describes How to Configure Transport Class Using TopLink Workbench.

107.2.1 How to Configure Transport Class Using TopLink Workbench
To select the transport class for the user defined coordinated cache, use this procedure:

1. Select a session or session broker in the Navigator. Its properties appear in the
Editor.

2. Click the Cache Coordination tab. The Cache Coordination tab appears.

3. Ensure the Enable Cache Coordination option is selected and the Type is User
Defined (see Section 102.3, "Cache Coordination").

Table 107–1 Configurable Options for a Custom Coordinated Cache

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Cache coordination change propagation at the descriptor
level (see Section 119.15, "Configuring Cache Coordination
Change Propagation at the Descriptor Level")

Service channel (see Section 103.3, "Configuring a Service
Channel")

Transport class (see Section 107.2, "Configuring Transport
Class")

Connection handling (see Section 103.10, "Configuring
Connection Handling")

Configuring Transport Class

107-2 Developer's Guide for Oracle TopLink

Figure 107–1 Cache Coordination, Transport Class Option

4. Click Browse and select the transport class for the user-defined coordinated cache.

Click Browse and select the transport class for the user-defined coordinated cache.

107.2.2 How to Configure Transport Class Using Java
Create a custom instance of the
oracle.toplink.remotecommand.TransportManager that you use as a
transport class for your coordinated cache.

You obtain the TransportManager using the following Session API:

Session.getCommandManager().getTransportManager()

Part XXIV
Part XXIV Queries

This part describes building TopLink queries and using them to create, read, update,
and delete objects. It contains the following chapters.:

■ Chapter 108, "Introduction to TopLink Queries"

This chapter describes each of the different TopLink query types and important
query concepts.

■ Chapter 109, "Using Basic Query API"

This chapter explains how to use basic TopLink query options.

■ Chapter 110, "Introduction to TopLink Expressions"

This chapter describes the TopLink expressions framework and how to use it with
TopLink queries.

■ Chapter 111, "Using Advanced Query API"

This chapter explains how to use advanced TopLink query options.

■ Chapter 112, "Introduction to TopLink Support for Oracle Spatial"

This chapter explains how to extend TopLink to support the mapping and
querying of Oracle Spatial.

108

Introduction to TopLink Queries 108-1

108Introduction to TopLink Queries

TopLink enables you to create, read, update, and delete persistent objects or data using
queries in both Java EE and non-Java EE applications for both relational and
nonrelational data sources.

This chapter includes the following sections:

■ Query Types

■ Query Concepts

■ Building Queries

■ Executing Queries

■ Handling Query Results

■ Session Queries

■ Database Queries

■ Named Queries

■ Call Queries

■ Redirect Queries

■ Historical Queries

■ Interface and Inheritance Queries

■ Descriptor Query Manager Queries

■ Oracle Extensions

■ EJB 2.n CMP Finders

■ Queries and the Cache

■ Query API

108.1 Query Types
Table 108–1 lists the query types that you can build in TopLink.

Query Concepts

108-2 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Chapter 109, "Using Basic Query API"

■ Chapter 111, "Using Advanced Query API"

■ Section 108.2, "Query Concepts"

108.2 Query Concepts
In general, querying a data source means performing an action on or interacting with
the contents of the data source. To do this, you must be able to perform the following:

■ Define an action in a syntax native to the data source being queried.

■ Apply the action in a controlled fashion.

■ Manage the results returned by the action (if any).

Specific to TopLink, you must also consider how the query affects the TopLink cache.
For more information, see Section 108.16, "Queries and the Cache".

This section introduces query concepts unique to TopLink, including the following:

Table 108–1 TopLink Query Types

Query Type Description
Oracle
JDeveloper

TopLink
Workbench Java

Session Queries A query implicitly constructed and executed by a Session
based on input parameters used to perform the most
common data source actions on objects.

Database Queries A query also known as a query object query. An instance of
DatabaseQuery that you create and then execute to perform
any data source action on either objects or data. You can
further refine a DatabaseQuery by also creating and
configuring its Call (see Section 108.9, "Call Queries").

Named Queries An instance of DatabaseQuery stored by name in a
Session or a descriptor’s DescriptorQueryManager
where it is constructed and prepared once. Such a query can
then be repeatedly executed by name.

Call Queries An instance of Call that you create and then either execute
directly, using a special Session API to perform limited data
source actions on data only, or execute indirectly in the
context of a DatabaseQuery. TopLink supports Call
instances for custom SQL, stored procedures, and EIS
interactions.

Redirect Queries An instance of MethodBasedQueryRedirector (taking the
name of a static method and the Class in which it is defined
as parameters) set on a named query. When the query is
executed, the static method is invoked.

Historical Queries Any query executed in the context of a historical session
using the time-aware features of the TopLink Expression
framework.

Interface and
Inheritance
Queries

Any query that references an interface type or super and
subclasses of an inheritance hierarchy.

Descriptor Query
Manager Queries

The DescriptorQueryManager defines a default
DatabaseQuery for each basic data source operation (create,
read, update, and delete), and provides an API with which
you can customize either the DatabaseQuery or its Call.

EJB 2.n CMP
Finders

A query defined on the home interface of an enterprise bean
that returns enterprise beans. You can implement finders
using any TopLink query type, including JPAQLCall and
EJBQLCall, a Call that takes JPA/EJB QL.

Query Concepts

Introduction to TopLink Queries 108-3

■ Call

■ DatabaseQuery

■ Data-Level and Object-Level Queries

■ Summary Queries

■ Descriptor Query Manager

■ TopLink Expressions

■ Query Keys

■ Query Languages

108.2.1 Call
In TopLink, the Call object encapsulates an operation or action on a data source.
TopLink provides a variety of Call types such as structured query language (SQL),
Enterprise Java Beans Query Language (EJB QL), Java Persistence Query Language
(JP QL), Extensible Markup Language (XML), and enterprise information system (EIS).

You can execute a Call directly or in the context of a DatabaseQuery.

108.2.2 DatabaseQuery
A DatabaseQuery object is an abstraction that associates additional customization
and optimization options with the action encapsulated by a Call. By separating these
options from the Call, TopLink can provide sophisticated query capabilities across all
Call types.

For more information, see Section 108.7, "Database Queries".

108.2.3 Data-Level and Object-Level Queries
In TopLink, queries can be defined for objects or data, as follows:

■ Object-level queries (see Section 108.7.1, "Object-Level Read Query" and
Section 108.7.3, "Object-Level Modify Query") are object-specific and return data as
objects in your domain model. They are the preferred type of query for mapped
data. By far, object-level DatabaseQuery queries are the most common query
used in TopLink.

■ Data-level queries (see Section 108.7.2, "Data-Level Read Query" and
Section 108.7.4, "Data-Level Modify Query") are used to query database tables
directly, and are an appropriate way to work with unmapped data.

108.2.4 Summary Queries
While data-level queries return raw data and object-level queries return objects in your
domain model, summary queries return data about objects. TopLink provides partial
object queries (see Section 108.7.1.3, "Partial Object Queries") to return a set of objects
with only specific attributes populated, and report queries (see Section 108.7.5, "Report
Query") to return summarized (or rolled-up) data for specific attributes of a set of
objects.

108.2.5 Descriptor Query Manager
In addition to storing named queries applicable to a particular class (see Section 108.8,
"Named Queries"), you can also use the DescriptorQueryManager to override the

Query Concepts

108-4 Developer's Guide for Oracle TopLink

default action that TopLink defines for common data source operations. For more
information, see Section 108.13, "Descriptor Query Manager Queries".

108.2.6 TopLink Expressions
TopLink expressions let you specify query search criteria based on your domain object
model. When you execute the query, TopLink translates these search criteria into the
appropriate query language for your platform.

TopLink provides the following two public classes to support expressions:

■ The Expression class represents an expression that can be anything from a
simple constant to a complex clause with boolean logic. You can manipulate,
group, and integrate expressions.

■ The ExpressionBuilder class is the factory for constructing new expressions.

You can specify a selection criterion as an Expression with DatabaseQuery
method setSelectionCriteria (see Section 108.7, "Database Queries"), and in a
finder that takes an Expression (see Section 108.15.7, "Expression Finders").

For more information about using TopLink expressions, see Chapter 110, "Introduction
to TopLink Expressions".

108.2.7 Query Keys
A query key is a schema-independent alias for a database field name. Using a query
key, you can refer to a field using a schema-independent alias. In relational projects
only, TopLink automatically creates query keys for all mapped attributes. The name of
the query key is the name of the class attribute specified in your object model.

You can configure query keys in a class descriptor (see Section 119.10, "Configuring
Query Keys") or interface descriptor (see Section 119.11, "Configuring Interface Query
Keys").

You can use query keys in expressions (see Section 110.4, "Query Keys and
Expressions") and to query variable one-to-one mappings (see Section 111.8, "Using
Queries on Variable One-to-One Mappings").

108.2.8 Query Languages
Using TopLink, you can express a query using any of the following query languages:

■ SQL Queries

■ EJB QL Queries

■ JP QL Queries

■ XML Queries

■ EIS Interactions

■ Query-by-Example

■ TopLink Expressions (see Chapter 110, "Introduction to TopLink Expressions")

In most cases, you can compose a query directly in a given query language or,
preferably, you can construct a DatabaseQuery with an appropriate Call and
specify selection criteria using a TopLink Expression. Although composing a query
directly in SQL appears to be the simplest approach (and for simple operations or
operations on unmapped data, it is), using the DatabaseQuery approach offers the

Query Concepts

Introduction to TopLink Queries 108-5

compelling advantage of confining your query to your domain object model and
avoiding dependence on data source schema implementation details.

Oracle recommends that you compose your queries using JP QL or Expression.

108.2.8.1 SQL Queries
SQL is the most common query language for applications that use a relational
database data source.

You can execute custom SQL directly using Session methods
executeSelectingCall and executeNonSelectingCall, or you can construct a
DatabaseQuery with an appropriate Call.

TopLink provides a variety of SQL Call objects for use with stored procedures and,
with Oracle Database, stored functions. For more information, see Section 108.9.1,
"SQL Calls".

TopLink also supports PL/SQL call for Oracle stored procedures with PL/SQL data
types. For more information, see Section 109.5, "Using a StoredProcedureCall".

108.2.8.2 EJB QL Queries
Like SQL, EJB QL is a query language; but unlike SQL, it presents queries from an
object model perspective, allowing you to declare queries using the attributes of each
abstract entity bean in your object model. It also includes path expressions that enable
navigation over the relationships defined between entity beans and dependent objects.

Using EJB QL offers the following advantages:

■ You do not need to know the database structure (such as tables and fields).

■ You can construct queries using the attributes of the entity beans instead of using
database tables and fields.

■ You can use relationships in a query to provide navigation from attribute to
attribute.

■ EJB QL queries are portable because they are database-independent.

■ You can specify the reference class in the SELECT clause.

The disadvantage of EJB QL queries is that it is difficult to use when you construct
complex queries.

TopLink provides the full support for the EJB QL specification.

EJB QL is the standard query language first defined in the EJB 2.0 specification.
Consequently, TopLink lets you specify selection criteria using EJB QL in an EJB finder
(see Section 108.15.8, "EJB QL Finders").

Although EJB QL is usually associated with EJB, TopLink also lets you specify
selection criteria using EJB QL in queries for regular Java objects as well. TopLink
provides an EJB QL Call that you can execute directly or in the context of a
DatabaseQuery. For more information, see Section 108.9.2, "EJB QL Calls" and
Section 108.2.2, "DatabaseQuery".

Note: TopLink supports the LOCATE string function and will
generate the correct SQL with it. However, not all data sources
support LOCATE. Before using the LOCATE string function, consult
your data source documentation.

Building Queries

108-6 Developer's Guide for Oracle TopLink

108.2.8.3 JP QL Queries
See "What You May Need to Know About Querying with Java Persistence Query
Language" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Developing_Applications_Using_
EclipseLink_JPA_%28ELUG%29#What_You_May_Need_to_Know_About_
Querying_with_Java_Persistence_Query_Language for more information.

108.2.8.4 XML Queries
You can use TopLink XML to query XML data stored in Oracle Database XMLType
field. For more information, see Section 27.4, "Direct-to-XMLType Mapping" and
Section 110.2.4, "XMLType Functions".

108.2.8.5 EIS Interactions
When you execute a TopLink query using an EIS Call (see Section 108.9.3, "Enterprise
Information System (EIS) Interactions"), TopLink converts your selection criteria into
an XML format appropriate for your JCA adapter.

If supported by your JCA adapter, you can use the XQuery language by executing an
XQuery interaction (see Section 108.9.3.4, "XQueryInteraction") either directly or in the
context of a DatabaseQuery.

108.2.8.6 Query-by-Example
Query-by-example is a simple and intuitive way to express a query. To specify a
query-by-example, provide a sample instance of the persistent object to query, and set
appropriate values on only the data members on which you wish to query.

Query-by-example lets you query for an object based on any attribute that uses a
direct mapping or a one-to-one relationship (including those with nesting).

Set only the attributes on which you base the query; set all other attributes to null. By
default, TopLink ignores attributes in the sample instance that contain null, zero (0),
empty strings, and FALSE. You can modify this list of values (and define other query
by example options) by specifying a QueryByExamplePolicy (see Defining a
QueryByExamplePolicy).

Query-by-example uses the AND operator to tie the attribute comparisons together. By
default, attribute values in the sample instance are compared against corresponding
values of candidate objects using EQUALS operator. You can modify this behaviour
using the QueryByExamplePolicy.

Both ReadAllQuery and ReadObjectQuery provide a setExampleObject
method and setQueryByExamplePolicy method that you can use to specify
selection criteria based on an example object instance.

For more information and examples, see Section 109.2.1.4, "Reading Objects Using
Query-By-Example".

108.3 Building Queries
You can build queries using Oracle JDeveloper, TopLink Workbench, or Java using the
TopLink API.

Note: Query-by-example does not support any other relationship
mapping types, nor does it support EJB 2.n CMP beans.

Executing Queries

Introduction to TopLink Queries 108-7

Some queries are implicitly constructed for you based on passed in arguments and
executed in one step (for example, session queries, as described in Section 108.6,
"Session Queries") and others you explicitly create, configure, and then execute (for
example, Section 108.7, "Database Queries").

For more information, see the following:

■ Chapter 109, "Using Basic Query API"

■ Chapter 111, "Using Advanced Query API"

108.4 Executing Queries
In TopLink, you execute most queries using the Session API summarized in
Table 108–2.

TopLink executes DescriptorQueryManager queries when you execute a session
query. For more information, see Section 108.13, "Descriptor Query Manager Queries".

You execute EJB 2.n CMP finders when you call the appropriate finder method on an
EJB 2.n CMP bean. For more information, see Section 108.15, "EJB 2.n CMP Finders".

Table 108–2 Session Methods for Executing a Query

Query Type Session Method Advantages and Disadvantages

Session Queries readObject

readAllObjects

writeObject

writeAllObjects

deleteObject

deleteAllObjects

insertObject

updateObject

Advantages: the most convenient way to
perform common data source operations on
objects.

Disadvantages: less control over query
execution and results; less efficient for
frequently executed queries.

Database Queries

Named Queries

Redirect Queries

executeQuery Advantages: greatest configuration and
execution flexibility; can take advantage of
named queries for efficiency.

Disadvantages: you must explicitly create and
configure DatabaseQuery and possibly Call
objects.

Call Queries executeSelectingCall

executeNonSelectingCall

Advantages: convenient way to directly apply
an action to unmapped data.

Disadvantages: least control over query
execution and results; your application must
do more work to handle raw data results.

Note: Oracle recommends that you perform all data source
operations using a unit of work: doing so is the most efficient way to
manage transactions, concurrency, and referential constraints. For
more information, see Chapter 113, "Introduction to TopLink
Transactions".

Alternatively, you can execute queries outside of a unit of work using
a session API directly, but doing so places greater responsibility on
your application to manage transactions, concurrency, and referential
constraints.

Handling Query Results

108-8 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Chapter 109, "Using Basic Query API"

■ Chapter 111, "Using Advanced Query API"

108.5 Handling Query Results
TopLink queries generally return Java objects as their result set. TopLink queries can
return any of the following:

■ Entire objects, with all attributes populated and the object reflected in the cache.

■ Collections of objects (see Section 108.5.1, "Collection Query Results").

■ Collections of records.

■ Report summaries.

■ Partial objects, with only the attributes you specify populated and without the
object reflected in the cache (see Section 108.5.2, "Report Query Results").

■ Streams of objects (see Section 108.5.3, "Stream and Cursor Query Results").

■ EJB (see Section 108.15, "EJB 2.n CMP Finders").

108.5.1 Collection Query Results
A collection is a group of Java objects contained by an instance of Collection or Map

By default, queries that return more than one object return their results in a Vector.

You can configure TopLink to return query results in any concrete instance of
Collection or Map.

Collection results are supported by all TopLink query types.

For information and examples on how to configure and handle collection query
results, see Section 109.10, "Handling Collection Query Results".

108.5.2 Report Query Results
A ReportQuery (a type of partial object query) returns summary data for selected
objects using the database reporting functions and features supported by your
platform. Although the report query returns data (not objects), it does enable you to
query the returned data and specify it at the object level.

By default, a ReportQuery returns a collection (see Section 108.5.1, "Collection Query
Results") of ReportQueryResult objects, one collection per database row returned.
You can use the ReportQuery API to configure how a ReportQuery returns its
results. For more information see Section 109.11, "Handling Report Query Results".

For more information, see the following:

■ Section 108.7.5, "Report Query"

■ Section 109.11, "Handling Report Query Results"

WARNING: Allowing an unverified SQL string to be passed into
methods (for example: setSQLString(String sql),
readAllObjects(Class class, String sql) methods) makes
your application vulnerable to SQL injection attacks.

Session Queries

Introduction to TopLink Queries 108-9

■ Section 108.7.1.3, "Partial Object Queries".

108.5.3 Stream and Cursor Query Results
A stream is a view of a collection, which can be a file, a device, or a Vector. A stream
provides access to the collection, one element at a time in sequence. This makes it
possible to implement stream classes in which the stream does not contain all the
objects of a collection at the same time.

Large result sets can be resource-intensive to collect and process. To improve
performance and give the client more control over the returned results, configure
TopLink queries to use a cursor or stream.

Cursors & streams are supported by all subclasses of DataReadQuery and
ReadAllQuery.

For more information, see Section 111.11, "Handling Cursor and Stream Query
Results".

108.6 Session Queries
Sessions provide query methods that lets you perform the object operations listed in
Table 108–3.

These methods implicitly construct and execute a DatabaseQuery based on any of
the following input parameters and return Object or Object collection:

■ Reference Class (the Class of objects that the query accesses)

■ Reference Class and Call

■ Reference Class and Expression

■ Example object with primary key set

These methods are a convenient way to perform the most common data source
operations on objects.

Table 108–3 Session Object Query Summary

Session Type Create Read Update Delete

UnitOfWork registerObject readObject

readAllObjects

NA deleteObject

deleteAllObjects

Server NA NA NA NA

ClientSession NA readObject

readAllObjects

NA NA

DatabaseSession insertObject readObject

readAllObjects

updateObject

writeObject

writeAllObjects

deleteObject

deleteAllObjects

Note: Oracle recommends that you perform all data source
operations using a unit of work: doing so is the most efficient way to
manage transactions, concurrency, and referential constraints. For
more information, see Chapter 113, "Introduction to TopLink
Transactions".

Database Queries

108-10 Developer's Guide for Oracle TopLink

To access all configurable options to further refine and optimize a query, consider
using a corresponding DatabaseQuery directly. For more information, see
Section 108.7, "Database Queries".

For more information, see Section 109.1, "Using Session Queries".

108.6.1 Read-Object Session Queries
Read-object queries return the first instance of an Object that matches the specified
selection criteria, and read-all object queries return all such instances.

You can also pass in a domain Object with its primary key set and TopLink will
construct and execute a read-object query to select that object. This is one form of
query by example. For more information on query by example, see Section 108.2.8.6,
"Query-by-Example".

For more information, see Section 109.1.1, "How to Read Objects with a Session
Query".

108.6.2 Create, Update, and Delete Object Session Queries
Oracle recommends that you create and update objects using a unit of work: doing so
is the most efficient way to manage transactions, concurrency, and referential
constraints. For more information, see Chapter 113, "Introduction to TopLink
Transactions".

However, you can also create and update objects using a session query. These session
queries are a convenient way to modify objects directly on the database when you
manage simple, nonbusiness object data that has no relationships (for example, user
preferences).

If you know an object is new, you can use an insertObject method to avoid having
TopLink perform an existence check. If you do not know if an object is new, use the
updateObject, writeObject, or writeAllObject methods: TopLink performs an
existence check if necessary.

When you execute a write session query, it writes both the object and its privately
owned parts to the database. To manage this behavior, use a corresponding
DatabaseQuery (see Section 108.7.3.7, "Object-Level Modify Queries and Privately
Owned Parts").

Using the Session method deleteObject, you can delete a specific object. Using
the Session method deleteAllObjects, you can delete a collection of objects. Each
specified object and all its privately owned parts are deleted. In the case of
deleteAllObjects, all deletions are performed within a single transaction.

For more information, see Section 109.1.2, "How to Create, Update, and Delete Objects
with a Session Query".

108.7 Database Queries
All session types provide an executeQuery method that takes any of the following
types of DatabaseQuery:

WARNING: Allowing an unverified SQL string to be passed into
these methods makes your application vulnerable to SQL injection
attacks.

Database Queries

Introduction to TopLink Queries 108-11

■ Object-Level Read Query

■ Data-Level Read Query

■ Object-Level Modify Query

■ Data-Level Modify Query

■ Report Query

Using DatabaseQuery method setCall, you can define your own Call to
accommodate a variety of data source options such as SQL (including stored
procedures and stored functions), EJB QL queries, and EIS interactions. For more
information, see Section 108.9, "Call Queries".

Using DatabaseQuery method setSelectionCriteria, you can specify your
selection criteria using a TopLink Expression. For more information, see
Section 108.2.6, "TopLink Expressions".

For more information, see Section 109.2, "Using DatabaseQuery Queries".

108.7.1 Object-Level Read Query
Using an ObjectLevelReadQuery, you can query your data source and return
Object instances that match the specified selection criteria. This section describes the
following:

■ ReadObjectQuery

■ ReadAllQuery

■ Partial Object Queries

■ Read-Only Query

■ Join Reading and Object-Level Read Queries

■ Fetch Groups and Object-Level Read Queries

For more information, see Section 109.2.1, "How to Read Objects Using a
DatabaseQuery".

108.7.1.1 ReadObjectQuery
Using a ReadObjectQuery, you can query your data source and return the first
object that matches the specified selection criteria.

108.7.1.2 ReadAllQuery
Using a ReadAllQuery, you can query your data source and return a Collection of
all the objects that match the specified selection criteria.

108.7.1.3 Partial Object Queries
By default, an ObjectLevelReadQuery returns all attributes of the objects read.

If you require only certain attributes from selected objects, you can create a partial
object query by using ObjectLevelReadQuery method addPartialAttributes.
Using this method, you can improve query performance by making TopLink return
objects with only specified attributes populated.

Applications frequently use partial object queries to compile a list for further selection.
For example, a query to find the names and addresses of all employees over the age of
40 returns a list of data (the names and addresses) that partially represents objects (the
employees). A common next step is to present this list so the user can select the

Database Queries

108-12 Developer's Guide for Oracle TopLink

required object or objects from the list. Later retrieval of a complete object is simplified
because TopLink always includes the primary key attribute (even if you do not add it
as a partial attribute.

Consider the following when you use partial object queries:

■ You cannot edit or cache partial objects.

■ Unspecified attributes will be left null.

■ You cannot have two partial attributes of the same type.

■ You cannot add a partial attribute which is of the same type as the class being
queried.

If you require only summary information for certain attributes from selected objects, it
is more efficient to use a ReportQuery (see Section 108.7.5, "Report Query").

For more information, see Section 109.2.1.2, "Reading Objects Using Partial Object
Queries".

108.7.1.4 Read-Only Query
In cases where you know that data is read-only, you can improve performance by
specifying a query as read-only: this tells TopLink that any object returned by the
query is immutable.

For more information, see the following:

■ Section 119.3, "Configuring Read-Only Descriptors"

■ Section 111.4, "Using Read-Only Queries"

■ Section 12.12.5, "How to Use Read-Only Queries for Optimization"

108.7.1.5 Join Reading and Object-Level Read Queries
Join reading is a query optimization feature that allows a single query for a class to
return the data to build the instances of that class and its related objects. Use this
feature to improve query performance by reducing database access. By default,
relationships are not join-read: each relationship is fetched separately when accessed if
you are using indirection (lazy loading) or as a separate database query if you are not
using indirection. For more information, see Section 17.2.4, "Indirection (Lazy
Loading)".

You can use join reading with ReadObjectQuery and ReadAllQuery to join the
mapped relationships that Table 108–4 lists. Join reading is not currently supported for
any other relationship mappings.

Table 108–4 Join Reading by Mapping Type

Query Mapping Type

ReadObjectQuery ■ One-to-one (see Section 27.5, "One-to-One Mapping")

■ One-to-many (see Section 27.7, "One-to-Many Mapping")

ReadAllQuery ■ Many-to-many (see Section 27.8, "Many-to-Many Mapping")

■ Direct collection (see Section 27.10, "Direct Collection Mapping")

■ Direct map (see Section 27.11, "Direct Map Mapping")

■ Aggregate collection (see Section 27.9, "Aggregate Collection
Mapping")

Database Queries

Introduction to TopLink Queries 108-13

Join reading can specify multiple and nested relationships to be joined. Nested joins
are expressed through using expressions (see Section 110.2.7, "Expressions for Joining
and Complex Relationships").

Outer joins can also be used with join reading through using the expression outer join
API. If an outer join is not used, objects with missing one-to-one relationships or
empty one-to-many relationships will be filtered from the result set. You can also
configure an object-level read query to allow inherited subclasses to be outer-joined to
avoid the cost of a single query per class. You can also specify inner or outer joins
using the useInnerJoinFetch or useOuterJoinFetch method of any of the
mappings listed in Table 108–4.

You can use join reading with custom SQL or stored procedures, but the query must
ensure that all of the required data to build all of the join-read objects is returned. If the
result set includes the same tables or fields, they must be returned in the same table
order as TopLink would have generated.

For more information, see the following:

■ Section 109.2.1.10, "Using Join Reading with ObjectLevelReadQuery"

108.7.1.5.1 Avoiding Join-Reading Duplicate Data Join reading can result in returning
duplicate data if a one-to-many or a shared one-to-one relationship is joined. Although
TopLink correctly filters the duplicate results from the object result, the duplicate data
still must be fetched from the database and can degrade performance, especially if
multiple one-to-many relationships are joined. In general, batch reading can be used as
a better alternative to join reading, as it does not require fetching duplicate data.

Oracle recommends that you use one-to-many joining with caution, because it does
not scale well in many situations.

Because the main cost of a ReadObjectQuery is SQL execution, the performance of a
one-to-many join in this case is usually better than a query without joining.

However, because the main cost of a ReadAllObjectQuery is row-fetching, which
the duplicate data of a join increases, the performance of a one-to-many join in this
case is less efficient than batch reading in many scenarios (even though one-to-many
joining is more efficient than reading the objects one-by-one).

This is mainly due to the fact that a one-to-many join reads in duplicate data: the data
for each source object will be duplicated for each target object. Depending on the size
of the one-to-many relationship and the size of the source object's row, this can become
very inefficient, especially if the source object has a Large Object (LOB).

If you use multiple or nested one-to-many joins in the same query, the problem is
compounded: the source object's row is duplicated n*m times, and each target object n
and m times respectively. This can become a major performance issue.

To handle empty collections, you must use outer joins, so the queries can easily
become very database intensive. Batch reading has the advantage of only returning the
required data, and does not require outer joins.

Oracle recommends that you use batch reading to optimize querying relationships in
read-all applications.

For more information, see the following:

■ Section 12.12.3, "How to Use Batch and Join Reading for Optimization"

■ Section 12.12.9.2, "Reading Case 2: Batch Reading Objects"

Database Queries

108-14 Developer's Guide for Oracle TopLink

108.7.1.6 Fetch Groups and Object-Level Read Queries
You can use a fetch group with a ReadObjectQuery or ReadAllQuery. When you
execute the query, TopLink retrieves only the attributes in the fetch group. TopLink
automatically executes a query to fetch all the attributes excluded from this subset
when and if you call a getter method on any one of the excluded attributes.

For more information, see the following:

■ Section 16.2.4, "Fetch Groups"

■ Section 111.3, "Using Queries with Fetch Groups"

108.7.2 Data-Level Read Query
Using a DataLevelReadQuery, you can query your data source and return Object
instances that match the specified selection criteria. This section describes the
following:

■ DataReadQuery

■ DirectReadQuery

■ ValueReadQuery

For more information, see Section 109.2.4, "How to Read Data with a DatabaseQuery".

108.7.2.1 DataReadQuery
Use a DataReadQuery to execute a selecting SQL string that returns a Collection
of the Record objects representing the result set.

108.7.2.2 DirectReadQuery
Use a DirectReadQuery to read a single column of data (that is, one field) that
returns a Collection of values representing the result set.

108.7.2.3 ValueReadQuery
Use a ValueReadQuery to read a single data value (that is, one field). A single data
value is returned, or null if no rows are returned.

108.7.3 Object-Level Modify Query
Using an ObjectLevelModifyQuery, you can query your data source to create,
update, and delete objects. This section describes the following:

■ WriteObjectQuery

■ UpdateObjectQuery

■ InsertObjectQuery

■ DeleteObjectQuery

■ UpdateAllQuery

■ DeleteAllQuery

WARNING: Allowing an unverified SQL string to be passed into
constructors of such objects as DataReadQuery,
DirectReadQuery and ValueReadQuery makes your application
vulnerable to SQL injection attacks.

Database Queries

Introduction to TopLink Queries 108-15

■ Object-Level Modify Queries and Privately Owned Parts

For more information, see Section 109.2.2, "How to Create, Update, and Delete Objects
with a DatabaseQuery".

108.7.3.1 WriteObjectQuery
If you do not know whether or not an object is new, use a WriteObjectQuery:
TopLink performs an existence check if necessary to determine whether to perform an
insert or an update.

If you do know whether or not an object exists, you can avoid the existence check by
using an UpdateObjectQuery (see Section 108.7.3.2, "UpdateObjectQuery") or
InsertObjectQuery (see Section 108.7.3.3, "InsertObjectQuery").

108.7.3.2 UpdateObjectQuery
If you know that the object you want to modify exists, use an UpdateObjectQuery
to avoid having TopLink perform an existence check.

108.7.3.3 InsertObjectQuery
If you know an object is new, you can use an InsertObjectQuery to avoid having
TopLink perform an existence check.

108.7.3.4 DeleteObjectQuery
To delete a specific object, construct a DeleteObjectQuery with a single specific
object as an argument.

108.7.3.5 UpdateAllQuery
The UpdateAllQuery allows you to take an expression and update a set of objects (at
the object level) without loading the objects into memory. You can updated to either a
specific or relative value. For example, you can set the value to 5 or to increase by 5
percent.

For more information, see Section 109.2.3.1, "Using UpdateAll Queries".

108.7.3.6 DeleteAllQuery
To delete multiple objects, construct a DeleteAllQuery and use its setObjects
method to configure the collection of specific objects to delete. Use DeleteAllQuery
method setReferenceClass to configure the reference class of the objects to delete.
Each specified object is deleted, but its privately owned parts are not.

In the case of a DeleteAllQuery, all deletions are performed within a single
transaction.

For more information, see Section 109.2.3.2, "Using DeleteAll Queries".

108.7.3.7 Object-Level Modify Queries and Privately Owned Parts
When you execute a create or update object DatabaseQuery, it writes both the object
and its privately owned parts to the database by default. To create a query that does

Note: Oracle recommends that you create and update objects using a
TopLink UnitOfWork: doing so is the most efficient way to manage
transactions, concurrency, and referential constraints. For more
information, see Chapter 113, "Introduction to TopLink Transactions".

Database Queries

108-16 Developer's Guide for Oracle TopLink

not update privately owned parts, use the DatabaseQuery method
dontCascadeParts. Use this method to do the following:

■ Increase performance when you know that only the object’s direct attributes have
changed.

■ Manually resolve referential integrity dependencies when you write large groups
of new, independent objects.

108.7.4 Data-Level Modify Query
Using a DataModifyQuery, you can query your data source to execute a nonselecting
SQL statement. It is equivalent to Session method executeNonSelectingCall.

For more information, see Section 109.2.5, "How to Update Data with a
DatabaseQuery".

108.7.5 Report Query
If you want to summarize (or roll up) certain attributes of a set of objects, you can use
a ReportQuery.

A ReportQuery returns summary data from a set of objects and their related objects.
That is, it returns data about objects. It can also return multiple objects. A
ReportQuery lets you query and specify the data at the object level. To build a report
query, you specify the search criteria, the data you require about the objects, and how
that data should be summarized.

For example, you can create a report query to compute the average age of all
employees in your company. The report query is not interested in the specific objects
(the employees), but rather, summary information about them (their average age).

A ReportQuery lets you do the following:

■ Specify a subset of the object's attributes and its related object's attributes, which
allows you to query for lightweight information.

■ Build complex object-level expressions for the selection criteria and ordering
criteria.

■ Use data source aggregation functions (supported by your platform), such as SUM,
MIN, MAX, AVG, and COUNT.

■ Use expressions to group data.

■ Request primary key attributes with each ReportQueryResult. This makes it
easy to request the real object from a lightweight result.

A ReportQuery is the most efficient form of partial object query (see
Section 108.7.1.3, "Partial Object Queries") because it takes advantage of the reporting
capabilities of your data source (if available). Oracle recommends that you use
ReportQuery to do partial object queries.

The ReportQuery API returns a collection of ReportQueryResult objects, similar
in structure and behavior to a Record or a Map. For more information, see
Section 108.5.2, "Report Query Results".

Note: Because the unit of work resolves referential integrity
internally, this method is not required if you use the unit of work to
write to the data source. For more information, see Chapter 113,
"Introduction to TopLink Transactions".

Call Queries

Introduction to TopLink Queries 108-17

For more information, see the following:

■ Section 12.12.9.1, "Reading Case 1: Displaying Names in a List"

■ Section 109.2.1.3, "Reading Objects Using Report Queries"

■ Section 119.7, "Configuring Named Queries at the Descriptor Level"

108.8 Named Queries
When you use a session query method like readAllObjects (see Section 108.6,
"Session Queries"), TopLink creates a corresponding ReadAllQuery, which builds
other objects it needs to perform its task. When TopLink finishes execution of the
readAllObjects method, these objects are discarded. Each time you call this session
method, TopLink creates these related objects again, uses them once, and then discards
them.

Alternatively, you can create a DatabaseQuery (see Section 108.7, "Database
Queries") and store it by name at the descriptor-level (see Section 119.7, "Configuring
Named Queries at the Descriptor Level") or session-level (see Section 89.13,
"Configuring Named Queries at the Session Level").

TopLink prepares a named query once, and it (and all its associated supporting
objects) can be efficiently reused thereafter making a named query well suited for
frequently executed operations.

Using the Session API (see Section 109.3, "Using Named Queries"), you can execute
these queries by name, passing in any required arguments.

When to Use Named Queries
For a reasonably complex query that you execute frequently, you should consider
making the query a named query.

If a query is global to a project, configure the named query at the session level
(Section 89.13, "Configuring Named Queries at the Session Level").

If a query is global to a Class or you want to configure CMP finders, configure the
named query at the descriptor level (see Section 119.7, "Configuring Named Queries at
the Descriptor Level"). For more information about descriptor level query
configuration, see Section 108.13, "Descriptor Query Manager Queries".

For a very complex query, you can delegate query execution to your own static
method using a special form of a named query called a redirect query. For more
information about redirect queries, see Section 108.10, "Redirect Queries".

When Not to Use Named Queries
Rarely used queries may be more efficient when built on an as-needed basis. If you
seldom use a given query, it may not be worthwhile to build and store that query
when you invoke a session.

108.9 Call Queries
All session types provide executeSelectingCall and
executeNonSelectingCall methods that take any of the following Call types:

■ SQL Calls

■ EJB QL Calls

■ Enterprise Information System (EIS) Interactions

Call Queries

108-18 Developer's Guide for Oracle TopLink

You can also execute a Call in the context of a DatabaseQuery. For more
information on DatabaseQuery, see Section 108.7, "Database Queries".

108.9.1 SQL Calls
SQL calls access fields in a relational database. TopLink supports the following SQL
calls:

■ SQLCall

■ StoredProcedureCall, including PLSQLStoreProcedureCall

■ StoredFunctionCall

Using the Call API (or SQL string conventions), you can specify input, output, and
input-output parameters and assign values for input and input/output parameters.

Using a descriptor ReturningPolicy, you can control whether or not TopLink
writes a parameter out, retrieves a value generated by the database, or both. For more
information, see Section 119.27, "Configuring Returning Policy".

108.9.1.1 SQLCall
Using a SQLCall, you can specify any arbitrary SQL statement and execute it on a
data source.

For more information, see Section 109.4, "Using a SQLCall".

108.9.1.2 StoredProcedureCall
A stored procedure is composed of one or more procedural language statements, such
as Procedural Language/Structured Query Language (PL/SQL), stored by name in the
database. Most relational databases support stored procedures.

You invoke a stored procedure to execute logic and access data from the data source.

Using a StoredProcedureCall, you can detect execution errors, specify input
parameters, output parameters, and input/output parameters. However, stored
procedures do not provide a return value.

For more information, see Section 109.5, "Using a StoredProcedureCall".

108.9.1.3 StoredFunctionCall
A stored function is Oracle Database feature that provides all the functionality of a
stored procedure as well as the ability to return a value.

Using a StoredFunctionCall, you can specify all the features of a
StoredProcedureCall as well as the field name of the return value.

For more information, see Section 109.6, "Using a StoredFunctionCall".

WARNING: Allowing an unverified SQL string to be passed into
methods (for example: executeSelectingCall(String sql)
method) makes your application vulnerable to SQL injection
attacks.

WARNING: Allowing an unverified SQL string to be passed into
methods makes your application vulnerable to SQL injection
attacks.

Call Queries

Introduction to TopLink Queries 108-19

108.9.2 EJB QL Calls
In TopLink, EJB QL calls represent EJB QL strings. An EJBQLCall object is an
abstraction of a database invocation. You can execute an EJB QL call directly from a
session or in the context of a DatabaseQuery.

For more information, see the following:

■ Section 109.7, "Using Java Persistence Query Language (JPQL) Calls"

■ Section 109.2.8, "How to Specify a Custom EJB QL String in a DatabaseQuery"

■ Section 108.2.8.2, "EJB QL Queries"

108.9.3 Enterprise Information System (EIS) Interactions
To invoke a query through a Java EE Connector Architecture (JCA) adapter to a remote
EIS, you use an EISInteraction, an instance of Call. TopLink supports the
following EISInteraction types:

■ IndexedInteraction

■ MappedInteraction

■ XMLInteraction

■ XQueryInteraction

■ QueryStringInteraction

In each of these interactions, you specify a functional interface (similar to a stored
procedure) that identifies the function to invoke on the EIS. This functional interface
contains the following:

■ the function name;

■ the record name (if different than the function name);

■ a list of input arguments;

■ a list of output arguments.

For more information, see the following:

■ Chapter 71, "Introduction to EIS Projects"

■ Section 109.8, "Using EIS Interactions"

108.9.3.1 IndexedInteraction
In an IndexedInteraction, you exchange data with the EIS using indexed records.
The order of the specification of the arguments must match the order of the values
defined in the indexed record.

108.9.3.2 MappedInteraction
In a MappedInteraction, you exchange data with the EIS using mapped records.
The arguments you specify map by name to fields in the mapped record.

108.9.3.3 XMLInteraction
An XMLInteraction is a MappedInteraction that maps data to an XML record.
For an XMLInteraction, you may also provide an optional root element name.

Redirect Queries

108-20 Developer's Guide for Oracle TopLink

108.9.3.4 XQueryInteraction
If your JCA adapter supports the XQuery dynamic query language, you can use an
XQueryInteraction, which is an XMLInteraction that lets you specify your
XQuery string.

108.9.3.5 QueryStringInteraction
If your JCA adapter supports a query string based dynamic query language, you can
use a QueryStringInteraction, which is a MappedInteraction that lets you
specify the dynamic query string.

108.10 Redirect Queries
To accommodate complex query logic, you can implement a redirect query: a named
query that delegates query execution control to your application. For more
information, see Section 108.8, "Named Queries".

Redirect queries lets you define the query implementation in code as a static method.
When you invoke the query, the call redirects to the specified static method. Redirect
queries accept any arbitrary parameters passed into them packaged in a Vector.

Although most TopLink queries search for objects directly, a redirect query generally
invokes a method that exists on another class and waits for the results. Redirect
queries let you build and use complex operations, including operations that might not
otherwise be possible within the query framework.

By delegating query invocation to a method you provide, redirect queries let you
dynamically make decisions about how a query should be executed based on
argument values.

Using a redirect query, you can do the following:

■ Dynamically configure the query options based on the arguments (for example,
ordering and query optimization).

■ Dynamically define the selection criteria based on the arguments.

■ Pass query-by-example objects or expressions as the arguments.

■ Post-process the query results.

■ Perform multiple queries or special operations.

If you execute the query on a UnitOfWork, the results register with that instance of
UnitOfWork, so any objects you attempt to retrieve with the invoke method must
come from the Session cache.

To create a redirect query, you implement the QueryRedirector interface and set
your implementation on a named query.

Oracle recommends that you take advantage of the
MethodBasedQueryRedirector, an instance of QueryRedirector that TopLink
provides. It takes the name of a static method and the Class in which it is defined as
parameters. When you set a MethodBasedQueryRedirector on a named query,
whenever invokeQuery method is called on this instance, TopLink uses reflection to
invoke your static method instead.

The advantages of using a MethodBasedQueryRedirector are as follows:

■ You can specify the static method and its Class dynamically.

■ The class that provides the static method does not need to implement
QueryRedirector.

Historical Queries

Introduction to TopLink Queries 108-21

■ Your static method can have any name.

■ You can restrict the parameters to your static method to only a Session and a
Vector of arguments.

For more information, see Section 111.1, "Using Redirect Queries".

108.11 Historical Queries
By default, a session represents a view of the most current version of objects and when
you execute a query in that session, it returns the most current version of selected
objects.

If your data source maintains past or historical versions of objects, you can configure
TopLink to access this historical data (see Section 87.6, "Historical Sessions").

Once you configure TopLink to take advantage of this historical data, you can access
historical versions using the historical queries that Table 108–5 summarizes.

108.11.1 Using an ObjectLevelReadQuery with an AsOfClause
You can query historical versions of objects using an ObjectLevelReadQuery
configured with an AsOfClause (set by ObjectLevelReadQuery method
setAsOfClause) that specifies a point in time that applies to every Expression
used in the query.

This type of historical query lets you query a static snapshot of object versions as of the
specified time.

Note: Flashback queries do not support view selects. This means you
cannot use a flashback query on objects with an inheritance policy for
read-all-subclasses views. For more information, see Section 16.3,
"Descriptors and Inheritance".

Table 108–5 Historical Queries

Historical Query Type Session Cache
Must set maintainCache
to false?

Query both current and
historical versions?

Using an
ObjectLevelReadQuery
with an AsOfClause

Regular1

1 A server or database session based on an OraclePlatform for an Oracle9i Database (or later), or based on TopLink
HistoryPolicy.

■ Global

■ Read-only

■ Contains current versions

Yes No

Using an
ObjectLevelReadQuery
with Expression Operator
asOf

Regular1 ■ Global

■ Read and write

■ Contains current versions

No Yes

Using an
ObjectLevelReadQuery in
a Historical Session

Historical2

2 A session returned by a server or database session based on an OraclePlatform or TopLink HistoryPolicy using the
acquireHistoricalSession method passing in an AsOfClause.

■ Isolated

■ Read-only

■ Contains static snapshot
as of specified time

No No

Interface and Inheritance Queries

108-22 Developer's Guide for Oracle TopLink

For more information and examples of using an ObjectLevelReadQuery with an
AsOfClause, see Section 111.2, "Using Historical Queries".

108.11.2 Using an ObjectLevelReadQuery with Expression Operator asOf
You can query historical versions of objects using an ObjectLevelReadQuery (such
as ReadObjectQuery or ReadAllQuery) containing one or more expressions that
use Expression operator asOf to specify a point in time on an
Expression-by-Expression basis.

This type of historical query lets you combine both current and historical versions of
objects in the same query.

If you configure the ObjectLevelReadQuery with an AsOfClause, that point in
time overrides the point in time specified in any Expression in the query (see
Section 108.11.1, "Using an ObjectLevelReadQuery with an AsOfClause").

For more information and examples of using an ObjectLevelReadQuery with
Expression operator asOf, see Section 111.2, "Using Historical Queries".

108.11.3 Using an ObjectLevelReadQuery in a Historical Session
Given a session that maintains historical versions of objects (based on an appropriate
OraclePlatform or TopLink HistoryPolicy), you can use Session method
acquireHistoricalSession passing in an AsOfClause that specifies a point in
time that applies to all queries and expressions.

This method returns a lightweight, read-only snapshot of object versions as of the
specified time. The cache used in this type of session is isolated from the global shared
cache. You do not need to set ObjectLevelReadQuery method maintainCache to
false in this case.

For more information and examples of using an ObjectLevelReadQuery with a
historical session, see Section 111.2, "Using Historical Queries".

108.12 Interface and Inheritance Queries
When you define an interface descriptor (see Section 22.2.1.3, "Creating Relational
Interface Descriptors"), you can perform queries on interfaces and inheritance
hierarchies.

For more information, see the following:

■ Section 111.5, "Querying on Interfaces"

■ Section 111.6, "Querying on an Inheritance Hierarchy"

108.13 Descriptor Query Manager Queries
Each Descriptor owns an instance of DescriptorQueryManager that you can use
for the following:

Note: To prevent corrupting the global shared cache with old
versions of objects, you must set ObjectLevelReadQuery method
maintainCache to false in this historical query. If you do not,
TopLink will throw an exception when you execute the query.

Descriptor Query Manager Queries

Introduction to TopLink Queries 108-23

■ Configuring named queries (see Section 108.13.1, "How to Configure Named
Queries")

■ Configuring default query implementation (see Section 108.13.2, "How to
Configure Default Query Implementations")

■ Configuring additional join expressions (see Section 108.13.3, "How to Configure
Additional Join Expressions")

108.13.1 How to Configure Named Queries
The DescriptorQueryManager provides API for storing and retrieving frequently
used queries by name.

For more information, see Section 108.8, "Named Queries".

108.13.2 How to Configure Default Query Implementations
The DescriptorQueryManager of each Descriptor lets you customize the query
implementation that TopLink uses for the following data source operations:

■ insert object

■ update object

■ read object

■ read all objects

■ delete object

For example, if you need to insert an object using a stored procedure, you can override
the default SQLCall used by the DescriptorQueryManager insert object query.

Whenever you execute a query on a given Class, TopLink consults the
DescriptorQueryManager to determine how to perform the given data source
operation.

You can use this capability for a variety of purposes such as to extend TopLink
behavior, access nonrelational data, or use stored procedures or customized SQL calls.

For information and examples on customizing these default query implementations,
see the following:

■ Section 23.4, "Configuring Custom SQL Queries for Basic Persistence Operations"

■ Section 76.5, "Configuring Custom EIS Interactions for Basic Persistence
Operations"

108.13.3 How to Configure Additional Join Expressions
You can configure the DescriptorQueryManager to automatically append an
expression to every query it performs on a class. For example, you can add an
expression that filters the data source for the valid instances of a given class.

For more information, see Section 111.7, "Appending Additional Join Expressions".

WARNING: Allowing an unverified SQL string to be passed into
methods makes your application vulnerable to SQL injection
attacks.

Oracle Extensions

108-24 Developer's Guide for Oracle TopLink

108.14 Oracle Extensions
When you use TopLink with Oracle Database, you can make use of the following
Oracle specific query features from within your TopLink applications:

■ Hints

■ Hierarchical Queries

■ Flashback Queries

■ Stored Functions

108.14.1 Hints
 Oracle lets you specify SQL query additions called hints that can influence how the
database server SQL optimizer works. This lets you influence decisions usually
reserved for the optimizer. You use hints to specify things such as join order for a join
statement, or the optimization approach for a SQL call.

You specify hints using the DatabaseQuery method setHintString.

For more information, see the following:

■ Section 108.7, "Database Queries"

■ Section 111.9.1, "How to Use Oracle Hints"

■ Your database Performance Tuning Guide and Reference.

108.14.2 Hierarchical Queries
Oracle Database Hierarchical Queries mechanism lets you select database rows based
on hierarchical order. For example, you can design a query that reads the row of a
given employee, followed by the rows of people the employee manages, followed by
their managed employees, and so on.

You specify a hierarchical query clause using DatabaseQuery subclass
ReadAllQuery method setHierarchicalQueryClause. For more information on
DatabaseQuery queries, see Section 108.7, "Database Queries".

For more information on configuring a ReadAllQuery with an Oracle hierarchical
query clause, see Section 111.9.2, "How to Use Hierarchical Queries".

108.14.3 Flashback Queries
When using TopLink with Oracle9i Database (or later), you can acquire a special
historical session where all objects are read as of a past time, and then you can express
read queries depending on how your objects are changing over time.

For more information, see Section 108.11, "Historical Queries".

108.14.4 Stored Functions
A stored function is Oracle Database mechanism that provides all the capabilities of a
stored procedure in addition to returning a value.

For more information, see Section 108.9.1.3, "StoredFunctionCall".

EJB 2.n CMP Finders

Introduction to TopLink Queries 108-25

108.15 EJB 2.n CMP Finders
An EJB finder is a query as defined by the EJB specification. It returns EJB, collections,
and enumerations. The difference between a finder and a query is that queries return
Java objects, but finders return EJB. The TopLink query framework lets you create and
execute complex finders that retrieve entity beans.

Finders contain finder methods that define search criteria. The work involved in
creating these methods depends on whether you are building container-managed
persistence (CMP) bean finders or bean-managed persistence (BMP) bean finders:

■ CMP finders require you to define the finder API method signature on the bean
Home interface. The CMP provider generates the actual code mechanisms for the
finder from the API definition.

■ BMP finders require you to provide the code required to execute the finder
methods.

In either case, you define finders in the Home interface of the bean.

You can implement finders using any TopLink query feature and you can take
advantage of predefined finder implementations that TopLink provides for both CMP
and BMP entity beans.

This section describes the following:

■ Predefined Finders

■ Default Finders

■ Call Finders

■ DatabaseQuery Finders

■ Named Query Finders

■ Primary Key Finders

■ Expression Finders

■ EJB QL Finders

■ SQL Finders

■ Redirect Finders

■ The ejbSelect Method

For more information, see Section 111.10, "Using EJB 2.n CMP Finders".

108.15.1 Predefined Finders
TopLink provides predefined finder implementations that provide a rich API that lets
you dynamically specify query properties at run time and take full advantage of
TopLink query features.

TopLink provides the following predefined finders:

■ Predefined CMP Finders

■ Predefined BMP Finders

For more information, see the following:

■ Section 2.14, "Considering EJB Entity Beans with CMP Architecture"

■ Section 2.15, "Considering EJB Entity Beans with BMP Architecture"

EJB 2.n CMP Finders

108-26 Developer's Guide for Oracle TopLink

108.15.1.1 Predefined CMP Finders
Table 108–6 lists the predefined finders you can use with TopLink CMP (using OC4J).

The TopLink runtime reserves the method names listed in Table 108–6.

You can also use each of these finders without a vector of arguments. For example,
EJBObject findOneByEJBQL(String ejbql) is a valid dynamic finder, but you
must replace the return type of EJBObject with your bean’s component interface.

For more information, see Section 111.10, "Using EJB 2.n CMP Finders".

108.15.1.2 Predefined BMP Finders
Table 108–7 lists the predefined finders you can use if you extend your BMP EJB from
oracle.toplink.ejb.bmp.BMPEntityBase (see Section 2.15, "Considering EJB
Entity Beans with BMP Architecture").

The TopLink runtime reserves the method names listed in Table 108–7.

Table 108–6 Predefined CMP Finders

Method Arguments Return

findAll () Collection

findManyByEJBQL (String ejbql)
(String ejbql, Vector arguments)

Collection

findManyByQuery (DatabaseQuery query)
(DatabaseQuery query, Vector arguments)

Collection

findManyBySQL (String sql)
(String sql, Vector arguments)

Collection

findByPrimaryKey (Object primaryKeyObject) EJBObject

findOneByEJBQL (String ejbql)
(String ejbql, Vector arguments)

EJBObject

findOneByQuery (DatabaseQuery query)
(DatabaseQuery query, Vector arguments)

EJBObject

findOneBySQL (String sql)
(String sql, Vector arguments)

EJBObject

Note: If the finder is located on a local home, replace EJBObject with
EJBLocalObject in finders that contain findOneBy.

Table 108–7 Predefined BMP Finders

Method Arguments Return

findAll ()
(Call)
(Expression)
(ReadAllQuery)

Enumeration

findAllByNamedQuery (String queryName, Vector arguments) Enumeration

findByPrimaryKey (Object primaryKeyObject) Object

findOne (Call)
(Expression)
(ReadObjectQuery)

Object

EJB 2.n CMP Finders

Introduction to TopLink Queries 108-27

For more information about using EJB finders, see Section 111.10, "Using EJB 2.n CMP
Finders".

108.15.2 Default Finders
For each finder method defined on the home interface of an entity bean, whose name
matches findBy<CMP-FIELD-NAME> where <CMP-FIELD-NAME> is the name of a
persistent field on the bean, TopLink generates a finder implementation including a
TopLink query that uses the TopLink expressions framework. If the return type is a
single bean type, TopLink creates a ReadObjectQuery; if the return type is a
Collection, TopLink creates a ReadAllQuery.

Although you must still define the finder in the entity home, you do not need to
declare the finder in the ejb-jar.xml file.

For more information, see Section 111.10.1, "How to Create a Finder".

108.15.3 Call Finders
Finders that use a Call let you create dynamic queries that you generate at run time
rather than at deployment time.

For more information, see the following:

■ Section 108.9, "Call Queries".

■ Section 108.15.1, "Predefined Finders"

108.15.4 DatabaseQuery Finders
Finders that use a DatabaseQuery lets you create dynamic queries that you generate
at run time rather than at deployment time.

In addition to finders that take a DatabaseQuery, TopLink also provides a default
findAll finder that returns all the EJB of a given type. As with other dynamic
finders, the TopLink runtime reserves the name findAll.

For more information, see Section 108.7, "Database Queries".

For more information on TopLink predefined finders that take a DatabaseQuery, see
Section 108.15.1, "Predefined Finders".

108.15.5 Named Query Finders
Finders that use a named DatabaseQuery stored in a DescriptorQueryManager
or Session let you efficiently reuse frequently executed queries.

For more information, see the following:

■ Section 108.8, "Named Queries"

■ Section 108.15.1, "Predefined Finders"

findOneByNamedQuery (String queryName, Vector arguments) Object

Table 108–7 (Cont.) Predefined BMP Finders

Method Arguments Return

EJB 2.n CMP Finders

108-28 Developer's Guide for Oracle TopLink

108.15.6 Primary Key Finders
TopLink provides predefined finder implementations that take a primary key class as
a Java Object.

Because the EJB 2.0 and 2.1 specifications requires the container to implement the
findByPrimaryKey call on each bean Home interface, do not delete this finder from a
bean.

For more information, see Section 108.15.1, "Predefined Finders".

108.15.7 Expression Finders
Using a finder based on a TopLink Expression offers the following advantages:

■ Version-controlled standardized queries in Java code.

■ Ability to simplify most complex operations.

■ A more complete set of querying features than is available through EJB QL.

Because expressions lets you specify finder search criteria based on the object model,
they are frequently the best choice for constructing your finders.

For more information, see Section 108.2.6, "TopLink Expressions".

For more information on TopLink predefined finders that take an Expression, see
Section 108.15.1, "Predefined Finders".

You can also use an Expression in a finder that takes a DatabaseQuery by using
DatabaseQuery method setSelectionCriteria. For more information on
TopLink predefined finders that take a DatabaseQuery, see Section 108.15.4,
"DatabaseQuery Finders".

108.15.8 EJB QL Finders
TopLink supports EJB QL. EJB QL finders let you specify an EJB QL string as the
implementation of the query.

EJB QL offers the following advantages:

■ It is the EJB 2.0 and 2.1 standard for queries.

■ You can use it to construct most queries.

■ You can implement dependent-object queries with EJB QL.

The disadvantage of EJB QL is that it is difficult to use when you construct complex
queries.

For more information about EJB QL support in TopLink, see Section 108.2.8, "Query
Languages".

For more information on TopLink predefined finders that take EJB QL, see
Section 108.15.1, "Predefined Finders".

108.15.9 SQL Finders
Using SQL to define a finder offers the following advantages:

■ You can implement logic that cannot be expressed when you use EJB QL or a
TopLink Expression.

■ It allows for the use of a stored procedure instead of TopLink generated SQL.

EJB 2.n CMP Finders

Introduction to TopLink Queries 108-29

■ There may be cases in which custom SQL will improve performance.

SQL finders also have the following disadvantages:

■ Writing complex custom SQL statements requires a significant maintenance effort
if the database tables change.

■ Hard-coded SQL limits portability to other databases.

■ No validation is performed on the SQL string. Errors in SQL statements will not be
detected until run time.

■ The use of SQL for a function other than SELECT may result in unpredictable
errors.

For more information on TopLink predefined finders that take SQL, see
Section 108.15.1, "Predefined Finders".

108.15.10 Redirect Finders
Redirect finders enable you to implement a finder that is defined on an arbitrary
helper class as a static method. When you invoke the finder, TopLink redirects the call
to the specified static method.

Redirect queries are complex and require an extra helper method to define the query.
However, because they support complex logic, they are often the best choice when you
need to implement logic unrelated to the bean on which the redirect method is called.

For more information, see the following:

■ Section 108.10, "Redirect Queries"

■ Section 111.10, "Using EJB 2.n CMP Finders"

108.15.11 The ejbSelect Method
The ejbSelect method is a query method intended for internal use within an entity
bean instance. Specified on the abstract bean itself, the ejbSelect method is not directly
exposed to the client in the home or component interface. Defined as abstract, each
bean can include zero or more such methods.

ejbSelect methods have the following characteristics:

■ The method name must have ejbSelect as its prefix.

■ It must be declared as public.

■ It must be declared as abstract.

■ The throws clause must specify the javax.ejb.FinderException, although it
may also specify application-specific exceptions as well.

■ The result-type-mapping tag in the ejb-jar.xml file determines the return
type for ejbSelect methods. Set the flag to Remote to return EJBObjects; set it
to Local to return EJBLocalObjects.

The format for an ejbSelect method definition looks as follows:

public abstract type ejbSelect<METHOD>(...);
The ejbSelect query return type is not restricted to the entity bean type on which
the ejbSelect is invoked. Instead, it can return any type corresponding to a
container-managed relationship or container-managed field, with the following
exception: In the case that the ejbSelect method return type is a

Queries and the Cache

108-30 Developer's Guide for Oracle TopLink

java.util.Collection, the result must be the entity type on which the selector
was defined.

Although the select method is not based on the identity of the entity bean instance on
which it is invoked, it can use the primary key of an entity bean as an argument. This
creates a query that is logically scoped to a particular entity bean instance.

For more information and examples on using TopLink queries in the ejbSelect
method, see Section 111.10, "Using EJB 2.n CMP Finders".

108.16 Queries and the Cache
When you execute a query, TopLink retrieves the information from either the database
or the TopLink session cache. You can configure the way queries use the TopLink
cache to optimize performance.

TopLink maintains a client-side cache to reduce the number of read operations
required from the database. TopLink caches objects written to and read from the
database to maintain object identity. The sequence in which a query checks the cache
and database affects query performance. By default, primary key queries check the
cache before accessing the database, and all queries check the cache before rebuilding
an object from its row.

This section illustrates ways to manipulate the relationship between query and cache,
and explains the following:

■ How to Configure the Cache

■ How to Use In-Memory Queries

■ Primary Key Queries and the Cache

■ How to Disable the Identity Map Cache Update During a Read Query

■ How to Refresh the Cache

■ How to Cache Query Results in the Session Cache

■ How to Cache Query Results in the Query Cache

■ How to Use Caching and EJB 2.n CMP Finders

108.16.1 How to Configure the Cache
The cache in a TopLink application holds objects that have already been read from or
written to the database. Use of the cache in a TopLink application reduces the number
of accesses to the database. Because accessing the database consumes time and
resources, an effective caching strategy is important to the efficiency of your
application.

For more information about configuring and using the cache, see Chapter 102,
"Introduction to Cache".

Note: You can override the default behavior in the caching policy
configuration information in the TopLink descriptor. For more
information, see Section 102.2.4, "Explicit Query Refreshes".

Queries and the Cache

Introduction to TopLink Queries 108-31

108.16.2 How to Use In-Memory Queries
An in-memory query is a query that is run against the shared session cache. Careful
configuration of in-memory querying improves performance, but not all queries
benefit from in-memory querying. For example, queries for individual objects based
on primary keys generally see performance gains from in-memory querying; queries
not based on primary keys are less likely to benefit.

By default, queries that look for a single object based on primary keys attempt to
retrieve the required object from the cache first, and then to search the database if the
object is not in the cache. All other query types search the database first, by default.
You can specify whether a given query runs against the in-memory cache, the
database, or both.

In-memory querying lets you perform queries on the cache rather than the database.

In-memory querying supports the following relationships:

■ One-to-one

■ One-to-many

■ Many-to-many

■ Aggregate collection

■ Direct collection

This section describes the following:

■ Configuring Cache Usage for In-Memory Queries

■ Expression Options for In-Memory Queries

■ Handling Exceptions Resulting from In-Memory Queries

108.16.2.1 Configuring Cache Usage for In-Memory Queries
You can configure in-memory query cache usage at the query level using
ReadObjectQuery and ReadAllQuery methods:

■ checkCacheByPrimaryKey: The default setting; if a read-object query contains
an expression that compares at least the primary key, you can obtain a cache hit if
you process the expression against the objects in memory.

■ checkCacheByExactPrimaryKey: If a read-object query contains an expression
where the primary key is the only comparison, you can obtain a cache hit if you
process the expression against the object in memory.

■ checkCacheThenDatabase: You can configure any read-object query to check
the cache completely before you resort to accessing the database.

Note: You cannot expect an ordered result from an in-memory query
as ordering is not supported for these queries.

Note: By default, the relationships themselves must be in memory for
in-memory traversal to work. Ensure that you trigger all value holders
to enable in-memory querying to work across relationships.

Queries and the Cache

108-32 Developer's Guide for Oracle TopLink

■ checkCacheOnly: You can configure any read-all query to check only the parent
session cache (not the unit of work cache) and return the result from the parent
session cache without accessing the database.

■ conformResultsInUnitOfWork: You can configure any read-object or read-all
query within the context of a unit of work to conform the results with the changes
to the object made within that unit of work. This includes new objects, deleted
objects and changed objects. For more information and limitations on conforming,
see Section 115.4, "Using Conforming Queries and Descriptors".

Alternatively, you can configure cache usage using the ObjectLevelReadQuery
method setCacheUsage, passing in the appropriate ObjectLevelReadQuery field:
CheckCacheByPrimaryKey, CheckCacheByExactPrimaryKey,
CheckCacheThenDatabase, CheckCacheOnly,
ConformResultsInUnitOfWork, or DoNotCheckCache.

108.16.2.2 Expression Options for In-Memory Queries
You can use a subset of Expression (see Table 108–8) and ExpressionMath (see
Table 108–9) methods with in-memory queries. For more information about these
options, see Chapter 110, "Introduction to TopLink Expressions".

Table 108–8 Expressions Operator Support for In-Memory Queries

Expressions Operator
In-Memory Query
Support

addMonths

and

anyof1

anyofAllowingNone1

asciiValue

between

concat

currentDate

dateToString

decode

equal

get1

getAllowingNull1

getFunction

greaterThan

greaterThanEqual

hexToRaw

ifNull

in

isNull

lastDay

Queries and the Cache

Introduction to TopLink Queries 108-33

leftPad

leftTrim

length

lessThan

lessThanEqual

like

monthsBetween

newTime

nextDay

notBetween

notIn

notNull

or

ref

replace

rightPad

rightTrim

subQuery

substring

toCharacter

toDate

toLowerCase

toNumber

toUpperCase

toUpperCasedWords

translate

trim

truncateDate

1 For more information, see Section 108.7.1.5, "Join Reading
and Object-Level Read Queries".

Table 108–9 ExpressionMath Operator Support for In-Memory Queries

ExpressionMath
Operator

In-Memory Query
Support

abs

acos

add

Table 108–8 (Cont.) Expressions Operator Support for In-Memory Queries

Expressions Operator
In-Memory Query
Support

Queries and the Cache

108-34 Developer's Guide for Oracle TopLink

108.16.2.3 Handling Exceptions Resulting from In-Memory Queries
In-memory queries may fail for several reasons, the most common of which are the
following:

■ The query expression is too complex to execute in memory.

■ There are untriggered value holders in which indirection (lazy loading) is used.
All object models that use indirection must first trigger value holders before they
conform on the relevant objects.

TopLink provides a mechanism to handle indirection exceptions. To specify how the
application must handle these exceptions, use the following
InMemoryQueryIndirectionPolicy methods:

■ throwIndirectionException: The default setting; it is the only setting that
throws indirection exceptions.

asin

atan

atan2

ceil

chr

cos

cosh

exp

floor

ln

log

max

min

mod

none

power

round

sign

sin

sinh

sqrt

subtract

tan

tanh

trunc

Table 108–9 (Cont.) ExpressionMath Operator Support for In-Memory Queries

ExpressionMath
Operator

In-Memory Query
Support

Queries and the Cache

Introduction to TopLink Queries 108-35

■ triggerIndirection: Triggers all valueholders to eliminate the problem.

■ ignoreIndirectionExceptionReturnConformed: Returns conforming if an
untriggered value holder is encountered. That is, results from the database are
expected to conform, and an untriggered value holder is taken to mean that the
underlying attribute has not changed.

■ ignoreIndirectionExceptionReturnNotConformed: Returns not
conforming if an untriggered value holder is encountered.

108.16.3 Primary Key Queries and the Cache
When a query searches for a single object by a primary key, TopLink extracts the
primary key from the query and attempts to return the object from the cache without
accessing the database. If the object is not in the cache, the query executes against the
database, builds the resulting object(s), and places it in the identity map.

If the query is based on a nonprimary key selection criteria or is a read-all query, the
query executes against the database (unless you are using ReadObjectQuery or
ReadAllQuery method checkCacheOnly). The query matches primary keys from
the result set to objects in the cache, and returns the cached objects, if any, in the result
set.

If an object is not in the cache, TopLink builds the object. If the query is a refreshing
query, TopLink updates the contents of any objects with the results from the query. Use
"equals" on the object identity to properly configure and use an identity map.

Clients can refresh objects when they want to ensure that they have the latest data at a
particular time.

Traversing Relationships with Compound Primary Keys
When getting objects by using compound primary keys to traverse relationships, you
must create use query keys (see Section 110.4, "Query Keys and Expressions"). By
adding a query key for each mapped attribute in a class with a complex primary key,
TopLink can use the primary key on the cache.

Consider the class MyClass with two attributes: A and B. Both A and B are mapped as
1:1 mappings to the database and designated primary keys.

You should create a query key for each attribute (such as MyQueryKeyA and
MyQueryKeyB) that will map the attributes of the primary key of MyClass without
going through the other classes. You can then use the query key to find the object in
the cache and query the object’s primary key:

builder.get("MyQueryKeyA").equal(new Long("123456"));

108.16.4 How to Disable the Identity Map Cache Update During a Read Query
To disable the identity map cache update, which is normally performed by a read
query, call the dontMaintainCache method. This improves the query performance
when you read objects that are not needed later by the application and can avoid
exceptions during partial object queries (see Section 109.2.1.2, "Reading Objects Using
Partial Object Queries").

Note: When you build new applications, consider throwing all conform
exceptions. This provides more detailed feedback for unsuccessful
in-memory queries. For more information, see Section 115.16.4.2,
"Handling Exceptions During Conforming".

Queries and the Cache

108-36 Developer's Guide for Oracle TopLink

Example 108–1 demonstrates how code reads Employee objects from the database
and writes the information to a file.

Example 108–1 Disabling the Identity Map Cache Update

// Reads objects from the employee table and writes them to an employee file
void writeEmployeeTableToFile(String filename, Session session) {

Vector employeeObjects;
// Create ReadAllQuery and set Employee as its reference class
ReadAllQuery query = new ReadAllQuery(Employee.class);
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCriteria(builder.get("id").greaterThan(100));
query.dontMaintainCache();
Vector employees = (Vector) session.executeQuery(query);
// Write all the employee data to a file
Employee.writeToFile(filename, employees);

}

108.16.5 How to Refresh the Cache
You can refresh objects in the cache to ensure that they are current with the database,
while preserving object identity. This section describes how to use query API to
perform the following:

■ Configure query refreshing at the descriptor level (see Section 119.9, "Configuring
Cache Refreshing") to apply cache refreshing to all queries of a particular object
type. Before configuring cache refresh options, consider their effect on
performance (see Section 12.10, "Optimizing Cache").

108.16.5.1 Object Refresh
To refresh objects in the cache with the data in the database, call the Session method
refreshObject or the ReadObjectQuery method
setShouldRefreshIdentityMapResult(true).

108.16.5.2 Cascading Object Refresh
You can control the depth at which a refreshing updates objects and their related
objects. There are the following three options:

1. CascadePrivateParts: Default refresh behavior. Refreshes the local level object
and objects that are referenced in privately owned relationships.

2. CascadeNone: Refreshes only the first level of the object, but does not refresh
related objects.

3. CascadeAll: Refreshes the entire object tree, stopping when it reaches leaf
objects.

4. CascadeMapping: Refreshes each mapping that is configured to cascade refresh.

108.16.5.3 Refreshing the Identity Map Cache During a Read Query
Include the refreshIdentityMapResult method in a query to force refreshing of
an identity map with the results of the query, as the following example shows:

Example 108–2 Refreshing the Result of a Query in the Identity Map Cache During a
Read Query

// Create ReadObjectQuery and set Employee as its reference class
ReadObjectQuery query = new ReadObjectQuery(Employee.class);

Queries and the Cache

Introduction to TopLink Queries 108-37

ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCriteria(builder.get("lastName").equal("Smith"));
query.refreshIdentityMapResult();
Employee employee = (Employee) session.executeQuery(query);
The refreshIdentityMapResult method refreshes the object’s attributes, but not
the attributes of its privately owned parts. However, under most circumstances, you
should refresh an object’s privately owned parts and other related objects to ensure
consistency with the database.

To refresh privately owned or related parts, use the following methods:

■ cascadePrivateParts: Refreshes all privately owned objects

■ cascadeAllParts: Refreshes all related objects

Example 108–3 Using the cascadePrivateParts Method

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.refreshIdentityMapResult();
query.cascadePrivateParts();
Vector employees = (Vector) session.executeQuery(query);

108.16.6 How to Cache Query Results in the Session Cache
By default, TopLink stores query results in the session cache enabling TopLink to
execute the query repeatedly, without accessing the database. This is useful when you
execute queries that run against static data.

By default, a read-all query always goes to the database, as it does not know how
many objects it is seeking. However if the object already exists in the cache, time can
be saved by not having to build a new object from the row.

For more information, see Chapter 102, "Introduction to Cache".

108.16.7 How to Cache Query Results in the Query Cache
In addition to TopLink’s object cache, TopLink also supports a query cache. There is
the following distinction between the two:

■ The object cache indexes objects by their primary key, allowing primary key
queries to obtain cache hits. By using the object cache, queries that access the data
source can avoid the cost of building the objects and their relationships if the
object is already present.

■ The query cache is distinct from the object cache. The query cache is indexed by
the query and the query parameters–not the object’s primary key. This allows for
any query executed with the same parameters to obtain a query cache hit and
return the same result set.

By default, a ReadQuery does not cache its query result set. You can, however,
configure the query to cache its result set. This is useful for frequently executed queries
whose result set infrequently changes. The query cache always maintains hard
references to the result set; the number of results sets for distinct parameters stored in
the query cache is configurable. The query cache maintains its size number of the last
executed queries with distinct parameters.

Note: If the object is in the session cache, you can also use the
refreshObject method to refresh an object and its privately owned
parts.

Queries and the Cache

108-38 Developer's Guide for Oracle TopLink

For more information, see Section 111.13.1, "How to Cache Results in a ReadQuery".

You can apply a cache invalidation policy to the query’s internal cache (see
Section 111.13.2, "How to Configure Cache Expiration at the Query Level"). For more
information, see Section 102.2.5, "Cache Invalidation".

108.16.7.1 Internal Query Cache Restrictions
TopLink does not support the use of the query cache with cursors: if you use query
caching with cursors, TopLink will throw an exception. For information on cursor
query results, see Section 108.5.3, "Stream and Cursor Query Results" and
Section 111.11, "Handling Cursor and Stream Query Results".

108.16.8 How to Use Caching and EJB 2.n CMP Finders
TopLink caches enterprise beans that EJB finders retrieve. For your application, you
can configure the caching of the EJB finders’ results in a variety of ways, force the
cache to be refreshed, or disable the caching.

This section describes the following:

■ Caching Options

■ Disabling Cache for Returned Finder Results

■ Refreshing Finder Results

108.16.8.1 Caching Options
You can apply various configurations to the underlying query to achieve the correct
caching behavior for the application. There are several ways to control the caching
options for queries. For most queries, you can set caching options using Oracle
JDeveloper or TopLink Workbench.

You can set the caching options on a per-finder basis. Table 108–10 lists the valid
values.

Table 108–10 Finder Caching Options

This Setting . . . Causes Finders to . . .
When the Search Involves
a Finder That . . .

ConformResultsInUnitOfWork1

1 Default.

Check the unit of work cache
before querying the session cache
or the database. The finder's
results always conform to
uncommitted new, deleted, and
changed objects.

Returns either a single bean
or a collection.

DoNotCheckCache Query the database, bypassing
the TopLink internal caches.

Returns either a single bean
or a collection.

CheckCacheByExactPrimaryKey Check the session cache for the
object.

Contains only a primary key,
and returns a single bean.

CheckCacheByPrimaryKey Check the session cache for the
object.

Contains a primary key (and
may contain other search
parameters), and returns a
single bean.

CheckCacheThenDatabase Search the session cache before
accessing the database.

Returns a single bean.

CheckCacheOnly Search the parent session cache
only (not the unit of work cache),
but not the database.

Returns either a single bean
or a collection.

Query API

Introduction to TopLink Queries 108-39

For more information about the TopLink queries, as well as the TopLink unit of work
and how it integrates with JTS, see Chapter 113, "Introduction to TopLink
Transactions".

108.16.8.2 Disabling Cache for Returned Finder Results
By default, TopLink adds all returned objects to the session cache. However, if you
know the set of returned objects is very large, and you want to avoid the expense of
storing these objects, you can disable this behavior. To override the default
configuration, implement the dontMaintainCache method on the query, or disable
returned object caching for the query in Oracle JDeveloper or TopLink Workbench.

108.16.8.3 Refreshing Finder Results
A finder may return information from the database for an object whose primary key is
already in the cache. When set to true, the Refresh Cache option (in Oracle
JDeveloper and TopLink Workbench) causes the query to refresh the object's
nonprimary key attributes with the returned information. This occurs on
findByPrimaryKey finders as well as all expression and SQL finders for the bean.

If you build a query in Java code, you can set this option by including the
refreshIdentityMapResult method. This method automatically cascades changes
to privately owned parts of the beans. If you require different behavior, configure the
query using a dynamic finder instead.

If your application includes an OptimisticLock field, use the refresh cache option in
conjunction with the onlyRefreshCacheIfNewerVersion option. This ensures
that the application refreshes objects in the cache only if the version of the object in the
database is newer than the version in the cache.

For finders that have no refresh cache setting, the
onlyRefreshCacheIfNewerVersion method has no effect.

108.17 Query API
Table 108–11 summarizes the query support provided by each type of session. For each
session type, it shows the type of query operation (create, read, update, delete) that
you can perform and whether or not you can execute a DatabaseQuery or Call. For
example, using a unit of work, you can use session queries to read and delete; using a
server session, you can use session queries to create, read, update, and delete.

Note: To apply caching options to finders with manually created
queries (findOneByQuery, findManyByQuery), use the TopLink API.

Note: When you invoke this option from within a transaction, the
refresh action overwrites object attributes, including any that have
not yet been written to the database.

Table 108–11 Session Query API Summary

Session Create Read Update Delete

Execute
Database
Query

Execute
Call

Unit of
work

Query API

108-40 Developer's Guide for Oracle TopLink

Example 108–4 summarizes the important TopLink packages that provide query and
expression support:

Example 108–4 Query and Expression Packages

oracle.toplink.queryframework
oracle.toplink.expressions
oracle.toplink.querykeys
oracle.toplink.descriptors.DescriptorQueryManager

Database

Server

Client

Table 108–11 (Cont.) Session Query API Summary

Session Create Read Update Delete

Execute
Database
Query

Execute
Call

109

Using Basic Query API 109-1

109Using Basic Query API

This chapter explains essential TopLink query API calls that you are most likely to use
throughout the development cycle:

This chapter includes the following sections:

■ Using Session Queries

■ Using DatabaseQuery Queries

■ Using Named Queries

■ Using a SQLCall

■ Using a StoredProcedureCall

■ Using a StoredFunctionCall

■ Using Java Persistence Query Language (JPQL) Calls

■ Using EIS Interactions

■ Handling Exceptions

■ Handling Collection Query Results

■ Handling Report Query Results

For more information, see Chapter 111, "Using Advanced Query API".

109.1 Using Session Queries
This section provides examples of how to use the session query methods for the
following:

■ How to Read Objects with a Session Query

■ How to Create, Update, and Delete Objects with a Session Query

For more information, see Section 108.6, "Session Queries".

Note: Oracle recommends that you perform all data source
operations using a unit of work: doing so is the most efficient way to
manage transactions, concurrency, and referential constraints. For
more information, see Chapter 113, "Introduction to TopLink
Transactions".

Using Session Queries

109-2 Developer's Guide for Oracle TopLink

109.1.1 How to Read Objects with a Session Query
Using the session query API, you can perform the following read operations:

■ Reading an Object with a Session Query

■ Reading All Objects with a Session Query

■ Refreshing an Object with a Session Query

109.1.1.1 Reading an Object with a Session Query
The readObject method retrieves a single object from the database. The application
must specify the class of object to read. If no object matches the criteria, a null value is
returned.

For example, the basic read operation is:

session.readObject(MyDomainObject.class);
This example returns the first instance of MyDomainObject found in the table used
for MyDomainObject. TopLink provides the Expression class to specify querying
parameters for a specific object.

When you search for a single, specific object using a primary key, the readObject
method is more efficient than the readAllObjects method, because readObject
can find an instance in the cache without accessing database. Because a
readAllObjects method does not know how many objects match the criteria, it
always searches the database to find matching objects, even if it finds matching objects
in the cache.

Example 109–1 readObject Using an Expression

import oracle.toplink.sessions.*;
import oracle.toplink.expressions.*;

// Use an expression to read in the employee whose last name is Smith. Create an
// expression using the Expression Builder and use it as the selection criterion
// of the search
Employee employee = (Employee) session.readObject(Employee.class,

new ExpressionBuilder().get("lastName").equal("Smith"));

109.1.1.2 Reading All Objects with a Session Query
The readAllObjects method retrieves a List of objects from the database and does
not put the returned objects in order. If the query does not find any matching objects, it
returns an empty List.

Specify the class for the query. You can also include an expression to define more
complex search criteria, as illustrated in Example 109–2.

Example 109–2 readAllObjects Using an Expression

// Returns a List of employees whose employee salary is greater than 10000
List employees = session.readAllObjects(Employee.class,

new ExpressionBuilder.get("salary").greaterThan(10000));

109.1.1.3 Refreshing an Object with a Session Query
The refreshObject method causes TopLink to update the object in memory using
data from the database. This operation refreshes any privately owned objects as well.

Using Session Queries

Using Basic Query API 109-3

109.1.2 How to Create, Update, and Delete Objects with a Session Query
Using the session query API, you can perform the following create, update, and delete
operations:

■ Writing a Single Object to the Database with a Session Query

■ Writing All Objects to the Database with a Session Query

■ Adding New Objects to the Database with a Session Query

■ Modifying Existing Objects in the Database with a Session Query

■ Deleting Objects in the Database with a Session Query

109.1.2.1 Writing a Single Object to the Database with a Session Query
When you invoke the writeObject method, the method performs a does-exist check
to determine whether or not an object exists. If the object exists, writeObject
updates the object; if it does not exist, writeObject inserts a new object.

The writeObject method writes privately owned objects in the correct order to
maintain referential integrity.

Call the writeObject method when you cannot verify that an object exists in the
database.

Example 109–3 Writing a Single Object Using writeObject

// Create an instance of the employee and write it to the database
Employee susan = new Employee();
susan.setName("Susan");
...
// Initialize the susan object with all other instance variables
session.writeObject(susan);

109.1.2.2 Writing All Objects to the Database with a Session Query
You can call the writeAllObjects method to write multiple objects to the database.
The writeAllObjects method performs the same does-exist check as the
writeObject method and then performs the appropriate insert or update operations.

Example 109–4 Writing Several Objects Using writeAllObjects

// Read a List of all the current employees in the database.
List employees = session.readAllObjects(Employee.class);

// Modify any employee data as necessary
...

// Create a new employee and add it to the list of employees
Employee susan = new Employee();
...
// Initialize the new instance of employee
employees.add(susan);
// Write all employees to the database. The new instance of susan not currently in
// the database will be inserted. All the other employees currently stored in the
// database will be updated

Note: A privately owned object is one that cannot exist without its
parent, or source object.

Using DatabaseQuery Queries

109-4 Developer's Guide for Oracle TopLink

session.writeAllObjects(employees);

109.1.2.3 Adding New Objects to the Database with a Session Query
The insertObject method creates a new object in the database, but does not
perform the does-exist check before it attempts the insert operation. The
insertObject method is more efficient than the writeObject method if you are
certain that the object does not yet exist in the database. If the object does exist, the
database throws an exception when you execute the insertObject method.

109.1.2.4 Modifying Existing Objects in the Database with a Session Query
The updateObject method updates existing objects in the database, but does not
perform the does-exist check before it attempts the update operation. The
updateObject is more efficient than the writeObject method if you are certain
that the object does exist in the database. If the object does not exist, the database
throws an exception when you execute the updateObject method.

109.1.2.5 Deleting Objects in the Database with a Session Query
To delete a TopLink object from the database, read the object from the database and
then call the deleteObject method. This method deletes both the specified object
and any privately owned data.

109.2 Using DatabaseQuery Queries
This section describes creating and executing DatabaseQuery queries to perform a
variety of basic persistence operations, including the following:

■ How to Read Objects Using a DatabaseQuery

■ How to Create, Update, and Delete Objects with a DatabaseQuery

■ How to Update and Delete Multiple Objects with a DatabaseQuery

■ How to Read Data with a DatabaseQuery

■ How to Update Data with a DatabaseQuery

■ How to Specify a Custom SQL String in a DatabaseQuery

■ How to Specify a Custom JPQL String in a DatabaseQuery

■ How to Specify a Custom EJB QL String in a DatabaseQuery

■ How to Use Parameterized SQL and Statement Caching in a DatabaseQuery

109.2.1 How to Read Objects Using a DatabaseQuery
This section provides examples that illustrate how to read objects using a
DatabaseQuery, including the following:

■ Performing Basic DatabaseQuery Read Operations

■ Reading Objects Using Partial Object Queries

■ Reading Objects Using Report Queries

■ Reading Objects Using Query-By-Example

■ Specifying Read Ordering

■ Specifying a Collection Class

Using DatabaseQuery Queries

Using Basic Query API 109-5

■ Specifying the Maximum Rows Returned

■ Configuring Query Timeout at the Query Level

■ Using Batch Reading

■ Using Join Reading with ObjectLevelReadQuery

109.2.1.1 Performing Basic DatabaseQuery Read Operations
Example 109–5 illustrates a simple read query. It uses a TopLink expression, but does
not use its own arguments for the query. Instead, it relies on the search parameters the
expression provides. This example builds the expression within its code, but does not
register the query with the session.

Example 109–5 Simple ReadAllQuery

// This example returns a List of employees whose employee ID is > 100

// Initialize the DatabaseQuery by specifying the query type
// and set the reference class for the query
ReadAllQuery query = new ReadAllQuery(Employee.class);

// Retrieve ExpressionBuilder from the query
ExpressionBuilder builder = query.getExpressionBuilder();

// Configure the query execution. Because this example uses an expression,
// it uses the setSelectionCriteria method
query.setSelectionCriteria(builder.get("id").greaterThan(100));

// Execute the query
List employees = (List) session.executeQuery(query);
Example 109–6 illustrates a complex readObject query that uses all available
configuration options.

Example 109–6 Named Read Query with Two Arguments

// Initialize the DatabaseQuery by specifying the query type
// and set the reference class for the query
ReadObjectQuery query = new ReadObjectQuery(Employee.class);
// Retrieve ExpressionBuilder from the query
ExpressionBuilder builder = query.getExpressionBuilder();
// Define two expressions that map to the first and last names of the employee
Expression firstNameExpression =
emp.get("firstName").equal(emp.getParameter("firstName"));
Expression lastNameExpression =
emp.get("lastName").equal(emp.getParameter("lastName"));

// Configure the query execution. Because this example uses an expression,
// it uses the setSelectionCriteria method
query.setSelectionCriteria(firstNameExpression.and(lastNameExpression));
// Specify the required arguments for the query
query.addArgument("firstName");
query.addArgument("lastName");

// Add the query to the session
session.addQuery("getEmployeeWithName", query);

// Execute the query by referencing its name and providing values
// for the specified arguments
Employee employee =

Using DatabaseQuery Queries

109-6 Developer's Guide for Oracle TopLink

(Employee)session.executeQuery("getEmployeeWithName","Bob","Smith");

109.2.1.2 Reading Objects Using Partial Object Queries
Example 109–7 demonstrates the use of partial object reading. It reads only the last
name and primary key for the employees. This reduces the amount of data read from
the database.

Example 109–7 Using Partial Object Reading

/* Read all the employees from the database, ask the user to choose one and return
it. This uses partial object reading to read just the last name of the employees.
Since TopLink automatically includes the primary key of the object, the full
object can easily be read for editing */
List list;
// Fetch data from database and add to list box
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addPartialAttribute("lastName");
// The next line avoids a query exception
query.dontMaintainCache();
List employees = (List) session.executeQuery(query);
list.addAll(employees);

// Display list box
....
// Get selected employee from list
Employee selectedEmployee = (Employee)session.readObject(list.getSelectedItem());
return selectedEmployee;

109.2.1.3 Reading Objects Using Report Queries
Example 109–8 reports the total and average salaries for Canadian employees grouped
by their city.

Example 109–8 Querying Reporting Information on Employees

ExpressionBuilder emp = new ExpressionBuilder();
ReportQuery query = new ReportQuery(Employee.class, emp);
query.addMaximum("max-salary", emp.get("salary"));
query.addAverage("average-salary", emp.get("salary"));
query.addAttribute("city", emp.get("address").get("city"));

query.setSelectionCriteria(emp.get("address").get("country").equal("Canada"));
query.addOrdering(emp.get("address").get("city"));
query.addGrouping(emp.get("address").get("city"));
List reports = (List) session.executeQuery(query);
The ReportQuery class provides an extensive reporting API, including methods for
computing average, maximum, minimum, sum, standard deviation, variance, and
count of attributes. For more information about the available methods for the
ReportQuery, see the Oracle Fusion Middleware Java API Reference for Oracle TopLink.

109.2.1.4 Reading Objects Using Query-By-Example
Query-by-example enables you to specify query selection criteria in the form of a
sample object instance that you populate with only the attributes you want to use for
the query.

Note: Because ReportQuery inherits from ReadAllQuery, it also
supports most ReadAllQuery properties.

Using DatabaseQuery Queries

Using Basic Query API 109-7

To define a query-by-example, provide a ReadObjectQuery or a ReadAllQuery
with a sample persistent object instance and an optional query-by-example policy. The
sample instance contains the data to query, and, optionally, a
QueryByExamplePolicy (see Defining a QueryByExamplePolicy) that specifies
configuration settings, such as the operators to use and the attribute values to ignore.
You can also combine a query-by-example with an expression (see Combining
Query-by-Example and Expressions).

For more information, see Section 108.2.8.6, "Query-by-Example".

Example 109–9 Using Query-by-Example to Query an Employee

Example 109–9 queries the employee Bob Smith.

Employee employee = new Employee();
employee.setFirstName("Bob");
employee.setLastName("Smith");

// Create a query and set Employee as its reference class
ReadObjectQuery query = new ReadObjectQuery(Employee.class);
query.setExampleObject(employee);

Employee result = (Employee) session.executeQuery(query);

Example 109–10 Using Query-by-Example to Query an Employee’s Address

Example 109–10 queries across the employee’s address.

Employee employee = new Employee();
Address address = new Address();
address.setCity("Ottawa");
employee.setAddress(address);

// Create a query and set Employee as its reference class
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setExampleObject(employee);

List results = (List) session.executeQuery(query);

Defining a QueryByExamplePolicy
TopLink support for query-by-example includes a query-by-example policy. You can
edit the policy to modify query-by-example default behavior. You can modify the
policy to do the following:

■ Use LIKE or other operations to compare attributes. By default, query-by-example
allows only EQUALS.

■ Modify the set of values query-by-example ignores (the IGNORE set). The default
ignored values are zero (0), empty strings, and FALSE.

■ Force query-by-example to consider attribute values, even if the value is in the
IGNORE set.

■ Use isNull or notNull for attribute values.

To specify a query-by-example policy, include an instance of
QueryByExamplePolicy with the query.

Example 109–11 Query-by-Example Policy Using like Operator

Example 109–11 uses like operator for strings and includes only objects whose salary
is greater than zero.

Using DatabaseQuery Queries

109-8 Developer's Guide for Oracle TopLink

Employee employee = new Employee();
employee.setFirstName("B%");
employee.setLastName("S%");
employee.setSalary(0);

// Create a query and set Employee as its reference class
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setExampleObject(employee);
// Query by example policy section adds like and greaterThan
QueryByExamplePolicy policy = new QueryByExamplePolicy();
policy.addSpecialOperation(String.class, "like");
policy.addSpecialOperation(Integer.class, "greaterThan");
policy.alwaysIncludeAttribute(Employee.class, "salary");
query.setQueryByExamplePolicy(policy);
List results = (List) session.executeQuery(query);

Example 109–12 Query-by-Example Policy Using Keywords

Example 109–12 uses keywords for strings and ignores the value -1.

Employee employee = new Employee();
employee.setFirstName("bob joe fred");
employee.setLastName("smith mc mac");
employee.setSalary(-1);

// Create a query and set Employee as its reference class
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setExampleObject(employee);
// Query by example policy section
QueryByExamplePolicy policy = new QueryByExamplePolicy();
policy.addSpecialOperation(String.class, "containsAnyKeyWords");
policy.excludeValue(-1);
query.setQueryByExamplePolicy(policy);
List results = (List) session.executeQuery(query);

Combining Query-by-Example and Expressions
To create more complex query-by-example queries, combine query-by-example with
TopLink expressions, as shown in Example 109–13.

Example 109–13 Combining Query-by-Example with Expressions

Employee employee = new Employee();
employee.setFirstName("Bob");
employee.setLastName("Smith");

// Create a query and set Employee as its reference class
ReadAllQuery query = new ReadAllQuery(Employee.class);

query.setExampleObject(employee);

// Specify expression
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCriteria(builder.get("salary").between(100000,200000);
List results = (List) session.executeQuery(query);

109.2.1.5 Specifying Read Ordering
Ordering is a common DatabaseQuery option. You can order a collection of objects
returned from a ReadAllQuery using the addOrdering, addAscendingOrdering,

Using DatabaseQuery Queries

Using Basic Query API 109-9

or addDescendingOrdering methods. You can apply order based on attribute
names, or on query keys and expressions.

Example 109–14 A Query with Simple Ordering

// Retrieves objects ordered by last name then first name in ascending order
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addAscendingOrdering ("lastName");
query.addAscendingOrdering ("firstName");
List employees = (List) session.executeQuery(query);

Example 109–15 A Query with Complex Ordering

// Retrieves objects ordered by street address, descending
// case-insensitive order of cities, and manager’s last name
ReadAllQuery query = new ReadAllQuery(Employee.class);
ExpressionBuilder emp = query.getExpressionBuilder();
query.addOrdering (emp.getAllowingNull("address").get("street"));
query.addOrdering(

emp.getAllowingNull("address").get("city").toUpperCase().descending());
query.addOrdering(emp.getAllowingNull("manager").get("lastName"));
List employees = (List) session.executeQuery(query);
Note the use of getAllowingNull, which creates an outer join for the address and
manager relationships. This ensures that employees without an address or manager
still appear in the list.

For more information about configuring read ordering, see Section 119.7.1.4,
"Configuring Read All Query Order".

109.2.1.6 Specifying a Collection Class
By default, a ReadAllQuery returns its result objects in a list. You can configure the
query to return the results in any collection class that implements the Collection or
Map interface, as shown in Example 109–16.

Example 109–16 Specifying the Collection Class for a Collection

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useCollectionClass(LinkedList.class);
LinkedList employees = (LinkedList) getSession().executeQuery(query);

Example 109–17 Specifying the Collection Class for a Map

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useMapClass(HashMap.class, "getFirstName");
HashMap employees = (HashMap) getSession().executeQuery(query);

109.2.1.7 Specifying the Maximum Rows Returned
You can limit a query to a specified maximum number of rows. Use this feature to
avoid queries that can return an excessive number of objects.

To specify a maximum number of rows, use the setMaxRows method, and pass an
integer that represents the maximum number of rows for the query, as shown in
Example 109–18.

Example 109–18 Setting the Maximum Returned Object Size

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setMaxRows(5);
List employees = (List) session.executeQuery(query);

Using DatabaseQuery Queries

109-10 Developer's Guide for Oracle TopLink

The setMaxRows method limits the number of rows the query returns, but does not
let you acquire more records after the initial result set.

If you want to browse the result set in fixed increments, use either cursors or cursored
streams. For more information, see Section 111.11, "Handling Cursor and Stream Query
Results".

109.2.1.8 Configuring Query Timeout at the Query Level
You can set the maximum amount of time that TopLink waits for results from a query.
This forces a hung or lengthy query to abort after the specified time has elapsed.
TopLink throws a DatabaseException after the timeout interval.

To specify a timeout interval on a per-query basis, use DatabaseQuery method
setQueryTimeout and pass the timeout interval as an integer representing the
number of seconds before the timeout interval should occur, as Example 109–19
shows.

Example 109–19 DatabaseQuery Timeout

// Create the appropriate query and set timeout limits
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setQueryTimeout(2);
try {

List employees = (List) session.executeQuery(query);
}
catch (DatabaseException ex) {

// timeout occurs
}
To specify a timeout interval for all queries on a particular object type, configure a
query timeout interval at the descriptor level (see Section 119.8, "Configuring Query
Timeout at the Descriptor Level").

109.2.1.9 Using Batch Reading
Batch reading propagates query selection criteria through an object's relationship
attribute mappings. You can also nest batch read operations down through complex
object graphs. This significantly reduces the number of required SQL select statements
and improves database access efficiency.

Consider the following guidelines when you implement batch reading:

■ Use batch reading for processes that read in objects and all their related objects.

■ Do not enable batch reading for both sides of a bidirectional relationship.

■ Avoid nested batch read operations, because they result in multiple joins on the
database, slowing query execution.

For more information, see Section 12.12.9.2, "Reading Case 2: Batch Reading Objects".

For example, in reading n employees and their related projects, TopLink may require n
+ 1 select operations. All employees are read at once, but the projects of each are read
individually. With batch reading, all related projects can also be read with one select
operation by using the original selection criteria, for a total of only two select
operations.

To implement batch reading, add the batch read attribute to a query, use the
query.addBatchReadAttribute(Expression anExpression) API, as the
following example shows:

…

Using DatabaseQuery Queries

Using Basic Query API 109-11

ReadAllQuery raq = new ReadAllQuery(Trade.class);
ExpressionBuilder tradeBuilder = raq.getBuilder();
…
Expression batchReadProduct = tradeBuilder.get("product");
readAllQuery.addBatchReadAttribute(batchReadProduct);
Expression batchReadPricingDetails = batchReadProduct.get("pricingDetails");
readAllQuery.addBatchReadAttribute(batchReadPricingDetails);
…
Alternatively, you can add batch reading at the mapping level for a descriptor. For
more information, see Section 28.5, "Configuring Batch Reading".

You can combine batch reading and indirection (lazy loading) to provide controlled
reading of object attributes. For example, if you have one-to-one back pointer
relationship attributes, you can defer back pointer instantiation until the end of the
query, when all parent and owning objects are instantiated. This prevents unnecessary
database access and optimizes TopLink cache use.

109.2.1.10 Using Join Reading with ObjectLevelReadQuery
Use join reading with ObjectLevelReadQuery to configure a query for a class to
return the data to build an instance of that class and its related objects. For more
information, see Section 108.7.1.5, "Join Reading and Object-Level Read Queries".

To use join reading with an ObjectLevelReadQuery, you can use any of Oracle
JDeveloper, TopLink Workbench ((see Section 119.7.1.5, "Configuring Named Query
Optimization"), or Java.

109.2.1.10.1 Using Java You can use ObjectLevelReadQuery API to add joined
attributes for mappings.

You can use any of the following API:

■ Use the ObjectLevelReadQuery method addJoinedAttribute with a join
expression or attribute name for one-to-one or one-to-many mapped attributes.

Using this method, you can add multiple joined attributes, including nested joins.
The source and target can be the same class type.

On a one-to-one mapped attribute, use this method to get the class of the
ObjectLevelReadQuery and the target of the one-to-one mapped attribute of
that class with a single database hit.

On a one-to-many mapped attribute, use this method to get the class of the
ObjectLevelReadQuery and the target collection of the one-to-many mapped
attribute of that class with a single database hit.

■ Use the ObjectLevelReadQuery method setShouldFilterDuplicates
with a join expression on a one-to-many mapped attribute to filter duplicate rows.
This method defaults to true.

Use a join expression to configure nested batch reads and inner or outer joins (see
Section 110.2.7, "Expressions for Joining and Complex Relationships"). You can also
specify inner or outer joins using the mapping methods useInnerJoinFetch or
useOuterJoinFetch.

Note: You cannot use TopLink Workbench to create an
ObjectLevelReadQuery with a join expression on a one-to-many
mapped attribute: you must use Java.

Using DatabaseQuery Queries

109-12 Developer's Guide for Oracle TopLink

Example 109–20 is based on the TopLink ThreeTierEmployee example project. It
shows a ReadAllQuery configured to join-read multiple attributes.

Example 109–20 Join Reading Multiple Attributes

ReadAllQuery query = new ReadAllQuery(Employee.class);

Expression managedEmployees =
query.getExpressionBuilder().anyOfAllowingNone("managedEmployees");

query.addJoinedAttribute(managedEmployees);
query.addJoinedAttribute(managedEmployees.get("address"));
query.addJoinedAttribute(managedEmployees.anyOf("phoneNumbers"));

List employees = (List) getSession().executeQuery(query);

Use the ObjectLevelReadQuery method
addJoinedAttribute(java.lang.String attributeName) to configure the
query to join-read a single attribute, as Example 109–21 shows.

Example 109–21 Join Reading a Single Attribute

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addJoinedAttribute("address");
List employees = (List) getSession().executeQuery(query);

109.2.2 How to Create, Update, and Delete Objects with a DatabaseQuery
You can create, update or delete object with a DatabaseQuery using a
DatabaseSession. For more information, see Section 108.6, "Session Queries".

This section describes the following:

■ Using Write Query

■ Performing Noncascading Write Queries

■ Disabling the Identity Map Cache During a Write Query

109.2.2.1 Using Write Query
To execute a write query, use a WriteObjectQuery instance instead of using the
writeObject method of the session. Likewise, substitute DeleteObjectQuery,
UpdateObjectQuery, and InsertObjectQuery objects for their respective
Session methods.

Example 109–22 Using a WriteObjectQuery

WriteObjectQuery writeQuery = new WriteObjectQuery();
writeQuery.setObject(domainObject);
session.executeQuery(writeQuery);

Example 109–23 Using InsertObjectQuery, UpdateObjectQuery, and DeleteObjectQuery

InsertObjectQuery insertQuery= new InsertObjectQuery();
insertQuery.setObject(domainObject);
session.executeQuery(insertQuery);

// When you use UpdateObjectQuery without a unit of work,
// UpdateObjectQuery writes all direct attributes to the database
UpdateObjectQuery updateQuery= new UpdateObjectQuery();
updateQuery.setObject(domainObject2);
session.executeQuery(updateQuery);

Using DatabaseQuery Queries

Using Basic Query API 109-13

DeleteObjectQuery deleteQuery = new DeleteObjectQuery();
deleteQuery.setObject(domainObject2);
session.executeQuery(deleteQuery);

109.2.2.2 Performing Noncascading Write Queries
When you execute a write query, it writes both the object and its privately owned parts
to the database by default. To build write queries that do not update privately owned
parts, include the dontCascadeParts method in your query definition.

Use this method to do the following:

■ Increase performance when you know that only the object’s direct attributes have
changed.

■ Resolve referential integrity dependencies when you write large groups of new,
independent objects.

Example 109–24 Performing a Noncascading Write Query

// the Employee is an existing employee read from the database
Employee.setFirstName("Bob");
UpdateObjectQuery query = new UpdateObjectQuery();
query.setObject(Employee);
query.dontCascadeParts();
session.executeQuery(query);

109.2.2.3 Disabling the Identity Map Cache During a Write Query
When you write objects to the database, TopLink copies them to the session cache by
default. To disable this within a query, call the dontMaintainCache method within
the query. This improves query performance when you insert objects into the database,
but must be used only on objects that will not be required later by the application.

Example 109–25 Disabling the Identity Map Cache During a Write Query

Example 109–25 reads all the objects from a flat file and writes new copies of the
objects into a table.

// Reads objects from an employee file and writes them to the employee table
void createEmployeeTable(String filename, Session session) {
 Iterator iterator;
 Employee employee;
 // Read the employee data file
 List employees = Employee.parseFromFile(filename);
 Iterator iterator = employees.iterator();
 while (iterator.hasNext()) {
 Employee employee = (Employee) iterator.next();
 InsertObjectQuery query = new InsertObjectQuery();
 query.setObject(employee);
 query.dontMaintainCache();
 session.executeQuery(query);

}
}

Note: Because the unit of work resolves referential integrity
internally, this method is not required if you use the unit of work to
write to the database.

Using DatabaseQuery Queries

109-14 Developer's Guide for Oracle TopLink

109.2.3 How to Update and Delete Multiple Objects with a DatabaseQuery
Using the unit of work, you can perform update and delete operations on multiple
objects.

This section describes the following:

■ Using UpdateAll Queries

■ Using DeleteAll Queries

109.2.3.1 Using UpdateAll Queries
Use an UpdateAllQuery to update a large number of objects at once. With this query,
you can update a large number of objects with a single SQL statement, instead of
reading the objects into memory and updating them individually. Example 109–26
shows an UpdateAllQuery to give all full-time employees a raise.

Example 109–26 Using UpdateAllQuery

// Give all full time employees a 10% raise
UpdateAllQuery updateQuery = new UpdateAllQuery(Employee.class);
ExpressionBuilder employee = updateQuery.getExpressionBuilder();
updateQuery.setSelectionCriteria(employee.get("status").equal("FULL_TIME"));
updateQuery.addUpdateExpression(employee.get("salary"),

ExpressionMath.multiply(employee.get("salary"), new Float(1.10)));
UpdateAllQuery takes the cache into consideration and ensures that the cache is
kept up to date. You can configure the UpdateAllQuery to invalidate cache (see
Section 102.2.5, "Cache Invalidation") by setting the cache usage to INVALIDATE_
CACHE (default), or to not use the cache by specifying NO_CACHE option. You can
manipulate these settings through the setCacheUsage method. You can only update
the cache for expressions that can conform. For more information on cache, see
Chapter 102, "Introduction to Cache".

You can use an UpdateAll query with optimistic locking (see Section 16.4, "Descriptors
and Locking") at the level of updating a row in a database–there should be no updates
in the cache. You will update the locking field on the database. There is also support
for version and timestamp locking, as well as indirect support for field locking.

109.2.3.2 Using DeleteAll Queries
Example 109–27 shows a DeleteAllQuery to eliminate all part-time employee
positions.

Example 109–27 Using DeleteAllQuery

// Delete all part-time employees
DeleteAllQuery deleteQuery = new DeleteAllQuery(Employee.class);
ExpressionBuilder employee = deleteQuery.getExpressionBuilder();
deleteQuery.setSelectionCriteria(employee.get("status").equal("PART_TIME"));

Note: Disable the identity map only when object identity is
unimportant in subsequent operations.

Note: You can set an attribute within an aggregate only, but not an
entire aggregate.

Using DatabaseQuery Queries

Using Basic Query API 109-15

deleteQuery.setObjects(domainObjects);
session.executeQuery(deleteQuery);
For more information, see Section 108.7.3.6, "DeleteAllQuery".

109.2.4 How to Read Data with a DatabaseQuery
This section describes the following:

■ Using a DataReadQuery

■ Using a DirectReadQuery

■ Using a ValueReadQuery

109.2.4.1 Using a DataReadQuery
You can use a DataReadQuery to execute a selecting SQL string that returns a
Collection of the Record objects representing the result set, as Example 109–28
shows.

Example 109–28 Using a DataReadQuery

DataReadQuery dataReadQuery = new DataReadQuery();
dataReadQuery.setSQLString("Select * from EMPLOYEE");

// queryResults is a list of Record objects
List queryResults = (List)session.executeQuery(dataReadQuery);

109.2.4.2 Using a DirectReadQuery
You can use a DirectReadQuery to read a single column of data (that is, one field)
that returns a Collection of the Record objects representing the result set, as
Example 109–29 shows.

Example 109–29 Using a DirectReadQuery

DirectReadQuery directReadQuery = new DirectReadQuery();
directReadQuery.setSQLString("Select * from EMPLOYEE");

// queryResults is a list of Record objects
List queryResults = (List)session.executeQuery(directReadQuery);

109.2.4.3 Using a ValueReadQuery
You can use a ValueReadQuery to read a single data value (that is, one field). A
single data value is returned, or null if no rows are returned, as Example 109–30
shows.

Example 109–30 Using a ValueReadQuery

ValueReadQuery valueReadQuery = new ValueReadQuery();
valueReadQuery.setSQLString("SELECT DISTINCT CURRENT TIMESTAMP FROM SYSTABLES");

// result is a single Object value
Object result = session.executeQuery(valueReadQuery);

WARNING: Allowing an unverified SQL string to be passed into
methods (for example: setSQLString method) makes your
application vulnerable to SQL injection attacks.

Using DatabaseQuery Queries

109-16 Developer's Guide for Oracle TopLink

109.2.5 How to Update Data with a DatabaseQuery
You can use a DataModifyQuery to execute a nonselecting SQL statement (directly
or as an SQLCall), as Example 109–31 shows. This is equivalent to Session method
executeNonSelectingCall (see Section 109.4, "Using a SQLCall").

Example 109–31 Using a DataModifyQuery

DataModifyQuery query = new DataModifyQuery(new SQLCall("Delete from Employee"));
session.executeQuery(query);

109.2.6 How to Specify a Custom SQL String in a DatabaseQuery
All DatabaseQuery objects provide a setSQLString method that you can use to
define a custom SQL string.

For more information about using custom SQL in queries, see Section 109.4, "Using a
SQLCall".

Example 109–32 uses SQL to read all employee IDs.

Example 109–32 A Direct Read Query with SQL

DirectReadQuery query = new DirectReadQuery();
query.setSQLString("SELECT EMP_ID FROM EMPLOYEE");
List ids = (List) session.executeQuery(query);
Example 109–33 uses SQL to switch to a different database.

Example 109–33 A Data Modify Query with SQL

DataModifyQuery query = new DataModifyQuery();
query.setSQLString("USE SALESDATABASE");
session.executeQuery(query);

109.2.7 How to Specify a Custom JPQL String in a DatabaseQuery
For information, see "How to Specify a Custom JPQL String in a DatabaseQuery"
section of EclipseLink Developer’s Guide at http://wiki.eclipse.org/Using_
Basic_Query_API_%28ELUG%29#How_to_Specify_a_Custom_JPQL_String_
in_a_DatabaseQuery

109.2.8 How to Specify a Custom EJB QL String in a DatabaseQuery
All DatabaseQuery objects provide a setEJBQLString method that you can use to
specify a custom EJB QL string.

For JPA queries, see Section 109.2.7, "How to Specify a Custom JPQL String in a
DatabaseQuery".

Provide both a reference class and a SELECT clause, and execute the query in the usual
manner.

Example 109–34 EJB QL

ReadAllQuery query = new ReadAllQuery(EmployeeBean.class);
query.setEJBQLString("SELECT OBJECT(emp) FROM EmployeeBean emp");

WARNING: Allowing an unverified SQL string to be passed into
methods (for example: setSQLString method) makes your
application vulnerable to SQL injection attacks.

Using DatabaseQuery Queries

Using Basic Query API 109-17

…
List returnedObjects = (List)session.executeQuery(query);

Example 109–35 defines the query similarly to Example 109–34, but creates, fills, and
passes a vector of arguments to the executeQuery method.

Example 109–35 A Simple ReadAllQuery Using EJB QL and Passing Arguments

// First define the query
ReadAllQuery query = new ReadAllQuery(EmployeeBean.class);
query.setEJBQLString("SELECT OBJECT(emp) FROM EmployeeBean emp WHERE emp.firstName = ?1");
query.addArgument("1", String.class);
...
// Next define the arguments
Vector arguments = new Vector();
arguments.add("Bob");
...
// Finally, execute the query passing in the arguments
List returnedObjects = (List)session.executeQuery(query, arguments);

109.2.9 How to Use Parameterized SQL and Statement Caching in a DatabaseQuery
By default, TopLink enables parameterized SQL (parameter binding) and statement
caching. This causes TopLink to use a prepared statement, binding all SQL parameters
and caching the prepared statement. When you reexecute this query, you avoid the
SQL preparation, which improves performance.

To disable parameterized SQL and statement caching on individual queries, use
DatabaseQuery methods setShouldBindAllParameters and
setShouldCacheStatement, passing in an argument of false. To re-enable this
feature, pass in an argument of true.

Example 109–36 A Simple ReadObjectQuery with Parameterized SQL

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
query.setShouldBindAllParameters(true);
query.setShouldCacheStatement(true);

Alternatively, you can configure parameterized SQL and binding at any of the
following levels:

■ project level–applies to all named queries (see Section 20.7, "Configuring Named
Query Parameterized SQL and Statement Caching at the Project Level");

■ descriptor level–applies on a per-named-query basis (see Section 119.7.1.9,
"Configuring Named Query Options");

■ session database login level–applies to all queries (see Section 98.6, "Configuring
JDBC Options") and provides additional parameter binding API to alleviate the
limit imposed by some drivers on SQL statement size;

For more information about using parameterized SQL and binding for data access
optimization, see Section 12.11.5, "How to Use Parameterized SQL (Parameter
Binding) and Prepared Statement Caching for Optimization".

Note: For applications using a Java EE data source or external
connection pool, you must configure statement caching in the Java
EE server’s data source–not in TopLink.

Using Named Queries

109-18 Developer's Guide for Oracle TopLink

109.3 Using Named Queries
Named queries improve application performance because they are prepared once and
they (and all their associated supporting objects) can be efficiently reused thereafter
making them well suited for frequently executed operations.

You can configure named queries at the session (see Section 89.13, "Configuring
Named Queries at the Session Level") or descriptor (see Section 119.7, "Configuring
Named Queries at the Descriptor Level") level.

For a session-level named query, you can execute the query using any of the following
Session API methods:

■ executeQuery(String queryName)

■ executeQuery(String queryName, arg1)

■ executeQuery(String queryName, arg1, arg2)

■ executeQuery(String queryName, arg1, arg2, arg3)

■ executeQuery(String queryName, Vector args)

Example 109–37 Executing a Session-Level Named Query

Vector args = new Vector();
args.add("Sarah");
Employee sarah = (Employee)session.executeQuery(

"employeeReadByFirstName",
args

);
For a descriptor-level named query, you can execute the query using any of the
following Session API calls, as Example 109–38 shows:

■ executeQuery(String queryName, Class domainClass)

■ executeQuery(String queryName, Class domainClass, arg1)

■ executeQuery(String queryName, Class domainClass, arg1,
arg2)

■ executeQuery(String queryName, Class domainClass, arg1,
arg2, arg3)

■ executeQuery(String queryName, Class domainClass, Vector
args)

Example 109–38 Executing a Descriptor Level Named Query

Vector args = new Vector();
args.add("Sarah");
Employee sarah = (Employee)session.executeQuery(

"ReadByFirstName",
Employee.class,
args

);
For more information, see Section 108.8, "Named Queries"

109.4 Using a SQLCall
The TopLink expression framework enables you to define complex queries at the
object level. If your application requires a more complex query or one that accesses
data directly, you can specify a custom SQL string in an SQLCall object and execute

Using a SQLCall

Using Basic Query API 109-19

the SQL string in the context of a DatabaseQuery or using Session API for executing
Call objects.

You can provide an SQLCall object to any query instead of an expression, but the SQL
string contained in the SQLCall must return all data required to build an instance of
the queried class.

The SQL string can be a complex SQL query that includes input, output, and
input/output arguments using JDBC data types.

109.4.1 How to Configure a SQLCall Without Arguments
You can configure a SQLCall without arguments and execute it directly using
Session API. Use this approach when you want to execute a SQL string without
arguments (or with hard-coded argument values).

To configure a SQLCall input without arguments:
1. Instantiate a SQLCall object.

2. Pass the SQL string into the constructor as Example 109–39 shows.

Alternatively, you can use SQLCall method setSQLString.

3. Execute the SQLCall using the appropriate Session API as Example 109–39
shows.

You can use any of the following Session methods, depending on the type of
SQL string you define:

■ executeSelectingCall: returns a List of Record objects, each
representing a database row.

■ executeNonSelectingCall: returns void.

Example 109–39 Executing a SQLCall Without Arguments

List result = session.executeSelectingCall(
new SQLCall("SELECT * FROM EMPLOYEE WHERE DEPT_ID = 44")

);

109.4.2 How to Configure a SQLCall with Arguments Using JDBC Data Types
You can configure a SQLCall that takes any combination of input, output, or
input/output arguments. Use this approach when you want to bind argument values
to the SQLCall at runtime, receive output values from the SQLCall at execution time,
or both.

To configure a SQLCall with arguments using JDBC data types:
1. Instantiate a SQLCall object.

2. Create the SQL string and designate arguments as input, output, or input/output.

TopLink assumes that a token in the custom SQL string of an SQLCall is an
argument if it is prefixed with one or more number signs (#), as follows:

■ Input parameter prefix: # (see Example 109–40).

WARNING: Allowing an unverified SQL string to be passed into
methods makes your application vulnerable to SQL injection
attacks.

Using a SQLCall

109-20 Developer's Guide for Oracle TopLink

■ Output parameter prefix: ### (see Example 109–41).

■ Input/output parameter prefix: #### (see Example 109–42).

3. Pass the SQL string into the constructor as Example 109–40, Example 109–41, and
Example 109–42 show.

Alternatively, you can use SQLCall method setSQLString.

4. For each output argument, use the appropriate SQLCall method
setCustomSQLArgumentType to specify the Java data type TopLink uses to
return the output value, as Example 109–41 shows.

For an input argument, TopLink automatically converts the Java data type to the
appropriate JDBC data type.

For an input/output argument, the type of the input value determines the type of
the output value. As Example 109–42 shows, the data type of the argument value
passed into in_out is String ("MacDonald") so TopLink returns the output
value (for EMP_ID) as a String.

5. Instantiate a DatabaseQuery appropriate for your SQL string.

6. Configure the DatabaseQuery with your SQLCall using DatabaseQuery
method setCall, as Example 109–40, Example 109–41, and Example 109–42
show.

7. Specify the names for all input and input/output arguments using
DatabaseQuery method addArgument, as Example 109–40, Example 109–41,
and Example 109–42 show.

8. Create a Vector of argument values in the same order as you specified argument
names in step 7 as Example 109–40, Example 109–41, and Example 109–42 show.

9. Bind values to the arguments and execute the DatabaseQuery using Session
method executeQuery(DatabaseQuery, java.util.Vector), passing in
your DatabaseQuery and Vector of argument values, as Example 109–40,
Example 109–41, and Example 109–42 show.

Example 109–40 Specifying an SQLCall with an Input Argument Using the # Prefix:
JDBC Data Types

SQLCall sqlCall = new SQLCall("INSERT INTO EMPLOYEE (L_NAME) VALUES (#last_name)");

DataModifyQuery query = new DataModifyQuery();
query.setCall(sqlCall);
query.addArgument("last_name"); // input

Vector arguments = new Vector();
arguments.add("MacDonald");
session.executeQuery(query, arguments);

Example 109–41 Specifying a SQLCall with an Output Argument Using the ### Prefix:
JDBC Data Types

SQLCall sqlCall = new SQLCall(
"BEGIN INSERT INTO EMPLOYEE (L_NAME) VALUES (#last_name)
RETURNING EMP_ID INTO ###employee_id; END;");

sqlCall.setCustomSQLArgumentType("employee_id", Integer.class); // specify output value type

ValueReadQuery query = new ValueReadQuery();
query.setCall(sqlCall);
query.addArgument("last_name"); // input

Using a StoredProcedureCall

Using Basic Query API 109-21

Vector args = new Vector();
args.add("MacDonald");

Integer employeeID = (Integer) getSession().executeQuery(query, args);

Example 109–42 Specifying a SQLCall with an Input/Output Argument Using the ####
Prefix: JDBC Data Types

SQLCall sqlCall = new SQLCall(
"BEGIN INSERT INTO EMPLOYEE (L_NAME) VALUES (####in_out)
RETURNING EMP_ID INTO ####in_out; END;");

ValueReadQuery query = new ValueReadQuery();
query.setCall(sqlCall);
query.addArgument("in_out"); // input and outpu

Vector args = new Vector();
args.add("MacDonald"); // type of input argument determines type of output value

String lastName = (String) getSession().executeQuery(query, args);

109.4.3 What You May Need to Know About Using a SQLCall
When using SQL calls, you can use a ReturningPolicy to control whether or not
TopLink writes a parameter out or retrieves a value generated by the database.

If you want to invoke a stored procedure or stored function, use a
StoredProcedureCall or StoredFunctionCall.

Alternatively, you can specify a simple SQL string directly on DatabaseQuery. You
can use this approach to avoid the overhead of creating a SQLCall object when your
SQL string is simple, uses hard-coded arguments (or no arguments), and you do not
require the additional API that SQLCall provides.

For more information, see the following:

■ Section 109.2.6, "How to Specify a Custom SQL String in a DatabaseQuery"

■ Section 119.27, "Configuring Returning Policy"

■ Section 109.5, "Using a StoredProcedureCall"

■ Section 109.6, "Using a StoredFunctionCall"

109.5 Using a StoredProcedureCall
The TopLink expression framework enables you to define complex queries at the
object level. If your application requires a more complex query or one that invokes an
existing stored procedure that your database provides, you can define a
StoredProcedureCall object using both JDBC and PL/SQL data types and invoke
the stored procedure in the context of a DatabaseQuery.

If you are using Oracle Database, you can pass in both JDBC and PL/SQL (non-JDBC)
data types.

If you are using a non-Oracle database, you may pass in only JDBC data types.

This section describes the following:

■ How to Configure a StoredProcedureCall Without Arguments

■ How to Configure a StoredProcedureCall with Arguments Using JDBC Data Types

■ How to Configure a PLSQLStoredProcedureCall with PL/SQL Data Type
Arguments

Using a StoredProcedureCall

109-22 Developer's Guide for Oracle TopLink

■ How to Specify a Simple Optimistic Version Locking Value with a
StoredProcedureCall Using JDBC Data Types

■ How to Configure a StoredProcedureCall Output Parameter Event Using JDBC or
PL/SQL Data Types

■ What You May Need to Know About Using a StoredProcedureCall

109.5.1 How to Configure a StoredProcedureCall Without Arguments
You can configure a StoredProcedureCall without arguments and execute it
directly using Session API. Use this approach when you want to execute a stored
procedure that does not take arguments or return values.

To configure a StoredProcedureCall without arguments using JDBC data types:
1. Instantiate a StoredProcedureCall object.

2. Set the name of the stored procedure to execute using StoredProcedureCall
method setProcedureName, as Example 109–43 shows.

3. Execute the StoredProcedureCall using the appropriate Session API, as
Example 109–43 shows.

You can use any of the following Session methods, depending on the type of
stored procedure you are executing:

■ executeSelectingCall: returns a List of Record objects, each
representing a database row.

■ executeNonSelectingCall: returns void.

Example 109–43 Executing a SQLCall Without Arguments

StoredProcedureCall spcall = new StoredProcedureCall();
spcall.setProcedureName("Read_All_Employees");
spcall.useNamedCursorOutputAsResultSet("RESULT_SET");

List employees = (List) getSession().executeSelectingCall(spcall);

109.5.2 How to Configure a StoredProcedureCall with Arguments Using JDBC Data
Types

You can configure a StoredProcedureCall that takes any combination of input,
output, or input/output arguments. Use this approach when you want to bind
argument values to the StoredProcedureCall at runtime, receive output values
from the StoredProcedureCall at execution time, or both.

To configure a StoredProcedureCall with arguments using JDBC data types:
1. Instantiate a StoredProcedureCall object.

2. Specify the name of the stored procedure to call using StoredProcedureCall
method setProcedureName, as Example 109–44, Example 109–45, and
Example 109–46 show.

Note: Use this procedure when all input, output, and input/output
arguments are JDBC data types. If one or more arguments are PL/SQL
(non-JDBC) data types, see Section 109.5.3, "How to Configure a
PLSQLStoredProcedureCall with PL/SQL Data Type Arguments".

Using a StoredProcedureCall

Using Basic Query API 109-23

3. For each argument, use the appropriate StoredProcedureCall methods to
specify whether arguments are input, output, or input/output arguments:

■ Input argument: addNamedArgument (see Example 109–44).

■ Output argument: addNamedOutputArgument (see Example 109–45).

■ Input/output argument: addNamedInOutputArgument (see
Example 109–46).

In general, you should always specify the return Java data type for all output and
input/output arguments, as Example 109–45 and Example 109–46 show. If you do
not specify a return Java data type, the default is java.lang.String.

Typically, you specify arguments using the stored procedure argument name as is.
However, you may associate a stored procedure argument name with an alternate
name that you use in the DatabaseQuery, as Example 109–44 shows. Use this
approach to specify a more meaningful argument name if the stored procedure
argument name is cryptic.

4. Instantiate a DatabaseQuery appropriate for your stored procedure.

5. Configure the DatabaseQuery with your StoredProcedureCall using
DatabaseQuery method setCall, as Example 109–44, Example 109–45, and
Example 109–46 show.

6. Specify the names for all input and input/output arguments using
DatabaseQuery method addArgument, as Example 109–44, Example 109–45,
and Example 109–46 show.

If you associated stored procedure argument names with more meaningful
alternate names in step 3, use the alternate names in the DatabaseQuery method
addArgument, as Example 109–44 shows.

7. Create a Vector of argument values in the same order as you specified argument
names in step 6, as Example 109–44, Example 109–45, and Example 109–46 show.

8. Bind values to the arguments and execute the DatabaseQuery using Session
method executeQuery(DatabaseQuery, java.util.Vector), passing in
your DatabaseQuery and Vector of argument values, as Example 109–44,
Example 109–45, and Example 109–46 show.

Example 109–44 Specifying a StoredProcedureCall with an Input Argument: JDBC Data
Types

// CREATE PROCEDURE INSERT_EMPLOYEE(L_NAME IN VARCHAR) AS
// BEGIN
// Insert an EMP record initialized with last name.
// END;

StoredProcedureCall spcall = new StoredProcedureCall();
spcall.setProcedureName("INSERT_EMPLOYEE");
spcall.addNamedArgument("L_NAME", "last_name");

DataModifyQuery query = new DataModifyQuery();
query.setCall(spcall);
query.addArgument("last_name"); // input

Vector arguments = new Vector();
arguments.add("MacDonald");
session.executeQuery(query, arguments);

Using a StoredProcedureCall

109-24 Developer's Guide for Oracle TopLink

Example 109–45 Specifying a StoredProcedureCall with an Output Argument: JDBC
Data Types

// CREATE PROCEDURE GET_EMP_ID(L_NAME IN VARCHAR, EMP_ID OUT INTEGER) AS
// BEGIN
// Insert an EMP record initialized with last name and return the EMP_ID for this record.
// END;

StoredProcedureCall spcall = new StoredProcedureCall();
spcall.setProcedureName("GET_EMP_ID");
spcall.addNamedArgument("L_NAME");
spcall.addNamedOutputArgument(

"EMP_ID", // procedure parameter name
"EMP_ID", // out argument field name
Integer.class // Java type corresponding to type returned by procedure

);

ValueReadQuery query = new ValueReadQuery();
query.setCall(spcall);
query.addArgument("L_NAME"); // input

Vector args = new Vector();
args.add("MacDonald");

Integer employeeID = (Integer) getSession().executeQuery(query, args);

Example 109–46 Specifying a StoredProcedureCall with an Input/Output Argument:
JDBC Data Types

// CREATE PROCEDURE INSERT_EMPLOYEE(IN_OUT INOUT VARCHAR) AS
// BEGIN
// Insert an EMP record initialized with last name
// and return the EMP_CODE_NAME for this record.
// END;

StoredProcedureCall spcall = new StoredProcedureCall();
spcall.setProcedureName("INSERT_EMP"); // returns EMP_CODE_NAME after insert
spcall.addNamedInOutputArgument(

"IN_OUT", // procedure parameter name
"IN_OUT", // out argument field name
String.class // Java type corresponding to type returned by procedure

);

ValueReadQuery query = new ValueReadQuery();
query.setCall(sqlCall);
query.addArgument("INOUT"); // input and outpu

Vector args = new Vector();
args.add("MacDonald"); // type of input argument determines type of output value

String employeeCode = (String) getSession().executeQuery(query, args));

109.5.3 How to Configure a PLSQLStoredProcedureCall with PL/SQL Data Type
Arguments

You must use the
oracle.toplink.platform.database.oracle.PLSQLStoredProcedureCall
class if any combination of input, output, or input/output arguments are PL/SQL
(non-JDBC) data types. Use this approach when you want to bind argument values to
the PLSQLStoredProcedureCall at run time, receive output values from the
PLSQLStoredProcedureCall at execution time, or both.

Using a StoredProcedureCall

Using Basic Query API 109-25

To configure a PLSQLStoredProcedureCall with arguments using JDBC and
PL/SQL data types:
1. Instantiate a PLSQLStoredProcedureCall object.

2. Specify the name of the stored procedure to call using
PLSQLStoredProcedureCall method setProcedureName, as
Example 109–47, Example 109–48, and Example 109–49 show.

3. For each argument, use the appropriate PLSQLStoredProcedureCall methods
to specify whether arguments are input, output, or input/output arguments:

■ Input argument: addNamedArgument (see Example 109–47).

■ Output argument: addNamedOutputArgument (see Example 109–48).

■ Input/output argument: addNamedInOutputArgument (see
Example 109–49).

You must specify the data type for all arguments: input, output, and input/output.
You use oracle.toplink.platform.database.jdbc.JDBCTypes to specify
JDBC types and
oracle.toplink.platform.database.oracle.OraclePLSQLTypes to
specify PL/SQL (non-JDBC) types.

For JDBC and PL/SQL input arguments (and the in value of input/output
arguments), you may use any Java type with sufficient size and precision for the
argument.

For JDBC output arguments (and the out value of input/output arguments)
TopLink converts the JDBC data types to Java types as before. For PL/SQL output
arguments (and the out value of input/output arguments), TopLink converts
PL/SQL data types to the Java data types that Table 109–1 lists.

Typically, you specify arguments using the stored procedure argument name as is.
However, you may associate a stored procedure argument name with an alternate
name that you use in the DatabaseQuery, as Example 109–47 shows. Use this
approach to specify a more meaningful argument name if the stored procedure
argument name is cryptic.

4. Instantiate a DatabaseQuery appropriate for your stored procedure.

5. Configure the DatabaseQuery with your PLSQLStoredProcedureCall using
DatabaseQuery method setCall, as Example 109–47, Example 109–48, and
Example 109–49 show.

6. Specify the names for all input and input/output arguments using
DatabaseQuery method addArgument, as Example 109–47, Example 109–48,
and Example 109–49 show.

If you associated stored procedure argument names with more meaningful
alternate names in step 3, use the alternate names in the DatabaseQuery method
addArgument, as Example 109–47 shows.

7. Create a Vector of argument values in the same order as you specified argument
names in step 6, as Example 109–47, Example 109–48, and Example 109–49 show.

Note: If all arguments are JDBC (not PL/SQL data types), see
Section 109.5.2, "How to Configure a StoredProcedureCall with
Arguments Using JDBC Data Types".

Using a StoredProcedureCall

109-26 Developer's Guide for Oracle TopLink

8. Bind values to the arguments and execute the DatabaseQuery using Session
method executeQuery(DatabaseQuery, java.util.Vector), passing in
your DatabaseQuery and Vector of argument values, as Example 109–47,
Example 109–48, and Example 109–49 show.

Example 109–47 Specifying a PLSQLStoredProcedureCall with an Input Argument:
JDBC and PL/SQL Data Types

// CREATE PROCEDURE INSERT_EMPLOYEE(L_NAME IN VARCHAR, MANAGER IN BOOLEAN) AS
// BEGIN
// Insert an EMP record initialized with last name and whether or not the employee
// is a manager.
// END;

PLSQLStoredProcedureCall plsqlcall = new PLSQLStoredProcedureCall();
plsqlcall.setProcedureName("INSERT_EMPLOYEE");
plsqlcall.addNamedArgument("L_NAME", JDBCTypes.VARCHAR_TYPE, 40); // must define length
plsqlcall.addNamedArgument("MANAGER", OraclePLSQLTypes.PLSQLBoolean);

DataModifyQuery query = new DataModifyQuery();
query.setCall(plsqlcall);
query.addArgument("L_NAME"); // input
query.addArgument("MANAGER"); // input

Vector arguments = new Vector();
arguments.add("MacDonald");
arguments.add(Integer.valueOf(1));
session.executeQuery(query, arguments);

Example 109–48 Specifying a PLSQLStoredProcedureCall with an Output Argument:
JDBC and PL/SQL Data Types

// CREATE PROCEDURE GET_EMP_ID(L_NAME IN VARCHAR, EMP_ID OUT PLS_INTEGER) AS
// BEGIN
// Insert an EMP record initialized with last name and return EMP_ID for this row.
// END;

PLSQLStoredProcedureCall plsqlcall = new PLSQLStoredProcedureCall();
plsqlcall.setProcedureName("GET_EMP_ID");
plsqlcall.addNamedArgument("L_NAME", JDBCTypes.VARCHAR_TYPE, 25); // must define length
plsqlcall.addNamedOutputArgument("EMP_ID", OraclePLSQLTypes.PLSQLInteger);

ValueReadQuery query = new ValueReadQuery();
query.setCall(plsqlcall);
query.addArgument("L_NAME"); // input

Vector args = new Vector();
args.add("MacDonald");

Number employeeID = (Number) getSession().executeQuery(query, args);

Example 109–49 Specifying a PLSQLStoredProcedureCall with an Input/Output
Argument: JDBC and PL/SQL Data Types

// CREATE PROCEDURE INSERT_EMP(IN_OUT INOUT PLS_INTEGER) AS
// BEGIN
// Insert an EMP record initialized with department id and return
// the EMP_ID for this record.
// END;

PLSQLStoredProcedureCall plsqlcall = new PLSQLStoredProcedureCall();
plsqlcall.setProcedureName("INSERT_EMP");
plsqlcall.addNamedInOutputArgument("IN_OUT", OraclePLSQLTypes.PLSQLInteger);

ValueReadQuery query = new ValueReadQuery();

Using a StoredProcedureCall

Using Basic Query API 109-27

query.setCall(plsqlcall);
query.addArgument("IN_OUT"); // input and outpu

Vector args = new Vector();
args.add(Integer.valueOf(1234)); // department id

Integer employeeID = new Integer(BigDecimal.intValue(
getSession().executeQuery(query, args)));

109.5.4 How to Specify a Simple Optimistic Version Locking Value with a
StoredProcedureCall Using JDBC Data Types

When using optimistic version locking, you typically delegate the responsibility for
updating the version field to TopLink.

Alternatively, you may choose to use stored procedures to manually update the
version field for all of create, read, update, and delete operations.

When using optimistic locking and stored procedure calls, you may only use a simple,
sequential numeric value that the stored procedure can generate independently of
TopLink. To use a complex value, such as a timestamp, you must delegate the
responsibility for updating the version field to TopLink.

For more information, see Section 16.4.1, "Optimistic Version Locking Policies".

To specify a simple optimistic version locking value with a StoredProcedureCall
using JDBC data types:
1. Create stored procedures for create, read, update, and delete operations.

Each stored procedure is responsible for checking and updating the optimistic lock
field: a simple sequential numeric value in your database.

Example 109–50 shows a typical stored procedure for the update operation.

Example 109–50 Stored Procedure for Update Operation Using Simple Optimistic
Version Locking

PROCEDURE Update_Employee (
P_EMP_ID NUMBER,
P_SALARY NUMBER,
P_END_DATE DATE,
P_MANAGER_ID NUMBER,
P_START_DATE DATE,
P_F_NAME VARCHAR2,
P_L_NAME VARCHAR2,
P_GENDER VARCHAR2,
P_ADDR_ID NUMBER,
P_VERSION NUMBER,
P_START_TIME DATE,
P_END_TIME DATE,
O_ERROR_CODE OUT NUMBER) AS

BEGIN
Update SALARY set SALARY = P_SALARY WHERE (EMP_ID = P_EMP_ID);
Update EMPLOYEE set END_DATE = P_END_DATE, MANAGER_ID = P_MANAGER_ID, VERSION = P_VERSION +
1, START_DATE = P_START_DATE, F_NAME = P_F_NAME, L_NAME = P_L_NAME, GENDER = P_GENDER, ADDR_
ID = P_ADDR_ID where ((EMP_ID = P_EMP_ID) and (VERSION = P_VERSION));
O_ERROR_CODE := SQL%ROWCOUNT;
END;

2. Create a StoredProcedureCall for each of your custom create, read, update,
and delete stored procedures.

Example 109–51 shows the StoredProcedureCall for the update stored
procedure in Example 109–50.

Using a StoredProcedureCall

109-28 Developer's Guide for Oracle TopLink

Example 109–51 StoredProcedureCall for Update Stored Procedure

UpdateObjectQuery updateQuery = new UpdateObjectQuery();
call = new StoredProcedureCall();
call.setUsesBinding(true);
call.setProcedureName("Update_Employee");
call.addNamedArgument("P_EMP_ID", "EMP_ID");
call.addNamedArgument("P_SALARY", "SALARY");
call.addNamedArgument("P_END_DATE", "END_DATE");
call.addNamedArgument("P_MANAGER_ID", "MANAGER_ID");
call.addNamedArgument("P_START_DATE", "START_DATE");
call.addNamedArgument("P_F_NAME", "F_NAME");
call.addNamedArgument("P_L_NAME", "L_NAME");
call.addNamedArgument("P_GENDER", "GENDER");
call.addNamedArgument("P_ADDR_ID", "ADDR_ID");
call.addNamedArgument("P_VERSION", "VERSION");
call.addNamedArgument("P_START_TIME", "START_TIME");
call.addNamedArgument("P_END_TIME", "END_TIME");
call.addNamedOutputArgument("O_ERROR_CODE", "O_ERROR_CODE", Long.class);
updateQuery.setCall(call);

For more information, see the following:

■ Section 109.5.1, "How to Configure a StoredProcedureCall Without
Arguments"

■ Section 109.5.2, "How to Configure a StoredProcedureCall with Arguments
Using JDBC Data Types"

■ Section 109.5.3, "How to Configure a PLSQLStoredProcedureCall with
PL/SQL Data Type Arguments"

3. Configure the TopLink descriptor query manager to use your
StoredProcedureCall objects for create, read, update, and delete operations.

Example 109–52 shows how to use a descriptor customizer class to update the
TopLink descriptor query manager with the update StoredProcedureCall
from Example 109–51.

Example 109–52 Configuring the TopLink Descriptor Query Manager with a
StoredProcedureCall

import oracle.toplink.tools.sessionconfiguration.DescriptorCustomizer;
import oracle.toplink.descriptors.ClassDescriptor;

public class EmployeeDescriptorCustomizer implements DescriptorCustomizer {

public void customize(ClassDescriptor descriptor) {
descriptor.getQueryManager().setUpdateQuery(updateQuery);

}
}

For more information, see the following:

■ Section 23.4, "Configuring Custom SQL Queries for Basic Persistence
Operations"

■ Section 119.34, "Configuring a Descriptor Customizer Class"

4. Define a StoredProcedureCall output parameter event to handle any errors.

Using a StoredProcedureCall

Using Basic Query API 109-29

For more information, see Section 109.5.5, "How to Configure a
StoredProcedureCall Output Parameter Event Using JDBC or PL/SQL Data Types"

109.5.5 How to Configure a StoredProcedureCall Output Parameter Event Using JDBC
or PL/SQL Data Types

TopLink manages output parameter events for databases that support them. For
example, if a stored procedure returns an error code that indicates that the application
wants to check for an error condition, TopLink raises the session event
outputParametersDetected to allow the application to process the output
parameters.

To configure a StoredProcedureCall output parameter event using JDBC or
PL/SQL data types:
1. Create a StoredProcedureCall using JDBC arguments, PL/SQL arguments, or

both. Example 109–53 shows a StoredProcedureCall using JDBC arguments.

For more information, see the following:

■ Section 109.5.2, "How to Configure a StoredProcedureCall with Arguments
Using JDBC Data Types"

■ Section 109.5.3, "How to Configure a PLSQLStoredProcedureCall with
PL/SQL Data Type Arguments"

Example 109–53 Stored Procedure

PROCEDURE Update_Employee (
P_EMP_ID NUMBER,
P_SALARY NUMBER,
P_END_DATE DATE,
P_MANAGER_ID NUMBER,
P_START_DATE DATE,
P_F_NAME VARCHAR2,
P_L_NAME VARCHAR2,
P_GENDER VARCHAR2,
P_ADDR_ID NUMBER,
P_VERSION NUMBER,
P_START_TIME DATE,
P_END_TIME DATE,
O_ERROR_CODE OUT NUMBER) AS

BEGIN
Update SALARY set SALARY = P_SALARY WHERE (EMP_ID = P_EMP_ID);
Update EMPLOYEE set END_DATE = P_END_DATE, MANAGER_ID = P_MANAGER_ID, VERSION = P_VERSION +
1, START_DATE = P_START_DATE, F_NAME = P_F_NAME, L_NAME = P_L_NAME, GENDER = P_GENDER, ADDR_
ID = P_ADDR_ID where ((EMP_ID = P_EMP_ID) and (VERSION = P_VERSION));
O_ERROR_CODE := SQL%ROWCOUNT;
END;

2. Create a SessionEventListener that handles the
outputParametersDetected event, as Example 109–54 shows.

Note: In the Oracle database, the rowcount is not maintained when
calling a stored procedure. You must ensure that the rowcount is
returned using an output parameter. Use the Session event
outputParametersDetected to check the rowcount and raise an
error. Alternatively, the stored procedure could check the rowcount
and throw an exception.

Using a StoredProcedureCall

109-30 Developer's Guide for Oracle TopLink

Subclassing the oracle.toplink.sessions.SessionEventAdapter is an
easy way to create a SessionEventListener: you only need to override the
specific SessionEventListener methods you are interested in.

In Example 109–54, SessionEvent method getProperty uses an argument
value of ERROR_CODE. This property name and its data type is defined in the
StoredProcedureCall method addNamedOutputArgument.

Example 109–54 SessionEventListener for outputParametersDetected Event

import oracle.toplink.sessions.SessionEventAdapter;
import oracle.toplink.sessions.SessionEvent;

public class OptimisticLockListener extends SessionEventAdapter {
public OptimisticLockListener() {
}

public void outputParametersDetected(SessionEvent event) {

DatabaseQuery query = event.getQuery();
if ((query != null) && query.isObjectLevelModifyQuery()) {

Number rowcount = new Integer(1);
if (event.getResult() instanceof Map) {

rowcount = (Number)((Map)event.getResult()).get("O_ERROR_CODE");
}
if (rowcount.longValue() <= 0) {

if (query.isDeleteObjectQuery()) {
DeleteObjectQuery deleteQuery = (DeleteObjectQuery)query;
throw OptimisticLockException.objectChangedSinceLastReadWhenDeleting(

deleteQuery.getObject(), deleteQuery);
}
else if (query.isWriteObjectQuery()) {

WriteObjectQuery updateQuery = (WriteObjectQuery)query;
throw OptimisticLockException.objectChangedSinceLastReadWhenUpdating(

updateQuery.getObject(), updateQuery);
}

}
}

}
}

3. Add your SessionEventListener instance to the session event manager as
Example 109–55 shows.

You must do this step before executing your stored procedure.

For more information, see Section 87.2.5, "Managing Session Events with the
Session Event Manager"

Example 109–55 Adding SessionEventListener to the Session Event Manager

getSession().getEventManager().addListener(new OptimisticLockListener());

4. Execute the query.

If there is an error and a SessionEvent of type outputParametersDetected
is raised, TopLink will notify your SessionEventListener.

109.5.6 What You May Need to Know About Using a StoredProcedureCall
TopLink automatically converts PL/SQL data types into the Java data types that
Table 109–1 lists for out arguments (and the out value of input/output arguments).

Using a StoredFunctionCall

Using Basic Query API 109-31

You may use the value from any Java type for a PL/SQL in argument (or in value of an
input/output argument) as long as the size and precision of the Java type is
appropriate for the PL/SQL type.

109.6 Using a StoredFunctionCall
The TopLink expression framework enables you to define complex queries at the
object level. If your application requires a more complex query or one that invokes an
existing stored function that your database provides, you can define a
StoredFunctionCall object using both JDBC and PL/SQL data types and invoke
the stored function in the context of a DatabaseQuery.

Note that not all databases provide stored functions.

In Example 109–56, note that the name of the stored function is set using
StoredFunctionCall method setProcedureName.

Example 109–56 Creating a StoredFunctionCall

StoredFunctionCall functionCall = new StoredFunctionCall();
functionCall.setProcedureName("CHECK_VALID_EMPLOYEE");
functionCall.addNamedArgument("EMP_ID");
functionCall.setResult("FUNCTION_RESULT", String.class);
ValueReadQuery query = new ValueReadQuery();
query.setCall(functionCall);
query.addArgument("EMP_ID");
Vector args = new Vector();
args.addElement(new Integer(44));
String valid = (String) session.executeQuery(query, args);

Table 109–1 TopLink PL/SQL to Java Data Type Conversion: Out Arguments and Out
Value of Input/Output Arguments

PL/SQL Data Type OraclePLSQLTypes Enum Java Type

BINARY_INTEGER BinaryInteger java.math.BigDecimal

BOOLEAN PLSQLBoolean java.lang.Integer

DEC Dec java.math.BigDecimal

INT Int java.math.BigDecimal

NATURAL Natural java.math.BigDecimal

NATURALN NaturalN java.math.BigDecimal

PLS_INTEGER PLSQLInteger java.math.BigDecimal

POSITIVE Positive java.math.BigDecimal

POSITIVEN PositiveN java.math.BigDecimal

SIGNTYPE SignType java.lang.Integer

Note: You no longer need to use DatabaseQuery method
bindAllParameters when using a StoredProcedureCall with
OUT or INOUT parameters. However, you should always specify the
Java type for all OUT and INOUT parameters. If you do not, be aware
of the fact that they default to type String.

Using Java Persistence Query Language (JPQL) Calls

109-32 Developer's Guide for Oracle TopLink

109.6.1 What You May Need to Know About Using a StoredFunctionCall
In general, both stored procedures and stored functions let you specify input
parameters, output parameters, and input and output parameters. For more
information, see Section 109.5, "Using a StoredProcedureCall". However, stored
procedures need not return values, while stored functions always return a single
value.

The StoredFunctionCall class extends StoredProcedureCall to add one new
method: setResult. Use this method to specify the name (and alternatively both the
name and type) under which TopLink stores the return value of the stored function.

When TopLink prepares a StoredFunctionCall, it validates its SQL and throws a
ValidationException under the following circumstances:

■ If your current platform does not support stored functions. Stored functions are
supported only for Oracle.

■ If you fail to specify the return type.

109.7 Using Java Persistence Query Language (JPQL) Calls
The TopLink expression framework lets you define complex queries at the object level.

Alternatively, you can specify a custom JPQL string in an JPQL call object and provide
that object to any query. See "Using Java Persistence Query Language (JPQL) Calls"
section of EclipseLink Developer’s Guide at http://wiki.eclipse.org/Using_
Basic_Query_API_%28ELUG%29#Using_Java_Persistence_Query_
Language_.28JPQL.29_Calls for information.

109.8 Using EIS Interactions
For an EIS root descriptor, you can define EIS interactions to invoke methods on an
EIS.

TopLink represents EIS interactions using instances of
oracle.toplink.eis.interactions.EISInteraction. These classes
implement the Call interface and can be used wherever a Call can be used.

Table 109–2 lists the type of EIS interactions that TopLink supports.

Table 109–2 EIS Interactions

EIS Interaction Type Description

IndexedInteraction Defines the specification for a call to a JCA interaction that uses
indexed records. Builds the input and output records from the
arguments by position.

MappedInteraction Defines the specification for a call to a JCA interaction that uses
mapped records. Builds the input and output records from the
arguments by name.

XMLInteraction Specifies an instance of MappedInteraction that defines the
specification for a call to a JCA interaction that uses XML
records defined by the XML schema document (XSD)
associated with the EIS project (for more information, see
Section 5.6.3, "How to Import an XML Schema").

QueryStringInteraction Specifies an instance of MappedInteraction that defines the
specification for a call to a JCA interaction that uses a query
string. Prefix arguments in the query string with a number sign
(#) character.

Handling Report Query Results

Using Basic Query API 109-33

You can use TopLink to define an interaction for each basic persistence operation
(insert, update, delete, read object, read all, or does exist) so that
when you query and modify your EIS-mapped objects, the TopLink runtime will use
the appropriate EIS interaction. For more information, see Section 76.5, "Configuring
Custom EIS Interactions for Basic Persistence Operations".

You can also use TopLink to define an interaction as a named query for read object and
read-all object queries. These queries are not called for basic persistence operations;
you can call these additional queries by name in your application for special purposes.
For more information, see Section 119.7.1.8, "Creating an EIS Interaction for a Named
Query".

109.9 Handling Exceptions
Most exceptions in queries are database exceptions, resulting from a failure in the
database operation. Write operations can also throw an OptimisticLockException
on a write, update, or delete operation in applications that use optimistic locking. To
catch these exceptions, execute all database operations within a try-catch block:

try {
List employees = session.readAllObjects(Employee.class);

}
catch (DatabaseException exception) {

// handle exception
}

See Appendix A, "Troubleshooting a TopLink Application" for more information about
exceptions in a TopLink application.

109.10 Handling Collection Query Results
TopLink provides a useCollectionClass method to all subclasses of
DataReadQuery and ReadAllQuery. Use this method to configure a query to return
results as any concrete instance of Collection or Map. You can set various collection
class types for queries, such as ArrayList, HashSet, HashMap, and TreeSet.

109.11 Handling Report Query Results
 Table 109–3 lists the ReportQuery methods you can use to configure how a
ReportQuery returns its results.

By default, the ReportQuery returns a Collection of ReportQueryResult
objects.

XQueryInteraction Specifies an instance of XMLInteraction that defines the
specification for a call to a JCA interaction that uses XQuery.
Translates the XQuery from the query arguments.

Table 109–3 Report Query Result Options

Method Query Returns Description

setShouldReturnSing
leAttribute

Collection Returns a single attribute (not wrapped in
a ReportQueryResult). Use this option
if you know that the ReportQuery
returns only one attribute.

Table 109–2 (Cont.) EIS Interactions

EIS Interaction Type Description

Handling Report Query Results

109-34 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Section 108.7.5, "Report Query"

■ Section 108.5.2, "Report Query Results"

■ Section 109.2.1.3, "Reading Objects Using Report Queries"

■ Section 119.7.1.6, "Configuring Named Query Attributes"

setShouldReturnSing
leResult

ReportQueryResult Returns only the first
ReportQueryResult object (not
wrapped in a Collection or Map). Use
this option if you know that the
ReportQuery returns only one row.

setShouldReturnSing
leValue

Object Returns only a single value. Use this
option if you know that the
ReportQuery returns only one row that
contains only one attribute.

Table 109–3 (Cont.) Report Query Result Options

Method Query Returns Description

110

Introduction to TopLink Expressions 110-1

110Introduction to TopLink Expressions

Using the TopLink expressions framework, you can specify query search criteria based
on your domain object model.

This chapter includes the following sections:

■ Expression Framework

■ Expression Components

■ Parameterized Expressions

■ Query Keys and Expressions

■ Multiple Expressions

■ Data Queries and Expressions

■ Creating an Expression

■ Creating and Using a User-Defined Function

110.1 Expression Framework
The TopLink expression framework provides methods through the following classes:

■ The Expression class provides most general functions, such as toUpperCase.

■ The ExpressionMath class supplies mathematical methods.

Example 110–1 illustrates how to use the Expression class.

Example 110–1 Using the Expression Class

expressionBuilder.get("lastName").equal("Smith");
Example 110–2 illustrates how to use the ExpressionMath class.

Example 110–2 Using the ExpressionMath Class

ExpressionMath.abs(ExpressionMath.subtract(emp.get("salary"),
emp.get("spouse").get("salary")).greaterThan(10000)
This division of functionality enables TopLink expressions to provide similar
mathematical functionality to the java.lang.Math class, but keeps both the
Expression and ExpressionMath classes from becoming unnecessarily complex.

110.1.1 Expressions Compared to SQL
Expressions offer the following advantages over SQL when you access a database:

■ Expressions are easier to maintain because the database is abstracted.

Expression Components

110-2 Developer's Guide for Oracle TopLink

■ Changes to descriptors or database tables do not affect the querying structures in
the application.

■ Expressions enhance readability by standardizing the Query interface so that it
looks similar to traditional Java calling conventions. For example, the Java code
required to get the street name from the Address object of the Employee class
looks like this:

emp.getAddress().getStreet().equals("Meadowlands");
The expression to get the same information is similar:

emp.get("address").get("street").equal("Meadowlands");
■ Expressions allow read queries to transparently query between two classes that

share a relationship. If these classes are stored in multiple tables in the database,
TopLink automatically generates the appropriate join statements to return
information from both tables.

■ Expressions simplify complex operations. For example, the following Java code
retrieves all employees that live on "Meadowlands" whose salary is greater than
10,000:

ExpressionBuilder emp = new ExpressionBuilder();
Expression exp = emp.get("address").get("street").equal("Meadowlands");
Vector employees = session.readAllObjects(Employee.class,
exp.and(emp.get("salary").greaterThan(10000)));

TopLink automatically generates the appropriate SQL from that code:

SELECT t0.VERSION, t0.ADDR_ID, t0.F_NAME, t0.EMP_ID, t0.L_NAME, t0.MANAGER_ID,
t0.END_DATE, t0.START_DATE, t0.GENDER, t0.START_TIME, t0.END_TIME,t0.SALARY
FROM EMPLOYEE t0, ADDRESS t1 WHERE (((t1.STREET = 'Meadowlands')AND (t0.SALARY
> 10000)) AND (t1.ADDRESS_ID = t0.ADDR_ID))

110.2 Expression Components
A simple expression usually consists of the following three parts:

1. The attribute, which represents a mapped attribute or query key of the persistent
class

2. The operator, which is an expression method that implements boolean logic, such
as GreaterThan, Equal, or Like

3. The constant or comparison, which refers to the value used to select the object

In the following code fragment:

expressionBuilder.get("lastName").equal("Smith");
■ The attribute is lastName.

■ The operator is equal.

■ The constant is the string "Smith".

The expressionBuilder substitutes for the object or objects to be read from the
database. In this example, expressionBuilder represents employees.

You can use the following components when constructing an Expression:

■ Boolean Logic

■ Database Functions and Operators

■ Mathematical Functions

■ XMLType Functions

Expression Components

Introduction to TopLink Expressions 110-3

■ Platform and User-Defined Functions

■ Expressions for One-to-One and Aggregate Object Relationships

■ Expressions for Joining and Complex Relationships

110.2.1 Boolean Logic
Expressions use standard boolean operators, such as AND, OR, and NOT, and you can
combine multiple expressions to form more complex expressions. Example 110–3
illustrates a code fragment that queries for projects managed by a selected person, and
that have a budget greater than or equal to 1,000,000.

Example 110–3 Using Boolean Logic in an Expression

ExpressionBuilder project = new ExpressionBuilder();
Expression hasRightLeader, bigBudget, complex;
Employee selectedEmp = someWindow.getSelectedEmployee();
hasRightLeader = project.get("teamLeader").equal(selectedEmp);
bigBudget = project.get("budget").greaterThanEqual(1000000);
complex = hasRightLeader.and(bigBudget);
Vector projects = session.readAllObjects(Project.class, complex);

110.2.2 Database Functions and Operators

Functions
TopLink expressions support a variety of database functions, including, but not
limited to, the following:

■ toUpperCase

■ toLowerCase

■ toDate

■ decode

■ locate

■ monthsBetween

■ nextDay

■ replace

■ reverse

■ substring

■ translate

Database functions let you define more flexible queries. You can use these functions in
either a report query items using a SELECT clause, or with comparisons in a query’s
selection criteria using a WHERE clause. Example 110–4 illustrates a code fragment that
matches several last names, including "SMART", "Smith", and "Smothers":

Example 110–4 Using a Database Function Supported by the Expression API

emp.get("lastName").toUpperCase().like("SM%")

Note: Some functions may be database platform specific.

Expression Components

110-4 Developer's Guide for Oracle TopLink

You access most functions using Expression methods such as toUpperCase.

Some functions have very specific purpose: you can use ascending and
descending functions only within an ordering expression to place the result in
ascending or descending order, as Example 110–5 shows:

Example 110–5 Using an Ordering Database Function

readAllQuery.addOrderBy(expBuilder.get("address").get("city").ascending())

You can use aggregate functions, such as average, minimum, maximum, sum and so
forth, with the ReportQuery (see Section 108.7.5, "Report Query").

Operators
Operators are relation operations that compare two values. TopLink expressions
support the following operators:

■ like

■ notLike

■ equal

■ notEqual

■ lessThan

■ lessThanEqual

■ equalsIgnoreCase

■ greaterThan

■ greaterThanEqual

■ in

■ notIn

■ between

■ notBetween

Example 110–4 demonstrates the use of the like operator.

110.2.3 Mathematical Functions
Mathematical functions are available through the ExpressionMath class.
Mathematical function support in expressions is similar to the support provided by the
Java class java.lang.Math. Example 110–6 illustrates using the abs and subtract
methods.

Example 110–6 Using Mathematical Functions in an Expression

ExpressionMath.abs(ExpressionMath.subtract(emp.get("salary"),emp.get("spouse")
.get("salary")).greaterThan(10000)

Note: Ordering is not supported for in-memory queries (see
Section 108.16.2, "How to Use In-Memory Queries").

Expression Components

Introduction to TopLink Expressions 110-5

110.2.4 XMLType Functions
You can use the following operators when constructing queries against data mapped
to Oracle Database XMLType column:

■ extract: Takes an XPath string and returns an XMLType which corresponds to
the part of the original document that matches the XPath.

■ extractValue: Takes an XPath string and returns either a numerical or string
value based on the contents of the node pointed to by the XPath.

■ existsNode: Takes an XPath expression and returns the number of nodes that
match the Xpath.

■ getStringVal: Gets the string representation of an XMLType object.

■ getNumberVal: Gets the numerical representation of an XMLType object.

■ isFragment: Evaluates to 0 if the XML is a well formed document. Evaluates to 1
if the document is a fragment.

Example 110–7 illustrates how to use the extract operator in a query:

Example 110–7 Using the XMLType Extract Operator

Expression criteria =
builder.get("resume").extract("//education/degree/text()").getStringVal().equal("BCS");
Vector employees = session.readAllObject(Employee.class, criteria);

110.2.5 Platform and User-Defined Functions
You can use the Expression method getFunction to access database functions that
TopLink does not support directly. Example 110–8 illustrates how to access a database
function named VacationCredit from within an expression, even though there is no
support for such a function in the Expression API.

Example 110–8 Using a Database Function Not Supported by the Expression API

emp.get("lastName").getFunction("VacationCredit").greaterThan(42)
This expression produces the following SQL:

SELECT . . . WHERE VacationCredit(EMP.LASTNAME) > 42
The Expression API includes additional forms of the getFunction method that
allow you to specify arguments. For more information, see Oracle Fusion Middleware
Java API Reference for Oracle TopLink.

You can also access a custom function that you create. For more information on
creating a custom function in TopLink, see Section 110.8, "Creating and Using a
User-Defined Function".

110.2.6 Expressions for One-to-One and Aggregate Object Relationships
Expressions can include an attribute that has a one-to-one relationship with another
persistent class. A one-to-one relationship translates naturally into a SQL join that
returns a single row.

Example 110–9 illustrates a code fragment that accesses fields from an employee’s
address.

Example 110–9 Using an Expression with a One-to-One Relationship

emp.get("address").get("country").like("S%")

Expression Components

110-6 Developer's Guide for Oracle TopLink

Example 110–9 corresponds to joining the EMPLOYEE table to the ADDRESS table,
based on the address foreign key, and checking for the country name.

You can nest these relationships infinitely, so it is possible to ask for complex
information as follows:

project.get("teamLeader").get("manager").get("manager").get("address").get("street")

110.2.7 Expressions for Joining and Complex Relationships
You can query against complex relationships, such as one-to-many, many-to-many,
direct collection, and aggregate collection relationships. Expressions for these types of
relationships are more complex to build, because the relationships do not map directly
to joins that yield a single row per object.

This section describes the following:

■ What You May Need to Know About Joins

■ Using TopLink Expression API for Joins

110.2.7.1 What You May Need to Know About Joins
A join is a relational database query that combines rows from two or more tables.
Relational databases perform a join whenever multiple tables appear in the query's
FROM clause. The query's select list can select any columns from any of these tables.

An inner join (sometimes called a "simple join") is a join of two or more tables that
returns only those rows that satisfy the join condition.

An outer join extends the result of an inner join. An outer join returns all rows that
satisfy the join condition and also returns some or all of those rows from one table for
which no rows from the other satisfy the join condition. Outer joins can be categorized
as left or right:

■ A query that performs a left outer join of tables A and B returns all rows from A.
For all rows in A that have no matching rows in B, the database returns null for
any select list expressions containing columns of B.

■ A query that performs a right outer join of tables A and B returns all rows from B.
For all rows in B that have no matching rows in A, the database returns null for
any select list expressions containing columns of A.

When you query with a join expression, TopLink can use joins to check values from
other objects or other tables that represent parts of the same object. Although this
works well under most circumstances, it can cause problems when you query against a
one-to-one relationship, in which one side of the relationship is not present.

For example, Employee objects may have an Address object, but if the Address is
unknown, it is null at the object level and has a null foreign key at the database level.
When you attempt a read that traverses the relationship, missing objects cause the
query to return unexpected results. Consider the following expression:

(emp.get("firstName").equal("Steve")).or(emp.get("address"). get("city").equal("Ottawa"))

In this case, employees with no address do not appear in the result set, regardless of
their first name. Although not obvious at the object level, this behavior is fundamental
to the nature of relational databases.

Outer joins rectify this problem in the databases that support them. In this example,
the use of an outer join provides the expected result: all employees named Steve
appear in the result set, even if their address is unknown.

Expression Components

Introduction to TopLink Expressions 110-7

To implement an outer join, use Expression method getAllowingNull, rather
than get, and Expression method anyOfAllowingNone, rather than anyOf.

For example:

(emp.get("firstName").equal("Steve")).or(
emp.getAllowingNull("address").get("city").equal("Ottawa"))

Support and syntax for outer joins vary widely between databases and database
drivers. TopLink supports outer joins for most databases.

110.2.7.2 Using TopLink Expression API for Joins
You can use joins anywhere expressions are used, including: selection-criteria,
ordering (see Section 109.2.1.5, "Specifying Read Ordering"), report queries (see
Section 108.7.5, "Report Query"), partial objects (see Section 108.7.1.3, "Partial Object
Queries"), one-to-one relational mappings (see Section 28.8, "Configuring Joining at the
Mapping Level"), and join reading (see Section 108.7.1.5, "Join Reading and
Object-Level Read Queries").

Use the expression API shown in Table 110–1 to configure inner and outer join
expressions.

To query across a one-to-many or many-to-many relationship, use the anyOf
operation. As its name suggests, this operation supports queries that return all items
on the "many" side of the relationship that satisfy the query criteria.

Example 110–10 illustrates an expression that returns employees who manage at least
one employee (through a one-to-many relationship) with a salary less than $10,000.

Example 110–10 Using an Expression with a One-to-Many Relationship

emp.anyOf("managedEmployees").get("salary").lessThan(10000);
Example 110–11 illustrates how to query across a many-to-many relationship using a
similar strategy:

Example 110–11 Using an Expression with a Many-to-Many Relationship

emp.anyOf("projects").equal(someProject)
TopLink translates these queries into SQL that joins the relevant tables using a
DISTINCT clause to remove duplicates. TopLink translates Example 110–10 into the
following SQL:

SELECT DISTINCT . . . FROM EMP t1, EMP t2 WHERE
t2.MANAGER_ID = t1.EMP_ID AND t2.SALARY < 10000
You can use one-to-one and one-to-many join expressions in an
ObjectLevelReadyQuery to configure joins on a per-query basis (see
Section 108.7.1.5, "Join Reading and Object-Level Read Queries").

You can also configure joins at the mapping level (see Section 28.8, "Configuring
Joining at the Mapping Level").

Table 110–1 Expression API for Joins

Expression API Type of Join Type of Mapping

get inner one-to-one

getAllowingNull outer one-to-one

anyOf inner one-to-many, many-to-many

anyOfAllowingNone outer one-to-many, many-to-many

Parameterized Expressions

110-8 Developer's Guide for Oracle TopLink

110.3 Parameterized Expressions
A relationship mapping differs from a regular query because it retrieves data for many
different objects. To be able to specify these queries, supply arguments when you
execute the query. Use the getParameter and getField methods to acquire values
for the arguments.

A parameterized expression executes searches and comparisons based on variables
instead of constants. This approach lets you build expressions that retrieve
context-sensitive information. This technique is useful when you define EJB finders
(see Section 108.15, "EJB 2.n CMP Finders").

Parameterized expressions require that the relationship mapping know how to retrieve
an object or collection of objects based on its current context. For example, a one-to-one
mapping from Employee to Address must query the database for an address based
on foreign key information from the Employee table. Each mapping contains a query
that TopLink constructs automatically based on the information provided in the
mapping. To specify expressions yourself, use the mapping customization
mechanisms.

You can use parameterized expressions to create reusable queries (see Section 108.8,
"Named Queries").

110.3.1 Expression Method getParameter
The Expression method getParameter returns an expression that becomes a
parameter in the query. This lets you create a query that includes user input in the
search criteria. The parameter must be either the fully qualified name of the field from
a descriptor’s row, or a generic name for the argument.

Parameters you construct this way are global to the current query, so you can send this
message to any expression object.

Example 110–12 illustrates how to use a custom query to find an employee by first
name.

Example 110–12 Using a Parameterized Expression in a Custom Query

Expression firstNameExpression;

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
ExpressionBuilder emp = query.getExpressionBuilder();
firstNameExpression = emp.get("firstName").equal(emp.getParameter("firstName"));
query.setSelectionCriteria(firstNameExpression);
query.addArgument("firstName");
Vector v = new Vector();
v.addElement("Sarah");
Employee e = (Employee) session.executeQuery(query, v);
Example 110–13 illustrates how to use a custom query to find all employees that live in
the same city as a given employee.

Note: Calling anyOf once would result in a different outcome than if
you call it twice. For example, if you query for an employee with a
telephone area code of 613 and a number of 123-4599, you would use a
single anyOf and a temporary variable. If you query for an employee,
who has a telephone with an area code of 613, and who has a
telephone with a number of 123-4599, you would call anyOf twice.

Query Keys and Expressions

Introduction to TopLink Expressions 110-9

Example 110–13 Using Nested Parameterized Expressions

Expression addressExpression;
ReadObjectQuery query = new ReadObjectQuery(Employee.class);
ExpressionBuilder emp = query.getExpressionBuilder();
addressExpression =

emp.get("address").get("city").equal(
emp.getParameter("employee").get("address").get("city"));

query.setName("findByCity");
query.setSelectionCriteria(addressExpression);
query.addArgument("employee");
Vector v = new Vector();
v.addElement(employee);
Employee e = (Employee) session.executeQuery(query, v);
Example 110–14 illustrates how to obtain a simple one-to-many mapping from class
PolicyHolder to Policy using a nondefault selection criteria. The SSN field of the
POLICY table is a foreign key to the SSN field of the HOLDER table.

Example 110–14 Using a Parameterized Expression in a Mapping

OneToManyMapping mapping = new OneToManyMapping();
mapping.setAttributeName("policies");
mapping.setGetMethodName("getPolicies");
mapping.setSetMethodName("setPolicies");
mapping.setReferenceClass(Policy.class);

// Build a custom expression here rather than using the defaults
ExpressionBuilder policy = new ExpressionBuilder();
mapping.setSelectionCriteria(policy.getField("POLICY.SSN")).equal(policy.
getParameter("HOLDER.SSN")));

110.3.2 Expression Method getField
The Expression method getField returns an expression that represents a database
field with the given name. Use this method to construct the selection criteria for a
mapping. The argument is the fully qualified name of the required field. Because fields
are not global to the current query, you must send this method to an expression that
represents the table from which this field is derived. See also Section 110.6, "Data
Queries and Expressions".

Example 110–15 illustrates how to use the Expression method getField.

Example 110–15 Using Expression Method getParameter

ExpressionBuilder address = new ExpressionBuilder();
Expression exp = address.getField("ADDRESS.EMP_ID").equal(

address.getParameter("EMPLOYEE.EMP_ID")
);
exp = exp.and(address.getField("ADDRESS.TYPE").equal(null));

110.4 Query Keys and Expressions
A query key is a schema-independent alias for a database field name.

Query keys are supported in relational database projects only.

Query keys are generated automatically for all direct and relationship mappings. The
name of the query key is the class attribute name.

For more information on how query keys are created and modified, see Section 119.10,
"Configuring Query Keys".

Multiple Expressions

110-10 Developer's Guide for Oracle TopLink

Example 110–16 illustrates how to use the query key firstName for the
corresponding directly mapped Employee attribute.

Example 110–16 Using an Automatically Generated Query Key in an Expression

Vector employees = session.readAllObjects(Employee.class,
new ExpressionBuilder().get("firstName").equal("Bob"));

Example 110–17 illustrates how to use a one-to-one query key within the TopLink
expression framework.

Example 110–17 Using a One-to-One Query Key in an Expression

ExpressionBuilder employee = new ExpressionBuilder();
Vector employees = session.readAllObjects(Employee.class,
employee.get("address").get("city").equal("Ottawa"));

To access one-to-many and many-to-many query keys that define a distinct join across
a collection relationship, use Expression method anyOf.

110.5 Multiple Expressions
Expressions support subqueries (SQL subselects) and parallel selects. To create a
subquery, use a single expression builder. With parallel selects, use multiple expression
builders when you define a single query. This lets you specify joins for unrelated
objects at the object level.

110.5.1 How to Use Subselects and Subqueries
Some queries compare the results of other, contained queries (or subqueries). SQL
supports this comparison through subselects. TopLink expressions provide subqueries
to support subselects.

Subqueries lets you define complex expressions that query on aggregated values
(counts, min, max) and unrelated objects (exists, in, comparisons). To obtain a
subquery, pass an instance of a report query to any expression comparison operation,
or use the subQuery operation on an expression builder. The subquery is not required
to have the same reference class as the parent query, and it must use its own
expression builder.

You can nest subqueries, or use them in parallel. Subqueries can also make use of
custom SQL.

For expression comparison operations that accept a single value (equal,
greaterThan, lessThan), the subquery result must return a single value. For
expression comparison operations that accept a set of values (in, exists), the
subquery result must return a set of values.

Example 110–18 illustrates how to create an expression that matches all employees
with more than five managed employees.

Example 110–18 A Subquery Expression Using a Comparison and Count Operation

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder managedEmp = new ExpressionBuilder();
ReportQuery subQuery = new ReportQuery(Employee.class, managedEmp);
subQuery.addCount();
subQuery.setSelectionCriteria(managedEmp.get("manager") .equal(emp));
Expression exp = emp.subQuery(subQuery).greaterThan(5);
Example 110–19 illustrates how to create an expression that matches the employee
with the highest salary in the city of Ottawa.

Data Queries and Expressions

Introduction to TopLink Expressions 110-11

Example 110–19 A Subquery Expression Using a Comparison and Max Operation

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder ottawaEmp = new ExpressionBuilder();
ReportQuery subQuery = new ReportQuery(Employee.class, ottawaEmp);
subQuery.addMax("salary");
subQuery.setSelectionCriteria(ottawaEmp.get("address").get("city").equal("Ottawa"));
Expression exp =
emp.get("salary").equal(subQuery).and(emp.get("address").get("city").equal("Ottawa"));

Example 110–20 illustrates how to create an expression that matches all employees that
have no projects.

Example 110–20 A Subquery Expression Using a Not Exists Operation

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder proj = new ExpressionBuilder();
ReportQuery subQuery = new ReportQuery(Project.class, proj);
subQuery.addAttribute("id");
subQuery.setSelectionCriteria(proj.equal(emp.anyOf("projects"));
Expression exp = emp.notExists(subQuery);

110.5.2 How to Use Parallel Expressions
Parallel expressions enable you to compare unrelated objects. Parallel expressions
require multiple expression builders, but do not require the use of report queries. Each
expression must have its own expression builder, and you must use the constructor for
expression builder that takes a class as an argument. The class does not have to be
the same for the parallel expressions, and you can create multiple parallel expressions
in a single query.

Only one of the expression builders is considered the primary expression builder for
the query. This primary builder makes use of the zero argument expression
constructor, and TopLink obtains its class from the query.

Example 110–21 illustrates how to create an expression that matches all employees
with the same last name as another employee of different gender, and accounts for the
possibility that returned results could be a spouse.

Example 110–21 A Parallel Expression on Two Independent Employees

ExpressionBuilder emp = new ExpressionBuilder();
ExpressionBuilder spouse = new ExpressionBuilder(Employee.class);
Expression exp = emp.get("lastName").equal(spouse.get("lastName"))
.and(emp.get("gender").notEqual(spouse.get("gender"));

110.6 Data Queries and Expressions
You can use expressions to retrieve data rather than objects. This is a common
approach when you work with unmapped information in the database, such as foreign
keys and version fields.

Expressions that query for objects generally refer to object attributes, which may in
turn refer to other objects. Data expressions refer to tables and their fields. You can
combine data expressions and object expressions within a single query. TopLink
provides two main methods for expressions that query for data: getField and
getTable.

Creating an Expression

110-12 Developer's Guide for Oracle TopLink

110.6.1 How to Use the getField Method
The getField method lets you retrieve data from either an unmapped table or an
unmapped field from an object. In either case, the field must be part of a table
represented by that object’s class; otherwise, TopLink raises an exception when you
execute the query.

You can also use the getField method to retrieve the foreign key information for an
object.

Example 110–22 illustrates how to use the data expression method (operator)
getField with an object.

Example 110–22 Using getField with an Object

builder.getField("[FIELD_NAME]").greaterThan("[ARGUMENT]");

110.6.2 How to Use the getTable Method
The getTable method returns an expression that represents an unmapped table in
the database. This expression provides a context from which to retrieve an unmapped
field when you use the getField method.

Example 110–23 illustrates how to combine both getField and getTable in the
same expression.

Example 110–23 Using getTable and getField Together

builder.getTable("[TABLE_NAME]").getField("[FIELD_NAME]").equal("[ARGUMENT]");
A common use for the getTable and getField methods is to retrieve information
from a link table (or reference table) that supports a many-to-many relationship.

Example 110–24 reads a many-to-many relationship that uses a link table and also
checks an additional field in the link table. This code combines an object query with a
data query, using the employee’s manager as the basis for the data query. It also
features parameterization for the project ID.

Example 110–24 Using a Data Query Against a Link Table

ExpressionBuilder emp = new ExpressionBuilder();
Expression manager = emp.get("manager");
Expression linkTable = manager.getTable("PROJ_EMP");
Expression empToLink = emp.getField("EMPLOYEE
.EMP_ID").equal(linkTable.getField("PROJ_EMP.EMP_ID");

Expression projToLink = linkTable.getField("PROJ_EMP
.PROJ_ID").equal(emp.getParameter("PROJECT.PROJ_ID"));

Expression extra = linkTable.getField("PROJ_EMP.TYPE").equal("W");
query.setSelectionCriteria((empToLink.and(projToLink)).and(extra));

110.7 Creating an Expression
You can create an expression using Oracle JDeveloper, TopLink Workbench, or Java.

Use either Oracle JDeveloper or TopLink Workbench for creating basic expressions for
use in named queries (see Section 110.7.1, "How to Create an Expression Using
TopLink Workbench").

Use Java code to create more complex expressions and to take full advantage of the
features in the expressions API (see Section 110.7.2, "How to Create an Expression
Using Java").

Creating an Expression

Introduction to TopLink Expressions 110-13

110.7.1 How to Create an Expression Using TopLink Workbench
To create TopLink expressions for named queries, use this procedure:

1. From the Named Queries Format tab, click Edit (or double-click a query string).
The Expression Builder dialog box appears.

See Section 108.8, "Named Queries" for more information.

Figure 110–1 Expression Builder Dialog Box

Figure 110–1 numbered callouts identify the following user-interface components:

1. Expression tree

2. Arguments

2. Click Add or Add Nested to create a new expression. TopLink assigns a sequence
number to each node and nested node.

Click Remove to remove an existing expression.

3. Select the node and use the Logical Operator list to specify the operator for the
node (AND, OR, Not AND, or Not OR).

Use this table to complete the argument fields for each expression:

Field Description

First Argument Click Edit and select the query key for the first argument. The
Choose Query Key dialog box appears.

Continue with Section 110.7.1.1, "Adding Arguments".

Operator Specify how TopLink should evaluate the expression. Valid
operators include: Equal, Not Equal, Equal Ignore Case, Greater
Than, Greater Than Equal, Less Than, Less Than Equal, Like, Not
Like, Like Ignore Case, Is Null, and Not Null.

Creating an Expression

110-14 Developer's Guide for Oracle TopLink

Click OK. TopLink Workbench adds the expression to the Named Queries tab.

110.7.1.1 Adding Arguments
Each expression contains elements (arguments) to evaluate. Expressions using the Is
Null or Not Null operators require only a single argument.

To add new arguments, use this procedure:

1. Select an existing expression or click Add (or Add Nested) to add a new
expression to the named query.

2. For the First Argument, click Edit. The Choose Query Key dialog box appears.

Figure 110–2 Choose Query Key

3. Select the attribute, specify if the query allows a null value, and click OK.

Use the Allows Null and Allows None options to define an expression with an
outer join.

Check the Allows Null option to use the ExpressionBuilder method
getAllowingNull.

Check the Allows None option to use the ExpressionBuilder method
anyOfAllowingNone.

For more information, see Section 110.2.7.2, "Using TopLink Expression API for
Joins".

4. Use the Operator list to specify how TopLink should evaluate the expression.

5. For the Second Argument, select Literal, Query Key, or Parameter.

Second Argument Specify the second argument:

■ Literal–Select the Type and enter a literal value for Value.

■ Query Key–Click Edit and select the query key.

■ Parameter–Click Add to add a new parameter and then select
from the list.

Continue with Section 110.7.1.1, "Adding Arguments"

Field Description

Creating an Expression

Introduction to TopLink Expressions 110-15

■ For Literal arguments, choose the literal type (such as String or Integer) and
enter the literal value.

■ For Query Key arguments, click Edit. The Choose Query Key dialog box
appears (see step 3 and Figure 110–2).

■ For Parameter arguments, click Add to add a parameter and then use the list
to select it.

Repeat this procedure for each expression or subexpression.

Example 110–25 Sample Expression

The following expression will find employees who:

■ have a manager with the last name Jones or have no manager, and

■ work on projects with the name Beta or project ID 4, and

■ live in Canada and have a salary of more than 25,000, or

live in the United States and have a salary of more than 37,500

AND
 1.manager(Allows Null).lastName EQUAL "Jones"
 2.OR
 2.1.projects.name LIKE "BETA"
 2.2.projects.id EQUAL "4"
 3.OR
 3.1.AND
 3.1.1.address.country EQUAL "Canada"
 3.1.2.salary GREATER THAN "25000"
 3.2.AND
 3.1.1.address.country EQUAL "United States"
 3.1.2.salary GREATER THAN "37500"

110.7.2 How to Create an Expression Using Java
To create an expression in Java code, use the Expression class or
ExpressionBuilder method get.

The ExpressionBuilder acts as a substitute for the objects that you query. To
construct a query, call methods on the ExpressionBuilder that correspond to the
attributes of the objects. We recommend that you name ExpressionBuilder objects
according to the type of objects against which you do a query.

Example 110–26 illustrates how to use the query key lastName to reference the field
name L_NAME.

Example 110–26 Using ExpressionBuilder to Build a Simple Expression

Expression expression = new ExpressionBuilder().get("lastName").equal("Young");
Example 110–27 illustrates how to create a complex expression by combining two
smaller expressions with a logical and operator.

Note: An instance of ExpressionBuilder is specific to a particular
query. Do not attempt to build another query using an existing builder,
because it still contains information related to the first query.

Creating and Using a User-Defined Function

110-16 Developer's Guide for Oracle TopLink

Example 110–27 Combining Two Expressions with a Logical AND Operator

ExpressionBuilder emp = new ExpressionBuilder();
Expression exp1, exp2;
exp1 = emp.get("firstName").equal("Ken");
exp2 = emp.get("lastName").equal("Young");
return exp1.and(exp2);

Example 110–28 illustrates how to create an expression using the notLike operator.

Example 110–28 Using Database Function notLike in an Expression

Expression expression = new ExpressionBuilder().get("lastName").notLike("%ung");

110.8 Creating and Using a User-Defined Function
Different databases sometimes implement the same functions in different ways. For
example, an argument that specifies that data returns in ascending order might be ASC
or ASCENDING. To manage differences, TopLink recognizes functions and other
operators that vary according to the relational database.

Although most platform-specific operators exist in TopLink, if necessary, you can
create your own operators.

To create a user-defined function, use the ExpressionOperator class.

An ExpressionOperator has a selector and a Vector of strings:

■ The selector is the identifier (id) by which users refer to the function.

■ The strings are the constant strings used in printing the function. When printed,
the strings alternate with the function arguments.

You can also specify whether the operator is prefix or postfix. In a prefix operator, the
first constant string prints before the first argument; in a postfix, it prints afterwards.

Where you create a user-defined function and how you add it to the TopLink
expression framework depends on whether you want the new function available to all
database platforms or to only a specific database platform.

This section describes the following:

■ How to Make a User-Defined Function Available to a Specific Platform

■ How to Make a User-Defined Function Available to All Platforms

110.8.1 How to Make a User-Defined Function Available to a Specific Platform
To make the function that overrides a specific operation on your own platform, use the
following procedure:

1. Create a subclass of the desired DatabasePlatform (from
oracle.toplink.platform.database or
oracle.toplink.platform.database.oracle package) that provides a
public method that calls the protected superclass method addOperator:

...
public class MyDatabasePlatform extends DatabasePlatform {

protected void initializePlatformOperators() {
super.initializePlatformOperators();
// Create user-defined function
ExpressionOperator toUpper = new ExpressionOperator();
toUpper.setSelector(ExpressionOperator.ToUpperCase);
Vector v = new Vector();

Creating and Using a User-Defined Function

Introduction to TopLink Expressions 110-17

v.addElement("UPPERCASE(");
v.addElement(")");
toUpper.printAs(v);
toUpper.bePrefix();
toUpper.setNodeClass(FunctionExpression.class);

// Make it available to this platform only
addOperator(toUpper);

}
}

2. Configure your session to use your platform subclass (see Section 20.2,
"Configuring Relational Database Platform at the Project Level" or Section 98.2,
"Configuring a Relational Database Platform at the Session Level").

110.8.2 How to Make a User-Defined Function Available to All Platforms
To make the function available to all platforms, use ExpressionOperator method
addOperator, as Example 110–29 shows.

Example 110–29 Adding a toUpper Function for All Platforms

ExpressionOperator toUpper = new ExpressionOperator();
toUpper.setSelector(600);
Vector v = new Vector();
v.addElement("NUPPER(");
v.addElement(")");
toUpper.printAs(v);
toUpper.bePrefix();
toUpper.setNodeClass(FunctionExpression.class);

ExpressionOperator.addOperator(toUpper);

110.8.2.1 Using a User-Defined Function
Regardless of whether you added the function for all platforms or for a specific
platform, Example 110–30 illustrates how to use the Expression method
getFunction to access the user-defined expression operator represented by a
constant with the value 600.

Example 110–30 Accessing a User-Defined Function

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
ExpressionBuilder builder = query.getExpressionBuilder();
Expression functionExpression = builder.get("firstName").

getFunction(600).equal("BOB");
query.setSelectionCriteria(functionExpression);
session.executeQuery(query);

Note: Represent the number in the setSelector method by a
constant value. Ensure that this number is greater than 500 (numbers
below 500 are reserved in TopLink).

Creating and Using a User-Defined Function

110-18 Developer's Guide for Oracle TopLink

111

Using Advanced Query API 111-1

111Using Advanced Query API

This section explains more advanced TopLink query API calls and techniques that you
are most likely to use later in the development cycle.

This chapter includes the following sections:

■ Using Redirect Queries

■ Using Historical Queries

■ Using Queries with Fetch Groups

■ Using Read-Only Queries

■ Querying on Interfaces

■ Querying on an Inheritance Hierarchy

■ Appending Additional Join Expressions

■ Using Queries on Variable One-to-One Mappings

■ Using Oracle Database Features

■ Using EJB 2.n CMP Finders

■ Handling Cursor and Stream Query Results

■ Handling Query Results Using Pagination

■ Using Queries and the Cache

For more information about the available query API, see Oracle Fusion Middleware Java
API Reference for Oracle TopLink.

111.1 Using Redirect Queries
A redirect query is a named query that delegates query execution control to your
application. redirect queried allow you to define the query implementation in code as
a static method.

To perform complex operations, you can combine query redirectors with the TopLink
query framework.

This section describes How to Create a Redirect Query.

111.1.1 How to Create a Redirect Query
To perform complex operations, you can combine query redirectors with the TopLink
query framework. To create a redirector, implement the
oracle.toplink.queryframework.QueryRedirector interface. The query

Using Historical Queries

111-2 Developer's Guide for Oracle TopLink

mechanism executes the Object invokeQuery(DatabaseQuery query,
Record arguments, Session session) method and waits for the results.

TopLink provides one preimplemented redirector, the
MethodBasedQueryRedirector method. To use this redirector, create a static
invoke method on a class, and use the setMethodName(String) call to specify the
method to invoke.

Example 111–1 Redirect Query

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
query.setName("findEmployeeByAnEmployee");
query.addArgument("employee");

MethodBaseQueryRedirector redirector = new
 MethodBaseQueryRedirector(QueryRedirectorTest.class, "findEmployeeByAnEmployee");
query.setRedirector(redirector);
Descriptor descriptor = getSession().getDescriptor(query.getReferenceClass());
descriptor.getQueryManager().addQuery(query.getName(), query);

Vector arguments = new Vector();
arguments.addElement(employee);
objectFromDatabase =

getSession().executeQuery("findEmployeeByAnEmployee", Employee.class, arguments);

public class QueryRedirectorTest {

public static Object findEmployeeByAnEmployee(
DatabaseQuery query,
oracle.toplink.sessions.Record arguments,
oracle.toplink.sessions.Session
session) {

((ReadObjectQuery) query).setSelectionObject(arguments.get("employee"));
return session.executeQuery(query);

}
}

111.2 Using Historical Queries
To make a query time-aware, you specify an AsOfClause that TopLink appends to
the query. Use the AsOfClause class if your historical schema is based on time
stamps or the AsOfSCNClause class if your historical schema is based on database
system change numbers. You can specify an AsOfClause at the time you acquire a
historical session so that TopLink appends the same clause to all queries, or you can
specify an AsOfClause on a query-by-query basis.

Example 111–2 shows how to create a query that uses a particular AsOfClause. This
query will read all Employee objects as of the time specified by timestamp using the
appropriate history tables described by the HistoryPolicy set on the Employee
descriptor.

Example 111–2 Using a Historical Session

ReadAllQuery historicalQuery = new ReadAllQuery(Employee.class);
AsOfClause asOfClause = new AsOfClause(timestamp);
historicalQuery.setAsOfClause(asOfClause);
historicalQuery.dontMaintainCache();
List pastEmployees = (List)historicalSession.executeQuery(historicalQuery);

Using Queries with Fetch Groups

Using Advanced Query API 111-3

111.3 Using Queries with Fetch Groups
You can use a fetch group with a ReadObjectQuery or ReadAllQuery. When you
execute the query, TopLink retrieves only the attributes in the fetch group. TopLink
automatically executes a query to fetch all the attributes excluded from this subset
when and if you call a getter method on any one of the excluded attributes.

This section describes the following:

■ How to Configure Default Fetch Group Behavior

■ How to Query with a Static Fetch Group

■ How to Query with a Dynamic Fetch Group

For more information about fetch groups, see Section 108.7.1.6, "Fetch Groups and
Object-Level Read Queries".

111.3.1 How to Configure Default Fetch Group Behavior
You can optionally designate at most one fetch group as the default fetch group for a
descriptor’s reference class.

If you execute a ReadObjectQuery or ReadAllQuery without specifying a fetch
group, TopLink will use the default fetch group unless you configure the query
otherwise, as Example 111–3 shows.

Example 111–3 Configuring Default Fetch Group Behavior

// at the descriptor level
FetchGroup group = new FetchGroup("nameOnly");
group.addAttribute("firstName");
group.addAttribute("lastName");
employeeDescriptor.getFetchGroupManager().addFetchGroup(group);
// set the default fetch group
employeeDescriptor.getFetchGroupManager().setDefaultFetchGroup(group);

// when query1 is executed, the default fetch group applies
ReadAllQuery query1 = new ReadAllQuery(Employee.class);

// when query2 is executed, the default fetch group does not apply
ReadAllQuery query2 = new ReadAllQuery(Employee.class);
query2.setShouldUsedefaultFetchGroup(false);

111.3.2 How to Query with a Static Fetch Group
Example 111–4 shows how to configure a ReadObjectQuery for the Employee class
with a FetchGroup named nameOnly previously stored in the
FetchGroupManager owned by the Employee class’s descriptor.

Example 111–4 Configuring a Query with a FetchGroup Using the FetchGroupManager

In this example, only the Employee attributes firstName and lastName are
fetched. If you call the Employee method get for any other attribute, TopLink
executes another query to retrieve all unfetched attribute values. Thereafter, calling
that get method will return the value directly from the object.

Note: When you use fetch groups outside of CMP, use weaving (see
Section 2.10, "Using Weaving").

Using Read-Only Queries

111-4 Developer's Guide for Oracle TopLink

// create static fetch group at the descriptor level
FetchGroup group = new FetchGroup("nameOnly");
group.addAttribute("firstName");
group.addAttribute("lastName");
descriptor.getFetchGroupManager().addFetchGroup(group);

// use static fetch group at query level
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setFetchGroupName("nameOnly");

111.3.3 How to Query with a Dynamic Fetch Group
Example 111–5 shows how to create a FetchGroup instance dynamically, at the time
you create and execute a query, and configure the query with that FetchGroup
directly.

In this example, only the firstName, lastName, and salary attributes are fetched.
If you call the Employee method get for any other attribute, TopLink executes
another query to retrieve all unfetched attribute values. Thereafter, calling that get
method will return the value directly from the object.

Example 111–5 Configuring a Query with a FetchGroup Dynamically

// dynamic fetch group query
ReadAllQuery query = new ReadAllQuery(Employee.class);
FetchGroup group = new FetchGroup("nameAndSalary");
group.addAttribute("firstName");
group.addAttribute("lastName");
group.addAttribute("salary");
query. setFetchGroup(group);

111.4 Using Read-Only Queries
Example 111–6 shows how to create an object-level read query to return data that you
know is read-only. Using such a query for read-only data can improve performance.

Example 111–6 Configuring an ObjectLevelReadQuery as Read-Only

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.setIsReadOnly(true);

For more information, see the following:

■ Section 108.7.1.4, "Read-Only Query"

■ Section 12.12.5, "How to Use Read-Only Queries for Optimization"

111.5 Querying on Interfaces
When you define descriptors for an interface to enable querying, TopLink supports
querying on an interface, as follows:

■ If there is only a single implementor of the interface, the query returns an instance
of the concrete class.

■ If there are multiple implementors of the interfaces, the query returns instances of
all implementing classes.

Using Queries on Variable One-to-One Mappings

Using Advanced Query API 111-5

111.6 Querying on an Inheritance Hierarchy
When you query on a class that is part of an inheritance hierarchy, the session checks
the descriptor to determine the type of the class, as follows:

■ If you configure the descriptor to read subclasses (the default configuration), the
query returns instances of the class and its subclasses.

■ If you configure the descriptor not to read subclasses, the query returns only
instances of the queried class, but no instances of the subclasses.

■ If you configure the descriptor to outer-join subclasses, the query returns instances
of the class and its subclasses.

■ If neither of these conditions applies, the class is a leaf class and does not have any
subclasses. The query returns instances of the queried class.

111.7 Appending Additional Join Expressions
You can set the query manager to automatically append an expression to every query
it performs on a class. For example, you can add an expression that filters the database
for the valid instances of a given class.

Use this to do the following:

■ Filter logically deleted objects

■ Enable two independent classes to share a single table without inheritance

■ Filter historical versions of objects

111.7.1 How to Append Additional Join Expressions Using Java
Using Java, configure a descriptor with additional join expressions by creating an
amendment method (see Section 119.35, "Configuring Amendment Methods"), and
then using the DescriptorQueryManager methods
setAdditionalJoinExpression or setMultipleTableJoinExpression, as
Example 111–7 shows.

Example 111–7 Registering a Query That Includes a Join Expression

In Example 111–7, the join expression filters invalid instances of employee from the
query.

public static void addToDescriptor(Descriptor descriptor) {
ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getQueryManager().setAdditionalJoinExpression(

(builder.getField("EMP.STATUS").notEqual("DELETED")).and(
builder.getField("EMP.STATUS").notEqual("HISTORICAL"))

);
}

111.8 Using Queries on Variable One-to-One Mappings
TopLink does not provide a method to directly query against variable one-to-one
mappings. To query against this type of mapping, combine TopLink
DirectQueryKeys and TopLink ReportQueries to create query selection criteria
for classes that implement the interface, as follows:

1. Create two DirectQueryKeys to query for the possible implementors of the
interface:

Using Oracle Database Features

111-6 Developer's Guide for Oracle TopLink

■ The first DirectQueryKey is for the class indicator field for the variable
one-to-one mapping.

■ The second DirectQueryKey is for the foreign key to the class or table that
implements the interface.

2. Create a subSelect statement for each concrete class that implements the
interface included in the query selection criteria.

3. Implement a ReportQuery.

Example 111–8 Creating DirectQueryKeys

// The DirectQueryKeys as generated in the TopLink project Java
// source code from TopLink Workbench
…
descriptor.addDirectQueryKey("locationTypeCode","DEALLOCATION.DEALLOCATIONOBJECTTY
PE");
descriptor.addDirectQueryKey("locationTypeId","DEALLOCATION.DEALLOCATIONOBJECTID")
;

111.9 Using Oracle Database Features
If you are using Oracle Database, you can take advantage of TopLink support for the
following Oracle Database features:

■ Oracle Hints (see Section 111.9.1, "How to Use Oracle Hints")

■ Hierarchical Queries (see Section 111.9.2, "How to Use Hierarchical Queries")

111.9.1 How to Use Oracle Hints
Oracle Hints is Oracle Database feature through which you can make decisions
usually reserved for the optimizer. You use hints to specify things such as join order
for a join statement, or the optimization approach of an SQL call.

The TopLink query framework supports Oracle Hints with the following API:

setHintString("/*[hints or comments]*/");
TopLink adds the hint to the SQL string as a comment immediately following a
SELECT, UPDATE, INSERT, or DELETE statement.

Add hints to a read query as follows:

1. Create a ReadObjectQuery or a ReadAllQuery

2. Set the selection criteria.

3. Add hints as needed.

For example, the following code uses the FULL hint (which explicitly chooses a full
table scan for the specified table):

// Create the query and set Employee as its reference class
ReadObjectQuery query = new ReadObjectQuery(Employee.class);
// Retrieve ExpressionBuilder from the query
ExpressionBuilder builder = query.getExpressionBuilder();
query.setSelectionCritera(builder.get("id").equal(new Integer(1));
// Add the hint
query.setHintString("/*+ FULL */");
This code generates the following SQL:

SELECT /*+ FULL */ FROM EMPLOYEE WHERE ID=1

Using Oracle Database Features

Using Advanced Query API 111-7

To add hints to WRITE, INSERT, UPDATE, and DELETE, create custom queries for these
operations in the TopLink query framework, then specify hints as required. For more
information, see the following:

■ Section 23.4, "Configuring Custom SQL Queries for Basic Persistence Operations"

■ Section 76.5, "Configuring Custom EIS Interactions for Basic Persistence
Operations"

For more information about the available hints, see Oracle Database documentation.

111.9.2 How to Use Hierarchical Queries
Hierarchical Queries is Oracle Database mechanism that lets you select database rows
based on hierarchical order. For example, you can design a query that reads the row of
a given employee, followed by the rows of people this employee manages, followed
by their managed employees, and so on.

To create a hierarchical query, use the setHierarchicalQueryClause method.
This method takes three parameters, as follows:

setHierarchicalQueryClause(startWith, connectBy, orderSibling)
This expression requires all three parameters, as described in the subsequent text.

111.9.2.1 Using startWith Parameter
The startWith parameter in the expression specifies the first object in the hierarchy.
This parameter mirrors Oracle Database START WITH clause.

To include a startWith parameter, build an expression to specify the appropriate
object, and pass it as a parameter in the setHierarchicalQueryClause method. If
you do not specify the root object for the hierarchy, set this value to null.

111.9.2.2 Using connectBy Parameter
The connectBy parameter specifies the relationship that creates the hierarchy. This
parameter mirrors Oracle Database CONNECT BY clause.

Build an expression to specify the connectBy parameter, and pass it as a parameter in
the setHierarchicalQueryClause method. Because this parameter defines the
nature of the hierarchy, it is required for the setHierarchicalQueryClause
implementation.

111.9.2.3 Using orderSibling Parameter
The orderSibling parameter in the expression specifies the order in which the
query returns sibling objects in the hierarchy. This parameter mirrors Oracle Database
ORDER SIBLINGS clause.

To include an orderSibling parameter, define a vector, and to include the order
criteria, use the addElement method. Pass the vector as the third parameter in the
setHierarchicalQueryClause method. If you do not specify an order, set this
value to null.

Example 111–9 Hierarchical Query

ReadAllQuery raq = new ReadAllQuery(Employee.class);
// Specifies a START WITH expression
Expression startExpr = expressionBuilder.get("id").equal(new Integer(1));
// Specifies a CONNECT BY expression
Expression connectBy = expressionBuilder.get("managedEmployees");
// Specifies an ORDER SIBLINGS BY vector

Using EJB 2.n CMP Finders

111-8 Developer's Guide for Oracle TopLink

Vector order = new Vector();
order.addElement(expressionBuilder.get("lastName"));
order.addElement(expressionBuilder.get("firstName"));
raq.setHierarchicalQueryClause(startExpr, connectBy, order);
Vector employees = uow.executeQuery(raq);
This code generates the following SQL:

SELECT * FROM EMPLOYEE START WITH ID=1 CONNECT BY PRIOR ID=MANAGER_ID ORDER
SIBLINGS BY LAST_NAME, FIRST_NAME

111.10 Using EJB 2.n CMP Finders
This section describes how to use EJB finders in TopLink, including the following:

■ How to Create a Finder

■ How to Use DatabaseQuery Finders

■ How to Use Named Query Finders

■ How to Use Primary Key Finders

■ How to Use EJB QL Finders

■ How to Use SQL Finders

■ How to Use Redirect Finders

■ How to Use the ejbSelect Method

111.10.1 How to Create a Finder
In general, to create a finder for an entity bean that uses the TopLink query
framework, you must define, declare, and configure it.

For predefined finders (see Section 108.15.1, "Predefined Finders"), you do not need to
explicitly create a finder.

For default finders (see Section 108.15.2, "Default Finders"), you only need to define
the finder method.

To create a finder for an entity bean that uses the TopLink query framework, follow
these steps:

1. Define the finder method on the entity bean's remoteHome or localHome
interface.

For entity beans with container-managed persistence, define the method on the
entity bean’s Home interface.

For default finders (see Section 108.15.2, "Default Finders"), you must define the
finder as follows:

■ <RETURN-TYPE> findBy<CMP-FIELD-NAME>(<CMP-FIELD-TYPE>)

■ the first letter of <CMP-FIELD-NAME> must be capitalized

■ <RETURN-TYPE> may be a single bean type or Collection.

For example:

EmployeeBean (Integer id, String name)
EmployeeHome ..{
 Employee findById(Integer id) throws...;
 Collection findByName(String name) throws...;
}

Using EJB 2.n CMP Finders

Using Advanced Query API 111-9

2. Declare the finder in the ejb-jar.xml file (see Section 111.10.1.1, "ejb-jar.xml
Finder Options").

3. Start TopLink Workbench.

4. Click the project icon in the Navigator and select: Selected > Update Project from
ejb-jar.xml to read in the finders.

5. Go to the Queries > Named Queries tab for the bean (see Section 109.3, "Using
Named Queries").

6. Select and configure the finder.

7. If required, create an implementation for the query. Some query options require a
query definition in code on a helper class, but most common queries do not.

When you use TopLink CMP, define finder methods on the bean’s Home interface, not
in the entity bean itself. TopLink CMP provides this functionality and offers several
strategies to create and customize finders. The EJB container and TopLink
automatically generate the implementation.

111.10.1.1 ejb-jar.xml Finder Options
The ejb-jar.xml file contains a project’s EJB entity bean information, including
definitions for any finders used for the beans. To create and maintain the
ejb-jar.xml file, use either a text editor or TopLink Workbench.

The entity tag encapsulates a definition for an EJB entity bean. Each bean has its
own entity tag that contains several other tags that define bean functionality,
including bean finders.

Example 111–10 illustrates the structure of a typical finder defined within the
ejb-jar.xml file.

Example 111–10 A Simple Finder Within the ejb-jar.xml File

<entity>...
<query>

<query-method>
<method-name>findLargeAccounts</method-name>

<method-params>

Note: If you are using default finders (see Section 108.15.2, "Default
Finders"), you are finished. TopLink will implement the finder for you
at run time.

Notes: For predefined finders findOneByQuery and
findManyByQuery, the client creates a query at run time and passes it
as a parameter to the finder. Because of this, do not configure query
options on these finders. Instead, configure options on the query passed
into the finder. For more information about predefined finders, see
Section 108.15.1, "Predefined Finders".

Note: Use a combination of an escape character and a
double-quote (\") when defining your query using EJB QL. For
more information on correct query syntax, see a note at the end of
Configuring Named Query Selection Criteria.

Using EJB 2.n CMP Finders

111-10 Developer's Guide for Oracle TopLink

<method-param>double</method-param>
</method-params>

</query-method>
<ejb-ql><![CDATA[SELECT OBJECT(account) FROM AccountBean account WHERE
account.balance > ?1]]></ejb-ql>

</query>
...
</entity>

The entity tag contains zero or more query elements. Each query tag corresponds
to a finder method defined on the bean's home or local Home interface.

The following are the elements defined in the query section of the ejb-jar.xml file:

■ description (optional): Provides a description of the finder.

■ query-method: Specifies the method for a finder or ejbSelect query.

■ method-name: Specifies the name of a finder or select method in the entity bean
implementation class.

■ method-params: Contains a list of the fully qualified Java type names of the
method parameters.

■ method-param: Contains the fully qualified Java type name of a method
parameter.

■ result-type-mapping (optional): Specifies how to map an abstract schema
type returned by a query for an ejbSelect method. You can map the type to an
EJBLocalObject or EJBObject type. Valid values are Local or Remote.

■ ejb-ql: Used for all EJB QL finders. It contains the EJB QL query string that
defines the finder or ejbSelect query. Leave this element empty for non-EJB QL
finders.

111.10.2 How to Use DatabaseQuery Finders
TopLink provides a predefined finder that takes a DatabaseQuery such as a
ReadAllQuery. To use this feature in a bean, add the following finder definition to
the Home interface of your bean:

public Collection findManyByQuery(ReadAllQuery query) throws RemoteException,
FinderException;

public <EJBLocal/Remote> findOneByQuery(ReadObjectQuery query) throws
RemoteException, FinderException;
To execute a ReadAllQuery finder, create the query on the client, as Example 111–11
shows.

Example 111–11 A ReadAllQuery Finder

... {
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.addJoinedAttribute("address");

Note: You can share a single query between both Home interfaces,
as follows:

■ Define the same finder (same name, return type, and
parameters) on both Home interfaces.

■ Include a single query element in the ejb-jar.xml file.

Using EJB 2.n CMP Finders

Using Advanced Query API 111-11

Enumeration employees = getEmployeeHome().findManyByQuery(query);
}

111.10.3 How to Use Named Query Finders
You can implement an EJB finder method (including TopLink predefined finders) as a
named query. For more information, see Section 109.3, "Using Named Queries". You
execute such a finder as you would any other.

111.10.4 How to Use Primary Key Finders
TopLink provides a predefined finder (findByPrimaryKey) that takes a primary key
as an Object.

Example 111–12 Executing a Primary Key Finder

... {
Employee employee = getEmployeeHome().findByPrimaryKey(primraryKey);

}

111.10.5 How to Use EJB QL Finders
EJB QL is the standard query language first defined in the EJB 2.0 specification.
TopLink supports EJB QL. EJB QL finders let you specify an EJB QL string as the
implementation of the query.

EJB QL offers the following advantages:

■ It is the EJB 2.0 and 2.1 standard for queries.

■ You can use it to construct most queries.

■ You can implement dependent object queries with EJB QL.

The disadvantage of EJB QL is that it is difficult to use when you construct complex
queries.

To create an EJB QL finder, use this procedure:
1. Declare the finder on either the LocalHome or the RemoteHome interface.

2. Start TopLink Workbench.

3. Reimport the ejb-jar.xml file to synchronize the project to the file.

TopLink Workbench synchronizes changes between the project and the
ejb-jar.xml file.

The following is an example of a simple EJB QL query that requires one parameter. In
this example, the question mark (?) in?1 specifies a parameter:

SELECT OBJECT(employee) FROM Employee employee WHERE (employee.name =?1)

Note: Use a combination of an escape character and a
double-quote (\") when defining your query using EJB QL. For
more information on correct query syntax, see a note at the end of
Section 119.7.1.3, "Configuring Named Query Selection Criteria".

Using EJB 2.n CMP Finders

111-12 Developer's Guide for Oracle TopLink

To create an EJB QL finder for an entity bean with container-managed
persistence, use this procedure:
1. Declare the finder in the ejb-jar.xml file, and enter the EJB QL string in the

ejb-ql tag.

2. Declare the finder on the Home interface, the LocalHome interface, or both, as
required.

3. Start TopLink Workbench.

4. Specify the ejb-jar.xml file location and choose File > Updated Project from
the ejb-jar.xml file to read in the finders.

5. Go to the Queries > Finders > Named Queries tab for the bean.

6. Add a finder, and give it the same name as the finder you declared on your bean's
home. Then add any required parameters.

7. Select and configure the finder.

The following is an example of a simple EJB QL query that requires one parameter. In
this example, the question mark ("?") in?1 specifies a parameter.

SELECT OBJECT(employee) FROM Employee employee WHERE (employee.name =?1)

111.10.6 How to Use SQL Finders
You can use custom SQL code to specify finder logic. SQL lets you implement logic
that might not be possible to express with TopLink expressions or EJB QL.

To create a SQL finder, use this procedure:
1. Declare the finder in the ejb-jar.xml file, and leave the ejb-ql tag empty.

2. Start TopLink Workbench.

3. Specify the ejb-jar.xml file location and choose File > Updated Project from
the ejb-jar.xml file to read in the finders.

4. Go the Queries > Named Queries tab for the bean.

5. Select the finder, select the SQL radio button, and enter the SQL string.

6. Configure the finder.

The following is an example of a simple SQL finder that requires one parameter. In this
example, the number sign character (#) is used to bind the argument projectName
within the SQL string:

SELECT * FROM EJB_PROJECT WHERE (PROJ_NAME = #projectName)

111.10.7 How to Use Redirect Finders
Redirect finders let you specify a finder in which the implementation is defined as a
static method on an arbitrary helper class. When you invoke the finder, it redirects the
call to the specified static method.

For more information about redirect queries, see Section 108.10, "Redirect Queries".

The finder can have any arbitrary parameters. If the finder includes parameters,
TopLink packages them into a Vector and passes them to the redirect method.

Redirect finders offer several advantages. Because you define the redirect finder
implementation independently from the bean that invokes it, you can build the
redirect finder to accept any type and number of parameters. This lets you create a

Using EJB 2.n CMP Finders

Using Advanced Query API 111-13

generic redirect finder that accepts several different parameters and return types,
depending on input parameters.

A common strategy for using redirect finders is to create a generic finder that does the
following:

■ Includes logic to perform several tasks

■ Reads the first passed parameter to identify the type of finder requested and select
the appropriate logic

The redirect method contains the logic required to extract the relevant data from the
parameters and uses it to construct a TopLink query.

The main disadvantage of redirect finders is that they are complex and can be difficult
to configure. They also require an extra helper method to define the query. However,
because they support complex logic, they are often the best choice when you need to
implement logic unrelated to the bean on which the redirect method is called.

To create a redirect finder, use the following procedure:
1. Declare the finder in the ejb-jar.xml file, and leave the ejb-ql tag empty.

2. Declare the finder on the Home interface, the localHome interface, or both, as
required.

3. Create an amendment method.

For more information, see Section 119.35, "Configuring Amendment Methods".

4. Start TopLink Workbench.

5. Choose Advanced Properties > After Load from the menu for the bean.

6. Specify the class and name of the static method to enable the amendment method
for the descriptor.

The amendment method then adds a query to the descriptor's query manager, as
follows:

ReadAllQuery query = new ReadAllQuery();
query.setRedirector(new MethodBaseQueryRedirector (examples.ejb.cmp20.advanced.
FinderDefinitionHelper.class,"findAllEmployeesByStreetName"));

descriptor.getQueryManager().addQuery ("findAllEmployeesByStreetName", query);
The redirect method must return either a single entity bean (object) or a Vector. Here
are the possible method signatures:

public static Object redirectedQuery(oracle.toplink.sessions.Sessions, Vector args)

and

public static Vector redirectedQuery(oracle.toplink.sessions.Sessions, Vector args)

When you implement the query method, ensure that the method returns the correct
type. For methods that return more than one bean, set the return type to
java.util.Vector. TopLink converts this result to java.util.Enumeration (or
Collection) if required.

At run time, the client invokes the finder from the entity bean home and packages the
arguments into the args vector in order of appearance from the finder method

Note: The redirect method also interprets a TopLink session as a
parameter. For more information about a TopLink session, see Part XXI,
"TopLink Sessions".

Using EJB 2.n CMP Finders

111-14 Developer's Guide for Oracle TopLink

signature. The client passes the vector to the redirect finder, which uses them to
execute a TopLink expression.

Example 111–13 A Simple Redirect Query Implementation

public class RedirectorTest {

private Session session;
private Project project;

public static void main(String args[]) {
RedirectorTest test = new RedirectorTest();
test.login();

try {
// Create the arguments to be used in the query
Vector arguments = new Vector(1);
arguments.add("Smith");

// Run the query
Object o = test.getSession()

.executeQuery(test.redirectorExample(), arguments);
o.toString();

}
catch (Exception e) {

System.out.println("Exception caught -> " + e);
e.printStackTrace();

}
}

public ReadAllQuery redirectorExample() {
// Create a redirector
MethodBasedQueryRedirector redirector = new MethodBasedQueryRedirector();

// Set the class containing the public static method
redirector.setMethodClass(RedirectorTest.class);

// Set the name of the method to be run
redirector.setMethodName("findEmployeeByLastName");

// Create a query and add the redirector previously created
ReadAllQuery readAllQuery = new ReadAllQuery(Employee.class);
readAllQuery.setRedirector(redirector);
readAllQuery.addArgument("lastName");

return readAllQuery;
}

// Call the static method
public static Object findEmployeeByLastName(

oracle.toplink.sessions.Session session,
Vector arguments) {

// Create a query and set Employee as its ref. class
ReadAllQuery raq = new ReadAllQuery(Employee.class);
raq.addArgument("lastName");

// Create the selection criteria
ExpressionBuilder employee = query.getExpressionBuilder();
Expression whereClause =

Using EJB 2.n CMP Finders

Using Advanced Query API 111-15

employee.get("lastName").equal(arguments.firstElement());

// Set the selection criteria
raq.setSelectionCriteria(whereClause);

return (Vector)session.executeQuery(raq, arguments);
}

...
}

111.10.8 How to Use the ejbSelect Method
The ejbSelect method is a query method intended for internal use within an entity
bean instance. Specified on the abstract bean itself, the ejbSelect method is not
directly exposed to the client in the home or component interface. Defined as abstract,
each bean can include zero or more such methods.

Select methods have the following characteristics:

■ The method name must have ejbSelect as its prefix.

■ It must be declared as public.

■ It must be declared as abstract.

■ The throws clause must specify the javax.ejb.FinderException, although it
may also specify application-specific exceptions as well.

■ The result-type-mapping tag in the ejb-jar.xml file determines the return
type for ejbSelect methods. Set the flag to Remote to return EJBObjects; set it
to Local to return EJBLocalObjects.

The format for an ejbSelect method definition should be similar to the following:

public abstract type ejbSelect<METHOD>(...);
The ejbSelect query return type is not restricted to the entity bean type on which
the ejbSelect is invoked. Instead, it can return any type corresponding to a
container-managed relationship or container-managed field.

Although the ejbSelect method is not based on the identity of the entity bean
instance on which it is invoked, it can use the primary key of an entity bean as an
argument. This creates a query that is logically scoped to a particular entity bean
instance.

To create an ejbSelect method, use this procedure:
1. Update the ejb-jar.xml file as follows:

■ Declare the ejbSelect method.

■ Enter the EJB QL string in the ejb-ql tag.

■ Specify the return type in the result-type-mapping tag (if required).

2. Declare the ejbSelect on the abstract bean class.

3. Start TopLink Workbench.

4. Click the project icon in the Navigator, and select: Selected > Update Project from
ejb-jar.xml to read in the finders.

5. Go the Queries > Named Queries tab for the bean.

6. Select and configure the ejbSelect method.

Handling Cursor and Stream Query Results

111-16 Developer's Guide for Oracle TopLink

111.11 Handling Cursor and Stream Query Results
Cursors and streams are related mechanisms that let you work with large result sets
efficiently. See Section 108.5.3, "Stream and Cursor Query Results" for more
information.

Table 111–1 lists the methods that TopLink provides for all subclasses of
DataReadQuery and ReadAllQuery that you can use to make your query return its
results as a cursor or stream.

Using a ScrollableCursor or CursoredStream combines the features of a
TopLink with the ability of the database to cursor data, and breaks up the result set
into smaller, more manageable pieces.

The behavior of a query that uses a ScrollableCursor or CursoredStream differs
from other queries in that the elements requested by the client are sent to the client.

This section describes the following:

■ How to Handle Cursors and Java Iterators

■ How to Handle Java Streams

■ How to Optimize Streams

■ How to Use Cursors and Streams with EJB 2.n CMP Finders

111.11.1 How to Handle Cursors and Java Iterators
The TopLink scrollable cursor lets you scroll through a result set from the database
without reading the whole result set in a single database read operation. The
ScrollableCursor class implements the Java ListIterator interface to allow for
direct and relative access within the stream. Scrollable cursors also let you scroll
forward and backward through the stream.

111.11.1.1 Traversing Data with Scrollable Cursors
The following methods let you navigate data with a scrollable cursor:

■ relative(int i): advances the row number in relation to the current row by
one row

■ absolute(int i): places the cursor at an absolute row position, 1 being the first
row

Several strategies are available for traversing data with cursors. For example, to start at
the end of the data set and work toward the first record, do the following:

1. Call the afterLast method to place the cursor after the last row in the result set.

Table 111–1 Stream and Cursor Query Result Options

Method Query Returns Description

useScrollableCursor ScrollableCursor Allows you access a database result set
cursor, allowing you to move forward and
backward through the result set.

useCursoredStream CursoredStream Allows you to access results one at a time in
sequence, as results become available to the
underlying database result set cursor.

Handling Cursor and Stream Query Results

Using Advanced Query API 111-17

2. Use the hasPrevious method to determine whether there is a record above the
current record. This method returns false when you reach the final record in the
data set.

3. If the hasPrevious method returns true, call the previous method to move
the cursor to the row prior to the current row and read that object.

These are common methods for data traversal, but they are not the only available
methods. For more information about the available methods, see Oracle Fusion
Middleware Java API Reference for Oracle TopLink.

To use the ScrollableCursor object, the JDBC driver must be compatible with the
JDBC 2.0 specifications.

Example 111–14 Traversing with a Scrollable Cursor

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useScrollableCursor();
ScrollableCursor cursor = (ScrollableCursor) session.executeQuery(query);

while (cursor.hasNext()) {
System.out.println(cursor.next().toString());

}
cursor.close();

111.11.2 How to Handle Java Streams
Java streams let you retrieve query results as individual records or groups of records,
which can result in a performance increase. You can use streams to build efficient
TopLink queries, especially when the queries are likely to generate large result sets.

111.11.2.1 Using Cursored Stream Support
Cursored streams provide the ability to read back a query result set from the database
in manageable subsets, and to scroll through the result set stream.

The useCursoredStream method of the ReadAllQuery class provides cursored
stream support.

Example 111–15 Cursored Streams

CursoredStream stream;
ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useCursoredStream();
stream = (CursoredStream) session.executeQuery(query);
The query returns an instance of CursoredStream rather than a List, which can be
a more efficient approach. For example, consider the following two code examples.
Example 111–16 returns a List that contains all employee objects. If ACME has 10,000
employees, the List contains references to 10,000 Employee objects.

Example 111–16 Using a List

ReadAllQuery query = new ReadAllQuery(Employee.class);
Enumeration employeeEnumeration;

List employees = (List) session.executeQuery(query);
employeeEnumeration = employee.elements();

while (employeeEnumeration.hasMoreElements()) {
Employee employee = (Employee) employeeEnumeration.nextElement();
employee.doSomeWork();

Handling Cursor and Stream Query Results

111-18 Developer's Guide for Oracle TopLink

}
The following example returns a CursoredStream instance rather than a List. The
CursoredStream collection appears to contain all 10,000 objects, but initially
contains a reference to only the first 10 Employee objects. It retrieves the remaining
objects in the collection as they are needed. In many cases, the application never needs
to read all the objects:

ReadAllQuery query = new ReadAllQuery(Employee.class);
query.useCursoredStream();

CursoredStream stream = (CursoredStream) session.executeQuery(query);
while (! stream.atEnd()) {

Employee employee = (Employee) stream.read();
employee.doSomeWork();
stream.releasePrevious();

}
stream.close();

111.11.3 How to Optimize Streams
To optimize CursoredStream performance, provide a threshold and page size to the
useCursoredStream(Threshold, PageSize) method, as follows:

■ The threshold specifies the number of objects to read into the stream initially. The
default threshold is 10.

■ The page size specifies the number of objects to read into the stream after the
initial group of objects. This occurs after the threshold number of objects is read.
Although larger page sizes result in faster overall performance, they introduce
delays into the application when TopLink loads each page. The default page size
is 5.

When you execute a batch-type operation, use the dontMaintainCache method
with a cursored stream. A batch operation performs simple operations on large
numbers of objects and then discards the objects. Cursored streams create the required
objects only as needed, and the dontMaintainCache ensures that these transient
objects are not cached.

111.11.4 How to Use Cursors and Streams with EJB 2.n CMP Finders
Large result sets can be resource-intensive to collect and process. To give the client
more control over the returned results, configure TopLink finders to use cursors. This
combines TopLink's CursoredStream with the ability of the database to cursor data,
and breaks up the result set into smaller, more manageable pieces.

Note: The releasePrevious message is optional. This releases
any previously read objects and frees system memory. Even though
released objects are removed from the cursored stream storage, they
may remain in the identity map.

Note: If you use the transactional attribute REQUIRED for an entity
bean, wrap all read operations in UserTransaction methods begin
and commit to ensure that read operations beyond the first page of
the cursor have a transaction in which to work.

Handling Cursor and Stream Query Results

Using Advanced Query API 111-19

111.11.4.1 Building the Query
You can configure any finder that returns a java.util.Collection to use a cursor.
When you create the query for the finder, add the useCursoredStream option to
enable cursoring.

Example 111–17 Cursored Stream in a Finder

ReadAllQuery raq = new ReadAllQuery(ProjectBean.class);
ExpressionBuilder bldr = raq.getExpressionBuilder();
raq.useCursoredStream();
raq.addArgument("projectName");
raq.setSelectionCriteria(bldr.get("name").
like(bldr.getParameter("projectName")));
descriptor.getQueryManager().addQuery ("findByNameCursored", query);

111.11.4.2 Executing the Finder from the Client
TopLink offers the following additional elements for traversing finder results:

■ isEmpty method: As with java.util.Collection, isEmpty method returns
a boolean value indicating whether or not the Collection is empty.

■ size method: As with java.util.Collection, size method returns an
integer indicating the number of elements in the Collection.

■ iterator method: As with java.util.Collection, iterator method
returns a java.util.Iterator for enumerating the elements in the
Collection.

TopLink also offers an extended protocol for
oracle.toplink.ejb.cmp.wls.CursoredIterator (based on
java.util.Iterator):

■ close method: Closes the cursor on the server. The client must call this method to
close the database connection.

■ hasNext method: Returns a boolean value indicating whether or not any more
elements are in the result set.

■ next method: Returns the next available element.

■ next(int count) method: Retrieves a Vector of at most count elements from
the available results, depending on how many elements remain in the result set.

Example 111–18 illustrates client code executing a cursored finder.

Example 111–18 Cursored Finder

// import both CursoredCollection and CursoredIterator
import oracle.toplink.ejb.cmp.wls.*;
//... other imports as necessary
getTransaction().begin();
CursoredIterator cursoredIterator = (CursoredIterator)
getProjectHome().findByNameCursored("proj%").iterator();
Vector projects = new Vector();
for (int index = 0; index < 50; i++) {
Project project = (Project)cursoredIterator.next();
projects.addElement(project);
}
// Rest all at once ...
Vector projects2 = cursoredIterator.next(50);
cursoredIterator.close();
getTransaction().commit();

Handling Query Results Using Pagination

111-20 Developer's Guide for Oracle TopLink

111.12 Handling Query Results Using Pagination
You can configure a query to retrieve a result set in pages, that is, a partial result as a
List of pageSize (or less) results. Example 111–19 demonstrates paging through the
result set of a query using ReadQuery methods setMaxRows and setFirstResult.

For more information, see the following:

■ Section 12.12.8, "How to Use Result Set Pagination for Optimization"

■ Section 12.12.6, "How to Use JDBC Fetch Size for Optimization"

Example 111–19 Using setMaxRows and setFirstResult to Page Through a Result Set

...
int pageSize = 100;
int firstResult = 0;
int maxRows = pageSize;
boolean hasNext = true;
List page = null;

while (hasNext) {
query.setFirstResult(firstResult);
query.setMaxRows(maxRows);
page = (List)sesssion.executeQuery(query);
// process this page of results
if (page.size() == 0) {

hasNext = false;
} else {

firstResult = firstResult + pageSize;
maxRows = maxRows + pageSize;

}
}
...

111.13 Using Queries and the Cache
This section describes how to use caching options in TopLink queries, including the
following:

■ How to Cache Results in a ReadQuery

■ How to Configure Cache Expiration at the Query Level

111.13.1 How to Cache Results in a ReadQuery
 By default, each time you execute a ReadQuery, TopLink applies the current query
configuration to the read operation. In doing so, TopLink will access the session cache,
the data source, or both.

Some queries are known to return the same result set (for example, the number of
units sold last year by the current sales person). After the first query execution, there is
no need to actually execute the query if it is invoked again.

For these types of queries, you can use any TopLink ReadQuery and configure it to
store its query results in an internal query cache.

After its first execution for a set of query parameters, the query will return its cached
result set each time it is invoked with the same query parameters. This improves query
performance for frequently executed queries. By default a query will cache the results
sets for the last 100 queries of specific parameters. You can configure this query cache
as part of the QueryResultsCachePolicy.

Using Queries and the Cache

Using Advanced Query API 111-21

Enable this feature using ReadQuery method cacheQueryResults or by calling the
ReadQuery method setQueryResultsCachePolicy with an instance of
QueryResultsCachePolicy, and disable it using ReadQuery method
doNotCacheQueryResults.

Before using this feature, consider the restrictions in Section 108.16.7.1, "Internal Query
Cache Restrictions". For more information, see Section 108.16.7, "How to Cache Query
Results in the Query Cache".

You can apply a cache invalidation policy to the query’s internal cache (see
Section 111.13.2, "How to Configure Cache Expiration at the Query Level"). For more
information, see Section 102.2.5, "Cache Invalidation".

Example 111–20 shows how to configure a ReadQuery to cache its results.

Example 111–20 Configuring a ReadQuery to Cache Its Query Results

ReadObjectQuery query = new ReadObjectQuery(Employee.class);

// Instruct the ReadQuery to cache its query results
query.cacheQueryResults();

// The first time you invoke it, the ReadQuery reads from the database, session
// cache, or both and stores the result set in its internal query cache
Employee employeeFirst = (Employee) session.executeQuery(query);
Example 111–21 shows how to configure the ReadQuery to stop caching its results.
The next time the query is executed, TopLink does not use the query cache. Instead,
the query accesses the data source.

Example 111–21 Configuring a ReadQuery to Stop Caching Its Query Results

// Disable query caching
query.doNotCacheQueryResults();

// The ReadQuery does not use the query cahce and instead accesses the database
Employee employee = (Employee) session.executeQuery(query);
Alternatively, you can clear the query’s internal cache using ReadQuery method
clearQueryResults passing in your session. This clears the currently cached results
and ensures that the next query execution reads from the database.

111.13.2 How to Configure Cache Expiration at the Query Level
You can configure a ReadQuery with a CacheInvalidationPolicy.

If you configure a query to cache results in its own internal cache (see Section 111.13.1,
"How to Cache Results in a ReadQuery"), the cache invalidation policy allows the
cached query result set to expire, based on a time-to-live or daily-expiry. This
invalidation time is calculated from the time of the query execution that cached the
query result set for the specific set of query parameters.

Example 111–22 shows how to configure a ReadQuery so that a
TimeToLiveCacheInvalidationPolicy is applied to all the objects returned by
the query and cached in the query’s internal cache.

Example 111–22 Configuring a CacheInvalidationPolicy on a ReadQuery for the Query’s
Internal Cache

// The TimeToLiveCacheInvalidationPolicy applies to all objects returned by the query and
// cached in the query's internal cache
readQuery.setQueryResultsCachePolicy(

new QueryResultsCachePolicy(new TimeToLiveCacheInvalidationPolicy(1000))

Using Queries and the Cache

111-22 Developer's Guide for Oracle TopLink

);

For more information, see Section 102.2.5, "Cache Invalidation".

112

Introduction to TopLink Support for Oracle Spatial 112-1

112Introduction to TopLink Support for Oracle
Spatial

This chapter provides an overview of the TopLink support for Oracle Spatial, as well
as demonstrates the ways to extend TopLink to support the mapping and querying of
Oracle Spatial columns (MDSYS.SDO_GEOMETRY).

For more information about Oracle Spatial, see
http://www.oracle.com/technology/products/spatial/index.html

This chapter includes the following sections:

■ TopLink Support for Oracle Spatial

■ Using Structure Converters

■ Using JGeometry

112.1 TopLink Support for Oracle Spatial
TopLink provides support for direct mappings of database columns of type
MDSYS.SDO_GEOMETRY to attributes of the
oracle.spatial.geometry.JGeometry data type.

TopLink also provides support for spatial operators (see Section 112.3.3, "How to
Perform Queries Using Spatial Operator Expressions") through the TopLink expression
framework (see Section 110, "Introduction to TopLink Expressions"), as well as for
custom object types that wrap SDO_GEOMETRY.

For information on using TopLink structure converter with application servers other
than OC4J, see the relevant server documentation.

For information on configuring OC4J application server to use the TopLink structure
converter, see Oracle Fusion Middleware Administration and Application Deployment
Guide for Oracle Containers for Java EE

112.2 Using Structure Converters
In TopLink, a oracle.toplink.platform.database.DatabasePlatform (see
Section 96.1.3.1, "Database Platforms") stores a list of structure converters.

To create a custom converter, implement the
oracle.toplink.platform.database.converters.StructConverter
interface and register it on your direct-to-field mapping (see Section 27.3,
"Direct-to-Field Mapping").

To use the StructConverter, do the following:

Using JGeometry

112-2 Developer's Guide for Oracle TopLink

1. Configure the database platform (see Section 112.2.1, "How to Configure the
Database Platform to Use Structure Converters").

2. Set up a mapping (see Section 112.2.2, "How to Set Up Mappings Using Structure
Converters").

112.2.1 How to Configure the Database Platform to Use Structure Converters
TopLink uses a database platform (see Section 96.1.3.1, "Database Platforms") to
control the usage of database vendor-specific and version-specific operations such as
SQL dialect, stored procedure calls, sequencing, as well as platform-specific type
handling. You need to configure the platform to allow TopLink to use the advanced
features of the database.

To add your structure converter to the DatabasePlatform, call
addStructConverter(StructConverter converter) method of the
DatabasePlatform. Call this method within your TopLink session (server or
database) prior to the session login (see Section 89.3, "Configuring a Session Login").

112.2.2 How to Set Up Mappings Using Structure Converters
Use direct-to-field mappings (see Section 27.3, "Direct-to-Field Mapping") to map your
STRUCT types. For each mapping that maps to the type defined by the structure
converter, set its field type to the STRUCT data type, as follows:

mapping.setFieldType(java.sql.Types.STRUCT);

112.3 Using JGeometry
To use the oracle.spatial.geometry.JGeometry, do the following:

1. Configure the database platform (see Section 112.3.1, "How to Configure the
Database Platform to Use JGeometry").

2. Set up a mapping (see Section 112.3.2, "How to Map JGeometry Attributes").

You can query your mapped entities with expressions that use Spatial operators. For
more information, see Section 112.3.3, "How to Perform Queries Using Spatial
Operator Expressions".

112.3.1 How to Configure the Database Platform to Use JGeometry
To configure the database platform, add a structure converter in a form of the
oracle.toplink.platform.database.oracle.converters.JGeometryConv
erter as follows:

databasePlatform.addStructConverter(new JGeometryConverter());
You must configure this platform within your TopLink session prior to the session
login (see Section 89.3, "Configuring a Session Login").

112.3.2 How to Map JGeometry Attributes
Use direct-to-field mappings (see Section 27.3, "Direct-to-Field Mapping") to map your
STRUCT types. For each mapping that maps to the type defined by the structure
converter (JGeometry), set its field type to the STRUCT data type, as follows:

mapping.setFieldType(java.sql.Types.STRUCT);

Using JGeometry

Introduction to TopLink Support for Oracle Spatial 112-3

112.3.3 How to Perform Queries Using Spatial Operator Expressions
With the configured database platform, you can read and write persistent entities with
JGeometry attributes mapped to SDO_GEOMETRY columns. With this support, you
can query for these mapped entities with native SQL queries using Oracle Spatial
operators (see http://download-west.oracle.com/docs/cd/B19306_
01/appdev.102/b14255/sdo_operat.htm#i76448).

Spatial operators are special SQL functions supported by Oracle Database to enable
querying and comparison of columns containing geometry types. The spatial
operators take the following format:

<SPATIAL-OP>(geometry1, geometry2, parameters) = 'TRUE'
For more information on spatial operators, see Oracle Spatial API Documentation.

In its oracle.toplink.expressions.spatial package, TopLink provides the
expression support for the following Spatial operators:

■ SDO_WITHIN_DISTANCE

■ SDO_RELATE

■ SDO_FILTER

■ SDO_NN

Use the following methods of the
oracle.toplink.expressions.spatial.SpatialExpressionFactory class
to build expressions that use Spatial operators:

■ withinDistance

■ relate

■ filter

■ nearestNeighbor

All these methods have the following common set of parameters:

1. an expression (oracle.toplink.expressions.Expression) that points to JGeometry;

2. JGeometry object or an Expression;

3. an oracle.toplink.expressions.spatial.SpatialParameters object
that defines the parameters to the function call.

The SpatialParameters class provides convenience methods that let you set the
parameters representing the following:

■ minimum resolution;

■ maximum resolution;

■ units;

■ distance;

■ query type;

■ masks;

■ String of parameters.

Example 112–1 demonstrates how to construct a Spatial operator expression, and then
relate it to an existing JGeometry with SpatialParameters created using a
String.

Using JGeometry

112-4 Developer's Guide for Oracle TopLink

Example 112–1 Relating an Expression Using String of Spatial Parameters

SpatialParameters parameters =
new SpatialParameters("MASK=ANYINTERACT QUERYTYPE=WINDOW");

Expression selectionCriteria =
SpatialExpressionFactory.relate(expressionBuilder.get("geometry"),

rectangle,
parameters);

Example 112–2 demonstrates how to relate two expressions with
SpatialParameters constructed using convenience methods.

Example 112–2 Relating Two Expressions

SpatialParameters parameters = new SpatialParameters();
parameters.setQueryType(

SpatialParameters.QueryType.WINDOW.setMask(Mask.ANYINTERACT);
Expression selectionCriteria =

SpatialExpressionFactory.relate(expressionBuilder1.get("geometry"),
expressionBuilder2.get("geometry"),
parameters);

Part XXV
Part XXV Transactions

This part describes how to use the TopLink unit of work to transactionally perform
create, read, update, and delete operations with and without an external transaction
processor. It contains the following chapters:

■ Chapter 113, "Introduction to TopLink Transactions"

This chapter describes how to use the unit of work, the TopLink wrapper for a
transaction, and how TopLink integrates with transaction management and other
important query concepts.

■ Chapter 114, "Using Basic Unit of Work API"

This chapter explains how to use basic TopLink unit of work options.

■ Chapter 115, "Using Advanced Unit of Work API"

This chapter explains how to use advanced TopLink unit of work options.

113

Introduction to TopLink Transactions 113-1

113Introduction to TopLink Transactions

This chapter explains how transactions are implemented in TopLink.

This chapter includes the following sections:

■ Unit of Work Architecture

■ Unit of Work Concepts

■ Unit of Work API

■ Example Model Object and Schema

113.1 Unit of Work Architecture
A database transaction is a set of operations (create, read, update, or delete) that either
succeed or fail as a single operation. The database discards, or rolls back, unsuccessful
transactions, leaving the database in its original state. Transactions may be internal
(that is, provided by TopLink) or external (that is, provided by a source external to the
application, such as an application server).

In TopLink, transactions are contained in the unit of work object. You acquire a unit of
work from a session (see Section 114.1, "Acquiring a Unit of Work") and using its API,
you can control transactions directly or through a Java 2 Enterprise Edition (Java EE)
application server transaction controller such as the Java Transaction API (JTA).

Transactions execute in their own context, or logical space, isolated from other
transactions and database operations.

The transaction context is demarcated; that is, it has a defined structure that includes
the following:

■ A begin point, where the operations within the transaction begin. At this point,
the transaction begins to execute its operations.

■ A commit point, where the operations are complete and the transaction attempts
to formalize changes on the database.

The degree to which concurrent (parallel) transactions on the same data are allowed to
interact is determined by the level of transaction isolation configured. ANSI/SQL
defines four levels of database transaction isolation, as shown in Table 113–1. Each
offers a trade-off between performance and resistance from the following unwanted
actions:

■ Dirty read: a transaction reads uncommitted data written by a concurrent
transaction.

■ Nonrepeatable read: a transaction rereads data and finds it has been modified by
some other transaction that was committed after the initial read operation.

Unit of Work Architecture

113-2 Developer's Guide for Oracle TopLink

■ Phantom read: a transaction reexecutes a query and the returned data has changed
due to some other transaction that was committed after the initial read operation.

As a transaction is committed, the database maintains a log of all changes to the data.
If all operations in the transaction succeed, the database allows the changes; if any part
of the transaction fails, the database uses the log to roll back the changes.

Like any transaction, a unit of work transaction provides the following:

■ Unit of Work Transaction Context

■ Unit of Work Transaction Demarcation

■ Unit of Work Transaction Isolation

113.1.1 Unit of Work Transaction Context
Unit of work operations occur within a unit of work context, in which writes are
isolated from the database until commit time. The unit of work executes changes on
copies, or clones, of objects in its own internal cache, and if successful, applies changes
to objects in the database and the session cache.

113.1.2 Unit of Work Transaction Demarcation
In a standalone TopLink application, your application demarcates transactions using
the unit of work.

If your application includes a Java EE container that provides container-managed
transactions, your application server demarcates transactions using its own transaction
service. You configure TopLink to integrate with the container’s transaction service by
specifying a TopLink external transaction controller.

A TopLink external transaction controller class integrates the unit of work with an
application server’s transaction service. Using an external transaction controller, your
application can participate in transactions that span multiple data sources and that are
managed by the application server. The external transaction controller coordinates
messages and callbacks between the application server’s transaction service and the
unit of work.

When you configure your application to use an external transaction controller (see
Section 89.9, "Configuring the Server Platform"), the unit of work executes as part of an
external transaction. The unit of work still manages its own internal operations, but it
waits for the external transaction to tell it to write changes back to the database and to
the session cache.

Note that because the transaction happens outside of the unit of work context and is
controlled by the application server’s transaction service, errors can be more difficult
to diagnose and fix because exceptions may occur outside of your application code, for
example, during application server initiated call-backs.

Table 113–1 Transaction Isolation Levels

Transaction Isolation Level Dirty Read
Nonrepeatable
Read Phantom Read

Read Uncommitted Yes Yes Yes

Read Committed No Yes Yes

Repeatable Read No No Yes

Serializable No No No

Unit of Work Architecture

Introduction to TopLink Transactions 113-3

You can integrate the unit of work with the following:

■ JTA Controlled Transactions

■ OTS Controlled Transactions

■ CMP-Controlled Transactions

113.1.2.1 JTA Controlled Transactions
The Java Transaction API (JTA) is the application programming interface you use to
interact with a transaction manager.

Using JTA, your application can participate in a distributed transaction. A transaction
manager that implements JTA provides transaction management and connection
pooling and enables your application to interact with multiple data sources
transparently by using JTA.

For more information, see Section 115.13, "Integrating the Unit of Work with an
External Transaction Service".

113.1.2.2 OTS Controlled Transactions
The CORBA Object Transaction Service (OTS) specification is part of the Common
Object Request Brokers Architecture (CORBA) Object Services model and is the
standard for Object Request Broker (ORB) implementations. Some servers implement
the Java APIs for the OTS rather than for JTA (see Section 113.1.2.1, "JTA Controlled
Transactions").

Use TopLink OTS support with the unit of work to directly access the Java OTS
interfaces of servers that do not support JTA.

To integrate your application with an OTS transaction service, you must configure
your application to use a custom server platform (see Section 89.9, "Configuring the
Server Platform").

For more information, see Section 115.13, "Integrating the Unit of Work with an
External Transaction Service".

113.1.2.3 CMP-Controlled Transactions
Entity beans that use container-managed persistence may participate in transactions
that are either client demarcated or container demarcated.

A client demarcated transaction occurs when a client of an entity bean directly sets up
transaction boundaries using the javax.transaction.UserTransaction
interface.

A container demarcated transaction occurs when the container automatically wraps an
invocation on an EJB in a transaction based upon the transaction attributes supplied in
the EJB deployment descriptor.

In transactions involving EJB, TopLink waits until the transaction begins its two-phase
commit process before updating the database. This allows for the following:

■ SQL optimizations that ensure only changed data is written to the data source

■ Proper ordering of updates to allow for database constraints

For more information, see Section 115.14, "Integrating the Unit of Work with CMP".

Unit of Work Concepts

113-4 Developer's Guide for Oracle TopLink

113.1.3 Unit of Work Transaction Isolation
The unit of work does not directly participate in database transaction isolation.
Because the unit of work may execute queries outside the database transaction (and,
by interacting with the cache, outside the database itself), the database does not have
control over this data and its visibility.

However, by default, TopLink provides a degree of transaction isolation regardless of
what database transaction isolation has been configured on the underlying database.

Each unit of work instance operates on its own copy (clone) of registered objects (see
Section 113.2.4, "Clones and the Unit of Work"). In this case, because the unit of work
provides an API that allows querying to be done on object changes within a unit of
work (see Section 115.4, "Using Conforming Queries and Descriptors"), the unit of
work provides read committed operations.

Optimistic locking, optimistic read locking, or pessimistic locking can be used to
further manage concurrency (see Section 113.3.1.2, "Locking and the Unit of Work").

Changes are committed to the database only when the unit of work commit method is
called (either directly or by way of an external transaction controller).

For detailed information on configuring and using TopLink to achieve a particular
level of transaction isolation and transaction isolation level limitations, see
Section 115.15, "Database Transaction Isolation Levels".

113.2 Unit of Work Concepts
This section introduces transaction concepts unique to TopLink, including the
following:

■ Unit of Work Benefits

■ Unit of Work Life Cycle

■ Unit of Work and Change Policy

■ Clones and the Unit of Work

■ Nested and Parallel Units of Work

■ Commit and Rollback Transactions

■ Primary Keys

■ Unit of Work Optimization

113.2.1 Unit of Work Benefits
The TopLink unit of work simplifies transactions and improves transactional
performance. It is the preferred method of writing to a database in TopLink because it
performs the following:

■ Sends a minimal amount of SQL to the database during the commit by updating
only the exact changes down to the field level

■ Reduces database traffic by isolating transaction operations in their own memory
space

■ Optimizes cache coordination, in applications that use multiple caches, by passing
change sets (rather than objects) between caches

■ Isolates object modifications in their own transaction space to allow parallel
transactions on the same objects

Unit of Work Concepts

Introduction to TopLink Transactions 113-5

■ Ensures referential integrity and minimizes deadlocks by automatically
maintaining SQL ordering

■ Orders database insert, update, and delete operations to maintain referential
integrity for mapped objects

■ Resolves bidirectional references automatically

■ Frees the application from tracking or recording its changes

■ Simplifies persistence with persistence by reachability (see Section 114.5, "Associating
a New Source to an Existing Target Object")

113.2.2 Unit of Work Life Cycle
TopLink uses the unit of work as follows:

1. The client application acquires a unit of work from a session object.

2. The client application queries TopLink to obtain a cache object it wants to modify,
and then registers the cache object with the unit of work.

3. The unit of work registers the object according to the object’s change policy. For
more information about how change policy affects registration, see Section 113.2.3,
"Unit of Work and Change Policy".

By default, as each object is registered, the unit of work accesses the object from
the session cache or database, and creates a backup clone and a working clone (see
Section 113.2.4, "Clones and the Unit of Work"). The unit of work returns the
working clone to the client application. If change tracking is used, the unit of work
does not create backup clones and intercepts the changes through weaving (see
Section 12.14, "Optimizing Using Weaving").

4. The client application modifies the working object returned by the unit of work.

5. The client application (or external transaction controller) commits the transaction.

6. The unit of work calculates the change set for each registered object according to
the object’s change policy. For more information about how change policy affects
change set calculation, see Section 113.2.3, "Unit of Work and Change Policy".

By default, at commit time, the unit of work compares the working clones to the
backup clones and calculates the change set (that is, determines the minimum
changes required). The comparison is done with a backup clone so that concurrent
changes to the same objects will not result in incorrect changes being identified.
The unit of work then attempts to commit any new or changed objects to the
database.

If the commit transaction succeeds, the unit of work merges changes into the
shared session cache. Otherwise, no changes are made to the objects in the shared
cache. For more details, see Section 113.2.6, "Commit and Rollback Transactions".

If there are no changes, the unit of work does not start a new transaction.

Unit of Work Concepts

113-6 Developer's Guide for Oracle TopLink

Figure 113–1 The Life Cycle of a Unit of Work

Example 113–1 shows the default life cycle in code.

Example 113–1 Unit of Work Life Cycle

// The application reads a set of objects from the database
List employees = session.readAllObjects(Employee.class);

// The application specifies an employee to edit
. . .
Employee employee = (Employee) employees.get(index);

try {
// Acquire a unit of work from the session
UnitOfWork uow = session.acquireUnitOfWork();
// Register the object that is to be changed. Unit of work returns a clone
// of the object and makes a backup copy of the original employee
Employee employeeClone = (Employee)uow.registerObject(employee);
// Make changes to the employee clone by adding a new phoneNumber.
// If a new object is referred to by a clone, it does not have to be
// registered. Unit of work determines it is a new object at commit time
PhoneNumber newPhoneNumber = new PhoneNumber("cell","212","765-9002");
employeeClone.addPhoneNumber(newPhoneNumber);
// Commit the transaction: unit of work compares the employeeClone with
// the backup copy of the employee, begins a transaction, and updates the
// database with the changes. If successful, the transaction is committed
// and the changes in employeeClone are merged into employee. If there is an
// error updating the database, the transaction is rolled back and the
// changes are not merged into the original employee object
uow.commit();

}
catch (DatabaseException ex) {

// If the commit fails, the database is not changed. The unit of work should
// be thrown away and application-specific action taken

}
// After the commit, the unit of work is no longer valid. Do not use further

113.2.3 Unit of Work and Change Policy
The unit of work tracks changes for a registered object based on the change policy you
configure for the object’s descriptor. If there are no changes, the unit of work will not
start a database transaction.

Unit of Work Concepts

Introduction to TopLink Transactions 113-7

Table 113–2 lists the change policies that TopLink provides.

For CMP applications deployed to an application server for which TopLink provides
CMP integration (see Section 8.1, "Introduction to the Application Server Support"),
when you configure a descriptor for an entity bean with container-managed
persistence with an ObjectChangeTrackingPolicy, TopLink code generates a
concrete subclass to implement the TopLink ChangeTracker interface at deploy time
(see Section 119.30.1.2, "Configuring Object Change Tracking Policy").

For more information, see Section 119.30, "Configuring Change Policy".

113.2.3.1 Deferred Change Detection Policy
The DeferredChangeDetectionPolicy is the change policy that all persistent
objects use by default.

This option provides good unit of work commit performance for a wide range of
object change characteristics.

When you register in a unit of work an object whose descriptor is configured with a
DeferredChangeDetectionPolicy (see Section 119.30.1.1, "Configuring Deferred
Change Detection Policy"), a backup clone is made of the object (see Section 113.2.4,
"Clones and the Unit of Work") and at commit time, the unit of work computes
changes by making an attribute-by-attribute comparison between the backup clone
and the original object.

This change policy is applicable to all mapping types.

113.2.3.2 Object-Level Change Tracking Policy
The ObjectChangeTrackingPolicy optimizes the unit of work commit transaction
by including objects in the change set calculation only if at least one attribute has
changed.

This option provides improved unit of work commit performance for objects with few
attributes, or with many attributes and many changed attributes.

When you register in a unit of work an object whose descriptor is configured with
ObjectChangeTracking change policy, a backup clone is made of the object and at
commit time, the unit of work computes changes by comparing the backup to the
current object if and only if at least one attribute is changed (if the object’s
hasChanges method returns true). If a registered object has no changes, the unit of
work does not compare it to the backup clone.

Table 113–2 TopLink Change Policies

Change Policy Applicable to...

Deferred Change Detection Policy Wide range of object change characteristics.

The default change policy.

Object-Level Change Tracking Policy Objects with few attributes or with many attributes and many
changed attributes.

Attribute Change Tracking Policy Objects with many attributes and few changed attributes.

The most efficient change policy.

The default change policy for JPA or EJB 2.n CMP on OC4J.

Note: If you modify an object’s field through reflection, TopLink will
not detect the change. However, if you disable change tracking,
TopLink will detect the change.

Unit of Work Concepts

113-8 Developer's Guide for Oracle TopLink

This change policy is applicable to a subset of mapping types (see Section 113.2.3.4,
"Change Policy Mapping Support").

TopLink provides different levels of support for this change policy depending on the
EJB version and application server you are using:

113.2.3.2.1 EJB CMP and JPA For CMP applications deployed to an application server
for which TopLink provides CMP integration (see Section 8.1, "Introduction to the
Application Server Support"), as well as for JPA applications, when you configure a
descriptor for an entity bean with container-managed persistence (or a JPA entity) with
an ObjectChangeTrackingPolicy, TopLink code generates a concrete subclass to
implement the TopLink ChangeTracker interface at deploy time (see
Section 119.30.1.2, "Configuring Object Change Tracking Policy").

113.2.3.3 Attribute Change Tracking Policy
The AttributeChangeTrackingPolicy optimizes the unit of work commit
transaction by tracking all object changes at the attribute level. This eliminates two
unit of work operations: backup clone creation and change detection through
comparison.

This option provides improved unit of work commit performance for objects with
many attributes, and few changed attributes. Generally, this is the most efficient
change policy.

This change policy is applicable to a subset of mapping types (see Section 113.2.3.4,
"Change Policy Mapping Support").

TopLink provides different levels of support for this change policy:

113.2.3.3.1 JPA Entities For JPA entities, you can configure TopLink to automatically
weave attribute level change tracking.

TopLink only supports change tracking with lazy collection relationships, not with
eager collection relationship.

For more information, see "What You May Need to Know About Weaving JPA Entities"
section of EclipseLink Developer’s Guide at http://wiki.eclipse.org/Using_
EclipseLink_JPA_Extensions_%28ELUG%29#What_You_May_Need_to_Know_
About_Weaving_JPA_Entities.

113.2.3.3.2 Plain Old Java Object (POJO) Classes For POJO classes, you can configure
TopLink to automatically weave attribute level change tracking.

TopLink can weave both transparent indirect container indirection (lazy loading) and
change tracking for collection mappings. If you manually configure a collection
mapping with nontransparent indirection (either value holder indirection or proxy
indirection), TopLink does not automatically weave change tracking.

For more information, see Section 2.10.5, "What You May Need to Know About
Weaving and POJO Classes".

113.2.3.3.3 EJB CMP on OC4J By default, TopLink uses change tracking for CMP.

Note: You cannot use the AttributeChangeTrackingPolicy if
you are using any instance of FieldsLockingPolicy (see
Section 16.4.4, "Optimistic Field Locking Policies").

Unit of Work Concepts

Introduction to TopLink Transactions 113-9

113.2.3.4 Change Policy Mapping Support
TopLink supports alternative change tracking policies (policies other than
DeferredChangeDetectionPolicy) for attributes that use any of the following
mapping types:

■ Direct-to-Field Mapping

■ Transformation Mapping (immutable mappings only)

■ One-to-One Mapping

■ Variable One-to-One Mapping

■ One-to-Many Mapping

■ Many-to-Many Mapping

■ Direct Collection Mapping

■ Direct Map Mapping

■ Aggregate Object Mapping

■ EIS Transformation Mapping (immutable mappings only)

TopLink uses the DeferredChangeDetectionPolicy (see Section 113.2.3.1,
"Deferred Change Detection Policy") for attributes that use any other type of mapping.

If a transformation mapping maps a mutable value, TopLink must clone and compare
the value in a unit of work (see Section 119.29, "Configuring Copy Policy").

By default, TopLink assumes that all transformation mappings are mutable. If the
mapping maps a simple immutable value, you can improve unit of work performance
by configuring the IsMutable option to false.

Mutable basic mappings affect the overhead of change tracking. TopLink can only
weave an attribute change tracking policy for immutable mappings.

For more information, see Section 2.8.11, "Mutability".

113.2.4 Clones and the Unit of Work
When using the DefrerredChangeDetectionPolicy or the
ObjectLevelChangeTrackingPolicy (see Section 113.2.3.1, "Deferred Change
Detection Policy"), the unit of work maintains the following two copies of the original
objects registered with it:

■ working clones;

■ backup clones.

After you change the working clones and the transaction is committed, the unit of
work compares the working clones to the backup clones, and writes any changes to
the database. The unit of work uses clones to allow parallel units of work (see
Section 113.2.5, "Nested and Parallel Units of Work") to exist, a requirement in
multiuser three-tier applications.

The TopLink cloning process is efficient in that it clones only the mapped attributes of
registered objects, and stops at indirection (lazily loaded) objects unless you trigger the
indirection. For more information, see Section 121.3, "Configuring Indirection (Lazy
Loading)".

You can customize the cloning process using the descriptor’s copy policy. For more
information, see Section 119.29, "Configuring Copy Policy".

Unit of Work Concepts

113-10 Developer's Guide for Oracle TopLink

You should discontinue the use of the unit of work clones after the transaction has
been committed, as it is beyond the scope of a server request. If you choose to continue
using the clones, be aware that these objects may include a reference to the unit of
work and not let the garbage collection to proceed until they are released. For more
information, see Section 115.6, "Resuming a Unit of Work After Commit".

113.2.5 Nested and Parallel Units of Work
You can use TopLink to create the following:

■ Nested Unit of Work

■ Parallel Unit of Work

For additional information and examples on using nested and parallel units of work,
see Section 115.8, "Using a Nested or Parallel Unit of Work".

113.2.5.1 Nested Unit of Work
You can nest a unit of work (the child) within another unit of work (the parent). A
nested unit of work does not commit changes to the database. Instead, it passes its
changes to the parent unit of work, and the parent attempts to commit the changes at
commit time. Nesting units of work lets you break a large transaction into smaller
isolated transactions, and ensures that:

■ Changes from each nested unit of work commit or fail as a group.

■ Failure of a nested unit of work does not affect the commit or rollback transaction
of other operations in the parent unit of work.

■ Changes are presented to the database as a single transaction.

113.2.5.2 Parallel Unit of Work
You can modify the same objects in multiple unit of work instances in parallel because
the unit of work manipulates copies of objects. TopLink resolves any concurrency
issues when the Units of Work commits the changes.

113.2.6 Commit and Rollback Transactions
When a unit of work transaction is committed, it either succeeds, or fails and rolls
back. A commit transaction can be initiated by your application or by a Java EE
container.

113.2.6.1 Commit Transactions
At commit time, the unit of work compares the working clones and backup clones to
calculate the change set (that is, to determine the minimum changes required).
Changes include updates to or deletion of existing objects, and the creation of new
objects. The unit of work then begins a database transaction, and attempts to write the
changes to the database. If all changes commit successfully on the database, the unit of
work merges the changed objects into the session cache. If any one of the changes fail
on the database, the unit of work rolls back any changes on the database, and does not
merge changes into the session cache.

The unit of work calculates commit order using foreign key information from
one-to-one and one-to-many mappings. If you encounter constraint problems during a
commit transaction, verify your mapping definitions. The order in which you register
objects with the registerObject method does not affect the commit order.

Unit of Work Concepts

Introduction to TopLink Transactions 113-11

113.2.6.1.1 Commit and JTA When your application uses JTA, the unit of work commit
transaction acts differently than in a non-JTA application. In most cases, the unit of
work attaches itself to an external transaction. If no transaction exists, the unit of work
creates a transaction. This distinction affects commit activity as follows:

■ If the unit of work attaches to an existing transaction, the unit of work ignores the
commit call. The transaction commits the unit of work when the entire external
transaction is complete.

■ If the unit of work starts the external transaction, the transaction treats the unit of
work commit call as a request to commit the external transaction. The external
transaction then calls its own commit code on the database.

In either case, only the external transaction can call commit on the database because it
owns the database connection.

For more information, see Section 115.13, "Integrating the Unit of Work with an
External Transaction Service".

113.2.6.2 Rollback Transactions
A unit of work commit transaction must succeed or fail as a unit. Failure in writing
changes to the database causes the unit of work to roll back the database to its
previous state. Nothing changes in the database, and the unit of work does not merge
changes into the session cache.

113.2.6.2.1 Rollback and JTA In a JTA environment, the unit of work does not own the
database connection. In this case, the unit of work sends the rollback call to the
external transaction rather than the database, and the external transaction treats the
rollback call as a request to roll the transaction back.

For more information, see Section 115.13, "Integrating the Unit of Work with an
External Transaction Service".

113.2.7 Primary Keys
You cannot modify the primary key attribute of an object in a unit of work. This is an
unsupported operation and doing so will result in unexpected behaviour (exceptions
or database corruption).

To replace one instance of an object with unique constraints with another, see
Section 115.10.1, "How to Use the setShouldPerformDeletesFirst Method of the Unit of
Work".

113.2.8 Unit of Work Optimization
By default, the unit of work performs change set calculation efficiently for a wide
range of object change characteristics. However, there are various ways you can use
the unit of work to enhance application performance.

One way to improve performance is to consider using an alternative change policy
(see Section 113.2.3, "Unit of Work and Change Policy").

For more performance options, see Section 12.13, "Optimizing the Unit of Work".

Unit of Work API

113-12 Developer's Guide for Oracle TopLink

113.3 Unit of Work API
You do not instantiate an instance of oracle.toplink.sessions.UnitOfWork.
Rather, you acquire a unit of work from an instance of
oracle.toplink.sessions.Session or from another unit of work.

For more information on creating sessions, see Chapter 88, "Creating a Session".

For more information on acquiring a unit of work, see Section 114.1, "Acquiring a Unit
of Work".

For more information on using the basic API of the unit of work, see Chapter 114,
"Using Basic Unit of Work API".

For more information on using the advanced API of the unit of work, see Chapter 115,
"Using Advanced Unit of Work API".

113.3.1 Unit of Work as Session
The unit of work extends the interface oracle.toplink.sessions.Session, and
implements all the usual session API. When using session API from a unit of work,
you should consider the following:

■ Reading and Querying Objects with the Unit of Work

■ Locking and the Unit of Work

113.3.1.1 Reading and Querying Objects with the Unit of Work
A unit of work offers the same set of database access methods as a regular session.

When called from a unit of work, these methods access the objects in the unit of work,
register the selected objects automatically, and return clones.

Although this makes it unnecessary for you to call the registerObject and
registerAllObjects methods, be aware of the restrictions on registering objects
described in Section 114.2, "Creating an Object" and Section 114.5, "Associating a New
Source to an Existing Target Object".

113.3.1.1.1 Reading Objects with the Unit of Work As with regular sessions, you use the
readObject and readAllObjects methods to read objects from the database.

113.3.1.1.2 Querying Objects with the Unit of Work You can execute queries in a unit of
work with the executeQuery method.

113.3.1.2 Locking and the Unit of Work
For information on locking API generic to all sessions, see the following:

■ Section 2.3.5, "Locking"

■ Section 119.26, "Configuring Locking Policy"

For information on locking API specific to a unit of work, see Section 115.11, "Using
Optimistic Read Locking with the forceUpdateToVersionField Method".

Note: Because a unit of work manages changes to existing objects
and the creation of new objects, modifying queries such as
InsertObjectQuery or UpdateObjectQuery are not necessary
and therefore are not supported by the unit of work.

Example Model Object and Schema

Introduction to TopLink Transactions 113-13

113.4 Example Model Object and Schema
Throughout the chapters in this part, the following object model and schema are used
in the examples provided. The example object model appears in Figure 113–2 and the
example entity-relationship (data model) diagram appears in Figure 113–3.

Figure 113–2 Example Object Model

Figure 113–3 Example Data Model

Example Model Object and Schema

113-14 Developer's Guide for Oracle TopLink

114

Using Basic Unit of Work API 114-1

114Using Basic Unit of Work API

This chapter explains the essential unit of work API calls that you are most likely to
use throughout the development cycle.

This chapter includes the following sections:

■ Acquiring a Unit of Work

■ Creating an Object

■ Modifying an Object

■ Associating a New Target to an Existing Source Object

■ Associating a New Source to an Existing Target Object

■ Associating an Existing Source to an Existing Target Object

■ Deleting Objects

For more information, see Chapter 115, "Using Advanced Unit of Work API".

114.1 Acquiring a Unit of Work
This example shows how to acquire a unit of work from a client session object.

Server server =
(Server) SessionManager.getManager().getSession(

sessionName, MyServerSession.class.getClassLoader());
Session session = (Session) server.acquireClientSession();
UnitOfWork uow = session.acquireUnitOfWork();
You can acquire a unit of work from any session type. For more information about
acquiring sessions at run time, see Section 87.2.4, "Acquiring a Session at Run Time
with the Session Manager".

Note that you do not need to create a new session and log in before every transaction.
The recommended pattern is to acquire a client session per client access (or thread),
and then acquire the necessary unit of work from this client session.

The unit of work is valid until the commit or release method is called. After a
commit or release transaction, a unit of work is not valid even if the transaction fails
and is rolled back.

A unit of work remains valid after the commitAndResume method is called as
described in Section 115.6, "Resuming a Unit of Work After Commit".

When using a unit of work with JTA, you should also use the advanced API
getActiveUnitOfWork method as described in Section 115.13, "Integrating the Unit
of Work with an External Transaction Service".

Creating an Object

114-2 Developer's Guide for Oracle TopLink

114.2 Creating an Object
When you create new objects in the unit of work, use the registerObject method
to ensure that the unit of work writes the objects to the database at commit time.

The unit of work calculates commit order using foreign key information from
one-to-one and one-to-many mappings. If you encounter constraint problems during a
commit transaction, verify your mapping definitions. The order in which you register
objects with the registerObject method does not affect the commit order.

Example 114–1 and Example 114–2 show how to create and persist a simple object
(without relationships) using the clone returned by the unit of work
registerObject method.

Example 114–1 Creating an Object: Preferred Method

UnitOfWork uow = session.acquireUnitOfWork();
Pet pet = new Pet();
Pet petClone = (Pet)uow.registerObject(pet);
petClone.setId(100);
petClone.setName("Fluffy");
petClone.setType("Cat");

uow.commit();
Example 114–2 shows a common alternative.

Example 114–2 Creating an Object: Alternative Method

UnitOfWork uow = session.acquireUnitOfWork();
Pet pet = new Pet();
pet.setId(100);
pet.setName("Fluffy");
pet.setType("Cat");
uow.registerObject(pet);

uow.commit();
Both approaches produce the following SQL:

INSERT INTO PET (ID, NAME, TYPE, PET_OWN_ID) VALUES (100, 'Fluffy', 'Cat', NULL)
Example 114–1 is preferred: it gets you into the pattern of working with clones and
provides the most flexibility for future code changes. Working with combinations of
new objects and clones can lead to confusion and unwanted results.

114.3 Modifying an Object
In Example 114–3, a Pet is read prior to a unit of work: the variable pet is the cache
copy clone for that Pet. Inside the unit of work, register the cache copy to get a
working copy clone. You then modify the working copy clone and commit the unit of
work.

Example 114–3 Modifying an Object

// Read in any pet
Pet pet = (Pet)session.readObject(Pet.class);
UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet) uow.registerObject(pet);
petClone.setName("Furry");
uow.commit();
Example 114–4 shows how to take advantage of the fact that you can query through a
unit of work and get back clones, saving the registration step. However, the drawback
is that we do not have a handle to the cache copy clone.

Associating a New Target to an Existing Source Object

Using Basic Unit of Work API 114-3

If you wanted to do something with the updated Pet after the commit transaction,
you would have to query the session to get it (remember that after a unit of work is
committed, its clones are invalid and should not be used).

Example 114–4 Modifying an Object: Skipping the Registration Step

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet) uow.readObject(Pet.class);
petClone.setName("Furry");
uow.commit();
Both approaches produce the following SQL:

UPDATE PET SET NAME = 'Furry' WHERE (ID = 100)
Take care when querying through a unit of work. All objects read in the query are
registered in the unit of work and therefore will be checked for changes at commit
time. Rather than do a ReadAllQuery through a unit of work, it is better for
performance to design your application to do the ReadAllQuery through a session,
and then register in a unit of work only the objects that need to be changed.

114.4 Associating a New Target to an Existing Source Object
This section explains how you can associate a new target to an existing source object,
including the following:

■ How to Associate a New Target to an Existing Source Object in a Unidirectional
Relationship: Reference to the New Cache Object After Commit not Required

■ How to Associate a New Target to an Existing Source Object in a Unidirectional
Relationship: Reference to the New Cache Object After Commit Required

■ How to Associate a New Target to an Existing Source Object in a Bidirectional
Relationship: Query for Target Before Commit not Required

■ How to Associate a New Target to an Existing Source Object in a Bidirectional
Relationship: Query for Target Object Before Commit Required

Deciding which approach to use depends on whether or not your code requires a
reference to the cache copy clone of the new object after the unit of work is committed,
and on how adaptable to change you want your code to be.

114.4.1 How to Associate a New Target to an Existing Source Object in a Unidirectional
Relationship: Reference to the New Cache Object After Commit not Required

Example 114–5 shows how to associate a new target with an existing source in a
unidirectional relationship without retaining a reference to the cache object.

When the Pet object is read using the unit of work, TopLink automatically registers it.
Because there is a unidirectional relationship between the Pet object and the new
PetOwner and VetVisit objects, you do not need to register the new PetOwner or
VetVisit objects. TopLink can reach these new objects through the registered Pet
object and automatically detect that they are new objects.

Note: You cannot use UnitOfWork methods registerObject,
registerNewObject, or registerExistingObject with an
aggregate object (see Section 22.2.1.2, "Creating Relational Aggregate
Descriptors"). Doing so will raise a ValidationException or other
errors at commit time. For more information, see Section 115.1.4, "How
to Work with Aggregates".

Associating a New Target to an Existing Source Object

114-4 Developer's Guide for Oracle TopLink

Example 114–5 Associating Without Reference to the Cache Object

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.readObject(Pet.class);

PetOwner petOwner = new PetOwner();
petOwner.setId(400);
petOwner.setName("Donald Smith");
petOwner.setPhoneNumber("555-1212");

VetVisit vetVisit = new VetVisit();
vetVisit.setId(500);
vetVisit.setNotes("Pet was shedding a lot.");
vetVisit.setSymptoms("Pet in good health.");
vetVisit.setPet(petClone);

petClone.setPetOwner(petOwner);
petClone.getVetVisits().add(vetVisit);
uow.commit();

This executes the following proper SQL:

INSERT INTO PETOWNER (ID, NAME, PHN_NBR) VALUES (400, 'Donald Smith', '555-1212')
UPDATE PET SET PET_OWN_ID = 400 WHERE (ID = 100)
INSERT INTO VETVISIT (ID, NOTES, SYMPTOMS, PET_ID) VALUES (500, 'Pet was shedding a lot.',
'Pet in good health.', 100)

When associating new objects to existing objects, the unit of work treats the new object
as if it were a clone. That is, after the commit transaction:

petOwner != session.readObject(petOwner)

Therefore, after the unit of work commit transaction, the variables vetVisit and
petOwner no longer point to their respective cache objects; they point at working
copy clones.

If you need the cache object after the unit of work commit transaction, you must query
for it or create the association with a reference to the cache object (as described in
Section 114.4.2, "How to Associate a New Target to an Existing Source Object in a
Unidirectional Relationship: Reference to the New Cache Object After Commit
Required").

If there was a bidirectional relationship between the source and target objects, you
must take more care when registering them (see Section 114.4.3, "How to Associate a
New Target to an Existing Source Object in a Bidirectional Relationship: Query for
Target Before Commit not Required").

For more information, see Section 115.1, "Registering and Unregistering Objects").

114.4.2 How to Associate a New Target to an Existing Source Object in a Unidirectional
Relationship: Reference to the New Cache Object After Commit Required

Example 114–6 shows how to associate a new target with an existing source in a
unidirectional relationship and retain a reference to the cache object.

When the Pet object is read using the unit of work, TopLink automatically registers it.
Because there is a unidirectional relationship between the Pet object and the new
PetOwner and VetVisit objects, you do not need to register the new PetOwner or

Note: You cannot use UnitOfWork methods registerObject,
registerNewObject, or registerExistingObject with an
aggregate object (see Section 22.2.1.2, "Creating Relational Aggregate
Descriptors"). Doing so will raise a ValidationException or other
errors at commit time. For more information, see Section 115.1.4, "How
to Work with Aggregates".

Associating a New Target to an Existing Source Object

Using Basic Unit of Work API 114-5

VetVisit objects. TopLink can reach these new objects through the registered Pet
object and automatically detect that they are new objects.

However, by using UnitOfWork method registerObject, you can retain a handle
to the post-commit cache objects in case your code needs to continue using them after
commit: for example, to display their new contents in a GUI.

If there was a bidirectional relationship between the source and target objects, you
must take more care when registering them (see Section 114.4.4, "How to Associate a
New Target to an Existing Source Object in a Bidirectional Relationship: Query for
Target Object Before Commit Required").

Example 114–6 Associating With Reference to the Cache Object

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.readObject(Pet.class);

PetOwner petOwner = new PetOwner();
PetOwner petOwnerClone = (PetOwner)uow.registerObject(petOwner);
petOwnerClone.setId(400);
petOwnerClone.setName("Donald Smith");
petOwnerClone.setPhoneNumber("555-1212");

VetVisit vetVisit = new VetVisit();
VetVisit vetVisitClone = (VetVisit)uow.registerObject(vetVisit);
vetVisitClone.setId(500);
vetVisitClone.setNotes("Pet was shedding a lot.");
vetVisitClone.setSymptoms("Pet in good health.");
vetVisitClone.setPet(petClone);

petClone.setPetOwner(petOwnerClone);
petClone.getVetVisits().add(vetVisitClone);
uow.commit();

Now, after the unit of work commit transaction:

petOwner == session.readObject(petOwner)

This means that we have a handle to the cache copy after the commit transaction,
rather than a clone.

For more information, see Section 115.1, "Registering and Unregistering Objects").

114.4.3 How to Associate a New Target to an Existing Source Object in a Bidirectional
Relationship: Query for Target Before Commit not Required

Consider an Employee class implemented, as Example 114–7 shows. Note that the
setManager method modifies the Employee instance you pass into it.

Example 114–7 Employee Class

public class Employee {

private Collection managedEmployees = new ArrayList();
private Emplyoee myManager;

Note: You cannot use UnitOfWork methods registerObject,
registerNewObject, or registerExistingObject with an
aggregate object (see Section 22.2.1.2, "Creating Relational Aggregate
Descriptors"). Doing so will raise a ValidationException or other errors
at commit time. For more information, see Section 115.1.4, "How to
Work with Aggregates".

Associating a New Target to an Existing Source Object

114-6 Developer's Guide for Oracle TopLink

...

public setManager(Employee manager) {
myManager = manager;
manager.addManagedEmployee(this);

}

public addManagedEmployee(Employee employee) {
managedEmployees.add(employee);

}

...

}

Example 114–8 shows how to register a new object when a bidirectional relationship
exists such as that between manager and employee.

Because Employee method setManager modifies the Employee you pass in (as
Example 114–7 shows), you must pass in managerClone that registerObject
returns.

After you call setManager, you establish the bidirectional relationship between
newEmployee and managerClone. Because newEmployee is reachable from the
manager object already registered with the unit of work, TopLink can automatically
detect that it is a new object. Consequently, you do not need to register newEmployee
at all and it is, in fact, an error to call registerObject on newEmployee in this case.

If your code must be able to query for the new child object prior to commit, see
Section 114.4.4, "How to Associate a New Target to an Existing Source Object in a
Bidirectional Relationship: Query for Target Object Before Commit Required".

If you need the cache object after the unit of work commit transaction, in this case, you
must query for it.

Example 114–8 Resolving Issues When Adding New Objects

// Get an employee read from the parent session of the unit of work
Employee manager = (Employee)session.readObject(Employee.class);

// Acquire a unit of work
UnitOfWork uow = session.acquireUnitOfWork();

// Register the manager to get its clone
Employee managerClone = (Employee)uow.registerObject(manager);

// Create a new employee
Employee newEmployee = new Employee();
newEmployee.setFirstName("Spike");
newEmployee.setLastName("Robertson");

/* INCORRECT: Do not associate the new employee with the original manager. This will cause a
QueryException when TopLink detects this error during commit */
//newEmployee.setManager(manager);

/* CORRECT: Associate the new object with the clone. Note that in this example, the
setManager method is maintaining the bidirectional managedEmployees relationship and adding
the new employee to its managedEmployees. At commit time, the unit of work will detect that
this is a new object and will take the appropriate action */
newEmployee.setManager(managerClone);

/* INCORRECT: Do not register the newEmployee: this will create two copies and cause a
QueryException when TopLink detects this error during commit */
//uow.registerObject(newEmployee);

// Commit the unit of work

Associating a New Target to an Existing Source Object

Using Basic Unit of Work API 114-7

uow.commit();

For more information, see Section 115.1, "Registering and Unregistering Objects").

114.4.4 How to Associate a New Target to an Existing Source Object in a Bidirectional
Relationship: Query for Target Object Before Commit Required

Consider an Employee class implemented, as Example 114–7 shows. Note that the
setManager method modifies the Employee instance you pass into it.

Example 114–9 Employee Class

public class Employee
{

private Collection managedEmployees = new ArrayList();
private Emplyoee myManager;

...

public setManager(Employee manager)
{

myManager = manager;
manager.addManagedEmployee(this);

}

public addManagedEmployee(Employee employee)
{

managedEmployees.add(employee);
}

...

}

Example 114–8 shows how to register a new object when a bidirectional relationship
exists such as that between manager and employee.

Example 114–10 Resolving Issues When Adding New Objects

// Get an employee read from the parent session of the unit of work
Employee manager = (Employee)session.readObject(Employee.class);

// Acquire a unit of work
UnitOfWork uow = session.acquireUnitOfWork();

// Register the manager to get its clone
Employee managerClone = (Employee)uow.registerObject(manager);

// Create a new employee
Employee newEmployee = new Employee();
newEmployee.setFirstName("Spike");
newEmployee.setLastName("Robertson");

/* INCORRECT: Do not associate the new employee with the original manager. This will cause a
QueryException when TopLink detects this error during commit */
//newEmployee.setManager(manager);

Note: You cannot use UnitOfWork methods registerObject,
registerNewObject, or registerExistingObject with an
aggregate object (see Section 22.2.1.2, "Creating Relational Aggregate
Descriptors"). Doing so will raise a ValidationException or other errors
at commit time. For more information, see Section 115.1.4, "How to
Work with Aggregates".

Associating a New Source to an Existing Target Object

114-8 Developer's Guide for Oracle TopLink

/* CORRECT: Associate the new object with the clone. Note that in this example, the
setManager method is maintaining the bidirectional managedEmployees relationship and adding
the new employee to its managedEmployees. At commit time, the unit of work will detect that
this is a new object and will take the appropriate action */
newEmployee.setManager(managerClone);

/* INCORRECT: Do not register the newEmployee: this will create two copies and cause a
QueryException when TopLink detects this error during commit */
//uow.registerObject(newEmployee);

/* CORRECT: In the above setManager call, if the managerClone’s managedEmployees was not
maintained by the setManager method, then you should call registerObject before the new
employee is related to the manager. If in doubt, you could use the registerNewObject method
to ensure that the newEmployee is registered in the unit of work. The registerNewObject
method registers the object, but does not make a clone */
uow.registerNewObject(newEmployee);

// Commit the unit of work
uow.commit();

Because Employee method setManager modifies the Employee you pass in (as
Example 114–7 shows), you must pass in managerClone that registerObject
returns.

After you call setManager, you establish the bidirectional relationship between
newEmployee and managerClone. Because newEmployee is reachable from the
manager object already registered with the unit of work, TopLink can automatically
detect that it is a new object. Consequently, you do not need to register newEmployee
at all and it is, in fact, an error to call registerObject on newEmployee in this case.

If your code must be able to query for the new child object prior to commit, register
the new object using UnitOfWork method registerNewObject. Unlike
registerObject, this method does not create a clone.

Another difference between registerNewObject and registerObject is that
registerNewObject does not cascade registration to child objects. If you call
registerNewObject on a parent object, you must also call registerNewObject
on new child instances if your code must be able to query for the new child object
prior to commit and you prefer not to use conforming queries.

If you need the cache object after the unit of work commit transaction, you must query
for it.

For more information, see Section 115.1, "Registering and Unregistering Objects").

114.5 Associating a New Source to an Existing Target Object
This section describes how to associate a new source object with an existing target
object with one-to-many and one-to-one relationships.

TopLink follows all relationships of all registered objects (deeply) in a unit of work to
calculate what is new and what has changed. This is known as persistence by
reachablity. In Section 114.4, "Associating a New Target to an Existing Source Object",
we saw that when you associate a new target with an existing source, you can choose

Note: You cannot use UnitOfWork methods registerObject,
registerNewObject, or registerExistingObject with an
aggregate object (see Section 22.2.1.2, "Creating Relational Aggregate
Descriptors"). Doing so will raise a ValidationException or other errors
at commit time. For more information, see Section 115.1.4, "How to
Work with Aggregates".

Associating an Existing Source to an Existing Target Object

Using Basic Unit of Work API 114-9

to register the object or not. If you do not register the new object, it is still reachable
from the source object (which is a clone, hence it is registered). However, when you
need to associate a new source object with an existing target, you must register the
new object. If you do not register the new object, then it is not reachable in the unit of
work, and TopLink will not write it to the database.

For example, the code shown in Example 114–11 shows how to create a new Pet and
associate it with an existing PetOwner.

Example 114–11 Associating a New Source to an Existing Target Object

UnitOfWork uow = session.acquireUnitOfWork();
PetOwner existingPetOwnerClone =

(PetOwner)uow.readObject(PetOwner.class);

Pet newPet = new Pet();
Pet newPetClone = (Pet)uow.registerObject(newPet);
newPetClone.setId(900);
newPetClone.setType("Lizzard");
newPetClone.setName("Larry");
newPetClone.setPetOwner(existingPetOwnerClone);
uow.commit();
This generates the following proper SQL:

INSERT INTO PET (ID, NAME, TYPE, PET_OWN_ID) VALUES (900, 'Larry', 'Lizzard', 400)
In this situation, you should register the new object and work with the working copy
of the new object. If you associate the new object with the PetOwner clone without
registering, it will not be written to the database.

If you fail to register the clone and accidentally associate the cache version of the
existing object with the new object, then TopLink will generate an error which states
that you have associated the cache version of an object ("from a parent session") with a
clone from this unit of work. You must work with working copies in units of work.

For more information, see the following:

■ Section 114.4, "Associating a New Target to an Existing Source Object"

■ Section 114.6, "Associating an Existing Source to an Existing Target Object"

114.6 Associating an Existing Source to an Existing Target Object
This section explains how to associate an existing source object with an existing target
object with one-to-many and one-to-one relationships.

As shown in Example 114–12, associating existing objects with each other in a unit of
work is as simple as associating objects in Java. Just remember to only work with
working copies of the objects.

Example 114–12 Associating an Existing Source to Existing Target Object

// Associate all VetVisits in the database to a Pet from the database

Note: You cannot use UnitOfWork methods registerObject,
registerNewObject, or registerExistingObject with an
aggregate object (see Section 22.2.1.2, "Creating Relational Aggregate
Descriptors"). Doing so will raise a ValidationException or other errors
at commit time. For more information, see Section 115.1.4, "How to
Work with Aggregates".

Deleting Objects

114-10 Developer's Guide for Oracle TopLink

UnitOfWork uow = session.acquireUnitOfWork();
Pet existingPetClone = (Pet)uow.readObject(Pet.class);
List allVetVisitClones;
allVetVisitClones = uow.readAllObjects(VetVisit.class);
Iterator iter = allVetVisitClones.elements();
while(iter.hasNext()) {

VetVisit vetVisitClone =(VetVisit)iter.next();
existingPetClone.getVetVisits().add(vetVisitClone);
vetVisitClone.setPet(existingPetClone);

};
uow.commit();
The most common error when associating existing objects is failing to work with the
working copies. If you accidentally associate a cache version of an object with a
working copy you will get an error at commit time indicating that you associated an
object from a parent session (the cache version) with a clone from this unit of work.

Example 114–13 shows another example of associating an existing source to an existing
target object.

Example 114–13 Associating Existing Objects

// Get an employee read from the parent session of the unit of work
Employee employee = (Employee)session.readObject(Employee.class)

// Acquire a unit of work
UnitOfWork uow = session.acquireUnitOfWork();
Project project = (Project) uow.readObject(Project.class);

/* When associating an existing object (read from the session) with a clone, we
must make sure we register the existing object and assign its clone into a unit of
work */

/* INCORRECT: Cannot associate an existing object with a unit of work clone. A
QueryException will be thrown */
//project.setTeamLeader(employee);

/* CORRECT: Instead register the existing object then associate the clone */
Employee employeeClone = (Employee)uow.registerObject(employee);
project.setTeamLeader(employeeClone);
uow.commit();
For more information, see the following:

■ Section 114.4, "Associating a New Target to an Existing Source Object"

■ Section 114.5, "Associating a New Source to an Existing Target Object"

114.7 Deleting Objects
To delete objects in a unit of work, use the deleteObject or deleteAllObjects
method. When you delete an object that is not already registered in the unit of work,
the unit of work registers the object automatically.

When you delete an object, TopLink deletes the object’s privately owned child parts,
because those parts cannot exist without the owning (parent) object. At commit time,
the unit of work generates SQL to delete the objects, taking database constraints into
account.

When you delete an object, you must take your object model into account. You may
need to set references to the deleted object to null (for an example, see Section 114.7.1,
"How to Use the privateOwnedRelationship Attribute").

Deleting Objects

Using Basic Unit of Work API 114-11

This section explains how to delete objects within a unit of work, including the
following:

■ How to Use the privateOwnedRelationship Attribute

■ How to Explicitly Delete from the Database

■ What You May Need to Know About the Order in which Objects Are Deleted

114.7.1 How to Use the privateOwnedRelationship Attribute
Relational databases do not have garbage collection like a Java Virtual Machine (JVM)
does. To delete an object in Java you just remove the reference to the object. To delete a
row in a relational database, you must explicitly delete it. Rather than tediously
manage when to delete data in the relational database, use the mapping attribute
privateOwnedRelationship to have TopLink manage the garbage collection in the
relational database for you.

As shown in Example 114–14, when you create a mapping using Java, use its
privateOwnedRelationship method to tell TopLink that the referenced object is
privately owned: that is, the referenced child object cannot exist without the parent
object.

Example 114–14 Specifying a Mapping as Privately Owned

OneToOneMapping petOwnerMapping = new OneToOneMapping();
petOwnerMapping.setAttributeName("petOwner");
petOwnerMapping.setReferenceClass(com.top.uowprimer.model.PetOwner.class);
petOwnerMapping.privateOwnedRelationship();
petOwnerMapping.addForeignKeyFieldName("PET.PET_OWN_ID", "PETOWNER.ID");
descriptor.addMapping(petOwnerMapping);
When you create a mapping using TopLink Workbench, you can select the Private
Owned check box under the General tab.

When you tell TopLink that a relationship is privately owned, you are specifying the
following:

■ If the source of a privately owned relationship is deleted, then delete the target.

■ If you remove the reference to a target from a source, then delete the target.

Do not configure privately owned relationships to objects that might be shared. An
object should not be the target in more than one relationship if it is the target in a
privately owned relationship.

The exception to this rule is the case when you have a many-to-many relationship in
which a relation object is mapped to a relation table and is referenced through a
one-to-many relationship by both the source and the target. In this case, if the
one-to-many mapping is configured as privately owned, then when you delete the
source, all the association objects will be deleted.

Consider Example 114–15.

Example 114–15 Privately Owned Relationships

// If the Pet-PetOwner relationship is privateOwned
// then the PetOwner will be deleted at uow.commit()
// otherwise, just the foreign key from PET to PETOWNER will
// be set to null. The same is true for VetVisit
UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.readObject(Pet.class);
petClone.setPetOwner(null);

Deleting Objects

114-12 Developer's Guide for Oracle TopLink

VetVisit vvClone =
(VetVisit)petClone.getVetVisits().get(0);

vvClone.setPet(null);
petClone.getVetVisits().remove(vvClone);
uow.commit();
If the relationships from Pet to PetOwner and from Pet to VetVisit are not
privately owned, this code produces the following SQL:

UPDATE PET SET PET_OWN_ID = NULL WHERE (ID = 150)
UPDATE VETVISIT SET PET_ID = NULL WHERE (ID = 350)
If the relationships are privately owned, this code produces the following SQL:

UPDATE PET SET PET_OWN_ID = NULL WHERE (ID = 150)
UPDATE VETVISIT SET PET_ID = NULL WHERE (ID = 350)
DELETE FROM VETVISIT WHERE (ID = 350)
DELETE FROM PETOWNER WHERE (ID = 250)

114.7.2 How to Explicitly Delete from the Database
If there are cases where you have objects that will not be garbage collected through
privately owned relationships (especially root objects in your object model), then you
can explicitly tell TopLink to delete the row representing the object using the
deleteObject API, as shown in Example 114–16.

Example 114–16 Explicitly Deleting

UnitOfWork uow = session.acquireUnitOfWork();
pet petClone = (Pet)uow.readObject(Pet.class);
uow.deleteObject(petClone);
uow.commit();
The preceding code generates the following SQL:

DELETE FROM PET WHERE (ID = 100)

114.7.3 What You May Need to Know About the Order in which Objects Are Deleted
The unit of work does not track changes or the order of operations. It is intended to
insulate you from having to modify your objects in the order the database requires.

By default, at commit time, the unit of work correctly puts in order all insert and
update operations using the constraints defined by your schema. After all insert and
update operations are done, the unit of work will issue the necessary delete
operations.

Constraints are inferred from one-to-one and one-to-many mappings. If you have no
such mappings, you can add additional constraint knowledge to TopLink as described
in Section 115.10, "Controlling the Order of Delete Operations".

115

Using Advanced Unit of Work API 115-1

115Using Advanced Unit of Work API

This chapter explains the advanced unit of work API calls and techniques that you are
most likely to use later in the development cycle.

This chapter includes the following sections:

■ Registering and Unregistering Objects

■ Declaring Read-Only Classes

■ Writing Changes Before Commit Time

■ Using Conforming Queries and Descriptors

■ Merging Changes in Working Copy Clones

■ Resuming a Unit of Work After Commit

■ Reverting a Unit of Work

■ Using a Nested or Parallel Unit of Work

■ Using a Unit of Work with Custom SQL

■ Controlling the Order of Delete Operations

■ Using Optimistic Read Locking with the forceUpdateToVersionField Method

■ Implementing User and Date Auditing with the Unit of Work

■ Integrating the Unit of Work with an External Transaction Service

■ Integrating the Unit of Work with CMP

■ Database Transaction Isolation Levels

■ Troubleshooting a Unit of Work

For more information about the available methods for the UnitOfWork, see Oracle
Fusion Middleware Java API Reference for Oracle TopLink.

115.1 Registering and Unregistering Objects
The unit of work provides a number of object registration options.

This section describes the following:

■ How to Create and Register a New Object in One Step Using UnitOfWork Method
newInstance

■ How to Use the registerAllObjects Method

■ How to Use Registration and Existence Checking

Registering and Unregistering Objects

115-2 Developer's Guide for Oracle TopLink

■ How to Work with Aggregates

■ How to Unregister Working Clones

■ What You May Need to Know About Object Registration

115.1.1 How to Create and Register a New Object in One Step Using UnitOfWork
Method newInstance

Example 115–1 shows how to use the unit of work newInstance method to create a
new Pet object, register it with the unit of work, and return a clone, all in one step. If
you are using a factory design pattern to create your objects (and have specified this in
the query builder), the newInstance method will use the appropriate factory.

Example 115–1 Creating and Registering an Object in One Step

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.newInstance(Pet.class);
petClone.setId(100);
petClone.setName("Fluffy");
petClone.setType("Cat");
uow.commit();

115.1.2 How to Use the registerAllObjects Method
The registerAllObjects method takes a Collection of objects as an argument
and returns a Collection of clones. This lets you register many objects at once as
shown in Example 115–2.

Example 115–2 Using registerAllObjects

UnitOfWork uow = session.acquireUnitOfWork();
Collection toRegister = new ArrayList(2);
VetVisit vv1 = new VetVisit();
vv1.setId(70);
vv1.setNotes("May have flu");
vv1.setSymptoms("High temperature");
toRegister.add(vv1);

VetVisit vv2 = new VetVisit();
vv2.setId(71);
vv2.setNotes("May have flu");
vv2.setSymptoms("Sick to stomach");
toRegister.add(vv2);

uow.registerAllObjects(toRegister);
uow.commit();

Note: You cannot use UnitOfWork methods registerObject,
registerNewObject, or registerExistingObject with an
aggregate object (see Section 22.2.1.2, "Creating Relational Aggregate
Descriptors"). Doing so will raise a ValidationException or other errors
at commit time. For more information, see Section 115.1.4, "How to
Work with Aggregates".

Registering and Unregistering Objects

Using Advanced Unit of Work API 115-3

115.1.3 How to Use Registration and Existence Checking
When you register an object with the unit of work, TopLink runs an existence check to
determine whether or not the object exists. TopLink uses this information at commit
time to determine whether to perform an insert or an update operation. You can
specify the default existence checking policy for a project as a whole (see Section 117.7,
"Configuring Existence Checking at the Project Level") or on a per-descriptor basis
(Section 119.17, "Configuring Cache Existence Checking at the Descriptor Level"). By
default, TopLink uses the check cache existence checking policy. If you use any
existence checking policy other than check cache, then you can use the way you
register your objects to your advantage to reduce the time it takes TopLink to register
an object.

This section explains how to use one of the following existence checking policies to
accelerate object registration:

■ Using Check Database

■ Using Assume Existence

■ Using Assume Nonexistence

115.1.3.1 Using Check Database
If you configure a class’s descriptor with an existence checking policy of check
database, TopLink will check the database for existence for all instances of that class
registered in a unit of work. However, if you know that an object is new or existing,
rather than use the basic registerObject method, you can use
registerNewObject or registerExistingObject to bypass the existence check.
TopLink will not check the database for existence on objects that you have registered
with these methods. It will automatically perform an insert operation if
registerNewObject is called, or an update operation if
registerExistingObject is called.

115.1.3.2 Using Assume Existence
If you configure a class’s descriptor with an existence checking policy of assume
existence, TopLink will assume that all instances of that class registered with a unit of
work exist and TopLink will always perform an update operation to the database on
all such registered objects; even new objects that you registered with
registerObject method. However, if you use the registerNewObject method
on the new object, TopLink knows to perform an insert operation in the database even
though the existence checking policy says assume existence.

115.1.3.3 Using Assume Nonexistence
If you configure a class’s descriptor with an existence checking policy of assume
nonexistence then TopLink assumes that all instances of that class registered with a
unit of work do not exist and will always perform an insert operation on the database,
even on objects read from the database. However, if you use the
registerExistingObject method on existing objects, TopLink knows to perform
an update operation on the database.

115.1.4 How to Work with Aggregates
Aggregate mapped objects should never be registered in a TopLink unit of
work–doing so will generate an exception. Aggregate cloning and registration is
automatic based on the owner of the aggregate object. In other words, if you register

Registering and Unregistering Objects

115-4 Developer's Guide for Oracle TopLink

the owner of an aggregate, the aggregate is automatically cloned. When you get a
working copy of an aggregate owner, its aggregate is also a working copy.

When working with aggregates, you should always use an aggregate within the context
of its owner:

■ If you get an aggregate from a working clone owner, then the aggregate is a
working clone.

■ If you get an aggregate from a cache version owner, then the aggregate is the cache
version.

For more information about aggregate objects, see Section 22.2.1.2, "Creating Relational
Aggregate Descriptors".

115.1.5 How to Unregister Working Clones
The unit of work unregisterObject method lets you unregister a previously
registered object from a unit of work. An unregistered object will be ignored in the unit
of work, and any uncommitted changes made to the object up to that point will be
discarded.

In general, this method is rarely used. It can be useful if you create a new object, but
then decide to delete it in the same unit of work (which is not recommended).

115.1.6 What You May Need to Know About Object Registration
Table 115–1 summarizes the UnitOfWork object registration methods.

If a new object is reachable from a clone, you do not need to register it.

When working with new objects, remember the following:

■ Only reachable or registered objects will be persisted.

Table 115–1 UnitOfWork Object Registration API

Task UnitOfWork Method Result

Create new object without children registerObject New object is reference to cache object after
commit.

Create new object without children registerNewObject New object is reference to cache object after
commit.

Performance enhancement: no clone created.

Create new child object for existing parent:
unidirectional relationship

Parent: registerObject

Child: no registration necessary

TopLink cascades registration to all new child
objects reachable from the registered object: no
need to register new child objects.

Create new child object for existing parent:
unidirectional relationship

Parent: registerObject

Child: registerObject

New object is reference to cache object after
commit.

Create new child object for existing parent:
bidirectional relationship

Parent: registerObject

Child: no registration necessary

TopLink cascades registration to all new child
objects reachable from the registered object: no
need to register new child objects.

Create new child object for existing parent:
bidirectional relationship

Parent: registerObject

Child: registerNewObject

New object can be queried prior to commit
(without using conforming query).

Calling registerObject on child is an error.

Modify existing object known to exist in
the database.

registerExistingObject Performance enhancement: no call to
Descriptor method doesExist.

Modify a Collection of objects registerAllObjects Convenience method: equivalent to calling
registerObject for each object in the
Collection.

Declaring Read-Only Classes

Using Advanced Unit of Work API 115-5

■ Reachable new objects or objects that have been registered with
registerNewObject are considered to be working copies in the unit of work.

■ If you call registerObject with a new object, the clone the method returns, and
the argument you pass in, are considered the cache version.

The registerNewObject method registers a new object as if it was a clone. At
commit time, the unit of work creates another instance of the object to be the cache
version of that object. Use the registerNewObject method in situations where the
following applies:

■ You do not need a handle to the cache version of the object after the commit
transaction and you do not want to work with clones of new objects.

■ You must pass a clone into the constructor of a new object, then register the new
object.

Note that if you call registerNewObject on an object, TopLink does not cascade
registration to new children of that object. Children will be persisted but you cannot
query them before commit (unless you use conforming queries).

To make children visible to queries before commit, you must do one of the following:

■ register the parent using registerObject

■ register each child using registerNewObject if you register the parent using
registerNewObject

For more information, see the following:

■ Section 114.4, "Associating a New Target to an Existing Source Object"

■ Section 114.5, "Associating a New Source to an Existing Target Object"

■ Section 114.6, "Associating an Existing Source to an Existing Target Object"

■ Section 115.4, "Using Conforming Queries and Descriptors"

115.2 Declaring Read-Only Classes
You can declare a class as read-only within the context of a unit of work. Clones are
neither created nor merged for such classes, thus improving performance. Such classes
are ineligible for changes in the unit of work.

When a unit of work registers an object, it traverses and registers the entire object tree.
If the unit of work encounters a read-only class, it does not traverse that branch of the
tree, and does not register objects referenced by the read-only class, so those classes are
ineligible for changes in the unit of work. The read-only classes are cached and must
not be changed by the user.

This section describes the following:

■ How to Configure Read-Only Classes for a Single Unit of Work

■ How to Configure Default Read-Only Classes

■ How to Declare Read-Only Descriptors

Alternatively, you can configure an object-level ready query as a read-only query. For
more information, see Section 108.7.1.4, "Read-Only Query".

Writing Changes Before Commit Time

115-6 Developer's Guide for Oracle TopLink

115.2.1 How to Configure Read-Only Classes for a Single Unit of Work
For example, suppose class A owns a class B, and class C extends class B. You acquire
a unit of work in which you know only instances of class A will change: you know that
no class Bs will change. Before registering an instance of class B, use the following:

myUnitofWork.addReadOnlyClass(B.class);
You can then proceed with your transaction: registering class A objects, modifying
their working copies, and committing the unit of work.

At commit time, the unit of work will not have to compare backup clones with the
working clones for instances of class B (even if instances were registered explicitly or
implicitly). This can improve unit of work performance if the object tree is very large.

Note that if you register an instance of class C, the unit of work does not create or
merge clones for this object; any changes made to class C are not be persisted because
class C extends class B and class B was identified as read-only.

To identify multiple classes as read-only, add them to a Vector and use the following
code:

myUnitOfWork.addReadOnlyClasses(myVectorOfClasses);
Note that a nested unit of work inherits the set of read-only classes from the parent
unit of work. For more information on using a nested unit of work, see Section 115.8,
"Using a Nested or Parallel Unit of Work".

115.2.2 How to Configure Default Read-Only Classes
To establish a default set of read-only classes for all units of work, use the project
method setDefaultReadOnlyClasses(Vector). After you call this method, all
new units of work include the Vector of read-only classes.

115.2.3 How to Declare Read-Only Descriptors
When you declare a class as read-only, the read-only declaration extends to its
descriptors. You can declare a descriptor as read-only at development time, using
either Java code, Oracle JDeveloper, or TopLink Workbench. This option improves
performance by excluding the read-only descriptors from unit of work registration and
editing.

To flag descriptors as read-only in Java code, call the setReadOnly method on the
descriptor as follows:

descriptor.setReadOnly();
To declare a descriptor as read-only in TopLink Workbench, select the Read Only
check box for the specific descriptor.

For more information, see Section 119.3, "Configuring Read-Only Descriptors".

115.3 Writing Changes Before Commit Time
By default, when you call the unit of work commit method, TopLink writes your
changes to the data source and commits your changes.

Alternatively, you can perform a two-stage or partial commit transaction by using the
unit of work writeChanges method prior to calling commit (either directly or by
way of an external transaction service).

When you call the unit of work writeChanges method, the unit of work commit
process begins, and all changes are written out to the data source. However, the data
source transaction is not committed, nor will changes be merged into the shared

Using Conforming Queries and Descriptors

Using Advanced Unit of Work API 115-7

session cache. To finalize your changes, the unit of work commit method must still be
called (either directly or by way of an external transaction service).

After you call the unit of work writeChanges method, any attempt to register objects
or execute object-level queries will throw an exception. You may execute report
queries, noncaching queries, and data read and modify queries.

If any exception is thrown, the transaction will be rolled back (or marked rollback
only) and you cannot recover the unit of work.

You can call this method only once. You cannot use this method to write out changes
in an incremental fashion.

You can use the unit of work writeChanges method to address a variety of
transaction issues, including the following:

■ As an alternative to conforming (see Section 115.4.4.1, "Using Unit of Work
Method writeChanges Instead of Conforming")

■ To handle external transaction issues (see Section 115.13.4, "How to Use the Unit of
Work to Handle External Transaction Timeouts and Exceptions")

115.4 Using Conforming Queries and Descriptors
Because queries are executed on the database, querying though a unit of work will not,
by default, include new, uncommitted objects in a unit of work. The unit of work will
not spend time executing your query against new, uncommitted objects in the unit of
work unless you explicitly tell it to. If you have uncommitted changes, this can pose a
problem in a unit of work. Uncommitted changes not yet written to the database
cannot influence which result set gets returned.

Conforming is a query feature that lets you include new, changed, or deleted objects
in queries within a unit of work prior to committing. This lets you to query against
your relative logical or transaction view of the database.

Before you use conforming, be aware of its limitations (see Section 115.4.1, "How to
Use Conforming") and make sure that conforming is actually necessary. For example,
consider the alternative described in Section 115.4.4, "What You May Need to Know
About Conforming Query Alternatives".

This section explains the following:

■ How to Use Conforming

■ How to Use Conforming Queries

■ How to Use Conforming Descriptors

■ What You May Need to Know About Conforming Query Alternatives

115.4.1 How to Use Conforming
When using conforming, follow the guidelines that this section describes to ensure
that conforming queries return the correct results:

■ Ensuring that the Query Supports Conforming

Note: By default, TopLink suppresses exceptions thrown during the
memory search stage of conforming. For more information on
handling exceptions during conforming, see Section 115.16.4.2,
"Handling Exceptions During Conforming".

Using Conforming Queries and Descriptors

115-8 Developer's Guide for Oracle TopLink

■ Considering how Conforming Affects Database Results

■ Registering New Objects and Instantiate Relationships

115.4.1.1 Ensuring that the Query Supports Conforming
Conforming is supported by the following queries:

■ ReadObjectQuery

■ ReadAllQuery

■ Expressions

■ EJB QL

■ Query by example

■ Query by selection object or primary key (only new or deleted objects apply)

Conforming is not supported by the following queries:

■ ReportQuery

■ DataReadQuery

■ DataReadQuery (deleted objects can be conformed)

■ StoredProcedureCall (deleted objects can be conformed)

■ EISCall (deleted objects can be conformed)

■ Expression or EJB QL queries that use database-specific functions, or subselects

■ Parallel expressions.

115.4.1.2 Considering how Conforming Affects Database Results
When conforming is used on a ReadAllQuery, the database result is first queried. If
the unit of work has not yet committed any changes to the database, this result will not
reflect the unit of work changes. The database results are then conformed in memory
using the following criteria:

■ Registered new objects that conform to the query are added.

■ Modified existing objects that no longer conform are removed.

■ Modified existing objects that conform are added.

■ Deleted objects are removed.

If the query uses ordering, ordering of conformed results is not maintained and
conformed instances are added to the front of the result. To apply ordering, store the
result in memory using Collections method sort, or a TreeSet result collection
class. When using conforming on a ReadObjectQuery, first query the unit of work
for a conforming object: if the conforming object is found, it is returned and the
database access is avoided; if the conforming object is not found, the database is
queried. If the unit of work has not yet committed any changes to the database, this
result does not reflect the unit of work changes. The database results are then
conformed in memory using the following criteria:

Note: If new objects are not explicitly registered, they are not
conformed. Also, if removed object are not explicitly deleted, they are
not conformed.

Using Conforming Queries and Descriptors

Using Advanced Unit of Work API 115-9

■ If the database result no longer conforms, null is returned.

■ If the database result has been deleted, null is returned.

115.4.1.3 Registering New Objects and Instantiate Relationships
If a new object is only related to an existing object, and not explicitly registered,
queries for this object are not able to conform it. If you remove, but do not explicitly
delete a privately owned object, this object cannot be conformed.

If a query traverses relationships (uses joins) and the related objects are changed, the
query can only conform these objects if both of the following conditions are met:

■ The source objects have been registered in the unit of work.

■ The source objects’ relationship has been instantiated.

TopLink provides a conforming option that forces an instantiation of indirection (lazy
loading). However, you use this option with caution as it can cause an increased
database access.

Consider Example 115–1. In this example, you have Employee objects with an
address attribute configured for indirection (see Section 17.2.4, "Indirection (Lazy
Loading)") mapped by a one-to-one mapping to an Address object.

Figure 115–1 Conforming Example

You want to read all employees who live in Ottawa, but first, you need to modify some
of the Address objects to change city from Toronto to Ottawa. Jane Doe is one such
employee.

First, using the UnitOfWork, you read all Address objects and change some city
attributes (including Jane's) from Toronto to Ottawa. Then you run a conforming
query to get all employees who live in Ottawa. However, for the following reasons
Jane is not included in the results, even though she now lives in Ottawa:

Note: If the database result returns multiple results, only the first
result is considered, because it is an instance of the ReadAllQuery
and only a single result is expected. If the first result no longer
conforms, null is returned, even if there were potential valid
conforming results.

If you expect the query to return multiple results, use a
ReadAllQuery.

Using Conforming Queries and Descriptors

115-10 Developer's Guide for Oracle TopLink

■ Jane is not returned from the database because the transaction has not yet been
committed and in the database, her address still says Toronto.

■ Jane cannot be added to the conformed result in memory because she is not
registered in the UnitOfWork cache.

Conforming only recognizes explicit changes. In this example, Jane Doe’s Employee
object was only implicitly changed. In order to be considered explicitly changed, an
Employee must meet the following criteria:

■ Be registered in the UnitOfWork.

■ Have its address attribute changed: in this example, indirection (lazy loading)
must be triggered for the address attribute.

The correct way to handle this example would be as follows:

1. Using the UnitOfWork, read in all employees.

All these Employee objects are now registered with the UnitOfWork

2. Using the same UnitOfWork, access the employees’ addresses, instantiating the
indirect relationships.

3. Modify the employees’ addresses, changing some of the addresses to be in Ottawa.

4. Run the conforming query on employees with addresses inside Ottawa.

All employees with addresses in Ottawa are returned, including both employees
that were in Ottawa originally and employees whose addresses were changed in
this transaction.

5. Commit the transaction.

If you do not register all employees whose address may be changed, and instantiate
their address relationship, the conforming query will not include Jane.

An alternate approach is to use short transactions: the safest conforming query is one
made immediately after a commit. For example:

1. Using the UnitOfWork, read in all addresses outside of Ottawa.

2. Modify the addresses, changing some of the addresses to be in Ottawa

3. Commit the transaction.

4. Using the UnitOfWork, read in all employees inside Ottawa.

115.4.2 How to Use Conforming Queries
Assume that a single Pet of type Cat already exists on the database. Examine the code
shown in Example 115–3.

Example 115–3 Using Conforming Queries

UnitOfWork uow = session.acquireUnitOfWork();
Pet pet2 = new Pet();
Pet petClone = (Pet)uow.registerObject(pet2);
petClone.setId(200);
petClone.setType("Cat");
petClone.setName("Mouser");

ReadAllQuery readAllCats = new ReadAllQuery();
readAllCats.setReferenceClass(Pet.class);
ExpressionBuilder builder = new ExpressionBuilder();
Expression catExp = builder.get("type").equal("Cat");

Using Conforming Queries and Descriptors

Using Advanced Unit of Work API 115-11

readAllCats.setSelectionCriteria(catExp);

List allCats = (List)uow.executeQuery(readAllCats);

System.out.println("All 'Cats' read through UOW are: " + allCats);
uow.commit();
This produces the following output:

All 'Cats' read through UOW are: [Pet type Cat named Fluffy id:100]
If you tell the query readAllCats to include new objects:

readAllCats.conformResultsInUnitOfWork();
The output would be as follows:

All 'Cats' read through UOW are: [Pet type Cat named Fluffy id:100, Pet type Cat
named Mouser id:200]

115.4.3 How to Use Conforming Descriptors
TopLink’s support for conforming queries in the unit of work can be specified at the
descriptor level.

You can define a descriptor directly to always conform results in the unit of work so
that all queries performed on this descriptor conform its results in the unit of work by
default. You can specify this either within code, from Oracle JDeveloper, or TopLink
Workbench.

You can configure a descriptor to always conform in the unit of work using Oracle
JDeveloper, TopLink Workbench, or Java code.

To configure a descriptor to always conform in the unit of work in Java code, use
Descriptor method setShouldAlwaysConformResultsInUnitOfWork, passing
in an argument of true.

To configure a descriptor to always conform in the unit of work using TopLink, see
Section 119.4, "Configuring Unit of Work Conforming at the Descriptor Level".

115.4.4 What You May Need to Know About Conforming Query Alternatives
This section describes alternatives to conforming that may meet your needs without
the performance penalty imposed by conforming. This section describes the following:

■ Using Unit of Work Method writeChanges Instead of Conforming

■ Using Unit of Work Properties Instead of Conforming

115.4.4.1 Using Unit of Work Method writeChanges Instead of Conforming
Using UnitOfWork method writeChanges, you can write uncommitted changes to
the data source: you can execute report queries, noncaching queries, and data read and
modify queries against these changes (see Example 115–4).

Example 115–4 Using Unit of Work Method writeChanges

UnitOfWork uow = session.acquireUnitOfWork();
Pet pet = new Pet();
Pet petClone = (Pet)uow.registerObject(pet);
petClone.setId(100);
petClone.setName("Fluffy");
petClone.setType("Cat");

uow.writeChanges();

Merging Changes in Working Copy Clones

115-12 Developer's Guide for Oracle TopLink

// Use uow to perform report, noncaching, and data read and modify queries
// against the changes made so far

uow.commit();
However, you can call writeChanges only once; any attempt to register objects or to
execute object-level queries will throw an exception.

For more information, see Section 115.3, "Writing Changes Before Commit Time"

115.4.4.2 Using Unit of Work Properties Instead of Conforming
Sometimes, you need to provide other code modules with access to new objects
created in a unit of work. Conforming can be used to provide this access. However, the
following alternative is significantly more efficient.

Somewhere a unit of work is acquired from a session and is passed to multiple
modules for portions of the requisite processing:

UnitOfWork uow = session.acquireUnitOfWork();
In the module that creates the new employee, note the following:

Pet newPet = new Pet();
Pet newPetClone = (Pet)uow.registerObject(newPet);
uow.setProperty("NEW PET", newPet);
In other modules where newPet needs to be accessed for further modification, it can
simply be extracted from the unit of work’s properties:

Pet newPet = (Pet) uow.getProperty("NEW PET");
newPet.setType("Dog");
Conforming queries are ideal if you are not sure if an object has been created yet or the
criteria is dynamic.

However, for situations where the quantity of objects is finite and well known, using
unit of work properties is a simple and more efficient solution.

115.5 Merging Changes in Working Copy Clones
In a three-tier application, the client and server exchange objects using a serialization
mechanism such as RMI or CORBA. When the client changes an object and returns it
to the server, you cannot register this serialized object into a unit of work directly. On
the server, you must merge the serialized object with the original object in the session
cache.

Using the unit of work methods listed in Table 115–2, you can merge a deserialized
object into your session cache. Each method takes the serialized object as an argument
and returns the original object.

Before doing so, you must ensure that the source object is in your session cache.
Attempting to merge a deserialized object into a session cache that does not yet
contain the object will result in a descriptor exception. To avoid this, Oracle
recommends that you first read the object instance that the deserialized object
represents. If you are using a coordinated cache or your application is running in a
cluster, the session you merge into may not yet contain your original object. By
performing a read operation first, you guarantee that the object will be in the cache
before you merge.

Resuming a Unit of Work After Commit

Using Advanced Unit of Work API 115-13

Note that if your three-tier client is sufficiently complex, consider using the TopLink
remote session (see Section 87.9, "Remote Sessions"). It automatically handles merging
and lets you use a unit of work on the client.

You can merge clones with both existing and new objects. Because clones do not
appear in the cache and may not have a primary key, you can merge new objects only
once within a unit of work. If you need to merge a new object more than once, call the
unit of work setShouldNewObjectsBeCached method, and ensure that the object
has a valid primary key; you can then register the object.

Example 115–5 shows one way to update the original object with the changes
contained in the corresponding serialized object (rmiClone) received from a client.

Example 115–5 Merging a Serialized Object

update(Object original, Object rmiClone) {
original = uow.registerObject(original);
uow.mergeCloneWithRefereneces(rmiClone);
uow.commit();

}
For more information, see Section 17.2.4.7, "Indirection, Serialization, and
Detachment".

115.6 Resuming a Unit of Work After Commit
At commit time, a unit of work and its contents expire: you must not use the unit of
work nor its clones even if the transaction failed and rolled back.

However, TopLink offers the following API that lets you continue working with a unit
of work and its clones:

■ commitAndResume: Commits the unit of work, but does not invalidate it or its
clones.

Table 115–2 Unit of Work Merge Methods

Method Purpose Used When

mergeClone Merges the serialized object and
all its privately owned parts
(excluding non-private
references from it to
independent objects) into the
working copy clone.

The client edits the object but not its
relationships, or marks its
independent relationships as
transient.

mergeCloneWithReferences Merges the serialized object and
all references into the working
copy clone.

The client edits the object and the
targets of its relationships and has not
marked any attributes as transient.

shallowMergeClone Merges only serialized object
changes to attributes mapped
with direct mappings into the
working copy clone.

The client edits only the object's direct
attributes or has marked all of the
object's relationships as transient.

deepMergeClone Merges the serialized object and
everything connected to it (the
entire object tree where the
serialized object is the root) into
the working copy clone.

The client traverses all relationships
of the objects and makes changes.

Note: Use deepMergeClone with
caution. If two different copies of an
object are in the same tree, TopLink
will merge one set of changes over the
other. You should not have any
transient attributes in any of your
related objects.

Reverting a Unit of Work

115-14 Developer's Guide for Oracle TopLink

■ commitAndResumeOnFailure: Commits the unit of work. If the commit
transaction succeeds, the unit of work expires. However, if the commit transaction
fails, this method does not invalidate the unit of work or its clones. This method
lets you modify the registered objects in a failed unit of work and retry the commit
transaction.

You should resume a unit of work only in an application that makes repeated changes
to the same, small dataset. Reusing the same unit of work while accessing different
datasets may result in poor performance.

Example 115–6 shows how to use the commitAndResume method.

Example 115–6 Using the commitAndResume Method

UnitOfWork uow = session.acquireUnitOfWork();
PetOwner petOwnerClone =

(PetOwner)uow.readObject(PetOwner.class);
petOwnerClone.setName("Mrs. Newowner");
uow.commitAndResume();
petOwnerClone.setPhoneNumber("KL5-7721");
uow.commit();
The commitAndResume call produces the following SQL:

UPDATE PETOWNER SET NAME = 'Mrs. Newowner' WHERE (ID = 400)
Then, the commit call produces the following SQL:

UPDATE PETOWNER SET PHN_NBR = 'KL5-7721' WHERE (ID = 400)

115.7 Reverting a Unit of Work
Under certain circumstances, you may want to abandon some or all changes to clones
in a unit of work, but not abandon the unit itself. The following options exist for
reverting all or part of the unit of work:

■ revertObject: Abandons changes to a specific working copy clone in the unit of
work

■ revertAndResume: Uses the backup copy clones to restore all clones to their
original states, deregister any new objects, and reinstate any deleted objects.

115.8 Using a Nested or Parallel Unit of Work
You can use a unit of work within another unit of work (nesting), or you can use two
or more units of work with the same objects in parallel.

This section describes the following:

■ How to Use Parallel Unit of Work

■ How to Use Nested Unit of Work

115.8.1 How to Use Parallel Unit of Work
To start multiple units of work that operate in parallel, call the acquireUnitOfWork
method multiple times on the session. The units of work operate independently of one
another and maintain their own cache.

Using a Unit of Work with Custom SQL

Using Advanced Unit of Work API 115-15

115.8.2 How to Use Nested Unit of Work
To nest units of work, call the acquireUnitOfWork method on the parent unit of
work. This creates a child unit of work with its own cache. If a child unit of work
commits, it updates the parent unit of work rather than the database. If the parent does
not commit, the changes made to the child are not written to the database.

TopLink does not update the database or the cache until the outermost unit of work is
committed. You must commit or release the child unit of work before you can commit
its parent.

Working copy clones from one unit of work are not valid in another units of work: not
even between an inner and outer unit of work. You must register objects at all levels of
a unit of work where they are used.

Example 115–7 shows how to use nested units of work.

Example 115–7 Using Nested Units of Work

UnitOfWork outerUOW = session.acquireUnitOfWork();
Pet outerPetClone = (Pet)outerUOW.readObject(Pet.class);

UnitOfWork innerUOWa = outerUOW.acquireUnitOfWork();
Pet innerPetCloneA =

(Pet)innerUOWa.registerObject(outerPetClone);
innerPetCloneA.setName("Muffy");
innerUOWa.commit();

UnitOfWork innerUOWb = outerUOW.acquireUnitOfWork();
Pet innerPetCloneB =

(Pet)innerUOWb.registerObject(outerPetClone);
innerPetCloneB.setName("Duffy");
innerUOWb.commit();
outerUOW.commit();

115.9 Using a Unit of Work with Custom SQL
You can execute native SQL or invoke a stored procedure within a unit of work by
using unit of work method executeNonSelectingCall, or by executing a
DataModifyQuery. This makes the unit of work begin its database transaction early
and execute the call to the data immediately.

If you release the unit of work, it will roll back the database changes. If you commit the
unit of work and the commit succeeds, the unit of work will commit the changes to the
database.

You can execute a DataModifyQuery only in a unit of work or a database session.
You cannot execute a DataModifyQuery in a client or server session directly.

You can execute a DataReadQuery or use session method executeSelectingCall
in any session type because these do not modify data.

Example 115–8 illustrates using SQLCall with the unit of work method
executeNonSelectingCall.

Example 115–8 Using the executeNonSelectingCall Method

uow.executeNonSelectingCall(new SQLCall(mySqlString));

Controlling the Order of Delete Operations

115-16 Developer's Guide for Oracle TopLink

115.10 Controlling the Order of Delete Operations
Section 114.7, "Deleting Objects" explained that TopLink always properly arranges
(orders) the SQL based on the mappings and foreign keys in your object model and
schema. You can control the order of delete operations if you know how to do the
following:

■ How to Use the setShouldPerformDeletesFirst Method of the Unit of Work

■ How to Use the addConstraintDependencies Method of the Descriptor

115.10.1 How to Use the setShouldPerformDeletesFirst Method of the Unit of Work
By default, TopLink does insert and update operations first, before delete operations,
to ensure that referential integrity is maintained. This is the preferred approach.

If you are forced to replace an object with unique constraints by deleting it and
inserting a replacement, you may cause a constraint violation if the insert operation
occurs before the delete operation. In this case, call
setShouldPerformDeletesFirst to perform the delete operation before the insert
operation.

115.10.2 How to Use the addConstraintDependencies Method of the Descriptor
The constraints used by TopLink to determine delete order are inferred from
one-to-one and one-to-many mappings. If you do not have such mappings, you can
add constraint knowledge to TopLink using the descriptor
addConstraintDependencies(Class) method.

For example, suppose you have a composition of objects: A contains B (one-to-many,
privately owned) and B has a one-to-one, nonprivate relationship with C. You want to
delete A (and in doing so the included Bs) but before deleting the Bs, for some of them
(not all) you want to delete the associated object C.

There are the following possible solutions:

1. You can use the deleteAllObjects method without the
addConstraintDependencies method (see Section 115.10.3, "How to Use the
deleteAllObjects Method Without the addConstraintDependencies Method")

2. You can use the deleteAllObjects method with the
addConstraintDependencies method (see Section 115.10.4, "How to Use the
deleteAllObjects Method with the addConstraintDependencies Method")

115.10.3 How to Use the deleteAllObjects Method Without the
addConstraintDependencies Method

In the first option, you do not identify the one-to-many (A to B) relationship as
privately owned. When deleting an A object, you must delete all of its B objects, as
well as any C objects, as the following example shows:

uow.deleteObject(existingA);
uow.deleteAllObjects(existingA.getBs());
// delete one of the Cs

WARNING: Allowing an unverified SQL string to be passed into
methods makes your application vulnerable to SQL injection
attacks.

Using Optimistic Read Locking with the forceUpdateToVersionField Method

Using Advanced Unit of Work API 115-17

uow.deleteObject(((B) existingA.getBs().get(1)).getC());
This option produces the following SQL:

DELETE FROM B WHERE (ID = 2)
DELETE FROM B WHERE (ID = 1)
DELETE FROM A WHERE (ID = 1)
DELETE FROM C WHERE (ID = 1)

115.10.4 How to Use the deleteAllObjects Method with the addConstraintDependencies
Method

In the second option, keep the one-to-many (A to B) relationship privately owned and
add a constraint dependency from A to C, as the following example shows:

session.getDescriptor(A.class).addConstraintDependencies(C.class);
Now the delete code would be as follows:

uow.deleteObject(existingA);
// delete one of the Cs
uow.deleteObject(((B) existingA.getBs().get(1)).getC());
This option produces the following SQL:

DELETE FROM B WHERE (A = 1)
DELETE FROM A WHERE (ID = 1)
DELETE FROM C WHERE (ID = 1)
In both cases, the B object is deleted before A and C. The main difference is that the
second option generates fewer SQL statements, as it knows that it is deleting the entire
set of Bs related from A.

115.11 Using Optimistic Read Locking with the
forceUpdateToVersionField Method

If your descriptors are configured to use an optimistic version locking policy (see
Section 16.4.1, "Optimistic Version Locking Policies") or field locking policy (see
Section 16.4.4, "Optimistic Field Locking Policies"), use the unit of work method
forceUpdateToVersionField to solve either or both of the following problems:

■ You want an OptimisticLockingException thrown at commit time if an
object you read in a transaction has changed since it was registered even though
you have not changed the object in your transaction (see Section 115.11.1, "How to
Force a Check of the Optimistic Read Lock").

■ You modify an object in a transaction in such a way that its version field is not
updated but you want to alert other threads of the change by way of the version
field (see Section 115.11.2, "How to Force a Version Field Update").

For example, you change a privately owned object that has its own database table
so the parent object’s version field is not, by default, updated. In this case, you can
use forceUpdateToVersionField to update the parent’s version field.

As an alternative to this approach, consider Section 16.4.2, "Optimistic Version
Locking Policies and Cascading".

To remove forceUpdateToVersionField configuration from an object before a
commit operation, use the unit of work method
removeForceUpdateToVersionField (see Section 115.11.3, "How to Disable the
forceUpdateToVersionField Configuration").

Using Optimistic Read Locking with the forceUpdateToVersionField Method

115-18 Developer's Guide for Oracle TopLink

115.11.1 How to Force a Check of the Optimistic Read Lock
When you read an object with the unit of work, optimistic lock checking is not applied
to that object at commit time unless you change the object. However, there are times
when you want your transaction to fail if the state of an object has changed since it
was read, even though you have not modified the object.

Example 115–9 shows a transaction that updates a mortgage rate by multiplying the
central bank prime rate by 1.25. The transaction forces an optimistic read lock on the
central prime rate at commit time to ensure that the prime rate has not changed since
the transaction began. Note that in this example, the transaction does not increment
the version of the unchanged object (the central prime rate).

Example 115–9 Optimistic Read Lock with No Version Increment

try {
UnitOfWork uow = session.acquireUnitOfWork();
MortgageRate cloneMortgageRate = (MortgageRate)

uow.registerObject(mortgageRate);
CentralPrimeRate cloneCentralPrimeRate = (CentralPrimeRate)

uow.registerObject(CentralPrimeRate);
// change the Mortgage Rate
cloneMortgageRate.setRate(cloneCentralPrimeRate.getRate() * 1.25);
// optimistic read lock check on Central prime rate with no version update
uow.forceUpdateToVersionField(cloneCentralPrimeRate, false);
uow.commit();

}
catch(OptimisticLockException exception) {

// refresh the out-of-date object
session.refreshObject(exception.getObject());
// Retry

}
For another example that forces both optimistic locking and a version field update, see
Example 115–10 in Section 115.11.2, "How to Force a Version Field Update".

115.11.2 How to Force a Version Field Update
The unit of work considers an object changed when you modify its direct-to-field or
aggregate object mapping attribute. Adding, removing, or modifying objects related to
the source object does not render the source object changed for the purposes of the
unit of work. In other words, when a relationship is changed in a one-to-many or
one-to-one target foreign key mapping, by default, the version field (if any) of the
affected object is not changed.

If you configure a descriptor to refresh the cache only if the database version is newer
than the cache version (using descriptor method
onlyRefreshCacheIfNewerVersion), and such a relationship changes, you will
not be able to refresh the object at all. Because the version has not changed, the unit of
work method refreshObject and even a query with
refreshIdentityMapResults option set to true cannot refresh the object.

Using the unit of work method forceUpdateToVersionField passing in both the
unit of work copy clone and true value will ensure that the object’s version field is
updated when such a change is made. It will also ensure that changes to the object
before it is refreshed will result in optimistic locking exceptions, preventing the
writing of stale data (see Section 115.11.1, "How to Force a Check of the Optimistic
Read Lock").

Example 115–10 and Example 115–11 show transactions executing in separate threads
that access the same customer object concurrently. The unit of work method

Using Optimistic Read Locking with the forceUpdateToVersionField Method

Using Advanced Unit of Work API 115-19

forceUpdateToVersionField is used to ensure that changes to the customer object in
one thread are detected by the other threads.

Example 115–10 shows a transaction in which an invoice thread calculates an invoice
for a customer. Example 115–11 shows a transaction in which another thread, the
service thread, adds a service to the same customer or modifies the current service. In
either case, the service thread must inform the invoice thread, which adds the changes
to the invoice.

Example 115–10 Optimistic Read Lock with Version Increment: Service Thread

/* The following code represents the service thread. Notice that the thread forces
a version update */
try {

UnitOfWork uow = session.acquireUnitOfWork();
Customer cloneCustomer = (Customer uow.registerObject(customer);
Service cloneService = (Service uow.registerObject(service);
// add a service to customer
cloneService.setCustomer(cloneCustomer);
cloneCustomer.getServices().add(cloneService);
/* Modify the customer version to inform other application that
the customer has changed */

uow.forceUpdateToVersionField(cloneCustomer, true);
uow.commit();

}
catch (OptimisticLockException exception) {

// refresh out-of-date object
session.refreshObject(exception.getObject());
// retry

}

Example 115–11 Optimistic Read Lock with Version Increment: Invoice Thread

/* The following code represents the invoice thread, and calculates a bill for the
customer. Notice that it does not force an update to the version */

try {
UnitOfWork uow = session.acquireUnitOfWork();
Customer cloneCustomer = (Customer) uow.registerObject(customer);
Invoice cloneInvoice = (Invoice) uow.registerObject(new Invoice());
cloneInvoice.setCustomer(cloneCustomer);
// calculate service charge
int total = 0;
for(Enumeration enum = cloneCustomer.getServices().elements();

enum.hasMoreElements()) {
total += ((Service) enum.nextElement()).getCost();

}
cloneInvoice.setTotal(total);
/* Force optimistic lock checking on the customer to guarantee a valid
calculation */

uow.forceUpdateToVersionField(cloneCustomer, false);
uow.commit();

}
catch(OptimisticLockException exception) {

// refresh the customer and its privately owned parts
session.refreshObject(cloneCustomer);
/* If the customer's services are not privately owned then use a
ReadObjectQuery to refresh all parts */
ReadObjectQuery query = new ReadObjectQuery(customer);
/* Refresh the cache with the query's result and cascade refreshing

Implementing User and Date Auditing with the Unit of Work

115-20 Developer's Guide for Oracle TopLink

to all parts including customer's services */
query.refreshIdentityMapResult();
query.cascadeAllParts();
// refresh from the database
query.dontCheckCache();
session.executeQuery(query);
// retry

}

115.11.3 How to Disable the forceUpdateToVersionField Configuration
The forceUpdateToVersionField configuration that you apply to an object stays
in effect for the lifetime of your unit of work. After you commit your transaction,
forceUpdateToVersionField configuration no longer applies.

To remove forceUpdateToVersionField configuration from an object before
commit time, use the unit of work method removeForceUpdateToVersionField.
TopLink will not apply optimistic read locking to the object unless you change it in
this transaction (that is, unless you modify its direct-to-field or aggregate object
mapping attribute).

115.12 Implementing User and Date Auditing with the Unit of Work
Auditing data source changes is a common requirement: when a user commits a
change to the data source, the application updates a field in the data source to record
the user who made the change and the date.

For example, suppose each row in your database schema includes fields
lastUpdateBy (to record the user name of the user who commits a change) and
lastUpdateOn (to record the date of the change).

You can use UnitOfWork method setProperty to record the name of the user who
acquires the UnitOfWork and implement a descriptor event listener for
AboutToUpdateEvent descriptor events that extracts the property and updates the
lastUpdateBy and lastUpdateOn fields.

For more information, see the following:

■ Section 114.1, "Acquiring a Unit of Work"

■ Section 119.24, "Configuring a Domain Object Method as an Event Handler"

■ Section 119.25, "Configuring a Descriptor Event Listener as an Event Handler"

115.13 Integrating the Unit of Work with an External Transaction Service
To support transactions managed by an application server’s external transaction
service, TopLink supports external connection pools and external transaction
controller classes for supported servers. This lets you incorporate external transaction
service support into your application, and use the unit of work with transactions
managed externally by the server. For more information, see Section 113.1.2, "Unit of
Work Transaction Demarcation".

To integrate a unit of work with an external transaction service, you must enable the
use of the following:

■ an external transaction controller (see Section 89.9, "Configuring the Server
Platform")

Integrating the Unit of Work with an External Transaction Service

Using Advanced Unit of Work API 115-21

■ an external connection pool (see Section 97.4, "Configuring External Connection
Pooling")

After you configure external connection pool and external transaction controller
support, you use a unit of work in your TopLink application as you would typically,
with few exceptions. This section describes these exceptions as follows:

■ How to Acquire a Unit of Work with an External Transaction Service

■ How to Use a Unit of Work when an External Transaction Exists

■ How to Use a Unit of Work when No External Transaction Exists

■ How to Use the Unit of Work to Handle External Transaction Timeouts and
Exceptions

115.13.1 How to Acquire a Unit of Work with an External Transaction Service
You use a unit of work to commit changes to a data source even when using an
external transaction service. To ensure that only one unit of work is associated with a
given transaction, use the getActiveUnitOfWork method to acquire a unit of work,
as shown in Example 115–12.

The getActiveUnitOfWork method searches for an existing external transaction in
the following way:

■ If there is an active external transaction and a unit of work is already associated
with it, return this unit of work.

■ If there is an active external transaction with no associated unit of work, then
acquire a new unit of work, associate it with the transaction, and return it.

■ If there is no active external transaction in progress, return null.

If TopLink returns a unit of work that is not null, use it exactly as you would
typically: the only exception is that you do not call the commit method (see
Section 115.13.2, "How to Use a Unit of Work when an External Transaction Exists").

If TopLink returns a null unit of work, start an external transaction explicitly through
the UserTransaction interface.

Example 115–12 Using a Unit of Work with an External Transaction Service

// Read in any pet
Pet pet = (Pet)clientSession.readObject(Pet.class);
UnitOfWork uow = clientSession.getActiveUnitOfWork();
if (uow == null) {

throw new RuntimeException("No transaction started");;
}
Pet petClone = (Pet)uow.registerObject(pet);
petClone.setName("Furry");

115.13.2 How to Use a Unit of Work when an External Transaction Exists
When getActiveUnitOfWork returns a unit of work that is not null, you are
associated with an existing external transaction. Use the unit of work as usual.

Note: Although there are other ways to commit changes to a data
source using an external transaction service, Oracle recommends using
the getActiveUnitOfWork method.

Integrating the Unit of Work with an External Transaction Service

115-22 Developer's Guide for Oracle TopLink

As the external transaction was not started by the unit of work, issuing a commit on it
will not cause the external transaction to be committed. The unit of work will defer to
the application or container that began the transaction. When the external transaction
does get committed by the container, TopLink receives synchronization callbacks at
key points during the commit transaction.

The unit of work sends the required SQL to the database when it receives the
beforeCompletion callback.

The unit of work uses the Boolean argument received from the afterCompletion
callback to determine if the commit was successful (true) or not (false).

If the commit transaction was successful, the unit of work merges changes to the
session cache. If the commit transaction was unsuccessful, the unit of work discards
the changes.

Figure 115–2 shows the life cycle of a unit of work when an external transaction exists.

Figure 115–2 Unit of Work when an External Transaction Exists

115.13.3 How to Use a Unit of Work when No External Transaction Exists
When the getActiveUnitOfWork method returns a null unit of work, there is no
existing external transaction. You must start a new external transaction.

Do this either by starting an external transaction explicitly using the
UserTransaction interface, or by acquiring a new unit of work using the
acquireUnitOfWork method on the server session.

Use the unit of work as usual.

Once the modifications to registered objects are complete, you must commit the
transaction either explicitly through the UserTransaction interface or by calling the
unit of work commit method.

The transaction synchronization callbacks are then invoked on, and the database
updates and cache merge occur based upon those callbacks.

getActiveUnitOfWork()

Send SQL

Commit
Use Unit of Work

Unit of Work

beforeCompletion()

afterCompletion(result)

Get existing
transaction

Associate with
transaction

If result true, merge
to session cache

Application Unit of Work Container Database
Session
Cache

External
Transaction

Integrating the Unit of Work with an External Transaction Service

Using Advanced Unit of Work API 115-23

Figure 115–3 Unit of Work when No External Transaction Exists

115.13.4 How to Use the Unit of Work to Handle External Transaction Timeouts and
Exceptions

This section describes the following two common problems with external transactions,
and the ways to handle them:

■ Handling External Transaction Commit Timeouts

■ Handling External Transaction Commit Exceptions

115.13.4.1 Handling External Transaction Commit Timeouts
When an external transaction is committed, the external transaction service expects
each transaction owner to commit its portion of the overall transaction within a finite
amount of time. If any individual transaction exceeds this timeout interval, the
external transaction service will fail the specific transaction and roll it back (or mark it
rollback only).

If your transaction is large and its commit transaction may exceed the external
transaction service timeout interval, use UnitOfWork method writeChanges to
write changes to the data source before committing the external transaction. This will
reduce the time it takes for your part of the global transaction to commit.

For more information about the UnitOfWork method writeChanges, including
restrictions and warnings, see Section 115.3, "Writing Changes Before Commit Time".

115.13.4.2 Handling External Transaction Commit Exceptions
When you use the unit of work with an external transaction service, commit
exceptions may not be thrown until long after your application thread calls its
UnitOfWork method commit and returns. In this case, commit exceptions are thrown
to the client of the container-managed transaction (CMT) call, forcing the client to
handle this server-side failure.

You can use the UnitOfWork method writeChanges to write changes to the data
source before the external transaction commits. This allows your application thread to
catch and handle most exceptions that could be thrown at the time the external
transaction service commits the global transaction.

For more information about the UnitOfWork method writeChanges, including
restrictions and warnings, see Section 115.3, "Writing Changes Before Commit Time".

getActiveUnitOfWork()

acquireUnitOfWork()

Send SQL

Commit
transactioncommit() Request commit

Use Unit of Work

Unit of Work

null No transaction exists

beforeCompletion()

afterCompletion(result)

Associate with transaction

Request new transaction
Create new
transaction

If result true, merge
to session cache

Application Unit of Work Container
External

Transaction Database
Session
Cache

Integrating the Unit of Work with CMP

115-24 Developer's Guide for Oracle TopLink

For more information on handling unit of work exceptions in general, see
Section 115.16.4, "How to Handle Exceptions".

115.14 Integrating the Unit of Work with CMP
All modifications to persistent beans should be carried out in the context of a
transaction.

Modifying entity beans without a transaction can lead to an inconsistent state,
potentially corrupting the values in the TopLink cache. Because of this, TopLink does
not support modifying a bean through its remote interface when no transaction is
active. If you attempt to do so, TopLink simply does not write changes to the database.

Although TopLink does not let you modify an entity bean through its remote interface
without a transaction, TopLink does let you invoke methods on its home interface that
change the state in the underlying database without a transaction. For example, you
may invoke remove and create methods on the home interface of an entity bean
without a transaction.

To integrate TopLink transactions and the unit of work with container-managed
persistence, you must consider the following:

■ CMP transaction attribute (see Section 115.14.1, "How to Use CMP Transaction
Attribute")

■ Local transactions (see Section 115.14.2, "How to Use Local Transactions")

■ Nondeferred changes (see Section 115.14.3, "How to Use Nondeferred Changes")

115.14.1 How to Use CMP Transaction Attribute
To ensure that all modifications to persistent beans are carried out in the context of a
transaction, transactional attributes must be properly specified in the bean deployment
descriptors.

The transaction may be either client-controlled or container-controlled.

Client-controlled transactions are started explicitly by your application by way of the
javax.transaction.UserTransaction interface.

Container-controlled transactions are started implicitly by the container to satisfy the
transaction attribute configuration when a bean method is invoked in the absence of a
client-controlled transaction.

Table 115–3 shows what transaction (if any) an EJB method invocation uses depending
on how its transaction attribute is configured and whether or not a client-controlled
transaction exists at the time the method is invoked.

Oracle recommends that you do not make modifications to entity beans under
conditions identified as "Use no transaction" in Table 115–3. Oracle also recommends
that you avoid using the Supports transaction attribute because it leads to a
nontransactional state whenever the client does not explicitly provide a transaction.

Table 115–3 EJB Transaction State by Transaction Attribute

Transaction
Attribute

Client-Controlled
Transaction Exists

Client-Controlled Transaction
Does Not Exist

NotSupported Use no transaction Use no transaction

Supports Use client-controlled transaction Use no transaction

Required Use client-controlled transaction Use container-controlled transaction

Database Transaction Isolation Levels

Using Advanced Unit of Work API 115-25

Depending on the EJB container you use, you may be able to write without a
container-controlled transaction (see Section 115.13, "Integrating the Unit of Work with
an External Transaction Service"). In this case, TopLink automatically uses a
transaction of its own, referred to as a local transaction (see Section 115.14.2, "How to
Use Local Transactions").

115.14.2 How to Use Local Transactions
Some EJB containers, such as, for example, OC4J, support writing without an active
JTA transaction.

If you execute a bean method outside a JTA transaction while the transaction attribute
(see Section 115.14.1, "How to Use CMP Transaction Attribute") is set to Supports,
NotSupported, or Never, TopLink performs the operation within a local unit of
work and commits the unit of work at the end of the method. This unit of work is
referred to as a local transaction.

The reason for this is because the update semantics in the EJB specification are left
undefined for these scenarios, and a proper transactional model demands that a
transaction be active before being able to modify data. TopLink also requires change
operations to occur within a unit of work to ensure that the session cache remains
consistent.

115.14.3 How to Use Nondeferred Changes
Some EJB containers, such as, for example, OC4J, support nondeferred changes: the
ability to modify the data source immediately as you change the persistent fields of an
entity bean.

Using nondeferred changes, you can achieve backwards compatibility with the native
behavior of some EJB containers, such as, for example, OC4J, and you can
accommodate advanced applications that rely on the database and entity changes
being synchronized for such things as triggers or stored procedures based on transient
state within the transaction, deletion and creation of rows with the same primary key,
or other complex queries that depend on transient transaction state.

Nondeferred changes have the disadvantage of being the least efficient approach: they
produce the greatest number of data source interactions.

By default, TopLink defers all changes until commit time. This is the most efficient
approach that produces the least number of data source interactions.

For more information, see Section 16.2.3.1, "Nondeferred Changes".

115.15 Database Transaction Isolation Levels
Achieving a particular database transaction isolation level in a TopLink application is
more involved than simply using the DatabaseLogin method
setTransactionIsolation.

RequiresNew Use client-controlled transaction Use container-controlled transaction

Mandatory Use client-controlled transaction Exception raised

Never Exception raised Use no transaction

Table 115–3 (Cont.) EJB Transaction State by Transaction Attribute

Transaction
Attribute

Client-Controlled
Transaction Exists

Client-Controlled Transaction
Does Not Exist

Database Transaction Isolation Levels

115-26 Developer's Guide for Oracle TopLink

In a typical TopLink application and in Java EE applications that require persistence in
general, a variety of factors affect when database transaction isolation levels apply and
to what extent a particular database transaction isolation can be achieved.

This section describes these factors and provides guidelines on configuring and using
TopLink to achieve each database transaction isolation level to the extent possible
given these factors.

This section includes the following:

■ What You May Need to Know About General Factors Affecting Transaction
Isolation Level

■ What You May Need to Know About Read Uncommitted Level

■ What You May Need to Know About Read Committed Level

■ What You May Need to Know About Repeatable Read Levels

■ What You May Need to Know About Serializable Read Levels

115.15.1 What You May Need to Know About General Factors Affecting Transaction
Isolation Level

This section describes some of the important factors and variables that may affect the
degree to which your TopLink application can achieve a particular database
transaction isolation level. These factors include the following:

■ External Applications

■ TopLink Coordinated Cache

■ DatabaseLogin Method setTransactionIsolation

■ Reading Through the Write Connection

■ Managing Cache Access

■ CMP and External Transactions

115.15.1.1 External Applications
In many cases, your TopLink application is not the only application that can update to
the database. External, non-TopLink applications, can also update the database at any
time.

In this case, your TopLink application must use the ObjectLevelReadQuery
method refreshIdentityMapResult (see Section 108.16.5, "How to Refresh the
Cache") or Descriptor methods alwaysRefreshCache and disableCacheHits
(see Section 119.9, "Configuring Cache Refreshing").

For more information, see Section 115.15.1.5, "Managing Cache Access".

If the external application can update a version field in the database, your TopLink
application could use alwaysRefreshCache in conjunction with Descriptor
method onlyRefreshCacheIfNewerVersion to ensure that refresh operations are
performed only when required. Another, recommended way to achieve this, is to use
the descriptor isolated cache option (see Section 102.2.7, "Cache Isolation"), as well as
cache invalidation (see Section 102.2.5, "Cache Invalidation").

115.15.1.2 TopLink Coordinated Cache
Consider multiple TopLink applications (each running on its own application server
instance) configured to use a distributed, coordinated cache (as described in

Database Transaction Isolation Levels

Using Advanced Unit of Work API 115-27

Section 102.3, "Cache Coordination"). A TopLink application instance first commits
changes to its own cache before the change is distributed to other caches. Because
cache coordination is not instantaneous, there is a possibility that one TopLink
application instance may read an older version of an object from its cache before a
cache coordination message is received.

To provide your TopLink application with the most up-to-date version of an object use
the descriptor isolated cache option (see Section 102.2.7, "Cache Isolation"), as well as
cache invalidation (see Section 102.2.5, "Cache Invalidation").

You can also avoid stale data by using Descriptor methods alwaysRefreshCache
and disableCacheHits. For more information on the disableCacheHits method,
see Section 115.15.1.5, "Managing Cache Access".

115.15.1.3 DatabaseLogin Method setTransactionIsolation
Use the DatabaseLogin method setTransActionIsolation to configure the
database transaction isolation level that TopLink applies to any database connection it
obtains, for example:

databaseLogin.setTransactionIsolation(DatabaseLogin.TRANSACTION_SERIALIZABLE);
This method sets the transaction isolation level used for both database read and write
operations on the database connections obtained from either an internal or external
connection pool (see Section 87.2.1.2, "Connection Pools"), for both internal
transactions and external transactions as in the case of CMP.

However, with TopLink, by default read operations use a different database
connection than write operations, typically obtained from an external connection pool,
or may use the cache, bypassing the database entirely. Thus, with TopLink, by default,
read operations are always performed outside the transaction or unit of work, even if
you perform the read operation within a transaction or unit of work. Although
database transaction isolation applies to both read and write connections, the read is
not performed as part of the transaction. Therefore, the read operation overrides the
transaction isolation set on the database.

Depending on the level of transaction isolation you are trying to achieve, you may
require that the same transaction isolation be applied to both read and write
operations. You must take special action to make TopLink use the same connection for
both read and write operations. For more information, see Section 115.15.1.4, "Reading
Through the Write Connection".

115.15.1.4 Reading Through the Write Connection
Recall that TopLink, by default, performs read operations with a different database
connection than used for write operations (Section 115.15.1.3, "DatabaseLogin Method
setTransactionIsolation"). However, from the perspective of database transaction
isolation, there is a one-to-one relationship between transaction and database
connection: that is, all database operations (including read operations) must use the
same database connection in order to achieve a particular database transaction
isolation level.

In general, when TopLink performs a read operation, if a write connection already
exists, TopLink will use the write connection for the read operation. This is called

Caution: Using Descriptor methods alwaysRefreshCache and
disableCacheHits will result in frequent database hits. Use only
when absolutely necessary.

Database Transaction Isolation Levels

115-28 Developer's Guide for Oracle TopLink

"reading through the write connection." If a write connection does not yet exist,
TopLink will acquire another connection and use that for the read operation.

You can configure TopLink to allocate a write connection early using any of the
following:

■ Pessimistic Locking Query

■ Unit of Work Method beginTransactionEarly

■ ConnectionPolicy Method setShouldUseExclusiveConnection

For more information, see Section 115.15.1.6, "CMP and External Transactions".

115.15.1.4.1 Pessimistic Locking Query When you use pessimistic locking
(ObjectLevelReadQuery methods acquireLocks or
acquireLocksWithoutWaiting or Session method refreshAndLockObject),
TopLink does the following:

■ Allocates a write connection used for both read and write operations.

■ Always reads from the database.

■ Always updates the cache with the database version.

115.15.1.4.2 Unit of Work Method beginTransactionEarly This method is advanced API. If
you call beginTransactionEarly on an instance of a unit of work, all read
operations should be performed through that instance of the unit of work.

This method starts a database transaction immediately: any objects you read will lock
data in the database before commit time, reducing concurrency.

115.15.1.4.3 ConnectionPolicy Method setShouldUseExclusiveConnection Client sessions can
access the data source using a connection pool or an exclusive connection. To use an
exclusive connection, acquire your client session using a ConnectionPolicy (see
Section 90.4.2, "How to Acquire a Client Session that Uses Exclusive Connections").

If you are using isolated client sessions (see Section 87.5, "Isolated Client Sessions"),
you can use exclusive connections for reading isolated data. In this case, you can
configure TopLink to acquire an exclusive connection from the write connection pool
and use it for both writing and reading isolated data. However, TopLink still acquires
a shared connection from the read connection pool for reading nonisolated data.

For more information, see Exclusive Write Connections.

115.15.1.5 Managing Cache Access
By default, TopLink uses the shared session cache as much as possible. Doing so
increases concurrency and improves performance. However, to achieve a particular
transaction isolation level, you may need to avoid the cache using some or all the
following:

■ Isolated Client Session Cache

Caution: Depending on the database transaction isolated level
reading through the write connection may lock the object being read.
This will affect performance and reduce concurrency. Oracle
recommends that you do not use these advanced techniques unless
strict database transaction isolation is absolutely necessary.

Database Transaction Isolation Levels

Using Advanced Unit of Work API 115-29

■ ReadObjectQuery

■ ReadAllQuery

■ Descriptor Method disableCacheHits

■ DatabaseQuery Method dontMaintainCache

115.15.1.5.1 Isolated Client Session Cache This method always goes to the database for
the initial read operation of an object whose descriptor is configured as isolated. By
avoiding the shared session cache, you do not need to use the more complicated
descriptor and query APIs to disable cache hits or always refresh. For more
information about isolated client sessions, see Section 87.5, "Isolated Client Sessions".
This is particularly useful for achieving serializable transaction isolation (see
Section 115.15.5, "What You May Need to Know About Serializable Read Levels").

115.15.1.5.2 ReadObjectQuery This API goes to the database unless it is a primary
key-based query, in which case it will go to the cache first. For information on how to
avoid the cache entirely in this case, see Section 115.15.1.5.4, "Descriptor Method
disableCacheHits".

115.15.1.5.3 ReadAllQuery This API always goes to the databases. For information on
how to avoid the cache entirely in this case, see the description of the Descriptor
method alwaysRefreshCache in Section 102.4.2, "Cache Refresh API".

115.15.1.5.4 Descriptor Method disableCacheHits This API allows for cache hits on
primary key, read-object queries to be disabled. This can be used with the
Descriptor method alwaysRefreshCache to ensure queries always go to the
database.

115.15.1.5.5 DatabaseQuery Method dontMaintainCache This is a query-level means of
preventing objects from being added to the shared session cache. Using an isolated
client session (see Section 115.15.1.5.1, "Isolated Client Session Cache") is a simpler
approach to achieving the same ends.

115.15.1.6 CMP and External Transactions
In general, the transaction isolation information in this section applies to both CMP
and non-CMP applications, with the following exception:

For application servers other than OC4J, when using a TopLink application with CMP,
Oracle recommends that you configure your container to use separate read and write
connection pools, and to associate only the write connections with an external
transaction. This means the read connections do not participate in the transaction.

However, because TopLink treats EJB finders as just another type of query, you can use
your descriptor configuration to exploit the options described in Section 115.15.1.4,
"Reading Through the Write Connection". For example, if you configure a descriptor to
use pessimistic locking (see Section 119.26, "Configuring Locking Policy"), then when
its finder is invoked it will allocate a write connection early and both read and write
operations will use the same connection.

Note: OC4J always uses the same connection pool for reading and
writing: it uses JTA connections from that pool for writing, and
non-JTA connections from the pool for reading.

Troubleshooting a Unit of Work

115-30 Developer's Guide for Oracle TopLink

Refer to Section 96.1.1, "Externally Managed Transactional Data Sources" for more
information on external transactions with transactional data sources.

115.15.2 What You May Need to Know About Read Uncommitted Level
Oracle does not recommend using this transaction isolation level.

In general, a read uncommitted operation is not necessary. Using TopLink, a
transaction isolation of read committed gives you better performance than read
uncommitted but with greatly improved data integrity.

115.15.3 What You May Need to Know About Read Committed Level
Using the unit of work guarantees that you will read only committed data in the
shared session cache or committed data in the database.

115.15.4 What You May Need to Know About Repeatable Read Levels
To achieve repeatable read operations, you must use a unit of work, you must register
all objects in the unit of work (both objects you intend to modify and objects you
intend only to read), and you must use ObjectLevelReadQuery method
conformResultsInUnitOfWork or Descriptor method
alwaysConformResultsInUnitOfWork.

By doing so, each time you query a registered object, you will get the version of the
object as it currently is in your unit of work.

115.15.5 What You May Need to Know About Serializable Read Levels
To achieve serializable transaction isolation with TopLink, Oracle recommends that
you use an isolated client session (see Section 87.5, "Isolated Client Sessions") as
follows:

1. Configure the database transaction isolation as serializable.

2. Configure objects as isolated (see Section 117.11, "Configuring Cache Isolation at
the Project Level" or Section 119.13, "Configuring Cache Isolation at the Descriptor
Level").

3. Use the UnitOfWork method beginTransactionEarly (see
Section 115.15.1.4.2, "Unit of Work Method beginTransactionEarly").

If you are only concerned about the write aspect of serializable, optimistic locking is
sufficient.

To prevent phantom read transactions (that is, when a transaction detects that new
records that have been added to the database after the transaction started), use the
ReadQuery method cacheQueryResults.

115.16 Troubleshooting a Unit of Work
This section examines common unit of work problems and debugging techniques, and
describes the following:

■ How to Avoid the Use of Post-Commit Clones

■ How to Determine Whether or Not an Object Is the Cache Object

■ How to Dump the Contents of a Unit of Work

■ How to Handle Exceptions

Troubleshooting a Unit of Work

Using Advanced Unit of Work API 115-31

■ How to Validate a Unit of Work

115.16.1 How to Avoid the Use of Post-Commit Clones
A common unit of work error is holding on to clones after commit time. Typically the
clones are stored in a static variable and you incorrectly believe that this object is the
cache copy. This leads to problems when another unit of work makes changes to the
object and what you believe is the cache copy is not updated (because a unit of work
updates only the cache copy, not old clones).

Consider the error in Example 115–13. In this example you get a handle to the cache
copy of a Pet and store it in the static CACHE_PET. We get a handle to a working copy
clone and store it in the static CLONE_PET. In a future unit of work, the Pet is
changed.

If you incorrectly store global references to clones from units of work, you often expect
them to be updated when the cache object is changed in a future unit of work. Only
the cache copy is updated.

Example 115–13 Incorrect Use of Handle to Clone

// Read a Pet from the database, store in static
CACHE_PET = (Pet)session.readObject(Pet.class);

// Put a clone in a static. This is a bad idea and is a common error
UnitOfWork uow = session.acquireUnitOfWork();
CLONE_PET = (Pet)uow.readObject(Pet.class);
CLONE_PET.setName("Hairy");
uow.commit();
//Later, the pet is changed again
UnitOfWork anotherUow = session.acquireUnitOfWork();
Pet petClone = (Pet)anotherUow.registerObject(CACHE_PET);
petClone.setName("Fuzzy");
anotherUow.commit();

// If you incorrectly stored the clone in a static and thought it should be
// updated when it is later changed, you would be wrong: only the cache copy is
// updated; NOT OLD CLONES
System.out.println("CACHE_PET is" + CACHE_PET);
System.out.println("CLONE_PET is" + CLONE_PET);
The two System.out calls produce the following output:

CACHE_PET isPet type Cat named Fuzzy id:100
CLONE_PET isPet type Cat named Hairy id:100

115.16.2 How to Determine Whether or Not an Object Is the Cache Object
In Section 114.3, "Modifying an Object", it was noted that it is possible to read any
particular instance of a class by executing:

session.readObject(Class);
There is also a readObject method that takes an object as an argument: this method
is equivalent to doing a ReadObjectQuery on the primary key of the object passed
in. For example, the following code is equivalent to the code in the subsequent
example:

session.readObject(pet);
The following is equivalent to the preceding code:

ReadObjectQuery query = new ReadObjectQuery();
query.setReferenceClass(Pet.class);

Troubleshooting a Unit of Work

115-32 Developer's Guide for Oracle TopLink

ExpressionBuilder builder = new ExpressionBuilder();
Expression exp = builder.get("id").equal(pet.getId());
query.setSelectionCriteria(exp);
session.executeQuery(query);
Also note that primary key-based queries, by default, will return what is in the cache
without going to the database. As a result, you can use very quick and simple method
for accessing the cache copy of an object, as shown in Example 115–14.

Example 115–14 Testing If an Object Is the Cache Object

//Here is a test to see if an object is the cache copy
boolean cached = CACHE_PET == session.readObject(CACHE_PET);
boolean cloned = CLONE_PET == session.readObject(CLONE_PET);
System.out.println("Is CACHE_PET the Cache copy of the object: " + cached);
System.out.println("Is CLONE_PET the Cache copy of the object: " + cloned);
This code produces the following output:

Is CACHE_PET the Cache copy of the object: true
Is CLONE_PET the Cache copy of the object: false

115.16.3 How to Dump the Contents of a Unit of Work
The unit of work has several debugging methods to help you analyze performance or
track down problems with your code. The most useful is
printRegisteredObjects, which prints all the information about known objects in
the unit of work. Use this method to see how many objects are registered and to make
sure objects you are working on are registered.

To use this method, you must have log messages enabled for the session that the unit
of work is from. Session log messages are disabled by default. To enable log messages,
use the session logMessages method. To disable log messages, use the session
dontLogMessages method, as shown in Example 115–15.

Example 115–15 Dumping the Contents of a Unit of Work

session.logMessages(); // Enable log messages
UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.readObject(Pet.class);
petClone.setName("Mop Top");

Pet pet2 = new Pet();
pet2.setId(200);
pet2.setName("Sparky");
pet2.setType("Dog");
uow.registerObject(pet2);

uow.printRegisteredObjects();
uow.commit();
session.dontLogMessages(); // Disable log messages
This example produces the following output:

UnitOfWork identity hashcode: 32373
Deleted Objects:

All Registered Clones:
Key: [100] Identity Hash Code:13901 Object: Pet type Cat named Mop Top id:100
Key: [200] Identity Hash Code:16010 Object: Pet type Dog named Sparky id:200

New Objects:
Key: [200] Identity Hash Code:16010 Object: Pet type Dog named Sparky id:200

Troubleshooting a Unit of Work

Using Advanced Unit of Work API 115-33

115.16.4 How to Handle Exceptions
This section explains how to handle the following:

■ Handling Exceptions at Commit Time

■ Handling Exceptions During Conforming

115.16.4.1 Handling Exceptions at Commit Time
TopLink exceptions are instances of RuntimeException, which means that methods
that throw them do not have to be placed in a try-catch block.

However, the unit of work commit method is one that should be called within a
try-catch block to deal with problems that may arise.

Example 115–16 shows one way to handle unit of work exceptions:

Example 115–16 Handling Unit of Work Commit Exceptions

UnitOfWork uow = session.acquireUnitOfWork();
Pet petClone = (Pet)uow.registerObject(newPet);
petClone.setName("Assume this name is too long for a database constraint");
// Assume that the name argument violates a length constraint on the database.
// This will cause a DatabaseException on commit
try {

uow.commit();
}
catch (TopLinkException tle) {

System.out.println("There was an exception: " + tle);
}
This code produces the following output:

There was an exception: EXCEPTION [ORACLEAS TOPLINK-6004]:
oracle.toplink.exceptions.DatabaseException
If you use optimistic locking, you must catch exceptions at commit time because the
exception raised is the indication that there was an optimistic locking problem.
Optimistic locking allows all users to access a given object, even if it is currently in use
in a transaction or unit of work. When the unit of work attempts to change the object,
the database checks to ensure that the object has not changed since it was initially read
by the unit of work. If the object has changed, the database raises an exception, and the
unit of work rolls back the transaction. For more information, see Section 113.3.1.2,
"Locking and the Unit of Work".

If you are using an external transaction service, exceptions may be thrown long after
your UnitOfWork code has returned. Using UnitOfWork method writeChanges,
you can catch and handle most exceptions before the external transaction is
committed. For more information, see Section 115.13.4.2, "Handling External
Transaction Commit Exceptions".

115.16.4.2 Handling Exceptions During Conforming
You can conform query results in a unit of work across one-to-many relationships and
a combination of both one-to-one and one-to-many relationships. Example 115–17
illustrates a query across two levels of relationships, one-to-many and one-to-one.

Example 115–17 Querying Across Two Levels of Relationship

Expression exp =
bldr.anyOf("managedEmployees").get("address").get("city").equal("Perth");

By default, any exceptions thrown during conforming are suppressed. However, you
can use the UnitOfWork method setShouldThrowConformExceptions to make

Troubleshooting a Unit of Work

115-34 Developer's Guide for Oracle TopLink

the unit of work throw all conforming exceptions. This method takes one int
argument with the following values:

■ 0–do not throw conform exceptions (default)

■ 1–throw all conform exceptions

For more information on customizing exception handling when using conforming and
in-memory queries, see Section 108.16.2.3, "Handling Exceptions Resulting from
In-Memory Queries".

115.16.5 How to Validate a Unit of Work
The unit of work validates object references at commit time. If an object registered in a
unit of work references other unregistered objects, this violates object transaction
isolation, and causes TopLink validation to raise an exception.

Although referencing unregistered objects from a registered object can corrupt the
session cache, there are applications in which you want to disable validation. TopLink
offers the following APIs to toggle validation:

■ dontPerformValidation: disables validation

■ performFullValidation: enables validation

115.16.5.1 Validating the Unit of Work Before Commit Time
If the unit of work detects an error when merging changes into the session cache, it
throws a QueryException. Although this exception specifies the invalid object and
the reason it is invalid, it may still be difficult to determine the cause of the problem.

In this case, you can use the validateObjectSpace method to test registered
objects and provide the full stack trace of all traversed objects. This may help you more
easily find the problem. You can call this method at any time on a unit of work.

Part XXVI
Part XXVI Creation and Configuration of Projects

This part describes the TopLink artifact used to contain mapping and data
source-specific information. It contains the following chapters.

■ Chapter 116, "Creating a Project"

This chapter contains procedures for creating TopLink projects.

■ Chapter 117, "Configuring a Project"

This chapter explains how to configure TopLink project options common to two or
more project types.

116

Creating a Project 116-1

116 Creating a Project

This chapter describes how to create TopLink projects.

This chapter includes the following sections:

■ Introduction to the Project Creation

■ Working with Projects

■ Exporting Project Information

For information on the various types of projects available, see Section 15.1, "TopLink
Project Types".

116.1 Introduction to the Project Creation
You can create a project using Oracle JDeveloper, TopLink Workbench, or Java code.

Oracle recommends using either Oracle JDeveloper or TopLink Workbench to create
projects and generate deployment XML or Java source versions of the project for use at
run time. For more information, see Section 116.1.1, "How to Create a Project Using
Oracle JDeveloper" and Section 116.1.2, "How to Create a Project Using TopLink
Workbench".

Alternatively, you can create projects in Java code. For an EIS project that uses a record
type other than XML, you must use Java code. For more information, see
Section 116.1.3, "How to Create a Project Using Java" and Oracle Fusion Middleware
Java API Reference for Oracle TopLink.

For information on how to create a project using Java, see Section 116.1.3, "How to
Create a Project Using Java".

116.1.1 How to Create a Project Using Oracle JDeveloper
When you create a TopLink project using Oracle JDeveloper, your mapping
information is stored in the TopLink map. The TopLink map contains the information
about how classes map to database tables. Use the TopLink editor to edit each
component of the mappings, including:

■ Database information, such as driver, URL, and login information.

■ Mapping defaults, such as identity map and cache options.

The TopLink editor in Oracle JDeveloper supports the following project types:

■ Relational project

■ XML project

Introduction to the Project Creation

116-2 Developer's Guide for Oracle TopLink

■ EIS project

116.1.2 How to Create a Project Using TopLink Workbench
When you create a project using TopLink Workbench, all project information is stored
in the project file (.mwp file). This file references additional XML data files that contain
the information about how the Java classes map to database tables or XML elements.

Using TopLink Workbench, you can export this information as a TopLink project XML
file (that is, the deployment XML file) that is read in by the TopLink runtime. You can
also export this information as a Java class. For more information, see Section 116.3,
"Exporting Project Information".

TopLink Workbench displays projects and their contents in the Navigator window.
When you select a project, its attributes are displayed in the Editor window. See
Section 5.3.3, "How to Use the Navigator" for more information. TopLink Workbench
supports the following project types:

■ Relational project

■ XML project

■ EIS project

116.1.2.1 Creating New TopLink Workbench Projects
This section includes information on creating a new TopLink Workbench project. To
create a new project from an existing persistence application, such as, for example,
OC4J, see Chapter 8, "Integrating TopLink with an Application Server". To create a
new project from JAXB, see Section 47.1.1, "TopLink Support for Java Architecture for
XML Binding (JAXB)".

To create a new TopLink Workbench project, use this procedure:

1. Click New on the toolbar and select Project. The Create New TopLink Workbench
Project dialog box appears.

You can also create a new project by choosing File > New > Project from the
menu.

Figure 116–1 Create New TopLink Workbench Project Dialog Box

Use the following information to enter data in each field of this dialog box:

Introduction to the Project Creation

Creating a Project 116-3

For more project information, continue with the following:

■ Configure the project (see Chapter 117, "Configuring a Project").

■ Add mappings and descriptors (see Chapter 16, "Introduction to Descriptors" and
Chapter 17, "Introduction to Mappings").

■ Export the project for use with the TopLink runtime (see Section 116.3, "Exporting
Project Information").

116.1.3 How to Create a Project Using Java
To create a project using Java code, use this procedure:

1. Implement a project class that extends the
oracle.toplink.sessions.Project class (see Example 116–1).

2. Compile the project class.

Example 116–1 Specifying a TopLink Project in Code

/**
* The class EmployeeProject is an example of an Oracle TopLink project defined in
* Java code. The individual parts of the project - the Login and the descriptors,
* are built inside of methods that are called by the constructor. Note that
* EmployeeProject extends the class oracle.toplink.sessions.Project
*/
public class EmployeeProject extends oracle.toplink.sessions.Project {

/**
* Supply a zero-argument constructor that initializes all aspects of the project.
* Make sure that the login and all the descriptors are initialized and added to
* the project. Project-level properties, such as the name of the project, should
* be specified here

Field Description

Name Enter the name of the TopLink Workbench project. This project
name will also become the name of the .mwp file.

Data Source Use these options to specify the type of project to create, and its
data source.

Database Select Database to create an relational project to a relational
database.

Use the Platform list to select the specific database platform.

See Chapter 18, "Introduction to Relational Projects" for more
information.

EIS Select EIS to create an EIS project to a nonrelational data source
using XML records.

Use the Platform list to specify the JCA adapter to use.

See Chapter 71, "Introduction to EIS Projects" for more information.

XML Select XML to create a nontransactional, nonpersistent XML project
to an XML schema.

Alternatively, you can generate both an XML project and object
model classes (see Section 48.2, "Creating an XML Project from an
XML Schema").

See Chapter 47, "Introduction to XML Projects" for more
information.

Introduction to the Project Creation

116-4 Developer's Guide for Oracle TopLink

*/
public EmployeeProject() {
setName("EmployeeProject");
applyLogin();

addDescriptor(buildAddressDescriptor());
addDescriptor(buildEmployeeDescriptor());
addDescriptor(buildPhoneNumberDescriptor());

}

// Data source information
public void applyLogin() {
DatabaseLogin login = new DatabaseLogin();

// use platform appropriate for underlying database
login.usePlatform(
new oracle.toplink.platform.database.oracle.Oracle9Platform());

login.setDriverClassName("oracle.jdbc.OracleDriver");
login.setConnectionString("jdbc:oracle:thin:@HOST:PORT:SID");
login.setUserName("USER NAME");
login.setEncryptedPassword("PASSWORD, ENCRYPTED");

// Configuration Properties
setDatasourceLogin(login);

}

/**
* Descriptors are built by defining table info, setting properties
* (caching, etc.) and by adding mappings to the descriptor
*/

// SECTION: DESCRIPTOR
public ClassDescriptor buildAddressDescriptor() {

RelationalDescriptor descriptor = new RelationalDescriptor();

// specify the class to be made persistent
descriptor.setJavaClass(examples.servletjsp.model.Address.class);

// specify the tables to be used and primary key
descriptor.addTableName("ADDRESS");
descriptor.addPrimaryKeyFieldName("ADDRESS.ADDRESS_ID");

// Descriptor Properties
descriptor.useSoftCacheWeakIdentityMap();
descriptor.setIdentityMapSize(100)
descriptor.useRemoteSoftCacheWeakIdentityMap()
descriptor.setRemoteIdentityMapSize(100)
descriptor.setSequenceNumberFieldName("ADDRESS.ADDRESS_ID")
descriptor.setSequenceNumberName("ADD_SEQ");
descriptor.setAlias("Address");

// Mappings
DirectToFieldMapping cityMapping = new DirectToFieldMapping();
cityMapping.setAttributeName("city");
cityMapping.setFieldName("ADDRESS.CITY");
descriptor.addMapping(cityMapping);

// Additional mappings are added to the descriptor using the addMapping method

Working with Projects

Creating a Project 116-5

return descriptor;
}

116.2 Working with Projects
Using TopLink Workbench, you can perform the following project functions:

■ How to Open Existing Projects

■ How to Save Projects

■ How to Generate the Project Status Report

See Chapter 117, "Configuring a Project" for additional information on working with
TopLink Workbench projects.

116.2.1 How to Open Existing Projects
Use this procedure to open an existing project:

1. Click Open Project on the toolbar. The Choose a File dialog box appears. You can
also open a project by choosing File > Open from the menu.

2. Select the TopLink Workbench project file (.mwp) to open, and click Open.
TopLink Workbench displays the project information.

If you open a TopLink Workbench version 3.n project that contains EJB
information, the Potential EJB Descriptors dialog box appears.

Note: Using TopLink Workbench provides a starting point for a custom
project class. For more information, see Section 19.6.1, "How to Export
Project Java Source Using TopLink Workbench".

Caution: For most prior release projects, simply opening the
project in TopLink Workbench will upgrade your project. However,
to upgrade release 9.0.3 (and earlier) projects, you must follow
specific upgrade procedures and use the Package Rename tool.

Refer to Oracle TopLink Release Notes for more information.

Note: The File menu option contains a list of recently opened
projects. You can select one of these projects to open. See
Section 5.4.1, "How to Use General Preferences" for information on
customizing this list.

Working with Projects

116-6 Developer's Guide for Oracle TopLink

Figure 116–2 Potential EJB Descriptors Dialog Box

3. Select which of the descriptors should be imported as EJB descriptors, the project
persistence type, and click OK.

You can also specify whether or not TopLink Workbench generates methods and
attributes that comply with the EJB specification, if they are not found within the
current class descriptor(s).

If you open a TopLink Workbench version 9.0.3 (or later) project, the Create New
TopLink Workbench Project from Previous Version dialog box appears.

Figure 116–3 Create New TopLink Workbench Project From Previous Version Dialog Box

To convert the old project to the current format and view the project immediately, click
Save Later.

To convert the old project to the current format and save it to a new location and then
view the project, click Save Now.

116.2.2 How to Save Projects
TopLink Workbench does not automatically save your project. Be sure to save your
project often to avoid losing data.

To save your project(s), use this procedure:

1. Click Save or Save All to save your project(s).

You can also save a project by choosing File > Save or File > Save All from the
menu.

2. If you close TopLink Workbench while there are currently unsaved changes, the
Save Project dialog box appears.

Working with Projects

Creating a Project 116-7

Figure 116–4 Save Projects Dialog Box

3. Select the project(s) to save and click OK.

Click Select All to select all the available projects.

116.2.2.1 Saving Projects with a New Name or Location
To save your project with a different name or location, use this procedure:

1. Choose File > Save As. The Save As dialog box appears.

Figure 116–5 Save As Dialog Box

2. Select a name and location, then click Save.

116.2.3 How to Generate the Project Status Report
Use the project status report to display a list of all warnings and errors in the TopLink
Workbench project. This report is similar to the Problems window (see Section 5.3,

Caution: Do not rename the .mwp file outside of TopLink
Workbench. To rename a project, use the Save As option.

Exporting Project Information

116-8 Developer's Guide for Oracle TopLink

"Using TopLink Workbench"), but lets you easily copy and paste the errors into
documents or messages. To generate the project status report, use this procedure:

1. Right-click the Problems label above the Problems window and select Problem
Report. The Project Status Report dialog box appears, displaying the status of each
TopLink Workbench project.

You can also generate the project status report by selecting Tools > Problem
Report from the menu.

Figure 116–6 Problem Report Dialog Box

See Section A.3, "TopLink Workbench Error Reference" for information on each
reported error.

To copy the report to another application, click Copy.

116.3 Exporting Project Information
To use your project with the TopLink Foundation Library at run time, you must either
generate deployment XML or export the project to Java source code.

For all project types, TopLink Workbench can generate and export the following
project information:

■ Deployment information (see Section 116.3.1, "How to Export Deployment XML
Information Using TopLink Workbench") (project.xml file)

■ Model Java source (see Section 116.3.2, "How to Export Model Java Source Using
TopLink Workbench")

116.3.1 How to Export Deployment XML Information Using TopLink Workbench
To export your deployment XML file (project.xml), use this procedure (see
Chapter 9, "Creating TopLink Files for Deployment" for detailed information):

1. Select the project and click Export Deployment XML.

Note: When exporting Java source and deployment XML,
TopLink Workbench writes the database password (if applicable)
using Java Cryptography Extension (JCE) encryption. For
information on how to specify password encryption options, see
Section 97.3, "Configuring Password Encryption".

Exporting Project Information

Creating a Project 116-9

You can also right-click the project in the Navigator and choose Export > Project
Deployment XML from the context menu or choose Selected > Export > Project
Deployment XML from the menu.

If you have not defined deployment and source code generation defaults (see
Chapter 117, "Configuring a Project") TopLink Workbench prompts for a file name
and directory.

To generate the deployment XML file that is compatible with projects prior to this
release, see Section 20.11, "Configuring Deprecated Direct Mappings".

116.3.2 How to Export Model Java Source Using TopLink Workbench
To generate the project model’s Java source code, use this procedure:

1. Right-click the project, package, or specific descriptor in the Navigator and choose
Export > Export Model Java Source from the context menu. TopLink Workbench
creates a .java file for each selected descriptor.

You can also choose Workbench > Export > Export Model Java Source or Selected
> Export > Model Java Source from the menu or click Generate Source Code on
the Class tab. See Section 5.7.2.1, "Configuring Class Information" for more
information.

2. Click Generate Source Code to generate the project’s model Java source.

If you have not defined deployment and source code generation defaults (see
Section 117, "Configuring a Project") TopLink Workbench prompts for a root directory.

Note: If your project contains errors, the project.xml may not be
valid. See Section A.3, "TopLink Workbench Error Reference" for
information on each reported error.

Note: If your TopLink Workbench project uses UTF-8 character
set, you must use a compatible JDK when compiling the exported
Java source.

Exporting Project Information

116-10 Developer's Guide for Oracle TopLink

117

Configuring a Project 117-1

117Configuring a Project

This chapter describes how to configure TopLink project options common to two or
more project types.

This chapter includes the following sections:

■ Configuring Common Project Options

■ Configuring Project Save Location

■ Configuring Project Classpath

■ Configuring Method or Direct Field Access at the Project Level

■ Configuring Persistence Type

■ Configuring Default Descriptor Advanced Properties

■ Configuring Existence Checking at the Project Level

■ Configuring Project Deployment XML Options

■ Configuring Model Java Source Code Options

■ Configuring Cache Type and Size at the Project Level

■ Configuring Cache Isolation at the Project Level

■ Configuring Cache Coordination Change Propagation at the Project Level

■ Configuring Cache Expiration at the Project Level

■ Configuring Project Comments

Table 117–1 lists the types of TopLink projects that you can configure and provides a
cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Table 117–2 lists the configurable options shared by two or more TopLink project
types.

For more information, see the following:

■ Section 116.1, "Introduction to the Project Creation"

Table 117–1 Configuring TopLink Projects

If you are creating... See also...

Relational Projects Chapter 20, "Configuring a Relational Project"

EIS Projects Chapter 73, "Configuring an EIS Project"

XML Projects Chapter 49, "Configuring an XML Project"

Configuring Common Project Options

117-2 Developer's Guide for Oracle TopLink

■ Chapter 15, "Introduction to Projects"

117.1 Configuring Common Project Options
Table 117–2 lists the configurable options shared by two or more TopLink project
types. In addition to the configurable options described here, you must also configure
the options described for the specific TopLink project types (see Section 15.1, "TopLink
Project Types"), as shown in Table 117–1.

117.2 Configuring Project Save Location
You can configure a project save location only when using TopLink Workbench.

Table 117–3 summarizes which projects support a project save location.

Table 117–2 Common Project Options

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Save location (see Section 117.2, "Configuring Project Save
Location")

Classpath (see Section 117.3, "Configuring Project
Classpath")

Method or direct field access (see Section 117.4,
"Configuring Method or Direct Field Access at the Project
Level")

Persistence type (see Section 117.5, "Configuring Persistence
Type")

Default descriptor advanced properties (see Section 117.6,
"Configuring Default Descriptor Advanced Properties")

Existence checking (see Section 117.7, "Configuring
Existence Checking at the Project Level")

Deployment XML options (see Section 117.8, "Configuring
Project Deployment XML Options")

Model Java source code options (see Section 117.9,
"Configuring Model Java Source Code Options")

Deprecated direct mappings (see Section 20.11, "Configuring
Deprecated Direct Mappings")

Cache type and size (see Section 117.10, "Configuring Cache
Type and Size at the Project Level")

Cache isolation (see Section 117.11, "Configuring Cache
Isolation at the Project Level")

Cache coordination change propagation (see Section 117.12,
"Configuring Cache Coordination Change Propagation at
the Project Level")

Cache expiration (see Section 117.13, "Configuring Cache
Expiration at the Project Level")

Comments (see Section 117.14, "Configuring Project
Comments")

Table 117–3 Project Support for Project Save Location

Descriptor
How to Use Oracle
JDeveloper

How to Configure
Project Save Location
Using TopLink
Workbench

How to Use
Java

Relational Projects

Configuring Project Classpath

Configuring a Project 117-3

117.2.1 How to Configure Project Save Location Using TopLink Workbench
The Project Save Location field on the project’s General tab is for display only. This
field shows the full directory path for the project. All relative locations used in the
project are based on this location.

Figure 117–1 General Tab, Project Save Location

To select a new location, right-click on the project in the Navigator and select Save As
from the context menu. See Section 116.2.2, "How to Save Projects" for more
information.

117.3 Configuring Project Classpath
The TopLink project uses a classpath–a set of directories, JAR files, and ZIP files–when
importing Java classes and defining object types.

Table 117–4 summarizes which projects support project classpath configuration.

EIS Projects

XML Projects

Table 117–4 Project Support for Project Classpath

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Project Classpath
Using TopLink
Workbench

How to Use
Java

Relational Projects

Table 117–3 (Cont.) Project Support for Project Save Location

Descriptor
How to Use Oracle
JDeveloper

How to Configure
Project Save Location
Using TopLink
Workbench

How to Use
Java

Configuring Project Classpath

117-4 Developer's Guide for Oracle TopLink

Do not include JDBC drivers or other elements required to access the data source in
the project classpath. Use the setenv file to specify these application-level settings
(see Section 5.2, "Configuring the TopLink Workbench Environment").

After you configure the project classpath, you can use TopLink Workbench to import
classes into your project (see Section 5.7.3, "How to Import and Update Classes").

117.3.1 How to Configure Project Classpath Using TopLink Workbench
To specify the project classpath information, use this procedure:

1. Select the project object in the Navigator.

2. Click the General tab in the Editor. The General tab appears.

Figure 117–2 General Tab, Classpath Options

To add a new classpath entry, click Add Entry or Browse and select the
directory, .jar file, or .zip file for this project. To create a relative classpath, select an
entry and edit the path, as necessary. The path will be relative to the Project Save
Location.

To remove a classpath entry, select the entry and click Remove.

To change the order of the entries, select the entry and click Up or Down.

EIS Projects

XML Projects

Table 117–4 (Cont.) Project Support for Project Classpath

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Project Classpath
Using TopLink
Workbench

How to Use
Java

Configuring Method or Direct Field Access at the Project Level

Configuring a Project 117-5

117.4 Configuring Method or Direct Field Access at the Project Level
By default, when TopLink performs a persistence operation, it accesses the persistent
attributes of an object directly: this is known as direct field access. Alternatively, you
can configure TopLink to access persistent attributes using accessor methods of the
object: this is known as method access.

Oracle recommends using field access for mappings. Not only is it more efficient, but
using method access may cause issues if the method produces unexpected side-effects.

Table 117–5 summarizes which projects support mapped field access configuration.

This section describes configuring mapped field access at the project level: by default,
this configuration applies to all descriptors and their mappings.

You can also configure mapped field access at the mapping level to override this
project-level configuration on a mapping-by-mapping basis. For more information, see
Section 121.6, "Configuring Method or Direct Field Accessing at the Mapping Level".

If you enable change tracking on a property (for example, you decorate method
getPhone with @ChangeTracking) and you access the field (phone) directly, note
that TopLink does not detect the change. For more information, see Section 2.4.1.4,
"Using Method and Direct Field Access".

117.4.1 How to Configure Method or Direct Field Access at the Project Level Using
TopLink Workbench

To specify the field access method information, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Table 117–5 Project Support for Mapped Field Access

Descriptor
How to Use Oracle
JDeveloper

How to Configure
Method or Direct Field
Access at the Project
Level Using TopLink
Workbench

How to Use
Java

Relational Projects

EIS Projects

XML Projects

Note: If you change the access default, existing mappings retain
their current access settings, but new mappings will be created with
the new default.

Configuring Persistence Type

117-6 Developer's Guide for Oracle TopLink

Figure 117–3 Defaults Tab, Field Accessing Options

117.5 Configuring Persistence Type
You can configure your project persistence type when using Oracle JDeveloper or
TopLink Workbench.

Using TopLink Workbench, you can specify the persistence type to use with the
project. For example, your TopLink project may use plain Java objects, entity beans
with container-managed persistence, or entity beans with bean-managed persistence
(BMP).

Table 117–6 summarizes which projects support a persistence type configuration.

To create a TopLink descriptor for a persistent class, TopLink Workbench reads a
compiled Java .class file to read its attributes and relationships. See Section 14.1.2,
"Descriptors" for more information on TopLink descriptors.

For EJB projects, you can specify an ejb-jar.xml file from which TopLink will read
and to which it will write the necessary persistence information. You use the
ejb-jar.xml file to map the virtual fields of the entity beans with
container-managed persistence (called container-managed fields, defined by
<cmp-field> tag) or relationships (called container-managed relationship, defined
by <cmr-field> tag) to a data source.

Table 117–6 Project Support for Persistence Type

Descriptor
How to Use Oracle
JDeveloper

How to Configure
Persistence Type
Using TopLink
Workbench

How to Use
Java

Relational Projects

EIS Projects

XML Projects

Configuring Persistence Type

Configuring a Project 117-7

TopLink Workbench defines all descriptors for entity classes (as defined in the
ejb-jar.xml file) as EJB descriptors. TopLink Workbench does not create (or
remove) descriptors for the interfaces and primary key class for the entity when
refreshing from the ejb-jar.xml file.

To update your project from the XML file, right-click an EJB descriptor and select
Update Descriptors from ejb-jar.xml. You can also update the project by choosing
Selected > Update Descriptors from ebj-jar.xml from the menu.

For more information on creating and using deployment files such as the
ejb-jar.xml file, see the following:

■ Section 9.1, "Introduction to the TopLink Deployment File Creation"

■ Chapter 8, "Integrating TopLink with an Application Server"

■ Chapter 10, "Packaging a TopLink Application"

■ Chapter 11, "Deploying a TopLink Application"

117.5.1 How to Configure Persistence Type Using TopLink Workbench
To specify the persistence information, use this procedure:

1. Select the project object in the Navigator.

2. Select the General tab in the Editor. The General tab appears.

Figure 117–4 General Tab, Persistence Type Options

Use this table to enter data in the following fields on the project’s General tab to
configure the persistence options:

Note: TopLink Workbench creates class descriptors for entity classes
not defined in the ejb-jar.xml file. You must manually change the
descriptor type (see Section 119.18, "Configuring a Descriptor with EJB
CMP and BMP Information").

Configuring Default Descriptor Advanced Properties

117-8 Developer's Guide for Oracle TopLink

117.6 Configuring Default Descriptor Advanced Properties
You can configure default descriptor advanced properties when using Oracle
JDeveloper or TopLink Workbench.

 By default, TopLink Workbench displays a subset of features for each descriptor type.
You can modify this subset so that descriptors include additional advanced properties
by default.

You can also select specific advanced properties for individual descriptors (see
Chapter 119, "Configuring a Descriptor").

Table 117–7 summarizes which projects support default descriptor advanced property
configuration.

117.6.1 How to Configure Default Descriptor Advanced Properties Using TopLink
Workbench

To specify the default advanced properties for newly created descriptors in your
project, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Field Description

Persistence Type Specify the persistence type of the project: Java Objects, CMP 1.1,
CMP 2.x, or BMP. For EJB projects, specify the location of the
ejb-jar.xml file.

Note: This field does not apply to XML projects.

Location of ejb-jar.xml Specify the location of the ejb-jar.xml file for this project.
Section 19.7, "Working with the ejb-xml.File" for more information.

Note: This field applies to EJB projects only.

Table 117–7 Project Support for Default Descriptor Advanced Properties

Descriptor
How to Use Oracle
JDeveloper

How to Configure
Default Descriptor
Advanced Properties
Using TopLink
Workbench

How to Use
Java

Relational Projects

EIS Projects

XML Projects

Configuring Existence Checking at the Project Level

Configuring a Project 117-9

Figure 117–5 Defaults Tab, Descriptor Advanced Properties

Select which Descriptor Advanced Properties to add to newly created descriptors. The
list of advanced properties will vary, depending on the project type.

117.7 Configuring Existence Checking at the Project Level
When TopLink writes an object to the database, it runs an existence check to determine
whether to perform an insert or an update operation.

By default, TopLink checks against the cache. Oracle recommends that you use this
default existence check option for most applications. Checking the database for
existence can cause a performance bottleneck in your application.

Table 117–8 summarizes which projects support existence checking configuration.

By default, this configuration applies to all descriptors in a project. You can also
configure existence checking at the descriptor level to override this project-level
configuration on a descriptor-by-descriptor basis. For more information, see
Section 119.17, "Configuring Cache Existence Checking at the Descriptor Level".

For more information see the following:

■ Section 102.2.1, "Cache Type and Object Identity"

Table 117–8 Project Support for Existence Checking

Descriptor
How to Use Oracle
JDeveloper

How to Configure
Existence Checking at
the Project Level
Using TopLink
Workbench

How to Use
Java

Relational Projects

EIS Projects

XML Projects

Configuring Existence Checking at the Project Level

117-10 Developer's Guide for Oracle TopLink

■ Section 108.16, "Queries and the Cache"

■ Section 115.1.3, "How to Use Registration and Existence Checking"

117.7.1 How to Configure Existence Checking at the Project Level Using TopLink
Workbench

To specify the existence checking information, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Figure 117–6 Defaults Tab, Existence Checking Options

Use this table to enter data in following fields to specify the existence checking options
for newly created descriptors:

Field Description

Check Cache Check the session cache. If the object is not in the cache, assume that
the object does not exist (do an insert). If the object is in the cache,
assume that the object exists (do an update).

Oracle recommends using this option for most applications.

Check Database If an object is not in the cache, query the database to determine if the
object exists. If the object exists, do an update. Otherwise, do an
insert.

Selecting this option may negatively impact performance. For more
information, see Section 115.1.3.1, "Using Check Database".

Assume Existence Always assume objects exist: always do an update (never do an
insert).

For more information, see Section 115.1.3.2, "Using Assume
Existence".

Configuring Project Deployment XML Options

Configuring a Project 117-11

117.8 Configuring Project Deployment XML Options
You can configure project deployment XML options when using TopLink Workbench.

Using TopLink Workbench, you can specify the default file names, class names, and
directories, when exporting or generating deployment XML. Directories are relative to
the project save location (see Section 117.2, "Configuring Project Save Location"), and
will contain folders for each generated package.

Table 117–9 summarizes which projects support deployment XML options.

117.8.1 How to Configure Project Deployment XML Options Using TopLink Workbench
To specify the default export options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Options tab in the Editor. The Options tab appears.

Assume Nonexistence Always assume objects do not exist: always do an insert (never do an
update).

For more information, see Section 115.1.3.3, "Using Assume
Nonexistence".

Table 117–9 Project Support for Project Deployment XML Options

Descriptor
How to Use Oracle
JDeveloper

How to Configure
Project
Deployment XML
Options Using
TopLink
Workbench

How to Use
Java

Relational Projects

EIS Projects

XML Projects

Field Description

Configuring Model Java Source Code Options

117-12 Developer's Guide for Oracle TopLink

Figure 117–7 Options Tab, Project Deployment XML Options

Use this table to enter data in following fields to specify the default Project
Deployment XML options:

117.9 Configuring Model Java Source Code Options
You can configure model java source code options when using Oracle JDeveloper or
TopLink Workbench.

Using TopLink Workbench, you can specify the default file names, class names, and
directories, when exporting or generating Java source code for your domain objects.
Directories are relative to the project save location (see Section 117.2, "Configuring
Project Save Location"), and will contain folders for each generated package.

Table 117–10 summarizes which projects support model Java source code options.

Field Description

File Name File name (such as project.xml) to use when generating
project deployment XML.

Directory Directory in which to save the generated deployment XML file.

Table 117–10 Project Support for Model Java Source Options

Descriptor
How to Use Oracle
JDeveloper

How to Configure
Model Java Source
Code Options Using
TopLink Workbench

How to Use
Java

Relational Projects

EIS Projects

XML Projects

Configuring Cache Type and Size at the Project Level

Configuring a Project 117-13

117.9.1 How to Configure Model Java Source Code Options Using TopLink Workbench
To specify the default export options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Options tab in the Editor. The Options tab appears.

Figure 117–8 Options Tab, Model Java Source options

Specify the project root directory to which TopLink Workbench generates model Java
source files. For more information, see Section 118.3, "Generating Java Code for
Descriptors".

117.10 Configuring Cache Type and Size at the Project Level
The TopLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values. TopLink uses the cache to achieve the
following:

■ improve performance by holding recently read or written objects and accessing
them in-memory to minimize database access;

■ manage locking and isolation level;

■ manage object identity.

Table 117–11 summarizes which projects support identity map configuration.

Configuring Cache Type and Size at the Project Level

117-14 Developer's Guide for Oracle TopLink

The cache options you configure at the project level apply globally to all descriptors.
Use this section to define global cache options for a TopLink project.

You can override the project-level identity map configuration by defining identity map
configuration at the descriptor level. For information on caching and defining identity
map configuration for a specific descriptor, see Section 119.12, "Configuring Cache
Type and Size at the Descriptor Level".

For detailed information on caching and object identity, and the recommended settings
to maximize TopLink performance, see to Section 102.2.1, "Cache Type and Object
Identity".

For more information about the cache, see Chapter 102, "Introduction to Cache".

117.10.1 How to Configure Cache Type and Size at the Project Level Using TopLink
Workbench

To specify the cache identity map, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Table 117–11 Project Support for Identity Map Configuration

Descriptor
How to Use Oracle
JDeveloper

How to Configure
Cache Type and Size
at the Project Level
Using TopLink
Workbench

How to
Configure
Cache Type and
Size at the
Project Level
Using Java

Relational Projects

EIS Projects

XML Projects

Note: When using TopLink Workbench, changing the project’s
default identity map does not affect descriptors that already exist in
the project; only newly added descriptors ar affected.

Configuring Cache Type and Size at the Project Level

Configuring a Project 117-15

Figure 117–9 Defaults Tab, Cache Identity Map Options

Use this table to enter data in each of the following fields to specify the caching
options:

Field Description

Type Use the Type list to choose the identity map as follows:

■ Weak with Soft Subcache
(SoftCacheWeakIdentityMap)–cache first n elements in soft
space, anything after that in weak space (see Section 102.2.1.4,
"Soft Cache Weak Identity Map and Hard Cache Weak Identity
Map").

■ Weak with Hard Subcache
(HardCacheWeakIdentityMap)–cache first n elements in soft
space, anything after that in hard space (see Section 102.2.1.4,
"Soft Cache Weak Identity Map and Hard Cache Weak Identity
Map").

■ Weak (WeakIdentityMap)–cache everything in weak space
(see Section 102.2.1.2, "Weak Identity Map").

■ Soft (SoftIdentityMap)–cache everything in soft space (see
Section 102.2.1.3, "Soft Identity Map").

■ Full (FullIdentityMap)–cache everything permanently (see
Section 102.2.1.1, "Full Identity Map").

■ None (NoIdentityMap)–cache nothing (see Section 102.2.1.5,
"No Identity Map").

For more information, see Section 102.2.1, "Cache Type and Object
Identity".

Changing the project’s default identity map does not affect
descriptors that already exist in the project.

Configuring Cache Isolation at the Project Level

117-16 Developer's Guide for Oracle TopLink

117.10.2 How to Configure Cache Type and Size at the Project Level Using Java
Use one of the following ClassDescriptor methods to configure the descriptor to
use the appropriate type of identity map:

■ useFullIdentitMap

■ useWeakIdentityMap

■ useSoftIdentityMap

■ useSoftCacheWeakIdentityMap

■ useHardCacheWeakIdentityMap

■ useNoIdentityMap

Use the ClassDescriptor method setIdentityMapSize to configure the size of
the identity map.

117.11 Configuring Cache Isolation at the Project Level
If you plan to use isolated sessions (see Section 102.2.7, "Cache Isolation"), you must
configure descriptors as isolated for any object that you want confined to an isolated
session cache.

Configuring a descriptor to be isolated means that TopLink will not store the object in
the shared session cache and the object will not be shared across client sessions. This
means that each client will have their own object read directly from the database.
Objects in an isolated client session cache can reference objects in their parent server
session’s shared session cache, but no objects in the shared session cache can reference
objects in an isolated client session cache. Isolation is required when using Oracle
Database Virtual Private Database (VPD) support or database user-based read security.
Isolation can also be used if caching is not desired across client sessions.

Table 117–11 summarizes which projects support cache isolation configuration.

The cache isolation options you configure at the project level apply globally to all
descriptors. Use this section to define global options for a TopLink project.

Size Specify the size of the cache as follows:

■ When using Weak with Soft Subcache or Weak with Hard
Subcache, the size is the maximum number of objects stored in
the identity map.

■ When using Full or Weak, the size indicates the starting size of
the identity map.

Table 117–12 Project Support for Cache Isolation Configuration

Descriptor
How to Use Oracle
JDeveloper

How to Configure
Cache Isolation at the
Project Level Using
TopLink Workbench How to Use Java

Relational Projects

EIS Projects

XML Projects

Field Description

Configuring Cache Coordination Change Propagation at the Project Level

Configuring a Project 117-17

You can override the project-level configuration by defining cache isolation options at
the descriptor level. For information, see Section 119.13, "Configuring Cache Isolation
at the Descriptor Level".

117.11.1 How to Configure Cache Isolation at the Project Level Using TopLink
Workbench

To specify the cache isolation options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Figure 117–10 Defaults Tab, Cache Isolation Options

Use the Isolation list to choose one of the following:

■ Isolated–if you want all objects confined to an isolated client session cache. For
more information, see Section 102.2.7, "Cache Isolation".

■ Shared–if you want all objects visible in the shared session cache (default).

117.12 Configuring Cache Coordination Change Propagation at the
Project Level

If you plan to use a coordinated cache (see Section 102.3, "Cache Coordination"), you
can configure how and under what conditions a coordinated cache propagates
changes.

Note: When using TopLink Workbench, changing the project’s
default cache isolation option does not affect descriptors that already
exist in the project; only newly added descriptors ar affected.

Configuring Cache Coordination Change Propagation at the Project Level

117-18 Developer's Guide for Oracle TopLink

Table 117–11 summarizes which projects support cache coordination change
propagation configuration.

The cache coordination change propagation options you configure at the project level
apply globally to all descriptors. Use this section to define global options for a TopLink
project.

You can override the project-level configuration by defining cache coordination change
propagation options at the descriptor level. For information, see Section 119.15,
"Configuring Cache Coordination Change Propagation at the Descriptor Level".

To complete your coordinated cache configuration, see Chapter 103, "Configuring a
Coordinated Cache".

117.12.1 How to Configure Cache Coordination Change Propagation at the Project
Level Using TopLink Workbench

To specify the coordinated cache change propagation options, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Table 117–13 Project Support for Cache Coordination Change Propagation
Configuration

Descriptor
How to Use Oracle
JDeveloper

How to Configure
Cache Coordination
Change Propagation at
the Project Level Using
TopLink Workbench

How to Use
Java

Relational Projects

EIS Projects

XML Projects

Note: When using TopLink Workbench, changing the project’s
default cache coordination change propagation option does not affect
descriptors that already exist in the project; only newly added
descriptors ar affected.

Configuring Cache Coordination Change Propagation at the Project Level

Configuring a Project 117-19

Figure 117–11 Defaults Tab, Coordination Options

Use the following information to enter data in the Coordination field:

Coordination Option Description When to Use

None For both existing and new instances, do
not propagate a change notification.

Infrequently read or changed
objects.

Synchronize Changes For an existing instance, propagate a
change notification that contains each
changed attribute.

For a new instance, propagate an object
creation (along with all the new
instance’s attributes) only if the new
instance is related to other existing
objects that are also configured with this
change propagation option.

Frequently read or changed
objects that contain few attributes
or in cases where only a few
attributes are frequently changed.

Objects that have many or
complex relationships.

Synchronize Changes
and New Objects

For an existing instance, propagate a
change notification that contains each
changed attribute.

For a new instance, propagate an object
creation (along with all the new
instance’s attributes).

Frequently read or changed
objects that contain few attributes
or in cases where only a few
attributes are frequently changed.

Objects that have few or simple
relationships.

Invalidate Changed
Objects

For an existing instance, propagate an
object invalidation that marks the object
as invalid in all other sessions. This tells
other sessions that they must update
their cache from the data source the next
time this object is read.

For a new instance, no change
notification is propagated.

Frequently read or changed
objects that contain many
attributes in cases where many of
the attributes are frequently
changed.

Configuring Cache Expiration at the Project Level

117-20 Developer's Guide for Oracle TopLink

117.13 Configuring Cache Expiration at the Project Level
By default, objects remain in the cache until they are explicitly deleted (see
Section 114.7, "Deleting Objects") or garbage-collected when using a weak identity
map (see Section 117.10, "Configuring Cache Type and Size at the Project Level").
Alternatively, you can configure an object with a CacheInvalidationPolicy that
lets you specify, either automatically or manually, that an object is invalid: when any
query attempts to read an invalid object, TopLink will go to the data source for the
most up-to-date version of that object and update the cache with this information.

Using cache invalidation ensures that your application does not use stale data. It
provides a better performing alternative to refreshing (see Section 119.9, "Configuring
Cache Refreshing").

Table 117–14 summarizes which projects support cache invalidation configuration.

The cache invalidation options you configure at the project level apply globally to all
descriptors. Use this section to define global cache invalidation options for a TopLink
project.

You can override the project-level cache invalidation configuration by defining cache
invalidation at the descriptor (see Section 119.16, "Configuring Cache Expiration at the
Descriptor Level") or query level (see Section 111.13.2, "How to Configure Cache
Expiration at the Query Level").

You can customize how TopLink communicates the fact that an object has been
declared invalid to improve efficiency if you are using a coordinated cache. For more
information, see Section 119.15, "Configuring Cache Coordination Change Propagation
at the Descriptor Level".

For more information, see Section 102.2.5, "Cache Invalidation".

117.13.1 How to Configure Cache Expiration at the Project Level Using TopLink
Workbench

To specify the cache expiration options for the project, use this procedure:

1. Select the project object in the Navigator.

2. Select the Defaults tab in the Editor. The Defaults tab appears.

Table 117–14 Project Support for Cache Invalidation Configuration

Descriptor
How to Use Oracle
JDeveloper

How to Configure Cache
Expiration at the Project
Level Using TopLink
Workbench

How to
Use
Java

Relational Projects

EIS Projects

XML Projects

Note: When using TopLink Workbench, changing the project’s
default cache invalidation does not affect descriptors that already exist
in the project; only newly added descriptors are affected.

Configuring Project Comments

Configuring a Project 117-21

Figure 117–12 Defaults Tab, Cache Expiry Options

Use this table to enter data in the following fields on this tab:

117.14 Configuring Project Comments
You can define a free-form textual comment for each project. You can use these
comments however you whish: for example, to record important project
implementation details such as the purpose or importance of a project.

In a Oracle JDeveloper or TopLink Workbench project, the comments are stored in the
TopLink deployment XML file. There is no Java API for this feature.

Table 117–15 summarizes which projects support this option.

Field Description

No Expiry Specify that objects in the cache do not expire.

Time to Live Expiry Specify that objects in the cache will expire after a specified amount
of time. Use the Expire After field to indicate the time (in
milliseconds) after which the objects will expire.

Daily Expiry Specify that objects in the cache will expire at a specific time each
day. Use the Expire At field to indicate the exact time to the second
(using a 24-hour clock) at which the objects will expire.

Update Read Time on
Update

Specify if the expiry time should be reset after updating an object.

Note: These options apply to all descriptors in a project. See
Section 119.16, "Configuring Cache Expiration at the Descriptor Level"
for information on configuring descriptor-specific options.

Configuring Project Comments

117-22 Developer's Guide for Oracle TopLink

117.14.1 How to Configure Project Comments Using TopLink Workbench
To specify a comment for the project, use this procedure:

1. Select the project object in the Navigator.

2. Select the General tab in the Editor. The General tab appears.

Figure 117–13 General Tab, Comments Options

3. Enter descriptive text information in the Comment field.

Table 117–15 Project Support for Project Comments

Project Type
How to Use Oracle
JDeveloper

How to Configure Project
Comments Using
TopLink Workbench

How to Use
Java

Relational Projects

EIS Projects

XML Projects

Part XXVII
Part XXVII Creation and Configuration of

Descriptors

This part describes the TopLink artifact used to describe persistent objects. It contains
the following chapters.

■ Chapter 118, "Creating a Descriptor"

This chapter contains procedures for creating TopLink descriptors.

■ Chapter 119, "Configuring a Descriptor"

This chapter explains how to configure TopLink descriptor options common to
two or more descriptor types.

118

Creating a Descriptor 118-1

118Creating a Descriptor

This chapter describes how to create TopLink descriptors.

This chapter includes the following sections:

■ Introduction to Descriptor Creation

■ Validating Descriptors

■ Generating Java Code for Descriptors

118.1 Introduction to Descriptor Creation
For information on creating different types of descriptors, see the following:

■ Chapter 22, "Creating a Relational Descriptor"

■ Chapter 75, "Creating an EIS Descriptor"

■ Chapter 51, "Creating an XML Descriptor"

After you create a descriptor, you must configure its various options (see Chapter 119,
"Configuring a Descriptor") and use it to define mappings.

For complete information on the various types of mapping that TopLink supports, see
Chapter 17, "Introduction to Mappings" and Chapter 120, "Creating a Mapping".

For complete information on the various types of descriptor that TopLink supports,
see Section 16.1, "Descriptor Types".

118.2 Validating Descriptors
You can validate descriptors in the following ways:

■ Run the project in a test environment and watch for and interpret any exceptions
that occur.

■ Run the TopLink integrity checker. For more information, see Section 87.2.8,
"Integrity Checker".

■ Review the project status report. For more information, see Section 116.2.3, "How
to Generate the Project Status Report".

118.3 Generating Java Code for Descriptors
Typically, you capture descriptor configuration in the project.xml file and the
TopLink runtime reads this information, and then creates and configures all necessary
descriptor objects.

Generating Java Code for Descriptors

118-2 Developer's Guide for Oracle TopLink

Alternatively, for relational projects only, you can export a TopLink project as a Java
class (oracle.toplink.sessions.Project) that contains all descriptor
configuration in Java. This lets you use TopLink Workbench to quickly create and
configure descriptors, and then, manually code features that TopLink Workbench does
not support. This gives you the best of both TopLink Workbench and Java access to
your descriptors. After configuring your Java project class, compile it and include it in
your application's JAR file.

For more information, see Section 19.6.1, "How to Export Project Java Source Using
TopLink Workbench".

119

Configuring a Descriptor 119-1

119Configuring a Descriptor

This chapter describes how to configure TopLink project options common to two or
more project types.

This chapter includes the following sections:

■ Configuring Common Descriptor Options

■ Configuring Primary Keys

■ Configuring Read-Only Descriptors

■ Configuring Unit of Work Conforming at the Descriptor Level

■ Configuring Descriptor Alias

■ Configuring Descriptor Comments

■ Configuring Named Queries at the Descriptor Level

■ Configuring Query Timeout at the Descriptor Level

■ Configuring Cache Refreshing

■ Configuring Query Keys

■ Configuring Interface Query Keys

■ Configuring Cache Type and Size at the Descriptor Level

■ Configuring Cache Isolation at the Descriptor Level

■ Configuring Unit of Work Cache Isolation at the Descriptor Level

■ Configuring Cache Coordination Change Propagation at the Descriptor Level

■ Configuring Cache Expiration at the Descriptor Level

■ Configuring Cache Existence Checking at the Descriptor Level

■ Configuring a Descriptor with EJB CMP and BMP Information

■ Configuring Reading Subclasses on Queries

■ Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor

■ Configuring Inheritance for a Parent (Root) Descriptor

■ Configuring Inheritance Expressions for a Parent (Root) Class Descriptor

■ Configuring Inherited Attribute Mapping in a Subclass

■ Configuring a Domain Object Method as an Event Handler

■ Configuring a Descriptor Event Listener as an Event Handler

Configuring Common Descriptor Options

119-2 Developer's Guide for Oracle TopLink

■ Configuring Locking Policy

■ Configuring Returning Policy

■ Configuring Instantiation Policy

■ Configuring Copy Policy

■ Configuring Change Policy

■ Configuring a History Policy

■ Configuring Wrapper Policy

■ Configuring Fetch Groups

■ Configuring a Descriptor Customizer Class

■ Configuring Amendment Methods

Table 119–1 lists the types of TopLink descriptors that you can configure and provides
a cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Table 119–2 lists the configurable options shared by two or more TopLink descriptor
types.

For more information, see the following:

■ Section 118.1, "Introduction to Descriptor Creation"

■ Chapter 16, "Introduction to Descriptors"

119.1 Configuring Common Descriptor Options
Table 119–2 lists the configurable options shared by two or more TopLink descriptor
types. In addition to the configurable options described here, you must also configure
the options described for the specific Descriptor Types, as shown in Table 119–1.

Table 119–1 Configuring TopLink Descriptor

If you are creating... See...

Relational Descriptors Chapter 23, "Configuring a Relational Descriptor"

Object-Relational Data Type
Descriptors

Chapter 26, "Configuring an Object-Relational Data Type
Descriptor"

EIS Descriptor Concepts Chapter 76, "Configuring an EIS Descriptor"

XML Descriptor Concepts Chapter 52, "Configuring an XML Descriptor"

Table 119–2 Common Descriptor Options

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Primary keys (see Section 119.2, "Configuring Primary
Keys")

Read-only (see Section 119.3, "Configuring Read-Only
Descriptors")

Unit of work conforming (see Section 119.4,
"Configuring Unit of Work Conforming at the Descriptor
Level")

Alias (see Section 119.5, "Configuring Descriptor Alias")

Configuring Common Descriptor Options

Configuring a Descriptor 119-3

Comments (see Section 119.6, "Configuring Descriptor
Comments")

Classes (see Section 5.7.2, "How to Configure Classes")

Named queries (see Section 119.7, "Configuring Named
Queries at the Descriptor Level")

Query timeout (see Section 119.8, "Configuring Query
Timeout at the Descriptor Level")

Cache refreshing (see Section 119.9, "Configuring Cache
Refreshing")

Query keys (see Section 119.10, "Configuring Query
Keys")

Interface query keys (see Section 119.11, "Configuring
Interface Query Keys")

Cache type and size (see Section 119.12, "Configuring
Cache Type and Size at the Descriptor Level")

Cache isolation (see Section 119.13, "Configuring Cache
Isolation at the Descriptor Level")

Unit of work cache isolation (see Section 119.14,
"Configuring Unit of Work Cache Isolation at the
Descriptor Level")

Cache coordination change propagation (see
Section 119.15, "Configuring Cache Coordination Change
Propagation at the Descriptor Level")

Cache expiration (see Section 119.16, "Configuring Cache
Expiration at the Descriptor Level")

Cache existence checking (see Section 119.17,
"Configuring Cache Existence Checking at the
Descriptor Level")

EJB information (see Section 119.18, "Configuring a
Descriptor with EJB CMP and BMP Information")

Reading subclasses on queries (see Section 119.19,
"Configuring Reading Subclasses on Queries")

Inheritance for a child class descriptor (see
Section 119.20, "Configuring Inheritance for a Child
(Branch or Leaf) Class Descriptor")

Inheritance for a parent class descriptor (see
Section 119.21, "Configuring Inheritance for a Parent
(Root) Descriptor")

Inheritance expressions for a parent class descriptor (see
Section 119.22, "Configuring Inheritance Expressions for
a Parent (Root) Class Descriptor")

Inherited attribute mapping in a subclass (see
Section 119.23, "Configuring Inherited Attribute
Mapping in a Subclass")

Domain object method as an event handler (see
Section 119.24, "Configuring a Domain Object Method as
an Event Handler")

Descriptor event listener as an event handler
(seeSection 119.25, "Configuring a Descriptor Event
Listener as an Event Handler")

Locking policy (see Section 119.26, "Configuring Locking
Policy")

Returning policy (see Section 119.27, "Configuring
Returning Policy")

Table 119–2 (Cont.) Common Descriptor Options

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Configuring Primary Keys

119-4 Developer's Guide for Oracle TopLink

119.2 Configuring Primary Keys
A primary key is a unique identifier (made up of one or more persistent attributes)
that distinguishes one instance of a class from all other instances of the same type. You
use primary keys to define relationships and to define queries.

For the descriptors shown in Table 119–3, you must configure a primary key and you
must ensure that your class contains one or more persistent fields suitable for this
purpose.

Table 119–3 summarizes which descriptors support primary keys.

For a relational class (non-aggregate) descriptor, choose any unique database field or
set of unique database fields from the descriptor’s associated table (see Section 23.2,
"Configuring Associated Tables").

For an EIS root descriptor (see Section 76.6, "Configuring an EIS Descriptor as a Root
or Composite Type"), choose any unique attribute or text node or set of unique
attributes or text nodes from the descriptor’s schema context (see Section 76.2,
"Configuring Schema Context for an EIS Descriptor").

Instantiation policy (see Section 119.28, "Configuring
Instantiation Policy")

Copy policy (see Section 119.29, "Configuring Copy
Policy")

Change policy (see Section 119.30, "Configuring Change
Policy")

History policy (see Section 119.31, "Configuring a
History Policy")

Wrapper policy (see Section 119.32, "Configuring
Wrapper Policy")

Fetch groups (see Section 119.33, "Configuring Fetch
Groups")

Amendment methods (see Section 119.35, "Configuring
Amendment Methods")

Mapping (see Section 121, "Configuring a Mapping")

Table 119–3 Descriptor Support for Primary Keys

Descriptor

How to Use
Oracle
JDeveloper

How to
Configure
Primary Keys
Using TopLink
Workbench

How to
Configure
Primary Keys
Using Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data Type
Descriptors

EIS Descriptors2

2 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors").

XML Descriptors

Table 119–2 (Cont.) Common Descriptor Options

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Configuring Primary Keys

Configuring a Descriptor 119-5

119.2.1 How to Configure Primary Keys Using TopLink Workbench
To associate a descriptor with one or more primary keys, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 119–1 Descriptor Info Tab, Primary Key Options

Use this table to enter data in Primary Keys field on the descriptor’s Descriptor Info
tab to specify the primary key(s):

119.2.2 How to Configure Primary Keys Using Java
You can use Java to configure primary keys for the following:

■ Relational Projects

■ EIS Projects

119.2.2.1 Relational Projects
Use ClassDescriptor method addPrimaryKeyFieldName to specify the primary
key field of the descriptor’s table. This should be called for each field that makes up
the primary key of the table.

Field Description

Primary Keys To specify the primary keys for the table, click Add in order to do
the following:

■ For a relational class descriptor, select a database field from the
descriptor’s associated table (see Section 23.2, "Configuring
Associated Tables").

■ For an EIS root descriptor, select an attribute or text node from
the descriptor’s schema context (see Section 76.2, "Configuring
Schema Context for an EIS Descriptor"). For more information
on choosing an element or attribute, see Section 76.2.1.1,
"Choosing a Schema Context".

To remove a primary key, select the key and click Remove.

Configuring Read-Only Descriptors

119-6 Developer's Guide for Oracle TopLink

If the descriptor has more than one table, and all other tables have the same primary
key, use the ClassDescriptor method addPrimaryKeyFieldName to specify the
the primary key in the first table.

If the descriptor has more than one table, and each table has a different primary key,
use ClassDescriptor method addForeignKeyFieldNameForMultipleTable
to map the source foreign key field name to target primary key field name.

119.2.2.2 EIS Projects
Use EISDescriptor method addPrimaryKeyFieldName to specify the primary
key field of the descriptor’s class. Call this method for each field that makes up the
primary key.

119.3 Configuring Read-Only Descriptors
You can configure a relational class or EIS root descriptor as read-only. This indicates
that instances of the reference class will never be modified.

Read-only descriptors are usually used within a unit of work as a performance gain,
because there is no need to register, clone, and merge the read-only classes. For more
information, see Chapter 113, "Introduction to TopLink Transactions".

In a CMP project, you can declare an entity bean as read-only within the TopLink
deployment XML file. For more information, see Section 119.3.1, "How to Use
Read-Only EJB CMP Entity Beans".

Table 119–4 summarizes which descriptors support read-only configuration.

119.3.1 How to Use Read-Only EJB CMP Entity Beans
TopLink can declare an entity bean with container-managed persistence as read-only.
This ensures that the entity bean cannot be modified and allows TopLink to optimize
unit of work performance.

If an attempt is made to modify a read-only entity bean (create, update, or remove),
TopLink immediately throws a javax.ejb.EJBException: TopLink does not wait
until the transaction commits.

Table 119–4 Descriptor Support for Read Only

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Read-Only
Descriptors
Using TopLink
Workbench

How to Configure
Read-Only
Descriptors
Using Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data Type
Descriptors

EIS Descriptor2

2 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors")

XML Descriptors

Note: Relational aggregate and EIS composite descriptors get their
read-only setting from their owner.

Configuring Unit of Work Conforming at the Descriptor Level

Configuring a Descriptor 119-7

If an attempt is made to change a CMR field on a read-only entity bean, TopLink
throws a javax.ejb.EJBException.

When TopLink is configured as the OC4J persistence manager, the TopLink read-only
bean configuration replaces the OC4J READ-ONLY CMP concurrency mode.

119.3.2 How to Configure Read-Only Descriptors Using TopLink Workbench
To configure a descriptor as read-only use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Figure 119–2 Descriptor Info Tab, Read Only Option

Specify whether this descriptor is read-only or not.

119.3.3 How to Configure Read-Only Descriptors Using Java
Use ClassDescriptor method setReadOnly.

119.4 Configuring Unit of Work Conforming at the Descriptor Level
Conforming is a query feature that lets you include new, changed, or deleted objects in
queries within a unit of work prior to committing the transaction. This feature enables
you to query against your relative logical or transaction view of a data source.

Table 119–5 summarizes which descriptors support descriptor level unit of work
conforming.

Configuring Unit of Work Conforming at the Descriptor Level

119-8 Developer's Guide for Oracle TopLink

When you configure a descriptor to conform results in a unit of work, when you
execute a query in the unit of work, TopLink filters the data source result set to the
changes currently made in the unit of work. TopLink adds new or changed objects that
correspond to the query's selection criteria and removes changed objects that no longer
correspond to the query's selection criteria.

Conforming can reduce performance. Before you enable a descriptor for conforming,
be aware of its limitations (see Section 115.4.1, "How to Use Conforming") and make
sure that conforming is actually necessary.

For examples, see the following:

■ Section 115.4, "Using Conforming Queries and Descriptors"

■ Section 115.4.4, "What You May Need to Know About Conforming Query
Alternatives"

119.4.1 How to Configure Unit of Work Conforming at the Descriptor Level Using
TopLink Workbench

To conform a descriptor’s results in a unit of work, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Descriptor Info tab. The Descriptor Info tab appears.

Table 119–5 Descriptor Support for Unit of Work Conforming

Descriptor

How to Use
Oracle
JDeveloper

How to
Configure Unit of
Work
Conforming at
the Descriptor
Level Using
TopLink
Workbench

How to
Configure Unit of
Work
Conforming at
the Descriptor
Level Using Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data Type
Descriptors

EIS Descriptors2

2 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors")

XML Descriptors

Note: For EIS root descriptors, only deleted objects would be filtered,
not new or changed objects.

Configuring Descriptor Alias

Configuring a Descriptor 119-9

Figure 119–3 Descriptor Info Tab, Conform Results in Unit of Work Option

Enable or disable conforming: when enabled, this feature ensures that any queries for
this descriptor will conform the data source result with the current changes in the unit
of work. For more information, see Section 115.4.1, "How to Use Conforming".

119.4.2 How to Configure Unit of Work Conforming at the Descriptor Level Using Java
Use ClassDescriptor method
setShouldAlwaysConformResultsInUnitOfWork(true).

119.5 Configuring Descriptor Alias
In EJB CMP, use the descriptor alias to specify the value of the ejb-jar.xml attribute
abstract-schema-name. This is the logical name that is referenced in EJB QL
queries. You should configure a descriptor alias for each entity bean with
container-managed persistence. The descriptor alias defaults to the class name without
a path information.

Table 119–6 summarizes which descriptors support descriptor alias configuration.

Table 119–6 Descriptor Support for Descriptor Alias Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Descriptor Alias
Using TopLink
Workbench

How to
Configure
Descriptor Alias
Using Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors1

1 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors").

XML Descriptors

Configuring Descriptor Alias

119-10 Developer's Guide for Oracle TopLink

For more information, see the following:

■ Section 9.1.3, "ejb-jar.xml File"

■ Section 108.15, "EJB 2.n CMP Finders"

119.5.1 How to Configure Descriptor Alias Using TopLink Workbench
To specify a descriptor alias, use this procedure:

1. In the Navigator, select a descriptor.

2. Click the Descriptor Info tab in the Property window.

Figure 119–4 Descriptor Info Tab, Descriptor Alias Field

In the Descriptor Alias field, enter an alias for this descriptor. For more information,
see Section 119.5, "Configuring Descriptor Alias".

119.5.2 How to Configure Descriptor Alias Using Java
Use ClassDescriptor method setAlias passing in the descriptor alias as a
String.

Note: The alias is also used in JPA–it is the entity name. This is the
logical name referenced in JP QL queries. It defaults to the class name
without a path information.

For more information, see "Introduction to EclipseLink JPA" chapter of
EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Introduction_to_EclipseLink_
JPA_%28ELUG%29.

Configuring Descriptor Comments

Configuring a Descriptor 119-11

119.6 Configuring Descriptor Comments
You can define a free-form textual comment for each descriptor. You can use these
comments however you whish: for example, to record important project
implementation details such as the purpose or importance of a descriptor.

Comments are stored in the TopLink Workbench project, in the TopLink deployment
XML file. There is no Java API for this feature.

Table 119–7 summarizes which descriptors support descriptor comment configuration.

119.6.1 How to Configure Descriptor Comments Using TopLink Workbench
To create a comment for a descriptor, use this procedure:

1. In the Navigator, select a descriptor.

2. Click the Descriptor Info tab in the Property window.

Figure 119–5 Descriptor Info Tab, Comment Field

In the Comment field, enter a description of this descriptor.

Table 119–7 Descriptor Support for Descriptor Comment Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Descriptor Comments
Using TopLink
Workbench

How to
Use Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Configuring Named Queries at the Descriptor Level

119-12 Developer's Guide for Oracle TopLink

119.7 Configuring Named Queries at the Descriptor Level
A named query is a TopLink query that you create and store, by name, in a
descriptor’s DescriptorQueryManager for later retrieval and execution. Named
queries improve application performance because they are prepared once and they
(and all their associated supporting objects) can be efficiently reused thereafter making
them well suited for frequently executed operations.

If a named query is global to a Class, configure it at the descriptor level.
Alternatively, you can configure a named query at the session level (see Section 89.13,
"Configuring Named Queries at the Session Level").

Use named queries to specify SQL, EJB QL, or TopLink Expression queries to access
your data source.

For EJB CMP entity bean descriptors, you must define a named query for every finder
defined for the corresponding entity bean.

Using Oracle JDeveloper or TopLink Workbench, you can configure named queries for
a subset of query types and store them in a descriptor’s DescriptorQueryManager
(see Section 119.7.1, "How to Configure Named Queries at the Descriptor Level Using
TopLink Workbench").

Using Java, you can create named queries for all query types and store them in a
descriptor’s DescriptorQueryManager (see Section 119.7.2, "How to Configure
Named Queries at the Descriptor Level Using Java").

Table 119–4 summarizes which descriptors support named query configuration.

For CMP projects, the ejb-jar.xml file stores query lists. You can define the queries
in the file, and then read them into Oracle JDeveloper or TopLink Workbench, or

Note: You can also use named queries in JPA (see "Using EclipseLink
JPA Extensions for Stored Procedure Query" section of EclipseLink
Developer’s Guide at http://wiki.eclipse.org/Using_
EclipseLink_JPA_Extensions_%28ELUG%29#Using_
EclipseLink_JPA_Extensions_for_Stored_Procedure_
Query). Because the scope of JPA named queries is global to the
session, ensure that each named query has a unique name.

Table 119–8 Descriptor Support for Named Queries

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Named Queries
at the Descriptor
Level Using
TopLink
Workbench

How to
Configure
Named Queries
at the Descriptor
Level Using
Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data Type
Descriptors

EIS Descriptor2

2 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors").

XML Descriptors

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 119-13

define them on the Queries tab and write them to the file. See Section 19.7, "Working
with the ejb-xml.File" for more information.

After you create a named query, you can execute it by name and class on the TopLink
session (see Section 109.3, "Using Named Queries").

For more information about named queries, see Section 108.8, "Named Queries".

119.7.1 How to Configure Named Queries at the Descriptor Level Using TopLink
Workbench

To create a named query, use this procedure

1. In the Navigator, select a descriptor. Its properties appear in the Editor.

2. Click the Queries tab in the Editor. The Queries tab appear with three additional
tabs.

3. Click the Named Queries tab in the Queries tab. The Named Queries tab appears.

Figure 119–6 Queries Tab–Named Queries Subtab

Use the following information to complete each field on this tab:

Field Description

Queries Lists the existing queries for this descriptor.

■ To create a new query, click Add (see Section 119.7.1.1,
"Adding Named Queries").

■ To delete an existing query, select the query and click
Delete. TopLink Workbench prompts for confirmation.

■ To rename an existing query, select the query and click
Rename. The Rename dialog box appears. Type a new
name for the query and click OK.

Query Variety Displays the variety of the currently selected query (see
Section 119.7.1.1, "Adding Named Queries").

Quick View Lists the parameters and joined attributes defined for the query.

Clicking on a heading in the Quick View area selects the
corresponding subtab. You can also remove parameters or
attributes from the Quick View area by selecting the item and
clicking Remove.

Configuring Named Queries at the Descriptor Level

119-14 Developer's Guide for Oracle TopLink

The Named Queries tab includes the following subtabs:

■ General–See Section 119.7.1.2, "Configuring Named Query Type and Parameters".

■ Selection Criteria–See Section 119.7.1.3, "Configuring Named Query Selection
Criteria".

■ Order–This tab appears for ReadAllQuery queries only. See Section 119.7.1.4,
"Configuring Read All Query Order".

■ Optimization–See Section 119.7.1.5, "Configuring Named Query Optimization".

■ Attributes–This tab appears for ReportQuery queries only. See Section 119.7.1.6,
"Configuring Named Query Attributes".

■ Group/Order–This tab appears for ReportQuery queries only. Section 119.7.1.7,
"Configuring Named Query Group/Order Options".

■ Calls–This tab appears for EIS root descriptors only (for ReadAllQuery and
ReadObjectQuery queries). See Section 119.7.1.8, "Creating an EIS Interaction for
a Named Query".

■ Options–See Section 119.7.1.9, "Configuring Named Query Options".

119.7.1.1 Adding Named Queries
Use this dialog box to create a new named query.

Figure 119–7 Add Named Query Dialog Box

Use the following information to complete the dialog box and create the named query:

Field Description

Variety For EJB CMP descriptors only, select the variety of
query:

TopLink Named Query Select to create a general purpose TopLink query of the
type given by the Type area. You can execute this
query by name on the TopLink session passing in the
class and arguments (see Section 109.3, "Using Named
Queries").

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 119-15

Enter the necessary information and click OK. TopLink Workbench adds the query to
the list of queries in the Named Query tab.

119.7.1.2 Configuring Named Query Type and Parameters
Use this tab to select the query type and add or remove parameters.

EJB Finder Select to create a TopLink query of the type given by
the Type area for use as the implementation of the EJB
CMP finder method of the name you enter. The
TopLink runtime executes this query when you call
the EJB CMP finder method of the given name.

TopLink Reserved Finder Select to create a TopLink query of the type given by
the Type area for use as the implementation of the
TopLink reserved finder method name you select. The
TopLink runtime executes this query when you call
the EJB CMP finder method of the given name.

For more information, see Section 108.15.1,
"Predefined Finders".

EJB Select Select to create a TopLink query of the type given by
the Type area for use as the implementation of the EJB
CMP life cycle method ejbSelect. The TopLink
runtime executes this query whenever the ejbSelect
method is called.

Type Select the type of query:

■ ReadObject (ReadObjectQuery)

■ ReadAll (ReadAllQuery)

■ Report1 (ReportQuery)

Note: If Variety is set to TopLink Reserved Finder,
you cannot select a query Type.

Name The name of this query.

■ If Variety is set to TopLink Named Query, you
can specify any name.

■ If Variety is set to EJB Finder, the name must be
prefixed by find.

■ If Variety is set to TopLink Reserved Finder,
select from the list of available names that
TopLink reserves. For more information, see
Section 108.15.1, "Predefined Finders".

■ If Variety is set to EJB Select, the name must be
ejbSelect.

1 Relational descriptors only.

Field Description

Configuring Named Queries at the Descriptor Level

119-16 Developer's Guide for Oracle TopLink

Figure 119–8 Named Queries, General Tab

Use the following information to complete each field on this tab:

119.7.1.3 Configuring Named Query Selection Criteria
Use this tab to specify the format of the named query and enter the query string.

Field Description

Type Select the type of query from the list. You can create any of the
following query types:

■ ReadAllQuery

■ ReadObjectQuery

■ ReportQuery1

To create other types of query, you must use Java (see
Section 119.7.2, "How to Configure Named Queries at the
Descriptor Level Using Java").

When you change the type of an existing query, TopLink
Workbench preserves any configuration that is common
between the old and new type and warns you if changing the
type will result in the loss of configuration that is not shared by
the new type.

1 Relational descriptors only.

Parameters For queries that take parameters, specify the parameters:

■ To add a new parameter, click Add. The Add Query
Parameter dialog box appears. Click Browse to select the
type, specify a name, and click OK.

■ To delete an existing parameter, select the parameter and
click Remove. TopLink Workbench prompts for
confirmation.

■ To modify an existing parameter, select the parameter and
click Edit. The Edit Query Parameter dialog box appears.
Modify the name and type of the parameter and click OK.

■ To change the order of the parameters, select an existing
parameter and click Up or Down.

Type Select the class of the parameter’s type.

Name Enter the name of the parameter.

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 119-17

Figure 119–9 Named Queries, Selection Criteria Tab

Use the following information to complete each field on this tab:

119.7.1.4 Configuring Read All Query Order
Use this tab to specify how the results of a read all query should be ordered by
attribute name.

Field Description

Type Specify if query uses a TopLink Expression, SQL, or EJB QL.

Expression or Query String If the Type is SQL or EJB QL, enter the query string (either SQL
or EJB QL).

TopLink Workbench does not validate the query string.

See a note that follows this table for information on query
syntax.

Note: Use a combination of an escape character and a
double-quote (\") instead of just a double-quote (") when
defining your query using SQL or EJB QL. For example:

SELECT OBJECT(employee) FROM Employee employee WHERE
employee.name = \"Bob\"

If you fail to do so, the generated Java code would look as follows:

query.setEJBQLString("SELECT OBJECT(employee) FROM Employee
employee WHERE employee.name = "Bob"");

The preceding code produces an error at compile time.

If you define your query using the correct syntax, the generated
Java code will contain no errors and be similar to the following:

query.setEJBQLString("SELECT OBJECT(employee) FROM Employee
employee WHERE employee.name = \"Bob\"");

Configuring Named Queries at the Descriptor Level

119-18 Developer's Guide for Oracle TopLink

Figure 119–10 Named Queries, Order Tab

Select one of the following actions:

■ To add a new attribute by which to order query results, click Add. The Add
Ordering Attribute dialog box appears. Select the mapped attribute to order by,
specify ascending or descending order, and then click OK.

■ To change the order of the order attributes, select an existing attribute and click Up
or Down.

■ To modify an existing order attribute’s ordering options, select an existing
attribute and click Edit.

■ To remove an order attribute, select an existing attribute and click Remove.

119.7.1.5 Configuring Named Query Optimization
You can optimize a named query by configuring batch (ReadAllQuery only) or
joining (ReadAllQuery and ReadObjectyQuery) attributes.

For more information on using batch reading, see Optimizing Queries,
Section 12.12.9.2, "Reading Case 2: Batch Reading Objects", and Section 109.2.1.9,
"Using Batch Reading".

For more information on joining, see Section 108.7.1.5, "Join Reading and Object-Level
Read Queries" and Section 109.2.1.10, "Using Join Reading with
ObjectLevelReadQuery".

Use this tab to specify batch reading and joining attributes.

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 119-19

Figure 119–11 Named Queries, Optimization Tab

Select one of the following actions for Batch Read Attributes (ReadAllQuery only):

■ To add a new batch read attribute, click Add. The Add Batch Read Attribute
dialog box appears. Select the mapped attribute and click OK.

■ To change the order of the batch read attributes, select an existing attribute and
click Up or Down.

■ To modify an existing batch read attribute’s options, select an existing attribute
and click Edit.

■ To remove a batch read attribute, select an existing attribute and click Remove.

Select one of the following actions for Joined Attributes (ReadAllQuery and
ReadObjectQuery):

■ To add a new joined attribute, click Add. The Add Joined Attribute dialog box
appears.

Figure 119–12 Add Joined Attribute Dialog Box

Select the mapped attribute. Optionally, enable or disable Allows Null or, for a
Collection attribute, Allows None. Click OK.

■ To change the order of the joined attributes, select an existing attribute and click
Up or Down.

■ To modify an existing joined attribute’s options, select an existing attribute and
click Edit.

Configuring Named Queries at the Descriptor Level

119-20 Developer's Guide for Oracle TopLink

■ To remove a joined attribute, select an existing attribute and click Remove.

119.7.1.6 Configuring Named Query Attributes
For ReportQuery queries only, you can configure report query functions to apply to
one or more attributes.

For more information about report queries, see Section 108.7.5, "Report Query".

Use this tab to configure report query attributes.

Figure 119–13 Named Queries, Attributes Tab

Select one of the following actions for Attributes (ReportQuery only):

■ To add a new report query attribute, click Add. The Add Joined Attribute dialog
box appears. Continue with Section 119.7.1.6.1, "Adding Report Query Attributes".

■ To change the order of the report query attribute attributes, select an existing
attribute and click Up or Down.

■ To modify an existing report query attribute’s options, select an existing attribute
and click Edit.

■ To remove a report query attribute, select an existing attribute and click Remove.

119.7.1.6.1 Adding Report Query Attributes

Use this dialog box to add a report query attribute.

Note: You can only choose attributes that are configured with a
direct mapping (converters included) or a user-defined query key.

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 119-21

Figure 119–14 Add Report Query Attribute Dialog Box

Select the attribute you want in this report query and use the following table to
complete the dialog box and add the report query attribute:

Enter the necessary information and click OK. TopLink Workbench adds the report
query attribute to the list of attributes in the Attribute tab.

119.7.1.7 Configuring Named Query Group/Order Options
For ReportQuery queries only, you can configure grouping and ordering attributes.

For more information about report queries, see Section 108.7.5, "Report Query".

Use this tab to specify grouping and ordering attributes.

Option ‘Description

Allows None or Allows Null Use the Allows Null and Allows None options to define an
expression with an outer join.

Check the Allows Null option to use the
ExpressionBuilder method getAllowingNull.

Check the Allows None option for Collection attributes to
use the ExpressionBuilder method anyOfAllowingNone.

For more information, see Section 110.2.7.2, "Using TopLink
Expression API for Joins".

Function Select from the list of report query functions that TopLink
provides. This function will be applied to the specified
attribute. You must select an attribute for all functions, except
Count.

Alternatively, you can enter the name of a custom function that
you implement in your database. For more information, see
Expression method getFunction in the Oracle TopLink API
Reference.

Name The name associated with the calculated value. By default, the
name is <AttributeName><FunctionName>.

Configuring Named Queries at the Descriptor Level

119-22 Developer's Guide for Oracle TopLink

Figure 119–15 Named Queries, Group/Order Tab

Select one of the following actions for Grouping Attributes (ReportQuery only):

■ To add a new grouping attribute, click Add. The Add Grouping Attribute dialog
appears. Select the desired mapped attribute and click OK.

■ To change the order of the grouping attributes, select an existing attribute and click
Up or Down.

■ To modify an existing grouping attribute’s options, select an existing attribute and
click Edit.

■ To remove a grouping attribute, select an existing attribute and click Remove.

Select one of the four following actions for Ordering Attributes (ReportQuery only):

■ To add a new ordering attribute, click Add. The Add Ordering Attribute dialog
box appears. Continue with Section 119.7.1.7.1, "Adding Ordering Attributes".

■ To change the order of the ordering attributes, select an existing attribute and click
Up or Down.

■ To modify an existing ordering attribute’s options, select an existing attribute and
click Edit.

■ To remove an ordering attribute, select an existing attribute and click Remove.

119.7.1.7.1 Adding Ordering Attributes

Use this dialog box to add a report query ordering attribute.

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 119-23

Figure 119–16 Add Ordering Attribute Dialog Box

Use the following information to complete the fields on the dialog box and add an
ordering attribute:

Enter the necessary information and click OK. TopLink Workbench adds the report
query attribute to the list of attributes in the Attribute tab.

119.7.1.8 Creating an EIS Interaction for a Named Query
For an EIS root descriptor, you can define EIS interactions to invoke methods on an
EIS.

You can use TopLink to define an interaction as a named query for read object and
read all object queries, as described here. These queries are not called for basic
persistence operations (Section 76.5, "Configuring Custom EIS Interactions for Basic
Persistence Operations"); you can call these additional queries by name in your
application for special purposes.

Use this tab to define an interaction as a named query for read object and read all
object queries.

Option ‘Description

Selected Attribute Select this option to view a list of the report query attributes you added
(see Section 119.7.1.6, "Configuring Named Query Attributes").

Select an attribute and choose its ordering option in the Order field.

New Attribute Select this option to view a list of all class attributes.

Select an attribute and choose its ordering option in the Order field.

Order Select ascending or descending.

Configuring Named Queries at the Descriptor Level

119-24 Developer's Guide for Oracle TopLink

Figure 119–17 Call Tab

Use the following information to complete each field on the tab:

Field Description

Interaction Type Using TopLink Workbench, you can only use XML Interactions.
You cannot change this field.

Function Name Specify the name of the EIS function that this call type (Read
Object or Read All) invokes on the EIS.

Input Record Name Specify the name passed to the JCA adapter when creating the
input record.

Input Root Element Specify the root element name to use for the input DOM.

Input Arguments Specify the query argument name to map to the interaction field or
XPath nodes in the argument record.

For example, if you are using XML records, use this option to map
input argument name to the XPath name/first-name.

Output Arguments Specify the result record field or XPath nodes to map the correct
nodes in the record used by the descriptor's mappings.

For example, if you are using XML records, use this option to map
the output fname to name/first-name.

Output arguments are not required if the interaction returns an
XML result that matches the descriptor's mappings.

Input Result Path Use this option if the EIS interaction expects the interaction
arguments to be nested in the XML record.

For example, specify arguments, if the arguments were to be
nested under the root element exec-find-order, then under an
arguments element.

Output Result Path Use this option if the EIS interaction result record contains the
XML data that maps to the objects in a nested structure.

For example, specify order, if the results were return under a root
element results, then under an order element.

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 119-25

119.7.1.9 Configuring Named Query Options
Use this tab to configure additional options for the query.

Figure 119–18 Named Queries, Options Tab

Use the following information to complete each field on the tab:

Properties Specify any properties required by your EIS platform. For
example, property name operation (from AQPlatform.QUEUE_
OPERATION) and property value enqueue (from
AQPlatform.ENQUEUE).

Field Description

Refresh Identity Map Results2 Refreshes the attributes of the object(s) resulting from the
query. If cascading is used, the private parts of the objects
will also be refreshed.

Cache Statement1 Caches the prepared statements. This requires full parameter
binding as well (see Bind Parameters).

Bind Parameters1 By default, TopLink binds all of the query’s parameters.

Deselect this option to disable binding.

Cache Usage2 Selects how TopLink should use the session cache when a
query is executed:

■ Use descriptor settings

■ Do not check cache

■ Check cache by exact primary key

■ Check cache by primary key

■ Check cache then database

■ Check cache only

■ Conform results in unit of work

For more information, see the following:

■ Section 108.16.2.1, "Configuring Cache Usage for
In-Memory Queries".

■ Section 119.4, "Configuring Unit of Work Conforming at
the Descriptor Level"

Field Description

Configuring Named Queries at the Descriptor Level

119-26 Developer's Guide for Oracle TopLink

Click Advanced to configure additional options. See Section 119.7.1.10, "Configuring
Named Query Advanced Options".

In Memory Query Indirection2 Selects how TopLink should handle indirection (lazy loading)
when an in-memory or conforming query is executed:

■ Throw indirection exception–if this object uses
indirection and indirection has not been triggered,
TopLink will throw an exception.

■ Trigger indirection–if this object uses indirection and
indirection has not been triggered, TopLink will trigger
indirection.

■ Ignore exception return conformed–returns conforming
if an untriggered value holder is encountered. That is,
you expect results from the database to conform, and an
untriggered value holder is taken to mean that the
underlying attribute has not changed.

■ Ignore exception return not conformed–returns not
conforming if an untriggered value holder is
encountered.

For more information, see the following:

■ Section 108.16.2.3, "Handling Exceptions Resulting from
In-Memory Queries".

■ Section 17.2.4, "Indirection (Lazy Loading)".

Return Choice3 Selects how TopLink should handle ReportQuery results:

■ Result collection–return ReportQuery results as a
Collection of ReportQueryResult objects.

■ Single result–return only the first ReportQueryResult
object (not wrapped in a Collection or Map). Use this
option if you know that the ReportQuery returns only
one row.

■ Single value–return only a single value. Use this option if
you know that the ReportQuery returns only one row
that contains only one attribute.

■ Single attribute–return only a single Collection of
values. If the query returns multiple rows, but each row
only has a single attribute, this option will return a
Collection of values, instead of a Collection of
ReportQueryResults.

For more information, see Section 108.5.1, "Collection Query
Results".

Retrieve Primary Keys3 Selects whether or not TopLink retrieves the primary key
values within each result. You can use the primary keys to
retrieve the real objects.

■ None–do not retrieve primary keys

■ All–retrieve primary keys for each object read;

■ First–return only the first primary key value (in the case
of a composite primary key). This can be used if you just
want to know if something exists or not, but do not
really care about the value.

1 For more information, see Section 12.11.5, "How to Use Parameterized SQL (Parameter Binding) and
Prepared Statement Caching for Optimization".

2 For ReadObjectQuery and ReadAllQuery queries only.
3 For ReportQuery queries only.

Field Description

Configuring Named Queries at the Descriptor Level

Configuring a Descriptor 119-27

See Also
Configuring Named Queries at the Descriptor Level

119.7.1.10 Configuring Named Query Advanced Options
To configure additional advanced query options, use this procedure.

1. From the Named Queries – Options tab, click Advanced. The Advanced Query
Options dialog box appears.

From the Named Queries – Options tab, click Advanced. The Advanced Query
Options dialog box appears.

Figure 119–19 Advanced Query Options Dialog Box

2. Complete each field in the Advanced Query Options dialog box.

Use the following information to enter data in each field and click OK:

Field Description

Maintain Cache Specify whether to use the cache for the query or to build objects
directly from the database result. You should only use this option
if you are executing a partial object query (see Section 108.7.1.3,
"Partial Object Queries"), whose results cannot be cached.

For more information, see Section 108.16.4, "How to Disable the
Identity Map Cache Update During a Read Query".

Use Wrapper Policy Specify whether or not the named query will use the wrapper
policy configured for this descriptor.

For more information, see Section 119.32, "Configuring Wrapper
Policy".

Configuring Named Queries at the Descriptor Level

119-28 Developer's Guide for Oracle TopLink

119.7.2 How to Configure Named Queries at the Descriptor Level Using Java
To configure named queries in Java, use a descriptor amendment method (see
Section 119.35, "Configuring Amendment Methods"). Example 119–1 illustrates an
amendment method that creates a named query and adds it to the
DescriptorQueryManager.

Example 119–1 Creating a Named Query with an Amendment Method

public class EmployeeAmmendmentMethodClass {
....

// Create named query with Employee as its reference class
public static void createEmployeeQuery(ClassDescriptor descriptor) {

ReadObjectQuery query = new ReadObjectQuery(Employee.class);
ExpressionBuilder emp = query.getExpressionBuilder();
Expression firstNameExpression =

emp.get("firstName").equal(emp.getParameter("firstName"));
query.setSelectionCriteria(firstNameExpression);
query.addArgument("firstName");

descriptor.getQueryManager().addQuery(

Prepare SQL Once Specify the setShouldPrepare() for the named query. By
default, TopLink optimizes queries to generate their SQL only
once. You may need to disable this option for certain types of
queries that require dynamic SQL based on their arguments, such
as the following:

■ Expressions that use equal where the argument value could
be null. This may cause problems on databases that require
IS NULL, instead of = NULL.

■ Expressions that use in and use parameter binding. This will
cause problems as the in values must be bound individually.

Cache Query Results Specify the cacheQueryResults method for the query. The
query will only access the database the first time it is executed.
Subsequent execution will return exactly the original result.

For more information, see Section 111.13.1, "How to Cache Results
in a ReadQuery".

Refresh Remote Identity
Map Results

Specify the refreshRemoteIdentityMapResult method for
the query. TopLink can refresh the attributes of the object(s)
resulting from the query. With cascading, TopLink will also refresh
the private parts of the object(s).

Exclusive Connection Specify whether or not the named query will use an exclusive
connection. You can also configure exclusive connection
acquisition at the session level (see Section 89.12, "Configuring
Connection Policy".

Pessimistic Locking Specify the specific pessimistic locking policy for the query or use
the locking policy from the descriptor.

Distinct State Specify if TopLink prints the DISTINCT clause, if a distinct has
been set. The DISTINCT clause allows you to remove duplicates
from the result set.

Query Timeout Specify if the query will time out (or abort) after a specified
number of seconds.

Maximum Rows Specify if the query will limit the results to a specified number of
rows. Use this to option for queries that could return an excessive
number of objects.

Field Description

Configuring Query Timeout at the Descriptor Level

Configuring a Descriptor 119-29

"employeeReadByFirstName", query);
}

}

119.8 Configuring Query Timeout at the Descriptor Level
You can specify how the TopLink runtime handles the duration of queries on a
descriptor’s reference class. Specifying a query timeout at the descriptor level applies
to all queries on the descriptor’s reference class. A query timeout ensures that your
application does not block forever over a hung or lengthy query that does not return in
a timely fashion.

Table 119–4 summarizes which descriptors support query timeout configuration.

You can also configure a timeout on a per-query basis. For more information, see the
following:

■ Section 119.7.1.10, "Configuring Named Query Advanced Options"

■ Section 109.2.1.8, "Configuring Query Timeout at the Query Level"

119.8.1 How to Configure Query Timeout at the Descriptor Level TopLink Workbench
To configure how TopLink handles the duration of queries to this descriptor, use this
procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Queries tab. The Queries tab appears.

3. Click the Settings tab. The Settings tab appears.

Table 119–9 Descriptor Support for Cache Refresh

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Query Timeout at
the Descriptor
Level TopLink
Workbench

How to
Configure
Query Timeout
at the
Descriptor Level
Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data Type
Descriptors

EIS Descriptor

XML Descriptors

Configuring Cache Refreshing

119-30 Developer's Guide for Oracle TopLink

Figure 119–20 Descriptor Queries Settings Tab, Query Timeout Options

Use the following table to enter data in the fields on the descriptor’s Settings tab to
specify how TopLink handles query duration:

119.8.2 How to Configure Query Timeout at the Descriptor Level Java
Use DescriptorQueryManager method setQueryTimeout passing in the timeout
value as a number of milliseconds.

119.9 Configuring Cache Refreshing
By default, TopLink caches objects read from a data source (see Chapter 102,
"Introduction to Cache"). Subsequent queries for these objects will access the cache and
thus improve performance by reducing data source access and avoiding the cost of
rebuilding object's and their relationships. Even if a query, such as a read-all query,
accesses the data source, if the objects corresponding to the records returned are in the
cache, TopLink will use the cache objects.

This can lead to stale data in the application. Although using an appropriate locking
policy (see Section 119.26, "Configuring Locking Policy") is the only way to ensure that
stale or conflicting data does not get committed to the data source, sometimes certain
data in the application changes so frequently that it is desirable to always refresh the
data, instead of only refreshing the data when a conflict is detected.

You can specify how the TopLink runtime handles cache refreshing for all queries on a
descriptor’s reference class.

Table 119–4 summarizes which descriptors support query cache refresh configuration.

Field Description

Default Timeout TopLink throws a DatabaseException if a query on this
descriptor does not return within the timeout period you configure
on the parent descriptor. If there is no parent descriptor, the query
timeout defaults to No Timeout.

No Timeout TopLink blocks until a query on this descriptor returns.

Timeout Enter the timeout period in seconds. TopLink throws a
DatabaseException if a query on this descriptor does not return
within this time.

Configuring Cache Refreshing

Configuring a Descriptor 119-31

Configuring descriptor-level cache refresh may affect performance. As an alternative,
consider configuring the following:

■ cache refresh on a query-by-query basis (see Section 108.16.5, "How to Refresh the
Cache")

■ cache expiration (see Section 119.16, "Configuring Cache Expiration at the
Descriptor Level")

■ isolated caching (see Section 102.2.7, "Cache Isolation")

For more information, see Section 12.10, "Optimizing Cache".

119.9.1 How to Configure Cache Refreshing Using TopLink Workbench
To configure how TopLink refreshes the cache for queries to this descriptor, use this
procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Queries tab. The Queries tab appears.

3. Click the Settings tab. The Settings tab appears.

Figure 119–21 Descriptor Queries Settings Tab, Cache Refreshing Options

Use the following table to enter data in the fields on the descriptor’s Settings tab to
specify how TopLink will refresh the cache for queries:

Table 119–10 Descriptor Support for Query Cache Refresh

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Cache
Refreshing Using
TopLink
Workbench

How to
Configure
Cache
Refreshing
Using Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data Type
Descriptors

EIS Descriptor2

2 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors").

XML Descriptors

Configuring Cache Refreshing

119-32 Developer's Guide for Oracle TopLink

119.9.2 How to Configure Cache Refreshing Using Java
Configure cache refresh options using the following ClassDescriptor methods:

■ setShouldAlwaysRefreshCache

■ setShouldAlwaysRefreshCacheOnRemote

■ setShouldDisableCacheHits

■ setShouldDisableCacheHitsOnRemote

Field Description

Always Refresh Refreshes the cache on all queries.

Avoids stale data by ensuring that any query that accesses the data
source will refresh the resulting objects in the cache. This has no
effect on queries that get a cache hit and never access the data
source, such as read-object primary key queries or in-memory
queries.

Configuring descriptor level cache refresh may affect performance.
As an alternative, consider configuring:

■ cache refresh on a query-by-query basis (see Section 108.16.5,
"How to Refresh the Cache")

■ cache expiration (see Section 119.16, "Configuring Cache
Expiration at the Descriptor Level")

■ isolated caching (see Section 102.2.7, "Cache Isolation")

Only Refresh If Newer
Version

Refreshes the cache only if the object in the database is newer than
the object in the cache (as determined by the Optimistic Locking
field). See Section 119.26, "Configuring Locking Policy" for more
information.

Improves performance by avoiding unnecessary refreshing of an
object if its version matches the data source version. This option
does not cause refreshing on its own: you must use it in
combination with Always Refresh, query refreshing (see
Section 108.16.5, "How to Refresh the Cache"), or cache expiration
(see Section 119.16, "Configuring Cache Expiration at the Descriptor
Level").

Disable Cache Hits When selected, TopLink bypasses the cache and goes to the
database for read object queries based on primary key. Using this
option in conjunction with Always Refresh ensures that TopLink
always goes to the database.

This option ensures that all queries including read-object primary
key queries will always access the data source. This option does not
cause refreshing on its own: you must use it in combination with
Always Refresh.

This option can cause a serious performance issue: avoid whenever
possible.

Caution: Use the Always Refresh and Disable Cache Hits
properties with caution as they may lead to poor performance. As an
alternative, consider configuring cache refresh on a query-by-query
basis (see Section 108.16.5, "How to Refresh the Cache") or configuring
cache expiration (see Section 119.16, "Configuring Cache Expiration at
the Descriptor Level"). For more information about cache
performance, see Section 12.10, "Optimizing Cache".

Configuring Query Keys

Configuring a Descriptor 119-33

■ setShouldOnlyRefreshCacheIfNewerVersion

Use these methods in a descriptor amendment method (see Section 119.35,
"Configuring Amendment Methods"), as Example 119–2 illustrates.

Example 119–2 Configuring Remote Refreshing

public void addToDescriptor(ClassDescriptor descriptor) {
descriptor.setShouldRefreshCacheOnRemote(true);
descriptor.setShouldDisableCacheHitsOnRemote(true);

}

119.10 Configuring Query Keys
A query key is a schema-independent alias for a database field name. For example,
consider a class Employee with attribute firstName mapped directly to a database
field F_NAME in database table EMPLOYEE. Without a query key, when you create a
query or expression that involves Employee attribute firstName, you must use the
database management system-specific field name F_NAME. This makes it more difficult
to build a query and ties the query to the schema. With a query key, you can refer to
this field using a schema-independent alias, such as firstName.

Table 119–11 summarizes which descriptors support query keys.

Using query keys offers the following advantages:

■ Enhances code readability in TopLink expressions and simplifies expression
development. You can compose expressions entirely within the context of your
object model.

■ Increases portability by making code independent of the database schema. If you
rename a field in your schema, you can redefine the query key without changing
any code that uses it.

■ Query keys used with interface descriptors allow the implementor descriptor’s
tables to have different field names.

Query keys are automatically generated for all mapped attributes. The name of the
query key is the name of the class attribute specified in your object model.

For information on how to use query keys in queries and expressions, see
Section 108.2.7, "Query Keys".

When query keys are generated and how you can add or modify query keys depends
on the type of mapping or descriptor involved:

■ Direct Mappings

Table 119–11 Descriptor Support for Query Keys

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Query Keys
Using TopLink
Workbench

How to Configure
Query Keys
Using Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Configuring Query Keys

119-34 Developer's Guide for Oracle TopLink

■ Relationship Mappings

■ Interface Descriptors

Direct Mappings
TopLink Workbench automatically generates query keys for all direct mappings at the
time you create the mapping.

TopLink Workbench provides support for adding or modifying query keys for simple
unmapped attributes that could be mapped by a direct mapping: for example, the
version field used for optimistic locking or the type field used for inheritance. You
cannot modify or remove automatically generated query keys.

Relationship Mappings
TopLink automatically generates query keys for all relationship mappings at run time.

For example, if you have a class Customer with attribute orders mapped in a
one-to-many relationship to class PurchaseOrders, then the TopLink runtime will
generate a query key named orders for this Customer attribute.

Neither Oracle JDeveloper nor TopLink Workbench currently support adding or
modifying the query keys for relationship mappings. If you must add or modify such
a query key, you must do so in Java code, using a descriptor amendment method.

Interface Descriptors
Interface descriptors (see Section 22.2.1.3, "Creating Relational Interface Descriptors")
define only the query keys that are shared among their implementors. In the
descriptor for an interface, only the name of the query key is specified.

TopLink Workbench provides support for choosing the implementors of an interface
that share at least one common automatically generated query key (see Section 119.11,
"Configuring Interface Query Keys").

119.10.1 How to Configure Query Keys Using TopLink Workbench
To add query keys to simple unmapped fields and to view the query keys
automatically generated for directly mapped attributes, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. Click the Query Keys tab in the Editor.

Figure 119–22 Queries, Query Keys Tab

To add a new query key, click Add.

Configuring Query Keys

Configuring a Descriptor 119-35

To delete an existing query key, select the query key and click Remove.

To rename an existing query key, select the query key and click Rename.

Use the Field list to select the field in the table associated with the query key.

119.10.2 How to Configure Query Keys Using Java
To manually create a relationship query key, implement a descriptor amendment
method (see Section 119.35, "Configuring Amendment Methods") that uses one of the
following ClassDescriptor methods to register the query keys:

■ addQueryKey–specify a query key using an instance of QueryKey such as
DirectQueryKey, DirectCollectionQueryKey, ManyToManyQueryKey,
OneToManyQueryKey, or OneToOneQueryKey.

■ addDirectQueryKey–add a query key that maps directly to the given database
field.

■ addAbstractQueryKey–add an abstract query key to an interface descriptor.
Any implementors of that interface must define the query key defined by this
abstract query key.

Example 119–3, Example 119–4, and Example 119–5 illustrate how to define a query
key in Java code.

Example 119–3 Defining a Query Key

// Add a query key for the foreign key field using the direct method
descriptor.addDirectQueryKey("managerId", "MANAGER_ID");

// The same query key can also be added through the addQueryKey method
DirectQueryKey directQueryKey = new DirectQueryKey();
directQueryKey.setName("managerId");
directQueryKey.setFieldName("MANAGER_ID");
descriptor.addQueryKey(directQueryKey);

// Add a one-to-one query key for the large project of which the
// employee is a leader (this assumes only one project)
OneToOneQueryKey projectQueryKey = new OneToOneQueryKey();
projectQueryKey.setName("managedLargeProject");
projectQueryKey.setReferenceClass(LargeProject.class);
ExpressionBuilder builder = new ExpressionBuilder();
projectQueryKey.setJoinCriteria(builder.getField(

"PROJECT.LEADER_ID").equal(builder.getParameter("EMPLOYEE.EMP_ID")));
descriptor.addQueryKey(projectQueryKey);

Example 119–4 Defining a One-to-Many Query Key

// Add a one-to-many query key for the projects where the employee
// manages multiple projects
OneToManyQueryKey projectsQueryKey = new OneToManyQueryKey();
projectsQueryKey.setName("managedProjects");
projectsQueryKey.setReferenceClass(Project.class);
ExpressionBuilder builder = new ExpressionBuilder();
projectsQueryKey.setJoinCriteria(builder.getField(

"PROJECT.LEADER_ID").equal(builder.getParameter("EMPLOYEE.EMP_ID")));
descriptor.addQueryKey(projectsQueryKey);

Example 119–5 Defining a Many-to-Many Query Key

// Add a many-to-many query key to an employee project that uses a join table

Configuring Interface Query Keys

119-36 Developer's Guide for Oracle TopLink

ManyToManyQueryKey projectsQueryKey = new ManyToManyQueryKey();
projectsQueryKey.setName("projects");
projectsQueryKey.setReferenceClass(Project.class);
ExpressionBuilder builder = new ExpressionBuilder();
projectsQueryKey.setJoinCriteria(

builder.getTable("EMP_PROJ").getField("EMP_ID").equal(
builder.getParameter("EMPLOYEE.EMP_ID").and(
builder.getTable("EMP_PROJ").getField("PROJ_ID").equal(
builder.getField("PROJECT.PROJ_ID")));

descriptor.addQueryKey(projectsQueryKey);

Example 119–6 illustrates how to implement a Descriptor amendment method to
define a one-to-one query key. In this example, the object model for the Address class
does not include a reference to its owner, an Employee object. You can amend the
Address class descriptor to add a query key named owner to make up for this
deficiency. At run time, you can compose expressions that select Address objects
based on this owner query key.

Example 119–6 Defining a One-to-One Query Key with an Amendment Method

// Static amendment method in Address class, addresses do not know
// their owners in the object model, however you can still
// query on their owner if a user-defined query key is defined
public static void addToDescriptor(Descriptor descriptor) {

OneToOneQueryKey ownerQueryKey = new OneToOneQueryKey();
ownerQueryKey.setName("owner");
ownerQueryKey.setReferenceClass(Employee.class);
ExpressionBuilder builder = new ExpressionBuilder();
ownerQueryKey.setJoinCriteria(

builder.getField("EMPLOYEE.ADDRESS_ID").equal(
builder.getParameter("ADDRESS.ADDRESS_ID")));

descriptor.addQueryKey(ownerQueryKey);
}

119.11 Configuring Interface Query Keys
A query key is a schema independent alias for a database field name. For more
information about query keys, see Section 119.10, "Configuring Query Keys".

Interface descriptors (see Section 22.2.1.3, "Creating Relational Interface Descriptors")
are defined only with query keys that are shared among their implementors. In the
descriptor for an interface, only the name of the query key is specified.

In each implementor descriptor, the key must be defined with the appropriate field
from one of the implementor descriptor’s tables.

This allows queries and relationship mappings to be defined on the interface using the
query key names.

Interface query keys are supported in relational database projects only.

Table 119–11 summarizes which descriptors support interface query keys.

Table 119–12 Descriptor Support for Interface Query Keys

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Interface Query
Keys Using
TopLink
Workbench

How to Configure
Interface Query
Keys Using Java

Relational Descriptors

Configuring Interface Query Keys

Configuring a Descriptor 119-37

Consider an Employee that contains a contact of type Contact. The Contact class is
an interface with two implementors: Phone and Email. The Phone class has
attributes id and number. The Email class has attributes id and address.
Figure 119–23 illustrates the generated keys:

Figure 119–23 Automatically Generated Query Keys for Phone and Email

Both classes have an attribute, id, that is directly mapped to fields that have different
names. However, a query key is generated for this attribute. For the Contact interface
descriptor, you must indicate that the id query key must be defined for each of the
implementors.

If either of the implementor classes did not have the id query key defined, Oracle
JDeveloper and TopLink Workbench would flag that descriptor as deficient.

Now that a descriptor with a commonly shared query key has been defined for
Contact, you can use it as the reference class for a variable one-to-one mapping (see
Section 111.8, "Using Queries on Variable One-to-One Mappings").

For example, you can now create a variable one-to-one mapping for the contact
attribute of Employee. When you edit the foreign key field information for the
mapping, you must match the Employee descriptor’s tables to query keys from the
Contact interface descriptor.

119.11.1 How to Configure Interface Query Keys Using TopLink Workbench
To choose the implementors of an interface that share at least one common
automatically generated query key, use this procedure.

1. Select an interface descriptor in the Navigator. Its properties appear in the Editor.

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Table 119–12 (Cont.) Descriptor Support for Interface Query Keys

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Interface Query
Keys Using
TopLink
Workbench

How to Configure
Interface Query
Keys Using Java

Configuring Cache Type and Size at the Descriptor Level

119-38 Developer's Guide for Oracle TopLink

Figure 119–24 Interface Descriptor Editor Window

To choose an implementor of the selected interface that shares at least one common
query key, click Add.

To remove an implementor of the selected interface, select the implementor and click
Remove.

119.11.2 How to Configure Interface Query Keys Using Java
Example 119–7 shows how to define the Contact interface and Email and Phone
implementors in Java.

Example 119–7 Defining Interface Query Keys

Descriptor contactInterfaceDescriptor = new Descriptor();
contactInterfaceDescriptor.setJavaInterface(Contact.class);
contactInterfaceDescriptor.addAbstractQueryKey("id");

Descriptor emailClassDescriptor = new Descriptor();
emailClassDescriptor.setJavaClass(Email.class);
emailClassDescriptor.addDirectQueryKey("id", "E_ID");
emailClassDescriptor.getInterfacePolicy().addParentInterface(Contact.class);
emailClassDescriptor.setTableName("INT_EML");
emailClassDescriptor.setPrimaryKeyFieldName("E_ID");
emailClassDescriptor.setSequenceNumberName("SEQ");
emailClassDescriptor.setSequenceNumberFieldName("E_ID");
emailClassDescriptor.addDirectMapping("emailID", "E_ID");
emailClassDescriptor.addDirectMapping("address", "ADDR");

Descriptor phoneClassDescriptor = new Descriptor();
phoneClassDescriptor.setJavaClass(Phone.class);
phoneClassDescriptor.getInterfacePolicy().addParentInterface(Contact.class);
phoneClassDescriptor.addDirectQueryKey("id", "P_ID");
phoneClassDescriptor.setTableName("INT_PHN");
phoneClassDescriptor.setPrimaryKeyFieldName("P_ID");
phoneClassDescriptor.setSequenceNumberName("SEQ");
phoneClassDescriptor.setSequenceNumberFieldName("P_ID");
phoneClassDescriptor.addDirectMapping("phoneID", "P_ID");
phoneClassDescriptor.addDirectMapping("number", "P_NUM");

119.12 Configuring Cache Type and Size at the Descriptor Level
The TopLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values. TopLink uses the cache to do the
following:

Configuring Cache Type and Size at the Descriptor Level

Configuring a Descriptor 119-39

■ improve performance by holding recently read or written objects and accessing
them in-memory to minimize database access;

■ manage locking and isolation level;

■ manage object identity.

Table 119–13 summarizes which descriptors support identity map configuration.

This configuration overrides the default identity map configuration defined at the
project level (see Section 117.10, "Configuring Cache Type and Size at the Project
Level").

For detailed information on caching and object identity, and the recommended settings
to maximize TopLink performance, see to Section 102.2.1, "Cache Type and Object
Identity".

For more information about the cache, see Chapter 102, "Introduction to Cache".

119.12.1 How to Configure Cache Type and Size at the Descriptor Level Using TopLink
Workbench

To specify the identity map information for a descriptor, use this procedure:

1. Select the descriptor in the Navigator.

2. Select the Caching tab in the Editor. The Caching tab appears.

Table 119–13 Descriptor Support for Identity Map

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Cache Type and
Size at the
Descriptor Level
Using TopLink
Workbench

How to Configure
Cache Type and
Size at the
Descriptor Level
Using Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data Type
Descriptors

EIS Descriptors2

2 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors").

XML Descriptors

Configuring Cache Type and Size at the Descriptor Level

119-40 Developer's Guide for Oracle TopLink

Figure 119–25 Caching Tab, Identity Map Options

Use the following table to enter data in following fields on the Caching tab:

Field Description

Type1

1 If a descriptor is a child in an inheritance hierarchy, TopLink makes this field read only and displays the
options from the parent root descriptor. For more information, see Section 16.2.3.3, "Inheritance".

Use the Type list to choose the identity map as follows:

■ Weak with Soft Subcache
(SoftCacheWeakIdentityMap)–cache first n elements in soft
space, anything after that in weak space (see Section 102.2.1.4,
"Soft Cache Weak Identity Map and Hard Cache Weak Identity
Map")

■ Weak with Hard Subcache
(HardCacheWeakIdentityMap)–cache first n elements in hard
space, anything after that in weak space (see Section 102.2.1.4,
"Soft Cache Weak Identity Map and Hard Cache Weak Identity
Map")

■ Weak (WeakIdentityMap)–cache everything in weak space
(see Section 102.2.1.2, "Weak Identity Map")

■ Soft (SoftIdentityMap)–cache everything in soft space (see
Section 102.2.1.3, "Soft Identity Map")

■ Full (FullIdentityMap)–cache everything permanently (see
Section 102.2.1.1, "Full Identity Map")

■ None (NoIdentityMap)–cache nothing (see Section 102.2.1.5,
"No Identity Map")

For more information, see Section 102.2.1, "Cache Type and Object
Identity".

Changing the project’s default identity map does not affect
descriptors that already exist in the project.

Size1 Specify the size of the cache as follows:

■ When using Weak with Soft Subcache or Weak with Hard
Subcache, the size is the size of the subcache.

■ When using Full or Weak, the size indicates the starting size of
the identity map.

Default When you enter a cache size, the Default check box is cleared. To
reset the size to the default for the selected cache type, check the
Default check box.

Configuring Cache Isolation at the Descriptor Level

Configuring a Descriptor 119-41

119.12.2 How to Configure Cache Type and Size at the Descriptor Level Using Java
Use one of the following ClassDescriptor methods to configure the descriptor to
use the appropriate type of identity map:

■ useFullIdentitMap

■ useWeakIdentityMap

■ useSoftIdentityMap

■ useSoftCacheWeakIdentityMap

■ useHardCacheWeakIdentityMap

■ useNoIdentityMap

Use the ClassDescriptor method setIdentityMapSize to configure the size of
the identity map.

119.13 Configuring Cache Isolation at the Descriptor Level
If you plan to use isolated sessions (see Section 102.2.7, "Cache Isolation"), you must
configure descriptors as isolated for any object that you want confined to an isolated
session cache.

Configuring a descriptor to be isolated means that TopLink will not store the object in
the shared session cache and the object will not be shared across client sessions. Each
client will have their own object read directly from the database. Objects in an isolated
client session cache can reference objects in their parent server session’s shared session
cache, but no objects in the shared session cache can reference objects in an isolated
client session cache. Isolation is required when using Oracle Database Virtual Private
Database (VPD) support or database user-based read security. Isolation can also be
used if caching is not desired across client sessions.

Table 119–13 summarizes which descriptors support cache isolation configuration.

This configuration overrides the default cache isolation configuration defined at the
project level (see Section 117.11, "Configuring Cache Isolation at the Project Level").

Table 119–14 Descriptor Support for Cache Isolation Map

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Cache Isolation
at the Descriptor
Level Using
TopLink
Workbench

How to Configure
Cache Isolation
at the Descriptor
Level Using Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data Type
Descriptors

EIS Descriptors2

2 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors").

XML Descriptors

Configuring Unit of Work Cache Isolation at the Descriptor Level

119-42 Developer's Guide for Oracle TopLink

119.13.1 How to Configure Cache Isolation at the Descriptor Level Using TopLink
Workbench

To specify the cache isolation options, use this procedure:

1. Select the descriptor in the Navigator.

2. Select the Caching tab in the Editor. The Caching tab appears.

Figure 119–26 Caching Tab, Isolation Options

Use the Isolation list to choose one of the following:

■ Isolated–if you want all objects confined to an isolated client session cache. For
more information, see Section 102.2.7, "Cache Isolation".

■ Shared–if you want all objects visible in the shared session cache (default).

119.13.2 How to Configure Cache Isolation at the Descriptor Level Using Java
To specify that a class is isolated, use a descriptor amendment method (see
Section 119.35, "Configuring Amendment Methods") to call ClassDescriptor
method setIsIsolated, passing in a boolean of true.

119.14 Configuring Unit of Work Cache Isolation at the Descriptor Level
Use this policy to determine how a unit of work uses a session cache for a specific
class. Table 119–15 lists the unit of work cache isolation options.

Note: If you configure a descriptor as isolated, it cannot participate
in a coordinated cache (see Section 119.15, "Configuring Cache
Coordination Change Propagation at the Descriptor Level").

Configuring Cache Coordination Change Propagation at the Descriptor Level

Configuring a Descriptor 119-43

Most of these options apply only to a unit of work in an early transaction, such as the
following:

■ A unit of work that was flushed (write changes).

■ Issued a modify query.

■ Acquired a pessimistic lock.

119.14.1 How to Configure Unit of Work Cache Isolation at the Descriptor Level Using
Java

To specify that a class is isolated, use a descriptor amendment method (see
Section 119.35, "Configuring Amendment Methods") to call ClassDescriptor
method setUnitOfWorkCacheIsolationLevel.

119.15 Configuring Cache Coordination Change Propagation at the
Descriptor Level

If you plan to use a coordinated cache (see Section 102.3, "Cache Coordination"), you
can configure how, and under what conditions, a coordinated cache propagates
changes for a given descriptor.

Table 119–13 summarizes which descriptors support cache isolation configuration.

Table 119–15 Unit of Work Cache Isolation Options

Option Description

Using the Session Cache
After the Transaction

USE_SESSION_CACHE_AFTER_TRANSACTION
Objects built from new data accessed after a unit of work early
transaction are stored in the session cache.

This options is the most efficient as it allows the cache to be used
after an early transaction.

Isolating New Data After
the Transaction

ISOLATE_NEW_DATA_AFTER_TRANSACTION (default)
Objects built from new data accessed after a unit of work early
transaction are only stored in the unit of work.

This still allows previously cached objects to be accessed in the
unit of work after an early transaction, while ensuring that
uncommitted data will never be put in the session cache by
storing any object built from new data only in the unit of work

Isolating the Cache after the
Transaction

ISOLATE_CACHE_AFTER_TRANSACTION
After a unit of work early transaction the session cache is no
longer used for this class. Objects are directly built from the
database data and only stored in the unit of work, even if
previously cached.

Note: This option may affect performance because you are
bypassing the session cache after an early transaction.

Always Isolating the Cache ISOLATE_CACHE_ALWAYS
The session cache will never be used for the class. Objects are
directly built from the database data and only stored in the unit
of work. New objects and changes will never be merged into the
session cache.

Note: This option my affect performance because you are
bypassing the session cache. However if this class is isolated or
pessimistic locked and always accessed in a transaction, this can
avoid having to build two copies of the object.

Configuring Cache Coordination Change Propagation at the Descriptor Level

119-44 Developer's Guide for Oracle TopLink

This configuration overrides the default cache coordination change propagation
configuration defined at the project level (see Section 117.12, "Configuring Cache
Coordination Change Propagation at the Project Level").

To complete your coordinated cache configuration, see Chapter 103, "Configuring a
Coordinated Cache".

119.15.1 How to Configure Cache Coordination Change Propagation at the Descriptor
Level Using TopLink Workbench

To specify the coordinated cache change propagation options, use this procedure:

1. Select the descriptor in the Navigator.

2. Select the Caching tab in the Editor. The Caching tab appears.

Table 119–16 Descriptor Support for Cache Coordination Change Propagation
Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Cache
Coordination
Change
Propagation at
the Descriptor
Level Using
TopLink
Workbench

How to Configure
Cache
Coordination
Change
Propagation at
the Descriptor
Level Using Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data Type
Descriptors

EIS Descriptors2

2 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors").

XML Descriptors

Note: If you configure a descriptor as isolated (see Section 119.13,
"Configuring Cache Isolation at the Descriptor Level"), it cannot
participate in a coordinated cache.

Configuring Cache Coordination Change Propagation at the Descriptor Level

Configuring a Descriptor 119-45

Figure 119–27 Caching Tab, Coordination Options

Use the following information to enter data in the Coordination field:

119.15.2 How to Configure Cache Coordination Change Propagation at the Descriptor
Level Using Java

Use a descriptor amendment method (see Section 119.35, "Configuring Amendment
Methods") to invoke ClassDescriptor method setCacheSynchronizationType
passing in one of the following parameters:

■ ClassDescriptor.DO_NOT_SEND_CHANGES

■ ClassDescriptor.SEND_OBJECT_CHANGES

■ ClassDescriptor.SEND_NEW_OBJECTS_WITH_CHANGES

Coordination Option Description When to Use

None For both existing and new instances, do
not propagate a change notification.

Infrequently read or changed
objects.

Synchronize Changes For an existing instance, propagate a
change notification that contains each
changed attribute.

For a new instance, propagate an object
creation (along with all the new
instance’s attributes) only if the new
instance is related to other existing
objects that are also configured with this
change propagation option.

Frequently read or changed objects
that contain few attributes or in
cases where only a few attributes
are frequently changed.

Objects that have many or complex
relationships.

Synchronize Changes and
New Objects

For an existing instance, propagate a
change notification that contains each
changed attribute.

For a new instance, propagate an object
creation (along with all the new
instance’s attributes).

Frequently read or changed objects
that contain few attributes or in
cases where only a few attributes
are frequently changed.

Objects that have few or simple
relationships.

Invalidate Changed
Objects

For an existing instance, propagate an
object invalidation that marks the object
as invalid in all other sessions. This tells
other sessions that they must update
their cache from the data source the next
time this object is read.

For a new instance, no change
notification is propagated.

Frequently read or changed objects
that contain many attributes in
cases where many of the attributes
are frequently changed.

Configuring Cache Expiration at the Descriptor Level

119-46 Developer's Guide for Oracle TopLink

■ ClassDescriptor.INVALIDATE_CHANGED_OBJECTS

119.16 Configuring Cache Expiration at the Descriptor Level
By default, objects remain in the cache until they are explicitly deleted (see
Section 114.7, "Deleting Objects") or garbage-collected when using a weak identity
map (see Section 117.11, "Configuring Cache Isolation at the Project Level").
Alternatively, you can configure an object with a CacheInvalidationPolicy that
allows you to specify, either automatically or manually, that an object is invalid: when
any query attempts to read an invalid object, TopLink will go to the data source for the
most up-to-date version of that object and update the cache with this information.

Using cache invalidation ensures that your application does not use stale data. It
provides a better performing alternative to always refreshing (see Section 119.9,
"Configuring Cache Refreshing").

Table 119–17 summarizes which descriptors support a cache invalidation policy.

You can override the project-level cache invalidation configuration (see Section 117.13,
"Configuring Cache Expiration at the Project Level") by defining cache invalidation at
the descriptor or query level (see Section 111.13.2, "How to Configure Cache Expiration
at the Query Level").

You can customize how TopLink communicates the fact that an object has been
declared invalid to improve efficiency, if you are using a coordinated cache. For more
information, see Section 119.15, "Configuring Cache Coordination Change Propagation
at the Descriptor Level".

For more information, see Section 102.2.5, "Cache Invalidation".

119.16.1 How to Configure Cache Expiration at the Descriptor Level Using TopLink
Workbench

To specify the cache invalidation information for a descriptor, use this procedure:

1. Select the descriptor in the Navigator.

2. Select the Caching tab in the Editor. The Caching tab appears.

Table 119–17 Descriptor Support for Cache Invalidation Policy

Descriptor

How to Use
Oracle
JDeveloper

How to
Configure Cache
Expiration at the
Descriptor Level
Using TopLink
Workbench

How to
Configure Cache
Expiration at the
Descriptor Level
Using Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data Type
Descriptors

EIS Descriptors2

2 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors").

XML Descriptors

Configuring Cache Existence Checking at the Descriptor Level

Configuring a Descriptor 119-47

Figure 119–28 Caching Tab, Expiration Options

Use this table to enter data in the following fields on the Caching tab to specify the
cache invalidation policy for the descriptors.

119.16.2 How to Configure Cache Expiration at the Descriptor Level Using Java
Use ClassDescriptor method setCacheInvalidationPolicy to set an
appropriate instance of CacheInvalidationPolicy.

119.17 Configuring Cache Existence Checking at the Descriptor Level
When TopLink writes an object to the database, TopLink runs an existence check to
determine whether to perform an insert or an update.

By default, TopLink checks against the cache. Oracle recommends that you use this
default existence check option for most applications. Checking the database for
existence can cause a performance bottleneck in your application.

Field Description

Project Default Use the project’s cache expiration options for this descriptor. See
Section 117.13, "Configuring Cache Expiration at the Project Level"
for more information.

No Expiry Specify that objects in the cache do not expire.

Time to Live Expiry Specify that objects in the cache will expire after a specified amount
of time. Use the Expire After field to indicate the time (in
milliseconds) after which the objects will expire.

Daily Expiry Specify that objects in the cache will expire at a specific time each
day. Use the Expire At field to indicate the exact time to the second
(using a 24-hour clock) at which the objects will expire.

Update Read Time
on Update

Specify if TopLink should reset the cached object's expiry time after
the TopLink successfully updates the object.

Note: These options apply per descriptor. See Section 117.13,
"Configuring Cache Expiration at the Project Level" for information on
configuring project-level options.

Configuring Cache Existence Checking at the Descriptor Level

119-48 Developer's Guide for Oracle TopLink

Table 119–18 summarizes which descriptors support existence checking.

You can configure existence checking at the descriptor level to override the project
level configuration (see Section 117.7, "Configuring Existence Checking at the Project
Level").

For more information see the following:

■ Section 102.2.1, "Cache Type and Object Identity"

■ Section 108.16, "Queries and the Cache"

■ Section 115.1.3, "How to Use Registration and Existence Checking"

119.17.1 How to Configure Cache Existence Checking at the Descriptor Level Using
TopLink Workbench

To specify the existence checking information for a descriptor, use this procedure:

1. Select the descriptor in the Navigator.

2. Select the Caching tab in the Editor. The Caching tab appears.

Figure 119–29 Caching Tab, Existence Checking Options

Table 119–18 Descriptor Support for Existence Checking

Descriptor

How to Use
Oracle
JDeveloper

How to
Configure Cache
Existence
Checking at the
Descriptor Level
Using TopLink
Workbench

How to
Configure
Cache Existence
Checking at the
Descriptor Level
Using Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data Type
Descriptors

EIS Descriptors2

2 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors").

XML Descriptors

Configuring a Descriptor with EJB CMP and BMP Information

Configuring a Descriptor 119-49

Use this table to enter data in the following fields of the tab to specify the existence
checking options for newly created descriptors:

119.17.2 How to Configure Cache Existence Checking at the Descriptor Level Using
Java

To configure existence checking at the descriptor level using Java, use
ClassDescriptor method getQueryManager to acquire the
DescriptorQueryManager from the descriptor and then use one of the following
DescriptorQueryManager methods (see Example 119–8):

■ checkCacheForDoesExist–check the session cache. If the object is not in the
cache, assume that the object does not exist (do an insert). If the object is in the
cache, assume that the object exists (do an update). Oracle recommends using this
option for most applications.

■ checkDatabaseForDoesExist–if an object is not in the cache, query the
database to determine if the object exists. If the object exists, do an update.
Otherwise, do an insert. Selecting this option may negatively impact performance.
For more information, see Section 115.1.3.1, "Using Check Database".

■ assumeExistenceForDoesExist–always assume objects exist: always do an
update (never do an insert). For more information, see Section 115.1.3.2, "Using
Assume Existence".

■ assumeNonExistenceForDoesExist–always assume objects do not exist:
always do an insert (never do an update). For more information, see
Section 115.1.3.3, "Using Assume Nonexistence".

Example 119–8 Configuring Existence Checking Using Java

descriptor.getQueryManager().checkCacehForDoesExist();

119.18 Configuring a Descriptor with EJB CMP and BMP Information
If your project uses EJB CMP or BMP (see Section 117.5, "Configuring Persistence
Type"), you can use descriptors to describe the characteristics of entity beans with
container-managed or bean-managed persistence.

Table 119–19 summarizes which descriptors support EJB information.

Field Description

Check Cache Check the session cache. If the object is not in the cache, assume that
the object does not exist (do an insert). If the object is in the cache,
assume that the object exists (do an update). Oracle recommends
using this option for most applications.

Check Cache then
Database

If an object is not in the cache, query the database to determine if the
object exists. If the object exists, do an update. Otherwise, do an
insert. Selecting this option may negatively impact performance. For
more information, see Section 115.1.3.1, "Using Check Database".

Assume Existence Always assume objects exist: always do an update (never do an
insert). For more information, see Section 115.1.3.2, "Using Assume
Existence".

Assume Non-Existence Always assume objects do not exist: always do an insert (never do an
update). For more information, see Section 115.1.3.3, "Using Assume
Nonexistence".

Configuring a Descriptor with EJB CMP and BMP Information

119-50 Developer's Guide for Oracle TopLink

When mapping enterprise beans, you create a descriptor for the bean class; you do not
create a descriptor for the local interface, remote interface, home class, or primary key
class.

When using TopLink Workbench, you must define the project with the correct entity
bean type (such as container-managed or bean-managed persistence) and import the
ejb-jar.xml file for the beans into the TopLink Workbench project.

For CMP projects, the ejb-jar.xml file defines the bean’s attributes to be mapped. A
descriptor for an entity bean container-managed persistence contains a CMP policy
used to configure CMP-specific options.

For more information, see Section 16.2.3, "Descriptors and CMP and BMP".

119.18.1 How to Configure a Descriptor with EJB CMP and BMP Information Using
TopLink Workbench

To configure a descriptor with EJB information, use this procedure:

1. In the Navigator, select a relational descriptor.

2. Click EJB Descriptor on the mapping toolbar.

An EJB Info tab is added to the descriptor.

To remove the EJB information for the selected descriptor, click EJB Descriptor
again.

The EJB Info tab is removed from the descriptor.

3. Click the EJB Info tab in the Editor

Table 119–19 Descriptor Support for EJB Information

Descriptor

How to Use
Oracle
JDeveloper

How to
Configure a
Descriptor with
EJB CMP and
BMP Information
Using TopLink
Workbench

How to
Configure a
Descriptor with
EJB CMP and
BMP
Information
Using Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data Type
Descriptors

EIS Descriptors2

2 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors").

XML Descriptors

Configuring a Descriptor with EJB CMP and BMP Information

Configuring a Descriptor 119-51

Figure 119–30 EJB Info Tab

Use the following information to enter data in each field on the tab:

Field Description

EJB Name Enter the bean’s base name. This is specified in the
<ejb-name> element of the ejb-jar.xml file and is for
display only.

Primary Key Class Enter the primary key. This is specified in the
<prim-key-class> element of the ejb-jar.xml file and is
for display only.

Unknown Primary Key
Class

Check this option if you choose not to specify the primary key
class or the primary key fields for an entity bean with container
managed persistence.

For example, select this field if the entity bean does not have a
natural primary key or you want the deployer to select the
primary key fields at deployment time. For more information,
see Section 8.9.2, "How to Configure EJB CMP Unknown
Primary Key Class Support".

Local Interface Enter the local interface. This is specified in the <local>
element of the ejb-jar.xml file and is for display only.

Local Home Interface Enter the local home interface. This is specified in the
<local-home> element of the ejb-jar.xml file and is for
display only.

Remote Interface Enter the remote interface. This is specified in the <remote>
element of the ejb-jar.xml file and is for display only.

Remote Home Interface Enter the remote interface. This is specified in the <home>
element of the ejb-jar.xml file and is for display only.

Change Deferral Use these options to specify how TopLink updates the database
for this EJB descriptor.

Defer All Changes Specify not to send changes to the database until the JTA
transaction is committed. This is the default TopLink behavior.
This is the most efficient option that results in the least amount
of data source interaction.

Configuring a Descriptor with EJB CMP and BMP Information

119-52 Developer's Guide for Oracle TopLink

119.18.2 How to Configure a Descriptor with EJB CMP and BMP Information Using
Java

Using Java code, you can use descriptors to describe the characteristics of entity beans
with container-managed (see Section 119.18.2.1, "Configuring CMP Information") or
bean-managed (see Section 119.18.2.2, "Configuring BMP Information") persistence.

119.18.2.1 Configuring CMP Information
To configure CMP-specific information on a descriptor, define a CMPPolicy:

descriptor.setCMPPolicy(new CMPPolicy());
You can use the following CMPPolicy API to configure optional behavior of
enterprise beans:

■ setDeferModificationsUntilCommit–By default TopLink defers all changes
to the database until the transaction is committed. Use this method to configure
TopLink to update the database after each EJB operation for the specified deferral
level:

– CMPPolicy.NONE–default behavior

– CMPPolicy.UPDATE_MODIFICATIONS–update the database after each EJB
operation for update modifications only

Defer Updates Only Specify to send changes to the database immediately after any
insert or delete operation, but do not send changes to the data
source for update operations until the JTA transaction is
committed.

Select this option for backwards compatibility with some EJB
containers, such as OC4J. For more information, see
Section 16.2.3.1, "Nondeferred Changes").

Use this option with caution as it will require the data source
transaction and locks to be held longer and may cause
referential integrity issues.

Defer None Specify to send all changes to the database immediately. This is
the least efficient option that generates the greatest amount of
data source interaction.

Select this option for backwards compatibility with some EJB
containers, such as OC4J. For more information, see
Section 16.2.3.1, "Nondeferred Changes").

Insert New Objects After Specify to send new object insert changes to the database after
bean life cycle method ejbCreate (default) or
ejbPostCreate. This is only relevant when not deferring
changes (see Section 119.30, "Configuring Change Policy").

If non-null foreign key constraints cannot be satisfied when the
insert is performed after ejbCreate, you may consider
configuring TopLink CMP to do the insert after
ejbPostCreate, if supported by your container. For more
information, see Section 16.2.3.2, "Creating a New Entity Bean
and ejbCreate / ejbPostCreate Methods".

Note: Most of these options are provided for compatibility with
other CMP implementations. Use caution when using them as they
will affect application performance.

Field Description

Configuring Reading Subclasses on Queries

Configuring a Descriptor 119-53

– CMPPolicy.ALL_MODIFICATIONS–update the database after each EJB
operation for all modifications

■ setNonDeferredCreateTime–when using nondeferred writes (see
setDeferModificationsUntilCommit), use this method to configure TopLink to
insert a new enterprise bean before (CMPPolicy.AFTER_EJBCREATE) or after
(CMPPolicy.AFTER_EJBPOSTCREATE) the ejbPostCreate method.

■ setForceUpdate–use this method to make TopLink write all enterprise beans
that have been accessed to the database regardless of whether they changed or not.

■ setUpdateAllFields–use this method to configure TopLink to force all the
fields of the bean to be updated instead of only the changed fields.

■ setPessimisticLockingPolicy–use this method to configure EJB-level
pessimistic locking.

119.18.2.2 Configuring BMP Information
BMP descriptors must be configured with a BMPWrapperPolicy. Neither Oracle
JDeveloper nor TopLink Workbench currently support defining the
BMPWrapperPolicy, so you must define this through Java code.

For more information, see Section 119.32, "Configuring Wrapper Policy".

119.19 Configuring Reading Subclasses on Queries
If you are mapping an inheritance hierarchy, by default, queries on root or branch
classes return instances of the root class and their subclasses.

Alternatively, you can configure a root or branch class descriptor to do the following:

■ not include subclasses when the root or branch class is queried;

■ outer-join subclasses when the root or branch class is queried.

You can also specify a database view to optimize the reading of subclasses. The view
can be used to optimize queries for root or branch classes that have subclasses
spanning multiple tables. The view must apply an outer-join or union all of the
subclass tables.

Do not configure this option for leaf classes.

Table 119–20 summarizes which descriptors support inherited attribute mapping
configuration.

Table 119–20 Descriptor Support for Inherited Attribute Mapping Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Reading
Subclasses on
Queries Using
TopLink
Workbench

How to
Configure
Reading
Subclasses on
Queries Using
Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Configuring Reading Subclasses on Queries

119-54 Developer's Guide for Oracle TopLink

For more information, see Section 16.2.2, "Descriptors and Inheritance".

119.19.1 How to Configure Reading Subclasses on Queries Using TopLink Workbench
To configure reading classes on subqueries, use this procedure:

1. In the Navigator, select a root or branch descriptor.

If the Inheritance advanced property is not visible for the descriptor, right-click
the descriptor and choose Select Advanced Properties > Inheritance from context
menu or from the Selected menu.

2. Click the Inheritance tab.

Figure 119–31 Inheritance Tab, Read Subclasses on Query Option

Use the following information to enter data in Read Subclasses on Query and Read
Subclasses View fields of the tab:

119.19.2 How to Configure Reading Subclasses on Queries Using Java
Create a descriptor amendment method (Section 119.35, "Configuring Amendment
Methods") to customize the root or branch class descriptor’s InheritancePolicy.

Field Description

Read Subclasses on Query Select this option to configure the root class descriptor to
instantiate a subclass when the root class is queried.

Read Subclasses View Optionally select a database view to use for reading
subclasses.

Outer Join All Subclasses Optionally use the outerJoinAllSubclsses option to
optimize the query.

Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor

Configuring a Descriptor 119-55

Example 119–9 shows an amendment method for the Person class. In this example,
you use the InheritancePolicy method dontReadSubclassesOnQueries to
configure the descriptor so that subclasses are not read on queries.

Example 119–9 Configuring Reading Subclasses on Queries

...
public static void addToPersonDescriptor(Descriptor descriptor) {

descriptor.getInheritancePolicy().dontReadSubclassesOnQueries();
}
...
Example 119–10 shows an amendment method for the Person class. In this example,
you use the InheritancePolicy method setReadAllSubclassesViewName to
optimize multiple table inheritance queries.

Example 119–10 Configuring Reading Subclasses on Queries Using a View Name

...
public static void addToPersonDescriptor(Descriptor descriptor) {

descriptor.getInheritancePolicy().setReadAllSubclassesViewName(myView);
}
...
Example 119–11 shows an amendment method for the Person class. In this example,
you use the InheritancePolicy method setShouldOuterJoinSubclasses to
configure the descriptor so that subclasses are outer-joined on queries.

Example 119–11 Configuring Outer-Joining Subclasses on Queries

...
public static void addToPersonDescriptor(Descriptor descriptor) {

descriptor.getInheritancePolicy().setShouldOuterJoinSubclasses(true);
}
...

119.20 Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor

Inheritance describes how a derived (child) class inherits the characteristics of its
superclass (parent). When you designate a class as a child, you must also specify the
descriptor that represents the child’s parent in your inheritance hierarchy.

Table 119–39 summarizes which descriptors support child inheritance configuration.

Table 119–21 Descriptor Support for Child Inheritance Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Inheritance for a
Child (Branch or
Leaf) Class
Descriptor Using
TopLink
Workbench

How to
Configure
Inheritance for a
Child (Branch or
Leaf) Class
Descriptor
Using Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor

119-56 Developer's Guide for Oracle TopLink

For more information about inheritance, see Section 16.2.2, "Descriptors and
Inheritance".

For more information about configuring inheritance for a parent (root) class descriptor,
see Section 119.21, "Configuring Inheritance for a Parent (Root) Descriptor".

119.20.1 How to Configure Inheritance for a Child (Branch or Leaf) Class Descriptor
Using TopLink Workbench

To create a child (branch or leaf class) for an inheritance, use this procedure.

1. In the Navigator, select the descriptor you wish to specify as a child.

2. Choose the Inheritance tab in the Property window.

If the Inheritance tab is not visible, right-click the descriptor and choose Select
Advanced Properties > Inheritance.

3. Select the Is Child Descriptor option to specify this descriptor is a child class. The
Parent Descriptor list is now enabled and the class indicator information is
disabled.

Figure 119–32 Inheritance Tab, Child Descriptor Option

Use the following information to enter data in each child descriptor field on the tab:

Field Description

Is Child Descriptor Specify that this descriptor is a child class to be used in a
branch or leaf.

Parent Descriptor Use the list to select the parent of this descriptor. See
Section 16.2.2, "Descriptors and Inheritance" for more
information.

Configuring Inheritance for a Parent (Root) Descriptor

Configuring a Descriptor 119-57

119.20.2 How to Configure Inheritance for a Child (Branch or Leaf) Class Descriptor
Using Java

Using Java, you can configure an inheritance child descriptor using
InheritancePolicy method setParentClass, as Example 119–12 shows.

Example 119–12 Configuring an Inheritance Child Descriptor

descriptor.getInheritancePolicy().setParentClass(ChildClass.class);

119.21 Configuring Inheritance for a Parent (Root) Descriptor
Inheritance describes how a derived (child) class inherits the characteristics of its
superclass (parent). When you designate a class as a parent, you can configure how
TopLink handles the class’s inheritance hierarchy.

Table 119–24 summarizes which descriptors support parent inheritance configuration.

For more information about configuring inheritance for a child (branch or leaf) class
descriptor, see Section 119.20, "Configuring Inheritance for a Child (Branch or Leaf)
Class Descriptor".

For more information, see Section 16.2.2, "Descriptors and Inheritance".

119.21.1 How to Configure Inheritance for a Parent (Root) Descriptor Using TopLink
Workbench

To create a root class for an inheritance, use this procedure.

1. In the Navigator, select the descriptor you wish to specify as the root.

2. Choose the Inheritance tab in the Property window.

If the Inheritance tab is not visible, right-click the descriptor and choose Select
Advanced Properties > Inheritance.

3. Select the Is Root Parent Descriptor option to specify this descriptor is a root class.

Table 119–22 Descriptor Support for Parent Inheritance Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Inheritance for a
Parent (Root)
Descriptor Using
TopLink
Workbench

How to
Configure
Inheritance for
a Parent (Root)
Descriptor
Using Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Configuring Inheritance for a Parent (Root) Descriptor

119-58 Developer's Guide for Oracle TopLink

Figure 119–33 Inheritance Tab, Configuring Inheritance for a Root Descriptor

Use this table to complete the following root descriptor field on the Inheritance tab:

Field Description

Is Root Parent Descriptor Select this option to specify this descriptor as
the root (parent) of the inheritance hierarchy.

Use Class Extraction Method Choose this option to specify a class
indicator using a class extraction method,
and select your static class extraction
method from the list.

For more information, see Section 16.3.1.2,
"Using Class Extraction Methods".

Use Class Indicator Field Choose this option to specify a class
indicator using a class indicator field.

For more information, see Section 16.3.1.1,
"Using Class Indicator Fields".

Field Selection Choose the field to use as the class indicator
field.

Use XML Schema "Type" Attribute1 Select this option to use the type attribute
specified in the XML schema for this
descriptor’s reference class.

Specify Field For a relational descriptor, select the field of
the database table associated with this
descriptor (see Section 23.2, "Configuring
Associated Tables").

For an EIS root descriptor (using XML
records) or an XML descriptor, click Browse
to select an element attribute or text node.

Configuring Inheritance for a Parent (Root) Descriptor

Configuring a Descriptor 119-59

119.21.2 How to Configure Inheritance for a Parent (Root) Descriptor Using Java
Create a descriptor amendment method (Section 119.35, "Configuring Amendment
Methods") to customize the root class descriptor’s inheritance policy using
InheritancePolicy methods setParentClass,
setClassIndicatorFieldName, addClassIndicator,
useClassNameAsIndicator and setClassExtractionMethodName, as
required.

Example 119–15 shows amendment methods for the Person and Student classes
where Student extends Person in a relational project. In this example, a class
indicator field is used (see Section 16.3.1.1, "Using Class Indicator Fields").

Example 119–13 Configuring Inheritance for a Relational Root Class

...
public static void addToPersonDescriptor(Descriptor descriptor) {

descriptor.getInheritancePolicy().setClassIndicatorFieldName("CLIENT_TYPE");
descriptor.getInheritancePolicy().addClassIndicator(Student.class, indicator);

}

public static void addToStudentDescriptor(Descriptor descriptor) {
descriptor.getInheritancePolicy().setParentClass(Person.class);
...

}
...
If you are using a class-extraction method (see Section 16.3.1.2, "Using Class Extraction
Methods"), you may also need to use InheritancePolicy methods
setOnlyInstancesExpression and setWithAllSubclassesExpression (see
Section 119.22, "Configuring Inheritance Expressions for a Parent (Root) Class
Descriptor").

Indicator Selection Choose between using a class name as the
class indicator field value or specifying
specific class indicator field values for each
(nonabstract) child class.

Use Class Name as Indicator Choose this option to use class names as the
class indicator field value.

Use Class Indicator Dictionary Choose this option to specify specific class
indicator field values for each (nonabstract)
child class.

When you choose this option, you must
specify the data type of the class indicator
field and the specific class indicator field
values for each (nonabstract) child class.

Indicator Type Select the data type from the list to specify
the data type of the class indicator field.

To specify the specific class indicator field
values for each (nonabstract) child class,
click Edit and enter the appropriate value
for each child class.

1 EIS root (see Section 75.2.1.1, "EIS Root Descriptors") or XML descriptors (see Section 50.1, "XML
Descriptor Concepts") only.

Field Description

Configuring Inheritance Expressions for a Parent (Root) Class Descriptor

119-60 Developer's Guide for Oracle TopLink

Example 119–15 shows amendment methods for the Person and Student classes
where Student extends Person in an EIS project using XML records. In this example,
a class indicator field is used (see Section 16.3.1.1, "Using Class Indicator Fields").

Example 119–14 Configuring Inheritance for an EIS Root Class

...
public static void addToPersonDescriptor(Descriptor descriptor) {

descriptor.getInheritancePolicy().setClassIndicatorField(
new XMLField("@CLIENT_TYPE"));

descriptor.getInheritancePolicy().addClassIndicator(Student.class, indicator);
}

public static void addToStudentDescriptor(Descriptor descriptor) {
descriptor.getInheritancePolicy().setParentClass(Person.class);
descriptor.getInheritancePolicy().setClassIndicatorField(

new XMLField("@CLIENT_TYPE")
);

}
...

119.22 Configuring Inheritance Expressions for a Parent (Root) Class
Descriptor

If your class uses inheritance (see Section 16.3, "Descriptors and Inheritance") with a
class extraction method (see Section 16.3.1.2, "Using Class Extraction Methods") you
must provide TopLink with expressions to correctly filter sibling instances for all
classes that share a common table.

Table 119–24 summarizes which descriptors support inheritance expression
configuration.

Figure 119–34 shows a typical inheritance hierarchy. In this example, instances of both
Person and Student are stored in the same PERSON table, as Figure 119–35 shows:
an instance of Person has a null value for STUDENT_NUMBER. Instances of Company
are stored in a separate COMPANY table.

Table 119–23 Descriptor Support for Inheritance Expression Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to Configure
Inheritance
Expressions for a
Parent (Root) Class
Descriptor Using
Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Configuring Inheritance Expressions for a Parent (Root) Class Descriptor

Configuring a Descriptor 119-61

Figure 119–34 Example Inheritance Hierarchy

Figure 119–35 PERSON Table

Queries on inheritance classes that share a common table, such as Person and
Student, must filter out their sibling instances. TopLink performs this filtering using
the Expression instances returned by the descriptor’s InheritancePolicy
methods getOnlyInstancesExpression and
getWithAllSubclassesExpression.

Queries on a class that has its own table for its specific data, such as Company, and
does not share this table with any sibling classes, do not require these expressions.

If you use a class indicator type field (see Section 16.3.1.1, "Using Class Indicator
Fields"), TopLink automatically generates the required expressions.

If you use a class extraction method (see Section 16.3.1.2, "Using Class Extraction
Methods"), you must provide TopLink with an expressions to correctly filter sibling
instances for all classes that share a common table.

For concrete classes, you must define an only- instances expression.

For branch classes, you must define a with-all-subclasses expression.

When TopLink queries for a leaf class, it uses the only- instances expression to filter
out any sibling classes.

When TopLink queries for a root or branch class whose subclasses do not define their
own tables, it uses the with-all-subclasses expression. This is also the case when a
subclass view is used (see Section 119.19, "Configuring Reading Subclasses on
Queries").

Configuring Inheritance Expressions for a Parent (Root) Class Descriptor

119-62 Developer's Guide for Oracle TopLink

When querying for a root or branch class that has subclasses that span multiple tables,
a query is performed for each concrete class in the inheritance hierarchy using the
only- instances expression to filter sibling classes.

When a class extraction method is used the only-instances expression is used to
determine if a class is concrete. If a class does not require an only instances expression,
do not enable reading subclasses on queries (see Section 119.19, "Configuring Reading
Subclasses on Queries"), otherwise TopLink will assume that the class has no instances
and it will skip that class on queries.

For more information about inheritance expressions, see Section 16.3.1.2.1, "Specifying
Expressions for Only-Instances and With-All-Subclasses".

119.22.1 How to Configure Inheritance Expressions for a Parent (Root) Class
Descriptor Using Java

Create a descriptor amendment method (Section 119.35, "Configuring Amendment
Methods") to customize the root class descriptor’s InheritancePolicy using
InheritancePolicy methods setOnlyInstancesExpression and
setWithAllSubclassesExpression, as required.

Example 119–15 shows amendment methods for the Person and Student descriptors
based on the class hierarchy shown in Figure 119–34 and the database table shown in
Figure 119–35.

Example 119–15 Configuring Only-Instances Expressions

...
// Only-instances expression for Person
public static void addToPersonDescriptor(Descriptor descriptor) {

ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getInheritancePolicy().setOnlyInstancesExpression(

builder.getField("STUDENT_NUMBER").isNull());
}

// Only-instances expression for Student
public static void addToStudentDescriptor(Descriptor descriptor) {

ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getInheritancePolicy().setOnlyInstancesExpression(

builder.getField("STUDENT_NUMBER").notNull());
}
...
Example 119–16 shows amendment methods for the Bicycle and
NonFueledVehicle descriptors based on the class hierarchy shown in Figure 16–1 if
the vehicle hierarchy stored all of the classes in a single vehicle table, and there was
not a class indicator, but a class extraction method instead.

Example 119–16 Configuring Only-Instances and With-All-Subclasses Expressions

// Bicycle amemndment
public static void addToBicycleDescriptor(Descriptor descriptor) {

ExpressionBuilder builder = new ExpressionBuilder();
descriptor.getInheritancePolicy().setOnlyInstancesExpression(

builder.getField("BICYCLE_DESCR").notNull());
}

// NonFueldVehicle ammendment
public static void addToNonFueledVehicleDescriptor(Descriptor descriptor) {

ExpressionBuilder builder = new ExpressionBuilder();

Configuring Inherited Attribute Mapping in a Subclass

Configuring a Descriptor 119-63

descriptor.getInheritancePolicy().setWithAllSubclassesExpression(
builder.getField("FUEL_TYPE").isNull());

}

119.23 Configuring Inherited Attribute Mapping in a Subclass
If you are defining the descriptor for a class that inherits attributes from another class,
then you can create mappings for those attributes. If you remap an attribute that was
already mapped in the superclass, then the new mapping applies to the subclass only.
Any other siblings that inherit the attribute are unaffected.

If you leave inherited attributes unmapped, TopLink uses the mapping (if any) from
the superclass if the superclass’s descriptor has been designated as the parent
descriptor.

Table 119–24 summarizes which descriptors support inherited attribute mapping
configuration.

For more information, see Section 16.2.2, "Descriptors and Inheritance".

119.23.1 How to Configure Inherited Attribute Mapping in a Subclass Using TopLink
Workbench

To map inherited attributes, use this procedure:

1. In the Navigator, right-click a descriptor and choose Map Inherited Attributes >
selected class from the context menu or choose Selected > Map Inherited
Attributes from the menu.

The mappings list now includes all the attributes from the superclass of this class.

2. Map any desired attributes. See Chapter 120, "Creating a Mapping" for more
information.

119.23.2 How to Configure Inherited Attribute Mapping in a Subclass Using Java
Using Java, attributes inherited by a subclass from a superclass will be visible and you
can always create a mapping to these inherited attributes.

Table 119–24 Descriptor Support for Inherited Attribute Mapping Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Inherited
Attribute
Mapping in a
Subclass Using
TopLink
Workbench

How to
Configure
Inherited
Attribute
Mapping in a
Subclass
Using Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Configuring a Domain Object Method as an Event Handler

119-64 Developer's Guide for Oracle TopLink

119.24 Configuring a Domain Object Method as an Event Handler
You can associate a domain object method with any of the descriptor events shown in
Table 119–26. You can register any domain object method that complies with the
following criteria:

■ Is public.

■ Returns void.

■ Takes a single parameter of type DescriptorEvent

Table 119–25 summarizes which descriptors support domain object method event
handler configuration.

For example, you can add a method handlePostDelete (that is public, returns void,
and takes a single parameter of type DescriptorEvent) to your Employee object to
handle PostDeleteEvent descriptor events. After you register that method with the
DescriptorEventManager owned by the Employee object’s descriptor as the
handler for PostDeleteEvent descriptor events, whenever the Oracle TopLink
runtime performs a post-delete operation on an instance of the Employee object, the
runtime dispatches a PostDeleteEvent to the handlePostDelete method on the
instance of the Employee object associated with that PostDeleteEvent.

The Descriptor Event ID column in Table 119–26 lists the
DescriptorEventManager field name used to identify a particular event. The
DescriptorEvent method getEventCode returns this value. For example:

if (descriptorEvent.getEventCode() == DescriptorEventManager.PreUpdateEvent) {
// descriptorEvent represents a pre-update event

}

Table 119–25 Descriptor Support for Domain Object Method Event Handler
Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
a Domain Object
Method as an
Event Handler
Using TopLink
Workbench

How to
Configure a
Domain Object
Method as an
Event Handler
Using Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Table 119–26 Descriptor Events

Category Descriptor Event ID Description

Delete PreDeleteEvent Occurs before an object is deleted from the data source.

AboutToDeleteEvent Occurs when an object is deleted from the data source.

PostDeleteEvent Occurs after an object is deleted from the data source.

Insert PreInsertEvent Occurs before an object is inserted in the data source.

AboutToInsertEvent Occurs when an object is inserted in the data source.

Configuring a Domain Object Method as an Event Handler

Configuring a Descriptor 119-65

Alternatively, you can configure a descriptor event listener as an event handler (see
Section 119.25, "Configuring a Descriptor Event Listener as an Event Handler").

119.24.1 How to Configure a Domain Object Method as an Event Handler Using
TopLink Workbench

To select event methods, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

If the Events advanced property is not visible for the descriptor, then right-click
the descriptor and choose Select Advanced Properties > Events from context
menu or from the Selected menu.

2. Click the Event tab in the Editor.

Figure 119–36 Events Tab

3. Select the appropriate method category from the list on the left.

Use this table to enter data in the following fields to select the appropriate domain
object method:

PostInsertEvent Occurs after an object is inserted into the data source.

Post-X PostBuildEvent Occurs after an object is built from the data source.

PostCloneEvent Occurs after an object has been cloned into a unit of work.

PostMergeEvent Occurs after an object has been merged from a unit of work.

PostRefreshEvent Occurs after an object is refreshed from the data source.

Update PreUpdateEvent Occurs before an object is updated in the data source. This may be
called in a unit of work even if the object has no changes and does
not require updating.

AboutToUpdateEvent Occurs when an object is updated in the data source. This method is
called only if the object has changes in the unit of work.

PostUpdateEvent Occurs after an object is updated in the data source.

Write PreWriteEvent Occurs before an object is inserted or updated in the data source.
This occurs before PreInsertEvent and PreUpdateEvent.

PostWriteEvent Occurs after an object is inserted or updated in the data source. This
occurs after PostInsertEvent and PostUpdateEvent.

Table 119–26 (Cont.) Descriptor Events

Category Descriptor Event ID Description

Configuring a Domain Object Method as an Event Handler

119-66 Developer's Guide for Oracle TopLink

Category Option Description

Deleting Methods Pre Select the domain object method that is invoked
on an instance of its reference class before the
instance is deleted from the data source.

Post Select the domain object method that is invoked
on an instance of its reference class after the
instance is deleted from the data source.

Inserting Methods Pre Select the domain object method that is invoked
on an instance of its reference class before the
instance is inserted in the data source.

About To Select the domain object method that is invoked
on an instance of its reference class when the
instance is inserted in the data source.

Post Select the domain object method that is invoked
on an instance of its reference class after the
instance is inserted into the data source.

Post-X Methods Build Select the domain object method that is invoked
on an instance of its reference class after the
instance is built from the data source.

Clone Select the domain object method that is invoked
on an instance of its reference class after the
instance is cloned into a unit of work.

Merge Select the domain object method that is invoked
on an instance of its reference class after the
instance is merged from a unit of work.

Refresh Select the domain object method that is invoked
on an instance of its reference class after the
instance is refreshed from the data source.

Updating Methods Pre Select the domain object method that is invoked
on an instance of its reference class before the
instance is updated in the data source. This may
be called in a unit of work even if the object has no
changes and does not require updating.

About to Select the domain object method that is invoked
on an instance of its reference class when the
instance is updated in the data source. This
method is called only if the object has changes in
the unit of work.

Post Select the domain object method that is invoked
on an instance of its reference class after the
instance is updated in the data source.

Writing Methods Pre Select the domain object method that is invoked
on an instance of its reference class before the
instance is inserted or updated in the data source.

Note: This occurs before Pre-Insert and
Pre-Update event methods are invoked.

Configuring a Descriptor Event Listener as an Event Handler

Configuring a Descriptor 119-67

119.24.2 How to Configure a Domain Object Method as an Event Handler Using Java
Example 119–17 shows a domain object class with method handlePostDelete
defined to handle PostDeleteEvent descriptor events. Example 119–18 shows how
to register this method as the PostDeleteEvent event handler. Whenever the
TopLink runtime performs a post-delete operation on an instance of Employee, the
runtime will dispatch a PostDeleteEvent to the DescriptorEventManager
owned by the Employee object’s descriptor. The DescriptorEventManager will
then invoke the handlePostDelete method on the instance of Employee associated
with that PostDeleteEvent.

Example 119–17 Domain Object Method as a Descriptor Event Handler

public class Employee {
// domain object methods
...
public void handlePostDelete(DescriptorEvent event) {

// handler implementation
}

}

Example 119–18 Registering a Domain Object Method as a Descriptor Event Handler

employeeDescriptor.getEventManager().setPostDeleteSelector("handlePostDelete");

119.25 Configuring a Descriptor Event Listener as an Event Handler
You can create your own DescriptorEventListner and register it with a
DescriptorEventManager in a descriptor amendment method. You can also
configure a DescriptorEventListner to be notified of events through the Java
event model.

You can register any object that implements the DescriptorEventListener
interface with the DescriptorEventManager owned by a domain object’s
descriptor to handle any descriptor event type (see Table 119–28). To quickly
implement this interface, you can extend abstract class DescriptorEventAdapter
and override only the methods for the events you are interested in.

Table 119–27 summarizes which descriptors support descriptor event listener
configuration.

Post Select the domain object method that is invoked
on an instance of its reference class after the
instance is inserted or updated in the data source.

Note: This occurs after Post-Insert or Post-Update
event methods are invoked.

Table 119–27 Descriptor Support for Descriptor Event Listener Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
a Descriptor
Event Listener as
an Event Handler
Using TopLink
Workbench

How to Configure a
Descriptor Event
Listener as an Event
Handler Using Java

Relational Descriptors

Category Option Description

Configuring a Descriptor Event Listener as an Event Handler

119-68 Developer's Guide for Oracle TopLink

For example, you create a DescriptorEventListener to handle
PostBuildEvent descriptor events for Employee objects. After you register this
DescriptorEventListener with the DescriptorEventManager owned by the
Employee object’s descriptor, whenever the TopLink runtime performs a post-build
operation on an instance of Employee, the runtime dispatches a PostBuilEvent to
the event listener's postBuild method.

Table 119–28 lists the DescriptorEventListener methods associated with each
descriptor event. The Descriptor Event Listener Method column lists the
DescriptorEventListener methods associated with each DescriptorEvent.

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Table 119–28 Descriptor Events

Category
Descriptor Event
Listener Method Description

Delete preDelete Occurs before an object is deleted from the data source.

aboutToDelete Occurs when an object is deleted from the data source.

postDelete Occurs after an object is deleted from the data source.

Insert preInsert Occurs before an object is inserted in the data source.

aboutToInsert Occurs when an object is inserted in the data source.

postInsert Occurs after an object is inserted into the data source.

Post-X postBuild Occurs after an object is built from the data source.

postClone Occurs after an object has been cloned into a unit of work.

postMerge Occurs after an object has been merged from a unit of work.

postRefresh Occurs after an object is refreshed from the data source.

Update preUpdate Occurs before an object is updated in the data source. This may be
called in a unit of work even if the object has no changes and does not
require updating.

aboutToUpdate Occurs when an object is updated in the data source. This method is
called only if the object has changes in the unit of work.

postUpdate Occurs after an object is updated in the data source.

Write preWrite Occurs before an object is inserted or updated in the data source. This
occurs before PreInsertEvent and PreUpdateEvent.

postWrite Occurs after an object is inserted or updated in the data source. This
occurs after PostInsertEvent and PostUpdateEvent.

Table 119–27 (Cont.) Descriptor Support for Descriptor Event Listener Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
a Descriptor
Event Listener as
an Event Handler
Using TopLink
Workbench

How to Configure a
Descriptor Event
Listener as an Event
Handler Using Java

Configuring Locking Policy

Configuring a Descriptor 119-69

Alternatively, you can configure a domain object method as an event handler (see
Section 119.24, "Configuring a Domain Object Method as an Event Handler").

119.25.1 How to Configure a Descriptor Event Listener as an Event Handler Using
TopLink Workbench

For more information, see Section 119.24.1, "How to Configure a Domain Object
Method as an Event Handler Using TopLink Workbench".

119.25.2 How to Configure a Descriptor Event Listener as an Event Handler Using Java
Example 119–19 shows a DescriptorEventListener that handles
PostBuildEvent descriptor events. Example 119–20 shows how to register this
DescriptorEventListener with the Employee object’s descriptor. Whenever the
TopLink runtime performs a post-build operation on an instance of Employee, the
runtime will dispatch a post build event to the corresponding
DescriptorEventListener method on each registered event listener (in this case,
it calls the postBuild method).

Example 119–19 DescriptorEventListener

public class MyDescriptorEventListener extends DescriptorEventAdapter {

public void postBuild(DescriptorEvent event) {
// handler implementation

}
}

Example 119–20 Registering a DescriptorEventListener with the
DescriptorEventManager

descriptor.getEventManager().addListener(new MyDescriptorEventListener());

119.26 Configuring Locking Policy
You can configure a descriptor with a locking policy that prevents one user writing
over another user’s work.

Table 119–29 summarizes which descriptors support locking policies.

Table 119–29 Descriptor Support for Locking Policy

Descriptor

Optimistic
Version
Locking
Policies

Optimistic
Field
Locking
Policies

Pessimistic
Locking
Policy

How to Use
Oracle
JDeveloper

How to
Configure
Locking
Policy
UsingTopLink
Workbench

How to
Configure
Locking
Policy
Using
Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data
Type Descriptors

EIS Descriptors2

2 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors").

XML Descriptors

Configuring Locking Policy

119-70 Developer's Guide for Oracle TopLink

Oracle recommends that you use a locking policy. You should use a locking policy in
any multiuser environment to prevent one user writing over another user's changes.
Although locking can be particularly important if multiple servers or multiple
applications access the same data, even in a single server application, the same locking
issue still exists. In a multiple-server environment, locking is still relevant even if your
application uses cache refreshing or cache coordination.

If you are building a three-tier application, in order to correctly lock an object, you
must obtain the lock before the object is sent to client to be edited. The type of locking
you choose has an influence on how you can achieve this (see Section 16.4.6, "Locking
in a Three-Tier Application").

119.26.1 How to Configure Locking Policy UsingTopLink Workbench
To specify a descriptor’s locking policy, use this procedure:

1. In the Navigator, select a relational or EIS root descriptor.

If the Locking advanced property is not visible for the descriptor, right-click the
descriptor and choose Select Advanced Properties > Locking from the context
menu or from the Selected menu.

2. Click the Locking tab.

Figure 119–37 Locking Tab for a Descriptor

Configuring Locking Policy

Configuring a Descriptor 119-71

Figure 119–38 Locking Tab for an EIS Root Descriptor

Use this table to enter data in the following fields on the tab of the appropriate type:

Field Description

Optimistic Locking Specify that the descriptor uses optimistic locking.

By Version Specify to use optimistic locking, based on versioning.

Database Field Select the database field that contains the version value
used for optimistic locking.

This field appears for relational descriptors only.

XPath Click Browse to define the path to the element or
attribute that stores the version value.

This field appears for EIS root descriptors only.

Ensure that the attribute’s type corresponds to the type of
locking policy you choose (numeric for Version Locking
and timestamp for Timestamp Locking).

Version Locking Specify that the descriptor uses numeric version locking.
The version field (defined by the Database Field, for
relational descriptors, or the XPath, for EIS root
descriptors) must be a numeric type

Timestamp Locking Specify that the descriptor uses time stamp version
locking, based on time stamp. The version field (defined
by the Database Field, for relational descriptors, or the
XPath, for EIS root descriptors) must be a timestamp
type.

Store Version in Cache Specify whether or not you want to store the version
information in the cache.

If you choose not to define a mapping for the version
field, then you must enable this option to configure the
descriptor to store the version value in the Oracle
TopLink cache.

If you choose to define a mapping for the version field,
then you must disable this option in order to store the
version value in the object.

For more information, see Section 16.4.6.1, "Optimistic
Locking in a Three-Tier Application".

By Fields1 Specify to use optimistic locking, based on database
fields.

These fields appear for relational descriptors only.

All Fields Select all fields for optimistic locking.

Changed Fields Select only the changed fields for optimistic locking.

Configuring Locking Policy

119-72 Developer's Guide for Oracle TopLink

119.26.2 How to Configure Locking Policy Using Java
This section describes the following:

■ Configuring an Optimistic Locking Policy

■ Configuring Optimistic Locking Policy Cascading

■ Configuring a Pessimistic Locking Policy

119.26.2.1 Configuring an Optimistic Locking Policy
Use the ClassDescriptor method setOptimisticLockingPolicy to set an
instance of the appropriate optimistic field locking policy:

■ AllFieldsLockingPolicy

■ ChangedFieldsLockingPolicy

■ SelectedFieldsLockingPolicy

■ VersionLockingPolicy

■ TimestampLockingPolicy

Use the ClassDescriptor method getOptimisticLockingPolicy to get the
selected locking policy type and configure it.

119.26.2.2 Configuring Optimistic Locking Policy Cascading
If you are using a VersionLockingPolicy, you can enable cascading to configure
TopLink to automatically force a version field update on a parent object when its
privately owned child object’s version field changes. Use VersionLockingPolicy
method setIsCascaded passing in a boolean of true to enable cascading, or
false to disable cascading.

For more information, see Section 16.4.2, "Optimistic Version Locking Policies and
Cascading".

Selected Fields Click Add to select specific database fields for optimistic
locking.

Pessimistic Locking Specify to use pessimistic locking for this descriptor.

This applies only to descriptors that have had EJB CMP
information configured for them (see Section 119.18,
"Configuring a Descriptor with EJB CMP and BMP
Information").

Wait for Lock Specify whether or not TopLink should wait for a data
source lock. When not selected, the thread of execution
will immediately throw a DatabaseException if it
cannot acquire a read lock on the object.

When selected, the thread of execution will wait
indefinitely until the read lock is released, at which time,
it will attempt to acquire it. Use this option with care as it
can lead to application deadlocks.

1 You cannot use field locking with the AttributeChangeTrackingPolicy (see Section 113.2.3.3,
"Attribute Change Tracking Policy").

Field Description

Configuring Returning Policy

Configuring a Descriptor 119-73

119.26.2.3 Configuring a Pessimistic Locking Policy
You can configure a descriptor with a PessimisticLockingPolicy only when
using a CMPPolicy. That is, you only can configure a PessimisticLockingPolicy
for descriptors that support EJB CMP information (see Section 119.18, "Configuring a
Descriptor with EJB CMP and BMP Information") in a CMP project.

Instantiate a CMPPolicy and use CMPPolicy method
setPessimisticLockingPolicy to set an instance of
PessimisticLockingPolicy. Then use the ClassDescriptor method
setCMPPolicy to set the CMPPolicy.

119.27 Configuring Returning Policy
Using a ReturningPolicy, you can obtain field values from the data source when
inserting or updating an object. TopLink uses the values that the data source returns to
update the object attributes that map to these fields. You can specify which fields to
return for inserts and updates. For insert fields, you can also specify whether or not to
include the field value in the insert operation.

A ReturningPolicy is useful when the data source provides default or initial field
values through defaults, triggers, or stored procedures. You can also use a
ReturningPolicy to allow the data source to assign a sequence or primary key
value.

Any object attribute that you do not configure in a descriptor’s ReturningPolicy
receives the default behavior: in the context of a unit of work, if the attribute has
changed, its value is written to the database. If the SQL statement invokes a trigger or
stored procedure that modifies the database field, the database generated value is not
reflected by the object.

Use caution when deciding on whether or not to use a ReturningPolicy, as doing
so may effect insert or update performance and is not compatible with batch writing
(see Section 12.11.3, "How to Use Batch Writing for Optimization").

By default, you can use a ReturningPolicy with Oracle Database, in which case,
TopLink uses the Oracle RETURNING clause (see Section 119.27.1, "How to Configure
Returning Policy Using TopLink Workbench").

You can use a ReturningPolicy with a non-Oracle database if you configure your
descriptor's insert or update query to use a stored procedure that returns the desired
returned values as output parameters (see Section 119.27.2, "How to Configure
Returning Policy Using Java").

Table 119–39 summarizes which descriptors support returning policy configuration.

Table 119–30 Descriptor Support for Fetch Group Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to
Configure
Returning Policy
Using TopLink
Workbench

How to
Configure
Returning Policy
Using Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors1

XML Descriptors

Configuring Returning Policy

119-74 Developer's Guide for Oracle TopLink

119.27.1 How to Configure Returning Policy Using TopLink Workbench
To specify the return policy for a descriptor, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

If the Returning advanced property is not visible for the descriptor, right-click the
descriptor and choose Select Advanced Properties > Returning from the context
menu or from the Selected menu.

2. Click the Returning tab in the Editor.

Figure 119–39 Returning Tab

Use the following information to enter data in each field on the tab:

To remove a database field from the descriptor’s ReturningPolicy, select the field
in the Insert or Update window and click Remove.

1 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors").

Field Description

Insert These options apply to insert operations:

Name Click Add to add a database field to this ReturningPolicy for
insert operations.

Return-only When selected, TopLink only returns a value for this field; it will
not include the field in the insert.

When not selected, TopLink returns a value for this field and
includes the value in the insert.

Update These options apply to update operations:

Name Click Add to add a database field to this ReturningPolicy for
update operations

Note: If you are using TopLink Workbench, you cannot configure a
returning policy for an attribute mapped with a transformation
mapping (see Section 27.13, "Transformation Mapping").

Configuring Instantiation Policy

Configuring a Descriptor 119-75

119.27.2 How to Configure Returning Policy Using Java
You use a ReturningPolicy to configure how TopLink handles returning with the
attributes of an object on a field-by-field basis. Table 119–31 describes the
ReturnPolicy methods you use to tell TopLink how to handle a particular database
field. Each method takes a String or a DatabaseField type parameter as field
name.

You configure a descriptor with a ReturningPolicy using ClassDescriptor
method setReturningPolicy.

119.28 Configuring Instantiation Policy
The TopLink runtime instantiates new instances of a class according to the
instantiation policy you configure on the class’s descriptor.

Table 119–32 summarizes which descriptors support an instantiation policy.

You can specify one of the following types of instantiation policy:

■ Default: TopLink creates a new instance of a class by calling the class’s default
constructor.

■ Method: TopLink creates a new instance of a class by calling a public static method
that you define on the class descriptor.

■ Factory: TopLink creates a new instance of a class by calling the appropriate
methods on a separate class that you implement according to the Factory design
pattern.

119.28.1 How to Configure Instantiation Policy Using TopLink Workbench
To set the instantiation policy for a descriptor, use this procedure:

1. In the Navigator, select a descriptor.

Table 119–31 Return Policy Methods

Method
Applies to SQL
Statements of Type...

Writes Current Value of
Field to Database?

Returns
Database-
Generated
Result?

addFieldForInsert INSERT Yes Yes

addFieldForInsertReturnOnly INSERT No Yes

addFieldForUpdate UPDATE Yes Yes

Table 119–32 Descriptor Support for Instantiation Policy

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Instantiation
Policy Using
TopLink
Workbench

How to
Configure
Instantiation
Policy Using
Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Configuring Copy Policy

119-76 Developer's Guide for Oracle TopLink

If the Instantiation advanced property is not visible for the descriptor, right-click
the descriptor and choose Select Advanced Properties > Instantiation from the
context menu or from the Selected menu.

2. Click the Instantiation tab.

Figure 119–40 Instantiation Tab

Use the following information to enter data in each field on the tab:

119.28.2 How to Configure Instantiation Policy Using Java
Use one of the following ClassDescriptor methods to set the appropriate type of
instantiation policy:

■ useDefaultConstructorInstantiationPolicy

■ useMethodInstantiationPolicy

■ useFactoryInstantiationPolicy

119.29 Configuring Copy Policy
The TopLink unit of work feature must be able to produce an exact copy (clone)
persistent objects. Table 119–33 summarizes which descriptors support a copy policy.

Field Description

Use Default Constructor Specify if the default constructor of the class instantiates a
new instance.

Use Method Specify a method to execute to create objects from the
database.

Method Select the name of a method to be executed to create
objects from the database. The method must be a public,
static method on the descriptor’s class and must return a
new instance of the object.

Use Factory Specify an object factory method.

Factory Class Select the class of the factory object that creates the new
instances.

Factory Method Select the method to be used to obtain a factory object.
Choose <nothing> to use the default constructor.

Instantiation Method Select the method to be called on the factory object to
obtain a new instance that will be populated with data
from the data source.

Configuring Copy Policy

Configuring a Descriptor 119-77

TopLink supports the following two ways of copying objects:

■ Instantiation policy: By default, TopLink creates a new copy of an object by using
the currently configured instantiation policy (see Section 119.28, "Configuring
Instantiation Policy").

■ Method: TopLink creates a new copy of an object by calling a method on the object
that you specify. For example, you can specify the object’s clone method (or any
other appropriate method on the object). Note that the clone method should
return a shallow clone of the object.

119.29.1 How to Configure Copy Policy Using TopLink Workbench
To specify the copy policy for a descriptor, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

If the Copying advanced property is not visible for the descriptor, right-click the
descriptor and choose Select Advanced Properties > Copying from the context
menu or from the Selected menu.

2. Click the Copying tab in the Editor.

Figure 119–41 Copying Tab

Use the following information to enter data in each field on the tab:

Table 119–33 Configuring Descriptors with a Copy Policy

Descriptor

How to Use
Oracle
JDeveloper

How to
Configure Copy
Policy Using
TopLink
Workbench

How to
Configure Copy
Policy Using
Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Field Description

Use Instantiation Policy Creates a new instance of the object using the descriptor’s
instantiation policy (see Section 119.28, "Configuring Instantiation
Policy").

Use Clone Method Specifies whether or not to call the clone method of the object.
Select a method from the list.

Configuring Change Policy

119-78 Developer's Guide for Oracle TopLink

119.29.2 How to Configure Copy Policy Using Java
Use one of the following ClassDescriptor methods to set the appropriate type of
copy policy:

■ useCloneCopyPolicy(): the object must provide a clone method

■ useCloneCopyPolicy(java.lang.String cloneMethodName)

■ useInstantiationCopyPolicy()

119.30 Configuring Change Policy
Use a change policy to specify how TopLink should track changes made to objects
after you register them with a unit of work. Table 119–34 summarizes which
descriptors support a change policy.

By default, TopLink uses the deferred change detection policy.

For JPA entities or POJO classes that you configure for weaving, TopLink weaves value
holder indirection for one-to-one mappings. If you want TopLink to weave change
tracking and your application includes collection mappings (one-to-many or
many-to-many), then you must configure all collection mappings to use transparent
indirect container indirection only (you may not configure your collection mappings to
use eager loading nor value holder indirection).

Mutable basic mappings affect the overhead of change tracking. TopLink can only
weave an attribute change tracking policy for immutable mappings.

TopLink logs a warning message at the CONFIG log level if you try to weave a
descriptor that does not support change policy.

TopLink supports alternative change policies (policies other than
DeferredChangeDetectionPolicy) for attributes that use a subset of the
mappings that TopLink supports.

For CMP and JPA applications deployed to OC4J TopLink automatically uses the
attribute change tracking policy.

For more information, see the following:

■ Section 113.2.3, "Unit of Work and Change Policy"

■ Section 113.2.3.4, "Change Policy Mapping Support"

■ Section 2.10, "Using Weaving"

Table 119–34 Descriptor Support for Change Policy

Descriptor

Deferred
Change
Detection
Policy

Object-Lev
el Change
Tracking
Policy

Attribute
Change
Tracking
Policy

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
Change
Policy Using
Java

Relational Descriptors1

1 Relational class descriptors only (see Section 22.2.1.1, "Creating Relational Class Descriptors").

Object-Relational Data Type
Descriptors

EIS Descriptors2

2 EIS root descriptors only (see Section 75.2.1.1, "EIS Root Descriptors").

XML Descriptors

Configuring Change Policy

Configuring a Descriptor 119-79

■ "Using EclipseLink JPA Weaving" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#Using_EclipseLink_JPA_Weaving

■ Section 2.4.1.4, "Using Method and Direct Field Access"

■ Section 2.8.11, "Mutability"

119.30.1 How to Configure Change Policy Using Java
This section describes how to configure a descriptor with a change policy using Java,
and how to implement persistent classes for those change policies that are intrusive. It
includes information on configuring the following:

■ Configuring Deferred Change Detection Policy

■ Configuring Object Change Tracking Policy

■ Configuring Attribute Change Tracking Policy

119.30.1.1 Configuring Deferred Change Detection Policy
The DeferredChangeDetectionPolicy provides good unit of work commit
performance for a wide range of object change characteristics. It is the default change
policy. For more information, see Section 113.2.3.1, "Deferred Change Detection
Policy").

Because it is the default, you do not need to explicitly configure this policy.

To configure TopLink to use a DeferredChangeDetectionPolicy, create a
descriptor amendment method (see Section 119.35, "Configuring Amendment
Methods") that sets the change policy, as Example 119–21 illustrates.

119.30.1.2 Configuring Object Change Tracking Policy
The ObjectChangeTrackingPolicy provides improved unit of work commit
performance for objects with few attributes, or with many attributes and many
changed attributes. For more information, see Section 113.2.3.2, "Object-Level Change
Tracking Policy").

For CMP and JPA applications deployed to an application server, for which TopLink
provides CMP integration (see Section 8.1, "Introduction to the Application Server
Support"), when you configure an entity bean’s descriptor with an
ObjectLevelChangeTrackingPolicy, TopLink automatically generates code of a
concrete subclass to implement the TopLink ChangeTracker interface at deploy time.
Configuring an ObjectLevelChangeTrackingPolicy prevents TopLink from
automatically applying an AttributeChangeTrackingPolicy (see
Section 119.30.1.3, "Configuring Attribute Change Tracking Policy").

To configure TopLink to use an ObjectChangeTrackingPolicy, use this
procedure:

1. Create a descriptor amendment method (see Section 119.35, "Configuring
Amendment Methods") that sets the change policy, as Example 119–21 illustrates.

Example 119–21 Setting the ObjectChangeTrackingPolicy

descriptor.setObjectChangePolicy(new ObjectChangeTrackingPolicy());
2. For plain Java objects, code each of your persistent classes to implement the

ChangeTracker interface, as Example 119–22 illustrates.

Configuring Change Policy

119-80 Developer's Guide for Oracle TopLink

Example 119–22 Implementing the ChangeTracker Interface for the
ObjectChangeTrackingPolicy

public class Employee implements ChangeTracker {

PropertyChangeListener listener;
String firstName;

public PropertyChangeListener getTopLinkPropertyChangeListener() {
 return this.listener;
}

public void setTopLinkPropertyChangeListener(PropertyChangeListener listener) {
 this.listener = listener;
}

...
public void setFirstName(String firstName) {
 propertyChange("firstName", getFirstName(), firstName);
 this.firstName = firstName;
}

...
public void propertyChange(String propertyName, Object oldValue, Object newValue) {

if (listener != null) {
if (oldValue != newValue) {

listener.propertyChange(
new PropertyChangeEvent(this, propertyName, oldValue, newValue));

}
}

}
}

119.30.1.3 Configuring Attribute Change Tracking Policy
The AttributeChangeTrackingPolicy provides improved unit of work commit
performance for objects with many attributes and few changed attributes. In general,
this is the most efficient change policy. It is the default change policy for JPA and EJB
2.n CMP applications deployed to OC4J. For more information, see Section 113.2.3.3,
"Attribute Change Tracking Policy").

When you deploy a TopLink-enabled EJB 3.0 persistent application or EJB 2.n CMP
application to OC4J, TopLink automatically configures your persistent classes to use
the AttributeChangeTrackingPolicy and, using bytecode weaving (EJB 3.0) or
code generation (EJB 2.n), configures your persistence classes to implement the
TopLink ChangeTracker interface. In this case, you do not need to explicitly
configure this change policy.

To configure TopLink to use an AttributeChangeTrackingPolicy for plain Java
objects or other application servers, use this procedure:

1. Create a descriptor amendment method (see Section 119.35, "Configuring
Amendment Methods") that sets the change policy as Example 119–23 illustrates.

Example 119–23 Setting the DeferredChangeDetectionPolicy

descriptor.setObjectChangePolicy(new AttributeChangeTrackingPolicy());
2. Code each of your persistent classes to implement the ChangeTracker interface,

as Example 119–24 illustrates.

Note: You cannot use the AttributeChangeTrackingPolicy if
you are using any instance of FieldsLockingPolicy (see
Section 16.4.4, "Optimistic Field Locking Policies").

Configuring a History Policy

Configuring a Descriptor 119-81

Example 119–24 Implementing the ChangeTracker Interface for the
AttributeChangeTrackingPolicy

public class Employee implements ChangeTracker {

PropertyChangeListener listener;
String firstName;

public PropertyChangeListener getTopLinkPropertyChangeListener() {
 return this.listener;
}

public void setTopLinkPropertyChangeListener(PropertyChangeListener listener) {
 this.listener = listener;
}

...
public void setFirstName(String firstName) {
 propertyChange("firstName", getFirstName(), firstName);
 this.firstName = firstName;
}

...
public void propertyChange(String propertyName, Object oldValue, Object newValue) {

if (listener != null) {
if (oldValue != newValue) {

listener.propertyChange(
new PropertyChangeEvent(this, propertyName, oldValue, newValue));

}
}

}
}

119.31 Configuring a History Policy
If you want to use historical sessions (see Section 87.6, "Historical Sessions") to execute
historical queries (see Section 108.11, "Historical Queries") against a historical schema
of your own design, configure your descriptors with a TopLink HistoryPolicy that
describes your historical schema.

If you are using Oracle Database platform for Oracle9i Database (or later), you can
query the historical versions of objects automatically maintained by Oracle Database
without the need for a history policy. For more information, see Section 93.1.1, "How to
Configure Historical Sessions Using an Oracle Platform".

Table 119–35 summarizes which descriptors support history policy configuration.

There are many ways to configure a historical database schema. TopLink supports
several historical schema configurations that you can describe with a
HistoryPolicy (see Section 87.6.1, "Historical Session Limitations").

Table 119–35 Descriptor Support for History Policy Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to Configure a
History Policy Using
Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Configuring a History Policy

119-82 Developer's Guide for Oracle TopLink

Example Historical Schema
As shown in Table 119–36 and Table 119–37, a common approach is to define a special
history table to store past versions of an object: one history table for each regular table
that requires historical persistence. The history table typically has the same fields as
the corresponding regular table plus fields (such as row start and end) used to define
an interval that represents the life time of a particular version.

TopLink will include the history tables described by a HistoryPolicy when you
execute a historical query.

Table 119–36 shows the schema for an EMPLOYEE table. The table currently contains
one EMPLOYEE instance.

Table 119–37 shows one possible history table EMPLOYEE_HIST that stores historical
versions of employees. The table contains the current EMPLOYEE (the version with a
ROW_END value of NULL) and one historical version.

Because every record has a start and end interval, the history table can store multiple
versions of the same object (with the same primary key). The unique identifier of a
particular version is given by the existing primary key, plus the value of the start field.
For example, in Table 119–37, the unique identifier of the current version is given by
(EMP_ID, START) = (1, 31/08/2004).

119.31.1 How to Configure a History Policy Using Java
Example 119–25 shows how to describe the schema shown in Table 119–36 and
Table 119–37 using the TopLink HistoryPolicy:

Example 119–25 HistoryPolicy for One Table

HistoryPolicy policy = new HistoryPolicy();
policy.addStartFieldName("ROW_START");
policy.addEndFieldName("ROW_END");
policy.addHistoryTableName("EMPLOYEE", "EMPLOYEE_HIST");
// Assuming database triggers or stored procedures update history tables
policy.setShouldHandleWrites(false);

employeeDescriptor.setHistoryPolicy(policy);
You can specify more than one table with a HistoryPolicy as shown in
Example 119–26. In this example, all history tables have a start field named ROW_
START but the EMPLOYEE_HIST and SALARY_HIST tables have different end fields.

Note: TopLink assumes that the current version of an object
corresponds to the historical table row whose row end field is NULL.

Table 119–36 Example Table for EMPLOYEE

EMP_ID F_NAME L_NAME SALARY

1 Jane Doe 55000

Table 119–37 Example History Table EMPLOYEE_HIST

EMP_ID F_NAME L_NAME SALARY ROW_START ROW_END

1 Jane Doe 50000 29/08/2004 31/08/2004

1 Jane Doe 55000 31/08/2004 NULL

Configuring Wrapper Policy

Configuring a Descriptor 119-83

To avoid ambiguity, the end field names are prefixed with their respective history table
names.

Example 119–26 HistoryPolicy for Multiple Tables

HistoryPolicy policy = new HistoryPolicy();
policy.addStartFieldName("ROW_START");
policy.addEndFieldName("EMPLOYEE_HIST.ROW_END");
policy.addEndFieldName("SALARY_HIST.VALID_UNTIL");
policy.addHistoryTableName("EMPLOYEE", "EMPLOYEE_HIST");
policy.addHistoryTableName("SALARY", "SALARY_HIST");
// Assuming database triggers or stored procedures update history tables
policy.setShouldHandleWrites(false);

employeeDescriptor.setHistoryPolicy(policy);

119.31.1.1 Configuring Write Responsibility
Use HistoryPolicy method setShouldHandleWrites to specify whether or not
TopLink is responsible for writing data to history tables. By default,
setShouldHandleWrites is set to true.

Either the database or TopLink can be responsible for writing data to the history tables.

You can configure the database to write data to history tables by way of triggers or
stored procedures that customize create, insert, and delete operations to modify both
the regular table and the history table appropriately.

119.32 Configuring Wrapper Policy
TopLink lets you use wrappers (or proxies) in cases where the persistent class is not
the same class that is to be presented to users.

For example, in the EJB specification prior to 3.0, the entity bean class (the class that
implements javax.ejb.EntityBean) is persistent, but is hidden from users who
interact with a class that implements javax.ejb.EJBObject (local or remote
interface class). In this example, the EJBObject acts as a proxy (or wrapper) for the
EntityBean.

In cases where such a wrapper is used, TopLink continues to make the class specified
in the descriptor persistent, but returns the appropriate instance of the wrapper
whenever a persistent object is requested.

Table 119–38 summarizes which descriptors support a wrapper policy.

Table 119–38 Descriptor Support for Wrapper Policy

Descriptor

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to Configure
Wrapper Policy
Using Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Configuring Fetch Groups

119-84 Developer's Guide for Oracle TopLink

Use a wrapper policy to tell TopLink how to create wrappers for a particular persistent
class, and how to obtain the underlying persistent object from a given wrapper
instance.

If you specify a wrapper policy, TopLink uses the policy to wrap and unwrap persistent
objects as required:

■ Wrapper policies implement the interface
oracle.toplink.descriptors.WrapperPolicy.

■ A wrapper policy is specified by setting the wrapper policy for the TopLink
descriptor.

■ By default, no wrapper policy is used (the wrapper policy for a descriptor is null
by default).

For CMP descriptors, the EJB wrapper policy is automatically configured during
deployment, so does not need to be set in the descriptor (see Section 119.18,
"Configuring a Descriptor with EJB CMP and BMP Information").

For BMP descriptors, you must set a BMPWrapperPolicy on the descriptor. The
BMPWrapperPolicy includes the bean's information including the bean-name,
primary-key-class, home-interface, and remote-interface.

Wrapper policies cannot be set using Oracle JDeveloper or TopLink Workbench and
can be set only using Java code (see Section 119.32.1, "How to Configure Wrapper
Policy Using Java").

119.32.1 How to Configure Wrapper Policy Using Java
Use the ClassDescriptor method setWrapperPolicy to set the appropriate
instance of WrapperPolicy.

Example 119–27 shows how to amend a BMP descriptor with the required BMP
information.

Example 119–27 Configuring a BMP Wrapper Policy

public static void addToDescriptor(ClassDescriptor descriptor) {
BMPWrapperPolicy policy = new BMPWrapperPolicy(

"employee",
EmployeeHome.class,
EmployeePK.class,
Employee.class,
new Hashtable());

descriptor.setWrapperPolicy(policy);

119.33 Configuring Fetch Groups
By default, when you execute an object-level read query for a particular object class,
TopLink returns all the persistent attributes mapped in the object’s descriptor. With
this single query, all the object’s persistent attributes are defined, and calling their get
methods returns the value directly from the object.

Note: Wrapper policies are advanced TopLink options. Using a
wrapper policy may not be compatible with some TopLink
Workbench features.

Configuring Fetch Groups

Configuring a Descriptor 119-85

When you are interested in only some of the attributes of an object, it may be more
efficient to return only a subset of the object’s attributes using a fetch group.

Using a fetch group, you can define a subset of an object’s attributes and associate the
fetch group with either a ReadObjectQuery or ReadAllQuery query. When you
execute the query, TopLink retrieves only the attributes in the fetch group. TopLink
automatically executes a query to fetch all the attributes excluded from this subset
when and if you call a get method on any one of the excluded attributes.

You can define more than one fetch group for a class. You can optionally designate at
most one such fetch group as the default fetch group. If you execute either a
ReadObjectQuery or ReadAllQuery query without specifying a fetch group,
TopLink will use the default fetch group, unless you configure the query otherwise
(see Section 111.3.1, "How to Configure Default Fetch Group Behavior").

You can use fetch groups in CMP or JPA projects for EJB objects, as well as for POJO
classes.

Before using fetch groups, Oracle recommends that you perform a careful analysis of
system use. In many cases, the extra queries required to load attributes not in the fetch
group could well offset the gain from the partial attribute loading. For more
information about optimizing read performance, see Section 12.12.9, "Read
Optimization Examples".

Table 119–39 summarizes which descriptors support fetch group configuration.

For JPA entities or POJO classes that you configure for weaving, TopLink uses fetch
groups to improve performance.

This section describes how to create a fetch group, store it in a descriptor, and
optionally designate a fetch group as the default fetch group for its descriptor
reference class.

For more information, see the following:

■ Section 16.2.4, "Fetch Groups"

■ Section 108.7.1.6, "Fetch Groups and Object-Level Read Queries"

■ Section 111.3.1, "How to Configure Default Fetch Group Behavior"

■ Section 2.10, "Using Weaving"

■ "Using EclipseLink JPA Weaving" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#Using_EclipseLink_JPA_Weaving

Table 119–39 Descriptor Support for Fetch Group Configuration

Descriptor

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to Configure
Fetch Groups Using
Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Configuring a Descriptor Customizer Class

119-86 Developer's Guide for Oracle TopLink

119.33.1 How to Configure Fetch Groups Using Java
To configure a fetch group, use a descriptor amendment method (see Section 119.35,
"Configuring Amendment Methods") as Example 119–28 shows.

Example 119–28 Configuring a Fetch Group

//Create a FetchGroupManager for the descriptor
descriptor.setFetchGroupManager(new FetchGroupManager());
// Create a FetchGroup
FetchGroup group = new FetchGroup("nameOnly");
// Add attributes to FetchGroup. Alternatively, use
// FetchGroup method addAttributes, passing in a Set of String attribute names
group.addAttribute("firstName");
group.addAttribute("lastName");
// Add the FetchGroup to the FetchGroupManager
descriptor.getFetchGroupManager().addFetchGroup(group);
//Set the default fetch group
descriptor.getFetchGroupManager().setDefaultFetchGroup(group);
Each instance of FetchGroup that you store in a descriptor must be configured with a
fetch group name that is unique for that descriptor (that is, each descriptor owns a set
of named fetch groups).

When configuring fetch groups, note that the primary key fields and other required
fields (such as inheritance type and optimistic lock version) are always included in all
fetch groups.

Fetch groups can include direct and relationship attributes. Including a relationship
attribute in a fetch group does not cause the relationship to be joined or instantiated:
joining and indirection are set independently of fetch groups.

After you add a fetch group to a descriptor, you can configure a ReadObjectQuery
or ReadAllQuery query with this fetch group by name (nameOnly) or rely on
TopLink to use this fetch group by default. For more information, see Section 111.3,
"Using Queries with Fetch Groups".

119.34 Configuring a Descriptor Customizer Class
A descriptor customizer class is a Java class that implements the
oracle.toplink.tools.sessionconfiguration.DescriptorCustomizer
interface and provides a default (zero-argument) constructor. You can use a descriptor
customizer to customize a descriptor at run time on a loaded session before login
occurs, similar to how you can use an amendment method (see Section 119.35,
"Configuring Amendment Methods").

Table 119–40 summarizes which sessions support customizer class configuration.

Table 119–40 Descriptor Support for Customizer Class Configuration

Descriptor
How to Use Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
Customizer
Class Using
Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

Configuring Amendment Methods

Configuring a Descriptor 119-87

For more information, see Section 16.2.6, "Descriptor Customization".

119.34.1 How to Configure Customizer Class Using Java
When using Java, create a customize class that implements the
oracle.toplink.tools.sessionconfiguration.DescriptorCustomizer
interface. Example 119–29 illustrates the creation of a descriptor customizer.

Example 119–29 Creating a SessionCustomizer Class

import oracle.toplink.tools.sessionconfiguration.DescriptorCustomizer;
import oracle.toplink.descriptors.ClassDescriptor;

public class EmployeeDescriptorCustomizer implements DescriptorCustomizer {

public void customize(ClassDescriptor descriptor) {
descriptor.setReadOnly();

}
}

119.35 Configuring Amendment Methods
Some TopLink descriptor features cannot be configured from Oracle JDeveloper or
TopLink Workbench. To use these features, you must write a Java method to amend
the descriptor after it is loaded as part of the project. This method must have the
following characteristics:

■ Be public static.

■ Take a single parameter of type
oracle.toplink.descriptors.ClassDescriptor.

In the implementation of this method, you can configure advanced features of the
descriptor using any of the public descriptor and mapping API.

Table 119–41 summarizes which descriptors support amendment methods.

XML Descriptors

Table 119–41 Descriptor Support for Amendment Methods

Descriptor

How to Use
Oracle
JDeveloper

How to Configure
Amendment Methods
Using TopLink
Workbench

How to
Use Java

Relational Descriptors

Object-Relational Data Type
Descriptors

EIS Descriptors

XML Descriptors

Table 119–40 (Cont.) Descriptor Support for Customizer Class Configuration

Descriptor
How to Use Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
Customizer
Class Using
Java

Configuring Amendment Methods

119-88 Developer's Guide for Oracle TopLink

This section describes how to associate an amendment method with a descriptor.

For more information about how to implement an amendment method, see
Section 16.2.7, "Amendment and After-Load Methods".

Alternatively, you can use a descriptor customizer class (see Section 119.34,
"Configuring a Descriptor Customizer Class"

To customize a session, use a session customizer class (see Section 89.8, "Configuring a
Session Customizer Class").

119.35.1 How to Configure Amendment Methods Using TopLink Workbench
To use an amendment method with a descriptor (after it is loaded as part of the
project) use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

If the After load advanced property is not visible for the descriptor, right-click the
descriptor and choose Select Advanced Properties > After Load from context
menu or from the Selected menu.

2. Click the After Load tab in the Editor.

Figure 119–42 After Load Tab

Field Description

Class Click Browse and choose the class of the method to execute.

Static Method Use the Static Method list to choose the static method to execute at
run time, after loading the descriptor. The method must be public
static and take a single attribute of type
oracle.toplink.descriptors.ClassDescriptor.

Part XXVIII
Part XXVIII Creation and Configuration of Mappings

This part describes general mapping information. It contains the following chapters:

■ Chapter 120, "Creating a Mapping"

This chapter contains procedures for creating TopLink mappings.

■ Chapter 121, "Configuring a Mapping"

This chapter explains how to configure TopLink mapping options common to two
or more mapping types.

120

Creating a Mapping 120-1

120Creating a Mapping

This chapter describes how to create TopLink mappings.

This chapter includes the following sections:

■ Introduction to Mapping Creation

■ Creating Mappings Manually During Development

■ Creating Mappings Automatically During Development

■ Creating Mappings Automatically During Deployment

■ Creating Mappings to Oracle LOB Database Objects

■ Removing Mappings

120.1 Introduction to Mapping Creation
You can create a database mapping using Oracle JDeveloper, TopLink Workbench, or
Java code. Oracle recommends using either Oracle JDeveloper or TopLink Workbench
to create and manage your mappings.

For more information on creating mappings in Java, see Oracle Fusion Middleware
Java API Reference for Oracle TopLink

For complete information on the various types of mapping that TopLink supports, see
Section 17.1, "Mapping Types".

During development, you can create mappings individually (see Section 120.2,
"Creating Mappings Manually During Development") or you can allow TopLink
Workbench to automatically map all attributes (see Section 120.3, "Creating Mappings
Automatically During Development").

For CMP projects using OC4J, you can also configure TopLink to create mappings
automatically at deployment time (see Section 120.4, "Creating Mappings
Automatically During Deployment").

For JPA projects, you can create mappings using JPA annotations (see "Using Metadata
Annotations" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Introduction_to_EclipseLink_JPA_
%28ELUG%29#Using_Metadata_Annotations). JPA lets you create mappings
automatically at run time.

After you create a mapping, you must configure its various options (see Chapter 121,
"Configuring a Mapping").

Creating Mappings Manually During Development

120-2 Developer's Guide for Oracle TopLink

120.2 Creating Mappings Manually During Development
You can manually create a mapping from each persistent field of a class to a data
source using Oracle JDeveloper, TopLink Workbench, or Java code. Oracle
recommends that you use Oracle JDeveloper or TopLink Workbench.

120.2.1 How to Create Mappings Manually During Development Using TopLink
Workbench

To manually create a mapping using TopLink Workbench, use this procedure:

1. Select a descriptor in the Navigator. Its properties appear in the Editor.

2. On the Descriptor Info tab, associate the descriptor with its data source:

a. For a relational project, in the Editor, select the table for this descriptor from
the Associated Table menu.

The TopLink Workbench populates this menu with tables from the database
login you associated with your project. For more information, see Section 20.4,
"Configuring Login Information at the Project Level".

b. For an XML project, in the Editor, select the appropriate schema context for
this descriptor by clicking on the Browse button next to the Schema Context
field.

The TopLink Workbench displays the schema context from the XML schema
you associated with your project. For more information, see Section 5.6, "Using
XML Schemas".

3. In the Navigator, expand the descriptor to display its attributes.

4. Select an attribute and do one of the following:

a. Click the appropriate mapping on the toolbar (see Section 5.3.2.2, "Using
Context Toolbar").

b. Right-click the attribute and select Map As > to choose a specific mapping
type from the context menu (see Section 5.3.1.2, "Using Context Menus").

Continue with Chapter 121, "Configuring a Mapping" to complete the mapping.

120.2.2 How to Create Mappings During Development Using Java
You create mappings using the constructor of the particular mapping type, as the
following examples show:

Example 120–1 Creating Relational One-to-One Mapping

oracle.toplink.mappings.OneToOneMapping oom = new OneToOneMapping();

Example 120–2 Creating Relational Direct Collection Mapping

oracle.toplink.mappings.DirectCollectionMapping dcm =
new DirectCollectionMapping();

Example 120–3 Creating Object-Relational Data Type Structure Mapping

oracle.toplink.objectrelational.StructureMapping sm = new StructureMapping();

Example 120–4 Creating Object-Relational Data Type Array Mapping

oracle.toplink.objectrelational.ArrayMapping am = new ArrayMapping();

Creating Mappings to Oracle LOB Database Objects

Creating a Mapping 120-3

120.3 Creating Mappings Automatically During Development
For relational database projects, Oracle JDeveloper and TopLink Workbench can
automatically map class attributes to a similarly named database field. For example,
these tools can map the attribute province to the database field PROV, the attribute
street to the field ST, and the attribute postalCode to the field POSTAL_CODE.

The Automap function creates mappings only for unmapped attributes–it does not
change previously defined mappings.

You can automatically map classes for an entire project or for specific classes or
descriptors.

120.3.1 How to Create Mappings Automatically During Development Using TopLink
Workbench

To automatically map all the descriptors in a project, right-click the project icon in the
Navigator window and choose Automap from the context menu or choose Selected >
Automap from the menu.

To automatically map a specific descriptor or attribute, choose the descriptor or
attributes and right-click, and then select Automap from the context menu or choose
Selected > Automap from the menu.

120.4 Creating Mappings Automatically During Deployment
If you create a project from an OC4J EJB CMP EAR at deployment time, you can take
advantage of the TopLink default mapping feature to automatically create mappings at
deployment time.

For more information, see the following:

■ Section 19.5, "Creating a Project from an OC4J EJB CMP EAR at Deployment Time"

■ Section 17.2.3.4, "Default Mapping in EJB 2.n CMP Projects Using OC4J at Run
Time"

120.5 Creating Mappings to Oracle LOB Database Objects
In Oracle Database, large amounts of binary or character data is stored as a BLOB
(binary large object) or CLOB (character large object), respectively. Depending on the
size of the LOB value and your Oracle Database version, the value may be stored either
inside or outside of the table, as follows:

■ With Oracle8i Database Release 1.6 and earlier, LOB values less than 4K are stored
inline; values more than 4K are stored outside the table.

■ With Oracle8i Database Release 1.7 and later, LOB values less than 5.9K are stored
inline; values more than 5.9K are stored outside the table.

A client application (such as Oracle TopLink) must use a LOB locator to write a LOB
value, if the value is stored outside of the database. The Oracle JDBC OCI driver and

Note: Associating a descriptor with a database table (see
Section 23.2, "Configuring Associated Tables") before using the
Automap function can aid the automapper if it cannot guess the
correct table for a class.

Creating Mappings to Oracle LOB Database Objects

120-4 Developer's Guide for Oracle TopLink

server driver handle these LOB (large object) values differently than the Oracle JDBC
thin driver.

120.5.1 How to Create Mappings to Oracle LOB Database Objects Using the Oracle
JDBC Thin Driver

When using the Oracle JDBC thin driver, TopLink is responsible for acquiring the LOB
locator before writing the value. You can use a type conversion mapping (see
Section 121.10, "Configuring a Type Conversion Converter") to retrieve the locator
during a commit operation.

Use this procedure to map LOB values using the Oracle JDBC thin driver:

1. Use a type conversion mapping to map the attributes of a TopLink descriptor to a
LOB value. Figure 120–1 shows a type conversion mapping to a BLOB value in
TopLink Workbench. Example 120–5 shows the Java code for the same mapping.

Figure 120–1 Mapping a BLOB in TopLink Workbench

Example 120–5 Mapping a BLOB in Java Code

TypeConversionMapping pictureMapping = new TypeConversionMapping();
pictureMapping.set.AttributeName("picture");
pictureMapping.setFieldName("IMAGE.PICTURE");
pictureMapping.setFieldClassification(java.sql.Blob.class);
descriptor.addMapping(pictureMapping);
2. Acquire the DatabaseLogin from the session.

DatabaseLogin login = session.getLogin();
3. Configure a platform that provides locator support, as follows:

■ For Oracle8i Database, use the
oracle.toplink.platform.database.oracle.Oracle8Platform
class:

login.usePlatform(new Oracle8Platform());
■ For Oracle9i Database, use the

oracle.toplink.platform.database.oracle.Oracle9Platform
class:

login.usePlatform(new Oracle9Platform());

Removing Mappings

Creating a Mapping 120-5

■ Oracle Database 10g, use the
oracle.toplink.platform.database.oracle.Oracle10Platform
class:

login.usePlatform(new Oracle10Platform());
■ Oracle Database 11g, use the

oracle.toplink.platform.database.oracle.Oracle11Platform
class:

login.usePlatform(new Oracle10Platform());
In TopLink Workbench, select the appropriate platform in the Database editor.

Figure 120–2 Selecting Database Platform in TopLink Workbench

120.6 Removing Mappings
If you are using Oracle JDeveloper or TopLink Workbench, you can unmap any
mapped attribute.

120.6.1 How to Remove Mappings Using TopLink Workbench
To unmap an attribute (that is, remove its mapping), use this procedure:

Select the attribute in the Navigator window and click Unmap. You can also unmap
the attribute by right-clicking the attribute and selecting Map As > Unmapped from
the context menu.

To unmap all the attributes in a descriptor or Java package, use this procedure:

Right-click the descriptor or Java package in the Navigator window and select
Unmap > Unmap Selected Descriptor or Unmap All Descriptors in Package from the
context menu.

120.6.2 How to Remove Mappings Using Java
Use the ClassDescriptor method removeMappingForAttributeName to
unmap an attribute.

Removing Mappings

120-6 Developer's Guide for Oracle TopLink

121

Configuring a Mapping 121-1

121Configuring a Mapping

This chapter describes how to configure TopLink mapping options common to two or
more mapping types.

This chapter includes the following sections:

■ Configuring Common Mapping Options

■ Configuring Read-Only Mappings

■ Configuring Indirection (Lazy Loading)

■ Configuring XPath

■ Configuring a Default Null Value at the Mapping Level

■ Configuring Method or Direct Field Accessing at the Mapping Level

■ Configuring Private or Independent Relationships

■ Configuring Mapping Comments

■ Configuring a Serialized Object Converter

■ Configuring a Type Conversion Converter

■ Configuring an Object Type Converter

■ Configuring a Simple Type Translator

■ Configuring a JAXB Typesafe Enumeration Converter

■ Configuring Container Policy

■ Configuring Attribute Transformer

■ Configuring Field Transformer Associations

■ Configuring Mutable Mappings

■ Configuring Bidirectional Relationship

■ Configuring the Use of a Single Node

■ Configuring the Use of CDATA

Table 121–1 lists the types of TopLink mappings that you can configure and provides a
cross-reference to the type-specific chapter that lists the configurable options
supported by that type.

Table 121–1 Configuring TopLink Mappings

If you are creating... See...

Relational Mappings Chapter 28, "Configuring a Relational Mapping"

Configuring Common Mapping Options

121-2 Developer's Guide for Oracle TopLink

Table 121–2 lists the configurable options shared by two or more TopLink mapping
types.

For more information, see the following:

■ Section 120.1, "Introduction to Mapping Creation"

■ Chapter 17, "Introduction to Mappings"

121.1 Configuring Common Mapping Options
Table 121–2 lists the configurable options shared by two or more TopLink mapping
types. In addition to the configurable options described here, you must also configure
the options described for the specific mapping types (see Section 17.1, "Mapping
Types"), as shown in Table 121–1

Object-Relational Data Type
Mappings

Chapter 41, "Configuring an Object-Relational Data Type Mapping"

EIS Mappings Chapter 78, "Configuring an EIS Mapping"

XML Mappings Chapter 54, "Configuring an XML Mapping"

Table 121–2 Common Mapping Options

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Read-only (see Section 121.2, "Configuring Read-Only
Mappings")

Indirection (lazy loading) (see Section 121.3, "Configuring
Indirection (Lazy Loading)")

XPath (see Section 121.4, "Configuring XPath")

Default null value (see Section 121.5, "Configuring a Default
Null Value at the Mapping Level")

Method or direct field access (see Section 121.6,
"Configuring Method or Direct Field Accessing at the
Mapping Level")

Private or independent relationships (see Section 121.7,
"Configuring Private or Independent Relationships")

Comments (see Section 121.8, "Configuring Mapping
Comments")

Serialized object converter (see Section 121.9, "Configuring a
Serialized Object Converter")

Serialized type conversion converter (see Section 121.10,
"Configuring a Type Conversion Converter")

Object type converter (see Section 121.11, "Configuring an
Object Type Converter")

Simple type translator (see Section 121.12, "Configuring a
Simple Type Translator")

JAXB typesafe enumeration converter (see Section 121.13,
"Configuring a JAXB Typesafe Enumeration Converter")

Container policy (see Section 121.14, "Configuring Container
Policy")

Attribute transformer (see Section 121.15, "Configuring
Attribute Transformer")

Table 121–1 (Cont.) Configuring TopLink Mappings

If you are creating... See...

Configuring Read-Only Mappings

Configuring a Mapping 121-3

121.2 Configuring Read-Only Mappings
Mappings that are read-only will not be affected during insert, update, and delete
operations.

Use read-only mappings when multiple attributes in an object map to the same fields
in the database but only one of the mappings can write to the field.

You can also use read-only mappings with bi-directional many-to-many mappings to
designate which mapping will be responsible for updating the many-to-many join
table.

Mappings defined for the write-lock or class indicator field must be read-only, unless
the write-lock is configured not to be stored in the cache or the class indicator is part of
the primary key.

Use read-only mappings only if specific mappings in a descriptor are read-only. If the
entire descriptor is read-only, use the descriptor-level setting (see Section 119.3,
"Configuring Read-Only Descriptors").

Table 121–3 summarizes which mappings support this option.

Field transformer associations (see Section 121.16,
"Configuring Field Transformer Associations")

Mutable mappings (see Section 121.17, "Configuring
Mutable Mappings")

Bidirectional relationship (see Section 121.18, "Configuring
Bidirectional Relationship")

Use of a single node (see Section 121.19, "Configuring the
Use of a Single Node")

Use of CDATA (see Section 121.20, "Configuring the Use of
CDATA")

Note: The primary key mappings cannot not be read-only.

Note: Even though read-only mappings are not written to the
database, they are merged into the TopLink cache.

Table 121–3 Mapping Support for Read-Only

Mapping

How to Use
Oracle
JDeveloper

How to Configure
Read-Only
Mappings Using
TopLink
Workbench

How to
Configure
Read-Only
Mappings
Using Java

Relational Mappings

Object-Relational Data Type
Mappings

EIS Mappings

XML Mappings

Table 121–2 (Cont.) Common Mapping Options

Option to Configure
Oracle
JDeveloper

TopLink
Workbench Java

Configuring Indirection (Lazy Loading)

121-4 Developer's Guide for Oracle TopLink

121.2.1 How to Configure Read-Only Mappings Using TopLink Workbench
To specify a mapping as read-only, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 121–1 General Tab, Read-Only Option

Select the Read-Only option to set the mapping to be read-only and not affected
during update and delete operations.

121.2.2 How to Configure Read-Only Mappings Using Java
Use the following DatabaseMapping methods to configure the read access of a
mapping:

■ readOnly–configures mapping read access to read-only;

■ readWrite–configures mapping read access to read and write (default).

Example 121–1 shows how to use these methods with a class that has a read-only
attribute named phones.

Example 121–1 Configuring Read Only Mappings in Java

// Map the phones attribute
phonesMapping.setAttributeName("phones");

// Specify read-only
phonesMapping.readOnly();

121.3 Configuring Indirection (Lazy Loading)
If indirection is not enabled, when TopLink retrieves a persistent object, it retrieves all
of the dependent objects to which it refers. When you enable indirection (lazy loading)
for an attribute mapped with a relationship mapping, TopLink uses an indirection
object as a placeholder for the referenced object: TopLink defers reading the dependent
object until you access that specific attribute. This can result in a significant
performance improvement, especially if the application is interested only in the
contents of the retrieved object rather than the objects to which it refers.

Configuring Indirection (Lazy Loading)

Configuring a Mapping 121-5

Oracle strongly recommends using indirection for all relationship mappings. Not only
does this allow you to optimize data source access, but it also allows TopLink to
optimize the unit of work processing, cache access, and concurrency.

Table 121–4 summarizes which mappings support this option.

In general, Oracle recommends that you use value holder indirection for one-to-one
mappings and transparent indirect container indirection for collection mappings.
Enable indirection for transformation mappings if the execution of the transformation
is a resource-intensive task (such as accessing a database, in a relational project).

When using indirection with EJB, the version of EJB and application server you use
affects how indirection is configured and what types of indirection are applicable.

When using indirection with an object that your application serializes, you must
consider the effect of any untriggered indirection objects at deserialization time.

For JPA entities or POJO classes that you configure for weaving, TopLink weaves value
holder indirection for one-to-one mappings. If you want TopLink to weave change
tracking and your application includes collection mappings (one-to-many or
many-to-many), then you must configure all collection mappings to use transparent
indirect container indirection only (you may not configure your collection mappings to
use eager loading nor value holder indirection).

For more information, see the following:

■ Section 17.2.4, "Indirection (Lazy Loading)"

Table 121–4 Mapping Support for Indirection

Mapping

Value
Holder
Indirection

Transparent
Indirect
Container
Indirection

Proxy
Indirection

How to USe
Oracle
JDeveloper

How to
Configure
Indirection
Using
TopLink
Workbench

How to
Configure
Indirection
Using
Java

Relational Mappings

Direct-to-Field Mapping

Transformation Mapping

One-to-One Mapping

Variable One-to-One Mapping

One-to-Many Mapping

Many-to-Many Mapping

Aggregate Collection Mapping

Direct Collection Mapping

Direct Map Mapping

Object-Relational Data Type Mappings

Object-Relational Data Type Reference
Mapping

Object-Relational Data Type Nested Table
Mapping

EIS Mappings

EIS One-to-One Mapping

EIS One-to-Many Mapping

XML Mappings

XML Transformation Mapping

Configuring Indirection (Lazy Loading)

121-6 Developer's Guide for Oracle TopLink

■ Section 17.2.4.1, "Value Holder Indirection"

■ Section 17.2.4.2, "Transparent Indirect Container Indirection"

■ Section 17.2.4.6, "Indirection and EJB 2.n CMP"

■ Section 17.2.4.7, "Indirection, Serialization, and Detachment"

■ Section 2.10, "Using Weaving"

■ "Using EclipseLink JPA Weaving" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#Using_EclipseLink_JPA_Weaving

121.3.1 How to Configure Indirection Using TopLink Workbench
To complete the indirection options on a mapping’s General tab use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 121–2 General Tab, Indirection Options

Use the following information to complete the Indirection fields on the tab:

Field Description

Use Indirection Specify if this mapping uses indirection.

ValueHolder Specify that the mapping uses Value Holder indirection. See
Section 17.2.4.1, "Value Holder Indirection" for more
information.

Proxy Specify that the mapping uses Proxy indirection. See
Section 17.2.4.3, "Proxy Indirection" for more information.

Configuring Indirection (Lazy Loading)

Configuring a Mapping 121-7

121.3.2 How to Configure Indirection Using Java
When creating mappings through the Java API, all foreign reference mappings default
to using value-holder indirection and all transformation mappings default to not using
indirection.

To disable indirection use ForeignReferenceMapping method
dontUseIndirection.

To enable value holder indirection, use ForeignReferenceMapping method
useBasicIndirection.

To enable transparent container indirection, use one of the following
CollectionMapping methods:

■ useTransparentCollection

■ useTransparentList

■ useTransparentMap

■ useTransparentSet

To enable proxy indirection, use ObjectReferenceMapping method
useProxyIndirection.

This section provides additional information on the following:

■ Configuring Value Holder Indirection

■ Configuring Value Holder Indirection with Method Accessing

■ Configuring Value Holder Indirection with JPA

■ Configuring IndirectContainer Indirection

■ Configuring Proxy Indirection

121.3.2.1 Configuring Value Holder Indirection
Instances of oracle.toplink.mappings.ForeignReferenceMapping and
oracle.toplink.mappings.foundation.AbstractTransformationMapping
provide the useBasicIndirection method to configure a mapping to an attribute
that you code with an oracle.toplink.indirection.ValueHolderInterface
between it and the real object.

If the attribute is of a Collection type (such as a Vector), then you can either use
an IndirectContainer (see Section 121.3.2.4, "Configuring IndirectContainer
Indirection") or define the ValueHolder in the constructor as follows:

addresses = new ValueHolder(new Vector());

Example 121–2 illustrates the Employee class using ValueHolder indirection. The
class definition conceals the use of ValueHolder within the existing getter and setter
methods.

Example 121–2 Class Using ValueHolder Indirection

public class Employee {

protected ValueHolderInterface address;

// Initialize ValueHolders in constructor
public Employee() {

address = new ValueHolder();
}

Configuring Indirection (Lazy Loading)

121-8 Developer's Guide for Oracle TopLink

public Address getAddress() {
return (Address) this.addressHolder.getValue();

}

public void setAddress(Address address) {
this.addressHolder.setValue(address);

}
}

Example 121–3 shows how to configure a one-to-one mapping to the address
attribute.

Example 121–3 Mapping Using ValueHolder Indirection

OneToOneMapping mapping = new OneToOneMapping();
mapping.useBasicIndirection();
mapping.setReferenceClass(Employee.class);
mapping.setAttributeName("address");
The application uses Employee methods getAddress and setAddress to access the
Address object. Because basic indirection is enabled, TopLink expects the persistent
fields to be of type ValueHolderInterface.

121.3.2.2 Configuring Value Holder Indirection with Method Accessing
If you are using ValueHolder indirection with method accessing (see Section 121.6,
"Configuring Method or Direct Field Accessing at the Mapping Level"), in addition to
changing your attributes types in your Java code to ValueHolderInterface, you
must also provide TopLink with two pairs of getter and setter methods:

■ getter and setter of the indirection object that are registered with the mapping and
used only by TopLink. They include a get method that returns an instance that
conforms to ValueHolderInterface, and a set method that accepts one
argument that conforms to the same interface;

■ getter and setter of the actual attribute value used by the application.

Example 121–4 illustrates the Employee class using ValueHolder indirection with
method access. The class definition is modified so that the address attribute of
Employee is a ValueHolderInterface instead of an Address, and appropriate
getter and setter methods are supplied.

Example 121–4 Class Using ValueHolder Indirection with Method Accessing

public class Employee {

protected ValueHolderInterface address;

// Initialize ValueHolders in constructor
public Employee() {

address = new ValueHolder();
}

// getter and setter registered with the mapping and used only by TopLink
public ValueHolderInterface getAddressHolder() {

return address;
}
public void setAddressHolder(ValueHolderInterface holder) {

address = holder;
}

// getter and setter methods used by the application to access the attribute
public Address getAddress() {

return (Address) address.getValue();

Configuring Indirection (Lazy Loading)

Configuring a Mapping 121-9

}

public void setAddress(Address theAddress) {
address.setValue(theAddress);

}
}

Example 121–5 shows how to configure a one-to-one mapping to the address
attribute.

Example 121–5 Mapping Using ValueHolder Indirection with Method Accessing

OneToOneMapping mapping = new OneToOneMapping();
mapping.useBasicIndirection();
mapping.setReferenceClass(Employee.class);
mapping.setAttributeName("address");
mapping.setGetMethodName("getAddressHolder");
mapping.setSetMethodName("setAddressHolder");
The application uses Employee methods getAddress and setAddress to access the
Address object. Because basic indirection is enabled, TopLink uses Employee
methods getAddressHolder and setAddressHolder methods when performing
persistence operations on instances of Employee.

121.3.2.3 Configuring Value Holder Indirection with JPA
When using indirection with JPA, if your application serializes any indirection-enabled
(lazily loaded) entity (see Section 17.2.4.7, "Indirection, Serialization, and
Detachment"), then, to preserve untriggered indirection objects on deserialization,
configure your client to use TopLink agent, as follows:

1. Include the following JAR files (from <TOPLINK_HOME>\jlib) in your client
classpath:

■ toplink.jar

■ <your-application-persistence>.jar

2. Add the following argument to the Java command line you use to start your client:

-javaagent:toplink.jar
You can also use static weaving (see "How to Configure Static Weaving for JPA
Entities" section of EclipseLink Developer’s Guide at
http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
%28ELUG%29#How_to_Configure_Static_Weaving_for_JPA_Entities). This
will provide you with better error messages and will resolve merging issues.

121.3.2.4 Configuring IndirectContainer Indirection
Instances of oracle.toplink.mappings.ForeignReferenceMapping and
oracle.toplink.mappings.foundation.AbstractTransformationMapping
provide the useContainerIndirection method to configure a mapping to an
attribute that you code with an
oracle.toplink.indirection.IndirectContainer between it and the real
object.

Using an IndirectContainer, a java.util.Collection class can act as a
TopLink indirection object: the Collection will only read its contents from the
database when necessary (typically, when a Collection accessor is invoked).

Note: The use of static weaving will not affect serialization as it
functions without static weaving enabled.

Configuring Indirection (Lazy Loading)

121-10 Developer's Guide for Oracle TopLink

Without an IndirectContainer, all members of the Collection must be retrieved
when the Collection attribute is accessed.

Example 121–6 illustrates the Employee class using IndirectContainer
indirection with method access. Note that the fact of using indirection is transparent.

Example 121–6 Class Using IndirectContainer Indirection

public class Employee {

protected List addresses;

public Employee() {
this.addresses = new ArrayList();

}

public List getAddresses() {
return this.addresses;

}

public void setAddresses(List addresses) {
this.addresses = addresses;

}
}

Example 121–7 shows how to configure a one-to-one mapping to the addresses
attribute.

Example 121–7 Mapping Using IndirectContainer Indirection

OneToOneMapping mapping = new OneToOneMapping();
mapping.useBasicIndirection();
mapping.setReferenceClass(Employee.class);
mapping.setAttributeName("addresses");
mapping.setGetMethodName("getAddresses");
mapping.setSetMethodName("setAddresses");

121.3.2.5 Configuring Proxy Indirection
Example 121–8 illustrates an Employee to Address one-to-one relationship.

Example 121–8 Classes Using Proxy Indirection

public interface Employee {

public String getName();
public Address getAddress();
public void setName(String value);
public void setAddress(Address value);
. . .

}

public class EmployeeImpl implements Employee {

public String name;
public Address address;
. . .
public Address getAddress() {

return this.address;
}

public void setAddress(Address value) {
this.address = value;

}
}

Configuring XPath

Configuring a Mapping 121-11

public interface Address {

public String getStreet();
public void setStreet(String value);
. . .

}

public class AddressImpl implements Address {

public String street;
. . .

}

In Example 121–8, both the EmployeeImpl and the AddressImpl classes implement
public interfaces (Employee and Address respectively). Therefore, because the
AddressImpl class is the target of the one-to-one relationship, it is the only class that
must implement an interface. However, if the EmployeeImpl is ever to be the target
of another one-to-one relationship using transparent indirection, it must also
implement an interface, as shown in the following example:

Employee emp = (Employee)session.readObject(Employee.class);
System.out.println(emp.toString());
System.out.println(emp.getAddress().toString());
// Would print:
[Employee] John Smith
{ IndirectProxy: not instantiated }

String street = emp.getAddress().getStreet();
// Triggers database read to get Address information
System.out.println(emp.toString());
System.out.println(emp.getAddress().toString());
// Would print:
[Employee] John Smith
{ [Address] 123 Main St. }

Using proxy indirection does not change how you instantiate your own domain
objects for an insert operation. You still use the following code:

Employee emp = new EmployeeImpl("John Smith");
Address add = new AddressImpl("123 Main St.");
emp.setAddress(add);

Example 121–9 illustrates an Employee to Address one-to-one relationship mapping.

Example 121–9 Mapping Using Proxy Indirection

OneToOneMapping mapping = new OneToOneMapping();
mapping.useProxyIndirection();
mapping.setReferenceClass(Employee.class);
mapping.setAttributeName("address");
mapping.setGetMethodName("getAddress");
mapping.setSetMethodName("setAddress");

121.4 Configuring XPath
TopLink uses XPath statements to map the attributes of a Java object to locations in an
XML document. When you create an XML mapping or EIS mapping using XML
records, you can specify the XPath based on any of the following:

■ Name

■ Position

■ Path and name

Table 121–5 summarizes which mappings support this option.

Configuring XPath

121-12 Developer's Guide for Oracle TopLink

Before you can select an XPath for a mapping, you must associate the descriptor with a
schema context (see Section 76.2, "Configuring Schema Context for an EIS Descriptor"
or Section 52.2, "Configuring Schema Context for an XML Descriptor").

For more information, see Section 17.2.7, "Mappings and XPath".

121.4.1 How to Configure XPath Using TopLink Workbench
Use this table to select the XPath for an XMl mapping or EIS mapping using XML
records:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. If necessary, click the General tab. The General tab appears.

Table 121–5 Mapping Support for XPath

Mapping

How to Use
Oracle
JDeveloper

How to
Configure
XPath Using
TopLink
Workbench

How to
Use
Java

EIS Mappings1

1 When used with XML records only (see Section 76.4, "Configuring Record Format").

EIS Direct Mapping

EIS Composite Direct Collection Mapping

EIS Composite Object Mapping2

2 Supports the self XPath (".") so that the TopLink runtime performs all read and write operations in the
parent’s element and not an element nested within it (see Section 17.2.9, "Mappings and the jaxb:class
Customization").

EIS Composite Collection Mapping

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

XML Composite Object Mapping2

XML Composite Collection Mapping

XML Any Object Mapping

XML Any Collection Mapping

XML Binary Data Mapping

XML Binary Data Collection Mapping

XML Fragment Mapping

XML Fragment Collection Mapping

XML Choice Collection Mapping

XML Any Attribute Mapping

Configuring XPath

Configuring a Mapping 121-13

Figure 121–3 General Tab, XPath Options

Figure 121–4 XPath Options for Composite Object Mappings

Click Browse and select the XPath to map to this attribute (see Section 121.4.1.1,
"Choosing the XPath").

For an EIS composite object mapping using XML records or an XML composite object
mapping, you can choose one of the following:

■ Specify XPath: select the XPath to map to this attribute (see Section 121.4.1.1,
"Choosing the XPath").

■ Aggregate into parent element: select the self XPath (".") (see Section 17.2.7.4,
"Self XPath") so that the TopLink runtime performs all read and write operations
in the parent’s element, and not an element nested within it (see Section 17.2.9,
"Mappings and the jaxb:class Customization").

121.4.1.1 Choosing the XPath
From the Choose XPath dialog box, select the XPath and click OK. TopLink
Workbench builds the complete XPath name.

Configuring a Default Null Value at the Mapping Level

121-14 Developer's Guide for Oracle TopLink

Figure 121–5 Choose XPath Dialog Box

121.5 Configuring a Default Null Value at the Mapping Level
A default null value is the Java Object type and value that TopLink uses instead of
null when TopLink reads a null value from a data source.

When you configure a default null value at the mapping level, TopLink uses it to
translate in the following two directions:

■ When TopLink reads null from the data source, it converts this null to the
specified type and value.

■ When TopLink writes or queries to the data source, it converts the specified type
and value back to null.

Table 121–6 summarizes which mappings support this option.

Table 121–6 Mapping Support for Default Null Values

Mapping

How to Use
Oracle
JDeveloper

How to
Configure a
Default Null
Value at the
Mapping
Level Using
TopLink
Workbench

How to
Configure a
Default Null
Value at the
Mapping
Level Using
Java

Relational Mappings

Direct-to-Field Mapping

Direct-to-XMLType Mapping

EIS Mappings

EIS Direct Mapping

XML Mappings

XML Direct Mapping

XML Binary Data Mapping

XML Binary Data Collection Mapping

XML Fragment Mapping

XML Fragment Collection Mapping

Configuring a Default Null Value at the Mapping Level

Configuring a Mapping 121-15

You can also use TopLink to set a default null value for all mappings used in a session
(see Section 97.6, "Configuring a Default Null Value at the Login Level").

121.5.1 How to Configure a Default Null Value at the Mapping Level Using TopLink
Workbench

To configure a default null value for a mapping, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 121–6 General Tab, Default Null Value Options

Use the following information to complete the Default Null Value fields on the tab:

121.5.2 How to Configure a Default Null Value at the Mapping Level Using Java
To configure a mapping null value using Java API, use the
AbstractDirectMapping method setNullValue.

For example:

// Defaults a null salary to 0
salaryMapping.setNullValue(new Integer(0));

Note: A default null value must be an Object. To specify a
primitive value (such as int), you must use the corresponding
Object wrapper (such as Integer).

Field Description

Default Null Value Specify if this mapping contains a default value in the event that
the data source is null. If selected, you must enter both the Type
and Value of the default.

Type Select the Java type of the default value.

Value Enter the default value.

Configuring Method or Direct Field Accessing at the Mapping Level

121-16 Developer's Guide for Oracle TopLink

121.6 Configuring Method or Direct Field Accessing at the Mapping Level
By default, TopLink uses direct access to access public attributes. Alternatively, you
can use getter and setter methods to access object attributes when writing the
attributes of the object to the database, or reading the attributes of the object from the
database. This is known as method access.

Using private, protected or package variable or method access requires you to enable
the Java reflect security setting. This is enabled by default in most application servers
(see Section 8.2.3, "How to Set Security Permissions"), but may need to be enabled
explicitly in certain JVM configurations. If necessary, use the java.policy file to
grant ReflectPermission to the entire application or the application’s code base.
For example:

grant{
permission java.lang.reflect.ReflectPermission;

};

Oracle recommends using direct access whenever possible to improve performance and
avoid executing any application-specific behavior while building objects.

Table 121–7 summarizes which mappings support this option.

For information on configuring method accessing at the project level, see Section 117.4,
"Configuring Method or Direct Field Access at the Project Level".

If you enable change tracking on a property (for example, you decorate method
getPhone with @ChangeTracking) and you access the field (phone) directly, note
that TopLink does not detect the change. For more information, see Section 2.4.1.4,
"Using Method and Direct Field Access".

121.6.1 How to Configure Method or Direct Field Accessing Using TopLink Workbench
To complete the field access method for a mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Table 121–7 Mapping Support for Method Accessing

Mapping

How to Use
Oracle
JDeveloper

How to Configure
Method or Direct
Field Accessing
Using TopLink
Workbench

How to
Configure
Method or
Direct Field
Accessing
Using Java

Relational Mappings

Object-Relational Data Type
Mappings

EIS Mappings

XML Mappings

Configuring Method or Direct Field Accessing at the Mapping Level

Configuring a Mapping 121-17

Figure 121–7 General Tab, Method Accessing Options

Use the following information to complete the Method Accessing fields on this tab:

To change the default access type used by all new mappings, use the Defaults tab on
the project Editor window. See Section 117.4, "Configuring Method or Direct Field
Access at the Project Level" for more information.

121.6.2 How to Configure Method or Direct Field Accessing Using Java
Use the following DatabaseMapping methods to configure the user-defined getters
and setters that TopLink will use to access the mapped attribute:

For mappings not supported in Oracle JDeveloper and TopLink Workbench, use the
setGetMethodName and setSetMethodName methods to access the attribute
through user-defined methods, rather than directly, as follows:

■ setGetMethodName–set the String name of the user-defined method to get the
mapped attribute;

■ setSetMethodName–set the String name of the user-defined method to set the
mapped attribute.

Example 121–10 shows how to use these methods with a class that has an attribute
phones and accessor methods getPhones and setPhones in an object-relational
data type mapping.

Example 121–10 Configuring Access Method in Java

// Map the phones attribute
phonesMapping.setAttributeName("phones");

// Specify access method
phonesMapping.setGetMethodName("getPhones");
phonesMapping.setSetMethodName("setPhones");

Field Description

Method Accessing Specify if this mapping uses specific accessor methods instead
directly accessing public attributes. By default, this option is not
selected (that is, the mapping uses direct access).

Get Method Select a specific get method.

Set Method Select a specific set method.

Configuring Private or Independent Relationships

121-18 Developer's Guide for Oracle TopLink

121.7 Configuring Private or Independent Relationships
In TopLink, object relationships can be either private or independent:

■ In a private relationship, the target object is a private component of the source
object. The target object cannot exist without the source and is accessible only
through the source object. Destroying the source object will also destroy the target
object.

■ In an independent relationship, the source and target objects are public ones that
exist independently. Destroying one object does not necessarily imply the
destruction of the other.

Table 121–8 summarizes which mappings support this option.

Tip: TopLink automatically manages private relationships.
Whenever an object is written to the database, any private objects it
owns are also written to the database. When an object is removed
from the database, any private objects it owns are also removed. Be
aware of this when creating new systems, since it may affect both
the behavior and the performance of your application.

Table 121–8 Mapping Support for Private or Independent Relationships

Mapping
Implicitly
Private

Private or
Independent

How to Use
Oracle
JDeveloper

How to
Configure
Private or
Independent
Relationships
Using
TopLink
Workbench

How to
Configure
Private or
Independent
Relationships
Using Java

Relational Mappings

One-to-One Mapping

Variable One-to-One Mapping

One-to-Many Mapping

Many-to-Many Mapping

Aggregate Collection Mapping

Direct Collection Mapping

Direct Map Mapping

Aggregate Object Mapping

Object-Relational Data Type Mappings

Object-Relational Data Type Structure
Mapping

Object-Relational Data Type Reference
Mapping

Object-Relational Data Type Array Mapping

Object-Relational Data Type Object Array
Mapping

Object-Relational Data Type Nested Table
Mapping

EIS Mappings

EIS Composite Direct Collection Mapping

EIS Composite Object Mapping

Configuring Private or Independent Relationships

Configuring a Mapping 121-19

121.7.1 How to Configure Private or Independent Relationships Using TopLink
Workbench

To create a privately owned mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 121–8 General Tab, Private Owned option

To create private ownership, select the Private Owned option.

EIS Composite Collection Mapping

EIS One-to-One Mapping

EIS One-to-Many Mapping

XML Mappings

XML Composite Direct Collection Mapping

XML Composite Object Mapping

XML Composite Collection Mapping

Table 121–8 (Cont.) Mapping Support for Private or Independent Relationships

Mapping
Implicitly
Private

Private or
Independent

How to Use
Oracle
JDeveloper

How to
Configure
Private or
Independent
Relationships
Using
TopLink
Workbench

How to
Configure
Private or
Independent
Relationships
Using Java

Configuring Mapping Comments

121-20 Developer's Guide for Oracle TopLink

121.7.2 How to Configure Private or Independent Relationships Using Java
For mappings not supported in Oracle JDeveloper and TopLink Workbench, use the
independentRelationship (default), privateOwnedRelationship, and
setIsPrivateOwned methods.

Example 121–10 shows how to use these methods with a class that has a privately
owned attribute, phones, in a mapping.

Example 121–11 Configuring Access Method in Java

// Map the phones attribute
phonesMapping.setAttributeName("phones");

// Specify as privately owned
phonesMapping.privateOwnedRelationship();

121.8 Configuring Mapping Comments
You can define a free-form textual comment for each mapping. You can use these
comments however you whish: for example, to record important project
implementation details such as the purpose or importance of a mapping.

Comments are stored in the Oracle JDeveloper or TopLink Workbench project, in the
TopLink deployment XML file. There is no Java API for this feature.

Table 121–9 summarizes which mappings support this option.

121.8.1 How to Configure Mapping Comments Using TopLink Workbench
To add a comment for a mapping, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Table 121–9 Mapping Support for Comments

Mapping
How to Use Oracle
JDeveloper

How to Configure
Mapping Comments
Using TopLink
Workbench

How to
Use Java

Relational Mappings

EIS Mappings

XML Mappings

Configuring a Serialized Object Converter

Configuring a Mapping 121-21

Figure 121–9 General Tab, Comment

Enter a comment that describes this mapping.

121.9 Configuring a Serialized Object Converter
A serialized object converter can be used to store an arbitrary object or set of objects
into a data source binary large object (BLOB) field. It uses the Java serializer so the
target must be serializable.

For more information about the serialized object converter, see Section 17.2.6.1,
"Serialized Object Converter".

Table 121–10 summarizes which mappings support this option.

Table 121–10 Mapping Support for Serialized Object Converter

Mapping

How to Use
Oracle
JDeveloper

How to
Configure a
Serialized
Object
Converter
Using
TopLink
Workbench

How to
Configure
a
Serialized
Object
Converter
Using
Java

Relational Mappings

Direct-to-Field Mapping

Direct Collection Mapping

Direct Map Mapping

Object-Relational Data Type Mappings

Object-Relational Data Type Array Mapping

EIS Mappings

EIS Direct Mapping

EIS Composite Direct Collection Mapping

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

Configuring a Serialized Object Converter

121-22 Developer's Guide for Oracle TopLink

121.9.1 How to Configure a Serialized Object Converter Using TopLink Workbench
To create an serialized object direct mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Converter tab. The Converter tab appears.

Figure 121–10 Converter Tab, Serialized Object Converter Option

To specify a serialized object converter, select the Serialized Object Converter option.

121.9.2 How to Configure a Serialized Object Converter Using Java
You can set an oracle.toplink.converters.SerializedObjectConverter
on any instance of
oracle.toplink.mappings.foundation.AbstractCompositeDirectCollec
tionMapping or its subclasses using the
AbstractCompositeDirectCollectionMapping method setValueConverter,
as Example 121–12 shows.

Example 121–12 Configuring a SerializedObjectConverter

// Create SerializedObjectConverter instance
SerializedObjectConverter serializedObjectConvter = new SerializedObjectConverter();

XML Binary Data Mapping

XML Binary Data Collection Mapping

XML Fragment Mapping

XML Fragment Collection Mapping

Table 121–10 (Cont.) Mapping Support for Serialized Object Converter

Mapping

How to Use
Oracle
JDeveloper

How to
Configure a
Serialized
Object
Converter
Using
TopLink
Workbench

How to
Configure
a
Serialized
Object
Converter
Using
Java

Configuring a Type Conversion Converter

Configuring a Mapping 121-23

// Set SerializedObjectConverter on ArrayMapping
ArrayMapping arrayMapping = new ArrayMapping();
arrayMapping.setValueConverter(serializedObjectConvter);
arrayMapping.setAttributeName("responsibilities");
arrayMapping.setStructureName("Responsibilities_t");
arrayMapping.setFieldName("RESPONSIBILITIES");
orDescriptor.addMapping(arrayMapping);

You can also set a SerializedObjectConverter on any instance of
oracle.toplink.mappings.foundation.AbstractDirectMapping or its
subclasses using the AbstractDirectMapping method setConverter.

121.10 Configuring a Type Conversion Converter
A type conversion converter is used to explicitly map a data source type to a Java type.

For more information about the type conversion converter, see Section 17.2.6.2, "Type
Conversion Converter".

Table 121–11 summarizes which mappings support this option.

121.10.1 How to Configure a Type Conversion Converter Using TopLink Workbench
To create an type conversion direct mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the Converter tab. The Converter tab appears.

3. Select the Type Conversion Converter option.

Table 121–11 Mapping Support for Type Conversion Converter

Mapping

How to Use
Oracle
JDeveloper

How to
Configure a
Type
Conversion
Converter
Using
TopLink
Workbench

How to
Configure a
Type
Conversion
Converter
Using Java

Relational Mappings

Direct-to-Field Mapping

Object-Relational Data Type Mappings

Object-Relational Data Type Array Mapping

EIS Mappings

EIS Direct Mapping

EIS Composite Direct Collection Mapping

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

XML Binary Data Mapping

XML Binary Data Collection Mapping

XML Fragment Mapping

XML Fragment Collection Mapping

Configuring a Type Conversion Converter

121-24 Developer's Guide for Oracle TopLink

Figure 121–11 Converter Tab, Type Conversion Converter Option

Use the following information to complete the Type Conversion Converter fields on
the Converter tab:

121.10.2 How to Configure a Type Conversion Converter Using Java
You can set an oracle.toplink.converters.TypeConversionConverter on
any instance of
oracle.toplink.mappings.foundation.AbstractCompositeDirectCollec
tionMapping or its subclasses using the
AbstractCompositeDirectCollectionMapping method setValueConverter,
as Example 121–13 shows.

Example 121–13 Configuring a TypeConversionConverter

// Create TypeConversionConverter instance
TypeConversionConverter typeConversionConverter = new TypeConversionConverter();
typeConversionConverter.setDataClass(java.util.Calendar.class);
typeConversionConverter.setObjectClass(java.sql.Date.class);

// Set TypeConversionConverter on ArrayMapping
ArrayMapping arrayMapping = new ArrayMapping();
arrayMapping.setValueConverter(typeConversionConverter);
arrayMapping.setAttributeName("date");
arrayMapping.setStructureName("Date_t");
arrayMapping.setFieldName("DATE");
orDescriptor.addMapping(arrayMapping);

You can also set a TypeConversionConverter on any instance of
oracle.toplink.mappings.foundation.AbstractDirectMapping or its
subclasses using the AbstractDirectMapping method setConverter.

Configure the TypeConversionConverter instance using the following API:

■ setDataClass(java.lang.Class dataClass)–to specify the data type
class.

Field Description

Data Type Select the Java type of the data in the data source.

Attribute Type Select the Java type of the attribute in the Java class.

Configuring an Object Type Converter

Configuring a Mapping 121-25

■ setObjectClass(java.lang.Class objectClass)–to specify the object
type class.

121.11 Configuring an Object Type Converter
An object type converter is used to match a fixed number of data source data values to
Java object values. It can be used when the values in the data source and in Java differ.

For more information about the object type converter, see Section 17.2.6.3, "Object Type
Converter".

Table 121–12 summarizes which mappings support this option.

121.11.1 How to Configure an Object Type Converter Using TopLink Workbench
To add an object type converter to a direct mapping, use this procedure:

1. Select the mapping in the Navigator. Its properties appear in the Editor.

2. Click the Converter tab. The Converter tab appears.

Table 121–12 Mapping Support for Object Type Converter

Mapping

How to Use
Oracle
JDeveloper

How to
Configure an
Object Type
Converter
Using
TopLink
Workbench

How to
Configure
an Object
Type
Converter
Using
Java

Relational Mappings

Object-Relational Data Type Mappings

Object-Relational Data Type Array Mapping

EIS Mappings

EIS Direct Mapping

EIS Composite Direct Collection Mapping

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

XML Binary Data Mapping

XML Binary Data Collection Mapping

XML Fragment Mapping

XML Fragment Collection Mapping

Configuring an Object Type Converter

121-26 Developer's Guide for Oracle TopLink

Figure 121–12 Converter Tab, Object Type Converter

Use the following fields on the mapping’s Converter tab to specify the object type
converter options:

121.11.2 How to Configure an Object Type Converter Using Java
You can set an oracle.toplink.converters.ObjectTypeConverter on any
instance of
oracle.toplink.mappings.foundation.AbstractCompositeDirectCollec
tionMapping using AbstractCompositeDirectCollectionMapping method
setValueConverter.

You can also set an ObjectTypeConverter on any instance of
oracle.toplink.mappings.foundation.AbstractDirectMapping or its
subclasses using the AbstractDirectMapping method setConverter, as
Example 121–14 shows.

Example 121–14 Configuring an ObjectTypeConverter

// Create ObjectTypeConverter instance
ObjectTypeConverter objectTypeConvter = new ObjectTypeConverter();
objectTypeConverter.addConversionValue("F", "Female");

Field Description

Data Type Select the Java type of the data in the data source.

Attribute Type Select the Java type of the attribute in the Java class.

Conversion Values Click Add to add a new conversion value. Click Edit to modify an
existing conversion value. Click Remove to delete an existing
conversion value.

Use to specify the selected value as the default value. If TopLink
retrieves a value from the database that is not mapped as a valid
Conversion Value, the default value will be used.

Data Value Specify the value of the attribute in the data source.

Attribute Value Specify the value of the attribute in the Java class

Default Attribute Value Specify whether or not to use the selected value as the default
value. If TopLink retrieves a value from the database that is not
mapped as a valid Conversion Value, the default value will be
used.

Configuring a Simple Type Translator

Configuring a Mapping 121-27

// Set ObjectTypeConverter on DirectToFieldMapping
DirectToFieldMapping genderMapping = new DirectToFieldMapping();
genderMapping.setConverter(objectTypeConverter);
genderMapping.setFieldName("F");
genderMapping.setAttributeName("Female");
descriptor.addMapping(genderMapping);

Configure the ObjectTypeConverter instance using the following API:

■ addConversionValue(java.lang.Object fieldValue,
java.lang.Object attributeValue)–to associate data-type values to
object-type values.

■ addToAttributeOnlyConversionValue(java.lang.Object
fieldValue, java.lang.Object attributeValue)–to add one-way
conversion values.

■ setDefaultAttributeValue(java.lang.Object
defaultAttributeValue)–to set the default value.

121.12 Configuring a Simple Type Translator
The simple type translator allows you to automatically translate an XML element
value to an appropriate Java type based on the element’s <type> attribute, as defined
in your XML schema. You can use a simple type translator only when the mapping’s
XPath goes to an element. You cannot use a simple type translator if the mapping’s
XPath goes to an attribute.

For more information, see Section 17.2.6.4, "Simple Type Translator".

Table 121–13 summarizes which mappings support this option.

121.12.1 How to Configure a Simple Type Translator Using TopLink Workbench
Use this table to qualify elements from the XML schema

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Table 121–13 Mapping Support for Simple Type Translator

Mapping

How to Use
Oracle
JDeveloper

How to
Configure a
Simple Type
Translator
Using
TopLink
Workbench

How to
Configure
a Simple
Type
Translator
Using
Java

EIS Mappings

EIS Direct Mapping

EIS Composite Direct Collection Mapping

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

XML Binary Data Mapping

XML Binary Data Collection Mapping

Configuring a JAXB Typesafe Enumeration Converter

121-28 Developer's Guide for Oracle TopLink

Figure 121–13 General Tab, Use XML Schema "type" Attribute Option

Select the Field Uses XML Schema "type" attribute field to qualify elements from the
XML schema.

121.12.2 How to Configure a Simple Type Translator Using Java
To create an XML mapping with a simple type translator with Java code in your IDE,
you need the following elements:

■ EISDirectMapping or EISCompositeDirectCollectionMapping or
XMLDirectMapping or XMLCompositeDirectCollectionMapping

■ instance of Converter

■ instance of TypedElementField

Example 121–15 shows how to implement your own simple type translator with an
XMLDirectMapping to override the built-in conversion for writing XML so that
TopLink writes a Byte array (ClassConstants.ABYTE) as a Base64
(XMLConstants.BASE64_BINARY) encoded string.

Example 121–15 Creating a Type Translation XML Mapping

XMLDirectMapping mapping = new XMLDirectMapping();
mapping.setConverter(new SerializedObjectConverter());
TypedElementField field = new TypedElementField("element");
field.getSimpleTypeTranslator().addJavaConversion(

ClassConstants.ABYTE,
new QName(XMLConstants.SCHEMA_URL, XMLConstants.BASE64_BINARY));

mapping.setField(field);

121.13 Configuring a JAXB Typesafe Enumeration Converter
The JAXB typesafe enumeration converter allows you to automatically translate an
XML element value to an appropriate typesafe enumeration value as defined in your
XML schema.

For more information, see Section 17.2.10, "Mappings and JAXB Typesafe
Enumerations".

Table 121–14 summarizes which mappings support this option.

Configuring a JAXB Typesafe Enumeration Converter

Configuring a Mapping 121-29

Oracle JDeveloper andTopLink Workbench do not support the
JAXBTypesafeEnumConverter directly: to configure a mapping with this converter,
you must use Java to create an amendment method (see Section 121.13.1, "How to
Configure a JAXB Typesafe Enumeration Converter Using Java").

If you create a project and object model using the TopLink JAXB compiler (see
Section 48.2, "Creating an XML Project from an XML Schema"), the compiler will create
the type safe enumeration class and a class with descriptor amendment methods and
register the required amendment methods automatically.

121.13.1 How to Configure a JAXB Typesafe Enumeration Converter Using Java
To configure a mapping with a JAXBTypesafeEnumConverter in Java, use a
descriptor amendment method (see Section 119.35, "Configuring Amendment
Methods"). Example 121–16 illustrates an amendment method that configures an
XMLDirectMapping with a JAXBTypesafeEnumConverter. In this example,
attribute _Val is mapped to a JAXB typesafe enumeration corresponding to typesafe
enumeration class MyTypesafeEnum.

Example 121–16 Creating a JAXB Typesafe Enumeration XML Mapping

public class DescriptorAfterLoads {

public static void amendRootImplDescriptor(ClassDescriptor descriptor) {
DatabaseMapping _ValMapping = descriptor.getMappingForAttributeName("_Val");
JAXBTypesafeEnumConverter _ValConverter = new JAXBTypesafeEnumConverter();
ValConverter.setEnumClassName("MyTypesafeEnum");
((XMLDirectMapping) _ValMapping).setConverter(_ValConverter);

}
}

Table 121–14 Mapping Support for JAXB Typesafe Enumeration Converter

Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure a
JAXB
Typesafe
Enumeration
Converter
Using Java

EIS Mappings1

1 When used with XML records only (see Section 76.4, "Configuring Record Format").

EIS Direct Mapping

EIS Composite Direct Collection Mapping

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

XML Binary Data Mapping

XML Binary Data Collection Mapping

XML Fragment Mapping

XML Fragment Collection Mapping

Configuring Container Policy

121-30 Developer's Guide for Oracle TopLink

121.14 Configuring Container Policy
Collection mapping container policy specifies the concrete class TopLink should use
when reading target objects from the database.

Collection mappings can use any concrete class that implements the
java.util.List, java.util.Set, java.util.Collection, or
java.util.Map interface. You can map object attributes declared as List, Set,
Collection, Map, or any subinterface of these interfaces, or as a class that
implements one of these interfaces.

By default, the TopLink runtime uses the following concrete classes from the
oracle.toplink.indirection package for each of these container types:

■ List–IndirectList or Vector

■ Set–IndirectSet or HashSet

■ Collection–IndirectList or Vector

■ Map–IndirectMap or HashMap

Alternatively, you can specify in the mapping the concrete container class to be used.
When TopLink reads objects from the database that contain an attribute mapped with
a collection mapping, the attribute is set with an instance of the concrete class
specified. For example, TopLink does not sort in memory. If you want to sort in
memory, override the default Set type (IndirectList) with java.util.TreeSet
as the concrete collection type. By default, a collection mapping’s container class is
java.util.Vector.

Table 121–15 summarizes which mappings support this option.

Note: If you are using TopLink Workbench and you override the
default Collection class with a custom Collection class of your
own, you must put your custom Collection class on the TopLink
Workbench classpath (see Section 5.2, "Configuring the TopLink
Workbench Environment").

Table 121–15 Mapping Support for Container Policy

Mapping List Set Collection Map

How to Use
Oracle
JDeveloper

How to
Configure
Container
Policy Using
TopLink
Workbench

How to
Configure
Container
Policy Using
Java

Relational Mappings

One-to-Many Mapping

Many-to-Many Mapping

Aggregate Collection Mapping

Direct Collection Mapping

Direct Map Mapping

Object-Relational Data Type
Mappings

Object-Relational Data Type
Array Mapping

Object-Relational Data Type
Object Array Mapping

Configuring Container Policy

Configuring a Mapping 121-31

121.14.1 How to Configure Container Policy Using TopLink Workbench
To specify a mapping’s container policy, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

3. Click the Advanced button. The Advanced Container Options appear on the
General tab.

Object-Relational Data Type
Nested Table Mapping

EIS Mappings

EIS Composite Direct Collection
Mapping

EIS Composite Collection
Mapping

EIS One-to-Many Mapping

XML Mappings

XML Composite Direct
Collection Mapping

XML Composite Collection
Mapping

XML Any Collection Mapping

XML Binary Data Collection
Mapping

XML Collection Reference
Mapping

Table 121–15 (Cont.) Mapping Support for Container Policy

Mapping List Set Collection Map

How to Use
Oracle
JDeveloper

How to
Configure
Container
Policy Using
TopLink
Workbench

How to
Configure
Container
Policy Using
Java

Configuring Container Policy

121-32 Developer's Guide for Oracle TopLink

Figure 121–14 General Tab, Advanced Container Options

Use the following Advanced Container Options fields on the General tab to specify
the container options:

121.14.2 How to Configure Container Policy Using Java
Classes that implement the oracle.toplink.mappings.ContainerMapping
interface provide the following methods to set the container policy:

Field1

1 Not all mappings support all options. For more information, see Table 121–15.

Description

Container Type Specify the type of Collection class to use:

■ List–use a java.util.List

■ Set–use a java.util.Set

■ Collection–use a java.util.Collection

■ Map–use a java.util.Map

Override Default Class Specify to use a custom class as the mapping’s container policy.
Click Browse to select a different class.

The container class must implement (directly or indirectly) the
java.util.Collection interface.

Key Method If you configure Container Type as Map, use this option to
specify the name of the zero argument method whose result,
when called on the target object, is used as the key in the
Hashtable or Map. This method must return an object that is a
valid key in the Hashtable or Map.

Configuring Attribute Transformer

Configuring a Mapping 121-33

■ useCollectionClass(java.lang.Class concreteClass)–Configure the
mapping to use an instance of the specified java.util.Collection container
class to hold the target objects.

■ useMapClass(java.lang.Class concreteClass, java.lang.String
methodName)–Configure the mapping to use an instance of the specified
java.util.Map container class to hold the target objects. The key used to index a
value in the Map is the value returned by a call to the specified zero-argument
method. The method must be implemented by the class (or a superclass) of any
value to be inserted into the Map.

Classes that extend oracle.toplink.mappings.CollectionMapping (which
implements the ContainerMapping interface) also provide the following methods to
set the container policy:

■ useSortedSetClass(java.lang.Class concreteClass,
java.util.Comparator comparator)–Configure the mapping to use an
instance of the specified java.util.SortedSet container class. Specify the
Comparator to use to sort the target objects.

Example 121–17 shows how to configure a DirectCollectionMapping to use a
java.util.ArrayList container class.

Example 121–17 Direct Collection Mapping

// Create a new mapping and register it with the source descriptor
DirectCollectionMapping phonesMapping = new DirectCollectionMapping();
phonesMapping.setAttributeName("phones");
phonesMapping.setGetMethodName("getPhones");
phonesMapping.setSetMethodName("setPhones");
phonesMapping.setReferenceTableName("PHONES_TB");
phonesMapping.setDirectFieldName("PHONES");
phonesMapping.useCollectionClass(ArrayList.class); // set container policy
descriptor.addMapping(phonesMapping);

121.15 Configuring Attribute Transformer
A transformation mapping is made up of an attribute transformer for field-to-attribute
transformation at read (unmarshall) time and one or more field transformers for
attribute-to-field transformation at write (marshall) time (see Section 121.16,
"Configuring Field Transformer Associations").

This section describes how to configure the attribute transformer that a transformation
mapping uses to perform the field-to-attribute transformation at read (unmarshal)
time.

You can do this using either a method or class-based transformer.

A method-based transformer must map to a method in the domain object.

A class-based transformer allows you to place the transformation code in another
class, making this approach non-intrusive: that is, your domain object does not need to
implement a TopLink interface or provide a special transformation method

Table 121–16 summarizes which mappings support this option.

Configuring Attribute Transformer

121-34 Developer's Guide for Oracle TopLink

121.15.1 How to Configure Attribute Transformer Using TopLink Workbench
To specify a mapping’s attribute transformer, use this procedure:

1. Select the transformation mapping in the Navigator. Its properties appear in the
Editor.

Figure 121–15 Transformation Mapping, Attribute Transformer Field

2. Click Edit. The Specify Transformer dialog box appears.

Table 121–16 Mapping Support for Attribute Transformer

Mapping

How to Use
Oracle
JDeveloper

How to
Configure
Attribute
Transformer
Using TopLink
Workbench

How to
Configure
Attribute
Transformer
Using Java

Relational Mappings

Transformation Mapping

EIS Mappings

EIS Transformation Mapping

XML Mappings

XML Transformation Mapping

Configuring Field Transformer Associations

Configuring a Mapping 121-35

Figure 121–16 Specify Transformer Dialog Box

Use the following information to enter data in each field of the dialog box and click
OK:

121.15.2 How to Configure Attribute Transformer Using Java
You can configure a method-based attribute transformer using
AbstractTransformationMapping method setAttributeTransformation,
passing in the name of the domain object method to use.

You can configure a class-based attribute transformer using
AbstractTransformationMapping method setAttributeTransformer,
passing in an instance of
oracle.toplink.mappings.Transfomers.AttributeTransformer.

A convenient way to create an AttributeTransformer is to extend
AttributeTransformerAdapter.

121.16 Configuring Field Transformer Associations
A transformation mapping is made up of an attribute transformer for field-to-attribute
transformation at read (unmarshall) time (see Section 121.15, "Configuring Attribute
Transformer") and one or more field transformers for attribute-to-field transformation
at write (marshall) time.

This section describes how to configure the field transformers that a transformation
mapping uses to perform the object attribute-to-field transformation at write (marshal)
time.

You can do this using either a method or class-based transformer.

A method-based transformer must map to a method in the domain object.

A class-based transformer allows you to place the transformation code in another
class, making this approach non-intrusive: that is, your domain object does not need to
implement a TopLink interface or provide a special transformation method.

Table 121–17 summarizes which mappings support this option.

Field Description

Use Transformation Method Select a specific method to control the transformation. A
method based transformer must map to a method in the
domain object.

Use Transformer Class Select a specific class to control the transformation. The
class must be available on the TopLink Workbench
application classpath.

Configuring Field Transformer Associations

121-36 Developer's Guide for Oracle TopLink

121.16.1 How to Configure Field Transformer Associations Using TopLink Workbench
Use this procedure to complete the Object->Field Method fields:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

Figure 121–17 Transformation Mapping, Field Transformer Associations

To add a new association, click Add. Continue with Section 121.16.1.1, "Specifying
Field-to-Transformer Associations".

To change an existing association, click Edit. Continue with Section 121.16.1.1,
"Specifying Field-to-Transformer Associations".

To delete an existing association, select the field transformation association and click
Delete.

121.16.1.1 Specifying Field-to-Transformer Associations
To specify the actual transformation method or class used for the field of a
transformation mapping, use this procedure.

1. From the Transformation Mapping, Field Transformer Associations, click Add or
Edit. The Specify Field-Transformer Association dialog box appears.

Table 121–17 Mapping Support for Field Transformer

Mapping

How to Use
Oracle
JDeveloper

How to
Configure Field
Transformer
Associations
Using TopLink
Workbench

How to
Configure
Field
Transformer
Associations
Using Java

Relational Mappings

Transformation Mapping

EIS Mappings

EIS Transformation Mapping

XML Mappings

XML Transformation Mapping

Configuring Mutable Mappings

Configuring a Mapping 121-37

Figure 121–18 Specify Field-Transformer Association Dialog Box

Use the following information to complete each field on the dialog box:

121.16.2 How to Configure Field Transformer Associations Using Java
You can specify a specific transformation method on your domain object or an instance
of oracle.toplink.mappings.Transfomers.FieldTransformer (you can also
extend the FieldTransformerAdapter). Using a FieldTransformer is
non-intrusive: that is, your domain object does not need to implement a TopLink
interface or provide a special transformation method.

You can configure a method-based field transformer using
AbstractTransformationMapping method addFieldTransformation, passing
in the name of the database field and the name of the domain object method to use.

You can configure a class-based field transformer using
AbstractTransformationMapping method addFieldTransformer, passing in
the name of the database field and an instance of
oracle.toplink.mappings.Transfomers.FieldTransformer.

A convenient way to create a FieldTransformer is to extend
FieldTransformerAdapter.

121.17 Configuring Mutable Mappings
Direct mappings typically map simple, nonmutable values such as String or
Integer. Transformation mappings can potentially map complex mutable object
values, such as mapping several database field values to an instance of a Java class.

If a transformation mapping maps a mutable value, TopLink must clone and compare
the value in a unit of work (see Section 119.29, "Configuring Copy Policy").

Field Description

Field Select the database field (from the descriptor’s associated
table) for this transformation.

Transformer Select one of the following methods to control the
transformation:

Use Transformation Method Select a specific method to control the transformation. A
method based transformer must map to a method in the
domain object.

Use Transformer Class Select a specific class to control the transformation. The
class must be available on TopLink Workbench application
classpath.

Configuring Mutable Mappings

121-38 Developer's Guide for Oracle TopLink

By default, TopLink assumes that all transformation mappings are mutable. If the
mapping maps a simple immutable value, you can improve the unit of work
performance by configuring the IsMutable option to false.

By default, TopLink also assumes that all direct mappings are mutable unless a
serialized converter is used. These mappings can also set the IsMutable option. You
should set it if you want to modify Date or Calendar fields.

Table 121–18 summarizes which mappings support this option.

For more information, see Section 2.8.11, "Mutability".

121.17.1 How to Configure Mutable Mappings Using TopLink Workbench
Use this table to complete the Object->Field Method fields:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

Figure 121–19 Transformation Mapping, Mutable Option

Table 121–18 Mapping Support for Mutable Mappings

Mapping

How to Use
Oracle
JDeveloper

How to Configure
Mutable
Mappings Using
TopLink
Workbench

How to
Configure
Mutable
Mappings
Using Java

Relational Mappings

Transformation Mapping

Direct-to-Field Mapping

EIS Mappings

EIS Transformation Mapping

EIS Direct Mapping

XML Mappings

XML Transformation Mapping

XML Direct Mapping

Configuring Bidirectional Relationship

Configuring a Mapping 121-39

By default, the IsMutable option is selected in all transformation mappings. If the
mapping maps to a simple atomic value, unselect this option.

121.17.2 How to Configure Mutable Mappings Using Java
You can specify whether or not a mapping is mutable using
AbstractTransformationMapping method setIsMutable for transformation
mappings, and AbstractDirectMapping method isMutable for direct mappings.

121.18 Configuring Bidirectional Relationship
TopLink can automatically manage the bidirectional relationship (see Section 2.14.3.4,
"Maintaining Bidirectional Relationships"): if one side of the relationship is set or
modified, TopLink will automatically set the other side. To enable this functionality,
use the value holder indirection (see Section 17.2.4.1, "Value Holder Indirection") for
one-to-one mappings, and transparent collections (see Section 17.2.4.2, "Transparent
Indirect Container Indirection")–for one-to-many and many-to-many mappings.

Table 121–18 summarizes which mappings support this option.

121.18.1 How to Configure Bidirectional Relationship Using TopLink Workbench
To maintain a bidirectional relationship for a mapping, use this procedure:

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Note: Oracle does not recommend using this TopLink feature: if the
object model is used outside the persistence context it must be
responsible for managing the bidirectional relationship.

Instead, your application should maintain the bidirectional
relationship in its getter and setter methods.

Table 121–19 Mapping Support for Mutable Mappings

Mapping

How to Use
Oracle
JDeveloper

How to
Configure
Bidirectional
Relationship
Using TopLink
Workbench

How to Configure
Bidirectional
Relationship
Using Java

Relational Mappings

One-to-One Mapping

One-to-Many Mapping

Many-to-Many Mapping

EIS Mappings

EIS One-to-One Mapping

EIS One-to-Many Mapping

Configuring Bidirectional Relationship

121-40 Developer's Guide for Oracle TopLink

Figure 121–20 General tab, Maintains Bidirectional Relationship option

Use this table to enter data in the following fields on the tab:

121.18.2 How to Configure Bidirectional Relationship Using Java
If a mapping has a bidirectional relationship (see Section 2.14.3.4, "Maintaining
Bidirectional Relationships") in which the two classes in the relationship reference each
other with one-to-one mappings, then set up the foreign key information as follows:

■ One mapping must call the setForeignKeyFieldName method.

■ The other mapping must call the setTargetForeignKeyFieldName method.

You can also set up the composite foreign key information by calling the
addForeignKeyFieldName and addTargetForeignKeyFieldName methods.
Because TopLink enables indirection (lazy loading) by default, the attribute must be a
ValueHolderInterface.

Field Description

Maintains Bidirectional
Relationship

Specify if TopLink should maintain the bidirectional link
for this relational mapping.

Relationship Partner Select the relationship partner (from the list of mapped
attributes of the Reference Descriptor) for this
bidirectional relationship.

Note: When your application does not use a cache, enable indirection
for at least one object in a bidirectional relationship. In rare cases,
disabling indirection on both objects in the bidirectional relationship can
lead to infinite loops. For more information, see the following:

■ Section 27.2.1, "Directionality"

■ Section 2.14.3.4, "Maintaining Bidirectional Relationships"

■ Section 17.2.4, "Indirection (Lazy Loading)"

Configuring the Use of a Single Node

Configuring a Mapping 121-41

Example 121–18 demonstrates setting of bidirectional relationship between the
Policy and Carrier classes. The foreign key is stored in the Policy’s table
referencing the composite primary key of the Carrier.

Example 121–18 Implementing a Bidirectional Mapping Between Two Classes that
Reference Each Other

public class Policy {
...
// create the mapping that references the Carrier class
OneToOneMapping carrierMapping = new OneToOneMapping();
carrierMapping.setAttributeName("carrier");
carrierMapping.setReferenceClass(Carrier.class);
carrierMapping.addForeignKeyFieldName("INSURED_ID", "CARRIER_ID");
carrierMapping.addForeignKeyFieldName("INSURED_TYPE", "TYPE");
descriptor.addMapping(carrierMapping);
...

}

public class Carrier {
...
// create the mapping that references the Policy class
OneToOneMapping policyMapping = new OneToOneMapping();
policyMapping.setAttributeName("masterPolicy");
policyMapping.setReferenceClass(Policy.class);
policyMapping.addTargetForeignKeyFieldName("INSURED_ID", "CARRIER_ID");
policyMapping.addTargetForeignKeyFieldName("INSURED_TYPE", "TYPE");
descriptor.addMapping(policyMapping);
...

}

121.19 Configuring the Use of a Single Node
For the XML-based mappings that Table 121–6 summarizes, when you map a list
value, you can configure whether or not the mapping unmarshalls (writes) the list to a
single node, like <item>aaa bbb ccc</item>, or to multiple nodes, like the
following:

<item>aaa</item>
<item>bbb</item>
<item>ccc</item>
Table 121–6 summarizes which mappings support this option.

Table 121–20 Mapping Support for Use Single Node

Mapping

How to Use
Oracle
JDeveloper

How to
Configure the
Use of a Single
Node Using
TopLink
Workbench

How to
Configure
the Use of
a Single
Node
Using
Java

EIS Mappings1

EIS Direct Mapping

EIS Composite Direct Collection Mapping

XML Mappings

XML Direct Mapping

Configuring the Use of a Single Node

121-42 Developer's Guide for Oracle TopLink

121.19.1 How to Configure the Use of a Single Node Using TopLink Workbench
To configure a mapping to use a single node, use this procedure.

1. Select the mapped attribute in the Navigator. Its properties appear in the Editor.

2. Click the General tab. The General tab appears.

Figure 121–21 General Tab, Use Single Node Option

To configure the mapping to unmarshall (write) a list value to a single node (like
<item>aaa bbb ccc</item>), click Use single node.

By default, the mapping unmarshalls a list value to separate nodes.

121.19.2 How to Configure the Use of a Single Node Using Java
Use AbstractCompositeDirectCollectionMapping method
setUsesSingleNode to configure the mapping to write a list value to a single node
by passing in a value of true. To configure the mapping to write a list value to
multiple nodes, pass in a value of false.

For any mapping that takes an XMLField, use XMLField method
setUsesSingleNode to configure the mapping to write a list value to a single node
by passing in a value of true. To configure the mapping to write a list value to
multiple nodes, pass in a value of false. Example 121–19 shows how to use this
method with an XMLDirectMapping:

XML Composite Direct Collection Mapping

XML Binary Data Mapping

XML Binary Data Collection Mapping
1 When used with XML records only (see Section 76.4, "Configuring Record Format").

Table 121–20 (Cont.) Mapping Support for Use Single Node

Mapping

How to Use
Oracle
JDeveloper

How to
Configure the
Use of a Single
Node Using
TopLink
Workbench

How to
Configure
the Use of
a Single
Node
Using
Java

Configuring the Use of CDATA

Configuring a Mapping 121-43

Example 121–19 Using XMLField Method setUsesSingleNode

XMLDirectMapping tasksMapping = new XMLDirectMapping();
tasksMapping.setAttributeName("tasks");
XMLField myField = new XMLField("tasks/text()"); // pass in the XPath
myField.setUsesSingleNode(true);
tasksMapping.setField(myField);

121.20 Configuring the Use of CDATA
For the XML-based mappings that Table 121–6 summarizes, when you create a
mapping, you can configure whether or not the mapping’s text is wrapped in a
<![CDATA[...]]> statement.

Table 121–6 summarizes which mappings support this option.

121.20.1 How to Configure the Use of CDATA Using Java
Use the isCDATA() method on an XMLDirectMapping or
XMLCompositeDirectCollectionMapping to specify if the mapping’s text is
wrapped in a <![CDATA[...]]> statement.

Example 121–19 shows the results of using this method:

Example 121–20 Using CDATA

When isCDATA = false on the name mapping, TopLink writes the text as a regular
text node:

<employee>
<name>Jane Doe</name>

</employee>

When isCDATA = true on the name mapping, TopLink wraps the text in a
<![CDATA[...]]> statement:

<employee>
<name>
<![CDATA[Jane Doe]]>

</name>
</employee>

Table 121–21 Mapping Support for Use of CDATA

Mapping

How to Use
Oracle
JDeveloper

How to Use
TopLink
Workbench

How to
Configure
the Use of
CDATA
Using
Java

XML Mappings

XML Direct Mapping

XML Composite Direct Collection Mapping

XML Binary Data Mapping

XML Binary Data Collection Mapping

Configuring the Use of CDATA

121-44 Developer's Guide for Oracle TopLink

A

Troubleshooting a TopLink Application A-1

ATroubleshooting a TopLink Application

This appendix includes the following sections:

■ TopLink Support for Oracle Application Server Manageability and Diagnosability

■ TopLink Exception Error Reference–lists the types exceptions that may occur at
time of deployment of a TopLink application, as well as at run time.

■ TopLink Workbench Error Reference–describes common problems and their
solutions when using TopLink Workbench.

A.1 TopLink Support for Oracle Application Server Manageability and
Diagnosability

In this release, TopLink-enabled applications deployed to the Oracle Application
Server support Oracle Application Server Manageability and Diagnosability to
simplify the management of applications and to simplify problem diagnosis and
resolution.

TopLink Manageability and Diagnosability support includes the following:

■ Oracle Application Server Manageability and Diagnosability Logging
Enhancements

■ Oracle Dynamic Monitoring System (DMS) Sensor Enhancements

■ Manageability and Diagnosability JMX Enhancements

For more information about using Manageability and Diagnosability in Oracle
Application Server, see the following:

■ Oracle Fusion Middleware 2 Day Administration Guide

■ Oracle Fusion Middleware Administrator's Guide

■ Oracle Fusion Middleware Administration and Application Deployment Guide for Oracle
Containers for Java EE

■ Oracle Fusion Middleware Performance Guide

A.1.1 Oracle Application Server Manageability and Diagnosability Logging
Enhancements

TopLink integrates its logs with the Oracle Application Server Manageability and
Diagnosability logging infrastructure to make TopLink messages visible to
Manageability and Diagnosability-enabled management tools like Oracle Enterprise
Manager. This allows Oracle Application Server to include TopLink log information in
end-to-end transaction tracing, log correlation, and incident generation.

TopLink Exception Error Reference

A-2 Developer's Guide for Oracle TopLink

When you deploy a TopLink- enabled application to an application server or EJB
container, TopLink JPA and TopLink CMP default to ServerLog with no log level so
that TopLink uses the configuration in j2ee-logging.xml. When you deploy a
TopLink-enabled application to Oracle Application Server, this default ensures that
TopLink log messages integrate with Oracle Application Server Manageability and
Diagnosability.

When you deploy a TopLink-enabled application outside of an EJB container, the
logging defaults revert to DefaultSessionLog and WARNING log level.

TopLink exports all its loggers to Oracle Enterprise Manager to consolidate all logging
configuration under Oracle Enterprise Manager. Logger configuration is no longer
dependent upon TopLink session name. This allows logger configuration from Oracle
Enterprise Manager even when there is no deployed TopLink session.

For more information, see the following:

■ Section 87.2.6, "Logging"

■ Section 89.4, "Configuring Logging"

A.1.2 Oracle Dynamic Monitoring System (DMS) Sensor Enhancements
TopLink provides DMS sensors to supply Manageability and Diagnosability-enabled
management tools like Oracle Enterprise Manager with advanced TopLink operational
data. This allows Oracle Application Server to provide improved TopLink application
management and optimization.

For more information, see the following:

■ Section 12.4, "Measuring TopLink Performance with the Oracle
Dynamic Monitoring System (DMS)"

■ Section 12.4.1, "How to Configure the Oracle DMS Profiler"

■ Section A.1.3, "Manageability and Diagnosability JMX Enhancements"

■ Oracle Fusion Middleware Administrator's Guide

A.1.3 Manageability and Diagnosability JMX Enhancements
TopLink integrates with Oracle Application Server MBeans to ensure that TopLink
applications are manageable using Oracle Enterprise Manager.

For more information, see the following:

■ Section 12.4.2, "How to Access Oracle DMS Profiler Data Using JMX"

■ Oracle Fusion Middleware Administrator's Guide

A.2 TopLink Exception Error Reference
This section lists the types of TopLink exceptions. For detailed information on each
exception including the likely cause of the problem and possible corrective actions, see
Oracle Fusion Middleware Error Messages Reference.

 Each TopLink exception has a code assigned to it. The code corresponds to an
exception class and includes the following information:

■ The exception number in the format of EXCEPTION [TOP-XXXX]

■ A description of the problem, taken from the raised exception

This section contains information on the following types of TopLink exceptions:

TopLink Exception Error Reference

Troubleshooting a TopLink Application A-3

■ Descriptor Exceptions

■ Concurrency Exceptions

■ Conversion Exceptions

■ Database Exceptions

■ Optimistic Lock Exceptions

■ Query Exceptions

■ Validation Exceptions

■ EJB QL Exceptions

■ Session Loader Exceptions

■ EJB Exception Factory Exceptions

■ EIS Exceptions

■ JMS Processing Exceptions

■ Default Mapping Exceptions

■ Discovery Exceptions

■ Remote Command Manager Exceptions

■ Transaction Exceptions

■ XML Conversion Exceptions

■ XML Marshal Exceptions

■ Migration Utility Exceptions

■ XML Platform Exceptions

■ Entity Manager Setup Exceptions

■ EJB JAR XML Exceptions

A.2.1 Descriptor Exceptions
DescriptorException is a development exception that is raised when insufficient
information is provided to the descriptor. The message that is returned includes the
name of the descriptor or mapping that caused the exception. If a mapping within the
descriptor caused the error, then the name and parameters of the mapping are part of
the returned message, as Example A–1 demonstrates.

Internal exception, mapping and descriptor appear only if TopLink has enough
information about the source of the problem to provide this information.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message
INTERNAL EXCEPTION: Message
MAPPING: Database mapping
DESCRIPTOR: Descriptor

Example A–1 Descriptor Exception

EXCEPTION [TOP – 75]: oracle.toplink.exceptions.DescriptorException
EXCEPTION DESCRIPTION: The reference class is not specified.

TopLink Exception Error Reference

A-4 Developer's Guide for Oracle TopLink

A.2.2 Concurrency Exceptions
ConcurrencyException is a development exception that is raised when a Java
concurrency violation occurs. Only when a running thread is interrupted, causing the
JVM to throw an InterruptedException, is an internal exception information
displayed with the error message, as Example A–2 shows.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message
INTERNAL EXCEPTION: Message

Example A–2 Concurrency Exception

EXCEPTION [TOP – 2004]: oracle.toplink.exceptions.ConcurrencyException
EXCEPTION DESCRIPTION: Signal attempted before wait on concurrency manager.
This usually means that an attempt was made to commit or roll back a transaction
before being started, or rolled back twice.

A.2.3 Conversion Exceptions
ConversionException is a development exception that is raised when a conversion
error occurs by an incompatible type conversion. The message that is returned
indicates which type cast caused the exception, as shown in Example A–3.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message
INTERNAL EXCEPTION: Message

Example A–3 Conversion Exception

EXCEPTION [TOP – 3006]: oracle.toplink.exceptions.ConversionException
EXCEPTION DESCRIPTION: object must be of even length to be converted to a
ByteArray

A.2.4 Database Exceptions
DatabaseException is a run-time exception that is raised when data read from the
database, or the data that is to be written to the database, is incorrect. The exception
may also act as a wrapper for SQLException. If this is the case, the message contains
a reference to the error code and error message, as shown in Example A–4.

This exception can occur on any database operation. If an execution of a SQL script is
involved in a database operation causing DatabaseException, the exception’s
message, accessible through the getMessage method, contains the SQL that caused
this exception.

This exception includes internal exception and error code information when the
exception is wrapping a SQLException.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message
INTERNAL EXCEPTION: Message
ERROR CODE: Error code

TopLink Exception Error Reference

Troubleshooting a TopLink Application A-5

Example A–4 Database Exception

EXCEPTION [TOP – 4002]: oracle.toplink.exceptions.DatabaseException
EXCEPTION DESCRIPTION: java.sql.SQLException: [INTERSOLV][ODBC dBase driver]
Incompatible datatypes in expression: >
INTERNAL EXCEPTION: java.sql.SQLException: [INTERSOLV][ODBC dBase driver]
Incompatible datatypes in expression: >
ERROR CODE: 3924

A.2.5 Optimistic Lock Exceptions
OptimisticLockException is a run-time exception that is raised when the row on
the database that matches the desired object is missing or when the value on the
database does not match the registered number. It is used in conjunction with the
optimistic locking feature. This applies only on an update or delete operation, as
shown in Example A–5.

For more information about optimistic locking, see the section on optimistic locking in
a stateless environment in Chapter 2, "Introduction to TopLink
Application Development". These exceptions should be handled in a try-catch block.

Format
EXCEPTION [TOP – error code]: Exception Name
EXCEPTION DESCRIPTION: Message

Example A–5 Optimistic Lock Exception

EXCEPTION [TOP – 5003]: oracle.toplink.exceptions.OptimisticLockException
EXCEPTION DESCRIPTION: The object, object.toString() cannot be deleted because it
has changed or been deleted since it was last read.

A.2.6 Query Exceptions
QueryException is a development exception that is raised when insufficient
information has been provided to the query. If possible, the message indicates the
query that caused the exception. A query is optional and is displayed if TopLink is
able to determine the query that caused this exception, as shown in Example A–6.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message
QUERY:

Example A–6 Query Exception

EXCEPTION [TOP – 6026]: oracle.toplink.exceptions.QueryException
EXCEPTION DESCRIPTION: The query is not defined. When executing a query on the
session, the parameter that takes the query is null.

A.2.7 Validation Exceptions
ValidationException is a development exception that is raised when an incorrect
state is detected or an API is used incorrectly.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

TopLink Exception Error Reference

A-6 Developer's Guide for Oracle TopLink

Example A–7 Validation Exception

EXCEPTION [TOP – 7008]: oracle.toplink.exceptions.ValidationException
EXCEPTION DESCRIPTION: The Java type javaClass is not a valid database type. The
Java type of the field to be written to the database has no corresponding type on
the database.

A.2.8 EJB QL Exceptions
EJBQLException is a run-time exception that is raised when the EJB QL string does
not parse properly, or the contents cannot be resolved within the context of the
TopLink session. The associated message typically includes a reference to the EJB QL
string that caused the problem.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–8 EJB QL Exception

EXCEPTION [TOP – 8002]: oracle.toplink.exceptions.EJBQLException
EXCEPTION DESCRIPTION: TopLink has encountered a problem while parsing the EJB QL
string.

A.2.9 Session Loader Exceptions
SessionLoaderException is a run-time exception that is raised if the session
manager encounters a problem loading session information from a sessions.xml
(for non-EJB applications) or toplink-ejb-jar.xml (for EJB applications)
properties file.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–9 Session Loader Exception

EXCEPTION [TOP – 9004]: oracle.toplink.exceptions.SessionLoaderException
EXCEPTION DESCRIPTION: The <project-xml> file MyProject was not found on the
classpath, nor on the filesystem.

A.2.10 EJB Exception Factory Exceptions
An EJB exception factory generates run-time exceptions that are raised if a container
provider specific to a given application server encounters a problem during any stage
of the life cycle of an EJB bean.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–10 EJB Exception Factory Exception

EXCEPTION [TOP – 10008]: javax.ejb.CreateException
EXCEPTION DESCRIPTION: Cannot find bean.

TopLink Exception Error Reference

Troubleshooting a TopLink Application A-7

A.2.11 Communication Exceptions
CommunicationException is a run-time exception that wraps all RMI, CORBA, or
input and output exceptions that occur.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–11 Communication Exception

EXCEPTION [TOP – 12000]: oracle.toplink.exceptions.CommunicationException
EXCEPTION DESCRIPTION: Error Sending connection service to myService.

A.2.12 EIS Exceptions
EISException is a run-time exception that is raised when invoking EIS interactions.
For more information on EIS interactions, see Section 108.9.3, "Enterprise Information
System (EIS) Interactions".

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–12 JMS Processing Exception

EXCEPTION [TOP – 17010]: oracle.toplink.eis.EISException
EXCEPTION DESCRIPTION: Output record contains an unsupported message type.

A.2.13 JMS Processing Exceptions
JMSProcessingException is a run-time exception that is raised when processing
JMS messages.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–13 JMS Processing Exception

EXCEPTION [TOP – 18001]: oracle.toplink.exceptions.JMSProcessingException
EXCEPTION DESCRIPTION: Error while processing incomming JMS message.

A.2.14 Default Mapping Exceptions
DefaultMappingException is a run-time exception that is raised when an error
occurs during OC4J CMP default mapping.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–14 Default Mapping Exception

EXCEPTION [TOP – 20002]: oracle.toplink.exceptions.DefaultMappingException
EXCEPTION DESCRIPTION: The finder method with the parameters as defined in the
ejb-jar.xml file, is not found in the home of bean.

TopLink Exception Error Reference

A-8 Developer's Guide for Oracle TopLink

A.2.15 Discovery Exceptions
 DiscoveryException is a run-time exception that is raised when
DiscoveryManager is operating.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–15 Discovery Exception

EXCEPTION [TOP – 22001]: oracle.toplink.exception.DiscoveryException
EXCEPTION DESCRIPTION: Could not join multicast group.

A.2.16 Remote Command Manager Exceptions
 RemoteCommandManagerException is a run-time exception that is raised when the
remote command module is used.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–16 Remote Command Manager Exception

EXCEPTION [TOP – 22104]: oracle.toplink.exceptions.RemoteCommandManagerException
EXCEPTION DESCRIPTION: Could not look up host name.

A.2.17 Transaction Exceptions
 TransactionException is a run-time exception that is raised when an error is
encountered during a transaction. When this occurs, the message contains a reference
to the error code and error message.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–17 Transaction Exception

EXCEPTION [TOP – 23001]: oracle.toplink.exceptions.TransactionException
EXCEPTION DESCRIPTION: Error looking up external Transaction resource under JNDI
name.

A.2.18 XML Conversion Exceptions
XMLConversionException is a run-time exception that is raised when a conversion
between TopLink instances and XML fails. This exception is used in cache
coordination that uses XML change sets.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–18 XML Conversion Exception

EXCEPTION [TOP – 25001]: oracle.toplink.exceptions.XMLConversionException
EXCEPTION DESCRIPTION: Cannot create URL for file [\\FILE_SERVER\command.xml].

TopLink Exception Error Reference

Troubleshooting a TopLink Application A-9

A.2.19 XML Marshal Exceptions
 XMLMarshalException is raised when an error is encountered during the XML
marshalling process.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–19 XML Marshal Exception

EXCEPTION [TOP – 25001]: oracle.toplink.exceptions.XMLMarshalException
EXCEPTION DESCRIPTION: Error while trying to create session.

A.2.20 Migration Utility Exceptions
 MigrationUtilityException is a run-time exception that is raised when an error
is encountered during the use of the TopLink migration utility.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–20 Migration Utility Exception

EXCEPTION [TOP – 26002]: oracle.toplink.exceptions.MigrationUtilityException
EXCEPTION DESCRIPTION: The program security manager prevents the migration utility
from creating a JAR class loader for the JAR file.

A.2.21 XML Platform Exceptions
 XMLPlatformException is raised when an error related to XML platform is
encountered.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–21 EJB JAR XML Exception

EXCEPTION [TOP – 27001]: oracle.toplink.platform.xml.XMLPlatformException
EXCEPTION DESCRIPTION: The XML platform class ClassName was not found.

A.2.22 Entity Manager Setup Exceptions
 EntityManagerSetupException is raised when an error is encountered during
the process of setting up an entity manager.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–22 Entity Manager Setup Exception

EXCEPTION [TOP – 28001]: oracle.toplink.exceptions.EntityManagerSetupException
EXCEPTION DESCRIPTION: Error while trying to create session.

TopLink Workbench Error Reference

A-10 Developer's Guide for Oracle TopLink

A.2.23 EJB JAR XML Exceptions
 EJBJARXMLException is a run-time exception that is raised at deployment time
when the ejb-jar.xml file is read and the required concrete EJB classes code is
generated.

Format
EXCEPTION [TOP – error code]: Exception name
EXCEPTION DESCRIPTION: Message

Example A–23 EJB JAR XML Exception

EXCEPTION [TOP – 72000]: oracle.toplink.exceptions.EJBJarXMLException
EXCEPTION DESCRIPTION: Error reading ejb-jar.xml file.

A.3 TopLink Workbench Error Reference
TopLink checks each project, descriptor, and mapping to ensure that you have
properly defined the required settings. Errors and warnings are displayed in the
Problems window (see Section 5.3.5, "How to Use the Problems Window") of TopLink
Workbench.

You can also create a project status report (see Section 116.2.3, "How to Generate the
Project Status Report") that contains all errors in a specific project.

This section contains information on the following Oracle TopLink Workbench errors:

■ Miscellaneous Errors (1 – 89, 106 – 133)

■ Project Errors (100 – 102)

■ Descriptor Errors (200 – 399)

■ Mapping Errors (400 – 483)

■ Table Errors (500 – 610)

■ XML Schema Errors (700 – 706)

■ Session Errors (800 – 812)

This section also includes information on the following:

■ Common Classpath Problems

■ Database Connection Problems

A.3.1 Miscellaneous Errors (1 – 89, 106 – 133)
This section lists TopLink Workbench error codes, information about the likely cause
of the problem, and a possible corrective action.

13: No class indicator field should be defined for the abstract class [class].
Cause: Abstract classes should not be included or contain an Indicator Value on a
descriptor’s Inheritance tab.

Action: You must either remove the Include option for the class on the
Inheritance tab, or remove the abstract modifier option on the descriptor’s Class
Info – Class tab. See Section 16.2.2, "Descriptors and Inheritance" and Chapter 119,
"Configuring a Descriptor".

54: No class indicator field is selected for this root class.

TopLink Workbench Error Reference

Troubleshooting a TopLink Application A-11

Cause: You selected the Use Class Indicator Field option for the root descriptor in
the inheritance hierarchy, but did not specify an indicator field for the root and its
children.

Action: Use the Field Selection list on the Inheritance tab for the root class. See
Section 16.2.2, "Descriptors and Inheritance" and Chapter 119, "Configuring a
Descriptor".

55: No class indicator value is defined for this included descriptor [class]
Cause: You selected the Use Class Indicator Dictionary option for the root
descriptor in the inheritance hierarchy, but did not specify an indicator value for
the root and its children.

Action: Use the Indicator Type list on the Inheritance tab for the root class. See
Section 16.2.2, "Descriptors and Inheritance" and Chapter 119, "Configuring a
Descriptor".

89: Root class does not include an indicator mapping for this descriptor.
Cause: The root class in the inheritance hierarchy is set to the Use Class Indicator
Dictionary option. The dictionary does not contain an indicator value for this
child class.

Action: Select an Indicator Type on the Inheritance tab of the root class that
includes the child types. See Section 16.2.2, "Descriptors and Inheritance" and
Chapter 119, "Configuring a Descriptor".

106: Mulitple mapping [mappings] write to the database field [db field] .
Cause: One database field is populated by more than one mapping

Action: Ensure the "one mapping per field" ratio for write operations.

118: The selected parent descriptor for this descriptor's inheritance policy does not
have an associated inheritance policy.
Cause: Missing descriptor’s inheritance policy.

Action: Ensure that the descriptor you are using has a valid associated inheritance
policy (InheritancePolicy). See Section 16.2.2, "Descriptors and Inheritance"
and Section 119.21, "Configuring Inheritance for a Parent (Root) Descriptor".

123: This root class has no class indicator mappings for its hierarchy.
Cause: You created an inheritance policy with the Use Class Indicator Dictionary
option but did not specify the indicator values for all subclasses.

Action: Specify the indicator values for all subclasses on the descriptor’s
Inheritance tab. See Section 16.2.2, "Descriptors and Inheritance" and
Section 119.20, "Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor".

126: Writable mappings defined for the class indicator field [field name].
Cause: You selected the Use Class Indicator Field option for the root descriptor in
the inheritance hierarchy, but the mappings for this field are writable.

Action: Select a Use Class Indicator Field on the descriptor’s Inheritance tab that
does not contain any writable mappings. See the following:

Note: TopLink displays a list of each subclass and indicator value
if you have identified the subclasses’ parent descriptor.

TopLink Workbench Error Reference

A-12 Developer's Guide for Oracle TopLink

■ Section 16.2.2, "Descriptors and Inheritance"

■ Chapter 119, "Configuring a Descriptor"

■ Section 119.20, "Configuring Inheritance for a Child (Branch or Leaf) Class
Descriptor"

■ Section 119.23, "Configuring Inherited Attribute Mapping in a Subclass"

132: The implemented interface [interface] is not an interface.
Cause: You selected a noninterface (a class) as an implemented interface.

Action: Ensure that you select an interface. See Section 16.2.2, "Descriptors and
Inheritance" and Chapter 119, "Configuring a Descriptor".

133: The superclass for [class] is an interface, classes cannot extend interfaces.
Cause: You selected an interface instead of a class as a parent for your child class.

Action: Use the Inheritance tab for the root class. See Section 16.2.2, "Descriptors
and Inheritance" and Chapter 119, "Configuring a Descriptor".

A.3.2 Project Errors (100 – 102)
This section lists TopLink Workbench project errors.

100: The project caches all statments by default for queries, but does not bind all
parameters.
Cause: A named query that caches statements must also bind parameters.

Action: On the Named Queries – Options tab, change the Cache Statement field
to False, or change the Bind Parameters field to True. See Section 119.7.1.9,
"Configuring Named Query Options".

101: The project uses a custom sequence table, but the counter field is not specified.
Cause: On the project’s Sequencing tab, you selected Use Custom Sequence
Table, but did not complete the Counter Field field.

Action: Select the field to use as the Counter Field for this sequence table. See
Section 20.3, "Configuring Sequencing at the Project Level" for details.

102: The project uses a custom sequence table, but the name field is not specified.
Cause: On the project’s Sequencing tab, you selected Use Custom Sequence
Table, but did not complete the Name Field field.

Action: Select the field to use as the Name Field for this sequence table. See
Section 20.3, "Configuring Sequencing at the Project Level" for details.

A.3.3 Descriptor Errors (200 – 399)
This section lists TopLink Workbench descriptor errors.

200: The descriptor’s class is not public.
Cause: The descriptor must use a public access modifier.

Action: On the descriptor’s Class Info – Class tab, change the Access Modifier
option to Public. See Section 5.7.2, "How to Configure Classes" and Section 5.7.2.2,
"Configuring Class Modifiers".

201: This class is a subclass of a final class.
Cause: If you select the Final option on the descriptor’s Class Info – Class tab for
a class, then the class cannot contain subclasses.

TopLink Workbench Error Reference

Troubleshooting a TopLink Application A-13

Action: See Section 5.7.2, "How to Configure Classes" and Section 5.7.2.1,
"Configuring Class Information".

210: Two methods [method name1] [method name2] cannot have the same signature.
Cause: You created methods with identical signatures.

Action: On the Class Info – Methods tab, change the information for one of the
methods. See Section 5.7.2, "How to Configure Classes" and Section 5.7.2.8,
"Adding Methods".

211: The format for [date] must be in the format HH-MM-SS or HH:MM:SS. Literal
argument of expression [line number] on query [query name] is invalid.
Cause: You attempted to use an invalid argument on a query.

Action: Use HH-MM-SS or HH:MM:SS format. See Section 17.2.6.2, "Type
Conversion Converter" and Section 121.10, "Configuring a Type Conversion
Converter".

212: The format for [date] must be in the format YYYY/MM/DD HH:MM:SS or
YYYY-MM-DD HH:MM:SS. Literal argument of expression [line number] on
query [query name] is invalid.
Cause: You attempted to use an invalid argument on a query.

Action: Use YYYY/MM/DD HH:MM:SS or YYYY-MM-DD HH:MM:SS format.
See Section 17.2.6.2, "Type Conversion Converter" and Section 121.10,
"Configuring a Type Conversion Converter".

213: The format for [date] must be in the format YYYY/MM/DD or YYYY-MM-DD.
Literal argument of expression [line number] on query [query name] is invalid.
Cause: You attempted to use an invalid argument on a query.

Action: Use YYYY/MM/DD or YYYY-MM-DD format. See Section 17.2.6.2, "Type
Conversion Converter" and Section 121.10, "Configuring a Type Conversion
Converter".

214: The format for [date] must be in the format YYYY/MM/DD HH:MM:SS,
YYYY/MM/DD, or YYYY-MM-DD. Literal argument of expression [line number]
on query [query name] is invalid.
Cause: You attempted to use an invalid argument on a query.

Action: Use YYYY/MM/DD HH:MM:SS, YYYY/MM/DD, or YYYY-MM-DD
format. See Section 17.2.6.2, "Type Conversion Converter" and Section 121.10,
"Configuring a Type Conversion Converter".

215: The format for [argument] must be an even length HEX string. Literal argument
of expression [line number] on query [query name] is invalid.
Cause: You attempted to use an invalid argument on a query.

Action: Use HEX format. See Section 17.2.6.2, "Type Conversion Converter".

216: The format for [argument] must be a string. Literal argument of expression [line
number] on query [query name] is invalid.
Cause: You attempted to use an invalid argument on a query.

Action: Use a String. See Section 17.2.6.2, "Type Conversion Converter".

217: Literal argument of expression [line number] on query [query name] is invalid.
The format is illegal.
Cause: You attempted to use an invalid argument on a query.

Action: Use a valid format.

TopLink Workbench Error Reference

A-14 Developer's Guide for Oracle TopLink

220: An aggregate shared by multiple source descriptors cannot have one-to-many or
many-to-many mappings.
Cause: You attempted to create multiple one-to-many and many-to-many, or
one-to-one mappings in which the target is the aggregate. Aggregate descriptors
that are shared by multiple source descriptors cannot have mappings that contain
a target object that references the descriptor.

Action: For aggregate descriptors that are shared by multiple source descriptors,
remove mappings that contain a target object that references the descriptor. See
Part VII, "Descriptors" and Section 22.2.1.2, "Creating Relational Aggregate
Descriptors".

221: Classes cannot reference an aggregate target with one-to-one, one-to-many, or
many-to-many mappings.
Cause: You tried to select an aggregate descriptor as a reference.

Action: Do not select an aggregate descriptor as the Reference Descriptor for a
one-to-one, one-to-many, or many-to-many mapping. See Part VII, "Descriptors"
and Section 22.2.1.2, "Creating Relational Aggregate Descriptors".

225: The implementor [implementor name] no longer implements this interface.
Cause: One descriptor listed as an implementation method for this interface
descriptor no longer implements this descriptor’s interface.

Action: Either remove the descriptor from the list of implementation methods or
alter the descriptor’s class so that it implements this descriptor’s interface. See
Part VII, "Descriptors" and Section 22.2.1.3, "Creating Relational Interface
Descriptors".

230: No primary table is specified.
Cause: The descriptor is not associated with a database table.

Action: On the descriptor’s Descriptor Info tab, use the Associated Table field to
select a primary table. See Section 23.2, "Configuring Associated Tables".

231: No primary key(s) specified in [table name] table.
Cause: You did not specify a primary key for each database table. When
importing tables from a database into TopLink Workbench, the primary key
information will be retained only if the JDBC driver supports the
getPrimaryKeys method.

Action: Ensure that a primary key is specified for each descriptor on the
Descriptor Info tab. See Section 23.2, "Configuring Associated Tables".

232: The following primary key field is unmapped [field name].
Cause: The primary key field does not have a writable mapping.

Action: Ensure that the primary key(s) are mapped. See Section 23.2, "Configuring
Associated Tables".

233: The number of primary keys does not match the number of primary keys on the
parent.
Cause: In an inheritance hierarchy, the child class does not have the same number
of primary keys as the parent class.

Action: Ensure that the parent and child class have the same number of primary
keys on the descriptor’s Descriptor Info tab. See Section 23.2, "Configuring
Associated Tables".

234: The primary keys do not match parent’s primary keys.

TopLink Workbench Error Reference

Troubleshooting a TopLink Application A-15

Cause: In an inheritance hierarchy, the child’s primary key(s) does not match the
root’s primary key(s).

Action: Ensure that each child’s Primary Key on the Descriptor Info tab matches
the parent’s primary key. Ensure that the parent and child class have the same
primary keys on the descriptor’s Descriptor Info tab. See Section 23.2,
"Configuring Associated Tables".

235: The following primary field field does not have writable mappings: [field
name].
Cause: You attempted to have multiple mappings write to the same database
field.

Action: Ensure that each database field has a single, writable mapping. See
Chapter 23, "Configuring a Relational Descriptor".

236: No sequence field is selected.
Cause: You selected Use Sequencing on a descriptor’s Descriptor Info tab, but
did not specify the sequence information.

Action: Specify a Name, Table, and Field. See Section 23.3, "Configuring
Sequencing at the Descriptor Level".

237: No sequence name is selected.
Cause: You selected Use Sequencing on a descriptor’s Descriptor Info tab but
did not specify the sequence information.

Action: Specify a Name, Table, and Field. See Section 23.3, "Configuring
Sequencing at the Descriptor Level".

238: No sequence table is selected.
Cause: You selected Use Sequencing on a descriptor’s Descriptor Info tab but
did not specify the sequence information.

Action: Specify a Name, Table, and Field. See Section 23.3, "Configuring
Sequencing at the Descriptor Level".

239: The selected sequence table is not one of the descriptor’s associated tables.
Cause: The tabled used for sequencing is not associated with the descriptor.

Action: You must either associate the sequencing table with the descriptor, or
select a table that is already associated with the descriptor. SeeSection 23.3,
"Configuring Sequencing at the Descriptor Level" and Section 23.2, "Configuring
Associated Tables".

240: Two queries [query name1] [query name2] cannot have the same signature.
Cause: Two queries for this descriptor share the same signature (query name +
parameter names). This is not allowed.

Action: You must either remove one of the queries, rename one of the queries, or
change the parameters so that the signatures no longer match.

241: The query [query name] has Cache Statement set to true, but does not bind
parameters.
Cause: A named query that caches statements does not bind parameters. It must
do so.

Action: On the Named Queries – Options tab, either change the Cache
Statements field to False, or change the Bind Parameters field to True. See
Section 119.7.1.9, "Configuring Named Query Options".

TopLink Workbench Error Reference

A-16 Developer's Guide for Oracle TopLink

242: The query [query name] does not maintain cache but does refresh the remote
identity map results.
Cause: The query has Refresh Remote Identity Map selected, but does not have
Maintain Cache selected.

Action: You must either select Maintain Cache for the descriptor, or deselect
Refresh Remote Identity Map. See Section 119.7.1.9, "Configuring Named Query
Options".

243: The query [query name] does not maintain cache but does refresh the identity
map results.
Cause: The query has Refresh Identity Map selected but does not have Maintain
Cache selected.

Action: You must either select Maintain Cache for the descriptor, or deselect
Refresh Identity Map. See Section 119.7.1.9, "Configuring Named Query Options".

245: The query [query name] refreshes identity map results but does not refresh
remote identity map results.
Cause: Refresh Identity Map Results is selected for the query, but Refresh
Remote Identity Map Results is not.

Action: You must either select Refresh Remote Identity Maps or deselect Refresh
Identity Maps. See Section 119.7.1.9, "Configuring Named Query Options".

246: The query key [query key] does not have an associated database field.
Cause: The query key is missing an associated database field. Each query key
must be associated with a database field.

Action: On the Query Keys tab, use the Field option to select a database field for
the query key. See Section 119.10, "Configuring Query Keys".

247: The database field selected for query key [query key] does not exist on this
descriptor's associated tables.
Cause: The database field selected for this query key does not exist on this
descriptor’s associated tables. Each database field associated with a query key
must exist on database table associated with the query key’s descriptor.

Action: You must either change the database field associated with the query key,
or associate the descriptor with a database table that includes the database field
associated with the query key. See Section 119.10, "Configuring Query Keys".

248: The expression [line number] on query [query name] is invalid because a
parameter has not been specified.
Cause: One of the arguments in the query expression is missing or invalid.

Action: Edit the query and ensure that all query keys and parameters have been
specified. See Section 119.10, "Configuring Query Keys".

249: The expression [line number] on query [query name] is invalid because a query
key has not been specified.
Cause: One of the arguments in the query expression is missing or invalid.

Action: Edit the query and ensure that all query keys and parameters have been
specified. See Section 119.10, "Configuring Query Keys".

250: The expression [line number] on query [query name] is invalid because the
chosen query key is not a valid mapping type in an expression.
Cause: One of the arguments in the query expression is invalid.

TopLink Workbench Error Reference

Troubleshooting a TopLink Application A-17

Action: Edit the query and ensure that all query keys and parameters have been
specified. See Section 119.10, "Configuring Query Keys".

251: The expression [line number] on query [query name] is invalid. When querying
on a reference mapping, only unary operators (Is Null, Not Null) are supported.
Cause: You created an expression node that includes a reference mapping with an
invalid operator.

Action: On the Expression Builder dialog box, select the node and change the
Operator field to IS NULL or NOT NULL.

252: The query [query name] has no attribute chosen for the ordering attribute at
index [index].
Cause: The ordering attribute is missing from the query.

Action: Edit the query and add an ordering attribute. See Section 119.7.1.4,
"Configuring Read All Query Order".

253: The ordering attribute {0} for query {1} is not valid. ReadAllQuery ordering
items must be either query keys or direct-to-field mappings.
Cause: The ordering attribute is invalid.

Action: Edit the query and ensure that ordering attribue is a query key or has a
direct-to-field mapping. See Section 119.7.1.4, "Configuring Read All Query
Order".

254: The query {0} has no attribute chosen for the joined attribute at index {1}.
Cause: The joined attribute is missing from the query.

Action: Edit the query and add a joined attribute. See Section 119.7.1.5,
"Configuring Named Query Optimization".

255: The joined attribute {0} for query {1} is not valid. Joined attributes must be 1-1,
1-m, m-m, direct collection, or aggregate collection mappings.
Cause: The joined attribute is invalid.

Action: Edit the query and ensure that joined attribute has a one-to-one,
one-to-many, many-to-many, direct collection, or aggregate collection mapping.
See Section 119.7.1.5, "Configuring Named Query Optimization".

256: The query {0} has no attribute chosen for the batch read attribute at index {1}.
Cause: The batch read attribute is missing from the query.

Action: Edit the query and add a batch read attribute. See Section 119.7.1.5,
"Configuring Named Query Optimization".

257: The batch read attribute {0} for query {1} is not valid. Batch read attributes must
be 1-1, 1-m, m-m, direct collection, aggregate collection, or direct-to-field
mappings.
Cause: The batch read attribute is invalid.

Action: Edit the query and ensure that batch attribute has a one-to-one,
one-to-many, many-to-many, direct collection, aggregate collection or
direct-to-field mapping. See Section 119.7.1.5, "Configuring Named Query
Optimization".

258: The query {0} has no attribute chosen for the grouping attribute at index {1}.
Cause: The grouping attribute is missing from the query.

Action: Edit the query and add a grouping attribute. See Section 119.7.1.7,
"Configuring Named Query Group/Order Options".

TopLink Workbench Error Reference

A-18 Developer's Guide for Oracle TopLink

259: The query {0} has no attribute chosen for the report attribute {1}.
Cause: The report query attribute is missing from the query.

Action: Edit the query and add a report query attribute. See Section 119.7.1.7,
"Configuring Named Query Group/Order Options".

260: The report attribute {0} for query {1} is not valid. Report query attributes must
be either query keys or direct mappings.
Cause: The report attribute is invalid.

Action: Edit the query and ensure that report attribute is a query key or has a
direct-to-field mapping. See Section 119.7.1.7, "Configuring Named Query
Group/Order Options".

262: The format for {2} must be between 0 and 127 inclusive. Literal argument of
expression (line {0}) on query {1} is invalid.
Cause: The literal value of the expression is invalid.

Action: Edit the literal value of second argument in Expression Builder. The literal
value of a Byte type must be between 1 and 127. See Section 110.7, "Creating an
Expression".

263: The format for {2} must be either 'true' or 'false'. Literal argument of expression
(line {0}) on query {1} is invalid.
Cause: The literal value of the expression is invalid.

Action: Edit the literal value of Second Argument in Expression Builder. The
literal value of a Boolean type must be true or false. See Section 110.7, "Creating an
Expression".

264: The format for {2} must be a single character. Literal argument of expression
(line {0}) on query {1} is invalid.
Cause: The literal value of the expression is invalid.

Action: Edit the literal value of second argument in Expression Builder. The literal
value of a Character type must be a single character. See Section 110.7, "Creating
an Expression".

265: The format for {2} must be between {3} and {4}. Literal argument of expression
(line {0}) on query {1} is invalid.
Cause: The literal value of the expression is invalid.

Action: Edit the literal value of second argument in Expression Builder. The literal
value must be between 3 and 4. See Section 110.7, "Creating an Expression".

266: The format for {2} must be a string. Literal argument of expression (line {0}) on
query {1} is invalid.
Cause: The literal value of the expression is invalid.

Action: Edit the literal value of second argument in Expression Builder. The literal
value of a String type must be a string. See Section 110.7, "Creating an Expression".

267: The format for {2} must contain only digits, '-', and '.'. Literal argument of
expression (line {0}) on query {1} is invalid.
Cause: The literal value of the expression is invalid..

Action: Edit the literal value of second argument in Expression Builder. The literal
value of a Double or Float type must contain digits, ' - ', and ' . '. See Section 110.7,
"Creating an Expression".

TopLink Workbench Error Reference

Troubleshooting a TopLink Application A-19

268: The format for {2} must contain only digits, '-', and '.'. Literal argument of
expression (line {0}) on query {1} is invalid.
Cause: The literal value of the expression is invalid.

Action: Edit the literal value of second argument in Expression Builder. The literal
value of a Double or Float type must contain digits, ' - ', and ' . '. See Section 110.7,
"Creating an Expression".

269: The format for {2} must be in the format YYYY/MM/DD or YYYY-MM-DD.
Literal argument of expression (line {0}) on query {1} is invalid.
Cause: The literal value of the expression is invalid.

Action: Edit the literal value of second argument in Expression Builder. The literal
value of a Date type must be in YYYY/MM/DD or YYYY-MM-DD format. See
Section 110.7, "Creating an Expression".

270: No schema context is specified.
Cause: Each descriptor in an XML or EIS project must be associated with an XML
schema context.

Action: Select the EIS or XML descriptor in the Navigator and complete the
Schema Context field on the Descriptor Info tab.

271: The descriptor represents a document root object, but no default root element is
chosen.
Cause: Each root descriptor must have a default root element.

Action: On the descriptor’s Descriptor Info tab, complete the Default Root
Element field.

280: A descriptor that represents \"anyType\" cannot support inheritance.
Cause: The descriptor was supporting inheritance.

Action: Edit the descriptor properties and remove the inheritance support.

281: A descriptor that represents \"anyType\" may contain only a single Any
(Object or Collection) mapping.
Cause: The descriptor was supporting more than one Any (Object or Collection)
mapping.

Action: Edit the descriptor properties and ensure that descriptor supports only
one Any (Object or Collection) mapping.

282: A default root element type has been selected and the default root element is
not. Either select a default root element or clear the default root element type
Cause: The default root element was not selected.

Action: Select the default root element or clear the default root element type. See
Section 52.4, "Configuring Default Root Element".

290: No primary keys specified.
Cause: Although you have associated the descriptor with a database table, you
have not identified the primary keys.

Action: Use the Primary Keys area of the descriptor’s Descriptor Info tab to
select the primary keys for the descriptor.

291–304: The event policy’s [method type] method is no longer a visible member of
this descriptor’s associated class.

TopLink Workbench Error Reference

A-20 Developer's Guide for Oracle TopLink

Cause: You changed the class hierarchy within the project, causing the method to
no longer be visible to the class.

Action: Ensure that the selected method is visible to the class.

305: The write-lock field is stored in an object, but there is not a writable mapping
to the field.
Cause: If the write lock field is stored in object, there must be a non-read-only
mapping to it.

Action: On the mapping’s General tab, ensure that Read-Only is not selected.

306: Database fields specified for Selected Fields type Locking Policy must be
mapped: [field name]
Cause: You selected an unmapped database field for a descriptor’s locking policy.

Action: On the descriptor’s Locking tab, ensure that you have selected a mapped
database field as the Selected Field. See Section 119.26, "Configuring Locking
Policy".

307: Database fields specified for Selected Fields type Locking Policy must not be
primary key fields: [field name]
Cause: The database fields you selected for the optimistic locking policy (by
fields) contains the primary keys for the database table.

Action: In the By Fields area of the descriptor’s Locking tab, select different
fields. See Section 119.26, "Configuring Locking Policy".

308: Version locking is chosen as the Locking Policy, but the field is not specified.
Cause: If you select to use version locking with an optimistic locking policy, you
must identify which database field to use for version control.

Action: Use the Database Field field on the descriptor’s Locking tab to select a
field to use for version control. See Section 119.26, "Configuring Locking Policy".

309: The Version Locking database field selected does not exist on this descriptor’s
associated tables.
Cause: The database field you selected for optimistic version locking does not
exist on the descriptor’s associated table.

Action: You must either select a different database field on the descriptor’s
Locking tab, or associate the descriptor with a different database table. See
Section 119.26, "Configuring Locking Policy".

 310: Database fields specified for Selected Fields type Locking Policy do not exist
on this descriptor's associated tables: [field name]
Cause: The database fields you selected for the optimistic locking policy (by
fields) do not exist on the descriptor’s associated table.

Action: You must either select a different database field on the descriptor’s
Locking tab, or associate the descriptor with a different database table. See
Section 119.26, "Configuring Locking Policy".

311: The method you have specified for the instantiation policy's method on this
descriptor is no longer a visible member of this class.
Cause: The method selected as the instantiation method has either been removed,
or its visibility has been reduced so that it is no longer publicly visible.

Action: Deselect this method as the instantiation method. See Section 119.26,
"Configuring Locking Policy".

TopLink Workbench Error Reference

Troubleshooting a TopLink Application A-21

312: The method you have specified for the instantiation policy’s factory
instantiation method on this descriptor is no longer a visible member of this
class.
Cause: The method selected as the factory instantiation method has either been
removed, or its visibility reduced so that it is no longer publicly visible.

Action: Deselect this method as the factory instantiation method. See
Section 119.28, "Configuring Instantiation Policy".

313: The method you have specified for the instantiation policy's factory method on
this descriptor is no longer a visible member of this class.
Cause: The method selected as the factory method has either been removed, or its
visibility reduced so that it is no longer publicly visible.

Action: Deselect this method as the factory method. See Section 119.28,
"Configuring Instantiation Policy".

314: "Use factory" is specified for the Instantiation policy, but all required
information is not specified.
Cause: You selected the Use Factory option on the descriptor’s Instantiation
Policy tab, but did not specify the Factory Class, Factory Method, or Instantiation
Method fields.

Action: Complete the Factory Class, Factory Method, or Instantiation Method
fields on the descriptor’s Instantiation tab. See Section 119.28, "Configuring
Instantiation Policy".

315: "Use method" is selected for the Instantiation policy, but no method is selected.
Cause: You selected the Use Method option on the descriptor’s Instantiation
Policy tab, but did not specify the field.

Action: Select the Method on the descriptor’s Instantiation tab. See
Section 119.28, "Configuring Instantiation Policy".

 316: The class does not have an accessible zero argument constructor.
Cause: No accessible zero argument constructor exists for the class associated
with this descriptor.

Action: Make the zero argument constructor accessible if it exists, or create a
accessible zero argument constructor if it doesn't exist.

317: No method was specified for the copying policy.
Cause: You specified that the descriptor should use a specific clone method for
copying, but you did not select a method.

Action: Complete the Use Clone Method field on the descriptor’s Copying tab to
select a method.

318: The method specified for the copy policy on this descriptor is no longer a
visible member of this class.
Cause: You changed the class hierarchy within the project, causing the copy
policy to no longer be visible to the class.

Action: Ensure that the copy policy is visible to the class.

319: Primary keys do not match across associated tables and no reference(s)
specified in multiple table policy information.
Cause: You attempted to associate multiple tables using a primary key.

TopLink Workbench Error Reference

A-22 Developer's Guide for Oracle TopLink

Action: Primary key field names must match across associated tables, or
references must be defined from the base table to each derived table.

320: The multiple table reference should be defined from the base table [table
name] to the derived table.
Cause: This descriptor has Inheritance and Multitable advanced properties
defined on it.

Action: The multiple table relationship that is defined between the base class'
table and this derived class' table must be defined from base to derived.

321: The multiple table reference should not be defined on the database.
Cause: When using multitables with differently named primary keys, you must
set a reference from the TOP table to the BOTTOM table. This reference must not
be an actual constraint on the database.

Action: Select the table in which this is defined, and deselect the On Database
option.

 322: A class containing the desired after loading method should be specified.
Cause: You added an after-load method to a descriptor, but you did not specify a
class.

Action: Complete the After Load tab. See Section 119.35, "Configuring
Amendment Methods".

 323: An after-load method must be specified.
Cause: You added an after-load method to a descriptor, but did not select an
amendment method.

Action: Complete the After Load tab. See Section 119.35, "Configuring
Amendment Methods".

324: An interface class must be specified for the interface alias.
Cause: You added an interface alias to a descriptor, but did not select an
amendment method.

Action: Complete the Interface Alias tab.

325: The inheritance hierarchy originating in this descriptor cannot contain both
aggregate and nonaggregate child descriptors.
Cause: Aggregate and class descriptors cannot be in the same inheritance
hierarchy.

Action: Ensure that the inheritance hierarchy contains either aggregate or
nonaggregate children, but not both.

 326: The inheritance hierarchy originating in this descriptor cannot contain both
root and composite child descriptors.
Cause: There is a mixture of root and composite descriptors among the
descendents of this descriptor.

Action: Make all descendents of this descriptor the same type by either making
them all root, or making them all composite. You can do this by removing the
differing descriptor from the hierarchy, or changing their type to be consistent
with the other descriptors in the hierarchy.

330: The returning policy insert fields do not exist on this descriptor's associated
tables: [field name]

TopLink Workbench Error Reference

Troubleshooting a TopLink Application A-23

Cause: The field you selected on the descriptor’s Returning tab does not exist on
the database table associated with the descriptor.

Action: Select a different database table in the Insert area of the descriptor’s
Returning tab.

 331: The returning policy update field [field name] does not exist on this
descriptor's associated tables.
Cause: The field you selected on the descriptor’s Returning tab does not exist on
the database table associated with the descriptor.

Action: Select a different database table in the Update area of the descriptor’s
Returning tab.

 350: Descriptors with Unknown Primary Keys must use sequencing.
Cause: Unknown Primary Key Class is selected for this descriptor, but the
descriptor does not use sequencing.

Action: Change the descriptor so that it uses sequencing, or so that it no longer
uses an unknown primary key class.

A.3.4 Mapping Errors (400 – 483)
This section lists TopLink Workbench mapping errors.

400: Method accessors have not been selected.
Cause: You selected Use Method Accessing for a mapping, but you did not select
a method.

Action: You must select a Get and Set method on the mapping’s General tab. See
Section 121.6, "Configuring Method or Direct Field Accessing at the Mapping
Level".

401, 402: The [get/set access method] method for this mapping’s method accessing
field is no longer visible to this descriptor.
Cause: You changed the class hierarchy within the project, causing the method
access type (get or set) to no longer be visible to the class.

Action: Ensure that the selected method is visible to the class.

403: Mappings for EJB 2.0 CMP descriptors that use Value Holder Indirection must
not use method accessing.
Cause: You cannot use method accessing on mappings for EJB 2.0 CMP
descriptors that use ValueHolder Indirection.

Action: Because EJB attributes are code-generated, reference mappings should not
be set to use method access. The attributes are code-generated to be of type
ValueHolder but the abstract methods are defined to return the local interface
type of the related bean.

404: Mapping references a write-lock field, but it is not read-only.
Cause: You specified a locking policy for a descriptor, but one of the attribute
mappings is not read-only.

Action: Select the Read Only option on the mapping’s General tab.

410: No direct field is specified.
Cause: For direct collection mappings, you must specify the direct collection
information.

Action: Select a Target Table and Direct Field that the direct collection specifies.

TopLink Workbench Error Reference

A-24 Developer's Guide for Oracle TopLink

 415: No direct key field is specified.
Cause: For direct map mappings, you must specify a direct key field in the
reference table that stores the primitive data value of the map key.

Action: On the direct map mapping’s General tab, select a Direct Key Field. See
Section 38.3, "Configuring Direct Key Field".

420: No database field is selected.
Cause: You created a direct-to-field or type conversion mapping without selecting
a database field.

Action: For attributes with direct-to-field mappings, you must specify a Database
Field on the mapping’s General tab. For attributes with type conversion
mappings, you must specify a Database Field on the mapping’s General tab.

 421: The selected database field does not exist on this descriptor's associated tables.
Cause: The database field mapped to an attribute is not included in the table
associated with the attribute’s descriptor.

Action: Ensure that the Database Field field on a mappings General tab is
included in the table that you associated with the attribute’s descriptor. See
Section 23.2, "Configuring Associated Tables" and Section 28.3, "Configuring a
Database Field".

430, 431: No null value type has been selected.
Cause: You selected to Use Default Value When Database Field is Null for a
mapping, but did not specify the value.

Action: Specify a default Type or Value, or both on the mapping’s General tab.
See Section 121.5, "Configuring a Default Null Value at the Mapping Level".

This message may also appear after using the Package Rename tool when
upgrading an older TopLink Workbench project.

 440: XML type mappings are supported only on the Oracle9i Platform.
Cause: You created a Direct to XML Type mapping in relational project that uses a
non-Oracle9i database.

Action: Select an Oracle9i platform as the database platform for the data source.
See Section 20.2, "Configuring Relational Database Platform at the Project Level".

450: No reference descriptor is selected.
Cause: You created a mapping, but did not specify the reference descriptor

Action: You must select a Reference Descriptor for each relationship mapping on
the mapping’s General tab.

451: [descriptor name]references [descriptor name], which is not active.
Cause: You tried to select an inactive descriptor as a Reference Descriptor on the
mapping’s General tab.

Action: You must either select a new Reference Descriptor, or make the
descriptor active.

460: No table reference is selected.
Cause: You created a relationship mapping, but did not specify a reference table.

Action: Select (or create) a table reference for each relationship mapping on the
mapping’s Table Reference tab.

 461: Table reference is invalid.

TopLink Workbench Error Reference

Troubleshooting a TopLink Application A-25

Cause: The table reference selected for this mapping is invalid.

Action: Select a different table reference for this mapping.

462: The reference [table reference] does not have any field associations.
Cause: You selected a table reference for a mapping, but did not add a key pair.

Action: You must specify source and target key pairs for the reference.

463: A key pair has not been completely specified for a reference.
Cause: You created a table reference without a key pair.

Action: You must specify a foreign key reference for the database table. Use the
database table’s Reference tab to add a key pair.

 464: No relationship partner is specified.
Cause: You selected the Maintains Bidirectional Relationship option for a
relationship mapping, but did not select a mapping to use as the relationship
partner.

Action: Select a mapped attribute (from the reference descriptor) for this
relationship. See Section 121.18, "Configuring Bidirectional Relationship".

 465: The relationship partner must be a one-to-one, one-to-many, or many-to-many
mapping.
Cause: You selected an invalid attribute as the Relationship Partner in a
bidirectional relationship.

Action: In the Relationship Partner field, select a one-to-one, one-to-many, or
many-to-many mapping. See Section 121.18, "Configuring Bidirectional
Relationship".

 466: The specified relationship partner mapping does not specify this mapping as
its own relationship partner.
Cause: Maintains Bidirectional Relationship is selected for this mapping, but the
mapping selected as the relationship partner does not have this mapping selected
as its relationship partner.

Action: You must either select a different mapping for this mappings relationship
partner, which has this mapping selected as it bidirectional relationship partner, or
select this mapping as the bidirectional relationship partner of the mapping
selected as the bidirectional relationship partner for this mapping.

 467: The chosen reference descriptor is not a valid reference descriptor for this
mapping.
Cause: The descriptor selected as the reference descriptor for this mapping is not
a valid reference descriptor.

Action: Select a valid reference descriptor for this mapping.

 470: No container class is selected.
Cause: No container class has been selected for this collection mapping.

Action: Select a Container class for this Collection mapping.

 471: The container policy uses a Collection class, but the container class is not a
Collection.
Cause: The selected container class for this collection mapping is not a Collection,
but Use Collection Class is selected.

Action: Select a Container class that is a Collection for this mapping.

TopLink Workbench Error Reference

A-26 Developer's Guide for Oracle TopLink

 472: The container policy uses a Map class, but the container class is not a Map.
Cause: The selected Container class for this Collection mapping is not a Map
class, but Use Map Class is selected.

Action: Select a Container class that is a Map class.

 473: The container class must be instantiable.
Cause: The selected Container class for this Collection mapping is not
instantiatable.

Action: Select a Container class this is instantiatable, (not an Interface,
Abstract class, or Primitive class).

 474: The container class does not agree with the instance variable.
Cause: The selected Container class for this Collection mapping, does not
agree with the instance variable that is associated with the mapping. Either the
variable is a Map class and the selected Container class is a Collection or vice
versa.

Action: You must either select a Container class that agrees with the type of
instance variable with which it is associated, or change the instance variable to
agree with the selected Container class.

 475: The container class is a Map, but the key method is not selected.
Cause: Use Map Class is selected for the Container policy for this Collection
mapping, but a key method has not been selected.

Action: You must either select a key method for this Container policy, or change
the Container policy to not use a map class.

4 76: The key method specified for this mapping is no longer visible to the owning
descriptor's class.
Cause: The selected key method for the Container policy for this Collection
mapping policy is not visible to the descriptor’s class.

Action: You must either select a different method that is visible to the descriptor's
class, or change the selected method so that it is visible.

 477: The key method specified for this mapping is not valid.
Cause: The selected key method for the Container policy for this Collection
mapping is invalid because it does not have the correct return type, or it does not
accept more than zero parameters.

Action: You must either select a different method that is valid, or change the
selected method so that it will return the correct type and accept more than zero
parameters.

 478: One-to-Many and Many-to-Many mappings in EJB 2.0 CMP descriptors may
not use ValueHolder indirection.
Cause: A one-to-many or many-to-many mapping in an EJB 2.0 CMP descriptor is
using ValueHolder indirection.

Action: You must either change the mapping to use no indirection or
non-ValueHolder indirection.

480: No relation table is selected.
Cause: You created a many-to-many mapping, but did not specify a relation table.
The relation table represents the relationship between the primary keys of the
source table and target table.

TopLink Workbench Error Reference

Troubleshooting a TopLink Application A-27

Action: Select or create a Relation Table on the mapping’s General tab.

 481: The relation table is not dedicated to single, writable many-to-many mapping.
Cause: More than one many-to-many mapping in the project are using the same
relation table.

Action: Each relation table should be used in one and only one many-to-many
mapping.

482: No source reference is selected.
Cause: You created a many-to-many mapping, but did not select (or create) a
source table reference on the mapping’s Source Reference tab.

Action: The source table reference must contain a Source field (from the
mapping’s relation table) and a Target field (from one of the descriptor’s
associated tables).

483: No target reference is selected.
Cause: You created a many-to-many mapping, but did not select (or create) a
target table reference on the mapping’s Source Reference tab.

Action: The target table reference must contain a Source field (from the
mapping’s relation table) and a Target field (from one of the descriptor’s
associated tables).

A.3.5 Table Errors (500 – 610)
This section lists TopLink Workbench table errors.

500: You cannot use joining because the source and target (reference) descriptors are
the same type.
Cause: You selected the Use Joining option on a one-to-one mapping in which the
source and reference descriptors are the same.

Action: You must either deselect the Use Joining option or select a difference
Reference Descriptor on the One-to-One Mapping General tab.

510: No query key associations have been defined.
Cause: You created a variable one-to-one mapping, but did not define a key pair.

Action: Create or select a key pair on the mapping’s Query Key Association tab.

511: Not all query key associations have foreign key fields specified.
Cause: You created a query key association without a foreign key.

Action: You must specify a foreign key field for each query key association on the
Query Key Association tab for variable one-to-one mapping.

 512: The following specified query key names are no longer valid: [query key]
Cause: The query keys listed for this mapping no longer refer to the reference
descriptor for this mapping. The query keys are now invalid.

Action: You must either remove the invalid query keys, or change the reference
descriptor so that it corresponds with the query keys.

513: No indicator field is selected.
Cause: You created a variable one-to-one mapping, but did not specify a database
field in which to store indicator values.

Action: Select the Class Indicator Field on the Class Indicator Info tab.

TopLink Workbench Error Reference

A-28 Developer's Guide for Oracle TopLink

514: No indicator values are specified.
Cause: You created a variable one-to-one mapping, but did not specify indicator
values for each object type.

Action: Select the Indicator Type on the Class Indicator Info tab.

515: [descriptor name] is not an implementor of the [descriptor name] interface, so it
cannot have an indicator value.
Cause: You included a descriptor on the Variable One-to-One Class Indicator
Info tab that is an implementor.

Action: Deselect the descriptor on the Variable One-to-One Class Indicator Info
tab or add the descriptor to the Implementor tab.

 516: The chosen reference descriptor is not an interface descriptor.
Cause: This variable one-to-one mapping has a reference descriptor selected
which is not an interface descriptor. The reference descriptor for a variable
one-to-one mapping must be an interface descriptor for the mapping to be valid.

Action: You must either choose a reference descriptor that is an interface
descriptor, or change the mapping to no longer be variable.

 520: No attribute transformer is specified.
Cause: No attribute transformer is specified for this transformation mapping.

Action: Select an attribute transformer for this transformation mapping.

 521: The attribute transformer class is missing.
Cause: No class has been specified for the attribute transformer for this
transformation mapping.

Action: Select a class for the attribute transformer.

 522: The attribute transformer class [class name] is not a valid transformer class.
Cause: The attribute transformer class that is selected is not a valid attribute
transformer class.

Action: Select a valid attribute transformer class for the transformation mapping.

 523: The attribute transformer method is missing.
Cause: No method has been selected for the attribute transformer for the
transformation mapping.

Action: Select a method for the attribute transformer.

 524: The attribute transformer method [method name] is not visible to the parent
descriptor’s class.
Cause: The selected attribute transformer method is not visible to the descriptor
class for this mapping.

Action: You must either select a different method that is visible, or change the
method in the class to make it visible.

 525: The attribute transformer method [method name] is not a valid transformer
method.
Cause: The selected attribute transformer method either has the wrong return
type or accepts the wrong parameters to be a valid transformer method for this
transformation mapping.

Action: You must either select a method with the correct return type and
parameters, or change the selected method so that it meets these criteria.

TopLink Workbench Error Reference

Troubleshooting a TopLink Application A-29

 526: No field transformer associations are specified.
Cause: No field transformer association has been specified for this transformation
mapping.

Action: Specify at least one field transformer association.

 527: No transformer is specified for the field [field name].
Cause: No transformer specified for the given field.

Action: Specify a transformer for this field.

 528: There is a missing field in the field transformer association.
Cause: There is no field specified for a field transformer association for this
transformation mapping.

Action: Specify a field for all the field transformer associations for this
transformation mapping.

 529: There is a missing transformer class for the field [field name].
Cause: The Transformer class is specified for this field transformer association,
but the Transformer class is unspecified.

Action: Specify a Transformer class for the field transformer association for this
field.

 530: The transformer class [class name] for the field [field name] is not a valid
transformer class.
Cause: The specified Transformer class for the field of this field transformer
association is invalid.

Action: Specify a valid Transformer class for the field transformer association
for this transformation mapping.

 531: There is a missing transformer method for the field [field name].
Cause: A transformer method is specified for this field transformer association,
but the transformer method is unspecified.

Action: Specify a transformer method for the field transformer association for this
field.

 532: The transformer method [method name] for the field [field name] is not visible
to the parent descriptor’s class.
Cause: The specified transformer method for the field transformer association for
this field is not visible to the descriptor or the class of this mapping.

Action: You must either choose a method that is visible to the class, or change the
method so that it is visible.

 533: The field transformer method [method name] for the field [field name] is not a
valid transformer method.
Cause: The specified method for the field transformer association for this field
either has the incorrect return type, or accepts the wrong parameters.

Action: You must either select a method that has the correct return type and
parameters, or change the currently selected method so that is has the correct
return type and parameters.

540: No object type is selected.
Cause: You created an object type mapping, but did not select the type.

TopLink Workbench Error Reference

A-30 Developer's Guide for Oracle TopLink

Action: You must select the Object Type and Database Type on the General tab
of the mapping.

542: No object-type mappings have been specified.
Cause: You created an object type mapping, but did not create n
object-to-database mapping.

Action: You must specify at least one mapping (Database Value and Object
Value) on the General tab of the mapping.

545: NCharacter, NString, and NClob database types are currently supported only
on the Oracle9i platform.
Cause: You attempted to map a database type that is not supported by your
database.

Action: The database type for a type conversion mapping or direct-to-field
mapping can be NCharacter, NString, or NCLOB only if you are using an
Oracle9i database.

550: Attribute is typed as a ValueHolderInterface, but the mapping does not use
Value Holder Indirection.
Cause: You did not specify indirection or transparent indirection for the mapping.

Action: If the class attribute is of type ValueHolderInterface, you must use
ValueHolder indirection for the mapping.

551: Mapping uses ValueHolder Indirection, but its associated attribute is not a
ValueHolderInterface.
Cause: You selected indirection without a ValueHolderInterface.

Action: If you select the Use Indirection (ValueHolder) option for a one-to-many,
many-to-many, or direct collection mapping, the associated class attribute must be
ValueHolderInterface.

 560: The container class for this mapping must implement
oracle.toplink.indirection.IndirectContainer.
Cause: This mapping uses transparent indirection, but the Container class
selected for its container policy is not an IndirectContainer.

Action: You must either select a Container class that is an
IndirectContainer, or remove transparent indirection from the mapping.

 570: The chosen reference descriptor is not an aggregate descriptor.
Cause: This is an aggregate mapping, but the selected reference descriptor is not
an aggregate descriptor.

Action: You must either select a reference descriptor for this mapping that is an
aggregate descriptor, or change this mapping to no longer be an aggregate
mapping.

571: Aggregate fields are not specified.
Cause: You created an aggregate mapping without specifying specific fields.

Action: Every Field Description on the Fields tab must contain a unique Field for
aggregate mappings.

572: Aggregate mapping fields must be unique.
Cause: You created an aggregate mapping without specifying unique fields.

Action: Every Field Description on the Fields tab must contain a unique Field for
aggregate mappings.

TopLink Workbench Error Reference

Troubleshooting a TopLink Application A-31

 573: The selected field does not exist on this descriptor's associated tables.
Cause: The field selected for one of the aggregate-path-to-fields for this aggregate
mapping does not exist on any of the descriptor's associated tables.

Action: You must either select a different field for the path-to-field, or add the
field to the appropriate table.

 580: No XML field specified.
Cause: You mapped an attribute in an XML or EIS descriptor, but did not select an
XML field.

Action: You must complete the XML Field field on the General tab of the
mapping.

 581: The specified XPath is not valid within the current schema.
Cause: The XPath specified for this mapping does not resolve in the schema.

Action: You must either select a different XPath, or alter the schema so that this
XPath will resolve.

 582: The specified XPath does not represent text data.
Cause: The XPath specified for this direct mapping does not resolve to a direct
field in the schema.

Action: You must either select a different XPath, alter the schema so that this
XPath will resolve to a direct field, or change the mapping type.

 583: The specified XPath does not represent a single xml field.
Cause: The XPath specified for this mapping resolves to a field which is a
collection, but this is not a collection mapping.

Action: You must either select a different XPath, alter the schema so that this
XPath will resolve to a singular field, or change the mapping type.

 590: The chosen reference descriptor is not a root eis descriptor.
Cause: The reference descriptor selected for this EIS reference mapping is not a
root descriptor. Reference mappings in EIS descriptors must be root descriptors.

Action: You must either select a different reference descriptor for this mapping
which is a root descriptor, or change the mapping type.

 591: No relationship partner is specified.
Cause: This mapping has Maintains Bidirectional Relationship selected, but no
relationship partner is specified.

Action: You must either deselect Maintains Bidirectional Relationship, or select
a relationship partner.

 592: The relationship partner must be an EIS One-to-One or EIS One-to-Many
mapping.
Cause: The relationship partner selected for this mapping is not of the type EIS
one-to-one or EIS one-to-many.

Action: You must select an EIS one-to-one or EIS one-to-many mapping as the
relationship partner for this mapping, or deselect Maintains Bidirectional
Relationship.

 593: The specified relationship partner mapping does not specify this mapping as
its own relationship partner.

TopLink Workbench Error Reference

A-32 Developer's Guide for Oracle TopLink

Cause: The mapping selected as the relationship partner for this mapping does
not have this mapping selected as its relationship partner. For these relationships
to be bidirectional, you must select the relationship partner for both mappings.

Action: You must either go to the mapping selected as the relationship partner for
this mapping and select this mapping as its relationship partner, or select a
different relationship partner mapping for this mapping to maintain this mapping
as its relationship partner.

 594: There is a missing source XML field.
Cause: No field has been specified as the source XML field for this mapping.

Action: You must specify a source XML field.

 595: There is a missing target XML field.
Cause: No field has been specified as the target XML field for this mapping.

Action: You must specify a target XML field.

 600: A foreign key grouping element is required if there are multiple field pairs.
Cause: No foreign key grouping element is specified for this mapping and
multiple field pairs.

Action: You must specify a foreign key grouping element.

 601: The foreign key grouping element does not contain all foreign keys fields.
Cause: The specified foreign key grouping element does not contain all the
foreign key fields.

Action: You must either remove the foreign key fields not contained in this
foreign key grouping element, or pick a foreign key grouping element that
contains all the foreign key fields.

 602: A delete all interaction is specified, but the mapping is not private owned.
Cause: A deleteall interaction is specified for this mapping, but the mapping
is not private owned.

Action: You must either make the mapping private owned, or remove the
deleteall interaction.

610: At least one field pair must be specified, unless the mapping has no selection
interaction and is read-only.
Cause: No field pairs are specified, and this mapping has a selection
interaction specified and/or is not read-only.

Action: You must either specify a field pair for the mapping, or make the
mapping read-only and remove the selection interaction.

A.3.6 XML Schema Errors (700 – 706)
This section lists TopLink Workbench XML schema errors.

701: A database table can only have one IDENTITY column defined.
Cause: You defined more than one identity column for this table.

Action: On the database table’s Columns tab, leave only one identity (Identity)
column. See Section 5.5.2.1, "Working with Column Properties".

702: A size is required for the column [column].
Cause: You did not specify any size for this column. The default size is 0.

TopLink Workbench Error Reference

Troubleshooting a TopLink Application A-33

Action: On the database table’s Columns tab, specify the size (Size) for the
column (field). See Section 5.5.2.1, "Working with Column Properties".

703: The reference [table reference] does not have any field pairs.
Cause: You added a reference for a table, but the reference does not include a key
pair.

Action: On the database table’s References tab, specify source and target field
pairs for the table reference. See Section 5.5.2.3, "Creating Table References".

704: A key pair has not been completely specified for a reference.
Cause: A reference table is missing a complete key pair (source and target fields).

Action: You must specify a foreign key reference for the database table. On the
database table’s References tab, add a complete key pair. Section 5.5.2.3, "Creating
Table References".

705: A development login has not been specified.
Cause: You created a relational TopLink Workbench project, but did not specify a
development login.

Action: On the Database property sheet, select a Development Login from the
available defined logins, or add a new login. See Section 20.5, "Configuring
Development and Deployment Logins".

706: A deployment login has not been specified.
Cause: You created a relational TopLink Workbench project, but did not specify a
deployment login.

Action: On the Database property sheet, select a Deployment Login from the
available defined logins, or add a new login. See Section 20.5, "Configuring
Development and Deployment Logins".

A.3.7 Session Errors (800 – 812)
This section lists the TopLink sessions XML errors.

801: [session name] Login - The connection URL has to be specified.
Cause: You have not specified a connection URL for the session (when using a
database driver manager). Each session must have at least one login connection.

Action: On the session’s Login – Connection tab, complete the Driver URL field.
See Section 89.3, "Configuring a Session Login".

802: [session name] Login - The driver class has to be specified.
Cause: You have not specified a driver class for the session (when using a data
source database driver).

Action: On the session’s Login – Connection tab, complete the Driver Class field.
See Section 89.3, "Configuring a Session Login".

803: [session or connection pool name]Login - Login - The data source name has to
be specified.
Cause: You have not specified a driver class for the session login (when using a
Java EE data source database driver).

Action: On the session’s or connection pool’s Login – Connection tab, complete
the Data Source field. See Section 89.3, "Configuring a Session Login".

TopLink Workbench Error Reference

A-34 Developer's Guide for Oracle TopLink

804: Login - Session Broker - It has to have at least one session, either a server or a
database session.
Cause: You created a session broker but did not add any sessions. Each session
broker must contain a session.

Action: On the session broker’s General – Sessions tab, select a session to add to
this broker. See Chapter 94, "Configuring Session Broker and Client Sessions".

805: [session name] Database Session - It has to have at least one XML file or a class
specified.
Cause: Your database session does not have a primary project (an associated
deployment XML file or Java class file).

Action: On the session’s Project – General tab, complete the Primary Project
field. See Section 89.2, "Configuring a Primary Mapping Project".

806: Login - The transport class has to be specified.
Cause: You selected a custom (user-defined) cache coordination type, but did not
specify the transport class for cache coordination.

Action: On the session’s Cache Coordination tab, complete the Transport Class
field, or select a different cache coordination type. See Chapter 103, "Configuring a
Coordinated Cache".

807: [session name] Login - The location of the log file has to be specified.
Cause: You are using standard logging and selected to have the log saved to a file,
but did not select a file name and location.

Action: On the session’s Logging tab, complete the Log Location field. See
Section 89.4, "Configuring Logging".

811: [session or broker name] - An external transaction controller (JTA) has to be
specified.
Cause: You selected a custom server platform, but did not specify the JTA for the
platform.

Action: On the session or session broker’s General – Server Platform tab,
complete the External Transaction Controller (JTA) field. See Section 89.9,
"Configuring the Server Platform".

812: [session or broker name] - A server class has to be specified.
Cause: You selected a custom server platform, but did not specify the server class
for the platform.

Action: On the session or session broker’s General – Server Platform tab,
complete the Server Class field. See Section 89.9, "Configuring the Server
Platform".

A.3.8 Common Classpath Problems
The following are some common TopLink Workbench error messages that may result
from invalid classpath information. See Section 117.3, "Configuring Project Classpath"
for more information.

The TopLink Workbench does not display the class(es) to import.
Cause: Your classes are not available for import on the Select Classes dialog box.

Action: Ensure that the class is in your project’s classpath (on the project’s
General properties tab). Ensure that the class is in the .zip or .jar file. You
cannot import compressed classes.

TopLink Workbench Error Reference

Troubleshooting a TopLink Application A-35

The TopLink Workbench generates an exception error when importing classes.
Cause: TopLink class import utility did not start correctly. One of the classes
includes a static initialization method, which may cause the import utility to fail.

Action: Ensure that your project’s classpath points to the root directory of your
package hierarchy. For example, to import the com.company.class package in
the C:\classes\com\company directory, your project classpath should be
C:\classes\.

The TopLink Workbench fails to import the class, but does not generate an
exception error.
Cause: The classpath containing your JDBC drivers should still be on your system
CLASSPATH. TopLink Workbench classpath is for domain classes only.

Action: Ensure that you have properly indicated the directories that contain your
domain class(es) to map on the project’s General tab.

A.3.9 Database Connection Problems
This section describes common errors and problems you may encounter when
communicating with or logging in to the database.

The class [class] was not found.
Cause: You attempted to log in to the database, but TopLink could not find the
JDBC driver for the database.

Action: Ensure that the JDBC_CLASSPATH in the setenv.cmd file points to your
JDBC driver JAR files. Verify that your PATH includes all files (for example,
native .dll files) required by the driver. If the path to your JDBC driver JAR files
contains spaces, then the path must be enclosed in double-quotes in the
setenv.cmd file. For example:

set JDBC_CLASSPATH="C:\Program Files\some directory\driver.jar\"
For more information, see Section 5.2, "Configuring the TopLink Workbench
Environment".

Username or password could be invalid.
Cause: TopLink was unable to log in to the database.

Action: Ensure that the Username and Password for the database are
correct.Verify with your DBA that the database is set up and operating correctly.

You must define a development login.
Cause: You attempted to log in to the database from TopLink Workbench, but you
did not define a development login.

Action: On the database property sheet, select a Development Login, or create a
new Defined Login. See Section 20.4, "Configuring Login Information at the
Project Level".

No database driver has been specified.
Cause: You attempted to log in to the database from TopLink Workbench, but you
did not complete the login information.

Action: Complete all the required fields on the database property sheet for the
selected development login. See Section 20.4, "Configuring Login Information at
the Project Level".

Invalid URL specified.

TopLink Workbench Error Reference

A-36 Developer's Guide for Oracle TopLink

Cause: You attempted to log in to the database from TopLink Workbench, but the
URL is incorrect.

Action: Complete the URL field on the database property sheet for the selected
development login. See Section 20.4, "Configuring Login Information at the Project
Level".

Glossary-1

Glossary

This glossary contains terms and abbreviations that you should be familiar with when
using Oracle TopLink.

attribute

A variable of a class or object. In TopLink, an attribute describes all instance variables
of a class. Every attribute contains a single mapping. Attributes store primitive data
such as integers, and simple Java types such as String or Date.

authentication

The means by which a data source validates a user’s identity and determines whether
or not the user has sufficient privileges to perform a given action.

bean class

The implementation of the bean. The bean is accessed from the client using the home
and remote interfaces.

bean-managed persistence (BMP)

A scheme for persisting entity beans that requires the developer to manually code the
methods that perform the persistence.

Compare to container-managed persistence (CMP).

branch class

Has a persistent superclass and also has subclasses. By default, queries performed on
the branch class return instances of the branch class and any of its subclasses.
However, the branch class can be configured so that queries on it return only instances
of itself without instances of its subclasses.

Compare to leaf class.

class

A category of objects. Classes allow data and method to be grouped together.

class indicator field

A field in the table of the root class that indicates which subclass should be
instantiated

client session broker

A collection of client sessions, one from each server session associated with the session
broker.

connection pool

Glossary-2

connection pool

A collection of reusable connections to a single data source.

container-managed persistence (CMP)

A scheme for persisting entity beans that uses information supplied by the developer
or deployer to perform the persistence

Compare to bean-managed persistence (BMP).

custom SQL

Refers to any non-TopLink-generated SQL used through TopLink. This includes
hard-coded SQL and stored procedure calls.

data definition language (DDL)

The data definition part of the structured query language (SQL). TopLink Workbench
can generate DDL creation scripts that can be used to create tables on the desired
database.

database session

A database session provides a client application with a single data store connection,
for simple, standalone applications in which a single connection services all data store
requests for one user.

default mapping

A relational persistence framework term that refers to making the framework
automatically generate the object descriptor metadata (including such things as
mappings, login data, database platform, locking, and foreign keys). Default mapping
is available for TopLink projects using EJB 2.0 CMP applications with OC4J.

dependent class path (IBM WebSphere)

Location where nonbean classes are specified. TopLink requires that the bean classes
be included here since they are referenced by the project.

deployment descriptor

A set of XML files that provide the additional required information to install an EJB
within its server. Typically, this incudes security, transaction, relationship, and
persistence information.

Compare with TopLink descriptors.

descriptors

An TopLink object that describes how an object’s attributes and relationships are to be
represented in relational database table(s). An "TopLink descriptor" is not the same as
a deployment descriptor, although it plays a similar role.

direct access

By default, TopLink accesses public attributes directly when writing the attributes of
the object to the database or reading the attributes of the object from the database.

Compare to .

direct mapping

There are two basic ways of storing object attributes directly in a table:

indirection

Glossary-3

■ The information can be stored directly if the attribute type is comparable to a
database type.

■ If there is no database primitive type that is logically comparable to the attribute’s
type, it must be transformed on its way to and from the database

TopLink provides five classes of direct mappings.

Compare to relationship mapping.

Enterprise Java Beans (EJB)

EJB are server-side domain objects that fit into a standard component-based
architecture for building enterprise applications with Java. They are objects that
become distributed, transactional, and secure components. TopLink Workbench uses
three types of EJB: session beans, entity beans, and message-driven beans.

expressions

The TopLink equivalent of an SQL conditional clause. TopLink expressions are
specified using the Expression and ExpressionBuilder classes.

entity beans

EJB that represent a persistent data object. TopLink uses two schemes for persisting
entity beans: bean-managed persistence (BMP) and container-managed persistence
(CMP).

fetch group

A performance enhancement that defines a subset of object attributes to be loaded
initially and ensures that all other attributes are loaded on demand.

hub

A common connection point for devices in a network.

identity map

Used to cache objects for performance and to maintain object identity.

See also object identity.

independent relationship

A relationship in which the source and target are public objects that exist
independently; the destruction of one object does not necessarily imply the destruction
of the other.

Compare to private relationship.

indirection

The TopLink term for lazy loading.

By default, when TopLink retrieves a persistent object, it retrieves all of the dependent
objects to which it refers. When you configure indirection (also known as lazy loading,
lazy reading, and just-in-time reading) for an attribute mapped with a relationship
mapping, TopLink uses an indirection object as a place holder for the referenced object:
TopLink defers reading the dependent object until you access that specific attribute.
This can result in a significant performance improvement, especially if the application
is interested only in the contents of the retrieved object, rather than the objects to
which it is related.

inheritance

Glossary-4

TopLink supports a variety of types of indirection, including: value holder
indirection, transparent indirect container indirection, and proxy indirection.

inheritance

Describes how a child class inherits the characteristics of its parent class. TopLink
supports multiple approaches to database implementations that preserve the
inheritance relationship.

in-memory query

A query that is run against the shared session cache.

instantiate

Create an instance of a Java class.

JCA

The Java EE Connector architecture (JCA) adapter is a way to persist Java objects to a
nonrelational data source, such as XML.

Java SE

The Java Platform, Standard Edition (Java SE) is the core Java technology platform. It
provides software compilers, tools, runtimes, and APIs for writing, deploying, and
running applets and applications in Java.

Java EE

The Java Platform, Enterprise Edition (Java EE) is an environment for developing and
deploying enterprise applications. Java EE includes a set of services, APIs, and
protocols for developing multitiered web-based applications.

Java EE Containers

A Java EE container is a run-time environment for Enterprise Java Beans (EJB) that
includes such basic functions as security, life cycle management, transaction
management, and deployment services. Java EE containers are usually provided by a
Java EE server, such as Oracle Containers for Java EE.

Java Messaging Service (JMS)

The JMS API is a protocol for communication that provides asynchronous
communication between components in a distributed computing environment.

Java Naming and Directory Interface (JNDI)

The JDBC specification recommends using a JNDI naming service to acquire a
connection to a database. TopLink supports acquiring a database connection in this
fashion. To take advantage of this feature, construct and configure an instance of
oracle.toplink.jndi.JNDIConnector and pass it to the project login object
using the setConnector method.

Java Persistence API (JPA)

The Java Persistence API (JPA) provides a POJO persistence model for
object-relational mapping in both Java EE and Java SE applications.

TopLink is the default JPA persistence provider in OC4J.

object-relational data type

Glossary-5

Java Transaction API (JTA)

The Java Transaction API (JTA) specifies the interfaces between a transaction manager,
a resource manager, an application server, and transactional applications involved in a
distributed transaction system.

just-in-time reading

A synonym for indirection.

lazy loading

A synonym for indirection.

This is the term used for indirection in the Java Persistence API (JPA).

lazy reading

A synonym for indirection.

leaf class

Has a persistent superclass in the hierarchy but does not have subclasses; queries
performed on the leaf class can return only instances of the leaf class.

Compare to branch class.

locking policy

A mechanism that ensures one user does not overwrite another users’s work. TopLink
descriptors support optimistic and pessimistic locking policies.

mappings

Describe how individual Java objects and attributes relate to a data source.

message-driven beans

An EJB that processes asynchronous Java Messaging Service (JMS) messages. For
TopLink clients, a message-driven bean is simply a JMS consumer with no
conversational state and no home or remote interfaces.

method access

The application registers accessor methods for the attribute.

Compare to direct access.

named query

A TopLink query that is created and stored, by name, in a session for later retrieval
and execution

object identity

Ensures that each object is represented by one and only one instance in the application;
that is, multiple retrievals of the same object return references to the same object
instance, not multiple copies of the same object. Violating object identity can corrupt
the object model.

See also identity map.

object-relational data type

The object-relational data type paradigm extends traditional relational databases to
include object-oriented functions. Oracle, IBM DB2, Informix, and other DBMS

optimistic locking

Glossary-6

databases allow users to store, access, and use complex data in more sophisticated
ways.

The object-relational data type standard is an evolving standard concerned mainly
with extending the database data structures and SQL (SQL 3).

Object-relational data type descriptors describe Java objects that you map to special
relational database types that correspond more closely to object types. Using these
special object-relational data type database types can simplify mapping objects to
relational database tables. Not all relational databases support these special
object-relational data type database types.

optimistic locking

Also known as write locking; allows unlimited read access to objects. A client can
write an object to the database only if the object has not changed since it was last read.

Compare to pessimistic locking.

packet

A piece of a message transmitted over a packet-switching network. One of the key
features of a packet is that it contains the destination address in addition to the data.

packet time-to-live

A number of hops that session data packets can take before expiring. The default is 2.

See also packet.

persist

In object technology, the storage of an Java object by a data source.

pessimistic locking

Objects are locked before they are edited, which ensures that only one client is editing
the object at any given time.

Compare to optimistic locking.

POJO

Plain Old Java Object.

In TopLink, POJO means just a regular Java object model class and is used to refer to
using the TopLink API directly rather than using TopLink API indirectly by way of
CMP or JPA.

primary key

A field (or combination of fields) that uniquely identifies a record in the data source.

private relationship

A relationship in which the target object is considered to be a private component of the
source object; the target object cannot exist without the source and is accessible only
through the source object; furthermore, if the source object is destroyed, the target
object is destroyed as well.

Compare to independent relationship.

proxy indirection

A type of TopLink indirection.

transparent indirect container indirection

Glossary-7

Introduced in JDK 1.3, the Java class Proxy lets you to use dynamic proxy objects as
place-holders for a defined interface. Certain TopLink mappings can be configured to
use proxy indirection, which gives you the benefits of TopLink indirection without the
need to include TopLink classes in your domain model or use weaving.

query manager

An object, owned by a descriptor, that controls the way the descriptor accesses the
database. The query manager generates its own default SQL to access the database in a
transparent manner.

query optimization

TopLink supports two forms of query optimization: joining and batch reading. Their
purpose is to optimize database access through reducing the number of database calls
required to read a group of objects.

relationship

In TopLink, a reference between two TopLink-enabled objects.

relationship mapping

Persistent objects use relationship mappings to store references to instances of other
persistent classes. The appropriate mapping class is chosen primarily by the
cardinality of the relationship. TopLink provides five classes of relationship mappings.

Compare to direct mapping.

Remote Method Invocation (RMI)

A set of protocols that enable Java objects to communicate remotely with other Java
objects.

remote session

A remote session is a client-side session that communicates over RMI with a
corresponding client session and server session on the server side. Remote sessions
handle object identity and marshalling and unmarshalling between client side and
server side.

service channel

A name of the TopLink coordinated cache channel to which sessions subscribe in order
to participate in the same coordinated cache.

session beans

EJB that represent a business operation, task, or process. TopLink can use session
beans to make the regular Java objects they access persistent, or to wrap other legacy
applications.

stale data

An artifact of caching, in which an object in the cache is not the most recent version
committed to the data source.

TopLink session broker

A mechanism that enables client applications to transparently access multiple
databases through a single TopLink session.

transparent indirect container indirection

A type of TopLink indirection.

unit of work

Glossary-8

Using this type of TopLink indirection, you can configure indirection for any
relationship attribute of a persistent class that holds a collection of related objects as
any of the following:

■ java.util.Collection

■ java.util.Hastable

■ java.util.List

■ java.util.Map

■ java.util.Set

■ java.util.Vector

TopLink will use an indirection object that implements the appropriate interface and
also performs just-in-time reading of the related objects. When using transparent
indirection, you do not have to declare the attributes as ValueHolderInterface.

Newly created collection mappings use transparent indirection by default if their
attribute is not a ValueHolderInterface.

For JPA entities or POJO classes that you configure for weaving, TopLink weaves
value holder indirection for one-to-one mappings and transparent indirect container
indirection for collection mappings

unit of work

A transactional TopLink session that allows for a transaction to occur at the object level
not only the database level. Changes to objects are not visible globally until the unit of
work is committed.

value holder indirection

A type of TopLink indirection.

Persistent classes that use indirection must replace relationship attributes with value
holder attributes. A value holder is an instance of a class that implements the
ValueHolderInterface interface, such as ValueHolder. This object stores the
information necessary to retrieve the object it is replacing from the database. If the
application does not access the value holder, the replaced object is never read from the
database. To obtain the object that the value holder replaces, use the getValue and
setValue methods of the ValueHolderInterface. A convenient way of using
these methods is to hide the getValue and setValue methods of the
ValueHolderInterface inside get and set methods, as shown in the following
illustrations.

For JPA entities or POJO classes that you configure for weaving, TopLink weaves
value holder indirection for one-to-one mappings and transparent indirect container
indirection for collection mappings

Index-1

Index

A
access

data access, 96-1
direct, 121-37
modifiers, 5-46
optimizing data access, 12-17
remote sessions, 87-33

access method
direct, 121-16
generating, 5-33
mappings, 121-18
method, 121-16
specifying, 121-37

access modifiers, classes, 5-46
acquiring

client sessions, 90-6
sessions, at runtime, 87-5
unit of work, 114-1

activating descriptors, 5-10
Add Named Query dialog, 119-14, 119-21, 119-23
Add New Class dialog, 5-45, 5-58
Add New Table button, 5-23
Add or Refresh Class button, 5-56
addConstraingDependencies(), 115-16
address

multicast group, 103-5
multicast port, 103-7

Add/Update Existing Tables from Database
button, 5-24

advanced properties for descriptors, 117-8
After Load tab, 119-91
aggregate collection relational mappings

and EJB, 27-11
configuring, 35-1
understanding, 27-10

aggregate descriptors
about, 16-5
aggregate object mapping, 21-1
EIS projects, 74-2
EJB 3.0, 16-5, 21-2
inheritance, 16-12
relational projects, 21-1
XML projects, 50-1

aggregate object relational mappings
aggregate descriptors, and, 21-1

configuring, 37-1
understanding, 27-13

aggregation, isolated client sessions, 87-25
AllFieldsLockingPolicy, 16-16
allows none, 110-14, 119-21
allows null, 110-14, 119-21
amending descriptors, 2-24, 16-6, 119-90

see also after load
announcement delay, 103-15
Ant, integrating with Oracle TopLink

Workbench, 5-58
any attribute XML mappings

configuring, 70-1
any collection XML mappings

configuring, 60-1
understanding, 53-33

any object XML mappings
configuring, 59-1
understanding, 53-31

application development
deploying, 11-1
mapping, 2-24
querying, 2-15, 86-2

application layer, remote sessions, 87-32
Application Navigator

TopLink elements, 4-2
application servers

EJB support, customizing, 8-21
integrating with Oracle TopLink, 8-1
logging, 87-10
MaD support, 8-16
optimization, 12-36
setter parameter type checking, 8-21, 8-22
single-object finder return type checking, 8-21,

8-22
software requirements, 8-2
target platforms, 2-5
unknown primary key class support, 8-21, 8-22

architectures
application, 1-5
BMP, 1-6, 2-38
cache, 102-1
choosing, 2-3
CMP, 1-6, 2-34
EIS, 2-4, 77-5
EJB entity beans, 1-6, 2-34, 2-38

Index-2

EJB session bean facade, 1-5, 2-31, 2-32
locking, 2-11
optimistic locking, 2-11
Oracle TopLink, 1-1
pessimistic locking, 2-11
selecting, 2-5
session brokers, 87-27
sessions, 87-3
three-tier, 1-5, 2-28
two-tier, 1-7, 2-30, 2-31
unit of work, 113-1
web services, 1-6, 2-42

arguments, binding in query, 23-7
array

dimensionality, 5-49, 5-54
object-relational data type mappings, 40-3

AsOfClause, 111-2
asynchronous change propagation, 103-2
AttributeChangeTrackingPolicy

about, 113-8
JPA entities, 113-8
OC4J CMP integration, 113-9
POJO classes, 113-8

attributes
adding to descriptors, 5-48
array dimensionality, 5-49, 5-54
changes, tracking, 119-83
final, 5-49, 5-53
in TopLink Workbench, Navigator window, 5-9
static, 5-49, 5-53
transforming, 27-17, 121-34, 121-36
transient, 5-49, 5-53
unmapping, 120-5
volatile, 5-49, 5-53

Attributes tab, 5-48, 5-49, 5-52
Attunity Connect platform, 96-3
auditing

authentication, 96-6
unit of work, 115-20

authentication
about, 96-5
auditing, 96-6
proxy authentication, 96-5
simple JDBC authentication, 96-5
three-tier architecture, 96-5
two-tier architecture, 96-5

Automap, 120-3
automapping descriptors

about, 120-3
see also mappings

automatic table generation
about, 17-5
configuring, 9-12

B
Base64 encoded strings, 121-29
batch

writing
JDBC, 12-19, 98-11

batch options
mappings, 28-8
writing, 12-18

batch reading
in query objects, 109-10
read optimization, and, 12-25

batch writing
about, 12-18, 12-32, 98-12
dynamic, 12-18
dynamic, setMaxBatchWritingSize(), 12-18
JDBC, 12-19, 98-11
MySQL4 platform, 98-10
native, 12-19, 98-11
non-parameterized, 12-18
parameterized, 12-18
setMaxBatchWritingSize(), 12-18
TopLink, 12-19, 98-11

BEA WebLogic
setting classpath, 8-5
setting shared library, 8-5
using a security manager, 8-6

beans
session beans, 2-33
stateful beans, 2-33
stateless beans, 2-33

bidirectional relationships
about, 27-2
generating, 5-34
in Java, 121-42
in one-to-one mappings, 121-42
target keys, 27-6
with indirection, 121-42

binary data collection XML mappings
configuring, 65-1, 67-1

binary data XML mappings
configuring, 64-1

bindAllParameters() method, 20-8
bindings

arguments, 23-7
JAXB, 47-2
see parameter binding

BLOB
mapping to, 120-3

BMP
and EJB 1.1, 2-39
and EJB 2.0, 2-39
and TopLink, 2-38
deployment files, 9-9
descriptors, 16-3, 119-51
packaging for deployment, 10-6

boolean logic in expressions, 110-3
branch classes, 16-9, 16-10
buttons. see toolbars
Byte array Base64, 121-29

C
cache

about, 2-15, 2-20, 102-1
architecture, 102-1

Index-3

configuring, 102-6, 111-20
coordination, 102-9, 103-1, 104-1, 105-1
descriptor level, 119-39
disabling during read query, 108-35
distributed, 102-9
expiration, 111-21, 117-22, 119-47
expression limitations, 108-32
identity maps, using, 87-30
in-memory queries, 108-31, 108-32
internal query object cache, 108-37, 108-38,

111-20, 111-21
invalidation, 102-7, 102-8, 117-22, 119-47
isolated client sessions, 87-25
isolation, 102-6, 102-9
object cache, 108-37
object cascading refresh, 108-36
object refresh, 108-36
optimizing, 12-16
project level, 117-14
queries, 102-6, 108-30
query cache, 108-37
readObject method, and, 109-2
refreshing, 102-8, 108-36, 119-30
restrictions, 108-38
service channel, 103-4
sessions, 87-3, 87-34, 102-2
stale data, 102-6
storing query results, 108-37, 111-20
type and size, 117-14, 119-39
unit of work cache, 102-2

cache coordination
about, 102-9
application server clustering, and, 8-5
avoiding stale data, 102-7
CMP projects, 9-12
EJB Entity Beans with BMP architecture,

and, 2-40
explicit query refreshes, 102-7
JMS, 104-1
JMS, connection handling, 104-5
JMS, error receiving message, 104-5
JMS, ERROR_RECEIVED_JMS_MESSAGE_IS_

NULL, 104-5
JMS, ERROR_RECEIVING_JMS_

MESSAGE, 104-5
JMS, null JMS message, 104-5
orion-ejb-jar.xml, 9-12
packet time-to-live, 103-19
permissions, 8-20
RMI, 105-1

cache invalidation, avoiding stale data, 102-7
cache synchronization. see cache coordination
cacheAllStatements(), 20-8
cacheQueryResults(), 119-28
cache-synchronization property, 9-12
Caching tab, 119-40, 119-42, 119-45, 119-49
calendar, 28-3
call

call queries, 108-17
EIS, 109-32

EJBQLCall, 109-32
JPQLCall, 109-32
SQLCall, about, 109-18
SQLCall, JDBC arguments, 109-19
SQLCall, no arguments, 109-19
StoredProcedureCall, 109-31
StoredProcedureCall, about, 109-21
StoredProcedureCall, ErrorCodeListener, 109-29
StoredProcedureCall, JDBC arguments, 109-22,

109-24
StoredProcedureCall, no arguments, 109-22
StoredProcedureCall, PL/SQL arguments, 109-24

Call object, queries, 108-3
cascading

object refresh, 108-36
optimistic version locking, 16-14
write queries, compared to

non-cascading, 108-15, 109-13
catalog, database, 5-23
catchExcpetions(), 89-21
CDATA in mappings, 121-44
change policy

about, 113-7
attribute change tracking, configuring, 119-83
configuring, 119-81
deferred change detection, configuring, 119-82
empty transaction, 113-7
object change tracking, configuring, 119-82
unit of work, 113-7

change tracking
attribute, configuring, 119-83
deferred, configuring, 119-82
method and direct field access limitations, 2-13,

117-5, 121-17
object, configuring, 119-82

changed items, displaying in TopLink Workbench
Navigator window, 5-9

ChangedFieldsLockingPolicy, 16-16
changing package names, 5-57
checkDatabase(), 89-21
checking in/out projects, 7-3
checkInstantiationPolicy(), 89-22
choice collection XML mappings

configuring, 69-1
choice object XML mappings

configuring, 68-1
Choose a Schema Context dialog box, 52-3, 76-3
Choose Query Key dialog box, 110-14
Choose Relationships to Generate dialog box, 5-33
Choose Root Element dialog box, 52-6, 76-5
class extraction method

about, 16-11
inheritance, 16-12

class indicator
about, 16-10
class extraction method, 16-11
class indicator field, 16-10, 32-2

class loader
host application, 2-5
IBM WebSphere, 8-17

Index-4

loading session, 90-4
class modifiers, 5-46
Class tab, 5-46, 5-47
classes

access modifiers, 5-46
adding and refreshing, 5-56
branch, 16-10
creating, 5-44, 5-58
CursoredStream, optimizing, 111-18
Database Exception, 109-33
DatabaseMapping, 17-28
default null values, 121-43
DeleteObjectQuery, 109-13
DirectCollectionMapping, 36-3
ExpressionBuilder, 110-16
generating from database, 5-32
InsertObjectQuery, 109-12
InsertObjectQuery, 113-12
interfaces, 5-47
leaf, 16-10
merging files, 7-5
methods, adding, 5-52
naming, 5-46
non-descriptor classes, 5-57
object model, 2-18
Performance Profiler, 12-3
persistent requirements, 2-13
preferences, 5-16
refreshing, 5-56
removing, 5-56
root, 16-9
troubleshooting, A-34
unit of work, 113-12
UpdateObjectQuery, 109-12, 109-13
ValueHolderInterface, 2-14, 17-8, 27-10,

Glossary-8
VariableOneToOneMapping, 27-7
see also specific class name

classpath
adding, 117-4
BEA WebLogic, 8-5
configuring, 5-2, 8-5, 8-18
connector.jar, 5-2
custom Collection class, 5-3
DRIVER_CLASSPATH, Oracle TopLink

Workbench, 5-2
JCA adapter, 5-2
JDBC driver, 5-2, 5-24
JDBC_CLASSPATH, 5-2
Oracle TopLink Workbench DRIVER_

CLASSPATH, 5-2
relative, 117-4
SunAS, 8-18
troubleshooting, A-34
xdb.jar file, 5-3

client session
logging out, 90-10
releasing, 90-10

client sessions
about, 87-2, 87-14, 87-26

acquiring, 90-6
configuration, 94-1
example, 87-16
shared resources, 87-16

client-controlled transactions, 115-24
client-server architecture. See two-tier
CLOB

mapping to, 120-3
clones

copying methods, 119-80
merging changes, 115-12
post-commit, avoiding, 115-31
unit of work, 113-2, 113-9

Cloudscape platform, 96-3
clustering, integrating TopLink with, 8-5
CMP

and EJB 1.1, 2-34
and EJB 2.x, 2-34
and EJB 3.0, 2-34
and TopLink, 2-34
automatic table creation, 6-7
CMPPolicy, 16-3, 119-51
deploying, 9-8, 11-2
descriptors, inheritance, 16-5
external transactions, 113-3
isolated client sessions, 87-25
local transaction, 115-25
non-deferred write, 115-25
OC4J persistence, 8-7
packaging for deployment, 10-5
schema generation, 6-7
schema manager, 6-7
setter parameter type checking, 8-22
single-object finder return type checking, 8-22
transaction attribute, 115-24
unit of work, 113-3, 115-24
unknown primary key class support, 8-22

code generation, optimizing, 12-11
collapsing items in Navigator window, 5-10
collection class

specifying, 109-9
specifying in query objects, 109-9

collection reference XML mappings
configuring, 63-1

collections
persistent requirements for mappings, 2-14
query results, 108-8

comments
descriptors, 119-10, 119-11
mappings, 121-21
projects, 117-23

commit
and Java Transaction API, 113-10, 113-11
failure, resuming after, 115-14
resuming unit of work after, 115-13

Communication Exceptions, A-7
composite collection EIS mappings

configuring, 82-1
example, 77-8
understanding, 77-8

Index-5

composite collection XML mappings
configuration, 58-1
configuring, 58-1
understanding, 53-29

composite descriptors
about, 16-5
composite object mapping, 50-1, 74-2
EIS projects, 74-2
XML projects, 50-1

composite direct collection EIS mappings
configuring, 80-1
understanding, 77-7

composite direct collection XML mappings
configuring, 56-1
understanding, 53-18

composite EIS descriptors, 75-2
composite object EIS mappings

composite descriptors, and, 74-2
configuring, 81-1
understanding, 77-7

composite object mappings
composite descriptors, and, 50-1

composite object XML mappings
configuration, 57-1
configuring, 57-1
understanding, 53-24

composite primary key, 27-10, 121-42
concrete class. see container policy
concurrency

about, 2-20
exceptions, A-4
server session, 87-19

Concurrency Exceptions, A-4
configurations

about, 88-2
creating, 88-2
development environment, 7-1
new, 88-2
Oracle JDeveloper, 7-1
session, 88-2, 88-3, 88-4, 88-7, 88-9

conforming
about, 115-7
alternatives, UnitOfWork method

writeChanges, 115-11
alternatives, UnitOfWork properties, 115-12
descriptors, and, 115-11
queries, alternatives to, 115-11

ConnectBy, 111-7
connection policy

configuring, 89-22
exclusive connections, 89-22
lazy connection acquisition, 89-23

connection pool
about, 96-7
connection count, 101-2
ConnectionPolicy, 87-21
external, 96-8
internal, 96-7, 96-8, 96-9
lazy connection allocation, 87-19, 90-8
named, 96-9

parameter binding, 12-20
prepared statement caching, 12-20
read, 96-8
sequence, 15-5, 96-8
server session, 87-19
sessions, and, 87-4
size, 101-2
write, 96-8

Connection Specifications tab, 73-3
Connection tab, 73-3
connections

about, 96-7
connection pool, 96-7
exclusive write connection, 89-22
lazy acquisition, 89-23
reading through the write connection, 115-27

connector.jar, 5-2, 71-1
container policy

about, 121-30
custom Collection class, 5-3
sorting, in memory, 121-31

container-controlled transactions, 115-24
context

JAXB context, 47-8
menus, 5-6
schema, 52-2, 76-3

Context.SECURITY_CREDENTIALS, 103-12
Context.SECURITY_PRINCIPAL, 103-11
Conversion Exception, A-4
Converter tab

object type mappings, 121-25, 121-26
converters

custom, 27-3
object type, 121-25, 121-26

coordinated announcement delay, 103-15
coordinated cache, 9-12

configuring, 103-1
naming service, 103-9
service channel, 103-4

copy policy
about, 119-79
method, 119-80
setting, 119-80

copying project objects, 7-6
Copying tab, 119-80
CORBA

Oracle TopLink transport layer support, 87-32
Transaction Service see OTS

Create New Project button, 116-2
Create New Project dialog box, 116-2
Create New Session dialog, 88-4, 88-7, 88-9
Create Project from JAXB dialog, 48-2
creating

configurations, 88-2
expressions, 110-13
sessions, 88-4, 88-7, 88-9, 100-1

Crimson XML parser, 8-4
cursored streams

example, 111-18
optimizing, 111-18

Index-6

remote sessions, 87-34
usage example, 87-34

cursors
as query results, 108-9
traversing scrollable, 111-16

Custom Calls tab, 76-7
custom SQL

Custom SQL tab, 23-8
unit of work, 115-15

customization
about, 13-1
data types, 13-1
EIS, 13-1
mapping extensions, 13-1
overview, 2-17
XML, 13-1

D
data access

about, 96-1
authentication, 96-5
connection pool, 96-7
connections, 96-7
optimizing, 12-17, 12-18
platforms, 96-3

data level queries
example, 110-12
in expressions, 110-11

data source platform
about, 96-3
Attunity Connect database, 96-3
Cloudscape database, 96-3
databases, 96-3
DB2 database, 96-3
EIS, 96-4
HSQL database, 96-3
Informix database, 96-3
JCA adapter, 96-4
JDBC drivers, 96-3
Microsoft Access database, 96-3
MySQL4 database, 96-3
Oracle database, 96-3
Oracle8 database, 96-3
Oracle9 database, 96-3
PointBase database, 96-3
SQLAnyWhere database, 96-3
SQLServer database, 96-3
SybasePlatform database, 96-3

data sources
configuring, 97-1
nontransactional, 96-1
transactional, 96-1

Database Exceptions, 109-33, A-4
database fields, configuring, 28-3
database functions, in expressions, 110-3
database login

parameter binding, 98-10
prepared statement caching, 98-10

Database Preferences, 5-18

database queries
about, 108-10, 109-4
fetch groups, 108-14
join reading, 108-12
object level modify query, 108-14, 108-16
object level read query, 108-11, 108-14
partial object query, 108-11
read all query, 108-11
read object query, 108-11
report query, 108-16

database schema
tables, 5-23

database session
logging out, 90-10

database sessions
about, 87-2, 87-29
cache, 87-34
configuration, 95-1
creating, 88-8

database tables
about, 5-22
adding to database, 5-23
creating, 5-23
descriptors and classes, generating, 5-32
EJB entity generation, 5-34
fields, 5-27
generating, 5-32, 5-35
importing, 5-24
Java source generation, 19-4
JDBC driver classpath, 5-24
properties, 5-27
references, 5-29, 5-30
removing, 5-26
renaming, 5-26
schema, 5-23
SQL generation, 5-32
TopLink Workbench, Navigator window, 5-10

DatabaseException class, 109-33
DatabaseLogin, 96-2
DatabaseMapping class, 17-28
DatabaseQuery, 108-3
DatabaseRow, 27-17
databases

catalog, 5-23
common problems, A-35
connect to, 5-23
creating reference tables on, 5-29
custom drivers, 5-19
disconnect from, 5-23
drivers, 5-19
exceptions, 109-33
fields, configuring, 28-3
for project, 116-3
Java type conversion, 6-3
linking, 87-29
log out of, 5-23
logging into, 5-23, 20-8
logins, 98-1
mapping. See mappings
platform, 20-3, 73-2, 98-2, 99-1, 116-3

Index-7

preferences, 5-18
schema, 5-23
schema manager, 6-1
tables, 5-22
TopLink Workbench, Navigator window, 5-10
troubleshooting, A-35
type conversion, schema manager, 6-3
using with Oracle TopLink Workbench, 5-22

DatabaseSession class
logging SQL and messages, 87-10

DB2
platform, 96-3
schema manager type conversion, 6-3

DBase platform, 96-3
default mapping

about, 17-5
automatic table generation, and, 17-5
configuring, 9-12
default table generator, 6-6

Default Mapping Exception, A-7
default table generator

default mapping, 6-6
table creator, creating, 6-4

defaults
login level null values, 97-8
mapping level null values, 121-14
null values, 97-8, 121-14, 121-43
optimization, 12-11
root, 52-5
see also preferences

DefaultSequence, 98-7
deferred change detection

configuring, 119-82
DeferredChangeDetectionPolicy, 113-7
Delete All Interaction tab, 84-4
deleteObject(), 23-9
DeleteObjectQuery, 109-13
deletes

controlling order, 115-16
delete operation, 109-4
queries, EIS mappings, 84-4

demarcation of unit of work transactions, 113-2
dependent objects

non-deferred write, 16-4
deploying

about, 2-16, 2-17, 11-1
application server requirements, 8-1
CMP applications, 11-2, 11-3
database login, 20-8
entity beans overview, 2-17
generating XML for, 9-3
hot deployment, 11-3
Java applications, 11-1
JSP and Servlet applications, 11-1
non-CMP applications, 11-3
packaging, 10-1
Session Bean applications, 11-2

deployment descriptors, 16-3
deployment files

BMP applications, 9-9

CMP applications, 9-8
creating, 9-2
descriptors, 16-3
EJB 3.0, 9-2, 10-1
Java applications, 9-7
JSP and Servlet applications, 9-7
Session Bean applications, 9-7
XML, generating, 9-3

deployment XML, exporting, 116-9
DeploymentXMLGenerator, 9-3
descriptor customizer, 16-5
Descriptor Event Listener, 119-70
Descriptor Event Manager

about, 16-6
Descriptor Event Listener, 119-69
domain object methods, 119-66
event types, 119-66
handlers, 16-6, 119-66, 119-69
handlers, Descriptor Event Listener, 119-70
understanding, 16-6

descriptor events
about, 16-6
Descriptor Event Listener, 119-69
domain object methods, 119-66
handlers, 16-6, 119-66, 119-69, 119-70
types of, 119-66
understanding, 16-6

Descriptor Exceptions, A-3, A-5
Descriptor Info tab, 23-3, 23-4, 52-2, 52-5, 52-7, 76-3,

76-4, 119-5, 119-7, 119-8
DescriptorEventListener, 119-69
descriptors

about, 14-2, 16-1
advanced properties, default, 117-8
aggregate, 16-5, 22-2
aggregate, EJB 3.0 and, 16-5, 21-2
aggregate, relational projects and, 21-1
amending, 2-24, 16-6, 119-90
API, 16-18
architecture, 16-2
attributes, adding, 5-48
automapping, 120-3
automatically mapping, 120-3
BMP, 16-3, 119-51
cache refreshing, 119-30
change policy, 119-81
child inheritance, 119-57
class, 22-2
CMP, 16-3, 119-51
CMPPolicy, 16-3, 119-51
comments, 119-10, 119-11
composite, 16-5, 50-1, 74-2, 75-2
composite EIS, 75-2
configuring, 119-1, 119-2
conforming, 115-7
creating, 22-1, 22-2, 25-1, 75-1, 75-2, 118-1
custom EIS interactions for basic persistence, 76-6
custom SQL queries for basic persistence, 23-7
customization, 16-5
deactivating, 5-10

Index-8

default mappings, 17-5
default root, 76-4
deployment information, 16-3
Descriptor Event Listener, 119-69, 119-70
domain object methods, 119-66
EIS, 74-1, 75-1, 75-2, 76-1
EIS projects, 74-2
EJB, 16-3, 119-51
EJB information, 16-3, 119-51
errors, 5-10, 5-11, A-12
event handlers, 16-6, 119-66, 119-69, 119-70
events, 16-6, 119-66
existence checking, 12-16, 119-49
fetch groups, 119-88
files, merging, 7-5
generating from database, 5-32
hierarchy, inheritance, 16-19
history policy, 119-84
identity maps, 117-15, 119-40, 119-42, 119-45
in Java, 16-18
inactive, 5-10
inheritance, 16-3, 16-9, 21-4, 119-57, 119-59
instantiation, 12-16
interface, 22-2, 119-35, 119-37
mapping, 17-5, 23-3, 119-5, 120-2, 120-3
merging, 7-5
named queries, 119-12
nondescriptor classes, 5-57
object-relational data type, 24-1, 26-1
optimizing, 12-16
parent inheritance, 119-59
projects, 14-2, 16-1
query key interfaces, 119-35
query timeout, 119-27, 119-29
read-only, 119-6
registering with sessions, 87-13, 89-3, 89-4, 89-12
relational, 21-1, 22-2, 23-1
removing, 5-56
returning policy, 119-75
root EIS, 75-1
root element, 52-5
schema context, 52-2, 52-3, 76-3
sequencing, 16-7, 23-4
TopLink Workbench, Navigator window, 5-9
types of, 16-1
validating, 118-1
XML, 50-1, 51-1, 52-1
XML projects, 50-1

developing applications with Oracle TopLink, 2-1
development environments

about, 3-2
configuring, 7-1
database logins, 20-8

development process
about, 2-1
additional support, 2-3
stages of, 2-2
with Oracle TopLink, 2-1

development tools
about, 3-1

profiler, 12-2
schema manager, 6-1

dimensionality, array, 5-49, 5-54
direct access

about, 117-5, 121-16
specifying, 121-37

direct collection relational mappings
configuring, 36-1
example, 27-12, 36-3
in Java code, 36-3
understanding, 27-12

direct collections
session broker limitations, 87-28

direct EIS mappings
configuring, 79-1
understanding, 77-6

direct field
in direct collection mappings, 36-4

direct field access
change tracking limitations, 2-13, 117-5, 121-17

direct key fields, 38-3
direct map relational mappings

configuring, 38-1
direct keys, 38-3
direct value, 38-2
understanding, 27-13

direct mappings
generating deprecated, 20-13
with EJB, 27-4

direct value fields, 38-2
direct XML mappings

configuring, 55-1
understanding, 53-7

DirectCollectionMapping class, 36-3
directionality in mappings, 27-2
direct-to-field mappings

ObjectTypeMapping deprecated, 27-3
SerializedObjectMapping deprecated, 27-3
type conversions, 28-3
TypeConversionMapping deprecated, 27-3

direct-to-field relational mappings
configuring, 29-1
options, 29-1
timestamp support, 28-4
understanding, 27-4

direct-to-XMLType relational mappings
configuring, 30-1
understanding, 27-5

Discovery Exception, A-8
DMS profiler

about, 12-4, 87-12
accessing with JMX, 12-9
and JMX
nouns, 12-4, 87-12
selecting, 89-13, 89-16, 89-20, 89-23
sensors, 12-4, 87-12

document information in XML schemas, 5-37, 5-40,
5-43

documentation
hosted, 5-14

Index-9

See also Help
does exist write object, 12-32
dontOptimizeDataConversion(), 12-18
doPrivileged(), 8-4
DRIVER_CLASSPATH

Oracle TopLink Workbench environment, 5-2
drivers, custom database, 5-19
dynamic batch writing

about, 12-18
setMaxBatchWritingSize(), 12-18

dynamic fetch groups, querying with, 111-4

E
editor, 4-1
editor window

TopLink, 4-2
Editor window, about, 5-5, 5-11
EIS

about, 71-2
architecture, 2-4
call, 109-32
custom interactions for basic persistence, per

descriptor, 76-6
indexed records, configuring, 76-6
interactions, 76-6, 108-6, 109-32
mapped records, configuring, 76-6
mappings, 71-2, 77-2
projects, 116-3
queries, 108-6
record format, configuring, 76-6
XML records, configuring, 76-6

EIS descriptors
composite, 75-2
configuring, 76-1
default root, 76-4
locking policy, 119-71
root descriptor, 75-2
schema context, 76-3
setDataTypeName, 76-5
understanding, 74-1

EIS mappings
about, 77-1, 77-2
architecture, 77-5
composite collection, 77-8, 82-1
composite direct collection, 77-7, 80-1
composite object, 77-7, 81-1
configuring, 78-1
direct, 77-6, 79-1
jaxb:class support, 77-3
list support, 77-3
one-to-many, 77-13, 84-1
one-to-many, key on source, 77-14
one-to-many, key on target, 77-16
one-to-one, 77-9, 83-1
one-to-one, key on source, 77-10
one-to-one, key on target, 77-11
transformation, 77-18, 85-1
types of, 77-1
union support, 77-3

xsd:list, 77-3
xsd:union, 77-3

EIS projects
configuring, 73-1
connector.jar, 71-1
indexed records, 72-2
mapped records, 72-2
sequencing, 15-5
understanding, 71-1
XML records, 72-1

EIS queries, 108-6
EIS record types, supported, 77-2
EISLogin, 96-2
EJB

descriptors, 116-5
isolated client sessions, 87-25
setter parameter type checking, 8-21
single-object finder return type checking, 8-21
unknown primary key class support, 8-21

EJB 1.1
and BMP, 2-39
and CMP, 2-34

EJB 2.x
and BMP, 2-39
and CMP, 2-34
default mapping, 17-5

EJB 3.0
<Java EE-Container>-jar.xml file, 9-6
and CMP, 2-34
default mapping, 17-5
deployment files, 9-2, 10-1
Embedded annotation, 16-5, 21-2
packaging for deployment, 10-1
projects.xml file, 9-4, 9-5
sessions.xml file, 9-5

EJB descriptors, opening projects with, 116-5
EJB entities

CMP hot deployment, 11-3
deployment overview, 2-17
EJB 2.x indirection, 17-11
generating, 5-34
hot deployment, 11-3
inheritance, 16-5, 16-13
inserting after ejbCreate, 16-4
inserting after ejbPostCreate, 16-4
mapping, 117-7
non-CMP hot deployment, 11-3
non-deferred write, understanding, 16-3, 115-25
sequencing, 18-10

EJB entity beans
and EJB 1.1, 2-34, 2-39
and EJB 2.x, 2-34, 2-39
and EJB 3.0, 2-34
with BMP architecture, 1-6, 2-38
with CMP architecture, 1-6, 2-34

EJB Exception Factory Exceptions, A-6
EJB finders

about, 108-25
Call finders, 108-27
creating, 111-8

Index-10

DatabaseQuery finders, about, 108-27
default finders, about, 108-27
default finders, creating, 111-8
EJB QL finders, about, 108-28
ejb-jar.xml options, 111-9
ejbSelect method, 108-29
ejbSelect, creating, 111-15
ejbSelect, using, 111-15
expression finders, about, 108-28
named query finders, about, 108-27
predefined, about, 108-25
primary key finders, about, 108-28
redirect finders, about, 108-29
redirect finders, using, 111-12
single-object finder return type checking, 8-21
SQL finders, about, 108-28

EJB Info tab, 119-52
EJB JAR XML Exception, A-10
EJB Preferences, 5-17
EJB QL

exceptions, A-6
queries, 23-7, 108-5
query language, 108-5

EJB session bean facade architecture
about, 1-5, 2-31
understanding, 2-32

EJB Session Beans, 87-32
ejbCreate, 16-4
ejb-jar.xml file

about, 9-5, 19-4
corresponding to Oracle TopLink Workbench

functions, 19-4
EJB finder options, 111-9
location, 117-8
managing, 7-6
preferences, 5-17
synchronization under EJB 2.0, 9-5
updating from, 19-6
writing, 19-5

ejbPostCreate, 16-4
@Embeddable, 16-5, 21-2
@Embedded, 16-5, 21-2
empty unit of work transactions, 113-7
encrypting login passwords, 116-9
encryption

password encryption, customizing, 97-3
Securable interface, 97-4

enhanced validation exceptions, 9-4
Enterprise Information Systems. see EIS
entity beans

deployment, 2-17
descriptor information, 16-3
direct mappings, 27-4
indirection, EJB 2.x, 17-11
sequencing with, 18-10

Entity Manager Setup Exception, A-9
EntityManagerSetupException, A-9
environment

configuring, 5-2
JAVA_HOME, 5-2

JDBC_CLASSPATH, 5-2
proxy, 5-13, 5-14, 19-6

error codes
1-176, A-3
1-99, A-10
100-199, A-12
200-399, A-12
400-599, A-23
500-699, A-27
700-799, A-32
800-899, A-33
12000-12004, A-7
18001-18002, A-7
22001-22004, A-8
22101-22105, A-8
3001-3007, A-4
4002-4018, A-4
5001-5008, A-5
6001-6098, A-5
7001-7104, A-5
72000-72023, A-9, A-10
8001-8010, A-6
9000-9009, A-6

ErrorCodeListener
StoredProcedureCall, and, 109-29

errors
about, A-2
codes and descriptions, A-2, A-10
descriptors, 5-10, 5-11
MaD support, A-1
migration, 8-15
Oracle TopLink Workbench, A-10

Event Manager, 87-6
events

about, 16-6
client session, 87-6
database access, 87-6
Descriptor Event Listener, 119-70
domain object methods, 119-66
handlers, 16-6, 119-66, 119-69
listeners, sessions, 87-8
session, 87-6
session manager, 87-6
sever session, 87-6
types of, 119-66
unit of work, 87-6

examples
composite collection EIS mapping, 77-8
context menu, 5-6
cursored streams, 111-17
direct collection mappings, 27-12
direct-to-field mappings, 27-4
exception handler, 89-15
indirection, 17-7
inheritance, 16-9
Oracle TopLink Workbench, 5-3
performance optimization, 12-28, 12-30
proxy indirection in code, 121-10
READALL finders, 111-10
report query, 109-6

Index-11

scrollable cursors, 111-17
serialized mapping, 17-12
transformation mapping, 27-16
transformation XML mapping, 53-36, 77-19
Unit of Work, 113-6, 114-10
write, write all, 109-3

exception handler
about, 87-12
example, 89-15
selecting, 89-14

exceptions
chained, 87-11
communication exceptions, A-7
conversion exceptions, A-4
database exceptions, 109-33, A-4
Default mapping exception, A-7
descriptor exceptions, A-3
discovery exceptions, A-8
EJB JAR XML exceptions, A-9, A-10
EJB QL exceptions, A-6
enhanced validation, 9-4
JMS processing exceptions, A-7
Migration utility exception, A-9
optimistic locking, A-5
query exceptions, A-5
remote command manager exceptions, A-8
selecting exception handler, 89-14
session loader exceptions, A-6
Transaction exception, A-8
validation exceptions, A-5
XML conversion exception, A-8

exclusive connections
about, 115-28
internal read connection pool, 101-7
isolated sessions, 87-21, 89-22
named queries, 119-27

existence checking, 115-3
descriptors, 119-49
projects, 117-10

expanding items in Navigator window, 5-10
expiration of objects in the cache, 117-22, 119-47
explicit query refreshes, cache coordination, 102-7
exporting

deployment XML, 116-9
Java model, 116-10
Java source, 19-3
preferences, 5-12
projects, 116-9
relational projects, 19-3

Expression Builder, 110-13, 110-15
Expression Builder dialog box, 110-13
Expression class, 110-1
ExpressionMath class, 110-1
expressions

about, 108-4, 110-1
allows none, 110-14, 119-21
allows null, 110-14, 119-21
building, 110-13
comparing with SQL, 110-1
components, 110-2

creating, 110-12
data level queries, 110-11
database functions, 110-3
in relationships, 110-6
in-memory queries, limitations, 108-32
mathematical functions, 110-4
multiple, 110-10
one-to-one mappings, 110-5
parallel expressions, 110-11
parameterized, 110-8
platform functions, 110-16
query keys, 110-9
subqueries and subselects, 110-10
user-defined functions, 110-5, 110-16
using Boolean logic, 110-3
XML Type functions, 110-5
see also queries

external
applications, 115-26
connection pools, 96-8
controller, transaction, 113-1
JDBC pools, 2-40
transactions, 113-1

external transaction controller
configuration, sessions, 89-17
session, 113-2

F
factory name, JMS connection, 104-3
failure, resuming unit of work after commit, 115-14
features of Oracle TopLink, 1-4
fetch groups

about, 16-5, 119-88
configuring, 111-3, 119-88
default, 111-3, 119-88
disabling, 111-3
dynamic, 111-4
object level read query, 108-14
read optimization, and, 119-88
size, 12-22
static, 111-3

field access
about, 2-12

field references, 28-10
Field uses XML Schema "type" attribute

option, 17-15
fields in database tables, 5-27
Fields tab, 37-2, 37-3
field-to-object attribute transformation, 121-34,

121-36
files

JAXB-specific, 47-4
see also specific file name

final attributes, 5-49, 5-53
finalizers

sessions, 90-10
findAll, using, 108-27
finders

caching options, 108-38

Index-12

disabling cache, 108-39
managing large result sets, 111-18
refreshing results, 108-39
see also EJB finders

flashback queries
about, 108-24
historical client sessions, 93-1

forceUpdateToVersionField(), 115-17
foreign keys

about, 2-19, 28-10
configuring in EIS mappings, 83-2
direct collection mappings, 36-3
EIS mappings, 84-2
multiple tables, 23-15
one-to-many mappings, 27-8
one-to-one mappings, 27-6, 121-42
parameterized expressions, 110-8
references, A-25, A-33
target, 27-6, 28-10
troubleshooting, A-25, A-33

fragment XML mappings
configuring, 66-1

full identity map, 102-3

G
garbage collection, managing, 114-11
General Preferences dialog, 5-13
Generate Classes and Descriptors dialog, 5-33
Generate EJB Entity Classes and Descriptors

dialog, 5-34
generating

access method, 5-33
deprecated direct mappings, 20-13
see also exporting

getCatalogs(), 5-24
getField(), 110-12
getImportedKeys(), 5-24
getParameter, 110-8
getPrimaryKeys(), 5-24
getTable(), 110-12
getTables(), 5-24
getTableTypes(), 5-24
getValue(), 17-8, Glossary-8
getValue() method, 17-8, Glossary-8

H
hard cache weak identity map

about, 102-4
when to use, 102-5

help
about, 5-12
displaying, 5-12

Help button., 5-12
Help Preferences, 5-14, 5-16
hierarchical queries

about, 108-24
described, 111-7

hints, Oracle Hints in queries, 108-24
historical client sessions

about, 87-2, 87-25
cache, 87-34
limitations of, 87-26

historical queries, 111-2
about, 108-21
see also AsOfClause

history policy, configuring, 119-84
holders, value, 17-8, Glossary-8
host URL, JMS topic, 104-4
hosted

documentation, 5-14
XSD files, 9-2

hot deployment
about, 11-3
CMP applications, 11-3
non-CMP applications, 11-3

HSQL platform, 96-3

I
IBM Informix Database native sequencing, 18-8
IBM WebSphere

setting class loader order, 8-17
identity

about, 2-19, 102-3
cache, and, 102-3
using cache to preserve, 102-3
see also identity map

identity map cache
disabling during a write query, 109-13
refresh in read query, 108-36

identity maps
about, 87-30, 119-40, 119-42, 119-45
cascading refresh during read query, 108-37
descriptors, 117-15, 119-40
example, 108-36
full, 102-3
guidelines for choosing type, 102-4
hard cache weak identity map, 102-4, 102-5
isolated client sessions, 87-25
no identity map, 102-4
refreshing during read query, 108-36
soft, 102-4
soft cache weak identity map, 102-4, 102-5
soft cache weak identity map and read

optimization, 12-25
specifying, 119-40, 119-42, 119-45
weak, 102-4
weak identity map and read optimization, 12-25

Identity tab. see Caching tab
impedance mismatch, solving, 1-3
Implementors tab, 119-38
Import Tables from Database dialog, 5-24
importing

classes, 5-16
preferences, 5-12

inactive descriptors
about, 5-10
mapping to, 28-7, 78-4

independent relationships, 121-18

Index-13

indexed records, 77-3
indirection

about, 2-21, 17-6
bidirectional relationships, 121-42
choosing the correct type, 121-5
configuring, 121-4
EJB, 17-11
EJB 2.x CMP, 17-11
example, 17-7
many-to-many mappings, 27-10
nontransparent, 2-14
one-to-many mappings, 121-42
proxy indirection, 17-10
remote sessions, 87-33
serialization, 17-11
serialization and JPA, 17-12
transparent, 2-14, 17-9, Glossary-8
value holder, 17-8, Glossary-8
ValueHolderInterface, 2-14
see also proxy indirection, transparent indirection

Informix platform, 96-3
inheritance

about, 2-19, 16-3, 16-9, 21-4
aggregate classes, 16-12
aggregate collection mappings, 27-11
branch classes, 16-9, 16-10
child descriptors, 119-57
class extraction, 16-11, 16-12
class indicator, 16-10, 16-11
descriptors, 16-3, 16-9, 21-4, 119-57, 119-59
finding subclasses, 16-10
instantiating subclasses, 16-10
isolated client sessions, 87-25
leaf classes, 16-9, 16-10, 111-5
outer-join subclasses, 12-19
primary keys, 16-12, 21-4, 74-2
queries, 108-22
querying on hierarchy, 111-5
relational parent, 119-59
root class, 16-9, 119-58, 119-59
root class subclasses, finding in inheritance, 16-10
supporting with multiple tables, 21-5
supporting with one table, 21-4
transformed to relational model, 12-14
using with EJB, 16-5, 16-13

inheritance hierarchies
descriptors, 16-19
querying on, 111-5

Inheritance tab, 119-58, 119-59
inherited subclasses, mapping, 119-65
in-memory query

about, 102-6
check cache using exact primary key, 108-31
check cache using primary key, 108-31
check database if not in cache, 108-31
conform results in unit of work, 108-32
expression limitations, 108-32
supported, 108-32
using, 108-31

inner join, 110-6

insert operation, 109-3, 109-4
insertObject(), 23-8
instantiation policy

about, 119-78
setting, 119-78

Instantiation tab, 119-78
integrity checker, 118-1

about, 87-12
configuring, 89-21

interactions
about, 109-32
creating, 76-6

interface alias
about, 23-11
creating, 23-12

Interface Alias tab, 23-12
interfaces

classes, implementing, 5-47
customizing, 5-13
descriptors, 22-2, 119-35, 119-37
queries, 108-22
query keys, 119-35
querying on, 111-4

internal connection pool
about, 96-7
named, 96-9
read, 96-8
sequence, 96-8
write, 96-8

internal query object cache
about, 108-37
configuring, 111-20, 111-21
expiration, 111-21
restrictions, 108-38

internal transactions, 113-1
invalidation of objects in the cache, 102-8, 117-22,

119-47
IP address for multicast group, 103-5
isolated client sessions

about, 87-2, 87-20, 92-1
configuration, 92-1
life cycle, 87-23
limitations of, 87-24
session event handlers, 87-22
with Oracle Virtual Private Database

(VPD), 87-22
isolated session

cache, 87-34
ConnectionPolicy, 87-21
exclusive connections, 87-21
supported databases, 87-21

isolation
cache, 102-6
transaction levels, 113-2
unit of work transactions, 113-4

Iterator interface, 111-16

J
Java

Index-14

database tables, 19-4
exporting to, 19-3
integration with any datasource, 1-3
iterators, 111-16
object model, 2-11

Java applications
deploying, 11-1
deployment files, 9-7
packaging for deployment, 10-1

Java Cryptography Extension, 116-9
<Java EE-Container>-jar.xml file

EJB 3.0, 9-6
Java EE

parameter binding, 12-20
prepared statement caching, 12-20
web applications, 1-5

Java Management Extensions. see JMX
Java Naming and Directory Interface. See JNDI
Java Object Builder, 87-4
Java streams

described, 111-17
optimizing, 111-18
support for, 111-17

Java Transaction API
and unit of work commit, 113-10, 113-11
and unit of work rollback, 113-11
see also JTA

Java Transaction Service see JTA
JAVA_HOME, 5-2
javaagent, 2-26
JAVA-EE-CONTAINER-ejb-jar.xml file, 9-6
java.util.Collection interface, 121-30
java.util.Map interface, 121-30
java.util.Set interface, 121-30
javax.ejbEntityBean interface, 5-34
JAXB

creating projects from, 48-2
files, 47-4
generating project from the command line, 48-3
jaxb:class, and EIS mappings, 77-3
jaxb:class, and XML mappings, 53-6
proxy configuration, 48-3
tljaxb.cmd<Default Para>, 48-3
tljaxb.sh<Default Para>, 48-3
typesafe enumeration converter, 121-29
understanding, 47-2
validation, 47-9
XML projects, 47-2

JAXB typesafe enumeration converter
configuring, 121-29
understanding, 17-27

JAXBContext, 47-8
JCA adapters

about, 96-4
configuring for Oracle TopLink Workbench, 5-2
EISLogin, 96-2
selecting, 96-4
with EIS, 116-3

JCE. see Java Cryptography Extension
JConnect, 12-18

JDBC
adaptor for EIS, 77-5
database gateway for EIS, 77-5
driver classpath, 5-24
JConnect, 12-18
Sybase JConnect, 12-18

JDBC drivers
about, 96-3
configuring for Oracle TopLink Workbench, 5-2
fetch size, 12-17, 12-22
general properties, 12-17
mapping LOBs, 120-3
selecting, 96-3

JDBC pools
external with EJB Entity Beans with BMP

architecture, 2-40
JDBC_CLASSPATH, 5-2
JMS

connection factory name, 104-3
coordinated cache, 104-1
coordinated cache, connection handling, 104-5
coordinated cache, error receiving message, 104-5
coordinated cache, ERROR_RECEIVED_JMS_

MESSAGE_IS_NULL, 104-5
coordinated cache, ERROR_RECEIVING_JMS_

MESSAGE, 104-5
coordinated cache, null JMS message, 104-5
Processing Exceptions, A-7
topic host URL, 104-4
topic name, 104-2

JMX
about
and DMS profiler
DMS profiler, 12-9

JNDI naming service, 103-9
joining

about, 108-12
addJoinedAttribute, 109-11
expressions, and, 110-6
inner joins, 110-6
mappings, and, 28-13
ObjectLevelReadQuery, 109-11
ObjectLevelReadQuery, and, 109-11
one-to-many, 109-11
one-to-many, filtering duplicates, 109-11
one-to-many, when not to use, 108-13
one-to-one, 109-11
optimizing reads, 12-25
outer-join inherited subclasses, 12-19
QueryManager expressions, 111-5
read queries, 12-25, 109-11
reading and object-level read queries, 108-12
reference mappings, 28-13
setAdditionalJoinExpression(), 111-5
setMultipleTableJoinExpression(), 111-

5
use inner join, 108-13, 109-11
use outer join, 108-13, 109-11

JPA
indirection and serialziation, 17-12

Index-15

schema generation, 6-6
schema manager, 6-6
serialization and indirection, 17-12

JPQL, 109-16
JSP and Servlet applications

deploying, 11-1
deployment files, 9-7
packaging for deployment, 10-2

JTA
about, 113-3
and unit of work, 113-3
isolated client sessions, 87-25
unit of work, 113-1

JTA/JTS
using with EJB Entity Beans with BMP

architecture, 2-40
just-in-time reading. See indirection

K
Key Converter tab, 38-4
key pairs

database table reference, 5-30
troubleshooting, A-25, A-33

keys
about, 2-19
composite primary, 121-42
foreign, 2-19, 27-6, 121-42
foreign, target, 27-6
inheritance, 16-12, 21-4, 74-2
multiple tables, 23-14
primary, 16-12, 21-4, 23-14, 27-7, 27-10, 32-5, 74-2,

121-3, 121-42
read-only settings, 121-3
reference key field, 27-12, 27-13
variable class relationships, 27-7, 32-5

L
language, specifying, 5-3
large result sets, managing in finders, 111-18
lazy attribute loading and read optimization, 119-88
lazy connection

acquisition, 89-23
allocation, 87-19, 90-8

lazy loading
See fetch groups
See indirection

lazy reading. See indirection
leaf classes, 16-9, 16-10, 111-5
life cycle of unit of work, 113-5
LOB

mapping to, 120-3
local

documentation, 5-14
transactions, 115-25

locked files, 7-6
locking policy

AllFieldsLockingPolicy, 16-16
ChangedFieldsLockingPolicy, 16-16
configuring, 119-71

field locking, 16-16
optimistic, 16-7, 16-14, 16-16
optimistic version locking, 16-13
optimistic version locking, stored function

restrictions, 16-14
optimistic version locking, stored procedure

restrictions, 16-14, 109-27
OptimisticLockException, 16-14, 16-17
pessimistic locking policy, 16-7, 16-17
SelectedFieldsLockingPolicy, 16-17
stale data, and, 102-7
three-tier architectures, optimistic locking

and, 16-18
three-tier architectures, pessimistic locking

and, 16-18
TimestampLockingPolicy, 16-14
understanding, 16-7, 16-13
version locking, 16-14
VersionLockingPolicy, 16-13

Locking tab, 119-72
log into database, 5-23
Log Out of Database, 5-23
log out of database, 5-23
logging

application server, 87-10
chained exceptions, 87-11
configuring, non-Oracle Java EE container, 89-9
configuring, TopLink Workbench, 89-6
configuring, using java.util.logging, 89-9
configuring, using Oracle Enterprise

Manager, 89-9
configuring, using Session API in Java, 89-8
java.util.logging, 87-9
log level, 87-10
logging.properties file, 87-11
MaD, configuration with Oracle Enterprise

Manager, A-2
MaD, in-container defaults, A-2
MaD, out of container defaults, A-2
non-Oracle, in-container defaults, 87-11
out of container defaults, 87-11
output, 87-10
permissions, 8-21
sessions, 87-8, 89-5, 89-6
TopLink native logging, 87-8
types, 87-8

Logging tab, 89-6
logging.properties file, 87-11
login

CMP deployment, 15-3
database, 20-6, 20-8, 98-1
deployment, 15-3
development, 15-4
platforms, and, 15-4
projects, and, 15-3, 86-2, 96-2
role in project, 15-3, 96-2
session, 15-3, 89-5
session role, non-CMP, 15-3

logMessages method, 87-8
look and feel, specifying, 5-13

Index-16

M
MaD

about, A-1
DMS, about, A-2
DMS, TopLink instrumentation, 12-4
integrating with, 8-16
JMX, about, A-2
logging, about, A-1
logging, configuration with Oracle Enterprise

Manager, A-2
logging, in-container defaults, A-2
logging, out of container defaults, A-2

Manage Non-Descriptor Classes dialog, 5-57
Manageability and Diagnosability. see MaD
management, source control, 7-3
manager, session events, 87-6
many-to-many mappings

relation table, 27-10
relation tables, 34-2
session broker limitations, 87-28

many-to-many relational mappings
configuring, 34-1
EJB, 27-10
understanding, 27-9

mapped records, 77-3
mapping extensions

custom data types, 13-1
JAXB typesafe enumeration converter, 17-27,

121-29
object type converter, 17-14, 121-25
serialized object converter, 17-12, 121-21
simple type translator, 17-15, 121-28
transformation mappings, 17-17
type conversion converter, 17-13, 121-23

mappings
about, 2-18, 2-19, 14-1, 14-2, 17-1, 120-1
access types, 121-18
aggregate collection mappings and EJB, 27-11
anyType mapping, 54-5
as part of the application development

process, 2-24
automatic, 120-3
batch options, 28-8
bidirectional relationships in Java, 121-42
CDATA, 121-44
class hierarchy, 17-28
comments, 121-21
configuring, 120-2, 121-1, 121-2
database field, 28-4
default mapping, 17-5
deprecated, generating, 20-13
direct access, 12-16, 121-16
directionality, 27-2
EIS mappings, 17-29, 71-2, 77-1, 78-1
EJB 2.0 entities, 117-7
errors, A-23
example, 17-4
extensions, about, 17-12
hierarchy, 17-28
inactive descriptors, 28-7, 78-4

indirection, 12-16, 17-6, 121-4
isolated client sessions, 87-24
manually configuring, 120-2
many-to-many, 27-10
many-to-many, with EJB, 27-10
method access, 121-16, 121-37
null values, 121-14, 121-43
object-relational data type, 40-1, 41-1
one-to-many object, with EJB, 27-9
one-to-one with EJB, 27-6
optimizing, 12-16
OX mappings, 17-29
projects, and, 14-2
read-only, 121-3, 121-4
relation tables, 34-2
relational, 27-1, 28-1
removing, 120-5
to tables, 23-3, 119-5
TopLink Workbench, Navigator window, 5-9
types of, 17-1
use inner join, 108-13, 109-11
use outer join, 108-13, 109-11
XML mappings, 53-1, 54-1

mathematical functions, in TopLink
expressions, 110-4

menu bar, 5-5
menus

about, 5-4, 5-5
context menus, 5-6
menu bar, 5-5

merging
changes in clones, 115-12
Oracle TopLink Workbench project files, 7-4
project files, 7-4

messages, error, A-2, A-10
metadata

about, 2-14, 2-22
advantages, 2-23
creating, 2-24, 2-25
mapping and configuration, 14-1
project metadata, 2-24
session metadata, 2-25

Metalink, 2-3
method access

about, 2-12, 117-5, 121-16
change tracking limitations, 2-13, 117-5, 121-17
setting, 121-37

methods
adding, 5-52
getValue(), 17-8, Glossary-8
setValue(), 17-8, Glossary-8
wrapper policy, 119-87
see also specific method name

Microsoft Access
platform, 96-3
schema manager type conversion, 6-3

Microsoft SQL Database native sequencing, 18-8
migrating

error messages, 8-15
OC4J persistence to TopLink, 8-7

Index-17

Oracle TopLink Workbench projects, 116-5
troubleshooting, 8-15

Migration Utility Exception, A-9
model source, exporting, 116-10
modifiers, class, 5-46
multicast group address, coordinated cache, 103-5
multicast port, coordinated cache, 103-7
multiple sessions, 87-29, 90-2
multiple tables

about, 23-14
specifying for descriptors, 23-14

multiplicity in relationships, resolving, 8-16
multi-processing, 12-35
Multitable Info tab, 23-14, 119-55
mutability

about, 2-21
change policy, 113-9, 119-81
change tracking performance, 2-22
defaults, 2-21
EIS transformation mapping, and change

policy, 113-9
transformation mapping, and change

policy, 113-9
transformation mappings, 121-39
transformation mappings, and copy policy, 2-22,

113-9, 121-39
weaving, 2-22

mutable mappings, 121-39
.mwp file, 5-1, 116-2
MySQL4

batch writing, 98-10
platform, 96-3
primary key restrictions, 18-4
schema manager type conversion, 6-3

N
named connection pools, 96-9
named queries

about, 89-24, 108-17, 119-12
configuring, 89-24, 119-12
descriptor level, 119-12
exclusive connections, 119-27
options, advanced, 119-27
parameter binding, 119-25
prepared statement caching, 119-25
redirect query, 108-17
session level, 89-24
using, 109-18
when not to use, 108-17
when to use, 108-17

namespaces
about, 15-5, 15-6
configuring, 5-42

naming service
coordinated cache, 103-9
JNDI, 103-9
RMI, 103-13

native batch writing, 12-19, 98-11
native sequencing

IBM Informix Database, 18-8
Microsoft SQL Database, 18-8
Microsoft SQL Server, 6-6
non-Oracle database, 18-8
Oracle Database, 18-7, 18-9
Oracle Database SEQUENCE object, 18-8
Sybase Database, 6-6, 18-8

native SQL, 98-11
Navigator window

about, 5-4, 5-9
attribute and mapping, 5-9
database, 5-10
database tables in, 5-22
descriptor, 5-9
example, 5-9
package, 5-9
project, 5-9
unsaved or changed item, 5-9

NCHAR, 17-14
NCLOB, 17-14
neediness warnings. See troubleshooting
nested table object-relational data type mappings

configuring, 46-1
understanding, 40-3

nested unit of work, 113-10, 115-15
new projects, 116-2
New Reference dialog box, 5-30
New Session button, 88-4, 88-7, 88-9
New Sessions Configuration, 88-2
New Table dialog box, 5-23
newInstance method, 115-2
no identity map, 102-4
non-cascading write queries

compared to cascading, 108-15, 109-13
creating using dontCascadeParts ()

method, 108-15, 109-13
non-deferred write

configuring, 115-11
dependent objects, 16-4
understanding, 16-3, 115-6, 115-25

nonintrusive persistence, 2-20
nonpersistent projects, 15-2
nonrelational projects, 15-2
nontransactional data sources, 96-1
nontransparent indirection, 2-14
nouns

DMS profiler, 12-4, 87-12
null values

default, 97-8, 121-14, 121-43
in expressions, 110-14
login level, 97-8
mapping level, 121-14

NVARCHAR2, 17-14

O
object array object-relational data type mappings

configuring, 45-1
understanding, 40-3

object cache, 108-37

Index-18

object cache, sessions, 87-3
object change tracking

configuring, 119-82
object identity, 87-30

about, 2-19, 102-3
cache, and, 102-3
using cache to preserve, 102-3
see also identity map

object indirection
read optimization, as, 12-25

object level modify query
about, 108-14, 108-16

object level read query
about, 108-11, 108-14
addJoinedAttribute, one-to-many

mappings, 109-11
addJoinedAttribute, one-to-one mappings, 109-11
fetch groups, 108-14
join reading, 108-12
joining one-to-many mappings, 109-11
joining one-to-many mappings, filtering

duplicates, 109-11
joining one-to-one mappings, 109-11
partial object query, 108-11
read all query, 108-11
read object query, 108-11
setShouldFilterDuplicates, one-to-many

mappings, 109-11
object model

about, 2-18
generating with tljaxb.cmd, 48-4
optimization, 12-11
Oracle TopLink requirements, 2-11

object reference XML mappings
configuring, 62-1

object type converter
about, 13-2, 17-14
configuring, 121-25

object type mappings
configuring, 121-25, 121-26

ObjectLevelChangeTrackingPolicy, 113-7
object-relational data type descriptors

configuring, 26-1
locking policy, 119-71
understanding, 24-1

object-relational data type mappings
about, 40-1
array, understanding, 40-3
configuring, 41-1
nested table, 40-3, 46-1
object array, 40-3, 45-1
overview, 2-18
reference, 40-2, 43-1, 44-1
structure, 40-2, 42-1

object-relational data type projects
about, 18-2
sequencing, 15-5

objects
cascading refresh in cache, 108-36
creating and registering, 115-2

query, 109-6
refreshing in cache, 108-36
registering and unregistering, 115-1

ObjectTypeMapping
see ObjectTypeConverter

one-to-many EIS mappings
configuring, 84-1
key on source, 77-14
key on target, 77-16
understanding, 77-13

one-to-many relational mappings
configuring, 33-1
understanding, 27-8

one-to-one EIS mappings
configuring, 83-1
key on source, 77-10
key on target, 77-11
understanding, 77-9

one-to-one relational mappings
configuring, 31-1
expressions, 110-5
understanding, 27-5
with EJB, 27-6

online help, 5-14
Open Project button, 116-5
opening projects, 116-5
operators

boolean logic, 110-3
optimistic locking

about, 16-7
application architecture, 2-11
cascading locking policy, 16-14, 119-75
database exception, 109-33
exceptions, A-5
field locking policy, about, 16-16
rollbacks, 16-16
version locking policy, 16-13, 16-14, 119-75
version locking policy, stored function

restrictions, 16-14
version locking policy, stored procedure

restrictions, 16-14, 109-27
with forceUpdateToVersionField()

method, 115-17
optimistic locking policy

field locking, about, 16-16
version locking, 16-13, 16-14, 119-75
version locking, stored function

restrictions, 16-14
version locking, stored procedure

restrictions, 16-14, 109-27
OptimisticLockException, 16-14, 16-17
optimization

about, 12-1
application bottlenecks, 12-2
application server, 12-36
batch reading, 12-21
batch writing, 12-18
CMP partial object queries, 12-22
code generation, 12-11
cursored streams, 12-23

Index-19

data access, 12-17, 12-18
data format, 12-18
database, 12-36
descriptors, 12-16
DMS profiler, 12-4, 87-12
existence checking, 12-16
fetch groups, 12-22
fetch size, JDBC, 12-22
general, 12-11
inheritance, 21-5
instantiation, 12-16
JDBC driver, 12-17, 12-22
join reading, 12-21
mappings, 12-16
named queries, 12-21
object model, 12-11
outer-join inherited subclasses, 12-19
overview, 2-17
pagination, 12-24
parameter binding, 12-19
parameterized SQL, 12-21
partial object queries, 12-22
prepared statement, 12-21
prepared statement caching, 12-19
profiler, 12-4, 87-12

optimization
TopLink Profiler, 12-2

queries, 12-21
reading, 12-24
read-only queries, 12-22
read-only query, 12-22
ReadQuery method setMaxRows, 12-23
result set pagination, 12-24
schema, 12-11
scrollable cursors, 12-23
setMaxRows, 12-23
understanding, 12-1
unit of work, 12-35
weaving, 12-36
writing, 12-32

Oracle
development support, 2-3
remote session support, 87-32

Oracle Containers for J2EE
migrating to TopLink, 8-7

Oracle Database
date and timestamp mappings, 28-4
native sequencing, 18-9

Oracle Database
SEQUENCE object, 18-8

platform, 96-3
schema manager type conversion, 6-3

Oracle extensions
hierarchical queries, 111-7
Oracle Hints, 111-6

Oracle Hints, using with TopLink queries, 111-6
Oracle JDeveloper

configuring with Oracle TopLink, 7-1
Oracle TopLink

about, 1-1, 5-1

application architectures, 1-5
architectures, 1-1
development, 2-1, 3-1
features, 1-4
integrating with application server, 8-1, 8-2
mapping types, 17-1
optimization, 12-1
packaging your application, 10-1
public source, 13-2
runtime components, 3-3
understanding, 1-1

Oracle TopLink Sessions Editor. see sessions
Oracle TopLink Workbench

about, 5-1
Ant integration, 5-58
classpath, 5-2
creating projects, 19-1, 48-1, 72-1, 116-1
development process, 5-1
DRIVER_CLASSPATH, 5-2
environment, 5-2
error messages, A-10, A-12
JDBC_CLASSPATH, 5-2
parts of, 5-3
preferences, 5-12
project, 5-1, 116-2
proxy, 5-13, 5-14, 19-6
sample, 5-3
table creator, creating, 6-4
upgrading projects, 116-5

Oracle Virtual Private Database (VPD)
isolated client sessions, 87-22
proxy authentication, 87-22, 96-6, 98-14

oracle.sql.TimeStamp, 28-4
order

query keys, 28-8
relational mappings, 28-8

OrderSibling, 111-7
orion-ejb-jar.xml file

about, 9-10
entity-deployment attribute pm-name, 9-10
modifying for Oracle TopLink, 9-10
persistence-manager attribute

class-name, 9-10
persistence-manager attribute

descriptor, 9-10
persistence-manager attribute name, 9-10
persistence-manager subentry

forpm-properties
cache-synchronizations, 9-11
customization-class, 9-11
db-platform-class, 9-11
default-mapping, 9-11
project-class, 9-11
remote-relationships, 9-11
session-name, 9-11

orion-ejb-jar.xml file, 9-6
OTN (Oracle Technology Network), 1-4, 2-3
OTS (Object Transaction Service)

about, 113-3
unit of work, 113-3

Index-20

outer joins
inheritance, 119-55

OX mappings
about, 17-29
extensions, simple type translator, 17-16
read conversions, 17-16
write conversions, 17-16

P
package names

generating, 5-33
renaming, 5-57
TopLink Workbench, Navigator window, 5-9
see also classes

packaging
JPA application for weaving, 10-5
POJO application for weaving, 2-27, 10-5

packaging for deployment
about, 10-1
BMP applications, 10-6
CMP applications, 10-5
EJB 3.0, 10-1
Java applications, 10-1
JSP and Servlet applications, 10-2
Session Bean applications, 10-3

packet time-to-live cache coordination, 103-19
pagination, 111-20
parallel

expressions, 110-11
unit of work, 113-10

parameter binding
about, 12-19
byte arrays, 12-20
configuring, 20-8, 98-10, 109-17, 119-25
database login level, 98-10
descriptor level, 119-25
external connection pools, 12-20
internal connection pools, 12-20
Java EE, 12-20
named queries, 119-25
optimizing, 12-19
project level, 20-8
queries, 109-17
streams, 12-20
strings, 12-20
trouble shooting, 12-20

parameterized batch writing
about, 12-18
setMaxBatchWritingSize(), 12-18

parameterized expressions
about, 110-8
example, 110-9

parameterized SQL
enabling on queries, 109-17
Oracle TopLink optimization features, 12-32
See also parameter binding

parser conflicts, XML, 8-3
partial object reading optimization, 12-25
password encryption

customizing, 97-3
passwords, encryption, 116-9
performance optimization

about, 12-1
application bottleneck, 12-2
examples, 12-26
JConnect method isClosed, 12-18
using Performance Profiler, 12-2

Performance Profiler
about, 12-2
class, 12-3

persistence
about, 2-20
by reachability, 114-8
components of, 2-14
descriptor, 9-9
implementation options, about, 2-11
implementation options, JPA annotations, 2-12
implementation options, JPA metadata, 2-12
implementation options, JPA XML, 2-12
implementation options, method and direct field

access, 2-12
implementation options, TopLink metadata Java

API, 2-12
implementation options, TopLink metadata

XML, 2-12
implementation options, weaving, 2-13
manager, 8-4
OC4J, 8-7
projects, 15-2
types, 117-6
using a persistence layer, 2-16

persistence manager
default, 8-4
migration, 8-5
restrictions, 8-4

persistent classes
project, 5-35
requirements, 2-11, 2-14
types, 117-8

pessimistic locking
about, 16-7, 16-17
application architecture, 2-11
policy, 16-17

phantom reads, preventing, 115-30
platforms

Attunity Connect database, 96-3
Cloudscape database, 96-3
data source, 96-3
database, 20-3, 73-2, 96-3, 98-2, 99-1, 116-3
DB2 database, 96-3
EIS, 96-4
functions in expressions, 110-16
HSQL database, 96-3
Informix database, 96-3
JCA adapter, 96-4
JDBC drivers, 96-3
Microsoft Access database, 96-3
MySQL4 database, 96-3
Oracle database, 96-3

Index-21

Oracle8 database, 96-3
Oracle9 database, 96-3
parser, XML, 8-3
PointBase database, 96-3
projects, and, 15-4
server, 89-18
session configuration, 89-18
SQLAnyWhere database, 96-3
SQLServer database, 96-3
SybasePlatform database, 96-3
XML parser, 8-3
see also target platforms

PointBase platform, 96-3
pop-up menus. see context menus
ports

multicast group, 103-7
permissions, 8-20

post-commit clones, avoiding, 115-31
Potential EJB Descriptors dialog box, 116-5
pre-allocating sequence numbers, 18-9, 20-4, 98-6,

99-2
preferences

class import, 5-16
database, 5-18
EJB, 5-17
general, 5-13
help, 5-14
importing and exporting, 5-13
Oracle TopLink Workbench, 5-12
sessions, 5-19

Preferences - Class dialog, 5-16
Preferences - EJB dialog, 5-17
Preferences - General dialog, 5-13
Preferences - Help dialog, 5-14
Preferences - Mappings dialog, 5-15
Preferences dialog, 5-13
prepared statement caching

about, 12-19
configuring, 20-8, 98-10, 109-17, 119-25
database login level, 98-10
descriptor level, 119-25
external connection pools, 12-20
internal connection pools, 12-20
Java EE, 12-20
named queries, 119-25
optimizing, 12-19
project level, 20-8
queries, 109-17
query level, 109-17

preserving XML documents, 52-6
primary key

about, 2-19
cache, 108-35
composite, 27-10, 121-42
inheritance, 16-12, 21-4, 74-2
multiple tables, 23-14
primkey in ejb-jar.xml file, 19-4
queries with compound, 108-35
read-only settings, 121-3
restrictions, 18-4

setting, 5-28, 23-3, 119-5
unit of work, 113-11
unknown, 119-53
variable class relationships, 27-7, 32-5

private relationships, 121-18
Problems window

about, 5-5, 5-11
sample, 5-11
see also error messages

profiler
about, 89-12
development tool, 12-2
DMS, 12-4, 87-12
Oracle TopLink, 12-2, 12-3, 87-12
selecting, 89-13, 89-16, 89-20, 89-23

Project - Multiple Projects tab, 89-11
Project Status Report dialog box, 116-8
projects

about, 14-1, 15-1, 15-2, 116-2
architecture, 15-2
cache type and size, 117-14, 119-39
comments, 117-23
configuring, 117-1
copying objects, 7-6
creating, 19-1, 48-1, 48-2, 72-1, 116-1, 116-2, 116-3
deployment login, and, 15-3
deployment overview, 2-17
descriptors, 14-2
development login, and, 15-4
direct access to mapped fields, 117-5
EIS, 71-1, 72-1, 72-2, 73-1
errors, A-12
existence checking, 117-10
exporting, 116-9, 116-10
for sessions, 89-11
indexed records, 72-2
Java, 116-3
JAXB, 48-2
locked, 7-6
login, 15-3, 86-2, 96-2
login, and, 15-3
mapped field access, default, 117-5
mapped records, 72-2
mapping projects, creating, 116-2
mappings, 14-2, 116-2
merging, 7-4
metadata, 2-24
method access to mapped fields, 117-5
model, exporting, 116-10
.mwp file, 5-1
nondescriptor classes, 5-57
non-persistent, 15-2
nonrelational, 15-2
object-relational data type, types supported, 18-2
open, 116-5
Oracle TopLink Workbench, 116-2
packages, renaming, 5-57
persistence type, 15-2, 117-8
platforms, and, 15-4
prior TopLink versions, 116-5

Index-22

recently opened, 116-5
relational, 15-2, 18-1, 18-2, 20-1
renaming, 116-8
reopening, 116-5
saving, 116-6
sequencing, 15-4, 15-5, 20-3, 98-5
session login, and, 15-3
sharing, 7-6
status report, 116-8
team development, 7-3
TopLink Workbench, Navigator window, 5-9
types of, 15-1, 16-1, 116-2
updating from ejb-jar.xml, 19-6
upgrading from 2.x or 3.x, 116-5
writing ejb-jar.xml file, 19-5
XML, 47-1, 49-1
XML records, 72-1

projects.xml file
about, 9-2
EJB 3.0, 9-4, 9-5

propagation mode, cache, 103-2
proxies. see wrapper policy
proxy authentication

about, 96-5
applications, 96-5
Oracle Virtual Private Database, 87-22, 96-6,

98-14
session events, 87-6
use cases, 96-5

proxy indirection
about, 17-10, Glossary-7
example, 121-10
restrictions, 17-10

proxy settings, preferences, 5-13
public source code, 13-2

Q
qualified names, database tables, 5-24, 5-25
queries

about, 108-1
application development process, 2-15, 86-2
building, 108-6
cache, 108-30
Call queries, 108-3, 108-17
cascading, 108-15, 109-13
concepts, 108-2
conforming, 115-7
database queries, 108-10, 109-4
DatabaseQuery, 108-3
descriptor query manager, 108-3
EIS interactions, 108-6
EJB finders, 108-25
EJB QL query language, 108-5
ejb-jar.xml file, 23-7, 76-6, 119-12
executing, 108-7
expressions, 108-4
fetch groups, 108-14
flashback queries, 93-1, 108-24
hierarchical queries, Oracle extensions, 108-24

hints, Oracle extensions, 108-24
historical, 108-21, 111-2
interface and inheritance queries, 108-22
joining, 108-12
languages, about, 108-4
named queries, 108-17
object level modify query, 108-14, 108-16
object level read query, 108-11, 108-14
on inheritance hierarchies, 111-5
on interfaces, 111-4
optimizing, 12-21
Oracle database features, 111-6
Oracle extensions, 108-24
pagination, 111-20
parameter binding, 109-17
partial object query, 108-11
performance, 12-21
prepared statement caching, 109-17
query keys, 108-4
read all query, 108-11
read object query, 108-11
read-only, about, 108-12
read-only, configuring, 111-4
read-only, optimization, 12-26
redirect queries, 108-20
remote sessions, 87-33
report, 12-27, 108-8
report query, 108-16
result set pagination, 111-20
results, 108-8
returning policy, 108-18
session queries, 108-9, 109-1
SQL query language, 108-5
stored functions, Oracle extensions, 108-24
subqueries, 110-10
summary queries, 108-3
timeout, 109-10, 119-27, 119-29
types, 108-1
UpdateAll, 108-15
XML query language, 108-6

Queries tab, 119-30, 119-31
query by example, 109-6
query cache, 108-37
Query Exception, A-5
query keys

about, 108-4, 119-33, 119-37
adding, 119-35, 119-38
and expressions, 110-9
creating, 119-35, 119-38
direct mappings, 119-34
generating, 119-34
in expressions, 110-9
interface descriptors, 119-35, 119-37
Java implementation, 119-35
modifying, 119-34
order, 28-8
relationship mappings, 119-34
specifying, 119-35, 119-38
unmapped attributes, 119-34, 119-35

Query Keys tab, 119-35

Index-23

query object query. See DatabaseQuery
query objects

batch reading, 109-10
cache expiration, 111-21
caching results, 108-37, 111-20
examples, 109-5
ordering for ReadAll queries, 109-8
report query, 12-27
specifying collection class, 109-9

query results
about, 108-8
caching, 108-37
collections, 108-8
cursors, 108-9
reports, 108-8
streams, 108-9

query timeout example, 109-10
QueryManager

about, 16-6
joining expressions, 111-5

QuerySequence, 98-8

R
read access

providing in sessions, 87-16
read all operation, 109-2
read conversions

simple type translator, 17-16
read operation, 109-2
read optimization

about, 12-24
batch reading, 12-25
fetch groups, 119-88
joining, 12-25
lazy attribute loading, 119-88
object indirection, 12-25
partial object reading, 12-25
read-only query, 12-26
report query, 12-25
soft cache weak identity map, 12-25
unit of work, 12-25
weak identity map, 12-25

read queries
cascading refresh of identity maps, 108-37
identity map cache refresh, 108-36
refreshing identity maps, 108-36

ReadAll finders
executing, 111-10

ReadAll queries
ordering in query objects, 109-8

readAllObjects()
about, 23-9
example, 109-2

reading
ejb-jar.xml, 19-6
just-in-time reading, 17-9, Glossary-8
whole XML documents, 30-2

reading through the write connection, 115-27
read-locking, 16-7

readObject()
example, 109-2

read-only
descriptors, 119-6
files, 7-6
mappings, 121-3, 121-4
queries, configuring, 111-4
queries, optimization, 12-26

read-only queries
about, 108-12

read-only query
read optimization, and, 12-26

recently opened projects, 116-5
redirect queries

about, 108-20, 111-1
creating, 111-1
finders, 111-13
using, 111-12

reference key field, 27-12, 27-13
reference object-relational data type mappings

configuring, 43-1, 44-1
understanding, 40-2

reference relational mappings
joining, 28-13

ReferenceMapping class, 40-2
references

database tables, 5-29, 5-30
foreign keys, A-25, A-33

Refresh from Database button, 5-26
refresh policy

cache, 102-8
EJB finders, 102-8

refreshing
cache, 119-30
classes, 5-56
refreshObject(), 109-2
remote sessions, 87-33
sessions, 90-5

registering objects, 115-1
registerNewObject method, 114-8, 115-5
registerObject method, 114-5, 114-6, 114-8,

115-5
reimporting schemas, 5-39
relation tables

about, 27-10
many-to-many mappings, 34-2
mappings, 34-2

relational descriptors
associated table, 23-3
configuring, 23-1
locking policy, 119-71
understanding, 21-1

relational mappings
about, 27-1
aggregate collection, 27-10, 35-1
aggregate object, 27-13, 37-1
configuring, 28-1
converters, 27-3
direct collection, 27-12, 36-1
direct map, 27-13, 38-1

Index-24

direct-to-field, 27-4, 29-1
direct-to-XMLType, 27-5, 30-1
many-to-many, 27-9, 34-1
one-to-many, 27-8, 33-1
one-to-one, 27-5, 31-1
options, 28-1
order, 28-8
transformation, 27-3, 27-16, 39-1
variable one-to-one, 27-7, 32-1

relational projects
about, 15-2
configuring, 20-1
exporting, 19-3
introduction, 18-1
object-relational data type databases, 18-2
relational databases, 18-1
understanding, 18-1

relationships
about, 2-19
bidirectional, 5-34, 27-6, 121-42
expressions, 110-6
in ejb-jar.xml file, 19-5
unexpected multiplicity, 8-16

relative locations
about, 117-2
classpath, 117-4

Remote Command Manager Exception, A-8
remote connection using RMI, example, 88-11
remote sessions

about, 87-2, 87-30
application layer, 87-32
creating, 88-11
limitations of, 87-32
securing access, 87-33
server layer, 87-32
transport layer, 87-32
unit of work, 87-34

Remove Class button, 5-56
Remove Table button, 5-26
removing sessions from brokers, 94-2
Rename dialog, 5-26
renaming

packages, 5-57
projects, 116-5, 116-8

reopening projects, 116-5
report query

about, 108-16
query objects, 12-27
read optimization, and, 12-25
using, 12-27, 108-8

reports
project status, 116-8
query results, 108-8
see also status reports

result set pagination, 111-20
resuming unit of work

after commit, 115-13
after commit failure, 115-14

returning policy
configuring, 119-75

SQLCall, 108-18
Returning tab, 119-76
RMI

coordinated cache, 105-1
naming service, 103-13
remote session support, 87-32

rollback
and Java Transaction API, 113-11
overview, 113-11
with optimistic locking, 16-16

root class
about, 16-9
inheritance, 16-9

root EIS descriptor, 75-2
root element, descriptor, 52-5
runtime

acquiring sessions, 87-5
components, 3-3
services, configuring sessions, 89-17

S
Save All button, 116-7
Save button, 116-7
saving projects, 117-2
schema context

descriptors without, 52-3
EIS descriptors, 76-3
XML descriptors, 52-2

Schema Document Info tab, 5-40, 5-43
schema manager

about, 6-1
automatic table creation, 6-6
automatic table creation, CMP, 6-7
automatic table creation, JPA, 6-6
CMP, 6-7
creating a table creator, 6-4
DB2, 6-3
default table generator, 6-4
Java table creator, 6-5
JPA, 6-6
MS Access, 6-3
MySQL, 6-3
Oracle, 6-3
Oracle TopLink Workbench table creator, 6-4
sequencing, 6-3, 6-6
Sybase, 6-3
table creator, 6-2, 6-4, 6-5, 6-6
table definition, 6-2
type conversion, 6-3
usage, 6-1

Schema Structure tab, 5-37
schemas

about, 2-18
context for EIS descriptors, 76-3
context for XML descriptor, 52-2
data storage, 2-18
database, 5-23
default root for EIS descriptors, 76-4
details, 5-37

Index-25

document information, 5-40, 5-43
errors, A-32
importing, 5-38
optimizing, 12-11
properties, 5-39
reimporting, 5-39
schema manager, 6-1
structure, 5-37
XML schemas, 5-37

SCM. see source control management
scripts

SQL, generating, 5-32
see also SQL

scrollable cursor
traversing, 111-16
using for ReadAllQuery, 111-16

Securable interface, 97-4
security

cache coordination, permissions, 8-20
data source access, permissions, 8-20
disabling doPrivileged(), 8-21
doPrivileged(), 8-4
EJB, permissions, 8-21
enabling doPrivileged(), 8-21
Java EE application, permissions, 8-21
java.util.logging, permissions, 8-21
loading project.xml, permissions, 8-20
loading sessions.xml, permissions, 8-20
logging, permissions, 8-21
password encryption, 116-9
permissions by feature, 8-19
permissions when doPrivileged()

disabled, 8-21
port permissions, 8-20
SecurityManager integration, 8-4
system properties, permissions, 8-20
understanding permissions, 8-19
with BEA WebLogic, 8-6

Select Classes dialog box, 5-56
SelectedFieldsLockingPolicy, 16-17
sensors, DMS profiler, 12-4, 87-12
SEQ_COUNT column in sequence table, 18-9
sequence connection pools, 96-8
sequence numbers, write optimization

features, 12-32
SEQUENCE objects in Oracle native

sequencing, 18-8
sequencing

and relational projects, 18-3
configuring, 18-4
connection pools, 96-8
default, 98-6, 98-7
DefaultSequence class, 98-7
descriptors, 16-7, 23-4
entity beans, 18-10
isolated client sessions, 87-25
Java configuration, 18-4
Microsoft SQL Server, 6-6
native, 18-7, 18-8, 18-9
non-Oracle database native, 18-8

Oracle Database native, 18-7, 18-9
Oracle TopLink Workbench configuration, 18-4
overriding default, 98-7
platform default, 98-6
preallocation, 12-34, 18-9
QuerySequence class, 98-8
schema manager, 6-6
SEQ_COUNT, 18-9
sequence type, configuring, 20-3, 98-5
sessions, and, 87-13
stored procedures, 18-6, 98-8
Sybase Database, 6-6
table, 18-5
table, default column and table names, 18-5
unary table, 18-6
with stored procedures, 98-8

serialization
descriptor exceptions, 115-12
indirection, 17-11
indirection and JPA, 17-12
merging into session cache with unit of

work, 115-12
serialized object converter

about, 13-2, 17-12
configuring, 121-21

serialized object mappings, 121-22
SerializedObjectMapping. see

SerializedObjectConverter
server layer, 87-32
server platform

BEA WebLogic, integrating, 8-5
external transaction controller, 89-17
IBM WebSphere, integrating, 8-16
JBoss, integrating, 8-18
OC4J, integrating, 8-7
runtime services, 89-17
session configuration, 89-17
session event listener, 89-16, 89-19, 119-90
SunAS, integrating, 8-17

Server Platform tab, 89-18
server session

logging out, 90-10
server sessions

about, 87-2, 87-14, 87-16
cache, 87-34
connection options, 87-19

service channel, coordinated cache, 103-4
session beans

about, 2-33
deploying, 9-7, 10-3, 11-2
model, 2-30, 2-33
remote session support for, 87-32

session broker session
logging out, 90-10

session brokers
about, 87-2, 87-26
adding sessions to, 94-2
alternatives, 87-29
architecture, 87-27
configuration, 94-1

Index-26

limitations of, 87-28
renaming, 94-2
two-phase commits, 87-28
two-stage commits, 87-28

session configuration file
about, 88-1
loading alternative, 90-4
preferences, 5-19
see also sessions.xml file

session customizer, 87-5
Session Event Manager, 87-6
session events

example, 87-6
isolated sessions, and, 87-6
manager, 87-6
proxy authentication, and, 87-6

Session Loader Exceptions, A-6
Session Manager

about, 90-1, 90-2
acquiring, 90-2
defaults, 90-3
destroying sessions, 90-10
Java EE defaults, 90-3
sessions, acquiring, 87-5
storing sessions, 90-10

sessions
about, 2-14, 86-1, 87-1, 87-2, 88-1
acquiring at runtime, 87-5, 90-1
adding to session brokers, 94-2
additional mapping projects, 89-11
API, 87-34
application server logging, 87-10
architecture, 87-3
cache, 87-34, 102-2
client, 87-14
configuring, 89-1, 89-2, 89-16, 89-19, 119-90
connection policy, 89-22
creating, 2-25, 88-1, 88-4, 88-7, 88-9, 100-1
customization, 87-5
database sessions, 87-29, 88-8
destroying in Session Manager, 90-10
errors, A-33
event listeners, 87-8, 89-16, 89-19, 119-90
events, 87-6
external transaction controller, 89-17, 113-2
finalizers, 90-10
historical client sessions, 87-25
in sessions.xml file, 87-5
isolated client sessions, 87-20, 92-1
loading with alternative class loader, 90-4
logging, 87-8, 87-10, 89-5, 89-6
logging into, 90-9
logging out of a client session, 90-10
logging out of a database session, 90-10
logging out of a server session, 90-10
logging out of a session broker session, 90-10
logins, 89-5
management of, 90-1
metadata, about, 2-25
multiple sessions, 87-29, 90-2

named queries, 89-24
object cache, 87-3
optimizing, 12-16
preferences, 5-19
queries, 108-7, 108-9, 109-1
refreshing, 90-5
registering descriptors, 87-13, 89-3, 89-4, 89-12
releasing a client session, 90-10
remote sessions, 87-30, 88-11
sequencing, about, 87-13
server, 87-14
server platform, 89-17, 89-18
SQL and messages, 87-10
storing in Session Manager, 90-10
three-tier architecture, 87-15
transformation mappings, 27-17
types, 87-1
unit of work, 87-2, 87-20

sessions.xml file
about, 9-4
acquiring, 87-5
CMP applications, 9-5, 87-5
creating, 88-1
default location, 87-5
EJB 3.0, 9-5
loading alternative configuration file, 90-4
non-CMP applications, 9-4
schema, 9-4
sessions, 87-5
XSD file, 9-4

setAdditionalJoinExpression(), 111-5
setenv.cmd file, 5-2
setenv.sh file, 5-2
setFirstResult, 111-20
setMaxBatchWritingSize(), 12-18
setMaxRows, 111-20
setMultipleTableJoinExpression(), 111-5
setShouldPerformDeletesFirst(), 115-16
Settings tab, 119-30, 119-31
setValue() method, 17-8, Glossary-8
shared library for BEA WebLogic, 8-5
simple type translators

about, 13-2, 17-15
configuring, 121-28
in Java, 121-29
read conversions, 17-16
write conversions, 17-16

soft cache weak identity map
about, 102-4
when to use, 102-5

soft identity map, 102-4
sorting, in memory, 121-31
source code, public, 13-2
source control management

projects, 7-3
with Oracle TopLink Workbench, 7-3
see also team development

source table, reference, 5-30
splash screen, 5-13
SQL

Index-27

comparing with expressions, 110-1
custom queries for basic persistence, per

descriptor, 23-7
EJBQLCall, 109-32
generating from database tables, 5-32
JPQLCall, 109-32
parameter binding, 12-19
parameterized, 12-32, 109-17
prepared statement caching, 12-19
queries, 108-5
scripts with binding arguments, 23-7
SQLCall, about, 109-18
SQLCall, JDBC arguments, 109-19
SQLCall, no arguments, 109-19
unit of work, 115-15

SQL Creation Script dialog box, 5-32
SQL DISTINCT, 12-30
SQL Exception, A-4
SQLAnyWhere platform, 96-3
SQLCall

about, 108-18
Returning Policy, 108-18

SQLServer platform, 96-3
stages of development with Oracle TopLink, 2-2
stale data

cache, 102-6, 102-7
coordination, cache, 102-7
invalidating the cache, 102-7
locking policy, and, 102-7
per-class cache configuration, 102-7
per-query cache refresh, 102-7

StartWith, 111-7
stateful

beans, 2-33
comparing with stateless, 2-33

stateless
comparing with stateful, 2-33

static attributes, 5-49, 5-53
static fetch groups, querying with, 111-3
status report, generating, 116-8
stored functions

about, 108-24
stored procedure

StoredProcedureCall, 109-31
StoredProcedureCall, about, 109-21
StoredProcedureCall, ErrorCodeListener, 109-29
StoredProcedureCall, JDBC arguments, 109-22,

109-24
StoredProcedureCall, no arguments, 109-22
StoredProcedureCall, PL/SQL arguments, 109-24

stored procedures
sequencing, and, 18-6, 98-8

streams
as query results, 108-9
cursored, 87-34, 111-18

structure object-relational data type mappings
configuring, 42-1
understanding, 40-2

Structure window
TopLink, 4-3

StructureMapping class, 40-2
subqueries

multiple expressions, 110-10
subselects in expressions, 110-10

subselects, in expressions, 110-10
summary queries, 108-3
SunAS

setting classpath, 8-18
superclass, 5-46
Sybase

database schema manager type conversion, 6-3
native sequencing, 18-8
platform, 96-3

synchronous change propagation, 103-2
system properties

oracle.j2ee.security.usedoprivileged, 8-21
oracle.j2ee.toplink.security.usedoprivileged, 8-21
toplink.cts.collection.checkParameter

s, 8-22
toplink.xml.platform, 8-4

T
table creator

about, 6-2
creating, 6-4
using, 6-6

Table Creator dialog, 6-4
table generation. see automatic table generation
table sequence

about, 18-5
default column and table names, 18-5

tables
adding database, 5-23
associating with relational descriptors, 23-3
database, 5-22
defining schema, 6-2
errors, A-27
generating, automatic, 17-5
import filter, 5-24
mapping to descriptors, 23-3, 119-5
merging files, 7-5
multiple, 23-14
primary key, 5-28
references, 28-10
relation tables for mappings, 34-2
TableDefinition class, 6-2
see also database tables

target foreign keys
about, 27-6, 28-10
configuring, 28-10

target platforms
about, 2-5
choosing, 2-3

target tables
in direct collection mappings, 36-2
reference, 5-30

team development, 7-3
technical support, 2-3
three-tier architecture

Index-28

about, 1-5, 2-28
authentication, 96-5
migrating to scalable architecture, 87-30
overview, 2-28
sessions, 87-15

timestamp support
about, 28-4
direct to field mappings, 28-4
Oracle Database, 28-4
TIMESTAMP timezone, 28-4

TimestampLockingPolicy, 16-14
timezone, with TIMESTAMP, 28-4
tljaxb.cmd file, 48-4
toolbars, 5-4, 5-6
topic name, 104-2
TopLink, 4-1

Application Navigator, 4-2
Structure window, 4-3

TopLink. see Oracle TopLink
TopLink Editor, 4-2
TopLink editor, 4-2
TopLink Editor, parts of, 4-1
TopLink expressions. see expressions
TopLink profiler

about, 12-2
selecting, 89-13, 89-16, 89-20, 89-23

TopLink Workbench. see Oracle TopLink Workbench
toplink-ejb-jar.xml file, 9-7, 14-2
toplink-ejb-jar.xml file, 9-7
toplink-src.zip, 13-2
Transaction Exception, A-8
transactional data sources, 96-1
transactions

client-controlled, 115-24
CMP, 113-3, 115-24, 115-25
container-controlled, 115-24
demarcation, 113-2
external transaction controller, 89-17, 113-2
external, integrating, 113-2, 115-20
isolated client sessions, 87-25
isolation, 113-2, 113-4
JTA, 113-3
JTS, 113-3
local, 115-25
local, CMP, 115-25
OTS, 113-3
overview, 2-15, 86-3, 113-1
see also unit of work

transformation EIS mappings
configuring, 85-1
understanding, 77-18

transformation mappings
about, 17-17
and copy policy, 2-22, 113-9, 121-39
attribute transformation, 121-34, 121-36
mutability, 121-39

transformation relational mappings
configuring, 39-1
understanding, 27-16

transformation XML mappings

configuring, 61-1
understanding, 53-35

transient attributes, 5-49, 5-53
transparent indirection

about, 17-9, Glossary-8
persistent class requirements, 2-14

transport layer, 87-32
troubleshooting

MaD support, A-1
migration from OC4J persistence, 8-15
Oracle TopLink Workbench, A-10
unit of work, 115-31, 115-34

two-phase commits, 87-28
two-stage commits, 87-28
two-tier architecture

about, 1-7, 2-30
authentication, 96-5
understanding, 2-31

type conversion
automatic, 28-3
NCHAR, 17-14
NCLOB, 17-14
NVARCHAR2, 17-14
oracle.sql.TimeStamp, 28-4
schema manager, 6-3
String to TIMESTAMP, 17-14
TIMESTAMP to String, 17-14

type conversion converter
about, 13-2, 17-13
configuring, 121-23
provided by direct-to-field mappings, 28-3

TypeConversionMapping
see TypeConversionConverter

types of mappings, 17-1
typesafe enumeration, in EIS mappings, 77-4

U
unary table sequence

about, 18-6
undeployment, 11-3
unexpected relationship multiplicity, 8-16
unidirectional relationships, 27-2
unit of work

about, 113-1, 113-2, 113-4
acquiring, 114-1
API, 113-12
architecture, 113-1
auditing, 115-20
benefits of, 113-4
cache, 102-2
change policy, 113-7
clones, 113-9
CMP integration, 113-3
commit and Java Transaction API, 113-10, 113-11
commit, writing changes before, 115-6, 115-11,

115-23
conform results of in-memory query, 108-32
creating objects, 114-2
deleting objects, 114-10

Index-29

example, 113-6
external transaction controller, 89-17, 113-2
external transactions, 113-2, 115-20
integrating with CMP, 115-24
isolation, 113-4
JTA integration, 113-3
JTS integration, 113-3
life cycle, 113-5
modifying objects, 114-2
mutable mappings, 121-39
nested, 113-10, 115-14, 115-15
newInstance method, 115-2
optimization, 12-35, 113-11
OTS integration, 113-3
parallel, 113-10, 115-14
pre-commit validation, 115-34
primary keys, 113-11
proxy indirection, 17-10
queries, 113-12
read optimization, 12-25
read-only classes, 115-5, 115-6
registerNewObject method, 114-8, 115-5
registerObject method, 114-5, 114-6, 114-8,

115-5
remote sessions, 87-34
resuming, 115-13
reverting, 115-14
rollback, 113-11
sessions, 87-2, 87-20
transaction demarcation, 113-2
transactions, 113-4

unit of work
demarcation, 113-2

troubleshooting, 115-31
validating objects, 115-34
with custom SQL, 115-15
write optimization, 12-32
writing changes before commit, about, 115-6
writing changes before commit, and external

transaction exceptions, 115-23
writing changes before commit, and external

transaction timeouts, 115-23
writing changes before commit, as alternative to

conforming, 115-11
unmapping, 120-5
unregistering objects, 115-1
unsaved items, displaying in TopLink Workbench

Navigator window, 5-9
update

operation, 109-3, 109-4
projects from prior versions, 116-5

UpdateAll query, 108-15
updateObject(), 23-9
Use XML Schema "type" attribute,

configuring, 121-28
useBatchWriting(), 98-12
user-defined functions, in expressions, 110-16

V
validating

descriptors, 118-1
JAXB, 47-9
projects, 116-8
unit of work, 115-34

Validation Exceptions, A-5
Value Converter tab, 38-6
value holders

about, 17-8, Glossary-8
ValueHolder class, 17-8, Glossary-8

ValueHolderInterface class, 2-14, 17-8, 27-10,
Glossary-8

variable one-to-one relational mappings
class indicator, 32-2
configuring, 32-1
primary key, unique, 32-4
understanding, 27-7

VariableOneToOneMapping class, 27-7
Varray in Oracle database. see array mappings
version control, 7-6
Version Control Assistance dialog box, 7-6
VersionLockingPolicy, 16-13
volatile attributes, 5-49, 5-53
VPD. see Oracle Virtual Private Database

W
warning icon, 5-10, 5-11
weak identity map, 102-4
weaving

about, 2-13, 2-25
application servers, about, 2-28
change policy and lazy loading,

configuring, 17-9, 17-11, 119-81, 121-5
change tracking, 2-27, 113-8
change tracking and lazy loading, about, 113-8
change tracking and lazy loading,

configuring, 17-9, 17-11, 119-81, 121-5
disabling, 2-26
dynamic, javaagent, 2-26
fetch groups, configuring, 119-88
indirection, 2-27
indirection, configuring, 17-9, 17-11, 119-81, 121-5
Java EE, about, 2-28
JPA enties, change tracking, 113-8
lazy loading, 2-27
lazy loading, configuring, 17-9, 17-11, 119-81,

121-5
mutability, 2-22
OC4J, about, 2-28
optimization, 12-36
packaging JPA application, 10-5
packaging POJO application, 2-27, 10-5
POJO classes, about, 2-27
POJO classes, change tracking, 2-27, 113-8
POJO classes, indirection, 2-27
POJO classes, lazy loading, 2-27
static, about, 2-26

web browser, specifying, 5-14

Index-30

web services architecture, 1-6, 2-42
weblogic-ejb-jar.xml file

modifying for Oracle TopLink, 9-9
unsupported tags, 9-9

weblogic-ejb-jar.xml file, 9-6
welcome screen, 5-14
wildcard, 54-5
wrapper policy

about, 119-86
implementing in Java, 119-87

write
conversions, simple type translator, 17-16
write all operation, 109-3

write query
disabling identity map cache, 109-13
non-cascading, 109-13
objects, 109-12
overview, 109-12

write-locking, 16-7
writing

batch, 12-32, 98-12
ejb-jar.xml file, 19-5
optimization, 12-32
sessions write access, 87-17

X
xdb.jar file, 5-3
XML

descriptor, schema context, 52-2
generating deployment, 9-3
mappings, concepts, 53-3
preserving data, 52-6
projects, 116-3
query language, 108-6
reading whole documents, 30-2
records, 77-3
schemas, 5-37

XML Conversion Exception, A-8
XML descriptors

configuring, 52-1
creating, 51-1
schema context, 52-2
understanding, 50-1

XML mappings
about, 53-1
any attribute, 70-1
any collection, 53-33, 60-1
any object, 53-31, 59-1
any type support, 53-5
binary data, 64-1
binary data collection, 65-1, 67-1
CDATA, 121-44
choice collection, 69-1
choice object, 68-1
collection reference, 63-1
composite collection, 53-29, 58-1
composite direct collection, 53-18, 56-1
composite object, 53-24, 57-1
concepts, 53-3

configuring, 54-1
default conversion pairs, customizing, 53-15
direct, 53-7, 55-1
extensions, 53-6
fragment, 66-1
jaxb:class support, 53-6
list support, 53-5
object reference, 62-1
reference descriptor, configuring, 54-3
transformation, 53-35, 61-1
types of, 53-1
union support, 53-5
xsd:list, 53-5
xsd:union, 53-5

XML parser platform
about, 8-3
configuring, 8-3
creating, 8-4
Crimson, 8-4
default, 8-3
limitations, 8-4
parser conflicts, 8-3
toplink.xml.platform system property, 8-4
used by, application server, 8-3
used by, Oracle TopLink, 8-3

XML Platform Exception, A-9
XML projects

configuring, 49-1
introduction, 47-1
JAXB support, 47-2
sequencing, 15-5

XML queries, 108-6
XML schema

jaxb:class, and EIS mappings, 77-3
jaxb:class, and XML mappings, 53-6
jaxb:class, understanding, 17-23
type, 121-28
xs:any, understanding, 53-5
xs:anyType, understanding, 53-5
xsd:list, understanding, 17-20
xsd:union, understanding, 17-20
see also schemas

XML Type functions, 110-5
XMLMarshalException, A-9
XMLPlatformException, A-9
XPath

by name, 17-19
by position, 17-18
mapping Java attributes, 121-12
support in OX mappings, 17-17
support in XML mappings, 53-5, 77-3

XSD file
sessions.xml file, 9-4

Z
zero-argument constructors

editing, 5-16, 5-17

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	Part I TopLink Application Development Overview
	1 Introduction to TopLink
	1.1 What Is TopLink?
	1.2 What Is the Object-Persistence Impedance Mismatch
	1.3 TopLink Key Features
	1.4 TopLink Application Architectures

	2 Introduction to TopLink Application Development
	2.1 Introduction to TopLink Application Development
	2.1.1 Typical Development Stages
	2.1.2 Oracle Development Support

	2.2 Designing Your Application with TopLink
	2.2.1 How to Use TopLink in Your Application Design
	2.2.1.1 Relational Database Usage
	2.2.1.2 Object-Relational Data Type Database Usage
	2.2.1.3 Oracle XML Database (XDB) Usage
	2.2.1.4 Enterprise Information System (EIS) Usage
	2.2.1.5 XML Usage

	2.2.2 Target Platforms

	2.3 Selecting an Architecture with TopLink
	2.3.1 Tiers
	2.3.1.1 Three Tier
	2.3.1.1.1 Java EE or Non-Java EE
	2.3.1.1.2 Client

	2.3.1.2 Two Tier

	2.3.2 Service Layer
	2.3.2.1 EJB Session Beans
	2.3.2.1.1 Stateful
	2.3.2.1.2 Stateless

	2.3.2.2 EJB Entity Beans
	2.3.2.2.1 Container-Managed Persistence (CMP)
	2.3.2.2.2 Bean-Managed Persistence (BMP)

	2.3.2.3 JPA Entities
	2.3.2.4 Plain Old Java Objects (POJO)

	2.3.3 Data Access
	2.3.3.1 Data Type
	2.3.3.2 Multiple Data Sources
	2.3.3.3 Isolating Data Access
	2.3.3.4 Historical Data Access

	2.3.4 Caching
	2.3.4.1 Cache Type
	2.3.4.2 Refreshing
	2.3.4.3 Cache Coordination
	2.3.4.3.1 Protocol
	2.3.4.3.2 Synchronization

	2.3.5 Locking
	2.3.5.1 Optimistic Locking
	2.3.5.2 Pessimistic Locking

	2.4 Building and Using the Persistence Layer
	2.4.1 Implementation Options
	2.4.1.1 Using EclipseLink JPA Metatdata, Annotations, and XML
	2.4.1.2 Using TopLink Metatdata XML
	2.4.1.3 Using TopLink Metadata Java API
	2.4.1.4 Using Method and Direct Field Access
	2.4.1.5 Using Weaving

	2.4.2 Persistent Class Requirements
	2.4.3 Persistence Layer Components
	2.4.3.1 Mapping Metadata
	2.4.3.2 Session
	2.4.3.3 Cache
	2.4.3.4 Queries and Expressions
	2.4.3.5 Transactions

	2.4.4 How to Use the Persistence Layer

	2.5 Deploying the Application
	2.5.1 About Deployments
	2.5.2 How to Use TopLink in a Java EE Application

	2.6 Optimizing and Customizing the Application
	2.7 Troubleshooting the Application
	2.8 Persisting Objects
	2.8.1 Application Object Model
	2.8.2 Data Storage Schema
	2.8.3 Primary Keys and Object Identity
	2.8.4 Mappings
	2.8.5 Foreign Keys and Object Relationships
	2.8.6 Inheritance
	2.8.7 Concurrency
	2.8.8 Caching
	2.8.9 Nonintrusive Persistence
	2.8.10 Indirection
	2.8.11 Mutability

	2.9 Working with TopLink Metadata
	2.9.1 Advantages of the TopLink Metadata Architecture
	2.9.2 Creating Project Metadata
	2.9.2.1 Descriptors and Mappings
	2.9.2.1.1 Amending Descriptors

	2.9.2.2 Data Source Login Information

	2.9.3 Creating Session Metadata
	2.9.4 Deploying Metadata

	2.10 Using Weaving
	2.10.1 Configuring Dynamic Weaving Using EclipseLink Agent
	2.10.1.1 To Configure Dynamic Weaving Using EclipseLink Agent

	2.10.2 Configuring Static Weaving
	2.10.3 Disabling Weaving Using TopLink Persistence Unit Properties
	2.10.4 Packaging a POJO Application for Weaving
	2.10.4.1 To Package a POJO Application for Weaving

	2.10.5 What You May Need to Know About Weaving and POJO Classes
	2.10.6 What You May Need to Know About Weaving and Java EE Application Servers

	2.11 Considering Three-Tier Architecture
	2.11.1 Example Implementations
	2.11.2 Advantages and Disadvantages
	2.11.3 Variation Using Remote Sessions
	2.11.4 Technical Challenges

	2.12 Considering Two-Tier Architecture
	2.12.1 Example Implementations
	2.12.2 Advantages and Disadvantages
	2.12.3 Technical Challenges

	2.13 Considering EJB Session Bean Facade Architecture
	2.13.1 Example Implementation
	2.13.2 Advantages and Disadvantages
	2.13.3 What Are Session Beans
	2.13.4 Technical Challenges
	2.13.5 What Is a Unit of Work Merge

	2.14 Considering EJB Entity Beans with CMP Architecture
	2.14.1 Example Implementation
	2.14.2 Advantages and Disadvantages
	2.14.3 Technical Challenges
	2.14.3.1 External JDBC Pools
	2.14.3.2 JTA/JTS Integration
	2.14.3.3 Cache Coordination
	2.14.3.4 Maintaining Bidirectional Relationships
	2.14.3.5 Managing Dependent Objects
	2.14.3.6 Managing Collections of EJBObject Objects

	2.15 Considering EJB Entity Beans with BMP Architecture
	2.15.1 Example Implementations
	2.15.2 Advantages and Disadvantages
	2.15.3 Technical Challenges
	2.15.3.1 External JDBC Pools
	2.15.3.2 JTA/JTS Integration
	2.15.3.3 Cache Coordination

	2.16 Considering JPA Entity Architecture
	2.16.1 Example Implementations
	2.16.2 Advantages and Disadvantages

	2.17 Considering Web Services Architecture
	2.17.1 Example Implementations
	2.17.2 Advantages and Disadvantages
	2.17.3 Technical Challenges

	2.18 Considering EclipseLink Service Data Objects (SDO) Architecture

	Part II TopLink Development Tools Overview
	3 Introduction to TopLink Development Tools
	3.1 Development Environment
	3.2 TopLink Run-Time Environment

	4 Using Oracle JDeveloper TopLink Editor
	4.1 Introduction to Oracle JDeveloper TopLink Editor
	4.2 Configuring the Oracle JDeveloper TopLink Editor
	4.3 Using the Oracle JDeveloper TopLink Editor
	4.3.1 TopLink Project Elements in the Application Navigator
	4.3.2 TopLink Editor Tabs in the Editor Window
	4.3.3 TopLink Project Elements in the Structure Window

	5 Using TopLink Workbench
	5.1 Introduction to TopLink Workbench
	5.2 Configuring the TopLink Workbench Environment
	5.2.1 How to Configure the Language Preference

	5.3 Using TopLink Workbench
	5.3.1 How to Use Menus
	5.3.1.1 Using Menu Bar Menus
	5.3.1.2 Using Context Menus

	5.3.2 How to Use Toolbars
	5.3.2.1 Using Standard Toolbar
	5.3.2.2 Using Context Toolbar

	5.3.3 How to Use the Navigator
	5.3.4 How to Use the Editor
	5.3.5 How to Use the Problems Window
	5.3.6 How to Use the Online Help

	5.4 Using TopLink Workbench Preferences
	5.4.1 How to Use General Preferences
	5.4.2 How to Use Help Preferences
	5.4.3 How to Use Mappings Preferences
	5.4.4 How to Use Class Preferences
	5.4.5 How to Use EJB Preferences
	5.4.6 How to Use Database Preferences
	5.4.7 How to Use Sessions Configuration Preferences
	5.4.8 How to Use New Names Preferences
	5.4.9 How to Use Session Platform Preferences
	5.4.10 How to Use Platforms Preferences

	5.5 Using Databases
	5.5.1 How to Use Database Tables in the Navigator Window
	5.5.1.1 Logging In and Out of a Database
	5.5.1.2 Creating New Tables
	5.5.1.3 Importing Tables from a Database
	5.5.1.4 Removing Tables
	5.5.1.5 Renaming Tables
	5.5.1.6 Refreshing Tables from the Database

	5.5.2 How to Use Database Tables in the Editor Window
	5.5.2.1 Working with Column Properties
	5.5.2.2 Setting a Primary Key for Database Tables
	5.5.2.3 Creating Table References
	5.5.2.4 Creating Field Associations

	5.5.3 How to Generate Data from Database Tables
	5.5.3.1 Generating SQL Creation Scripts
	5.5.3.2 Generating Classes and Descriptors from Database Tables
	5.5.3.3 Generating EJB Entity Beans and Descriptors from Database Tables
	5.5.3.4 Generating Tables on the Database

	5.6 Using XML Schemas
	5.6.1 How to Use XML Schemas in the Navigator
	5.6.2 How to Use an XML Schema Structure
	5.6.3 How to Import an XML Schema
	5.6.4 How to Configure an XML Schema Reference
	5.6.4.1 How to Configure an XML Schema Reference Using TopLink Workbench
	5.6.4.2 How to Configure an XML Schema Reference Using Java

	5.6.5 How to Configure XML Schema Namespace
	5.6.5.1 How to Configure XML Schema Namespace Using TopLink Workbench
	5.6.5.2 How to Configure XML Schema Namespace Using Java

	5.7 Using Classes
	5.7.1 How to Create Classes
	5.7.1.1 How to Create Classes Using TopLink Workbench

	5.7.2 How to Configure Classes
	5.7.2.1 Configuring Class Information
	5.7.2.1.1 Using TopLink Workbench

	5.7.2.2 Configuring Class Modifiers
	5.7.2.2.1 Using TopLink Workbench

	5.7.2.3 Configuring Class Interfaces
	5.7.2.3.1 Using TopLink Workbench

	5.7.2.4 Adding Attributes
	5.7.2.4.1 Using TopLink Workbench

	5.7.2.5 Configuring Attribute Modifiers
	5.7.2.5.1 Using TopLink Workbench

	5.7.2.6 Configuring Attribute Type Declaration
	5.7.2.6.1 Using TopLink Workbench

	5.7.2.7 Configuring Attribute Accessing Methods
	5.7.2.7.1 Using TopLink Workbench

	5.7.2.8 Adding Methods
	5.7.2.8.1 Using TopLink Workbench

	5.7.2.9 Configuring Method Modifiers
	5.7.2.9.1 Using TopLink Workbench

	5.7.2.10 Configuring Method Return Type
	5.7.2.10.1 Using TopLink Workbench

	5.7.2.11 Configuring Method Parameters
	5.7.2.11.1 Using TopLink Workbench

	5.7.3 How to Import and Update Classes
	5.7.3.1 Importing and Updating Classes Using TopLink Workbench

	5.7.4 How to Manage Nondescriptor Classes
	5.7.5 How to Rename Packages
	5.7.5.1 Renaming Packages Using TopLink Workbench

	5.8 Integrating TopLink Workbench with Apache Ant
	5.8.1 How to Configure Ant to Use TopLink Workbench Tasks
	5.8.1.1 Creating Library Dependencies
	5.8.1.2 Declaring TopLink Workbench Tasks

	5.8.2 What You May Need to Know About TopLink Workbench Ant Task API
	5.8.3 How to Create TopLink Workbench Ant Tasks
	5.8.4 How to Create the mappings.validate Task
	5.8.4.1 Using Parameters
	5.8.4.2 Specifying Parameters Specified as Nested Elements
	5.8.4.3 Examples

	5.8.5 How to Create the session.validate Task
	5.8.5.1 Using Parameters
	5.8.5.2 Specifying Parameters Specified as Nested Elements
	5.8.5.3 Examples

	5.8.6 How to Create the mappings.export Task
	5.8.6.1 Using Parameters
	5.8.6.2 Specifying Parameters Specified as Nested Elements
	5.8.6.3 Examples

	5.8.7 How to Create the classpath Task
	5.8.7.1 Using Parameters
	5.8.7.2 Specifying Parameters Specified as Nested Elements
	5.8.7.3 Examples

	5.8.8 How to Create the ignoreerror Task
	5.8.8.1 Using Parameters
	5.8.8.2 Specifying Parameters Specified as Nested Elements
	5.8.8.3 Examples

	5.8.9 How to Create the ignoreerrorset Task
	5.8.9.1 Using Parameters
	5.8.9.2 Specifying Parameters Specified as Nested Elements
	5.8.9.3 Examples

	5.8.10 How to Create the loginspec Task
	5.8.10.1 Using Parameters
	5.8.10.2 Specifying Parameters Specified as Nested Elements
	5.8.10.3 Examples

	6 Using the Schema Manager
	6.1 Introduction to the Schema Manager
	6.1.1 How to Use Schema Manager Java and Database Type Conversion
	6.1.2 How to Use Sequencing

	6.2 Creating a Table Creator
	6.2.1 How to Use TopLink Workbench During Development
	6.2.2 How to Use the Default Table Generator at Run Time
	6.2.3 How to Use Java to Create a Table Creator
	6.2.3.1 Creating a TableCreator Class
	6.2.3.2 Creating a TableDefinition Class
	6.2.3.3 Adding Fields to a TableDefinition
	6.2.3.4 Defining Sybase and Microsoft SQL Server Native Sequencing

	6.3 Creating Tables with a Table Creator
	6.4 Creating Database Tables Automatically
	6.4.1 Creating Database Tables Automatically in JPA Projects
	6.4.2 Creating Database Tables Automatically in EJB CMP Projects

	7 Using an Integrated Development Environment
	7.1 Configuring TopLink for Oracle JDeveloper
	7.1.1 How to Use TopLink Mappings

	7.2 Configuring TopLink Workbench with Source Control Management Software
	7.2.1 How to Use a Source Control Management System
	7.2.2 How to Merge Files
	7.2.2.1 Merging Project Files
	7.2.2.2 Merging Table, Descriptor, and Class Files

	7.2.3 How to Share Project Objects
	7.2.4 How to Manage the ejb-jar.xml File
	7.2.5 How to Work with Locked Files

	Part III TopLink Application Deployment
	8 Integrating TopLink with an Application Server
	8.1 Introduction to the Application Server Support
	8.2 Integrating TopLink with an Application Server
	8.2.1 What Are the Software Requirements
	8.2.2 How to Configure the XML Parser Platform
	8.2.2.1 Configuring XML Parser Platform
	8.2.2.2 Creating an XML Parser Platform
	8.2.2.3 XML Parser Limitations

	8.2.3 How to Set Security Permissions
	8.2.4 How to Migrate the Persistence Manager
	8.2.5 How to Integrate Clustering

	8.3 Integrating TopLink with Oracle WebLogic Server
	8.3.1 How to Configure Classpath
	8.3.2 How to Integrate JTA
	8.3.3 How to Integrate JMX
	8.3.4 How to Integrate the Security Manager

	8.4 Integrating TopLink with Oracle Containers for Java EE (OC4J)
	8.4.1 How to Integrate CMP
	8.4.2 How to Migrate OC4J Orion CMP Persistence to OC4J TopLink Persistence
	8.4.2.1 What You May Need to Know About Migrating OC4J Orion Persistence to OC4J TopLink Persistence
	8.4.2.2 Using the TopLink Migration Tool from TopLink Workbench
	8.4.2.3 Using the TopLink Migration Tool from the Command Line
	8.4.2.4 Performing Post-Migration Changes
	8.4.2.4.1 EJB 2.1 Persistence Manager Customization
	8.4.2.4.2 Session Event Listener

	8.4.2.5 Troubleshooting Your Migration

	8.4.3 How to Integrate JTA
	8.4.4 How to Integrate with Oracle Application Server Manageability and Diagnosability

	8.5 Integrating TopLink with IBM WebSphere Application Server
	8.5.1 How to Configure Classpath
	8.5.1.1 Configuring Classpath for IBM WebSphere Application Server 6.1 and Later

	8.5.2 How to Configure Class Loader Order
	8.5.3 How to Integrate JTA
	8.5.4 How to Configure Clustering on IBM WebSphere Application Server

	8.6 Integrating TopLink with Sun Application Server
	8.6.1 How to Configure Classpath
	8.6.2 How to Integrate JTA

	8.7 Integrating TopLink with JBoss Application Server
	8.7.1 How to Configure Classpath
	8.7.2 How to Integrate JTA
	8.7.3 How to Configure JPA Application Deployment to JBoss 4.2 Application Server

	8.8 Defining Security Permissions
	8.8.1 How to Define Permissions Required by TopLink Features
	8.8.1.1 Defining System Properties
	8.8.1.2 Loading project.xml or sessions.xml Files
	8.8.1.3 Defining Cache Coordination
	8.8.1.4 Accessing a Data Source by Port
	8.8.1.5 Logging with java.util.logging
	8.8.1.6 Granting Permissions for Java EE Application Deployment

	8.8.2 How to Define Permissions Required when doPrivileged Is Disabled
	8.8.3 How to Disable doPrivileged Operation

	8.9 Configuring Miscellaneous EJB CMP Options
	8.9.1 How to Configure EJB CMP Setter Parameter Type Checking
	8.9.2 How to Configure EJB CMP Unknown Primary Key Class Support
	8.9.3 How to Configure EJB CMP Single-Object Finder Return Type Checking

	9 Creating TopLink Files for Deployment
	9.1 Introduction to the TopLink Deployment File Creation
	9.1.1 project.xml File
	9.1.1.1 XSD File Format
	9.1.1.2 POJO Applications and Project Metadata
	9.1.1.3 JPA Applications and Project Metadata
	9.1.1.4 CMP Applications and Project Metadata
	9.1.1.5 Creating the project.xml File with Oracle JDeveloper
	9.1.1.6 Creating the project.xml File with TopLink Workbench
	9.1.1.7 Creating project.xml Programatically

	9.1.2 sessions.xml File
	9.1.2.1 XSD File Format
	9.1.2.2 POJO Applications and Session Metadata
	9.1.2.3 JPA Applications and Session Metadata
	9.1.2.4 CMP Applications and Session Metadata

	9.1.3 ejb-jar.xml File
	9.1.4 JAVA-EE-CONTAINER-ejb-jar.xml File
	9.1.4.1 Oracle WebLogic Server and the weblogic-ejb-jar.xml File
	9.1.4.2 OC4J and the orion-ejb-jar.xml File

	9.1.5 toplink-ejb-jar.xml File
	9.1.5.1 OC4J and the toplink-ejb-jar.xml File

	9.2 Creating Deployment Files for Java Applications
	9.3 Creating Deployment Files for JavaServer Pages and Servlet Applications
	9.4 Creating Deployment Files for Session Bean Applications
	9.4.1 How to Create Deployment Files for EJB 1.n and 2.n Session Bean Applications
	9.4.2 How to Create Deployment Files for EJB 3.0 Session Bean Applications

	9.5 Creating Deployment Files for JPA Applications
	9.6 Creating Deployment Files for CMP Applications
	9.7 Creating Deployment Files for BMP Applications
	9.8 Configuring the weblogic-ejb-jar.xml File for Oracle WebLogic Server
	9.8.1 What You May Need to Know About Unsupported weblogic-ejb-jar.xml File Tags

	9.9 Configuring the orion-ejb-jar.xml File for OC4J
	9.9.1 How to Configure persistence-manager Entries
	9.9.1.1 Configuring pm-properties
	9.9.1.2 Configuring cache-synchronization Properties
	9.9.1.3 Configuring default-mapping Properties

	10 Packaging a TopLink Application
	10.1 Packaging Java Applications
	10.2 Packaging JavaServer Pages and Servlet Applications
	10.2.1 How to Create the TopLink Domain JAR

	10.3 Packaging Session Bean Applications
	10.3.1 How to Package an EJB 1.n and 2.n Session Bean Application
	10.3.2 How to Package an EJB 3.0 Session Bean Application
	10.3.3 How to Create the TopLink Domain JAR
	10.3.4 How to Create the EJB JAR

	10.4 Packaging JPA Applications
	10.5 Packaging a POJO Application for Weaving
	10.6 Packaging CMP Applications
	10.6.1 How to Create the EJB JAR

	10.7 Packaging BMP Applications
	10.7.1 How to Create the TopLink Domain JAR
	10.7.2 How to Create EJB JAR File

	10.8 Packaging with TopLink Metadata File Resource Paths

	11 Deploying a TopLink Application
	11.1 Deploying Java Applications
	11.2 Deploying JavaServer Pages and Servlets
	11.3 Deploying Session Bean Applications
	11.4 Deploying JPA Applications
	11.5 Deploying CMP Applications
	11.5.1 How to Deploy a CMP Application to OC4J

	11.6 Deploying BMP Applications
	11.7 Performing Hot Deployment of EJB
	11.7.1 How to Perform Hot Deployment in a CMP Application
	11.7.2 How to Perform Hot Deployment in a POJO Application

	Part IV Optimization and Customization of a TopLink Application
	12 Optimizing the TopLink Application
	12.1 Introduction to Optimization
	12.2 Identifying Sources of Application Performance Problems
	12.3 Measuring TopLink Performance with the TopLink Profiler
	12.3.1 How to Configure the TopLink Performance Profiler
	12.3.2 How to Access the TopLink Profiler Results

	12.4 Measuring TopLink Performance with the Oracle Dynamic Monitoring System (DMS)
	12.4.1 How to Configure the Oracle DMS Profiler
	12.4.1.1 Configuring the Oracle DMS Profiler in a TopLink CMP Application on OC4J
	12.4.1.2 Configuring the Oracle DMS Profiler in a EclipseLInk JPA Application on OC4J

	12.4.2 How to Access Oracle DMS Profiler Data Using JMX
	12.4.3 How to Access Oracle DMS Profiler Data Using the DMS Spy Servlet

	12.5 Identifying General Performance Optimization
	12.6 Optimizing for a Production Environment
	12.7 Optimizing Schema
	12.7.1 Schema Case 1: Aggregation of Two Tables Into One
	12.7.2 Schema Case 2: Splitting One Table Into Many
	12.7.3 Schema Case 3: Collapsed Hierarchy
	12.7.4 Schema Case 4: Choosing One Out of Many

	12.8 Optimizing Mappings and Descriptors
	12.9 Optimizing Sessions
	12.10 Optimizing Cache
	12.11 Optimizing Data Access
	12.11.1 How to Optimize JDBC Driver Properties
	12.11.2 How to Optimize Data Format
	12.11.3 How to Use Batch Writing for Optimization
	12.11.4 How to Use Outer-Join Reading with Inherited Subclasses
	12.11.5 How to Use Parameterized SQL (Parameter Binding) and Prepared Statement Caching for Optimization

	12.12 Optimizing Queries
	12.12.1 How to Use Parameterized SQL and Prepared Statement Caching for Optimization
	12.12.2 How to Use Named Queries for Optimization
	12.12.3 How to Use Batch and Join Reading for Optimization
	12.12.4 How to Use Partial Object Queries and Fetch Groups for Optimization
	12.12.5 How to Use Read-Only Queries for Optimization
	12.12.6 How to Use JDBC Fetch Size for Optimization
	12.12.7 How to Use Cursored Streams and Scrollable Cursors for Optimization
	12.12.8 How to Use Result Set Pagination for Optimization
	12.12.9 Read Optimization Examples
	12.12.9.1 Reading Case 1: Displaying Names in a List
	12.12.9.1.1 Partial Object Reading
	12.12.9.1.2 Report Query
	12.12.9.1.3 Fetch Groups

	12.12.9.2 Reading Case 2: Batch Reading Objects
	12.12.9.3 Reading Case 3: Using Complex Custom SQL Queries
	12.12.9.4 Reading Case 4: Using View Objects
	12.12.9.5 Reading Case 5: Inheritance Subclass Outer-Joining

	12.12.10 Write Optimization Examples
	12.12.10.1 Writing Case: Batch Writes
	12.12.10.1.1 Cursors
	12.12.10.1.2 Batch Writing and Parameterized SQL
	12.12.10.1.3 Sequence Number Preallocation
	12.12.10.1.4 Multiprocessing

	12.13 Optimizing the Unit of Work
	12.14 Optimizing Using Weaving
	12.15 Optimizing the Application Server and Database Optimization
	12.16 Optimizing Storage and Retrieval of Binary Data in XML
	12.16.1 How to Use an Attachment Marshaller and Unmarshaller

	13 Customizing the TopLink Application
	13.1 Introduction to Customization
	13.2 Creating Custom Data Types
	13.3 Using Public Source
	13.4 Using the Session Customizer Class
	13.5 Using the Descriptor Customizer Class
	13.6 Using the Descriptor Amendment Methods
	13.7 Using EclipseLink JPA Extensions

	Part V Mapping and Configuration Overview
	14 Introduction to TopLink Mapping and Configuration
	14.1 Mapping and Configuration Concepts
	14.1.1 Projects
	14.1.2 Descriptors
	14.1.3 Mappings

	Part VI Projects
	15 Introduction to Projects
	15.1 TopLink Project Types
	15.2 Project Concepts
	15.2.1 Project Architecture
	15.2.2 Relational and Nonrelational Projects
	15.2.3 Persistent and Nonpersistent Projects
	15.2.4 Projects and Login
	15.2.4.1 POJO Session Role
	15.2.4.2 CMP Deployment Role
	15.2.4.3 Development Role

	15.2.5 Projects and Platforms
	15.2.6 Projects and Sequencing
	15.2.6.1 Configuring How to Obtain Sequence Values
	15.2.6.2 Configuring Where to Write Sequence Values

	15.2.7 XML Namespaces

	15.3 Project API
	15.3.1 Project Inheritance Hierarchy

	15.4 XML Namespaces Overview
	15.4.1 TopLink Workbench Namespace Resolution
	15.4.2 Element and Attribute Form Options
	15.4.2.1 Element Form Default Qualified and Attribute Form Default Unqualified
	15.4.2.2 Element and Attribute Form Default Unqualified
	15.4.2.3 Element and Attribute Form Default Qualified

	15.4.3 TopLink Runtime Namespace Resolution

	Part VII Descriptors
	16 Introduction to Descriptors
	16.1 Descriptor Types
	16.2 Descriptor Concepts
	16.2.1 Descriptor Architecture
	16.2.2 Descriptors and Inheritance
	16.2.3 Descriptors and CMP and BMP
	16.2.3.1 Nondeferred Changes
	16.2.3.2 Creating a New Entity Bean and ejbCreate / ejbPostCreate Methods
	16.2.3.3 Inheritance

	16.2.4 Fetch Groups
	16.2.5 Descriptors and Aggregation
	16.2.6 Descriptor Customization
	16.2.7 Amendment and After-Load Methods
	16.2.8 Descriptor Event Manager
	16.2.9 Descriptor Query Manager
	16.2.10 Descriptors and Sequencing
	16.2.11 Descriptors and Locking
	16.2.12 Default Root Element

	16.3 Descriptors and Inheritance
	16.3.1 How to Specify a Class Indicator
	16.3.1.1 Using Class Indicator Fields
	16.3.1.2 Using Class Extraction Methods
	16.3.1.2.1 Specifying Expressions for Only-Instances and With-All-Subclasses

	16.3.2 Inheritance and Primary Keys
	16.3.3 Single and Multi-Table Inheritance
	16.3.4 Aggregate and Composite Descriptors and Inheritance
	16.3.5 Inheritance and CMP and BMP

	16.4 Descriptors and Locking
	16.4.1 Optimistic Version Locking Policies
	16.4.2 Optimistic Version Locking Policies and Cascading
	16.4.3 Optimistic Locking and Rollbacks
	16.4.4 Optimistic Field Locking Policies
	16.4.5 Pessimistic Locking Policy
	16.4.6 Locking in a Three-Tier Application
	16.4.6.1 Optimistic Locking in a Three-Tier Application
	16.4.6.2 Pessimistic Locking in a Three-Tier Application

	16.5 Descriptor API
	16.5.1 Descriptor Inheritance Hierarchy

	Part VIII Mappings
	17 Introduction to Mappings
	17.1 Mapping Types
	17.2 Mapping Concepts
	17.2.1 Mapping Architecture
	17.2.2 Example Mapping
	17.2.3 Automatic Mappings
	17.2.3.1 JPA Automapping
	17.2.3.2 Automapping with Oracle JDeveloper at Development Time
	17.2.3.3 Automapping with TopLink Workbench at Development Time
	17.2.3.4 Default Mapping in EJB 2.n CMP Projects Using OC4J at Run Time
	17.2.3.5 JAXB Project Generation at Development Time

	17.2.4 Indirection (Lazy Loading)
	17.2.4.1 Value Holder Indirection
	17.2.4.2 Transparent Indirect Container Indirection
	17.2.4.3 Proxy Indirection
	17.2.4.3.1 Proxy Indirection Restrictions

	17.2.4.4 Weaved Indirection
	17.2.4.5 Indirection and JPA
	17.2.4.6 Indirection and EJB 2.n CMP
	17.2.4.7 Indirection, Serialization, and Detachment

	17.2.5 Method Accessors and Attribute Accessors
	17.2.6 Mapping Converters and Transformers
	17.2.6.1 Serialized Object Converter
	17.2.6.2 Type Conversion Converter
	17.2.6.3 Object Type Converter
	17.2.6.4 Simple Type Translator
	17.2.6.4.1 Default Read Conversions
	17.2.6.4.2 Default Write Conversions

	17.2.6.5 Transformation Mappings

	17.2.7 Mappings and XPath
	17.2.7.1 XPath by Position
	17.2.7.2 XPath by Path and Name
	17.2.7.3 XPath by Name
	17.2.7.4 Self XPath

	17.2.8 Mappings and xsd:list and xsd:union Types
	17.2.8.1 Mapping an xsd:union Type
	17.2.8.2 Mapping an xsd:list Type
	17.2.8.3 Mapping a List of Unions
	17.2.8.4 Mapping a Union of Lists
	17.2.8.5 Mapping a Union of Unions

	17.2.9 Mappings and the jaxb:class Customization
	17.2.9.1 all, choice, or sequence Structure
	17.2.9.2 group Structure
	17.2.9.3 sequence or choice Structure Containing a group
	17.2.9.4 group Structure Containing a sequence or choice
	17.2.9.5 group Structure Containing a group
	17.2.9.6 Limitations of jaxb:class Customization Support

	17.2.10 Mappings and JAXB Typesafe Enumerations

	17.3 Mapping API
	17.4 Relational Mappings
	17.5 Object-Relational Data Type Mappings
	17.6 XML Mappings
	17.7 EIS Mappings

	Part IX Relational Projects
	18 Introduction to Relational Projects
	18.1 Building Relational Projects
	18.1.1 How to Build Relational Projects for a Relational Database
	18.1.2 How to Build Relational Projects for an Object-Relational Data Type Database

	18.2 Sequencing in Relational Projects
	18.2.1 Sequencing Configuration Options
	18.2.2 Sequencing Types
	18.2.2.1 Table Sequencing
	18.2.2.1.1 Default Versus Custom Sequence Table

	18.2.2.2 Unary Table Sequencing
	18.2.2.3 Query Sequencing
	18.2.2.4 Default Sequencing
	18.2.2.5 Native Sequencing with an Oracle Database Platform
	18.2.2.5.1 Understanding the Oracle SEQUENCE Object
	18.2.2.5.2 Using SEQUENCE Objects

	18.2.2.6 Native Sequencing with a Non-Oracle Database Platform

	18.2.3 Sequencing and Preallocation Size
	18.2.4 Sequencing with EJB 2.n Entity Beans with Container-Managed Persistence

	19 Creating a Relational Project
	19.1 Introduction to the Relational Project Creation
	19.2 Creating a Project from an Existing Object and Data Model
	19.2.1 How to Create a Project from an Existing Object and Data Model Using TopLink Workbench

	19.3 Creating a Project from an Existing Object Model
	19.3.1 How to Create a Project from an Existing Object Model Using TopLink Workbench

	19.4 Creating a Project from an Existing Data Model
	19.4.1 How to Create a Project from an Existing Data Model Using TopLink Workbench

	19.5 Creating a Project from an OC4J EJB CMP EAR at Deployment Time
	19.6 Exporting Project Information
	19.6.1 How to Export Project Java Source Using TopLink Workbench
	19.6.2 How to Export Table Creator Files Using TopLink Workbench

	19.7 Working with the ejb-xml.File
	19.7.1 How to Write to the ejb-jar.xml File Using TopLink Workbench
	19.7.2 How to Read from the ejb-jar.xml File Using TopLink Workbench

	20 Configuring a Relational Project
	20.1 Introduction to Relational Project Configuration
	20.2 Configuring Relational Database Platform at the Project Level
	20.2.1 How to Configure Relational Database Platform at the Project Level Using TopLink Workbench

	20.3 Configuring Sequencing at the Project Level
	20.3.1 How to Configure Sequencing at the Project Level Using TopLink Workbench
	20.3.2 How to Configure Sequencing at the Project Level Using Java

	20.4 Configuring Login Information at the Project Level
	20.4.1 How to Configure Login Information at the Project Level Using TopLink Workbench

	20.5 Configuring Development and Deployment Logins
	20.5.1 How to Configure Development and Deployment Logins Using TopLink Workbench

	20.6 Logging In to the Database
	20.7 Configuring Named Query Parameterized SQL and Statement Caching at the Project Level
	20.7.1 How to Configure Named Query Parameterized SQL and Statement Caching at the Project Level Using TopLink Workbench

	20.8 Configuring Table Generation Options
	20.8.1 How to Configure Table Generation Options Using TopLink Workbench

	20.9 Configuring Table Creator Java Source Options
	20.9.1 How to Configure Table Creator Java Source Options Using TopLink Workbench

	20.10 Configuring Project Java Source Code Options
	20.10.1 How to Configure Project Java Source Code Options Using TopLink Workbench

	20.11 Configuring Deprecated Direct Mappings
	20.11.1 How to Configure Deprecated Direct Mappings Using TopLink Workbench

	Part X Relational Descriptors
	21 Introduction to Relational Descriptors
	21.1 Relational Descriptors
	21.2 Aggregate and Composite Descriptors in Relational Projects
	21.2.1 Relational Aggregates and Nesting
	21.2.2 Relational Aggregates and Inheritance
	21.2.3 Relational Aggregates and EJB 2.n Entity Beans

	21.3 Descriptors and Inheritance in Relational Projects
	21.3.1 Inheritance and Primary Keys in Relational Projects
	21.3.2 Single- and Multi-Table Inheritance in Relational Projects
	21.3.2.1 Single-Table Inheritance
	21.3.2.2 Multi-Table Inheritance
	21.3.2.2.1 Inheritance Outer-Joins

	22 Creating a Relational Descriptor
	22.1 Introduction to Relational Descriptor Creation
	22.2 Creating a Relational Descriptor
	22.2.1 How to Create a Relational Descriptor Using TopLink Workbench
	22.2.1.1 Creating Relational Class Descriptors
	22.2.1.2 Creating Relational Aggregate Descriptors
	22.2.1.3 Creating Relational Interface Descriptors

	22.2.2 How to Create a Relational Descriptor Using Java

	23 Configuring a Relational Descriptor
	23.1 Introduction to Relational Descriptor Configuration
	23.2 Configuring Associated Tables
	23.2.1 How to Configure Associated Tables Using TopLink Workbench
	23.2.2 How to Configure Associated Tables Using Java

	23.3 Configuring Sequencing at the Descriptor Level
	23.3.1 How to Configure Sequencing at the Descriptor Level Using TopLink Workbench
	23.3.2 How to Configure Sequencing at the Descriptor Level Using Java
	23.3.2.1 Configuring a Sequence by Name
	23.3.2.2 Configuring the Same Sequence for Multiple Descriptors
	23.3.2.3 Configuring the Platform Default Sequence

	23.4 Configuring Custom SQL Queries for Basic Persistence Operations
	23.4.1 How to Configure Custom SQL Queries for Basic Persistence Operations Using TopLink Workbench
	23.4.2 How to Configure Custom SQL Queries for Basic Persistence Operations Using Java

	23.5 Configuring Interface Alias
	23.5.1 How to Configure Interface Alias Using TopLink Workbench
	23.5.2 How to Configure Interface Alias Using Java

	23.6 Configuring a Relational Descriptor as a Class or Aggregate Type
	23.6.1 How to Configure a Relational Descriptor as a Class or Aggregate Type Using TopLink Workbench
	23.6.2 How to Configure a Relational Descriptor as a Class or Aggregate Type Using Java

	23.7 Configuring Multitable Information
	23.7.1 How to Configure Multitable Information Using TopLink Workbench
	23.7.2 How to Configure Multitable Information Using Java

	Part XI Object-Relational Data Type Descriptors
	24 Introduction to Object-Relational Data Type Descriptors
	24.1 Object-Relational Data Type Descriptors

	25 Creating an Object-Relational Data Type Descriptor
	25.1 Introduction to Object-Relational Data Type Descriptor Creation
	25.2 Creating an Object-Relational Data Type Descriptor
	25.2.1 How to Create an Object-Relational Data Type Descriptor Using Java

	26 Configuring an Object-Relational Data Type Descriptor
	26.1 Introduction to Object-Relational Data Type Descriptor Configuration
	26.2 Configuring Field Ordering
	26.2.1 How to Configure Field Ordering Using Java

	Part XII Relational Mappings
	27 Introduction to Relational Mappings
	27.1 Relational Mapping Types
	27.2 Relational Mapping Concepts
	27.2.1 Directionality
	27.2.2 Converters and Transformers
	27.2.2.1 Using a Direct Mapping
	27.2.2.2 Using a Converter Mapping
	27.2.2.3 Using a Transformation Mapping

	27.2.3 Relational Mappings and EJB 2.n CMP

	27.3 Direct-to-Field Mapping
	27.4 Direct-to-XMLType Mapping
	27.5 One-to-One Mapping
	27.5.1 One-to-One Mappings and EJB 2.n CMP

	27.6 Variable One-to-One Mapping
	27.7 One-to-Many Mapping
	27.7.1 One-to-Many Mappings and EJB 2.n CMP

	27.8 Many-to-Many Mapping
	27.8.1 Many-to-Many Mappings and EJB 2.n CMP

	27.9 Aggregate Collection Mapping
	27.9.1 Aggregate Collection Mappings and Inheritance
	27.9.2 Aggregate Collection Mappings and EJB
	27.9.3 How to Implement Aggregate Collection Mappings

	27.10 Direct Collection Mapping
	27.11 Direct Map Mapping
	27.12 Aggregate Object Mapping
	27.12.1 Aggregate Object Mappings with a Single Source Object
	27.12.2 Aggregate Object Mappings with Multiple Source Objects
	27.12.3 How to Implement an Aggregate Object Relationship Mapping

	27.13 Transformation Mapping

	28 Configuring a Relational Mapping
	28.1 Introduction to Relational Mapping Configuration
	28.2 Configuring Common Relational Mapping Options
	28.3 Configuring a Database Field
	28.3.1 How to Configure a Database Field Using TopLink Workbench

	28.4 Configuring Reference Descriptor
	28.4.1 How to Configure a Reference Descriptor Using TopLink Workbench

	28.5 Configuring Batch Reading
	28.5.1 How to Configure Batch Reading Using TopLink Workbench
	28.5.2 How to Configure Batch Reading Using Java

	28.6 Configuring Query Key Order
	28.6.1 How to Configure Query Key Order Using TopLink Workbench
	28.6.2 How to Configure Query Key Order Using Java

	28.7 Configuring Table and Field References (Foreign and Target Foreign Keys)
	28.7.1 How to Configure Table and Field References (Foreign and Target Foreign Keys) Using TopLink Workbench
	28.7.2 How to Configure Table and Field References (Foreign and Target Foreign Keys) Using Java

	28.8 Configuring Joining at the Mapping Level
	28.8.1 How to Configure Joining at the Mapping Level Using TopLink Workbench
	28.8.2 How to Configure Joining at the Mapping Level Using Java

	29 Configuring a Relational Direct-to-Field Mapping
	29.1 Introduction to Relational Direct-to-Field Mapping Configuration

	30 Configuring a Relational Direct-to-XMLType Mapping
	30.1 Introduction to Relational Direct-to-XMLType Mapping
	30.2 Configuring Read Whole Document
	30.2.1 How to Configure Read Whole Document Using TopLink Workbench
	30.2.2 How to Configure Read Whole Document Using Java

	31 Configuring a Relational One-to-One Mapping
	31.1 Introduction to Relational One-to-One Mapping Configuration

	32 Configuring a Relational Variable One-to-One Mapping
	32.1 Introduction to Relational Variable One-to-One Mapping Configuration
	32.2 Configuring Class Indicator
	32.2.1 How to Configure a Class Indicator Using TopLink Workbench
	32.2.2 How to Configure a Class Indicator Using Java

	32.3 Configuring Unique Primary Key
	32.3.1 How to Configure a Unique Primary Key UsingTopLink Workbench
	32.3.2 How to Configure a Unique Primary Key Using Java
	32.3.3 What You May Need to Know About Unique Primary Keys

	32.4 Configuring Query Key Association
	32.4.1 How to Configure a Query Key Association Using TopLink Workbench
	32.4.2 How to Configure a Query Key Association Using Java

	33 Configuring a Relational One-to-Many Mapping
	33.1 Introduction to Relational One-to-Many Mapping Configuration

	34 Configuring a Relational Many-to-Many Mapping
	34.1 Introduction to Relational Many-to-Many Mapping Configuration
	34.2 Configuring a Relation Table
	34.2.1 How to Configure a Relation Table Using TopLink Workbench
	34.2.2 How to Configure a Relation Table Using Java

	35 Configuring a Relational Aggregate Collection Mapping
	35.1 Introduction to Relational Aggregate Collection Mapping Configuration

	36 Configuring a Relational Direct Collection Mapping
	36.1 Introduction to Relational Direct Collection Mapping Configuration
	36.2 Configuring Target Table
	36.2.1 How to Configure a Target Table Using TopLink Workbench
	36.2.2 How to Configure a Target Table Using Java

	36.3 Configuring Direct Value Field
	36.3.1 How to Configure a Direct Value Field Using TopLink Workbench
	36.3.2 How to Configure Direct Value Field Using Java

	37 Configuring a Relational Aggregate Object Mapping
	37.1 Introduction to Relational Aggregate Object Mapping Configuration
	37.2 Configuring Aggregate Fields
	37.2.1 How to Configure Aggregate Fields Using TopLink Workbench
	37.2.2 How to Configure Aggregate Fields Using Java

	37.3 Configuring Allowing Null Values
	37.3.1 How to Configure Allowing Null Values Using TopLink Workbench
	37.3.2 How to Configure Allowing Null Values Using Java

	38 Configuring a Relational Direct Map Mapping
	38.1 Introduction to Relational Direct Map Mapping Configuration
	38.2 Configuring Direct Value Field
	38.2.1 How to Configure Direct Value Fields Using TopLink Workbench
	38.2.2 How to Configure Direct Value Fields Using Java

	38.3 Configuring Direct Key Field
	38.3.1 How to Configure Direct Key Field Using TopLink Workbench
	38.3.2 How to Configure Direct Key Field Using Java

	38.4 Configuring Key Converters
	38.4.1 How to Configure Key Converters Using TopLink Workbench
	38.4.2 How to Configure Key Converters Using Java

	38.5 Configuring Value Converters
	38.5.1 How to Configure Value Converters Using TopLink Workbench

	39 Configuring a Relational Transformation Mapping
	39.1 Introduction to Relational Transformation Mapping Configuration

	Part XIII Object-Relational Data Type Mappings
	40 Introduction to Object-Relational Data Type Mappings
	40.1 Object-Relational Data Type Mapping Types
	40.1.1 Object-Relational Data Type Structure Mapping
	40.1.2 Object-Relational Data Type Reference Mapping
	40.1.3 Object-Relational Data Type Array Mapping
	40.1.4 Object-Relational Data Type Object Array Mapping
	40.1.5 Object-Relational Data Type Nested Table Mapping

	41 Configuring an Object-Relational Data Type Mapping
	41.1 Introduction to Object-Relational Data Type Mapping Configuration
	41.2 Configuring Common Object-Relational Data Type Mapping Options
	41.3 Configuring Reference Class
	41.3.1 How to Configure Reference Class Using Java

	41.4 Configuring Attribute Name
	41.4.1 How to Configure Attribute Name Using Java

	41.5 Configuring Field Name
	41.5.1 How to Configure Field Name Using Java

	41.6 Configuring Structure Name
	41.6.1 How to Configure Structure Name Using Java

	42 Configuring an Object-Relational Data Type Structure Mapping
	42.1 Introduction to Object-Relational Data Type Structure Mapping Configuration

	43 Configuring an Object-Relational Data Type Reference Mapping
	43.1 Introduction to Object-Relational Data Type Reference Mapping Configuration

	44 Configuring an Object-Relational Data Type Array Mapping
	44.1 Introduction to Object-Relational Data Type Array Mapping Configuration

	45 Configuring an Object-Relational Data Type Object Array Mapping
	45.1 Introduction to Object-Relational Data Type Object Array Mapping Configuration

	46 Configuring an Object-Relational Data Type Nested Table Mapping
	46.1 Introduction to Object-Relational Data Type Nested Table Mapping Configuration

	Part XIV XML Projects
	47 Introduction to XML Projects
	47.1 XML Project Concepts
	47.1.1 TopLink Support for Java Architecture for XML Binding (JAXB)
	47.1.1.1 Generating TopLink Project and XML Schema Using JAXB Annotations
	47.1.1.2 Working with JAXB-Specific Generated Files
	47.1.1.2.1 Implementation Classes

	47.1.1.3 Using TopLink JAXB Compiler-Generated Files at Run Time
	47.1.1.3.1 How to Use TopLink XMLContext
	47.1.1.3.2 How to Use Marshal and Unmarshall Events
	47.1.1.3.3 How to Use TopLink XMLBinder
	47.1.1.3.4 How to Use JAXBContext
	47.1.1.3.5 How to Use JAXBElement

	47.1.2 JAXB Validation

	48 Creating an XML Project
	48.1 Introduction to XML Project Creation
	48.2 Creating an XML Project from an XML Schema
	48.2.1 How to Create an XML Project from an XML Schema Using TopLink Workbench
	48.2.2 How to Create an XML Project from an XML Schema Using the Command Line

	49 Configuring an XML Project
	49.1 Introduction to XML Project Configuration

	Part XV XML Descriptors
	50 Introduction to XML Descriptors
	50.1 XML Descriptor Concepts
	50.1.1 XML Descriptors and Aggregation
	50.1.1.1 Composite Descriptors in XML Projects

	51 Creating an XML Descriptor
	51.1 Introduction to XML Descriptor Creation
	51.2 Creating an XML Descriptor
	51.2.1 How to Create an XML Descriptor Using TopLink Workbench
	51.2.2 How to Create an XML Descriptor Using Java

	52 Configuring an XML Descriptor
	52.1 Introduction to XML Descriptor Configuration
	52.2 Configuring Schema Context for an XML Descriptor
	52.2.1 How to Configure Schema Context for an XML Descriptor Using TopLink Workbench
	52.2.1.1 Choosing a Schema Context

	52.2.2 How to Configure Schema Context for an XML Descriptor Using Java

	52.3 Configuring for Complex Type of anyType
	52.3.1 How to Configure Complex Type of anyType Using TopLink Workbench

	52.4 Configuring Default Root Element
	52.4.1 How to Configure Default Root Element Using TopLink Workbench
	52.4.1.1 Choosing a Root Element

	52.5 Configuring Document Preservation
	52.5.1 How to Configure Document Preservation Using TopLink Workbench
	52.5.2 How to Configure Document Preservation Using Java

	Part XVI XML Mappings
	53 Introduction to XML Mappings
	53.1 XML Mapping Types
	53.2 XML Mapping Concepts
	53.2.1 Mapping to Simple and Complex Types
	53.2.2 Mapping Order
	53.2.3 XPath Support
	53.2.4 xsd:list and xsd:union Support
	53.2.5 xs:any and xs:anyType Support
	53.2.6 jaxb:class Support
	53.2.7 Typesafe Enumeration Support
	53.2.8 Mapping Extensions
	53.2.9 Key On Source-Based Mapping Support
	53.2.10 Substitution Groups
	53.2.11 Mixed Content Mapping
	53.2.12 XML Adapter

	53.3 XML Direct Mapping
	53.3.1 Mapping to a Text Node
	53.3.1.1 Mapping to a Simple Text Node
	53.3.1.2 Mapping to a Text Node in a Simple Sequence
	53.3.1.3 Mapping to a Text Node in a Subelement
	53.3.1.4 Mapping to a Text Node by Position

	53.3.2 Mapping to an Attribute
	53.3.3 Mapping to a Specified Schema Type
	53.3.4 Mapping to a List Field with an XML Direct Mapping
	53.3.5 Mapping to a Union Field with an XML Direct Mapping
	53.3.6 Mapping to a Union of Lists with an XML Direct Mapping
	53.3.7 Mapping to a Union of Unions with an XML Direct Mapping
	53.3.8 Mapping with a Simple Type Translator

	53.4 XML Composite Direct Collection Mapping
	53.4.1 Mapping to Multiple Text Nodes
	53.4.1.1 Mapping to a Simple Sequence
	53.4.1.2 Mapping to a Sequence in a Subelement

	53.4.2 Mapping to Multiple Attributes
	53.4.3 Mapping to a Single Text Node with an XML Composite Direct Collection Mapping
	53.4.4 Mapping to a Single Attribute with an XML Composite Direct Collection Mapping
	53.4.5 Mapping to a List of Unions with an XML Composite Direct Collection Mapping
	53.4.6 Mapping to a Union of Lists with an XML Composite Direct Collection Mapping
	53.4.7 Specifying the Content Type of a Collection with an XML Composite Direct Collection Mapping

	53.5 XML Composite Object Mapping
	53.5.1 Mapping into the Parent Record
	53.5.2 Mapping to an Element
	53.5.3 Mapping to Different Elements by Element Name
	53.5.4 Mapping to Different Elements by Element Position

	53.6 XML Composite Collection Mapping
	53.7 XML Any Object Mapping
	53.8 XML Any Collection Mapping
	53.9 XML Transformation Mapping
	53.10 XML Object Reference Mapping
	53.10.1 Mapping Using a Single Key
	53.10.2 Mapping Using a Composite Key
	53.10.3 Mapping Using JAXB

	53.11 XML Collection Reference Mapping
	53.12 XML Binary Data Mapping
	53.13 XML Binary Data Collection Mapping
	53.14 XML Fragment Mapping
	53.15 XML Fragment Collection Mapping
	53.16 XML Choice Object Mapping
	53.17 XML Choice Collection Mapping
	53.18 XML Any Attribute Mapping

	54 Configuring an XML Mapping
	54.1 Introduction to XML Mapping Configuration
	54.2 Configuring Common XML Mapping Options
	54.3 Configuring Reference Descriptor
	54.3.1 How to Configure a Reference Descriptor Using TopLink Workbench

	54.4 Configuring Maps to Wildcard
	54.4.1 How to Configure Maps to Wildcard Using TopLink Workbench

	54.5 Configuring Source to Target Key Field Association
	54.5.1 How to Configure Source to Target Key Field Association Using Java

	54.6 Configuring Reference Class
	54.6.1 How to Configure Reference Class Using Java

	54.7 Configuring the Use of Inline Binary Data
	54.7.1 How to Configure the Use of Inline Binary Data Using Java

	54.8 Configuring the Use of SwaRef Type
	54.8.1 How to Configure the Use of SwaRef Type Using Java

	54.9 Configuring the Choice Element
	54.9.1 How to Configure the Choice Element Using Java

	55 Configuring an XML Direct Mapping
	55.1 Introduction to XML Direct Mapping Configuration

	56 Configuring an XML Composite Direct Collection Mapping
	56.1 Introduction to XML Composite Direct Collection Mapping Configuration

	57 Configuring an XML Composite Object Mapping
	57.1 Introduction to XML Composite Object Mapping Configuration

	58 Configuring an XML Composite Collection Mapping
	58.1 Introduction to XML Composite Collection Mapping Configuration

	59 Configuring an XML Any Object Mapping
	59.1 Introduction to XML Any Object Mapping Configuration

	60 Configuring an XML Any Collection Mapping
	60.1 Introduction to XML Any Collection Mapping Configuration

	61 Configuring an XML Transformation Mapping
	61.1 Introduction to XML Transformation Mapping Configuration

	62 Configuring an XML Object Reference Mapping
	62.1 Introduction to XML Object Reference Mapping

	63 Configuring an XML Collection Reference Mapping
	63.1 Introduction to XML Collection Reference Mapping

	64 Configuring an XML Binary Data Mapping
	64.1 Introduction to XML Binary Data Mapping

	65 Configuring an XML Binary Data Collection Mapping
	65.1 Introduction to XML Binary Data Collection Mapping

	66 Configuring an XML Fragment Mapping
	66.1 Introduction to XML Fragment Mapping

	67 Configuring an XML Fragment Collection Mapping
	67.1 Introduction to XML Fragment Collection Mapping

	68 Configuring an XML Choice Object Mapping
	68.1 Introduction to XML Choice Object Mapping

	69 Configuring an XML Choice Collection Mapping
	69.1 Introduction to XML Choice Collection Mapping Configuration

	70 Configuring an XML Any Attribute Mapping
	70.1 Introduction to XML Any Attribute Mapping Configuration

	Part XVII EIS Projects
	71 Introduction to EIS Projects
	71.1 EIS Project Concepts

	72 Creating an EIS Project
	72.1 Introduction to EIS Project Creation
	72.2 Creating an EIS Project with XML Records
	72.2.1 How to Create an EIS Project with XML Records Using Oracle JDeveloper
	72.2.2 How to Create an EIS Project with XML Records Using TopLink Workbench

	72.3 Creating an EIS Project with Indexed or Mapped Records
	72.3.1 How to Create an EIS Project with Indexed or Mapped Records Using Java

	73 Configuring an EIS Project
	73.1 Introduction to EIS Project Configuration
	73.2 Configuring EIS Data Source Platform at the Project Level
	73.2.1 How to Configure EIS Data Source Platform at the Project Level Using TopLink Workbench

	73.3 Configuring EIS Connection Specification Options at the Project Level
	73.3.1 How to Configure EIS Connection Specification Options at the Project Level Using TopLink Workbench

	Part XVIII EIS Descriptors
	74 Introduction to EIS Descriptors
	74.1 EIS Descriptor Concepts
	74.2 EIS Descriptors and Aggregation
	74.2.1 Root and Composite Descriptors in EIS Projects

	74.3 EIS Descriptors and Inheritance
	74.3.1 Inheritance and Primary Keys in EIS Projects

	75 Creating an EIS Descriptor
	75.1 Introduction to EIS Descriptor Creation
	75.2 Creating an EIS Descriptor
	75.2.1 How to Create an EIS Descriptor Using TopLink Workbench
	75.2.1.1 EIS Root Descriptors
	75.2.1.2 EIS Composite Descriptors

	75.2.2 How to Create an EIS Descriptor Using Java

	76 Configuring an EIS Descriptor
	76.1 Introduction to EIS Descriptor Configuration
	76.2 Configuring Schema Context for an EIS Descriptor
	76.2.1 How to Configure Schema Context for an EIS Descriptor Using TopLink Workbench
	76.2.1.1 Choosing a Schema Context

	76.2.2 How to Configure Schema Context for an EIS Descriptor Using Java

	76.3 Configuring Default Root Element
	76.3.1 How to Configure Default Root Element Using TopLink Workbench
	76.3.1.1 Choosing a Root Element

	76.3.2 How to Configure Default Root Element Using Java

	76.4 Configuring Record Format
	76.4.1 How to Configure Record Format Using Java

	76.5 Configuring Custom EIS Interactions for Basic Persistence Operations
	76.5.1 How to Configure Custom EIS Interactions for Basic Persistence Operations Using TopLink Workbench
	76.5.2 How to Configure Custom EIS Interactions for Basic Persistence Operations Using Java

	76.6 Configuring an EIS Descriptor as a Root or Composite Type
	76.6.1 How to Configure an EIS Descriptor as a Root or Composite Type Using TopLink Workbench
	76.6.2 How to Configure an EIS Descriptor as a Root or Composite Type Using Java

	Part XIX EIS Mappings
	77 Introduction to EIS Mappings
	77.1 EIS Mapping Types
	77.2 EIS Mapping Concepts
	77.2.1 EIS Record Type
	77.2.1.1 Indexed Records
	77.2.1.2 Mapped Records
	77.2.1.3 XML Records

	77.2.2 XPath Support
	77.2.3 xsd:list and xsd:union Support
	77.2.4 jaxb:class Support
	77.2.5 Typesafe Enumeration Support
	77.2.6 Composite and Reference EIS Mappings
	77.2.6.1 Composite EIS Mappings
	77.2.6.2 Reference EIS Mappings

	77.2.7 EIS Mapping Architecture

	77.3 EIS Direct Mapping
	77.4 EIS Composite Direct Collection Mapping
	77.5 EIS Composite Object Mapping
	77.6 EIS Composite Collection Mapping
	77.7 EIS One-to-One Mapping
	77.7.1 EIS One-to-One Mappings with Key on Source
	77.7.2 EIS One-to-One Mappings with Key on Target

	77.8 EIS One-to-Many Mapping
	77.8.1 EIS One-to-Many Mappings with Key on Source
	77.8.2 EIS One-to-Many Mappings with Key on Target

	77.9 EIS Transformation Mapping

	78 Configuring an EIS Mapping
	78.1 Introduction to EIS Mapping Configuration
	78.2 Configuring Common EIS Mapping Options
	78.3 Configuring Reference Descriptors
	78.3.1 How to Configure Reference Descriptors Using TopLink Workbench

	78.4 Configuring Selection Interaction
	78.4.1 How to Configure Selection Interaction Using TopLink Workbench

	79 Configuring an EIS Direct Mapping
	79.1 Introduction to EIS Direct Mapping Configuration

	80 Configuring an EIS Composite Direct Collection Mapping
	80.1 Introduction to EIS Composite Direct Collection Mapping Configuration

	81 Configuring an EIS Composite Object Mapping
	81.1 Introduction to EIS Composite Object Mapping Configuration

	82 Configuring an EIS Composite Collection Mapping
	82.1 Introduction to EIS Composite Collection Mapping Configuration

	83 Configuring an EIS One-to-One Mapping
	83.1 Introduction to EIS One-to-One Mapping Configuration
	83.2 Configuring Foreign Key Pairs
	83.2.1 How to Configure Foreign Key Pairs Using TopLink Workbench

	84 Configuring an EIS One-to-Many Mapping
	84.1 Introduction to EIS One-to-Many Mapping Configuration
	84.2 Configuring Foreign Key Pairs
	84.2.1 How to Configure Foreign Key Pairs Using TopLink Workbench

	84.3 Configuring Delete All Interactions
	84.3.1 How to Configure Delete All Interactions Using TopLink Workbench

	85 Configuring an EIS Transformation Mapping
	85.1 Introduction EIS Transformation Mapping Configuration

	Part XX Using TopLink
	86 Introduction to Persistence Layer
	86.1 Persistence Layer Concepts
	86.1.1 Sessions
	86.1.2 Data Access
	86.1.3 Cache
	86.1.4 Queries and Expressions
	86.1.5 Transactions

	Part XXI TopLink Sessions
	87 Introduction to TopLink Sessions
	87.1 Session Types
	87.2 Session Concepts
	87.2.1 Session Architecture
	87.2.1.1 Object Cache
	87.2.1.2 Connection Pools
	87.2.1.3 Query Mechanism
	87.2.1.4 Java Object Builder

	87.2.2 Session Configuration and the sessions.xml File
	87.2.3 Session Customization
	87.2.4 Acquiring a Session at Run Time with the Session Manager
	87.2.5 Managing Session Events with the Session Event Manager
	87.2.5.1 Session Event Manager Events
	87.2.5.2 Session Event Listeners

	87.2.6 Logging
	87.2.6.1 Log Types
	87.2.6.1.1 TopLink Native Logging
	87.2.6.1.2 java.util Logging
	87.2.6.1.3 Server Logging

	87.2.6.2 Log Output
	87.2.6.3 Log Level
	87.2.6.4 Logging SQL
	87.2.6.5 Logging Chained Exceptions
	87.2.6.6 Logging Inside a Java EE Container
	87.2.6.7 Logging Outside of a Java EE Container

	87.2.7 Profiler
	87.2.7.1 TopLink Profiler
	87.2.7.2 Oracle Dynamic Monitoring System (DMS)

	87.2.8 Integrity Checker
	87.2.9 Exception Handlers
	87.2.10 Registering Descriptors
	87.2.11 Sessions and CMP
	87.2.12 Sessions and Sequencing

	87.3 Server and Client Sessions
	87.3.1 Three-Tier Architecture Overview
	87.3.2 Advantages of the TopLink Three-Tier Architecture
	87.3.2.1 Shared Resources
	87.3.2.2 Providing Read Access
	87.3.2.3 Providing Write Access
	87.3.2.4 Security and User Privileges
	87.3.2.5 Concurrency
	87.3.2.6 Connection Allocation

	87.4 Unit of Work Sessions
	87.5 Isolated Client Sessions
	87.5.1 Isolated Client Sessions and Oracle Virtual Private Database (VPD)
	87.5.1.1 VPD with Oracle Database Proxy Authentication
	87.5.1.2 VPD Without Oracle Database Proxy Authentication
	87.5.1.3 Isolated Client Session Life Cycle

	87.5.2 Isolated Client Session Limitations

	87.6 Historical Sessions
	87.6.1 Historical Session Limitations

	87.7 Session Broker and Client Sessions
	87.7.1 Session Broker Architecture
	87.7.2 Committing a Transaction with a Session Broker
	87.7.2.1 Committing a Session with a JTA Driver: Two-Phase Commits
	87.7.2.2 Committing a Session Without a JTA Driver: Two-Stage Commits

	87.7.3 Session Broker Session Limitations
	87.7.3.1 Many-to-Many Join Tables and Direct Collection Tables

	87.7.4 Session Broker Alternatives
	87.7.4.1 Database Linking
	87.7.4.2 Multiple Sessions

	87.8 Database Sessions
	87.9 Remote Sessions
	87.9.1 Architectural Overview
	87.9.1.1 Application Layer
	87.9.1.2 Transport Layer
	87.9.1.3 Server Layer

	87.9.2 Remote Session Concepts
	87.9.2.1 Securing Remote Session Access
	87.9.2.2 Queries
	87.9.2.3 Refreshing
	87.9.2.4 Indirection
	87.9.2.5 Cursored Streams
	87.9.2.6 Unit of Work

	87.10 Sessions and the Cache
	87.10.1 Server and Database Session Cache
	87.10.2 Isolated Session Cache
	87.10.3 Historical Session Cache

	87.11 Session API

	88 Creating a Session
	88.1 Introduction to the Session Creation
	88.2 Creating a Sessions Configuration
	88.2.1 How to Create a Sessions Configuration Using TopLink Workbench

	88.3 Configuring a Sessions Configuration
	88.3.1 How to Configure a Sessions Configuration Using TopLink Workbench

	88.4 Creating a Server Session
	88.4.1 How to Create a Server Session Using TopLink Workbench
	88.4.2 How to Create a Server Session Using Java

	88.5 Creating Session Broker and Client Sessions
	88.5.1 How to Create a Session Broker and Client Sessions Using TopLink Workbench
	88.5.2 How to Create a Session Broker and Client Sessions Using Java

	88.6 Creating Database Sessions
	88.6.1 How to Create Database Sessions Using TopLink Workbench
	88.6.2 How to Create Database Sessions Using Java

	88.7 Creating Remote Sessions
	88.7.1 How to Create Remote Sessions Using Java
	88.7.1.1 Server
	88.7.1.2 Client

	89 Configuring a Session
	89.1 Configuring Common Session Options
	89.2 Configuring a Primary Mapping Project
	89.2.1 How to Configure a Primary Mapping Project Using TopLink Workbench
	89.2.2 How to Configure a Primary Mapping Project Using Java

	89.3 Configuring a Session Login
	89.4 Configuring Logging
	89.4.1 How to Configure Logging Using TopLink Workbench
	89.4.2 How to Configure Logging Using Session API in Java
	89.4.3 How to Configure Logging Using Oracle Enterprise Manager
	89.4.4 How to Configure Logging in a Java EE Container
	89.4.5 How to Configure a Session to use the java.util.logging Package
	89.4.5.1 logging.properties
	89.4.5.2 Formatters
	89.4.5.3 Namespace

	89.5 Configuring Multiple Mapping Projects
	89.5.1 How to Configure Multiple Mapping Projects Using TopLink Workbench
	89.5.2 How to Configure Multiple Mapping Projects Using Java

	89.6 Configuring a Performance Profiler
	89.6.1 How to Configure a Performance Profiler Using TopLink Workbench
	89.6.2 How to Configure a Performance Profiler Using Java

	89.7 Configuring an Exception Handler
	89.7.1 How to Configure an Exception Handler Using TopLink Workbench
	89.7.2 How to Configure an Exception Handler Using Java

	89.8 Configuring a Session Customizer Class
	89.8.1 How to Configure Customizer Class Using TopLink Workbench
	89.8.2 How to Configure Customizer Class Using Java

	89.9 Configuring the Server Platform
	89.9.1 How to Configure the Server Platform Using TopLink Workbench
	89.9.2 How to Configure the Server Platform Using Java

	89.10 Configuring Session Event Listeners
	89.10.1 How to Configure Session Event Listeners Using TopLink Workbench
	89.10.2 How to Configure Session Event Listeners Using Java

	89.11 Configuring the Integrity Checker
	89.11.1 How to Configure the Integrity Checker Using Java

	89.12 Configuring Connection Policy
	89.12.1 How to Configure Connection Policy Using TopLink Workbench
	89.12.2 How to Configure Connection Policy Using Java

	89.13 Configuring Named Queries at the Session Level
	89.13.1 How to Configure Named Queries at the Session Level Using Java

	90 Acquiring and Using Sessions at Run Time
	90.1 Introduction to Session Acquisition
	90.1.1 Session Manager
	90.1.2 Multiple Sessions

	90.2 Acquiring the Session Manager
	90.3 Acquiring a Session from the Session Manager
	90.3.1 How to Load a Session from sessions.xml Using Defaults
	90.3.2 How to Load a Session from sessions.xml with an Alternative Class Loader
	90.3.3 How to Load a Session from an Alternative Session Configuration File
	90.3.4 How to Load a Session Without Logging In
	90.3.5 How to Reload and Refresh Session Configuration
	90.3.6 How to Refresh a Session when the Class Loader Changes

	90.4 Acquiring a Client Session
	90.4.1 How to Acquire an Isolated Client Session
	90.4.2 How to Acquire a Client Session that Uses Exclusive Connections
	90.4.3 How to Acquire a Client Session that Uses Connection Properties
	90.4.4 How to Acquire a Client Session that Uses a Named Connection Pool
	90.4.5 How to Acquire a Client Session that Does Not Use Lazy Connection Allocation

	90.5 Acquiring a Historical Session
	90.6 Logging In to a Session
	90.7 Using Session API
	90.8 Logging Out of a Session
	90.9 Storing Sessions in the Session Manager Instance
	90.10 Destroying Sessions in the Session Manager Instance

	91 Configuring Server Sessions
	91.1 Introduction to Server Session Configuration
	91.2 Configuring Internal Connection Pools
	91.3 Configuring External Connection Pools

	92 Configuring Exclusive Isolated Client Sessions for Virtual Private Database
	92.1 Introduction to Exclusive Isolated Client Session Configuration
	92.2 Using PostAcquireExclusiveConnection Event Handler
	92.2.1 How to Use Java

	92.3 Using PreReleaseExclusiveConnection Event Handler
	92.3.1 How to Use Java

	92.4 Using NoRowsModifiedSessionEvent Event Handler
	92.4.1 How to Use Java

	92.5 Accessing Indirection

	93 Configuring Historical Sessions
	93.1 Introduction to Historical Session Configuration
	93.1.1 How to Configure Historical Sessions Using an Oracle Platform
	93.1.2 How to Configure Historical Sessions Using a TopLink HistoryPolicy

	94 Configuring Session Broker and Client Sessions
	94.1 Introduction to Session Broker and Client Session Configuration
	94.2 Removing, Renaming, or Adding Sessions
	94.2.1 How to Use TopLink Workbench to Remove, Rename, or Add Sessions

	95 Configuring Database Sessions
	95.1 Introduction to Database Session Configuration
	95.2 Configuring External Connection Pools

	Part XXII Data Access
	96 Introduction to Data Access
	96.1 Data Access Concepts
	96.1.1 Externally Managed Transactional Data Sources
	96.1.2 Data Source Login Types
	96.1.2.1 DatabaseLogin
	96.1.2.2 EISLogin

	96.1.3 Data Source Platform Types
	96.1.3.1 Database Platforms
	96.1.3.2 EIS Platforms

	96.1.4 Authentication
	96.1.4.1 Simple JDBC Authentication
	96.1.4.2 Oracle Database Proxy Authentication
	96.1.4.3 Auditing

	96.1.5 Connections
	96.1.6 Connection Pools
	96.1.6.1 Internal Connection Pools
	96.1.6.2 External Connection Pools
	96.1.6.3 Default (Write) and Read Connection Pools
	96.1.6.4 Sequence Connection Pools
	96.1.6.5 Application-Specific Connection Pools

	96.2 Data Access API
	96.2.1 Login Inheritance Hierarchy
	96.2.2 Platform Inheritance Hierarchy

	97 Configuring a Data Source Login
	97.1 Configuring Common Data Source Login Options
	97.2 Configuring User Name and Password
	97.2.1 How to Configure User Name and Password Using TopLink Workbench

	97.3 Configuring Password Encryption
	97.3.1 How to Configure Password Encryption Using Java

	97.4 Configuring External Connection Pooling
	97.4.1 How to Configure External Connection Pooling Using TopLink Workbench
	97.4.2 How to Configure External Connection Pooling Using Java

	97.5 Configuring Properties
	97.5.1 How to Configure Properties Using TopLink Workbench
	97.5.2 How to Configure Properties Using Java

	97.6 Configuring a Default Null Value at the Login Level
	97.6.1 How to Configure a Default Null Value at the Login Level Using Java

	98 Configuring a Database Login
	98.1 Introduction to Database Login Configuration
	98.2 Configuring a Relational Database Platform at the Session Level
	98.2.1 How to Configure a Relational Database Platform at the Session Level Using TopLink Workbench

	98.3 Configuring Database Login Connection Options
	98.3.1 How to Configure Database Login Connection Options Using TopLink Workbench

	98.4 Configuring Sequencing at the Session Level
	98.4.1 How to Configure Sequencing at the Session Level Using TopLink Workbench
	98.4.2 How to Configure Sequencing at the Session Level Using Java
	98.4.2.1 Using the Platform Default Sequence
	98.4.2.2 Configuring Multiple Sequences
	98.4.2.3 Configuring Query Sequencing

	98.5 Configuring a Table Qualifier
	98.5.1 How to Configure a Table Qualifier Using TopLink Workbench
	98.5.2 How to Configure a Table Qualifier Using Java

	98.6 Configuring JDBC Options
	98.6.1 How to Configure JDBC Options Using TopLink Workbench
	98.6.2 How to Configure JDBC Options Using Java

	98.7 Configuring Advanced Options
	98.7.1 How to Configure Advanced Options Using TopLink Workbench
	98.7.2 How to Configure Advanced Options Using Java

	98.8 Configuring Oracle Database Proxy Authentication
	98.8.1 How to Configure Oracle Database Proxy Authentication Using Java

	99 Configuring an EIS Login
	99.1 Introduction to EIS Login Configuration
	99.2 Configuring an EIS Data Source Platform at the Session Level
	99.2.1 How to Configure an EIS Data Source Platform at the Session Level Using TopLink Workbench

	99.3 Configuring EIS Connection Specification Options at the Session Level
	99.3.1 How to Configure EIS Connection Specification Options at the Session Level Using TopLink Workbench

	100 Creating an Internal Connection Pool
	100.1 Introduction to the Internal Connection Pool Creation
	100.2 Creating an Internal Connection Pool
	100.2.1 How to Create an Internal Connection Pool Using TopLink Workbench
	100.2.2 How to Create an Internal Connection Pool Using Java

	101 Configuring an Internal Connection Pool
	101.1 Introduction to the Internal Connection Pool Configuration
	101.2 Configuring Connection Pool Sizes
	101.2.1 How to Configure Connection Pool Size Using TopLink Workbench
	101.2.2 How to Configure Connection Pool Size Using Java

	101.3 Configuring Properties
	101.3.1 How to Configure Properties Using TopLink Workbench
	101.3.2 How to Configure Properties Using Java

	101.4 Configuring a Nontransactional Read Login
	101.4.1 How to Configure Nontransactional Read Login Using TopLink Workbench
	101.4.2 How to Configure Nontransactional Read Login Using Java

	101.5 Configuring Connection Pool Connection Options
	101.5.1 How to Configure Connection Pool Connection Options Using TopLink Workbench

	101.6 Configuring Exclusive Read Connections
	101.6.1 How to Configure Exclusive Read Connections Using TopLink Workbench

	Part XXIII Cache
	102 Introduction to Cache
	102.1 Cache Architecture
	102.1.1 Session Cache
	102.1.2 Unit of Work Cache

	102.2 Cache Concepts
	102.2.1 Cache Type and Object Identity
	102.2.1.1 Full Identity Map
	102.2.1.2 Weak Identity Map
	102.2.1.3 Soft Identity Map
	102.2.1.4 Soft Cache Weak Identity Map and Hard Cache Weak Identity Map
	102.2.1.5 No Identity Map
	102.2.1.6 Guidelines for Configuring the Cache and Identity Maps
	102.2.1.7 What You May Need to Know About the Internals of Weak, Soft, and Hard Identity Maps

	102.2.2 Querying and the Cache
	102.2.3 Handling Stale Data
	102.2.3.1 Configuring a Locking Policy
	102.2.3.2 Configuring the Cache on a Per-Class Basis
	102.2.3.3 Forcing a Cache Refresh when Required on a Per-Query Basis
	102.2.3.4 Configuring Cache Invalidation
	102.2.3.5 Configuring Cache Coordination

	102.2.4 Explicit Query Refreshes
	102.2.4.1 Refresh Policy
	102.2.4.2 EJB 2.n CMP Finders and Refresh Policy

	102.2.5 Cache Invalidation
	102.2.6 Cache Coordination
	102.2.7 Cache Isolation
	102.2.8 Cache Locking and Transaction Isolation
	102.2.9 Cache Optimization

	102.3 Cache Coordination
	102.3.1 When to Use Cache Coordination
	102.3.2 Coordinated Cache Architecture
	102.3.2.1 Session
	102.3.2.2 Descriptor
	102.3.2.3 Unit of Work

	102.3.3 Coordinated Cache Types
	102.3.3.1 JMS Coordinated Cache
	102.3.3.2 RMI Coordinated Cache
	102.3.3.3 CORBA Coordinated Cache

	102.3.4 Custom Coordinated Cache

	102.4 Cache API
	102.4.1 Object Identity API
	102.4.2 Cache Refresh API
	102.4.3 Cache Invalidation API
	102.4.4 Cache Coordination API

	103 Configuring a Coordinated Cache
	103.1 Configuring Common Coordinated Cache Options
	103.2 Configuring the Synchronous Change Propagation Mode
	103.2.1 How to Configure the Synchronous Change Propagation Mode Using TopLink Workbench
	103.2.2 How to Configure the Synchronous Change Propagation Mode Using Java

	103.3 Configuring a Service Channel
	103.3.1 How to Configure a Service Channel Using TopLink Workbench
	103.3.2 How to Configure a Service Channel Using Java

	103.4 Configuring a Multicast Group Address
	103.4.1 How to Configure a Multicast Group Address Using TopLink Workbench
	103.4.2 How to Configure a Multicast Group Address Using Java

	103.5 Configuring a Multicast Port
	103.5.1 How to Configure a Multicast Port Using TopLink Workbench
	103.5.2 How to Configure a Multicast Port Using Java

	103.6 Configuring a Naming Service Type
	103.7 Configuring JNDI Naming Service Information
	103.7.1 How to Configure JNDI Naming Service Information Using TopLink Workbench
	103.7.2 How to Configure JNDI Naming Service Information Using Java

	103.8 Configuring RMI Registry Naming Service Information
	103.8.1 How to Configure RMI Registry Naming Service Information Using TopLink Workbench
	103.8.2 How to Configure RMI Registry Naming Service Information Using Java

	103.9 Configuring an Announcement Delay
	103.9.1 How to Configure an Announcement Delay Using TopLink Workbench
	103.9.2 How to Configure an Announcement Delay Using Java

	103.10 Configuring Connection Handling
	103.10.1 How to Configure Connection Handling Using TopLink Workbench
	103.10.2 How to Configure Connection Handling Using Java

	103.11 Configuring Context Properties
	103.11.1 How to Configure Context Properties Using TopLink Workbench
	103.11.2 How to Configure Context Properties Using Java

	103.12 Configuring a Packet Time-to-Live
	103.12.1 How to Configure a Packet Time-to-Live Using TopLink Workbench
	103.12.2 How to Configure a Packet Time-to-Live Using Java

	104 Configuring a JMS Coordinated Cache
	104.1 Introduction to JMS Coordinated Cache Configuration
	104.2 Configuring a Topic Name
	104.2.1 How to Configure a Topic Name Using TopLink Workbench
	104.2.2 How to Configure a Topic Name Java

	104.3 Configuring a Topic Connection Factory Name
	104.3.1 How to Configure a Topic Connection Factory Name Using TopLink Workbench
	104.3.2 How to Configure a Topic Connection Factory Name Using Java

	104.4 Configuring a Topic Host URL
	104.4.1 How to Configure a Topic Host URL Using TopLink Workbench
	104.4.2 How to Configure a Topic Host URL Using Java

	104.5 Configuring Connection Handling
	104.5.1 How to Configure Connection Handling Using TopLink Workbench
	104.5.2 How to Configure Connection Handling Using Java

	105 Configuring an RMI Coordinated Cache
	105.1 Introduction to RMI Coordinated Cache Configuration

	106 Configuring a CORBA Coordinated Cache
	106.1 Introduction to CORBA Coordinated Cache Configuration

	107 Configuring a Custom Coordinated Cache
	107.1 Introduction to Custom Coordinated Cache Configuration
	107.2 Configuring Transport Class
	107.2.1 How to Configure Transport Class Using TopLink Workbench
	107.2.2 How to Configure Transport Class Using Java

	Part XXIV Queries
	108 Introduction to TopLink Queries
	108.1 Query Types
	108.2 Query Concepts
	108.2.1 Call
	108.2.2 DatabaseQuery
	108.2.3 Data-Level and Object-Level Queries
	108.2.4 Summary Queries
	108.2.5 Descriptor Query Manager
	108.2.6 TopLink Expressions
	108.2.7 Query Keys
	108.2.8 Query Languages
	108.2.8.1 SQL Queries
	108.2.8.2 EJB QL Queries
	108.2.8.3 JP QL Queries
	108.2.8.4 XML Queries
	108.2.8.5 EIS Interactions
	108.2.8.6 Query-by-Example

	108.3 Building Queries
	108.4 Executing Queries
	108.5 Handling Query Results
	108.5.1 Collection Query Results
	108.5.2 Report Query Results
	108.5.3 Stream and Cursor Query Results

	108.6 Session Queries
	108.6.1 Read-Object Session Queries
	108.6.2 Create, Update, and Delete Object Session Queries

	108.7 Database Queries
	108.7.1 Object-Level Read Query
	108.7.1.1 ReadObjectQuery
	108.7.1.2 ReadAllQuery
	108.7.1.3 Partial Object Queries
	108.7.1.4 Read-Only Query
	108.7.1.5 Join Reading and Object-Level Read Queries
	108.7.1.5.1 Avoiding Join-Reading Duplicate Data

	108.7.1.6 Fetch Groups and Object-Level Read Queries

	108.7.2 Data-Level Read Query
	108.7.2.1 DataReadQuery
	108.7.2.2 DirectReadQuery
	108.7.2.3 ValueReadQuery

	108.7.3 Object-Level Modify Query
	108.7.3.1 WriteObjectQuery
	108.7.3.2 UpdateObjectQuery
	108.7.3.3 InsertObjectQuery
	108.7.3.4 DeleteObjectQuery
	108.7.3.5 UpdateAllQuery
	108.7.3.6 DeleteAllQuery
	108.7.3.7 Object-Level Modify Queries and Privately Owned Parts

	108.7.4 Data-Level Modify Query
	108.7.5 Report Query

	108.8 Named Queries
	108.9 Call Queries
	108.9.1 SQL Calls
	108.9.1.1 SQLCall
	108.9.1.2 StoredProcedureCall
	108.9.1.3 StoredFunctionCall

	108.9.2 EJB QL Calls
	108.9.3 Enterprise Information System (EIS) Interactions
	108.9.3.1 IndexedInteraction
	108.9.3.2 MappedInteraction
	108.9.3.3 XMLInteraction
	108.9.3.4 XQueryInteraction
	108.9.3.5 QueryStringInteraction

	108.10 Redirect Queries
	108.11 Historical Queries
	108.11.1 Using an ObjectLevelReadQuery with an AsOfClause
	108.11.2 Using an ObjectLevelReadQuery with Expression Operator asOf
	108.11.3 Using an ObjectLevelReadQuery in a Historical Session

	108.12 Interface and Inheritance Queries
	108.13 Descriptor Query Manager Queries
	108.13.1 How to Configure Named Queries
	108.13.2 How to Configure Default Query Implementations
	108.13.3 How to Configure Additional Join Expressions

	108.14 Oracle Extensions
	108.14.1 Hints
	108.14.2 Hierarchical Queries
	108.14.3 Flashback Queries
	108.14.4 Stored Functions

	108.15 EJB 2.n CMP Finders
	108.15.1 Predefined Finders
	108.15.1.1 Predefined CMP Finders
	108.15.1.2 Predefined BMP Finders

	108.15.2 Default Finders
	108.15.3 Call Finders
	108.15.4 DatabaseQuery Finders
	108.15.5 Named Query Finders
	108.15.6 Primary Key Finders
	108.15.7 Expression Finders
	108.15.8 EJB QL Finders
	108.15.9 SQL Finders
	108.15.10 Redirect Finders
	108.15.11 The ejbSelect Method

	108.16 Queries and the Cache
	108.16.1 How to Configure the Cache
	108.16.2 How to Use In-Memory Queries
	108.16.2.1 Configuring Cache Usage for In-Memory Queries
	108.16.2.2 Expression Options for In-Memory Queries
	108.16.2.3 Handling Exceptions Resulting from In-Memory Queries

	108.16.3 Primary Key Queries and the Cache
	108.16.4 How to Disable the Identity Map Cache Update During a Read Query
	108.16.5 How to Refresh the Cache
	108.16.5.1 Object Refresh
	108.16.5.2 Cascading Object Refresh
	108.16.5.3 Refreshing the Identity Map Cache During a Read Query

	108.16.6 How to Cache Query Results in the Session Cache
	108.16.7 How to Cache Query Results in the Query Cache
	108.16.7.1 Internal Query Cache Restrictions

	108.16.8 How to Use Caching and EJB 2.n CMP Finders
	108.16.8.1 Caching Options
	108.16.8.2 Disabling Cache for Returned Finder Results
	108.16.8.3 Refreshing Finder Results

	108.17 Query API

	109 Using Basic Query API
	109.1 Using Session Queries
	109.1.1 How to Read Objects with a Session Query
	109.1.1.1 Reading an Object with a Session Query
	109.1.1.2 Reading All Objects with a Session Query
	109.1.1.3 Refreshing an Object with a Session Query

	109.1.2 How to Create, Update, and Delete Objects with a Session Query
	109.1.2.1 Writing a Single Object to the Database with a Session Query
	109.1.2.2 Writing All Objects to the Database with a Session Query
	109.1.2.3 Adding New Objects to the Database with a Session Query
	109.1.2.4 Modifying Existing Objects in the Database with a Session Query
	109.1.2.5 Deleting Objects in the Database with a Session Query

	109.2 Using DatabaseQuery Queries
	109.2.1 How to Read Objects Using a DatabaseQuery
	109.2.1.1 Performing Basic DatabaseQuery Read Operations
	109.2.1.2 Reading Objects Using Partial Object Queries
	109.2.1.3 Reading Objects Using Report Queries
	109.2.1.4 Reading Objects Using Query-By-Example
	109.2.1.5 Specifying Read Ordering
	109.2.1.6 Specifying a Collection Class
	109.2.1.7 Specifying the Maximum Rows Returned
	109.2.1.8 Configuring Query Timeout at the Query Level
	109.2.1.9 Using Batch Reading
	109.2.1.10 Using Join Reading with ObjectLevelReadQuery
	109.2.1.10.1 Using Java

	109.2.2 How to Create, Update, and Delete Objects with a DatabaseQuery
	109.2.2.1 Using Write Query
	109.2.2.2 Performing Noncascading Write Queries
	109.2.2.3 Disabling the Identity Map Cache During a Write Query

	109.2.3 How to Update and Delete Multiple Objects with a DatabaseQuery
	109.2.3.1 Using UpdateAll Queries
	109.2.3.2 Using DeleteAll Queries

	109.2.4 How to Read Data with a DatabaseQuery
	109.2.4.1 Using a DataReadQuery
	109.2.4.2 Using a DirectReadQuery
	109.2.4.3 Using a ValueReadQuery

	109.2.5 How to Update Data with a DatabaseQuery
	109.2.6 How to Specify a Custom SQL String in a DatabaseQuery
	109.2.7 How to Specify a Custom JPQL String in a DatabaseQuery
	109.2.8 How to Specify a Custom EJB QL String in a DatabaseQuery
	109.2.9 How to Use Parameterized SQL and Statement Caching in a DatabaseQuery

	109.3 Using Named Queries
	109.4 Using a SQLCall
	109.4.1 How to Configure a SQLCall Without Arguments
	109.4.2 How to Configure a SQLCall with Arguments Using JDBC Data Types
	109.4.3 What You May Need to Know About Using a SQLCall

	109.5 Using a StoredProcedureCall
	109.5.1 How to Configure a StoredProcedureCall Without Arguments
	109.5.2 How to Configure a StoredProcedureCall with Arguments Using JDBC Data Types
	109.5.3 How to Configure a PLSQLStoredProcedureCall with PL/SQL Data Type Arguments
	109.5.4 How to Specify a Simple Optimistic Version Locking Value with a StoredProcedureCall Using JDBC Data Types
	109.5.5 How to Configure a StoredProcedureCall Output Parameter Event Using JDBC or PL/SQL Data Types
	109.5.6 What You May Need to Know About Using a StoredProcedureCall

	109.6 Using a StoredFunctionCall
	109.6.1 What You May Need to Know About Using a StoredFunctionCall

	109.7 Using Java Persistence Query Language (JPQL) Calls
	109.8 Using EIS Interactions
	109.9 Handling Exceptions
	109.10 Handling Collection Query Results
	109.11 Handling Report Query Results

	110 Introduction to TopLink Expressions
	110.1 Expression Framework
	110.1.1 Expressions Compared to SQL

	110.2 Expression Components
	110.2.1 Boolean Logic
	110.2.2 Database Functions and Operators
	110.2.3 Mathematical Functions
	110.2.4 XMLType Functions
	110.2.5 Platform and User-Defined Functions
	110.2.6 Expressions for One-to-One and Aggregate Object Relationships
	110.2.7 Expressions for Joining and Complex Relationships
	110.2.7.1 What You May Need to Know About Joins
	110.2.7.2 Using TopLink Expression API for Joins

	110.3 Parameterized Expressions
	110.3.1 Expression Method getParameter
	110.3.2 Expression Method getField

	110.4 Query Keys and Expressions
	110.5 Multiple Expressions
	110.5.1 How to Use Subselects and Subqueries
	110.5.2 How to Use Parallel Expressions

	110.6 Data Queries and Expressions
	110.6.1 How to Use the getField Method
	110.6.2 How to Use the getTable Method

	110.7 Creating an Expression
	110.7.1 How to Create an Expression Using TopLink Workbench
	110.7.1.1 Adding Arguments

	110.7.2 How to Create an Expression Using Java

	110.8 Creating and Using a User-Defined Function
	110.8.1 How to Make a User-Defined Function Available to a Specific Platform
	110.8.2 How to Make a User-Defined Function Available to All Platforms
	110.8.2.1 Using a User-Defined Function

	111 Using Advanced Query API
	111.1 Using Redirect Queries
	111.1.1 How to Create a Redirect Query

	111.2 Using Historical Queries
	111.3 Using Queries with Fetch Groups
	111.3.1 How to Configure Default Fetch Group Behavior
	111.3.2 How to Query with a Static Fetch Group
	111.3.3 How to Query with a Dynamic Fetch Group

	111.4 Using Read-Only Queries
	111.5 Querying on Interfaces
	111.6 Querying on an Inheritance Hierarchy
	111.7 Appending Additional Join Expressions
	111.7.1 How to Append Additional Join Expressions Using Java

	111.8 Using Queries on Variable One-to-One Mappings
	111.9 Using Oracle Database Features
	111.9.1 How to Use Oracle Hints
	111.9.2 How to Use Hierarchical Queries
	111.9.2.1 Using startWith Parameter
	111.9.2.2 Using connectBy Parameter
	111.9.2.3 Using orderSibling Parameter

	111.10 Using EJB 2.n CMP Finders
	111.10.1 How to Create a Finder
	111.10.1.1 ejb-jar.xml Finder Options

	111.10.2 How to Use DatabaseQuery Finders
	111.10.3 How to Use Named Query Finders
	111.10.4 How to Use Primary Key Finders
	111.10.5 How to Use EJB QL Finders
	111.10.6 How to Use SQL Finders
	111.10.7 How to Use Redirect Finders
	111.10.8 How to Use the ejbSelect Method

	111.11 Handling Cursor and Stream Query Results
	111.11.1 How to Handle Cursors and Java Iterators
	111.11.1.1 Traversing Data with Scrollable Cursors

	111.11.2 How to Handle Java Streams
	111.11.2.1 Using Cursored Stream Support

	111.11.3 How to Optimize Streams
	111.11.4 How to Use Cursors and Streams with EJB 2.n CMP Finders
	111.11.4.1 Building the Query
	111.11.4.2 Executing the Finder from the Client

	111.12 Handling Query Results Using Pagination
	111.13 Using Queries and the Cache
	111.13.1 How to Cache Results in a ReadQuery
	111.13.2 How to Configure Cache Expiration at the Query Level

	112 Introduction to TopLink Support for Oracle Spatial
	112.1 TopLink Support for Oracle Spatial
	112.2 Using Structure Converters
	112.2.1 How to Configure the Database Platform to Use Structure Converters
	112.2.2 How to Set Up Mappings Using Structure Converters

	112.3 Using JGeometry
	112.3.1 How to Configure the Database Platform to Use JGeometry
	112.3.2 How to Map JGeometry Attributes
	112.3.3 How to Perform Queries Using Spatial Operator Expressions

	Part XXV Transactions
	113 Introduction to TopLink Transactions
	113.1 Unit of Work Architecture
	113.1.1 Unit of Work Transaction Context
	113.1.2 Unit of Work Transaction Demarcation
	113.1.2.1 JTA Controlled Transactions
	113.1.2.2 OTS Controlled Transactions
	113.1.2.3 CMP-Controlled Transactions

	113.1.3 Unit of Work Transaction Isolation

	113.2 Unit of Work Concepts
	113.2.1 Unit of Work Benefits
	113.2.2 Unit of Work Life Cycle
	113.2.3 Unit of Work and Change Policy
	113.2.3.1 Deferred Change Detection Policy
	113.2.3.2 Object-Level Change Tracking Policy
	113.2.3.2.1 EJB CMP and JPA

	113.2.3.3 Attribute Change Tracking Policy
	113.2.3.3.1 JPA Entities
	113.2.3.3.2 Plain Old Java Object (POJO) Classes
	113.2.3.3.3 EJB CMP on OC4J

	113.2.3.4 Change Policy Mapping Support

	113.2.4 Clones and the Unit of Work
	113.2.5 Nested and Parallel Units of Work
	113.2.5.1 Nested Unit of Work
	113.2.5.2 Parallel Unit of Work

	113.2.6 Commit and Rollback Transactions
	113.2.6.1 Commit Transactions
	113.2.6.1.1 Commit and JTA

	113.2.6.2 Rollback Transactions
	113.2.6.2.1 Rollback and JTA

	113.2.7 Primary Keys
	113.2.8 Unit of Work Optimization

	113.3 Unit of Work API
	113.3.1 Unit of Work as Session
	113.3.1.1 Reading and Querying Objects with the Unit of Work
	113.3.1.1.1 Reading Objects with the Unit of Work
	113.3.1.1.2 Querying Objects with the Unit of Work

	113.3.1.2 Locking and the Unit of Work

	113.4 Example Model Object and Schema

	114 Using Basic Unit of Work API
	114.1 Acquiring a Unit of Work
	114.2 Creating an Object
	114.3 Modifying an Object
	114.4 Associating a New Target to an Existing Source Object
	114.4.1 How to Associate a New Target to an Existing Source Object in a Unidirectional Relationship: Reference to the New Cache Object After Commit not Required
	114.4.2 How to Associate a New Target to an Existing Source Object in a Unidirectional Relationship: Reference to the New Cache Object After Commit Required
	114.4.3 How to Associate a New Target to an Existing Source Object in a Bidirectional Relationship: Query for Target Before Commit not Required
	114.4.4 How to Associate a New Target to an Existing Source Object in a Bidirectional Relationship: Query for Target Object Before Commit Required

	114.5 Associating a New Source to an Existing Target Object
	114.6 Associating an Existing Source to an Existing Target Object
	114.7 Deleting Objects
	114.7.1 How to Use the privateOwnedRelationship Attribute
	114.7.2 How to Explicitly Delete from the Database
	114.7.3 What You May Need to Know About the Order in which Objects Are Deleted

	115 Using Advanced Unit of Work API
	115.1 Registering and Unregistering Objects
	115.1.1 How to Create and Register a New Object in One Step Using UnitOfWork Method newInstance
	115.1.2 How to Use the registerAllObjects Method
	115.1.3 How to Use Registration and Existence Checking
	115.1.3.1 Using Check Database
	115.1.3.2 Using Assume Existence
	115.1.3.3 Using Assume Nonexistence

	115.1.4 How to Work with Aggregates
	115.1.5 How to Unregister Working Clones
	115.1.6 What You May Need to Know About Object Registration

	115.2 Declaring Read-Only Classes
	115.2.1 How to Configure Read-Only Classes for a Single Unit of Work
	115.2.2 How to Configure Default Read-Only Classes
	115.2.3 How to Declare Read-Only Descriptors

	115.3 Writing Changes Before Commit Time
	115.4 Using Conforming Queries and Descriptors
	115.4.1 How to Use Conforming
	115.4.1.1 Ensuring that the Query Supports Conforming
	115.4.1.2 Considering how Conforming Affects Database Results
	115.4.1.3 Registering New Objects and Instantiate Relationships

	115.4.2 How to Use Conforming Queries
	115.4.3 How to Use Conforming Descriptors
	115.4.4 What You May Need to Know About Conforming Query Alternatives
	115.4.4.1 Using Unit of Work Method writeChanges Instead of Conforming
	115.4.4.2 Using Unit of Work Properties Instead of Conforming

	115.5 Merging Changes in Working Copy Clones
	115.6 Resuming a Unit of Work After Commit
	115.7 Reverting a Unit of Work
	115.8 Using a Nested or Parallel Unit of Work
	115.8.1 How to Use Parallel Unit of Work
	115.8.2 How to Use Nested Unit of Work

	115.9 Using a Unit of Work with Custom SQL
	115.10 Controlling the Order of Delete Operations
	115.10.1 How to Use the setShouldPerformDeletesFirst Method of the Unit of Work
	115.10.2 How to Use the addConstraintDependencies Method of the Descriptor
	115.10.3 How to Use the deleteAllObjects Method Without the addConstraintDependencies Method
	115.10.4 How to Use the deleteAllObjects Method with the addConstraintDependencies Method

	115.11 Using Optimistic Read Locking with the forceUpdateToVersionField Method
	115.11.1 How to Force a Check of the Optimistic Read Lock
	115.11.2 How to Force a Version Field Update
	115.11.3 How to Disable the forceUpdateToVersionField Configuration

	115.12 Implementing User and Date Auditing with the Unit of Work
	115.13 Integrating the Unit of Work with an External Transaction Service
	115.13.1 How to Acquire a Unit of Work with an External Transaction Service
	115.13.2 How to Use a Unit of Work when an External Transaction Exists
	115.13.3 How to Use a Unit of Work when No External Transaction Exists
	115.13.4 How to Use the Unit of Work to Handle External Transaction Timeouts and Exceptions
	115.13.4.1 Handling External Transaction Commit Timeouts
	115.13.4.2 Handling External Transaction Commit Exceptions

	115.14 Integrating the Unit of Work with CMP
	115.14.1 How to Use CMP Transaction Attribute
	115.14.2 How to Use Local Transactions
	115.14.3 How to Use Nondeferred Changes

	115.15 Database Transaction Isolation Levels
	115.15.1 What You May Need to Know About General Factors Affecting Transaction Isolation Level
	115.15.1.1 External Applications
	115.15.1.2 TopLink Coordinated Cache
	115.15.1.3 DatabaseLogin Method setTransactionIsolation
	115.15.1.4 Reading Through the Write Connection
	115.15.1.4.1 Pessimistic Locking Query
	115.15.1.4.2 Unit of Work Method beginTransactionEarly
	115.15.1.4.3 ConnectionPolicy Method setShouldUseExclusiveConnection

	115.15.1.5 Managing Cache Access
	115.15.1.5.1 Isolated Client Session Cache
	115.15.1.5.2 ReadObjectQuery
	115.15.1.5.3 ReadAllQuery
	115.15.1.5.4 Descriptor Method disableCacheHits
	115.15.1.5.5 DatabaseQuery Method dontMaintainCache

	115.15.1.6 CMP and External Transactions

	115.15.2 What You May Need to Know About Read Uncommitted Level
	115.15.3 What You May Need to Know About Read Committed Level
	115.15.4 What You May Need to Know About Repeatable Read Levels
	115.15.5 What You May Need to Know About Serializable Read Levels

	115.16 Troubleshooting a Unit of Work
	115.16.1 How to Avoid the Use of Post-Commit Clones
	115.16.2 How to Determine Whether or Not an Object Is the Cache Object
	115.16.3 How to Dump the Contents of a Unit of Work
	115.16.4 How to Handle Exceptions
	115.16.4.1 Handling Exceptions at Commit Time
	115.16.4.2 Handling Exceptions During Conforming

	115.16.5 How to Validate a Unit of Work
	115.16.5.1 Validating the Unit of Work Before Commit Time

	Part XXVI Creation and Configuration of Projects
	116 Creating a Project
	116.1 Introduction to the Project Creation
	116.1.1 How to Create a Project Using Oracle JDeveloper
	116.1.2 How to Create a Project Using TopLink Workbench
	116.1.2.1 Creating New TopLink Workbench Projects

	116.1.3 How to Create a Project Using Java

	116.2 Working with Projects
	116.2.1 How to Open Existing Projects
	116.2.2 How to Save Projects
	116.2.2.1 Saving Projects with a New Name or Location

	116.2.3 How to Generate the Project Status Report

	116.3 Exporting Project Information
	116.3.1 How to Export Deployment XML Information Using TopLink Workbench
	116.3.2 How to Export Model Java Source Using TopLink Workbench

	117 Configuring a Project
	117.1 Configuring Common Project Options
	117.2 Configuring Project Save Location
	117.2.1 How to Configure Project Save Location Using TopLink Workbench

	117.3 Configuring Project Classpath
	117.3.1 How to Configure Project Classpath Using TopLink Workbench

	117.4 Configuring Method or Direct Field Access at the Project Level
	117.4.1 How to Configure Method or Direct Field Access at the Project Level Using TopLink Workbench

	117.5 Configuring Persistence Type
	117.5.1 How to Configure Persistence Type Using TopLink Workbench

	117.6 Configuring Default Descriptor Advanced Properties
	117.6.1 How to Configure Default Descriptor Advanced Properties Using TopLink Workbench

	117.7 Configuring Existence Checking at the Project Level
	117.7.1 How to Configure Existence Checking at the Project Level Using TopLink Workbench

	117.8 Configuring Project Deployment XML Options
	117.8.1 How to Configure Project Deployment XML Options Using TopLink Workbench

	117.9 Configuring Model Java Source Code Options
	117.9.1 How to Configure Model Java Source Code Options Using TopLink Workbench

	117.10 Configuring Cache Type and Size at the Project Level
	117.10.1 How to Configure Cache Type and Size at the Project Level Using TopLink Workbench
	117.10.2 How to Configure Cache Type and Size at the Project Level Using Java

	117.11 Configuring Cache Isolation at the Project Level
	117.11.1 How to Configure Cache Isolation at the Project Level Using TopLink Workbench

	117.12 Configuring Cache Coordination Change Propagation at the Project Level
	117.12.1 How to Configure Cache Coordination Change Propagation at the Project Level Using TopLink Workbench

	117.13 Configuring Cache Expiration at the Project Level
	117.13.1 How to Configure Cache Expiration at the Project Level Using TopLink Workbench

	117.14 Configuring Project Comments
	117.14.1 How to Configure Project Comments Using TopLink Workbench

	Part XXVII Creation and Configuration of Descriptors
	118 Creating a Descriptor
	118.1 Introduction to Descriptor Creation
	118.2 Validating Descriptors
	118.3 Generating Java Code for Descriptors

	119 Configuring a Descriptor
	119.1 Configuring Common Descriptor Options
	119.2 Configuring Primary Keys
	119.2.1 How to Configure Primary Keys Using TopLink Workbench
	119.2.2 How to Configure Primary Keys Using Java
	119.2.2.1 Relational Projects
	119.2.2.2 EIS Projects

	119.3 Configuring Read-Only Descriptors
	119.3.1 How to Use Read-Only EJB CMP Entity Beans
	119.3.2 How to Configure Read-Only Descriptors Using TopLink Workbench
	119.3.3 How to Configure Read-Only Descriptors Using Java

	119.4 Configuring Unit of Work Conforming at the Descriptor Level
	119.4.1 How to Configure Unit of Work Conforming at the Descriptor Level Using TopLink Workbench
	119.4.2 How to Configure Unit of Work Conforming at the Descriptor Level Using Java

	119.5 Configuring Descriptor Alias
	119.5.1 How to Configure Descriptor Alias Using TopLink Workbench
	119.5.2 How to Configure Descriptor Alias Using Java

	119.6 Configuring Descriptor Comments
	119.6.1 How to Configure Descriptor Comments Using TopLink Workbench

	119.7 Configuring Named Queries at the Descriptor Level
	119.7.1 How to Configure Named Queries at the Descriptor Level Using TopLink Workbench
	119.7.1.1 Adding Named Queries
	119.7.1.2 Configuring Named Query Type and Parameters
	119.7.1.3 Configuring Named Query Selection Criteria
	119.7.1.4 Configuring Read All Query Order
	119.7.1.5 Configuring Named Query Optimization
	119.7.1.6 Configuring Named Query Attributes
	119.7.1.6.1 Adding Report Query Attributes

	119.7.1.7 Configuring Named Query Group/Order Options
	119.7.1.7.1 Adding Ordering Attributes

	119.7.1.8 Creating an EIS Interaction for a Named Query
	119.7.1.9 Configuring Named Query Options
	119.7.1.10 Configuring Named Query Advanced Options

	119.7.2 How to Configure Named Queries at the Descriptor Level Using Java

	119.8 Configuring Query Timeout at the Descriptor Level
	119.8.1 How to Configure Query Timeout at the Descriptor Level TopLink Workbench
	119.8.2 How to Configure Query Timeout at the Descriptor Level Java

	119.9 Configuring Cache Refreshing
	119.9.1 How to Configure Cache Refreshing Using TopLink Workbench
	119.9.2 How to Configure Cache Refreshing Using Java

	119.10 Configuring Query Keys
	119.10.1 How to Configure Query Keys Using TopLink Workbench
	119.10.2 How to Configure Query Keys Using Java

	119.11 Configuring Interface Query Keys
	119.11.1 How to Configure Interface Query Keys Using TopLink Workbench
	119.11.2 How to Configure Interface Query Keys Using Java

	119.12 Configuring Cache Type and Size at the Descriptor Level
	119.12.1 How to Configure Cache Type and Size at the Descriptor Level Using TopLink Workbench
	119.12.2 How to Configure Cache Type and Size at the Descriptor Level Using Java

	119.13 Configuring Cache Isolation at the Descriptor Level
	119.13.1 How to Configure Cache Isolation at the Descriptor Level Using TopLink Workbench
	119.13.2 How to Configure Cache Isolation at the Descriptor Level Using Java

	119.14 Configuring Unit of Work Cache Isolation at the Descriptor Level
	119.14.1 How to Configure Unit of Work Cache Isolation at the Descriptor Level Using Java

	119.15 Configuring Cache Coordination Change Propagation at the Descriptor Level
	119.15.1 How to Configure Cache Coordination Change Propagation at the Descriptor Level Using TopLink Workbench
	119.15.2 How to Configure Cache Coordination Change Propagation at the Descriptor Level Using Java

	119.16 Configuring Cache Expiration at the Descriptor Level
	119.16.1 How to Configure Cache Expiration at the Descriptor Level Using TopLink Workbench
	119.16.2 How to Configure Cache Expiration at the Descriptor Level Using Java

	119.17 Configuring Cache Existence Checking at the Descriptor Level
	119.17.1 How to Configure Cache Existence Checking at the Descriptor Level Using TopLink Workbench
	119.17.2 How to Configure Cache Existence Checking at the Descriptor Level Using Java

	119.18 Configuring a Descriptor with EJB CMP and BMP Information
	119.18.1 How to Configure a Descriptor with EJB CMP and BMP Information Using TopLink Workbench
	119.18.2 How to Configure a Descriptor with EJB CMP and BMP Information Using Java
	119.18.2.1 Configuring CMP Information
	119.18.2.2 Configuring BMP Information

	119.19 Configuring Reading Subclasses on Queries
	119.19.1 How to Configure Reading Subclasses on Queries Using TopLink Workbench
	119.19.2 How to Configure Reading Subclasses on Queries Using Java

	119.20 Configuring Inheritance for a Child (Branch or Leaf) Class Descriptor
	119.20.1 How to Configure Inheritance for a Child (Branch or Leaf) Class Descriptor Using TopLink Workbench
	119.20.2 How to Configure Inheritance for a Child (Branch or Leaf) Class Descriptor Using Java

	119.21 Configuring Inheritance for a Parent (Root) Descriptor
	119.21.1 How to Configure Inheritance for a Parent (Root) Descriptor Using TopLink Workbench
	119.21.2 How to Configure Inheritance for a Parent (Root) Descriptor Using Java

	119.22 Configuring Inheritance Expressions for a Parent (Root) Class Descriptor
	119.22.1 How to Configure Inheritance Expressions for a Parent (Root) Class Descriptor Using Java

	119.23 Configuring Inherited Attribute Mapping in a Subclass
	119.23.1 How to Configure Inherited Attribute Mapping in a Subclass Using TopLink Workbench
	119.23.2 How to Configure Inherited Attribute Mapping in a Subclass Using Java

	119.24 Configuring a Domain Object Method as an Event Handler
	119.24.1 How to Configure a Domain Object Method as an Event Handler Using TopLink Workbench
	119.24.2 How to Configure a Domain Object Method as an Event Handler Using Java

	119.25 Configuring a Descriptor Event Listener as an Event Handler
	119.25.1 How to Configure a Descriptor Event Listener as an Event Handler Using TopLink Workbench
	119.25.2 How to Configure a Descriptor Event Listener as an Event Handler Using Java

	119.26 Configuring Locking Policy
	119.26.1 How to Configure Locking Policy UsingTopLink Workbench
	119.26.2 How to Configure Locking Policy Using Java
	119.26.2.1 Configuring an Optimistic Locking Policy
	119.26.2.2 Configuring Optimistic Locking Policy Cascading
	119.26.2.3 Configuring a Pessimistic Locking Policy

	119.27 Configuring Returning Policy
	119.27.1 How to Configure Returning Policy Using TopLink Workbench
	119.27.2 How to Configure Returning Policy Using Java

	119.28 Configuring Instantiation Policy
	119.28.1 How to Configure Instantiation Policy Using TopLink Workbench
	119.28.2 How to Configure Instantiation Policy Using Java

	119.29 Configuring Copy Policy
	119.29.1 How to Configure Copy Policy Using TopLink Workbench
	119.29.2 How to Configure Copy Policy Using Java

	119.30 Configuring Change Policy
	119.30.1 How to Configure Change Policy Using Java
	119.30.1.1 Configuring Deferred Change Detection Policy
	119.30.1.2 Configuring Object Change Tracking Policy
	119.30.1.3 Configuring Attribute Change Tracking Policy

	119.31 Configuring a History Policy
	119.31.1 How to Configure a History Policy Using Java
	119.31.1.1 Configuring Write Responsibility

	119.32 Configuring Wrapper Policy
	119.32.1 How to Configure Wrapper Policy Using Java

	119.33 Configuring Fetch Groups
	119.33.1 How to Configure Fetch Groups Using Java

	119.34 Configuring a Descriptor Customizer Class
	119.34.1 How to Configure Customizer Class Using Java

	119.35 Configuring Amendment Methods
	119.35.1 How to Configure Amendment Methods Using TopLink Workbench

	Part XXVIII Creation and Configuration of Mappings
	120 Creating a Mapping
	120.1 Introduction to Mapping Creation
	120.2 Creating Mappings Manually During Development
	120.2.1 How to Create Mappings Manually During Development Using TopLink Workbench
	120.2.2 How to Create Mappings During Development Using Java

	120.3 Creating Mappings Automatically During Development
	120.3.1 How to Create Mappings Automatically During Development Using TopLink Workbench

	120.4 Creating Mappings Automatically During Deployment
	120.5 Creating Mappings to Oracle LOB Database Objects
	120.5.1 How to Create Mappings to Oracle LOB Database Objects Using the Oracle JDBC Thin Driver

	120.6 Removing Mappings
	120.6.1 How to Remove Mappings Using TopLink Workbench
	120.6.2 How to Remove Mappings Using Java

	121 Configuring a Mapping
	121.1 Configuring Common Mapping Options
	121.2 Configuring Read-Only Mappings
	121.2.1 How to Configure Read-Only Mappings Using TopLink Workbench
	121.2.2 How to Configure Read-Only Mappings Using Java

	121.3 Configuring Indirection (Lazy Loading)
	121.3.1 How to Configure Indirection Using TopLink Workbench
	121.3.2 How to Configure Indirection Using Java
	121.3.2.1 Configuring Value Holder Indirection
	121.3.2.2 Configuring Value Holder Indirection with Method Accessing
	121.3.2.3 Configuring Value Holder Indirection with JPA
	121.3.2.4 Configuring IndirectContainer Indirection
	121.3.2.5 Configuring Proxy Indirection

	121.4 Configuring XPath
	121.4.1 How to Configure XPath Using TopLink Workbench
	121.4.1.1 Choosing the XPath

	121.5 Configuring a Default Null Value at the Mapping Level
	121.5.1 How to Configure a Default Null Value at the Mapping Level Using TopLink Workbench
	121.5.2 How to Configure a Default Null Value at the Mapping Level Using Java

	121.6 Configuring Method or Direct Field Accessing at the Mapping Level
	121.6.1 How to Configure Method or Direct Field Accessing Using TopLink Workbench
	121.6.2 How to Configure Method or Direct Field Accessing Using Java

	121.7 Configuring Private or Independent Relationships
	121.7.1 How to Configure Private or Independent Relationships Using TopLink Workbench
	121.7.2 How to Configure Private or Independent Relationships Using Java

	121.8 Configuring Mapping Comments
	121.8.1 How to Configure Mapping Comments Using TopLink Workbench

	121.9 Configuring a Serialized Object Converter
	121.9.1 How to Configure a Serialized Object Converter Using TopLink Workbench
	121.9.2 How to Configure a Serialized Object Converter Using Java

	121.10 Configuring a Type Conversion Converter
	121.10.1 How to Configure a Type Conversion Converter Using TopLink Workbench
	121.10.2 How to Configure a Type Conversion Converter Using Java

	121.11 Configuring an Object Type Converter
	121.11.1 How to Configure an Object Type Converter Using TopLink Workbench
	121.11.2 How to Configure an Object Type Converter Using Java

	121.12 Configuring a Simple Type Translator
	121.12.1 How to Configure a Simple Type Translator Using TopLink Workbench
	121.12.2 How to Configure a Simple Type Translator Using Java

	121.13 Configuring a JAXB Typesafe Enumeration Converter
	121.13.1 How to Configure a JAXB Typesafe Enumeration Converter Using Java

	121.14 Configuring Container Policy
	121.14.1 How to Configure Container Policy Using TopLink Workbench
	121.14.2 How to Configure Container Policy Using Java

	121.15 Configuring Attribute Transformer
	121.15.1 How to Configure Attribute Transformer Using TopLink Workbench
	121.15.2 How to Configure Attribute Transformer Using Java

	121.16 Configuring Field Transformer Associations
	121.16.1 How to Configure Field Transformer Associations Using TopLink Workbench
	121.16.1.1 Specifying Field-to-Transformer Associations

	121.16.2 How to Configure Field Transformer Associations Using Java

	121.17 Configuring Mutable Mappings
	121.17.1 How to Configure Mutable Mappings Using TopLink Workbench
	121.17.2 How to Configure Mutable Mappings Using Java

	121.18 Configuring Bidirectional Relationship
	121.18.1 How to Configure Bidirectional Relationship Using TopLink Workbench
	121.18.2 How to Configure Bidirectional Relationship Using Java

	121.19 Configuring the Use of a Single Node
	121.19.1 How to Configure the Use of a Single Node Using TopLink Workbench
	121.19.2 How to Configure the Use of a Single Node Using Java

	121.20 Configuring the Use of CDATA
	121.20.1 How to Configure the Use of CDATA Using Java

	A Troubleshooting a TopLink Application
	A.1 TopLink Support for Oracle Application Server Manageability and Diagnosability
	A.1.1 Oracle Application Server Manageability and Diagnosability Logging Enhancements
	A.1.2 Oracle Dynamic Monitoring System (DMS) Sensor Enhancements
	A.1.3 Manageability and Diagnosability JMX Enhancements

	A.2 TopLink Exception Error Reference
	A.2.1 Descriptor Exceptions
	A.2.2 Concurrency Exceptions
	A.2.3 Conversion Exceptions
	A.2.4 Database Exceptions
	A.2.5 Optimistic Lock Exceptions
	A.2.6 Query Exceptions
	A.2.7 Validation Exceptions
	A.2.8 EJB QL Exceptions
	A.2.9 Session Loader Exceptions
	A.2.10 EJB Exception Factory Exceptions
	A.2.11 Communication Exceptions
	A.2.12 EIS Exceptions
	A.2.13 JMS Processing Exceptions
	A.2.14 Default Mapping Exceptions
	A.2.15 Discovery Exceptions
	A.2.16 Remote Command Manager Exceptions
	A.2.17 Transaction Exceptions
	A.2.18 XML Conversion Exceptions
	A.2.19 XML Marshal Exceptions
	A.2.20 Migration Utility Exceptions
	A.2.21 XML Platform Exceptions
	A.2.22 Entity Manager Setup Exceptions
	A.2.23 EJB JAR XML Exceptions

	A.3 TopLink Workbench Error Reference
	A.3.1 Miscellaneous Errors (1 - 89, 106 - 133)
	A.3.2 Project Errors (100 - 102)
	A.3.3 Descriptor Errors (200 - 399)
	A.3.4 Mapping Errors (400 - 483)
	A.3.5 Table Errors (500 - 610)
	A.3.6 XML Schema Errors (700 - 706)
	A.3.7 Session Errors (800 - 812)
	A.3.8 Common Classpath Problems
	A.3.9 Database Connection Problems

	Glossary
	attribute
	authentication
	bean class
	bean-managed persistence (BMP)
	branch class
	class
	class indicator field
	client session broker
	connection pool
	container-managed persistence (CMP)
	custom SQL
	data definition language (DDL)
	database session
	default mapping
	dependent class path (IBM WebSphere)
	deployment descriptor
	descriptors
	direct access
	direct mapping
	Enterprise Java Beans (EJB)
	expressions
	entity beans
	fetch group
	hub
	identity map
	independent relationship
	indirection
	inheritance
	in-memory query
	instantiate
	JCA
	Java SE
	Java EE
	Java EE Containers
	Java Messaging Service (JMS)
	Java Naming and Directory Interface (JNDI)
	Java Persistence API (JPA)
	Java Transaction API (JTA)
	just-in-time reading
	lazy loading
	lazy reading
	leaf class
	locking policy
	mappings
	message-driven beans
	method access
	named query
	object identity
	object-relational data type
	optimistic locking
	packet
	packet time-to-live
	persist
	pessimistic locking
	POJO
	primary key
	private relationship
	proxy indirection
	query manager
	query optimization
	relationship
	relationship mapping
	Remote Method Invocation (RMI)
	remote session
	service channel
	session beans
	stale data
	TopLink session broker
	transparent indirect container indirection
	unit of work
	value holder indirection

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

