

Oracle® Fusion Middleware
Programming XML for Oracle WebLogic Server

11g Release 1 (10.3.3)

E13724-02

April 2010

This document is a resource for software developers who
design and develop applications that include XML
processing.

Oracle Fusion Middleware Programming XML for Oracle WebLogic Server, 11g Release 1 (10.3.3)

E13724-02

Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... ix

Documentation Accessibility ... ix
Conventions ... ix

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to This Document.. 1-1
1.3 Related Documentation.. 1-2
1.4 Samples for the XML Developer... 1-3
1.4.1 XML Examples in the WebLogic Server Distribution .. 1-3
1.5 New and Changed XML Features in This Release... 1-3
1.6 Summary of WebLogic Server XML Features .. 1-3
1.6.1 XML Document Parsers .. 1-3
1.6.1.1 Difference In Default Parsers Between Versions 8.1 and 9.1

 of WebLogic Server ... 1-4
1.6.2 XML Document Transformer... 1-4
1.6.3 Streaming API for XML (StAX) Implementation .. 1-4
1.6.4 WebLogic XPath API... 1-4
1.6.5 JAXP Pluggability Layer Implementation ... 1-5
1.6.6 Java API for XML Registries Implementation ... 1-5
1.6.7 WebLogic Servlet Attributes .. 1-5
1.6.8 WebLogic XSLT JSP Tag Library ... 1-5
1.6.9 XML Registry For Configuring Parsers and Transformers ... 1-5
1.6.10 XML Registry for Configuring External Entity Resolution ... 1-6
1.7 Endorsed Standards Override Mechanism for DOM/SAX: Not Supported 1-6
1.8 Learning More About XML... 1-6

2 XML Overview

2.1 What Is XML? .. 2-1
2.2 How Do You Describe an XML Document? ... 2-2
2.3 Why Use XML?.. 2-3
2.4 What Are XSL and XSLT?.. 2-4
2.5 What Are DOM and SAX?... 2-4
2.5.1 SAX .. 2-4
2.5.2 DOM .. 2-4

iv

2.6 What Is the Streaming API for XML (StAX)?.. 2-5
2.7 What Is JAXP? ... 2-5
2.7.1 JAXP Packages ... 2-5
2.7.2 New Feature of JAXP 1.2 .. 2-6
2.8 Common Uses of XML and XSLT... 2-6
2.8.1 Using XML and XSLT to Separate Content from Presentation..................................... 2-7
2.8.2 XML as a Message Format for Business-to-Business Communication........................ 2-7

3 Developing XML Applications with WebLogic Server

3.1 Developing XML Applications: Main Steps.. 3-1
3.2 Parsing XML Documents ... 3-2
3.2.1 Parsing XML Documents Using JAXP in SAX Mode ... 3-2
3.2.2 Parsing XML Documents Using JAXP in DOM Mode... 3-2
3.2.3 Parsing XML Documents in a Servlet ... 3-3
3.2.4 Using the org.xml.sax.DefaultHandler Attribute to Parse a Document...................... 3-4
3.2.5 Using the org.w3c.dom.Document Attribute to Parse a Document 3-4
3.2.6 Validating and Non-Validating Parsers ... 3-5
3.2.7 Handling Entity Resolution While Parsing an XML Document................................... 3-5
3.2.8 General Information About External Entities.. 3-5
3.2.9 Using the WebLogic Server Entity Resolution Features .. 3-6
3.2.10 Using Parsers Other Than the Default.. 3-6
3.3 Generating New XML Documents ... 3-6
3.3.1 Generating XML from a DOM Document Tree .. 3-7
3.3.2 Generating XML Documents in a JSP ... 3-7
3.4 Transforming XML Documents .. 3-8
3.4.1 Using JAXP to Transform XML Data.. 3-8
3.4.2 Example of Transforming an XML Document Using JAXP .. 3-8
3.4.3 Using the JSP Tag to Transform XML Data ... 3-9
3.4.4 XSLT JSP Tag Syntax ... 3-9
3.4.5 XSLT JSP Tag Usage ... 3-10
3.4.6 Transforming XML Documents Using an XSLT JSP Tag.. 3-11
3.4.7 Example of Using the XSLT JSP Tag in a JSP.. 3-12
3.4.8 Using Transformers Other Than the Default Transformer... 3-13

4 Using the Streaming API for XML (StAX)

4.1 Overview of the Streaming API for XML.. 4-1
4.1.1 Description of the Cursor API ... 4-1
4.1.2 The XMLStreamReader Interface .. 4-2
4.1.3 The XMLStreamWriter Interface ... 4-2
4.1.4 Description of the Event Iterator API ... 4-3
4.1.5 Main Interfaces and Classes of StAX .. 4-4
4.2 Parsing XML With the XMLStreamReader Interface: Typical Steps................................... 4-4
4.2.1 Example of Parsing XML Using StAX .. 4-5
4.2.2 Getting the XMLStreamReader Object ... 4-9
4.2.3 Determining the Specific XML Event Type ... 4-9
4.2.4 Getting the Full Name of an Element .. 4-10
4.2.5 Getting the Attributes of an Element ... 4-11

v

4.2.6 Getting the Namespaces of an Element... 4-12
4.2.7 Getting Text Data.. 4-13
4.2.8 Getting Location Information ... 4-14
4.2.9 Closing the Input Stream... 4-14
4.3 Generating XML Using the XMLStreamWriter Interface: Typical Steps......................... 4-14
4.3.1 Example of Generating XML Using StAX... 4-15
4.3.2 Getting the XMLStreamWriter Object ... 4-16
4.3.3 Adding the XML Declaration to the Output Stream ... 4-17
4.3.4 Adding Standard XML Events to the Output Stream ... 4-17
4.3.5 Adding Attributes and Namespace Declarations to a Start Element........................ 4-18
4.3.6 Closing the Output Stream.. 4-19
4.4 Properties Defined for the XMLInputFactory Interface ... 4-19
4.5 Properties Defined for the XMLOutputFactory Interface.. 4-19

5 Using Advanced XML APIs

5.1 Using the Java API for XML Registries (JAXR) API .. 5-1
5.2 Using the WebLogic XPath API.. 5-2
5.2.1 Using the DOMXPath Class ... 5-2
5.2.2 Example of Using the DOMXPath Class .. 5-2
5.2.3 Main Steps When Using the DOMXPath Class... 5-4
5.2.4 Using the StreamXPath Class... 5-5
5.2.5 Example of Using the StreamXPath Class.. 5-5
5.2.6 Main Steps When Using the StreamXPath Class .. 5-7

6 XML Programming Best Practices

6.1 When to Use the DOM, SAX, and StAX APIs... 6-1
6.2 Increasing Performance of XML Validation ... 6-2
6.3 When to Use XML Schemas or DTDs .. 6-2
6.4 Configuring External Entity Resolution for Maximum Performance................................. 6-2
6.5 Using SAX InputSources.. 6-2
6.6 Improving Performance of Transformations .. 6-3

7 XML Programming Techniques

7.1 Transmitting XML Data Between A Java Client and WebLogic Server 7-1
7.2 Handling XML Documents in a JMS Application.. 7-2
7.3 Accessing External Entities That Do Not Have an HTTP Interface..................................... 7-3

8 XML Application Scoping

8.1 Overview of Application Scoping .. 8-1
8.2 The weblogic-application.xml File ... 8-1
8.2.1 xml.. 8-3
8.2.2 parser-factory ... 8-3
8.2.3 saxparser-factory.. 8-3
8.2.4 document-builder-factory .. 8-3
8.2.5 transformer-factory ... 8-3

vi

8.2.6 entity-mapping... 8-3
8.2.7 entity-mapping-name.. 8-3
8.2.8 public-id .. 8-3
8.2.9 system-id ... 8-3
8.2.10 entity-uri.. 8-3
8.2.11 when-to-cache .. 8-4
8.2.12 cache-timeout-interval .. 8-4
8.3 Configuring a Parser or Transformer for an Enterprise Application.................................. 8-4
8.4 Configuring an External Entity for an Enterprise Application .. 8-5
8.5 Configuring the External Entity Cache for an Enterprise Application 8-5

9 Administering WebLogic Server XML

9.1 Overview of Administering WebLogic Server XML ... 9-1
9.1.1 XML Administration Tasks .. 9-1
9.1.2 How the XML Registry Works... 9-2
9.1.3 Parser Selection Within the XML Registry... 9-2
9.2 XML Parser and Transformer Configuration Tasks .. 9-3
9.2.1 Configuring a Parser or Transformer Other Than the Default 9-3
9.2.2 Configuring a Parser for a Particular Document Type .. 9-3
9.3 External Entity Configuration Tasks.. 9-4
9.3.1 Configuring External Entity Resolution... 9-4
9.3.2 Configuring the External Entity Cache... 9-4

A XML Reference

A.1 XML APIs .. A-1
A.2 Code Examples .. A-1
A.3 Related WebLogic Server Documentation ... A-1
A.4 Tutorials and Online Courses ... A-1
A.5 Other XML Specifications and Information .. A-2

B Using the WebLogic XML Streaming API (Deprecated)

B.1 Overview of the WebLogic XML Streaming API .. B-1
B.2 Javadocs for the WebLogic XML Streaming API .. B-2
B.3 Parsing an XML Document: Typical Steps... B-2
B.3.1 Example of Parsing an XML Document .. B-3
B.3.2 Getting an XML Input Stream... B-5
B.3.3 Getting a Buffered XML Input Stream .. B-5
B.3.4 Filtering the XML Stream .. B-6
B.3.5 Creating a Custom Filter.. B-7
B.3.6 Iterating Over the Stream .. B-8
B.3.7 Determining the Specific XMLEvent Type ... B-8
B.3.8 Getting the Attributes of an Element ... B-10
B.3.9 Positioning the Stream ... B-11
B.3.10 Getting a Substream ... B-12
B.3.11 Marking and Resetting a Buffered XML Input Stream ... B-13
B.3.12 Closing the Input Stream... B-13

vii

B.4 Generating a New XML Document: Typical Steps ... B-13
B.4.1 Example of Generating an XML Document.. B-14
B.4.2 Creating an XML Output Stream ... B-16
B.4.3 Adding Elements to the Output Stream.. B-17
B.4.4 Adding Attributes to an Element on the Output Stream.. B-17
B.4.5 Adding an Input Stream to an Output Stream... B-18
B.4.6 Printing an Output Stream .. B-18
B.4.7 Closing the Output Stream.. B-19

viii

ix

Preface

This preface describes the document accessibility features and conventions used in this
guide—Programming XML for Oracle WebLogic Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

x

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

This section describes the contents and organization of this guide—Programming XML
for Oracle WebLogic Server.

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to This Document"

■ Section 1.3, "Related Documentation"

■ Section 1.5, "New and Changed XML Features in This Release"

■ Section 1.6, "Summary of WebLogic Server XML Features"

■ Section 1.7, "Endorsed Standards Override Mechanism for DOM/SAX: Not
Supported"

■ Section 1.8, "Learning More About XML"

1.1 Document Scope and Audience
This document is a resource for software developers who design and develop
applications that include XML processing.

The topics in this document are relevant during the design and development phases of
a software project. The document also includes topics that are useful in solving
application problems that are discovered during test and pre-production phases of a
project.

Although this document does include administration and monitoring information
useful to developers who want to test their applications in a development
environment, the document does not address production-phase administration,
monitoring, or performance tuning topics XML topics. For links to WebLogic Server®
documentation and resources for these topics, see Section 1.3, "Related
Documentation."

It is assumed that the reader is familiar with Web technologies, XML, XSLT, the Java
programming language, and the Servlet and JSP APIs of the J2EE specification. This
document emphasizes the value-added features provided by WebLogic Server XML
and key information about how to use WebLogic Server features and facilities to get
an application that performs XML processing up and running.

1.2 Guide to This Document
This document is organized as follows:

Related Documentation

1-2 Programming XML for Oracle WebLogic Server

■ This chapter, Chapter 1, "Introduction and Roadmap," introduces the organization
of this guide and the features of WebLogic Server XML.

■ Chapter 2, "XML Overview," provides an overview of XML technology and the
WebLogic Server XML subsystem.

■ Chapter 3, "Developing XML Applications with WebLogic Server," describes how
to process XML documents from within a WebLogic Server application using XML
APIs and tools. The main processing tasks include parsing an existing XML
document, generating a new XML document, and transforming a XML document
into another format.

■ Chapter 4, "Using the Streaming API for XML (StAX)," describes in detail how to
use the Streaming API for XML (StAX) in your Java applications to parse and
generate an XML document.

■ Chapter 5, "Using Advanced XML APIs," describes how to use additional XML
APIs to do more advanced tasks, such as performing XPath matching against an
XML document.

■ Chapter 6, "XML Programming Best Practices," describes some best practices to
follow when creating Java applications that process XML documents.

■ Chapter 7, "XML Programming Techniques," describes specific programming
techniques for tasks such as using message-driven beans and JMS queues with
XML documents, and so on.

■ Chapter 8, "XML Application Scoping," describes how to configure parsers,
transformers, and external entities for a particular Enterprise application.

■ Chapter 9, "Administering WebLogic Server XML," describes the Administration
Console XML Registry and how to perform XML configuration tasks.

■ Appendix A, "XML Reference," provides pointers to specifications and application
programming interfaces supported by the XML software.

■ Appendix B, "Using the WebLogic XML Streaming API (Deprecated)," describes
how to use the deprecated WebLogic XML Streaming API. The topic is included in
this guide for legacy reasons only; you should not use this API for new
applications. Instead you should use StAX, described in Chapter 4, "Using the
Streaming API for XML (StAX)."

1.3 Related Documentation
This document contains XML-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

■ Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server components (such as Web applications and EJBs) and
applications.

■ Getting Started With JAX-WS Web Services for Oracle WebLogic Server is a guide to
developing Web Services that are deployed and run on WebLogic Server.

■ Deploying Applications to Oracle WebLogic Server is the primary source of
information about deploying WebLogic Server applications.

For related information about XML outside the scope of this document, see links listed
in Section 1.8, "Learning More About XML" and Appendix A, "XML Reference."

Summary of WebLogic Server XML Features

Introduction and Roadmap 1-3

1.4 Samples for the XML Developer
In addition to this document, Oracle provides a variety of code samples for XML
developers. The examples and tutorials illustrate WebLogic Server XML in action, and
provide practical instructions on how to perform key XML development tasks.

Oracle recommends that you run some or all of the XML examples before
programming your own application that processes XML.

1.4.1 XML Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in WL_
HOME\samples\server\examples\src\examples, where WL_HOME is the
top-level directory of your WebLogic Server installation. You can start the examples
server, and obtain information about the samples and how to run them from the
WebLogic Server Start menu.

1.5 New and Changed XML Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What’s New in Oracle WebLogic Server.

1.6 Summary of WebLogic Server XML Features
WebLogic Server consolidates XML technologies applicable to WebLogic Server and
XML applications based on WebLogic Server. The WebLogic Server XML subsystem
allows customers to use standard parsers, the WebLogic FastParser, XSLT
transformers, and DTDs and XML Schemas to process and convert XML files.

The following topics, which describe the features included in the WebLogic Server
XML subsystem, are presented in this section:

■ Section 1.6.1, "XML Document Parsers"

■ Section 1.6.2, "XML Document Transformer"

■ Section 1.6.3, "Streaming API for XML (StAX) Implementation"

■ Section 1.6.4, "WebLogic XPath API"

■ Section 1.6.5, "JAXP Pluggability Layer Implementation"

■ Section 1.6.6, "Java API for XML Registries Implementation"

■ Section 1.6.7, "WebLogic Servlet Attributes"

■ Section 1.6.8, "WebLogic XSLT JSP Tag Library"

■ Section 1.6.9, "XML Registry For Configuring Parsers and Transformers"

■ Section 1.6.10, "XML Registry for Configuring External Entity Resolution"

1.6.1 XML Document Parsers
WebLogic Server uses, by default, the XML parser that is included in the JDK Version
5.0.

You can also use any other XML parser of your choice by using the Administration
Console to configure it in the XML Registry. You can configure a single instance of
WebLogic Server to use one parser for a particular application and use another parser
for a different application.

Summary of WebLogic Server XML Features

1-4 Programming XML for Oracle WebLogic Server

For information about parsing XML documents, see Section 3.2, "Parsing XML
Documents."

1.6.1.1 Difference In Default Parsers Between Versions 8.1 and 9.1 of WebLogic
Server
The default parser in Versions 8.1and previous of WebLogic Server was one that was
based on Apache's Xerces parser and whose package name started with
weblogic.apache.xerces.*. In Version 9.1 of WebLogic Server, this parser has
been deprecated. Instead, the default parser is the same one that is shipped in JDK 5.0.

For backward compatibility, the weblogic.apache.xerces.* parser is still
available in Version 9.1 of WebLogic Server, although it is deprecated and Oracle
highly recommends you do not use it since it will not be available in future versions.
If, however, you need to temporarily continue using this parser, you must use the
Administration Console to configure a parser other than the default for your
WebLogic Server instance by updating, or creating, a new XML Registry and setting
the default implementation classes for SAX and DOM parser factory interfaces, as
indicated in Table 1–1.

For information about creating an XML Registry, see Chapter 9, "Administering
WebLogic Server XML."

1.6.2 XML Document Transformer
WebLogic Server uses, by default, the XML transformer that is included in the JDK
Version 5.0.

You can also use any other XML transformer of your choice by using the
Administration Console to configure it in the XML Registry. You can configure a
single instance of WebLogic Server to use one transformer for a particular application
and use another transformer for a different application.

For more information about transforming XML documents, see Section 3.4,
"Transforming XML Documents."

1.6.3 Streaming API for XML (StAX) Implementation
WebLogic Server includes an implementation of the Streaming API for XML (StAX).

For more information, see Chapter 4, "Using the Streaming API for XML (StAX)."

1.6.4 WebLogic XPath API
The WebLogic XPath API contains all of the classes required to perform XPath
matching against a document represented as a DOM, an XMLInputStream, or an
XMLOutputStream.

For more information, see Section 5.2, "Using the WebLogic XPath API."

Table 1–1 Default Implementation Classes for SAX and DOM Parser Factory Interfaces

Parser Factory Interface Implementation Class

DOM
(DocumentBuilderFactory)

weblogic.apache.xerces.jaxp.DocumentBuilderFactoryImpl

SAX (SAXParserFactory) weblogic.apache.xerces.jaxp.SAXParserFactoryImpl

Summary of WebLogic Server XML Features

Introduction and Roadmap 1-5

1.6.5 JAXP Pluggability Layer Implementation
Java API for XML Processing (JAXP) 1.2 is a Java-standard, parser-independent API
for XML. For more information on JAXP, see Section 2.7, "What Is JAXP?."

1.6.6 Java API for XML Registries Implementation
The Java API for XML Registries (JAXR) API, described at
http://java.sun.com/xml/jaxr/index.jsp, provides a uniform and standard
Java API for accessing different kinds of registries, in particular XML registries used in
Web Service applications.

For more information, see Section 5.1, "Using the Java API for XML Registries (JAXR)
API."

1.6.7 WebLogic Servlet Attributes
WebLogic Server supports the following special Servlet attributes:

■ org.xml.sax.HandlerBase

■ org.xml.sax.helpers.DefaultHandler

■ org.w3c.dom.Document

Calling the setAttribute (for SAX parsing) and getAttribute (for DOM parsing)
methods on a ServletRequest object with the preceding attributes will parse any
given XML document.

For more information, see Section 3.2.3, "Parsing XML Documents in a Servlet."

1.6.8 WebLogic XSLT JSP Tag Library
The JSP tag library provides a simple tag that enables access to the default XSLT
transformer from within a Java Server Page (JSP) running on WebLogic Server.
Currently, this tag supports the default XSLT transformer only; you cannot use the tag
to transform an XML document from within a JSP using a different transformer.

The JSP tag library is included in xmlx-tags.jar, which is installed when you
install your WebLogic Server distribution.

For more information, see Section 3.4.3, "Using the JSP Tag to Transform XML Data."

1.6.9 XML Registry For Configuring Parsers and Transformers
The XML Registry simplifies administration and configuration tasks by separating
these tasks from the XML application. Use the Administration Console to configure
the parsers and transformers for an instance of WebLogic Server.

For more information, see Section 9.2, "XML Parser and Transformer Configuration
Tasks."

Note: WebLogic Server uses the XML Registry, accessed through the
Administration Console, to plug in parsers and transformers. This is
different from the JAXP 1.2 specification which specifies the use of
system properties to plug in parsers and transformers.

Endorsed Standards Override Mechanism for DOM/SAX: Not Supported

1-6 Programming XML for Oracle WebLogic Server

1.6.10 XML Registry for Configuring External Entity Resolution
WebLogic XML supports external entity resolution through the XML Registry. For
more information, see Section 9.3, "External Entity Configuration Tasks."

1.7 Endorsed Standards Override Mechanism for DOM/SAX: Not
Supported

WebLogic Server does not support switching the server's DOM and SAX interfaces
using the endorsed standards override mechanism.

An endorsed standard is a Java API defined through a standards process other than the
Java Community Process (JCP). For more information, see Endorsed Standards
Override Mechanism at
http://java.sun.com/javase/6/docs/technotes/guides/standards.

1.8 Learning More About XML
To learn more about XML, see the following online courses and tutorials. Appendix A,
"XML Reference," provides links to additional information.

■ A Technical Introduction to XML, available at
http://www.xml.com/pub/a/98/10/guide0.html

■ XML Authoring Tutorial, available at http://www.xml.com/pub/r/32

■ Working with XML and Java, available at
http://java.sun.com/xml/tutorial_intro.html

■ Tutorials for using the Java 2 platform and XML technology, available at
http://developerlife.com/

■ XML, Java, and the Future of the Web, available at
http://www.xml.com/pub/a/w3j/s3.bosak.html

■ Chapter 17 of The XML Bible: XSL Transformations, available at
http://metalab.unc.edu/xml/books/bible/updates/14.html

■ XSL Tutorial by Miloslav Nic, available at
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.h
tml

■ SAX 2.0: The Simple API for XML, available at http://www.saxproject.org/

■ Document Object Model (DOM), available at http://www.w3.org/DOM/

2

XML Overview 2-1

2XML Overview

The following sections provide an overview of XML technology and the WebLogic
Server XML subsystem:

■ Section 2.1, "What Is XML?"

■ Section 2.2, "How Do You Describe an XML Document?"

■ Section 2.3, "Why Use XML?"

■ Section 2.4, "What Are XSL and XSLT?"

■ Section 2.5, "What Are DOM and SAX?"

■ Section 2.6, "What Is the Streaming API for XML (StAX)?"

■ Section 2.7, "What Is JAXP?"

■ Section 2.8, "Common Uses of XML and XSLT"

2.1 What Is XML?
Extensible Markup Language (XML) is a markup language used to describe the
content and structure of data in a document. It is a simplified version of Standard
Generalized Markup Language (SGML). XML is an industry standard for delivering
content on the Internet. Because it provides a facility to define new tags, XML is also
extensible.

Like HTML, XML uses tags to describe content. However, rather than focusing on the
presentation of content, the tags in XML describe the meaning and hierarchical
structure of data. This functionality allows for the sophisticated data types that are
required for efficient data interchange between different programs and systems.
Further, because XML enables separation of content and presentation, the content, or
data, is portable across heterogeneous systems.

The XML syntax uses matching start and end tags (such as <name> and </name>) to
mark up information. Information delimited by tags is called an element. Every XML
document has a single root element, which is the top-level element that contains all the
other elements. Elements that are contained by other elements are often referred to as
sub-elements. An element can optionally have attributes, structured as name-value
pairs, that are part of the element and are used to further define it.

The following sample XML file describes the contents of an address book:

<?xml version="1.0"?>

<address_book>
 <person gender="f">
 <name>Jane Doe</name>

How Do You Describe an XML Document?

2-2 Programming XML for Oracle WebLogic Server

 <address>
 <street>123 Main St.</street>
 <city>San Francisco</city>
 <state>CA</state>
 <zip>94117</zip>
 </address>
 <phone area_code=415>555-1212</phone>
 </person>
 <person gender="m">
 <name>John Smith</name>
 <phone area_code=510>555-1234</phone>
 <email>johnsmith@somewhere.com</email>
 </person>
</address_book>

The root element of the XML file is address_book. The address book currently
contains two entries in the form of person elements: Jane Doe and John Smith. Jane
Doe's entry includes her address and phone number; John Smith's includes his phone
and email address. Note that the structure of the XML document defines the phone
element as storing the area code using the area_code attribute rather than a
sub-element in the body of the element. Also note that not all sub-elements are
required for the person element.

2.2 How Do You Describe an XML Document?
There are two ways to describe an XML document: XML Schemas and DTDs.

XML Schemas define the basic requirements for the structure of a particular XML
document. A Schema describes the elements and attributes that are valid in an XML
document, and the contexts in which they are valid. In other words, a Schema specifies
which tags are allowed within certain other tags, and which tags and attributes are
optional. Schemas are themselves XML files.

The schema specification is a product of the World Wide Web Consortium (W3C). For
detailed information on XML schemas, see
http://www.w3.org/TR/xmlschema-0/.

The following example shows a schema that describes the preceding address book
sample XML document:

<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<xsd:complexType name="personType">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="address" type="addressType"/>
 <xsd:element name="phone" type="phoneType"/>
 <xsd:element name="email" type="xsd:string"/>
 <xsd:attribute name="gender" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="addressType">
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:string"/>
</xsd:complexType>

<xsd:simpleType name="phoneType">
 <xsd:restriction base="xsd:string"/>
 <xsd:attribute name="area_code" type="xsd:string"/>

Why Use XML?

XML Overview 2-3

</xsd:simpleType>

</xsd:schema>

You can also describe XML documents using Document Type Definition (DTD) files, a
technology older than XML Schemas. DTDs are not XML files.

The following example shows a DTD that describes the preceding address book
sample XML document:

<!DOCTYPE address_book [
<!ELEMENT person (name, address?, phone?, email?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (street, city, state, zip)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ATTLIST person gender CDATA #REQUIRED>
<!ATTLIST phone area_code CDATA #REQUIRED>
]>

An XML document can include a Schema or DTD as part of the document itself,
reference an external Schema or DTD, or not include or reference a Schema or DTD at
all. The following excerpt from an XML document shows how to reference an external
DTD called address.dtd:

<?xml version=1.0?>
<!DOCTYPE address_book SYSTEM "address.dtd">
<address_book>
...

XML documents only need to be accompanied by Schema or DTD if they need to be
validated by a parser or if they contain complex types. An XML document is
considered valid if 1) it has an associated Schema or DTD, and 2) it complies with the
constraints expressed in the associated Schema or DTD. If, however, an XML
document only needs to be well-formed, then the document does not have to be
accompanied by a Schema or DTD. A document is considered well-formed if it follows
all the rules in the W3C Recommendation for XML 1.0. For the full XML 1.0
specification, see http://www.w3.org/XML/.

2.3 Why Use XML?
An industry typically uses data exchange methods that are meaningful and specific to
that industry. With the advent of e-commerce, businesses conduct an increasing
number of relationships with a variety of industries and, therefore, must develop
expert knowledge of the various protocols used by those industries for electronic
communication.

The extensibility of XML makes it a very effective tool for standardizing the format of
data interchange among various industries. For example, when message brokers and
workflow engines must coordinate transactions among multiple industries or
departments within an enterprise, they can use XML to combine data from disparate
sources into a format that is understandable by all parties.

What Are XSL and XSLT?

2-4 Programming XML for Oracle WebLogic Server

2.4 What Are XSL and XSLT?
The Extensible Stylesheet Language (XSL) is a W3C standard for describing
presentation rules that apply to XML documents. XSL includes both a transformation
language, (XSLT), and a formatting language. These two languages function
independently of each other. XSLT is an XML-based language and W3C specification
that describes how to transform an XML document into another XML document, or
into HTML, PDF, or some other document format.

An XSLT transformer accepts as input an XML document and an XSLT document. The
template rules contained in an XSLT document include patterns that specify the XML
tree to which the rule applies. The XSLT transformer scans the XML document for
patterns that match the rule, and then it applies the template to the appropriate section
of the original XML document.

2.5 What Are DOM and SAX?
DOM and SAX are two standard Java application programming interfaces (APIs) for
parsing XML data. Both are supported by the WebLogic Server default parser. The two
APIs differ in their approach to parsing, with each API having its strengths and
weaknesses.

2.5.1 SAX
SAX stands for the Simple API for XML. It is a platform-independent language neutral
standard interface for event-based XML parsing. SAX defines events that can occur as
a parser is reading through an XML document, such as the start or the end of an
element. Programmers provide handlers to deal with different events as the document
is parsed.

Programmers that use the SAX API to parse XML documents have full control over
what happens when these events occur and can, as a result, customize the parsing
process extensively. For example, a programmer might decide to stop parsing an XML
document as soon as the parser encounters an error that indicates that the document is
invalid, rather than waiting until the entire document is parsed, thus improving
performance.

The WebLogic Server default parser (the parser included in the JDK 5.0) supports SAX
Version 2.0. Programmers who have created programs that use Version 1.0 of SAX to
parse XML documents should read about the changes between the two versions and
update their programs accordingly. For detailed information about the differences
between the two versions, refer to http://www.saxproject.org/.

2.5.2 DOM
DOM stands for the Document Object Model. It is platform- and language-neutral
interface that allows programs and scripts to access and update the content, structure,
and style of XML documents dynamically. DOM reads an XML document into
memory and represents it as a tree; each node of the tree represents a particular piece
of data from the original XML document. Because the tree structure is a standard
programming mechanism for representing data, traversing and manipulating the tree
using Java is relatively easy, fast, and efficient. The main drawback, however, is that
the entire XML document has to be read into memory for DOM to create the tree,
which might decrease the performance of an application as the XML documents get
larger.

What Is JAXP?

XML Overview 2-5

The WebLogic Server default parser (the parser included in the JDK 5.0) supports
DOM Level 2.0 Core. Programmers who have created programs that use Level 1.0 of
DOM to parse XML documents should read about the changes between the two
versions and update their programs accordingly. For detailed information about the
differences, refer to http://www.w3.org/DOM/DOMTR.

2.6 What Is the Streaming API for XML (StAX)?
In addition to SAX and DOM, you can also parse and generate an XML document
using the Streaming API for XML (StAX).

StAX is Java Community Process specification that describes a bi-directional API for
reading and writing XML. StAX gives parsing control to the programmer by exposing
a simple iterator-based API and an underlying stream of events; the API includes
methods such as next() and hasNext() that allow the programmer to ask for the
next event rather than handle the event in a callback. This gives the programmer more
procedural control over the processing of the XML document.

Unlike DOM and SAX, StAX is not yet part of the Java API for XML Processing
(JAXP).

For detailed information about using StAX, see Chapter 4, "Using the Streaming API
for XML (StAX)."

2.7 What Is JAXP?
The previous section discusses two APIs, SAX and DOM, that programmers can use to
parse XML data. The Java API for XML Processing (JAXP) provides a means to get to
these parsers. JAXP also defines a pluggability layer that allows programmers to use
any compliant parser or transformer.

WebLogic Server implements JAXP to facilitate XML application development and the
work required to move XML applications built on WebLogic Server to other Web
application servers. JAXP was developed by Sun Microsystems to make XML
applications portable; it provides basic support for parsing and transforming XML
documents through a standardized set of Java platform APIs. JAXP 1.2, included in the
WebLogic Server distribution, is configured to use the default parser. Therefore, by
default, XML applications built using WebLogic Server use JAXP.

The WebLogic Server distribution contains the interfaces and classes needed for JAXP
1.2. JAXP 1.2 contains explicit support for SAX Version 2 and DOM Level 2.

2.7.1 JAXP Packages
JAXP contains the following two packages:

■ javax.xml.parsers

■ javax.xml.transform

Note: Previous versions of WebLogic Server included a similar
proprietary API called WebLogic XML Streaming API. This API was a
basis for StAX. Although the WebLogic XML Streaming API is still
accessible in this release of WebLogic Server, its functionality has been
deprecated as of release 9.0 of WebLogic Server. Programmers should
use StAX instead.

Common Uses of XML and XSLT

2-6 Programming XML for Oracle WebLogic Server

The javax.xml.parsers package contains the classes to parse XML data in SAX
Version 2.0 and DOM Level 2.0 mode. To parse an XML document in SAX mode, a
programmer first instantiates a new SaxParserFactory object with the
newInstance() method. This method looks up the specific implementation of the
parser to load based on a well-defined list of locations. The programmer then obtains a
SaxParser instance from the SaxParserFactory and executes its parse()
method, passing it the XML document to be parsed. Parsing an XML document in
DOM mode is similar, except that the programmer uses the DocumentBuilder and
DocumentBuilderFactory classes instead.

For detailed information on using JAXP to parse XML documents, see Section 3.2,
"Parsing XML Documents."

The javax.xml.transform package contains classes to transform XML data, such
as an XML document, a DOM tree, or SAX events, into a different format. The
transformer classes work similarly to the parser classes. To transform an XML
document, a programmer first instantiates a TransformerFactory object with the
newInstance() method. This method looks up the specific implementation of the
XSLT transformer to load based on a well-defined list of locations. The programmer
then instantiates a new Transformer object based on a specific XSLT style sheet and
executes its transform() method, passing it the XML object to transform. The XML
object might be an XML file, a DOM tree, and so on.

For detailed information on using JAXP to transform XML objects, see Section 3.4.1,
"Using JAXP to Transform XML Data."

2.7.2 New Feature of JAXP 1.2
J2EE 1.4 includes version 1.2 of JAXP, which is based on the 1.1 version, but adds
support for W3C XML Schema. In particular, the 1.2 version specifies new property
strings to enable XML Schema validation, specify the schema language being used,
and the location of the particular XML Schema file that should be used when
validating an XML file.

The following code snippet shows how to set Schema validation when using a SAX
parser:

try {
 SAXParserFactory spf = SAXParserFactory.newInstance();
 spf.setNamespaceAware(true);
 spf.setValidating(true);
 SAXParser sp = spf.newSAXParser();
sp.setProperty("http://java.sun.com/xml/jaxp/properties/schemaLanguage",
 "http://www.w3.org/2001/XMLSchema");
sp.setProperty("http://java.sun.com/xml/jaxp/properties/schemaSource",
 "http://www.example.com/Report.xsd");
 DefaultHandler dh = new DefaultHandler();
 sp.parse("http://www.wombats.com/foo.xml", dh);
 } catch(SAXException se) {
 se.printStackTrace();
 }

For more information, see the JAXP 1.2 Approved Changes at
http://java.sun.com/xml/jaxp/change-requests-11.html.

2.8 Common Uses of XML and XSLT
How you use XML and XSLT depends on your particular business needs.

Common Uses of XML and XSLT

XML Overview 2-7

2.8.1 Using XML and XSLT to Separate Content from Presentation
XML and XSLT are often used in applications that support multiple client types. For
example, suppose you have a Web-based application that supports both
browser-based clients and Wireless Application Protocol (WAP) clients. These clients
understand different markup languages, HTML and Wireless Markup Language
(WML), respectively, but your application must deliver content that is appropriate for
both.

To accomplish this goal, you can write your application to first produce an XML
document that represents the data it is sending to the client. Then the application can
transform the XML document that represents the data into HTML or WML, depending
on the client's browser type. Your application can determine the client browser type by
examining the User-Agent request header of an HTTP request. Once the application
knows the client browser type, it uses the appropriate XSLT style sheet to transform
the document into the correct markup language. See the SnoopServlet example
included in the examples/servlets directory of your WebLogic Server distribution
for an example of how to access this type of header information.

This method of rendering the same XML document using different markup languages
in respective client types helps concentrate the effort required to support multiple
client types into the development of the appropriate XSLT style sheets. Additionally, it
allows your application to adapt to other clients types easily, if necessary.

For additional information about XSLT, see Section A.5, "Other XML Specifications and
Information."

2.8.2 XML as a Message Format for Business-to-Business Communication
In a business-to-business (B2B) environment, Company A and Company B want to
exchange information about e-commerce transactions in which both are involved.
Company A is a major e-commerce site. Company B is a small affiliate that sells
Company A's products to a niche group of customers. When Company B sends
customers to Company A, Company B is compensated in two ways: it receives, from
Company A, both money and information about other customers that make the same
sort of purchases as those made by the customers referred by Company B. To
exchange information, Company A and Company B must agree on a data format for
information that is machine readable and that operates with systems from both
companies easily. XML is the logical data format to use in this scenario, but selecting
this format is only the first step. The companies must then agree on the format of the
XML messages to be exchanged. Because Company A has a one-to-many relationship
with its affiliates, Company A must define the format of the XML messages that will
be exchanged.

To define the format of XML messages, or XML documents, Company A creates two
document type definitions (DTDs): one that describes the information that A will
provide about customers and one that describes the information that A wants to
receive about a newly affiliated company. Company B must also create two DTDs: one
to process the XML documents received from Company A and one to prepare an XML
document in a format that can be processed by Company A.

Common Uses of XML and XSLT

2-8 Programming XML for Oracle WebLogic Server

3

Developing XML Applications with WebLogic Server 3-1

3Developing XML Applications with WebLogic
Server

The following sections describe how to use the Java programming language and
WebLogic Server to develop XML applications. It is assumed that you know how to
use Java Servlets and Java Server Pages (JSPs) to write Java applications. For
information about how to write servlet and JSP applications, see Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

■ Section 3.1, "Developing XML Applications: Main Steps"

■ Section 3.2, "Parsing XML Documents"

■ Section 3.3, "Generating New XML Documents"

■ Section 3.4, "Transforming XML Documents"

3.1 Developing XML Applications: Main Steps
Programmers using the WebLogic Server XML subsystem typically perform some or
all of the following programming tasks when developing XML applications:

1. Parse an XML document.

The XML document can originate from a number of sources. For example, a
programmer might develop a servlet to receive an XML document from a client,
write an EJB to receive an XML document from a Servlet or another EJB, and so
on. In each instance, the XML document may have to be parsed so that its data can
be manipulated.

For more information on this task, refer to Section 3.2, "Parsing XML Documents."

2. Generate a new XML document.

After a servlet or EJB has received and parsed an XML document and possibly
manipulated the data in some way, the Servlet or EJB might need to generate a
new XML document to send back to the client or to pass on to another EJB.

For more information on this task, refer to Section 3.3, "Generating New XML
Documents."

3. Transform XML data into another format.

After parsing an XML document or generating a new one, the Servlet or EJB may
need to transform it into another format, such as HTML, WML, or plain text.

For more information on this task, refer to Section 3.4.1, "Using JAXP to Transform
XML Data."

Parsing XML Documents

3-2 Programming XML for Oracle WebLogic Server

3.2 Parsing XML Documents
This section describes how to parse XML documents using JAXP in both DOM and
SAX mode and how to parse XML documents from a servlet.

You use the Administration Console XML Registry to configure the following:

■ Per-document-type parsers, which supersede the default parser for the specified
document type.

■ External entity resolution, or the process that an XML parser goes through when
requested to find an external file in the course of parsing an XML document

For detailed information on how to use the Administration Console for these tasks,
refer to Chapter 9, "Administering WebLogic Server XML."

3.2.1 Parsing XML Documents Using JAXP in SAX Mode
The following code example shows how to configure a SAX parser factory to create a
validating parser. The example also shows how to register the MyHandler class with
the parser. The MyHandler class can override any method of the DefaultHandler
class to provide custom behavior for SAX parsing events or errors.

import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

...
MyHandler handler = new MyHandler();
// MyHandler extends org.xml.sax.helpers.DefaultHandler.

 //Obtain an instance of SAXParserFactory.
 SAXParserFactory spf = SAXParserFactory.newInstance();
 //Specify a validating parser.
 spf.setValidating(true); // Requires loading the DTD.
 //Obtain an instance of a SAX parser from the factory.
 SAXParser sp = spf.newSAXParser();
 //Parse the documnt.
 sp.parse("http://server/file.xml", handler);
...

3.2.2 Parsing XML Documents Using JAXP in DOM Mode
The following code example shows how to parse an XML document and create an
org.w3c.dom.Document tree from a DocumentBuilder object:

Note: For detailed instructions on using the Streaming API for XML
(StAX) to parse XML documents, see Chapter 4, "Using the Streaming
API for XML (StAX)."

Note: If you want to use a parser other than the default parser, you
must use the WebLogic Server Administration Console to specify the
parser in the XML Registry; otherwise the
SaxParserFactory.newInstance method returns the default
parser. For instructions about configuring WebLogic Server to use a
parser other than the default parser, see Section 9.2.1, "Configuring a
Parser or Transformer Other Than the Default."

Parsing XML Documents

Developing XML Applications with WebLogic Server 3-3

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;

...
//Obtain an instance of DocumentBuilderFactory.
DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance();
//Specify a validating parser.
dbf.setValidating(true); // Requires loading the DTD.
//Obtain an instance of a DocumentBuilder from the factory.
DocumentBuilder db = dbf.newDocumentBuilder();
//Parse the document.
Document doc = db.parse(inputFile);
...

3.2.3 Parsing XML Documents in a Servlet
Support for the setAttribute and getAttribute methods was added to version
2.2 of the Java Servlet Specification. Attributes are objects associated with a request.
The request object encapsulates all information from the client request. In the HTTP
protocol, this information is transmitted from the client to the server by the HTTP
headers and message body of the request.

With WebLogic Server, you can use the setAttribute and getAttribute methods
to parse XML documents. Use the setAttribute method for SAX mode parsing and
the getAttribute method for DOM mode parsing, as described in Section 3.2.4,
"Using the org.xml.sax.DefaultHandler Attribute to Parse a Document" and
Section 3.2.5, "Using the org.w3c.dom.Document Attribute to Parse a Document."

Before you can use the setAttribute and getAttribute methods, however, you
must configure a WebLogic Server servlet filter called
weblogic.servlet.XMLParsingHelper (deployed by default on all WebLogic
Server instances) as part of your Web application. Configure the servlet filter by
adding the following elements to the web.xml deployment descriptor, located in the
WEB-INF directory of your Web application:

<filter>
 <filter-name>XMLParsingHelper</filter-name>
 <filter-class>weblogic.servlet.XMLParsingHelper</filter-class>
</filter>

<filter-mapping>
 <filter-name>XMLParsingHelper</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

Note: If you want to use a parser other than the default parser, you
must use the WebLogic Server Administration Console to specify it;
otherwise the DocumentBuilderFactory.newInstance method
returns the default parser. For instructions about configuring
WebLogic Server to use a parser other than the default parser, see
Section 9.2.1, "Configuring a Parser or Transformer Other Than the
Default."

Parsing XML Documents

3-4 Programming XML for Oracle WebLogic Server

For more information on servlet filters, see "Filters" in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

3.2.4 Using the org.xml.sax.DefaultHandler Attribute to Parse a Document
The following code example shows how to use the setAttribute method:

import weblogic.servlet.XMLProcessingException;
import org.xml.sax.helpers.DefaultHandler;
...
public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 try {
 request.setAttribute("org.xml.sax.helpers.DefaultHandler",
 new DefaultHandler());
 } catch(XMLProcessingException xpe) {
 System.out.println("Error in processing XML");
 xpe.printStackTrace();
 return;
 }
...

You can also use the org.xml.sax.HandlerBase attribute to parse an XML
document, although it is deprecated:

request.setAttribute("org.xml.sax.HandlerBase",
 new HandlerBase());

3.2.5 Using the org.w3c.dom.Document Attribute to Parse a Document
The following code example shows how to use the getAttribute method.

import org.w3c.dom.Document;
import weblogic.servlet.XMLProcessingException;

...

public void doPost(HttpServletRequest request,
 HttpServletResponse response)
throws ServletException, IOException {

try {
 Document doc = request.getAttribute("org.w3c.dom.Document");
 } catch(XMLProcessingException xpe) {
 System.out.println("Error in processing XML");
 xpe.printStackTrace();
 return;
 }
...

Note: This code example shows a simple way to parse a document
using SAX and the setAttribute method. This method of parsing a
document is a WebLogic Server convenience feature, and it is not
supported by other servlet vendors. Therefore, if you plan to run your
application on other servlet platforms, do not use this feature.

Parsing XML Documents

Developing XML Applications with WebLogic Server 3-5

3.2.6 Validating and Non-Validating Parsers
As previously discussed, a well-formed document is one that is syntactically correct
according to the rules outlined in the W3C Recommendation for XML 1.0. A valid
document is one that follows the constraints specified by its DTD or schema.

A non-validating parser verifies that a document is well-formed, but does not verify
that it is valid. To turn on validation while parsing a document (assuming you are
using a validating parser), you must:

■ Set the SAXParserFactory.setValidating() method to true, as shown in
the following example:

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);

■ Ensure that the XML document you are parsing includes (either in-line or by
reference) a DTD or a schema.

3.2.7 Handling Entity Resolution While Parsing an XML Document
This section provides general information about external entities; how they are
identified and resolved by an XML parser; and the features provided by WebLogic
Server to improve the performance of external entity resolution in your XML
applications.

3.2.8 General Information About External Entities
External entities are chunks of text that are not literally part of an XML document, but
are referenced inside the XML document. The actual text might reside anywhere - in
another file on the same computer or even somewhere on the Web. While parsing a
document, if the parser encounters an external entity reference, it fetches the
referenced chunk of text, places the text into the XML document, then continues
parsing. An example of an external entity is a DTD; rather than including the full text
of the DTD in the XML document, the XML document has a reference to the DTD that
is stored in a separate file.

There are two ways to identify an external entity: a system identifier and a public
identifier. System identifiers use URIs to reference an external entity based on its
location. Public identifiers use a publicly declared name to refer the information.

The following example shows how a public identifier is used to reference the DTD for
the application.xml file that describes a J2EE application archive (*.ear file):

<!DOCTYPE application PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application 1.2//EN">

The following example shows a reference to an external DTD by a system identifier
only:

<!DOCTYPE application SYSTEM "http://java.sun.com/j2ee/dtds/application_1_2.dtd">

Note: This code example shows a simple way to parse a document
using DOM and the getAttribute method. This method of parsing
a document is a WebLogic Server convenience feature, and it is not
supported by other servlet vendors. Therefore, if you plan to run your
application on other servlet platforms, do not use this feature.

Generating New XML Documents

3-6 Programming XML for Oracle WebLogic Server

Here is a reference that uses both the public and system identifier; note that the
keyword SYSTEM is omitted:

<!DOCTYPE application
PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/application_1_2.dtd">

3.2.9 Using the WebLogic Server Entity Resolution Features
Use the following WebLogic Server features to improve the performance of external
entity resolution in your XML applications:

■ Permanently store a copy of an external entity on the computer that hosts the
WebLogic Administration Server.

■ Specify that WebLogic Server automatically retrieve and cache an external entity
that resides in an external repository that supports an HTTP interface, such as a
URL. You can specify that WebLogic Server cache the entity either in memory or
on disk and specify when the cached entry becomes stale, at which point
WebLogic Server automatically updates the cached entry.

Using the retrieve-and-cache feature, you do not have to actually copy the external
entity to the local computer. The XML application refers to the actual external
entity only at specified time intervals, rather than each time the document is
parsed, thus potentially greatly improving the performance of your application
while also keeping as up to date with the latest external entity as desired.

You use the XML Registry to create entity resolution entries to identify where the
external entry is located (locally or at a URL) and what the caching options are for
entities on the Web. You identify the external entity entry using a system or public
identifier. Then, in your XML document, when you reference this external entity,
WebLogic Server fetches the local copy or the cached copy (whichever you have
configured) when parsing the document.

For detailed information on creating external entity registries with the XML Registry,
refer to Section 9.3, "External Entity Configuration Tasks."

3.2.10 Using Parsers Other Than the Default
If you use JAXP to parse your XML documents, the WebLogic Server XML Registry
(which is configured through the Administration Console) offers the following
options:

■ Accept the default parser as the server-wide parser.

■ Configure another parser of your choice (such as a different version of the Apache
Xerces parser) as the server-wide parser.

■ Configure a parser for a particular XML document type, based on its system or
public identifier, or its root element.

For instructions on how to use the XML Registry to configure parsing options, see
Section 9.2, "XML Parser and Transformer Configuration Tasks."

3.3 Generating New XML Documents
This section describes how to generate XML documents from a DOM document tree
and by using JSP.

Generating New XML Documents

Developing XML Applications with WebLogic Server 3-7

3.3.1 Generating XML from a DOM Document Tree
You can use the javax.xml.transform.Transformer class to serialize a DOM
object into an XML stream, as shown in the following example segment:

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

import java.io.*;

...

TransformerFactory trans_factory = TransformerFactory.newInstance();
Transformer xml_out = trans_factory.newTransformer();
Properties props = new Properties();
props.put("method", "xml");
xml_out.setOutputProperties(props);
xml_out.transform(new DOMSource(doc), new StreamResult(System.out));

In the example, the Transformer.transform() method does the work of
converting a DOM object into an XML stream. The transform() method takes as
input a javax.xml.transform.dom.DOMSource object, created from the DOM
tree stored in the doc variable, and converts it into a
javax.xml.transform.stream.StreamResult object and writes the resulting
XML document to the standard output.

3.3.2 Generating XML Documents in a JSP
You typically use JSPs to generate HTML, but you can also use a JSP to generate an
XML document.

Using JSPs to generate XML requires that you set the content type of the JSP page as
follows:

<%@ page contentType="text/xml"%>
 ... XML document

The following code shows an example of how to use JSP to generate an XML
document:

<?xml version="1.0">

<%@ page contentType="text/xml" import="java.text.DateFormat,java.util.Date" %>

<message>
 <text>
 Hello World.
 </text>

Note: For detailed instructions on using the Streaming API for XML
(StAX) to generate XML documents, see Chapter 4, "Using the
Streaming API for XML (StAX)."

Transforming XML Documents

3-8 Programming XML for Oracle WebLogic Server

 <timestamp>
<%
out.print(DateFormat.getDateInstance().format(new Date()));
%>
 </timestamp>
</message>

For more information about using JSP to generate XML, see
http://java.sun.com/products/jsp/html/JSPXML.html.

3.4 Transforming XML Documents
Transformation refers to converting an XML document (the source of the
transformation) into another format, typically a different XML document, HTML,
Wireless Markup Language (WML) (the result of the transformation.) This section
describes how to transform XML documents using JAXP and from within a JSP using
JSP tags.

3.4.1 Using JAXP to Transform XML Data
Version 1.2 of JAXP provides pluggable transformation, which means that you can use
any JAXP-compliant transformer engine.

JAXP provides the following interfaces to transform XML data into a variety of
formats:

■ javax.xml.transform

Contains the generic APIs for transforming documents. This package does not
have any dependencies on SAX or DOM and makes the fewest possible
assumptions about the format of the source and result.

■ javax.xml.transform.stream

Implements stream- and URI-specific transformation APIs. In particular, it defines
the StreamSource and StreamResult classes that enable you to specify
InputStreams and URLs as the source of a transformation and OutputStreams
and URLs as the results, respectively.

■ javax.xml.transform.dom

Implements DOM-specific transformation APIs. In particular, it defines the
DOMSource and DOMResult classes that enable you to specify a DOM tree as
either the source or result, or both, of a transformation.

■ javax.xml.transform.sax

Implements SAX-specific transformation APIs. In particular, it defines the
SAXSource and SAXResult classes that enable you to specify
org.xml.sax.ContentHandler events as either the source or result, or both, of
a transformation.

Transformation encompasses many possible combinations of inputs and outputs.

3.4.2 Example of Transforming an XML Document Using JAXP
The following example snippet shows how to use JAXP to transform myXMLdoc.xml
into a different XML document using the mystylesheet.xsl stylesheet:

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;

Transforming XML Documents

Developing XML Applications with WebLogic Server 3-9

import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

Transformer trans;
TransformerFactory factory = TransformerFactory.newInstance();
String stylesheet = "file://stylesheets/mystylesheet.xsl";
String xml_doc = "file://xml_docs/myXMLdoc.xml";

trans = factory.newTransformer(new StreamSource(stylesheet));
trans.transform(new StreamSource(xml_doc),
 new StreamResult(System.out));

For an example of how to transform a DOM document into an XML stream, see
Section 3.4.1, "Using JAXP to Transform XML Data."

3.4.3 Using the JSP Tag to Transform XML Data
WebLogic Server provides a small JSP tag library for convenient access to an XSLT
transformer from within a JSP. You can use this tag to transform XML documents into
HTML, WML, and so on.

The JSP tag library consists of one main tag, x:xslt, and two subtags you can use
within the x:xslt tag: x:stylesheet and x:xml.

3.4.4 XSLT JSP Tag Syntax
The XSLT JSP tag syntax is based on XML. A JSP tag consists of a start tag, an optional
body, and a matching end tag. The start tag includes the element name and optional
attributes.

The following syntax describes how to use the three XSLT JSP tags provided by
WebLogic Server in a JSP. The attributes are optional, as are the subtags
x:stylesheet and x:xml. The tables following the syntax describe the attributes of
the x:xslt and x:stylesheet tags; the x:xml tag does not have any attributes.

<x:xslt [xml="uri of XML file"]
 [media="media type to determine stylesheet"]
 [stylesheet="uri of stylesheet"]
 <x:xml>In-line XML goes here
 </x:xml>
 <x:stylesheet [media="media type to determine stylesheet"]
 [uri="uri of stylesheet"]
 </x:stylesheet>
</x:xslt>

Table 3–1 describes the attributes of the x:xslt tag.

Note: The JSP tag library is provided for convenience only; the tag
library is not required to access XSLT transformers from within a JSP.

Table 3–1 x:xslt JSP Tag Attributes

x:xslt
Tag
Attribute Required Data Type Description

xml No String Specifies the location of the XML file that you want to
transform. The location is relative to the document root of
the Web application in which the tag is used.

Transforming XML Documents

3-10 Programming XML for Oracle WebLogic Server

Table 3–2 describes the attributes of the x:stylesheet tag.

3.4.5 XSLT JSP Tag Usage
The x:xslt tag can be used with or without a body, and its attributes are optional.
This section describes the rules that dictate how the tag behaves depending on
whether you specify a body or one or more attributes.

If the x:xslt JSP tag is an empty tag (no body), the following statements apply:

■ If no attributes are set, the XML document is processed using the servlet path and
the default media stylesheet. You specify the default media stylesheet in your
XML file with the <?xml-stylesheet> processing instruction; the default
stylesheet is the one that does not have a media attribute.

media No String Defines the document output type, such as HTML or
WML, that determines which stylesheet to use when
transforming the XML document.

This attribute can be used in conjunction with the media
attribute of any enclosed x:stylesheet tags within the
body of the x:xslt tag. The value of the media attribute
of the x:xslt tag is compared to the value of the media
attribute of any enclosed x:stylesheet tags. If the
values are equal, then the stylesheet specified by the uri
attribute of the x:stylesheet tag is applied to the XML
document.

Note: It is an error to set both the media and
stylesheet attributes within the same x:xslt tag.

stylesheet No String Specifies the location of the stylesheet to use to transform
the XML document. The location is relative to the
document root of the Web application in which the tag is
used.

Note: It is an error to set both the media and
stylesheet attributes within the same x:xslt tag.

Table 3–2 x:stylesheet JSP Tag Attributes

x:stylesheet
Tag Attribute Required Data Type Description

media No String Defines the document output type, such as HTML or
WML, that determines which stylesheet to use when
transforming the XML document.

Use this attribute in conjunction with the media
attribute of enveloping x:xslt tag. The value of the
media attribute of the x:xslt tag is compared to the
value of the media attribute of the enclosed
x:stylesheet tags. If the values are equal, then the
stylesheet specified by the uri attribute of the
x:stylesheet tag is applied to the XML document.

uri No String Specifies the location of the stylesheet to use when the
value of the media attribute matches the value of the
media attribute of the enveloping x:xslt tag. The
location is relative to the document root of the Web
application in which the tag is used.

Table 3–1 (Cont.) x:xslt JSP Tag Attributes

x:xslt
Tag
Attribute Required Data Type Description

Transforming XML Documents

Developing XML Applications with WebLogic Server 3-11

This type of processing allows you to register the JSP page that contains the tag
extension as a file servlet that performs XSLT processing.

■ If only the media attribute is set, the XML document is processed using the servlet
path and the specified media type. The value of the media type attribute of the
x:xslt tag is compared to the value of the media attribute of any
<?xml-stylesheet> processing instructions in your XML document; if any
match then the corresponding stylesheet is applied. If none match then the default
media stylesheet is used. The media type attribute is used to define the document
output type (for example, XML, HTML, postscript, or WML). This feature enables
you to organize stylesheets by document output type.

■ If only the xml attribute is set, the specified XML document is processed using the
default media stylesheet.

■ If the media and xml attributes are set, the specified XML document is processed
using the specified media type.

■ If the stylesheet attribute is defined, the XML document is processed using the
specified stylesheet.

An XSLT JSP tag that has a body may contain <x:xml> tags and/or
<x:stylesheet> tags. The following statements apply:

■ The <x:xml> tag allows you specify an XML document for inline processing. This
tag has no attributes.

■ The <x:stylesheet> tag, when used without any attributes, allows you specify
the default stylesheet inline.

■ Use the uri attribute of the <x:stylesheet> tag to specify the location of the
default stylesheet.

■ If you want to specify different stylesheets for different media types, you can use
multiple <x:stylesheet> tags with different values for the media attribute.
You can specify a stylesheet for each media type in the body of the tag, or specify
the location of the stylesheet with the uri attribute.

3.4.6 Transforming XML Documents Using an XSLT JSP Tag
To use an XSLT JSP tag to transform XML documents, perform the following steps:

1. Open the xmlx.zip file in the WL_HOME\server\ext directory; extract the
xmlx-tags.jar file; and put it in the /lib directory of your Web application,
where WL_HOME is the top-level directory in which you installed the WebLogic
Server distribution.

2. Add a <taglib> entry to the web.xml file. For example:

<taglib>
 <taglib-uri>xmlx.tld</taglib-uri>
 <taglib-location>/WEB-INF/lib/xmlx-tags.jar</taglib-location>
</taglib>

3. To use the tags, add the following line to your JSP page:

<%@ taglib uri="xmlx.tld" prefix="x"%>

Note: It is an error to set both the media and stylesheet attributes
within the same x:xslt tag.

Transforming XML Documents

3-12 Programming XML for Oracle WebLogic Server

4. Configure the transformer. The following procedure shows a generic way to
configure the transformer:

a. Enter the following code line to create an xslt.jsp file:

<%@ taglib uri="xmlx.tld" prefix="x"%><x:xslt/>

b. Register the xslt.jsp file in your web.xml file, as follows:

<servlet>
 <servlet-name>myxsltinterceptor</servlet-name>
 <jsp-file>xslt.jsp</jsp-file>
</servlet>
<servlet-mapping>
 <servlet-name>myxsltinterceptor</servlet-name>
 <url-pattern>/xslt/*</url-pattern>
</servlet-mapping>

c. Put your XML, DTD, and XSL documents or servlets in your Web application.

d. Add an xslt prefix to the pathname for the XML document (for example,
change docs/fred.xml to xslt/docs/fred.xml) and then access the
document. Because of the <url-pattern> entry in the web.xml file,
WebLogic Server automatically runs the XSLT transformer on the XML
document and sets the default stylesheet in the document.

e. To define media type, add code to the JSP to determine the media type for the
XML document and the content type for the output.

f. Pass the media type into the xslt tag and then set the content type of the
response object.

3.4.7 Example of Using the XSLT JSP Tag in a JSP
The following snippet of code from a JSP shows how to use the XSLT JSP tag to
transform XML into HTML or WML, depending on the type of client that is requesting
the JSP. If the client is a browser, the JSP returns HTML; if the client is a wireless
device, the JSP returns WML.

First the JSP uses the getHeader() method of the HttpServletRequest object to
determine the type of client that is requesting the JSP and sets the myMedia variable to
wml or html appropriately. If the JSP set the myMedia variable to html, then it
applies the html.xsl stylesheet to the XML document contained in the content
variable. Similarly, if the JSP set the myMedia variable to wml, then it applies the
wml.xsl stylesheet.

<%
 String clientType = request.getHeader("User-Agent");
 // default to WML client
 String myMedia = "wml";

 // if client is an HTML browser

 if (clientType.indexOf("Mozilla") != -1) {
 myMedia = "http"
 }

Note: The other forms of the XSLT JSP tag are used when stylesheets
are not specified in the XML document or your XML stylesheet can be
generated inline.

Transforming XML Documents

Developing XML Applications with WebLogic Server 3-13

%>

<x:xslt media="<%=myMedia%>">
 <x:xml><%=content%></x:xml>
 <x:stylesheet media="html" uri="html.xsl"/>
 <x:stylesheet media="wml" uri="wml.xsl"/>
</x:xslt>

3.4.8 Using Transformers Other Than the Default Transformer
The WebLogic Server XML Registry (which you configure using the Administration
Console) offers the following options:

■ Accept the default transformer as the server-wide transformer.

■ Configure a transformer other than the default transformer as the server-wide
transformer. The transformer must be JAXP-compliant.

For instructions on how to use the XML Registry to configure transforming options,
see Section 9.2.1, "Configuring a Parser or Transformer Other Than the Default."

Transforming XML Documents

3-14 Programming XML for Oracle WebLogic Server

4

Using the Streaming API for XML (StAX) 4-1

4Using the Streaming API for XML (StAX)

The following sections describe how to use the Streaming API for XML to parse and
generate XML documents:

■ Section 4.1, "Overview of the Streaming API for XML"

■ Section 4.2, "Parsing XML With the XMLStreamReader Interface: Typical Steps"

■ Section 4.3, "Generating XML Using the XMLStreamWriter Interface: Typical
Steps"

■ Section 4.4, "Properties Defined for the XMLInputFactory Interface"

■ Section 4.5, "Properties Defined for the XMLOutputFactory Interface"

4.1 Overview of the Streaming API for XML
The Streaming API for XML (StAX), specified by JSR-173 at
http://www.jcp.org/en/jsr/detail?id=173 of Java Community Process,
provides an easy and intuitive means of parsing and generating XML documents. It is
similar to the SAX API, but enables a procedural, stream-based handling of XML
documents rather than requiring you to write SAX event handlers, which can get
complicated when you work with complex XML documents. In other words, StAX
gives you more control over parsing than the SAX.

When a program parses an XML document using SAX, the program must create event
listeners that listen to parsing events as they occur; the program must react to events
rather than ask for a specific event. By contrast, when you use StAX, you can
methodically step through an XML document, ask for certain types of events (such as
the start of an element), iterate over the attributes of an element, skip ahead in the
document, stop processing at any time, get sub-elements of a particular element, and
filter out elements as desired. Because you are asking for events rather than reacting to
them, using the StAX is often referred to as pull parsing.

StAX includes two APIs, the cursor API and the event-iterator API, either of which can
be used for reading and writing XML. The following sections describe each API and
their particular strengths.

4.1.1 Description of the Cursor API
The basic function of the cursor API is to allow programmers to parse and generate
XML as easily and efficiently as possible. Of the two APIs in StAX, this is the one that
most programmers would use.

The cursor API iterates over a set of events, such as start elements, comments, and
attributes, although the events may be unrealized. The cursor API has two main

Overview of the Streaming API for XML

4-2 Programming XML for Oracle WebLogic Server

interfaces: XMLStreamReader for parsing XML and XMLStreamWriter for
generating XML.

4.1.2 The XMLStreamReader Interface
The cursor API uses the XMLStreamReader interface to move a virtual cursor over an
XML document and allow access to the data and underlying state through method
calls such as hasNext(), next(), getEventType(), and getText(). The
XMLStreamReader interface allows only forward, read-only access to the XML.

Use the XMLInputFactory class to create a new instance of the XMLStreamReader.
You can set a variety of properties when you get a new reader; for details, see
Section 4.4, "Properties Defined for the XMLInputFactory Interface."

When you use the next() method of the XMLStreamReader interface to parse XML,
the reader gets the next parsing event and returns an integer that identifies the type of
event just read. Parsing events correspond to sections of an XML document, such as
the XML declaration, start and end element tags, character data, white space,
comments, and processing instructions. The XMLStreamConstant interface specifies
the event to which the integer returned by the next() method corresponds. You can
also use the getEventType() method of XMLStreamReader to determine the event
type.

The XMLStreamReader interface has numerous methods for getting at the specific
data in the XML document. Some of these methods include:

■ getLocalName()—Returns the local name of the current event.

■ getPrefix()—Returns the prefix of the current event.

■ getAttributeXXX()—Set of methods that return information about the current
attribute event.

■ getNamespaceXXX()—Set of methods that return information about the current
namespace event.

■ getTextXXX()—Set of methods that return information about the current text
event.

■ getPIData()—Returns the data section of the current processing instruction
event.

Only certain methods are valid for each event type; the StAX processor throws a
java.lang.IllegalStateException if you try to call a method on an invalid
event type. For example, it is an error to try to call the getAttributeXXX() methods
on a namespace event. See the StAX specification, at
http://www.jcp.org/en/jsr/detail?id=173, for the complete list of events
and their valid XMLStreamReader methods.

4.1.3 The XMLStreamWriter Interface
The cursor API uses the XMLStreamWriter interface to specify how to generate
XML.

Use the XMLOutputFactory class to create a new instance of the
XMLStreamWriter. You can set a property for repairing namespaces and prefixes
when you get a new writer; for details, see Section 4.5, "Properties Defined for the
XMLOutputFactory Interface."

The XMLStreamWriter interface defines a set of writeXXX() methods for writing
standard parts of an XML document, such as:

Overview of the Streaming API for XML

Using the Streaming API for XML (StAX) 4-3

■ writeStartElement()

■ writeEndDocument()

■ writeAttribute()

■ writeNamespace()

■ writeCData()

Each part of an XML document, including the attributes and the namespaces, must be
explicitly written using these methods.

Use the flush() method to write any cached data to the output and the close()
method to close the writer and free up any resources.

The XMLStreamWriter, when generating XML, does not check that the generated
document is well-formed; it is the programmer's responsibility to create a well-formed
XML document. To print the special characters &, <, and >, use the
writeCharacters() method.

4.1.4 Description of the Event Iterator API
The event iterator API is a layer on top of the cursor API. It is easy to extend and
facilitates pipelining. Pipelining refers to multiple XML-to-XML transformations. By
using the event iterator API, programmers do not have to deserialize and serialize the
XML at each stage of the pipeline; rather, only at each end of the pipeline and use the
API methods such as nextEvent() to communicate at the middle stages. The event
iterator API has two main interfaces: XMLEventReader for parsing XML and
XMLEventWriter for generating XML.

Because the cursor API is the most commonly used API in StAX, this section does not
describe in detail how to use the event iterator API, other than showing an example.
For details about using this API, see the StAX specification
http://www.jcp.org/en/jsr/detail?id=173.

The following example shows a simple program that uses the XMLEventReader
interface of StAX to parse an XML document. The program takes a single parameter,
an XML file, and uses it to create an XMLEventReader object. The program then uses
the reader to iterate over and print the stream of events.

package examples.event;

import java.io.FileReader;
import javax.xml.stream.*;
import javax.xml.stream.events.*;
import javax.xml.stream.util.*;
import javax.xml.namespace.QName;

/**
 * A simple example to iterate over events
 *
 * @author Copyright (c) 2002 by BEA Systems. All Rights Reserved.
 */

public class Parse {
 private static String filename = null;
 private static void printUsage() {
 System.out.println("usage: java examples.event.Parse <xmlfile>");
 }

 public static void main(String[] args) throws Exception {

Parsing XML With the XMLStreamReader Interface: Typical Steps

4-4 Programming XML for Oracle WebLogic Server

 try {
 filename = args[0];
 } catch (ArrayIndexOutOfBoundsException aioobe){
 printUsage();
 System.exit(0);
 }

 XMLInputFactory factory = XMLInputFactory.newInstance();
 XMLEventReader r =
 factory.createXMLEventReader(new FileReader(filename));
 while(r.hasNext()) {
 XMLEvent e = r.nextEvent();
 System.out.println("ID:"+e.hashCode()+"["+e+"]");
 }
 }
}

4.1.5 Main Interfaces and Classes of StAX
Table 4–1 describes the main interfaces and classes of the Streaming API for XML

4.2 Parsing XML With the XMLStreamReader Interface: Typical Steps
The following procedure describes the typical steps for using the XMLStreamReader
interface of the StAX cursor API to parse an XML document. The procedure uses the
example from Section 4.2.1, "Example of Parsing XML Using StAX" in its description.

1. Import the javax.xml.stream.* classes.

Table 4–1 Main Interfaces and Classes of the Streaming API for XML

Interface or Class
Used in Cursor or
Event Iterator API? Description

XMLInputFactory class Both Factory class used to create an XMLStreamReader or
XMLEventReader instance.

XMLOutputFactory class Both Factory class used to create an XMLStreamWriter or
XMLEventWriter instance.

XMLEventFactory class Event Iterator Factory class used to create an XMLEvent instance.

XMLStreamReader interface Cursor Interface used to parse an XML document. Enables you
to peek at the next event, get the next event, and check
for more events.

XMLStreamWriter interface Cursor Interface used to generate an XML document. It provides
a set of writeXXX() methods for generating specific
parts of an XML document, such as start elements,
attributes, and so on.

XMLEventReader interface Event Iterator Interface used to parse XML events. It enables you to
peek at the next event, get the next event, and check for
more events.

XMLEventWriter interface Event Iterator Interface used to generate XML. It uses the add()
method to add XMLEvents to the output stream.

XMLEvent Event Iterator Base interface for handling events. All specific XML
events extend from XMLEvent, such as StartElement,
Attribute, and so on.

XMLStreamException
exception

Both Base exception for unexpected processing errors, such as
lack of well-formed XML document structure.

Parsing XML With the XMLStreamReader Interface: Typical Steps

Using the Streaming API for XML (StAX) 4-5

2. Use the XMLInputFactory.newInstance() method to instantiate an
XMLInputFactory, as shown in the following code excerpt:

XMLInputFactory xmlif = XMLInputFactory.newInstance();

See Section 4.4, "Properties Defined for the XMLInputFactory Interface" for the list
of properties you can set.

3. Use the XMLInputFactory.createXMLStreamReader() method to
instantiate an XMLStreamReader object based on an XML document.

See Section 4.2.2, "Getting the XMLStreamReader Object" for more details.

4. Parse the XML document, using the hasNext() and next() methods to step
through the XML events, as shown in the following code excerpt:

while(xmlr.hasNext()){
 printEvent(xmlr);
 xmlr.next();

In the example, xmlr is the XMLStreamReader instance and the local
printEvent() method (not part of the StAX API) determines the specific event
type, as described in the next step.

5. While parsing the XML document, determine the current specific event type and
take appropriate action. Event types include the start and end of an XML
document, the start and end of an XML element, comments, entity references, and
so on.

See Section 4.2.3, "Determining the Specific XML Event Type."

6. If the current event type is a start element or end element, optionally get its
attributes.

See Section 4.2.5, "Getting the Attributes of an Element."

7. If the current event type is a start or end element, optionally get its namespaces.

See Section 4.2.6, "Getting the Namespaces of an Element."

8. If the current event type includes text data, such as a CDATA or comment,
optionally get the actual data.

See Section 4.2.7, "Getting Text Data."

9. Optionally, get location information, such as the line number or column number,
of the current event.

See Section 4.2.8, "Getting Location Information."

10. Close the stream.

See Section 4.2.9, "Closing the Input Stream."

4.2.1 Example of Parsing XML Using StAX
The following example shows a simple program that uses the XMLStreamReader
interface of StAX to parse an XML document.

The program takes a single parameter, an XML file, and uses it to create an
XMLStreamReader object. The program then uses the reader to iterate over the stream
of events, determining the type of each event, such as the start of an XML element, the
list of attributes of an element, a processing instruction, and so on. The program prints
out information about these events, using internal methods to print out the list of
attributes and namespaces when appropriate.

Parsing XML With the XMLStreamReader Interface: Typical Steps

4-6 Programming XML for Oracle WebLogic Server

The code in bold is described in later sections.

package examples.basic;

import java.io.FileReader;
import java.util.Iterator;
import javax.xml.stream.*;
import javax.xml.namespace.QName;

/**
 * This is a simple parsing example that illustrates
 * the XMLStreamReader class.
 *
 * @author Copyright (c) 2003 by BEA Systems. All Rights Reserved.
 */

public class Parse {
 private static String filename = null;
 private static void printUsage() {
 System.out.println("usage: java examples.basic.Parse <xmlfile>");
 }

 public static void main(String[] args) throws Exception {
 try {
 filename = args[0];
 } catch (ArrayIndexOutOfBoundsException aioobe){
 printUsage();
 System.exit(0);
 }

 //
 // Get an input factory
 //
 XMLInputFactory xmlif = XMLInputFactory.newInstance();
 System.out.println("FACTORY: " + xmlif);

 //
 // Instantiate a reader
 //
 XMLStreamReader xmlr = xmlif.createXMLStreamReader(new FileReader(filename));
 System.out.println("READER: " + xmlr + "\n");

 //
 // Parse the XML
 //
 while(xmlr.hasNext()){
 printEvent(xmlr);
 xmlr.next();
 }

 //
 // Close the reader
 //
 xmlr.close();

 }

 private static void printEvent(XMLStreamReader xmlr) {

 System.out.print("EVENT:["+xmlr.getLocation().getLineNumber()+"]["+
 xmlr.getLocation().getColumnNumber()+"] ");

Parsing XML With the XMLStreamReader Interface: Typical Steps

Using the Streaming API for XML (StAX) 4-7

 System.out.print(" [");
 switch (xmlr.getEventType()) {

 case XMLStreamConstants.START_ELEMENT:
 System.out.print("<");
 printName(xmlr);
 printNamespaces(xmlr);
 printAttributes(xmlr);
 System.out.print(">");
 break;
 case XMLStreamConstants.END_ELEMENT:
 System.out.print("</");
 printName(xmlr);
 System.out.print(">");
 break;
 case XMLStreamConstants.SPACE:
 case XMLStreamConstants.CHARACTERS:
 int start = xmlr.getTextStart();
 int length = xmlr.getTextLength();
 System.out.print(new String(xmlr.getTextCharacters(),
 start,
 length));
 break;

 case XMLStreamConstants.PROCESSING_INSTRUCTION:
 System.out.print("<?");
 if (xmlr.hasText())
 System.out.print(xmlr.getText());
 System.out.print("?>");
 break;

 case XMLStreamConstants.CDATA:
 System.out.print("<![CDATA[");
 start = xmlr.getTextStart();
 length = xmlr.getTextLength();
 System.out.print(new String(xmlr.getTextCharacters(),
 start,
 length));
 System.out.print("]]>");
 break;

 case XMLStreamConstants.COMMENT:
 System.out.print("<!--");
 if (xmlr.hasText())
 System.out.print(xmlr.getText());
 System.out.print("-->");
 break;

 case XMLStreamConstants.ENTITY_REFERENCE:
 System.out.print(xmlr.getLocalName()+"=");
 if (xmlr.hasText())
 System.out.print("["+xmlr.getText()+"]");
 break;

 case XMLStreamConstants.START_DOCUMENT:
 System.out.print("<?xml");
 System.out.print(" version='"+xmlr.getVersion()+"'");
 System.out.print(" encoding='"+xmlr.getCharacterEncodingScheme()+"'");
 if (xmlr.isStandalone())

Parsing XML With the XMLStreamReader Interface: Typical Steps

4-8 Programming XML for Oracle WebLogic Server

 System.out.print(" standalone='yes'");
 else
 System.out.print(" standalone='no'");
 System.out.print("?>");
 break;

 }
 System.out.println("]");
 }

 private static void printName(XMLStreamReader xmlr){
 if(xmlr.hasName()){
 String prefix = xmlr.getPrefix();
 String uri = xmlr.getNamespaceURI();
 String localName = xmlr.getLocalName();
 printName(prefix,uri,localName);
 }
 }

 private static void printName(String prefix,
 String uri,
 String localName) {
 if (uri != null && !("".equals(uri))) System.out.print("['"+uri+"']:");
 if (prefix != null) System.out.print(prefix+":");
 if (localName != null) System.out.print(localName);
 }

 private static void printAttributes(XMLStreamReader xmlr){
 for (int i=0; i < xmlr.getAttributeCount(); i++) {
 printAttribute(xmlr,i);
 }
 }

 private static void printAttribute(XMLStreamReader xmlr, int index) {
 String prefix = xmlr.getAttributePrefix(index);
 String namespace = xmlr.getAttributeNamespace(index);
 String localName = xmlr.getAttributeLocalName(index);
 String value = xmlr.getAttributeValue(index);
 System.out.print(" ");
 printName(prefix,namespace,localName);
 System.out.print("='"+value+"'");
 }

 private static void printNamespaces(XMLStreamReader xmlr){
 for (int i=0; i < xmlr.getNamespaceCount(); i++) {
 printNamespace(xmlr,i);
 }
 }

 private static void printNamespace(XMLStreamReader xmlr, int index) {
 String prefix = xmlr.getNamespacePrefix(index);
 String uri = xmlr.getNamespaceURI(index);
 System.out.print(" ");
 if (prefix == null)
 System.out.print("xmlns='"+uri+"'");
 else
 System.out.print("xmlns:"+prefix+"='"+uri+"'");
 }
}

Parsing XML With the XMLStreamReader Interface: Typical Steps

Using the Streaming API for XML (StAX) 4-9

4.2.2 Getting the XMLStreamReader Object
Use the XMLInputFactory.createXMLStreamReader() method to instantiate an
XMLStreamReader object based on an XML document, as shown in the following
code excerpt:

XMLStreamReader xmlr = xmlif.createXMLStreamReader(new FileReader(filename));
In the example, xmlif is the XMLInputFactory instance.

The various signatures of the createXMLStreamReader() method allow for the
following XML document formats as parameters:

■ java.io.InputStream

■ java.io.Reader (shown in the example)

■ javax.xml.transform.Source (specified in the JAXP API
http://java.sun.com/xml/)

4.2.3 Determining the Specific XML Event Type
To determine the specific event type while parsing an XML document, use either the
XMLStreamReader.next() or XMLStreamReader.getEventType() methods.
The next() method reads the next event and returns an integer which identifies the
read event type; the getEventType() method simply returns the integer identifying
the current event type. The XMLStreamConstants superinterface of
XMLStreamReader defines the event type constants, shown in the following list:

■ XMLStreamConstants.ATTRIBUTE

■ XMLStreamConstants.CDATA

■ XMLStreamConstants.CHARACTERS

■ XMLStreamConstants.COMMENT

■ XMLStreamConstants.DTD

■ XMLStreamConstants.END_DOCUMENT

■ XMLStreamConstants.END_ELEMENT

■ XMLStreamConstants.ENTITY_DECLARATION

■ XMLStreamConstants.ENTITY_REFERENCE

■ XMLStreamConstants.NAMESPACE

■ XMLStreamConstants.NOTATION_DECLARATION

■ XMLStreamConstants.PROCESSING_INSTRUCTION

■ XMLStreamConstants.SPACE

■ XMLStreamConstants.START_DOCUMENT

■ XMLStreamConstants.START_ELEMENT

The following example shows how to use the Java case statement to determine the
particular type of event that was returned by the XMLStreamReader.next()
method. The example uses the XMLStreamReader.getEventType() method to
determine the integer event type of the current event returned by the next() method.
For simplicity, the example simply prints that an event has been found; later sections
show further processing of the event.

switch (xmlr.getEventType()) {

Parsing XML With the XMLStreamReader Interface: Typical Steps

4-10 Programming XML for Oracle WebLogic Server

case XMLStreamConstants.START_ELEMENT:
 System.out.print("Start Element\n");
 break;

case XMLStreamConstants.END_ELEMENT:
 System.out.print("End Element\n");
 break;

case XMLStreamConstants.SPACE:
 System.out.print("Space\n");
 break;

case XMLStreamConstants.CHARACTERS:
 System.out.print("Characters\n");
 break;

case XMLStreamConstants.PROCESSING_INSTRUCTION:
 System.out.print("Processing Instrcutions\n");
 break;

case XMLStreamConstants.CDATA:
 System.out.print("CDATA\n");
 break;

case XMLStreamConstants.COMMENT:
 System.out.print("Comment\n");
 break;

case XMLStreamConstants.DTD:
 System.out.print("DTD\n");
 break;

case XMLStreamConstants.ENTITY_REFERENCE:
 System.out.print("Entity Reference\n");
 break;

case XMLStreamConstants.ENTITY_DECLARATION:
 System.out.print("Entity Declaration\n");
 break;

case XMLStreamConstants.START_DOCUMENT:
 System.out.print("Start Document\n");
 break;

case XMLStreamConstants.END_DOCUMENT:
 System.out.print("End Document\n");
 break;

}

4.2.4 Getting the Full Name of an Element
The full name of an element includes its prefix, namespace URI, and local name; use
the getPrefix(), getNamespaceURI(), and getLocalName() methods of the
XMLStreamReader interface, respectively, to get this information once you determine
that the current event is a start or end element.

For example, assume the case statement for a start element event in the sample
program looks like the following:

Parsing XML With the XMLStreamReader Interface: Typical Steps

Using the Streaming API for XML (StAX) 4-11

case XMLStreamConstants.START_ELEMENT:

 System.out.print("<");
 printName(xmlr);
 printNamespaces(xmlr);
 printAttributes(xmlr);
 System.out.print(">");
 break;

The two local printName() methods can use the getXXX() methods as follows:

private static void printName(XMLStreamReader xmlr){
 if(xmlr.hasName()){
 String prefix = xmlr.getPrefix();
 String uri = xmlr.getNamespaceURI();
 String localName = xmlr.getLocalName();
 printName(prefix,uri,localName);
 }
}

private static void printName(String prefix,
 String uri,
 String localName) {
 if (uri != null && !("".equals(uri))) System.out.print("['"+uri+"']:");
 if (prefix != null) System.out.print(prefix+":");
 if (localName != null) System.out.print(localName);
}

4.2.5 Getting the Attributes of an Element
Once you determine that the current event is a start element, end element, or attribute,
use the getAttributeXXX() methods of the XMLStreamReader interface to get the
list of attributes and their values.

Use the getAttributeCount() method to return the number of attributes of the
current element and use the count in a loop that iterates over the list of attributes. The
method does not include namespaces in the count. Additional getAttributeXXX()
methods return the prefix, namespace URI, local name, and value for a particular
attribute.

For example, assume the case statement for a start element event in our sample
program looks like the following:

case XMLStreamConstants.START_ELEMENT:

 System.out.print("<");
 printName(xmlr);
 printNamespaces(xmlr);
 printAttributes(xmlr);

Note: The printNamespaces() and printAttributes()
methods are discussed in other sections.

Note: You can use the getAttributeXXX() methods only on start
element, end element, and attribute events; a
java.lang.IllegalStateException is thrown if you try to
execute the methods on any other type of event.

Parsing XML With the XMLStreamReader Interface: Typical Steps

4-12 Programming XML for Oracle WebLogic Server

 System.out.print(">");
 break;

The following local printAttributes() method shows one way of iterating
through the list of attributes; because attribute indices are zero-based, the for loop
starts at 0:

private static void printAttributes(XMLStreamReader xmlr){

 for (int i=0; i < xmlr.getAttributeCount(); i++) {
 printAttribute(xmlr,i);
 }
}

The following local printAttribute() method shows how to print out all the
information for a particular attribute:

private static void printAttribute(XMLStreamReader xmlr, int index) {
 String prefix = xmlr.getAttributePrefix(index);
 String namespace = xmlr.getAttributeNamespace(index);
 String localName = xmlr.getAttributeLocalName(index);
 String value = xmlr.getAttributeValue(index);
 System.out.print(" ");
 printName(prefix,namespace,localName);
 System.out.print("='"+value+"'");
}

The printName() method is described in Section 4.2.4, "Getting the Full Name of an
Element."

4.2.6 Getting the Namespaces of an Element
Once you determine that the current event is a start element, end element, or
namespace, use the getNamespaceXXX() methods of the XMLStreamReader
interface to get the list of namespaces declared for the event.

Use the getNamespaceCount() method to return the number of namespaces
declared for the current event, and use the count in a loop that iterates over the list. If
the current event is an end element, the count refers to the number of namespaces that
are about to go out of scope. Additional getNamespaceXXX() methods return the
prefix and namespace URI for a particular namespace.

For example, assume the case statement for a start element event in our sample
program looks like the following:

case XMLStreamConstants.START_ELEMENT:

 System.out.print("<");
 printName(xmlr);

Note: The printName() and printNamespaces() methods are
discussed in other sections.

Note: You can use the getNamespaceXXX() methods only on start
element, end element, and namespace events; a
java.lang.IllegalStateException is thrown if you try to
execute the methods on any other type of event.

Parsing XML With the XMLStreamReader Interface: Typical Steps

Using the Streaming API for XML (StAX) 4-13

 printNamespaces(xmlr);
 printAttributes(xmlr);
 System.out.print(">");
 break;

The following local printNamespaces() method shows one way of iterating
through the list of namespaces for the start element; because namespace indices are
zero-based, the for loop starts at 0:

private static void printNamespaces(XMLStreamReader xmlr){
 for (int i=0; i < xmlr.getNamespaceCount(); i++) {
 printNamespace(xmlr,i);
 }
}

The following local printNamespace() method shows how to print out all the
information for a particular namespace:

private static void printNamespace(XMLStreamReader xmlr, int index) {
 String prefix = xmlr.getNamespacePrefix(index);
 String uri = xmlr.getNamespaceURI(index);
 System.out.print(" ");
 if (prefix == null)
 System.out.print("xmlns='"+uri+"'");
 else
 System.out.print("xmlns:"+prefix+"='"+uri+"'");
}

The getNamespacePrefix() method returns null for the default namespace
declaration.

4.2.7 Getting Text Data
The XMLStreamReader interface includes various getTextXXX() methods for
getting text data from events such as comments and CDATA.

Use the getTextStart() method to get the offset into the text character array where
the first character of the current text event is stored. Use the getTextLength()
method to get the length of the sequence of characters within the text character array.
Finally, use the getTextCharacters() method to return this character array for the
current event. The character array contains text information about only the current
event; as soon as you call the next() method to read the next event on the input
stream, the character array is filled with new information.

The following example shows how to print out text data for the CDATA event:

case XMLStreamConstants.CDATA:
 System.out.print("<![CDATA[");
 start = xmlr.getTextStart();
 length = xmlr.getTextLength();
 System.out.print(new String(xmlr.getTextCharacters(),
 start,
 length));
 System.out.print("]]>");
 break;

Note: The printName() and printAttributes() methods are
discussed in other sections.

Generating XML Using the XMLStreamWriter Interface: Typical Steps

4-14 Programming XML for Oracle WebLogic Server

If you want to first check that the character event actually has text, use the hasText()
method, as shown in the following example:

case XMLStreamConstants.COMMENT:
 System.out.print("<!--");
 if (xmlr.hasText())
 System.out.print(xmlr.getText());
 System.out.print("-->");
 break;

4.2.8 Getting Location Information
The Location interface of the StAX API provides methods for getting location
information about an event, such as the line number or column number, as well as the
public ID and system ID of the XML being parsed. Use the getLocation() method
of the XMLStreamReader interface to return a Location object for the current event,
as shown in the following example:

System.out.print("EVENT:["+xmlr.getLocation().getLineNumber()+"]["+
 xmlr.getLocation().getColumnNumber()+"] ");

4.2.9 Closing the Input Stream
It is good programming practice to close the XMLStreamReader explicitly when you
are finished with it, to free up resources. To close the reader, use the
XMLStreamReader.close() method, as shown in the following example:

//
// Close the reader
//
xmlr.close();

4.3 Generating XML Using the XMLStreamWriter Interface: Typical Steps
The following procedure describes the typical steps for using the XMLStreamWriter
interface of the StAX cursor API to generate a new XML document.

1. Import the javax.xml.stream.* classes.

2. Use the XMLOutputFactory.newInstance() method to instantiate an
XMLOutputFactory, as shown in the following code excerpt:

XMLOutputFactory xmlof = XMLOutputFactory.newInstance();

See Section 4.5, "Properties Defined for the XMLOutputFactory Interface" for the
list of properties you can set.

3. Use the XMLOutputFactory.createXMLStreamWriter() method to
instantiate an XMLStreamWriter object, passing it the name of the file or object
that will contain the XML.

See Section 4.3.2, "Getting the XMLStreamWriter Object" for more details.

4. Add the XML declaration to the output. See Section 4.3.3, "Adding the XML
Declaration to the Output Stream."

5. Add standard XML objects, such as start elements, comments, and characters, to
the output. See Section 4.3.4, "Adding Standard XML Events to the Output
Stream."

6. Add attributes and namespace declarations to a start element. See Section 4.3.5,
"Adding Attributes and Namespace Declarations to a Start Element."

Generating XML Using the XMLStreamWriter Interface: Typical Steps

Using the Streaming API for XML (StAX) 4-15

7. Close the output stream. See Section 4.3.6, "Closing the Output Stream."

4.3.1 Example of Generating XML Using StAX
The following example shows a simple program that uses the XMLStreamWriter
interface of StAX to generate an XML document.

The program first creates an instance of an XMLStreamWriter, specifying that the
output be written to the file outFile.xml in the current directory. Then, using
various writeXXX() methods, it builds an XML file that looks like the following:

<?xml version='1.0' encoding='utf-8'?>

<!--this is a comment-->
<person xmlns:one="http://namespaceOne" gender="f">
 <one:name hair="pigtails" freckles="yes">Pippi Longstocking</one:name>
</person>

The XMLStreamWriter interface does not check for that an XML document is
well-formed; it is the programmer's responsibility to ensure that, for example, each
start element has a corresponding end element, and so on. The example also shows
how to use the writeCharacters("\n") method to add new lines to the output to
make the XML more readable when writing to a text file.

The code in bold is described in later sections.

package examples.basic;

import java.io.FileOutputStream;
import java.util.Iterator;
import javax.xml.stream.*;
import javax.xml.namespace.QName;

/**
 * This is a simple example that illustrates how to use the
 * the XMLStreamWriter class to generate XML.
 *
 * The generated XML file looks like this:
 *
 * <?xml version='1.0' encoding='utf-8'?>
 *
 * <!--this is a comment-->
 * <person xmlns:one="http://namespaceOne" gender="f">
 * <one:name hair="pigtails" freckles="yes">Pippi Longstocking</one:name>
 * </person>
 *
 *
 * @author Copyright (c) 2003 by BEA Systems. All Rights Reserved.
 */

public class Generate {

 public static void main(String args[]) throws Exception {

 //
 // Get an output factory
 //
 XMLOutputFactory xmlof = XMLOutputFactory.newInstance();
 System.out.println("FACTORY: " + xmlof);

 //

Generating XML Using the XMLStreamWriter Interface: Typical Steps

4-16 Programming XML for Oracle WebLogic Server

 // Instantiate a writer
 //
 XMLStreamWriter xmlw = xmlof.createXMLStreamWriter(new FileOutputStream
("outFile.xml"));
 System.out.println("READER: " + xmlw + "\n");

 //
 // Generate the XML
 //

 // Write the default XML declaration
 xmlw.writeStartDocument();
 xmlw.writeCharacters("\n");
 xmlw.writeCharacters("\n");

 // Write a comment
 xmlw.writeComment("this is a comment");
 xmlw.writeCharacters("\n");

 // Write the root element "person" with a single attribute "gender"
 xmlw.writeStartElement("person");
 xmlw.writeNamespace("one", "http://namespaceOne");
 xmlw.writeAttribute("gender","f");
 xmlw.writeCharacters("\n");

 // Write the "name" element with some content and two attributes
 xmlw.writeCharacters(" ");
 xmlw.writeStartElement("one", "name", "http://namespaceOne");
 xmlw.writeAttribute("hair","pigtails");
 xmlw.writeAttribute("freckles","yes");
 xmlw.writeCharacters("Pippi Longstocking");

 // End the "name" element
 xmlw.writeEndElement();
 xmlw.writeCharacters("\n");

 // End the "person" element
 xmlw.writeEndElement();

 // End the XML document
 xmlw.writeEndDocument();

 // Close the XMLStreamWriter to free up resources
 xmlw.close();

 }

}

4.3.2 Getting the XMLStreamWriter Object
Use the XMLOutputFactory.createXMLStreamWriter() method to instantiate
an XMLStreamWriter object based on an XML document, as shown in the following
code excerpt:

XMLStreamWriter xmlw = xmlof.createXMLStreamWriter(new FileOutputStream
("outFile.xml"));

In the example, xmlof is the XMLOutputFactory instance.

Generating XML Using the XMLStreamWriter Interface: Typical Steps

Using the Streaming API for XML (StAX) 4-17

The various signatures of the createXMLStreamWriter() method allow for the
following XML document formats as parameters:

■ java.io.OutputStream (shown in the example)

■ java.io.Writer

■ javax.xml.transform.Result (specified in the JAXP API
http://java.sun.com/xml/)

4.3.3 Adding the XML Declaration to the Output Stream
Use the XMLStreamWriter.writeStartDocument() method to add the XML
declaration as the first line of the XML document, as shown in the following code
excerpt:

xmlw.writeStartDocument();

With no arguments, the method writes the default XML declaration:

<?xml version='1.0' encoding='utf-8'?>

If you want to specify a different encoding or XML version, use the following flavors
of the writeStartDocument() method:

■ writeStartDocument(java.lang.String version)

■ writeStartDocument(java.lang.String encoding,
java.lang.String version)

Setting the encoding with the writeStartDocument() method does not set the
actual encoding of the underlying output; it simply specifies what value is written for
the encoding attribute of the XML declaration. To actually set the encoding of the
output, you must specify the encoding parameter when creating the instance of the
XMLStreamWriter with the appropriate
XMLOutputFactory.createXMLStreamWriter() method.

4.3.4 Adding Standard XML Events to the Output Stream
Use the XMLStreamWriter.writeXXX() methods to add standard XML events,
such as start elements, end elements, comments, CDATA, entity references, and so on
to the output stream.The XXX refers to the particular event, such as
writeStartElement(), writeEndElement(), writeComment(),
writeCData(), and so on. You can create most elements by passing the name or text
data as a String.

The XMLStreamWriter interface does not validate your data, nor does it check that
the document is well-formed; it is the programmer's responsibility to ensure that, for
example, each start element has a corresponding end element, and so on. It is also up
to the programmer to ensure that the start and end element events are correctly
nested. To make the output XML more human-readable when writing to a text file, use
the writeCharacters("\n") method to add new lines in appropriate places.

For example, assume you want to create the following snippet of XML:

<!-- This is a comment -->
<name>Jane Doe</name>

The Java code to add this element to an output stream is as follows:

xmlw.writeComment("This is a comment");
xmlw.writeCharacters("\n");

Generating XML Using the XMLStreamWriter Interface: Typical Steps

4-18 Programming XML for Oracle WebLogic Server

xmlw.writeStartElement("name");
xmlw.writeCharacters("Jane Doe");
xmlw.writeEndElement();
xmlw.writeCharacters("\n");

4.3.5 Adding Attributes and Namespace Declarations to a Start Element
Use the writeAttribute() method right after a start element event to add
attributes to the element. You can specify a prefix for the attribute, as well as the URI it
is bound to, or specify no prefix at all.

For example, assume you want to create the following snippet of XML:

<person gender="f">

The Java code to produce this XML is as follows:

xmlw.writeStartElement("person");
xmlw.writeAttribute("gender","f");
xmlw.writeCharacters("\n");

Use the writeNamespace() method to write a namespace to the output stream. It is
up to the programmer to ensure that the current event allows namespace writing, such
as start element; if the current event does not allow namespace writing, a
javax.xml.stream.XMLStreamException is thrown. Use appropriate flavors of
other writeXXX() methods to specify a prefix for an event and the URI to which it is
bound.

For example, the following XML output shows a namespace declaration for the
<person> element, and the one prefix specified for the <one> child element:

<person xmlns:one="http://namespaceOne" gender="f">
 <one:name hair="pigtails" freckles="yes">Pippi Longstocking</one:name>
</person>

The Java code to produce this XML is as follows:

 // Write the root element "person" with a single attribute "gender"
 xmlw.writeStartElement("person");
 xmlw.writeNamespace("one", "http://namespaceOne");
 xmlw.writeAttribute("gender","f");
 xmlw.writeCharacters("\n");

 // Write the "name" element with some content and two attributes
 xmlw.writeCharacters(" ");
 xmlw.writeStartElement("one", "name", "http://namespaceOne");
 xmlw.writeAttribute("hair","pigtails");
 xmlw.writeAttribute("freckles","yes");
 xmlw.writeCharacters("Pippi Longstocking");

 // End the "name" element
 xmlw.writeEndElement();
 xmlw.writeCharacters("\n");

 // End the "person" element
 xmlw.writeEndElement();

Properties Defined for the XMLOutputFactory Interface

Using the Streaming API for XML (StAX) 4-19

4.3.6 Closing the Output Stream
It is good programming practice to explicitly close the XMLStreamWriter when you
are finished with it to free up resources. To close the writer, use the
XMLStreamWriter.close() method, as shown in the following example:

 // Close the XMLStreamWriter to free up resources
 xmlw.close();

4.4 Properties Defined for the XMLInputFactory Interface
Table 4–2 lists the standard properties you can set when using the XMLInputFactory
to generate an XMLStreamReader or XMLEventReader object.

All properties in Table 4–2 are preceded with javax.xml.stream, such as
javax.xml.stream.isValidating.

4.5 Properties Defined for the XMLOutputFactory Interface
Table 4–3 lists the standard properties you can set when using the
XMLOutputFactory to generate an XMLStreamWriter or XMLEventWriter object.

All properties in Table 4–3 are preceded with javax.xml.stream, such as
javax.xml.stream.isValidating.

Table 4–2 Standard XMLInputFactory Properties

Property Description Return Type
Default
Value

isValidating Specifies whether implementation-specific
DTD validation is enabled or disabled.

Boolean False

isNamespaceAware Specifies whether namespace processing is
enabled or disabled. Used for XML 1.0
support.

Boolean True

isCoalescing Specifies whether to coalesce adjacent
adjacent character data.

Boolean False

isReplacingEntityReferences Specifies whether internal entity references
should be replaced with their replacement
text and reported as characters.

Boolean True

isSupportingExternalEntities Specifies whether to resolve external
parsed entities.

Boolean False

supportDTD Specifies whether the processor used is one
that supports or does not support DTDs.

Boolean True

reporter Specifies the implementation of
javax.xml.stream.XMLReporter that should
be used.Specifies the implementation of
javax.xml.stream.XMLReporter that should
be used.

XMLReporter Null

resolver Specifies the implementation of
javax.xml.stream.XMLResolver that should
be used.

XMLResolver Null

allocator Specifies the implementation of
javax.xml.stream.util.XMLEventAllocator
that should be used.

util.XMLEventAllocator Null

Properties Defined for the XMLOutputFactory Interface

4-20 Programming XML for Oracle WebLogic Server

Table 4–3 Standard XMLOutputFactory Properties

Property Description Return Type
Default
Value

isRepairingNamespaces Specifies that the writer use default namespace
prefix declarations.

There are strict rules about how the StAX
processor repairs namespaces and prefixes when
generating XML. For details, see the StAX
specification at
http://www.jcp.org/en/jsr/detail?id=
173.

Boolean False

5

Using Advanced XML APIs 5-1

5Using Advanced XML APIs

The following sections provide information about using advanced XML APIs:

■ Section 5.1, "Using the Java API for XML Registries (JAXR) API"

■ Section 5.2, "Using the WebLogic XPath API"

5.1 Using the Java API for XML Registries (JAXR) API
The Java API for XML Registries (JAXR) API, at
http://java.sun.com/xml/jaxr/index.jsp, provides a uniform and standard
Java API for accessing different kinds of registries, in particular XML registries used in
Web Service applications.

At an abstract level, a registry is a neutral third party that helps facilitate the
collaboration between two parties that are engaged in a partnership. The registry is
available to the two parties as a shared resource, typically in the form of a Web-based
resource. A registry is a key component in any Web Services architecture because it
provides the ability for parties to publish, discover, and use Web Services.

Registries provide the following functionality:

■ Electronic Yellow Pages

A registry can provide an independent online information exchange service that
allows Web Service providers to advertise their product and Web Service
consumers to discover these products.

The registry can classify these Web Services in arbitrary and flexible ways, such as
the industry it belongs to, its geographic location, the product it sells, and so on.

■ Database of Relatively Static Data

A registry stores data and meta-data, similar to a database. The type of data it
stores include:

■ Collaborative business process descriptions that describe in XML format a specific
business protocol.

■ Parties in a collaborative business process.

■ XML Schemas that describe the XML documents exchanged during a collaborative
business process.

Essentially, the registry allows applications to store relatively static data reliably
and to share it easily with other applications.

■ A registry also provides a way to exchange dynamic content between parties, such
as price changes, discounts, promotions, and so on.

Using the WebLogic XPath API

5-2 Programming XML for Oracle WebLogic Server

WebLogic Server provides a full implementation of the JAXR specification. Using the
JAXR API, you can create JAXR clients that access a registry, or you can create a
registry yourself.

For more information on using the JAXR API, see the Java Web Services
http://java.sun.com/xml/jaxr/index.jsp Web site.

5.2 Using the WebLogic XPath API
The WebLogic XPath API contains all of the classes required to perform XPath
matching against a document represented as a DOM, an XMLInputStream, or an
XMLOutputStream. Use the API if you want to identify a subset of XML elements
within an XML document that conform to a given pattern.

For additional API reference information about the WebLogic XPath API, see
"weblogic.xml.xpath" in the Oracle WebLogic Server API Reference and
http://java.sun.com/xml/jaxr/index.jsp Javadoc.

5.2.1 Using the DOMXPath Class
This section describes how to use the DOMXPath class of the WebLogic XPath API to
perform XPath matching against an XML document represented as a DOM. The section
first provides an example and then a description of the main steps used in the
example.

5.2.2 Example of Using the DOMXPath Class
The sample Java program at the end of this section uses the following XML document
in its matching:

<?xml version='1.0' encoding='us-ascii'?>

<!-- "Purchaseorder". -->

<purchaseorder
 department="Sales"
 date="01-11-2001"
 raisedby="Pikachu"
 >
 <item
 ID="101">
 <title>Laptop</title>
 <quantity>5</quantity>
 <make>Dell</make>
 </item>
 <item
 ID="102">
 <title>Desktop</title>
 <quantity>15</quantity>
 <make>Dell</make>
 </item>
 <item
 ID="103">
 <title>Office Software</title>
 <quantity>10</quantity>
 <make>Microsoft</make>
 </item>
</purchaseorder>

Using the WebLogic XPath API

Using Advanced XML APIs 5-3

The Java code example is as follows:

package examples.xml.xpath;

import java.io.IOException;
import java.util.Iterator;
import java.util.Set;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.xml.sax.SAXException;
import weblogic.xml.xpath.DOMXPath;
import weblogic.xml.xpath.XPathException;
/**
 * This class provides a simple example of how to use the DOMXPath
 * API.
 *
 * @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
 */

public abstract class DOMXPathExample {

 public static void main(String[] ignored)

 throws XPathException, ParserConfigurationException,

 SAXException, IOException

 {

 // create a dom representation of the document

 String file = "purchaseorder.xml";

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 factory.setNamespaceAware(true); // doesn't matter for this example

 DocumentBuilder builder = factory.newDocumentBuilder();

 Document doc = builder.parse(file);

 // create some instances of DOMXPath to evaluate against the

 // document.

 DOMXPath totalItems = // count number of items

 new DOMXPath("count(purchaseorder/item)");

 DOMXPath atLeast10 = // titles of items with quantity >= 10

 new DOMXPath("purchaseorder/item[quantity >= 10]/title");

 // evaluate them against the document

 double count = totalItems.evaluateAsNumber(doc);

 Set nodeset = atLeast10.evaluateAsNodeset(doc);

Using the WebLogic XPath API

5-4 Programming XML for Oracle WebLogic Server

 // output results

 System.out.println(file+" contains "+count+" total items.");

 System.out.println("The following items have quantity >= 10:");

 if (nodeset != null) {

 Iterator i = nodeset.iterator();

 while(i.hasNext()) {

 Node node = (Node)i.next();

 System.out.println(" "+node.getNodeName()+

 ": "+node.getFirstChild().getNodeValue());

 }

 }

 // note that at this point we are free to continue using evaluate

 // atLeast10 and totalItems against other documents

 }

}

5.2.3 Main Steps When Using the DOMXPath Class
The following procedure describes the main steps to use the DOMXPath class to
perform XPath matching against an XML document represented as a DOM:

1. Create an org.w3c.dom.Document object from an XML document, as shown in
the following code excerpt:

String file = "purchaseorder.xml";
DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(file);

2. Create a DOMXPath object to represent the XPath expression you want to evaluate
against the DOM.

The following example shows an XPath expression that counts the items in a
purchase order:

 DOMXPath totalItems =
 new DOMXPath("count(purchaseorder/item)");

The following example shows an XPath expression that returns the titles of items
whose quantity is greater or equal to 10:

 DOMXPath atLeast10 =
 new DOMXPath("purchaseorder/item[quantity >= 10]/title");

Using the WebLogic XPath API

Using Advanced XML APIs 5-5

3. Evaluate the XPath expression using one of the DOMXPath.evaluateAsXXX()
methods, where XXX refers to the data type of the returned data, such as Boolean,
Nodeset, Number, or String.

The following example shows how to use the evaluateAsNumber() method to
evaluate the totalItems XPath expression:

double count = totalItems.evaluateAsNumber(doc);
System.out.println(file+" contains "+count+" total items.");

The following example shows how to use the evaluateAsNodeset() method to
return a Set of org.w3c.dom.Nodes which you can iterate through in the
standard way:

 Set nodeset = atLeast10.evaluateAsNodeset(doc);

System.out.println("The following items have quantity >= 10:");
 if (nodeset != null) {
 Iterator i = nodeset.iterator();
 while(i.hasNext()) {
 Node node = (Node)i.next();
 System.out.println(" "+node.getNodeName()+
 ": "+node.getFirstChild().getNodeValue());
 }
 }

For additional API reference information about the WebLogic XPath API, see
"weblogic.xml.xpath" in the Oracle WebLogic Server API Reference.

5.2.4 Using the StreamXPath Class
The example in this section shows how to use the StreamXPath class of the
WebLogic XPath API to perform XPath matching against an XMLInputStream. The
section first provides an example and then a description of the main steps used in the
example. Although the example shows how to match only against an
XMLInputStream, you can use similar code to match against an XMLOutputStream.

5.2.5 Example of Using the StreamXPath Class
The sample Java program at the end of this section uses the following XML document
in its matching:

<?xml version='1.0' encoding='us-ascii'?>

<!-- "Stock Quotes". -->

<stock_quotes>
 <stock_quote symbol='BEAS'>
 <when>
 <date>01/27/2001</date>
 <time>3:40PM</time>
 </when>
 <price type="ask" value="65.1875"/>
 <price type="open" value="64.00"/>
 <price type="dayhigh" value="66.6875"/>
 <price type="daylow" value="64.75"/>
 <change>+2.1875</change>
 <volume>7050200</volume>
 </stock_quote>
 <stock_quote symbol='MSFT'>

Using the WebLogic XPath API

5-6 Programming XML for Oracle WebLogic Server

 <when>
 <date>01/27/2001</date>
 <time>3:40PM</time>
 </when>
 <price type="ask" value="55.6875"/>
 <price type="open" value="50.25"/>
 <price type="dayhigh" value="56"/>
 <price type="daylow" value="52.9375"/>
 <change>+5.25</change>
 <volume>64282200</volume>
 </stock_quote>
</stock_quotes>

The Java code for the example is as follows:

package examples.xml.xpath;

import java.io.File;
import weblogic.xml.stream.Attribute;
import weblogic.xml.stream.StartElement;
import weblogic.xml.stream.XMLEvent;
import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLInputStreamFactory;
import weblogic.xml.stream.XMLStreamException;
import weblogic.xml.xpath.StreamXPath;
import weblogic.xml.xpath.XPathException;
import weblogic.xml.xpath.XPathStreamFactory;
import weblogic.xml.xpath.XPathStreamObserver;

/**
 * This class provides a simple example of how to use the StreamXPath
 * API.
 *
 * @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
 */

public abstract class StreamXPathExample {
 public static void main(String[] ignored)
 throws XPathException, XMLStreamException
 {
 // Create instances of StreamXPath for two xpaths we want to match
 // against this tream.

 StreamXPath symbols =
 new StreamXPath("stock_quotes/stock_quote");
 StreamXPath openingPrices =
 new StreamXPath("stock_quotes/stock_quote/price[@type='open']");

 // Create an XPathStreamFactory.

 XPathStreamFactory factory = new XPathStreamFactory();

 // Create and install two XPathStreamObservers. In this case, we
 // just use to anonymous classes to print a message when a
 // callback is received. Note that a given observer can observe
 // more than one xpath, and a given xpath can be observed by
 // mutliple observers.

 factory.install(symbols, new XPathStreamObserver () {
 public void observe(XMLEvent event) {
 System.out.println("Matched a quote: "+event);

Using the WebLogic XPath API

Using Advanced XML APIs 5-7

 }

 public void observeAttribute(StartElement e, Attribute a) {} //ignore

 public void observeNamespace(StartElement e, Attribute a) {} //ignore

 });

 // Note that we get matches for both a start and an end elements,
 // even in the case of <price/> which is an empty element - this
 // is the behavior of the underlying streaming parser.
 factory.install(openingPrices, new XPathStreamObserver () {
 public void observe(XMLEvent event) {
 System.out.println("Matched an opening price: "+event);
 }
 public void observeAttribute(StartElement e, Attribute a) {} //ignore
 public void observeNamespace(StartElement e, Attribute a) {} //ignore
 });
 // get an XMLInputStream on the document
 String file = "stocks.xml";
 XMLInputStream sourceStream = XMLInputStreamFactory.newInstance().
 newInputStream(new File(file));
 // use the factory to create an XMLInputStream that will do xpath
 // matching against the source stream
 XMLInputStream matchingStream = factory.createStream(sourceStream);
 // now iterate through the stream
 System.out.println("Matching against xml stream from "+file);
 while(matchingStream.hasNext()) {
 // we don't do anything with the events in our example - the
 // XPathStreamObserver instances that we installed in the
 // factory will get callbacks for appropriate events
 XMLEvent event = matchingStream.next();
 }
 }
}

5.2.6 Main Steps When Using the StreamXPath Class
The following procedure describes the main steps to use the StreamXPath class to
perform XPath matching against an XML document represented as an
XMLInputStream:

1. Create a StreamXPath object to represent the XPath expression you want to
evaluate against the XMLInputStream.

StreamXPath symbols =
 new StreamXPath("stock_quotes/stock_quote");

The following example shows an XPath expression that matches stock quotes
using their opening price:

StreamXPath openingPrices = new StreamXPath("stock_quotes/stock_
quote/price[@type='open']");

2. Create an XPathStreamFactory. Use this factory class to specify the set of
StreamXPath objects that you want to evaluate against an XMLInputStream
and to create observers (using the XPathStreamObserver interface) used to
register a callback whenever an XPath match occurs. The following example
shows how to create the XPathStreamFactory:

XPathStreamFactory factory = new XPathStreamFactory();

Using the WebLogic XPath API

5-8 Programming XML for Oracle WebLogic Server

3. Create and install the observers using the XPathStreamFactory.install()
method, specifying the XPath expression with the first StreamXPath parameter,
and an observer with the second XPathStreamObserver parameter. The
following example shows how to use an anonymous class to implement the
XPathStreamObserver interface. The implementation of the observe()
method simply prints a message when a callback is received. In the example, the
observeAttribute() and observeNamespace() methods do nothing.

factory.install(symbols, new XPathStreamObserver () {
 public void observe(XMLEvent event) {
 System.out.println("Matched a quote: "+event);
 }
 public void observeAttribute(StartElement e, Attribute a) {}
 public void observeNamespace(StartElement e, Attribute a) {}
 }
);

4. Create an XMLInputStream from an XML document:

String file = "stocks.xml";

XMLInputStream sourceStream =
 XMLInputStreamFactory.newInstance().newInputStream(new File(file));

5. Use the createStream() method of the XPathStreamFactory to create a new
XMLInputStream that will perform XPath matching against the original
XMLInputStream:

 XMLInputStream matchingStream =
 factory.createStream(sourceStream);

6. Iterate over the new XMLInputStream. During the iteration, if an XPath match
occurs, the registered observer is notified:

while(matchingStream.hasNext()) {
 XMLEvent event = matchingStream.next();
}

For additional API reference information about the WebLogic XPath API, see
"weblogic.xml.xpath" in the Oracle WebLogic Server API Reference.

6

XML Programming Best Practices 6-1

6XML Programming Best Practices

The following sections discuss best programming practices when creating Java
applications that process XML data:

■ Section 6.1, "When to Use the DOM, SAX, and StAX APIs"

■ Section 6.2, "Increasing Performance of XML Validation"

■ Section 6.3, "When to Use XML Schemas or DTDs"

■ Section 6.4, "Configuring External Entity Resolution for Maximum Performance"

■ Section 6.5, "Using SAX InputSources"

■ Section 6.6, "Improving Performance of Transformations"

6.1 When to Use the DOM, SAX, and StAX APIs
You can parse an XML document with the DOM, SAX, or StAX APIs. This section
describes the pros and cons of each API.

The DOM API is good for small documents, or those that contain under a thousand
elements. Because DOM constructs a tree of your XML data, it is ideal for editing the
structure of your XML document by adding or deleting elements.

The DOM API parses the entire XML document and converts it into a DOM tree before
you can begin processing it. This cost might be beneficial if you know that you need to
access the entire document. If you occasionally need to access only part of the XML
document, the cost could decrease the performance of your application with no added
benefit. In this case the SAX or StAX API is preferable.

The SAX API is the most lightweight of the APIs. It is ideal for parsing shallow
documents (documents that do not contain much nesting of elements) with unique
element names. SAX uses a callback structure; this means that programmers handle
parsing events as the API is reading an XML document, which is a relatively efficient
and quick way to parse.

However, the callback nature of SAX also means that it is not the best API to use if you
want to modify the structure of your XML data. Additionally, programming your
application to handle callbacks is not always straight-forward and intuitive.

The StAX API is based on SAX, so all the reasons for using SAX also apply to the StAX
API. In addition, the StAX API is more intuitive to use than SAX, because
programmers ask for events rather than react to them as they happen. The StAX API is
also best if you plan to pass the entire XML document as a parameter; it is easier to
pass an input stream than it is to pass SAX events. Finally, the StAX API was designed
to be used when binding XML data to Java objects.

Increasing Performance of XML Validation

6-2 Programming XML for Oracle WebLogic Server

6.2 Increasing Performance of XML Validation
If the performance of your XML application decreases due to a parser validation issue,
and you need to validate your XML documents, you might improve the performance
of your application by writing your own customized code that validates the data as it
is being received or parsed, rather than using the setValidating() method of the
DocumentBuilderFactory or SaxParserFactory.

When you turn on validation while parsing an XML document with SAX or DOM, the
parser might do more validation of the document than you really need, thus
decreasing the overall performance of the application. Instead, consider choosing
certain points during the parsing of the document when you want to check that the
XML document is valid, and add your own Java code at those points.

For example, assume you are writing an application that uses the WebLogic XML
Streaming API to processes an XML purchase order. Because you know that the first
element of the document should be <purchase_order>, you can quickly verify that
the document appears to be valid by pulling the first element off the stream and
checking its name. This check does not ensure that the entire XML document is valid,
of course, but you can continue checking for known elements as you pull elements
from the stream. These quick checks are much faster than using the standard
setValidating() methods.

6.3 When to Use XML Schemas or DTDs
There are two ways to describe the structure of an XML document: DTDs and XML
Schemas.

The current trend is to use Schemas to describe XML documents. Schemas are much
more expressive than DTDs because the set of available data types to describe XML
elements is much richer and you can describe more specifically what is valid in an
XML document. In addition, you can only use Schemas, and not DTDs, in SOAP
messages. Because SOAP is the main messaging protocol used in Web services,
consider using Schemas to describe any XML documents that might be used as either
input or output parameters to Web services.

Still, DTDs have a few advantages. DTDs are more widely supported than Schemas,
although that is changing rapidly. Because DTDs are less expressive than Schemas,
they are easier to write and manage.

However, Oracle recommends that you use Schemas to describe your XML
documents.

6.4 Configuring External Entity Resolution for Maximum Performance
Oracle highly recommends you store external entities locally whenever possible rather
than always retrieving the entity over the network. Storage improves the performance
of your applications because it is much faster to look up an entity on the same machine
as WebLogic Server than it is to look it up over a network connection.

For detailed information on configuring external entity resolution for WebLogic
Server, see Section 9.3, "External Entity Configuration Tasks."

6.5 Using SAX InputSources
When you use the SAX API to parse an XML document, you first create an
InputSource object from the XML document and then pass the InputSource object

Improving Performance of Transformations

XML Programming Best Practices 6-3

to the parse() method. You can create the InputSource object from either a
java.io.InputStream or java.io.Reader object based on your XML data.

Oracle recommends that you create an InputSource from a
java.io.InputStream object whenever possible. When passed an InputStream
object, the SAX parser auto-detects the character encoding of the XML data and
automatically instantiates an InputStreamReader object for you, using the correct
character encoding. In other words, the parser does all the character encoding work
for you, which is more likely to be error-free at runtime than if you decide to specify
the character encoding yourself.

6.6 Improving Performance of Transformations
XSLT is a language for transforming an XML document into a different format, such as
another XML document, HTML, WML, and so on. To use XSLT, you create a
stylesheet that defines how each element in the input XML document should be
transformed in the output document.

Although XSLT is a powerful language, creating stylesheets for complex
transformations can be very complicated. In addition, the actual transformation
requires a lot of resources and might decrease the performance of your application.

Therefore, if your transformations are complex, consider writing your own
transformation code in your application rather than using XSLT stylesheets. Also
consider using the DOM API. First parse the XML document, manipulate the resulting
DOM tree as needed, then write out the new document, using custom Java code to
transform it into its final format.

Improving Performance of Transformations

6-4 Programming XML for Oracle WebLogic Server

7

XML Programming Techniques 7-1

7XML Programming Techniques

The following sections provide information about specific XML programming
techniques for developing a J2EE application that processes XML data:

■ Section 7.1, "Transmitting XML Data Between A Java Client and WebLogic Server"

■ Section 7.2, "Handling XML Documents in a JMS Application"

■ Section 7.3, "Accessing External Entities That Do Not Have an HTTP Interface"

7.1 Transmitting XML Data Between A Java Client and WebLogic Server
In a typical J2EE application, a client application sends XML data to a servlet or a JSP
that processes the XML data. The servlet or JSP then either sends the data on to
another J2EE component, such as a JMS destination or an EJB, or sends the processed
XML data back to the client in the form of another XML document.

To send XML data from a Java client to a WebLogic Server-hosted servlet or JSP which
then returns the data to the client, use the java.net.URLConnection class. This
class represents the communication link between an application and an URL, which in
this case is the URL that invokes the servlet or JSP. Instances of the URLConnection
class send the XML document using the HTTP POST method.

The following Java client program from the WebLogic XML examples shows how to
transmit XML data between the program and a JSP:

import java.net.*;
import java.io.*;
import java.util.*;
public class Client {
 public static void main(String[] args) throws Exception {
 if (args.length < 2) {
 System.out.println("Usage: java examples.xml.Client URL Filename");
 }
 else {
 try {
 URL url = new URL(args[0]);
 String document = args[1];
 FileReader fr = new FileReader(document);
 char[] buffer = new char[1024*10];
 int bytes_read = 0;
 if ((bytes_read = fr.read(buffer)) != -1)
 {
 URLConnection urlc = url.openConnection();
 urlc.setRequestProperty("Content-Type","text/xml");
 urlc.setDoOutput(true);
 urlc.setDoInput(true);

Handling XML Documents in a JMS Application

7-2 Programming XML for Oracle WebLogic Server

 PrintWriter pw = new PrintWriter(urlc.getOutputStream());
 // send xml to jsp
 pw.write(buffer, 0, bytes_read);
 pw.close();
 BufferedReader in = new BufferedReader(new
InputStreamReader(urlc.getInputStream()));
 String inputLine;
 while ((inputLine = in.readLine()) != null)
 System.out.println(inputLine);
 in.close();
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}
The example shows how to open a URL connection to the JSP by using a URL from the
argument list; obtain the output stream from the connection; and print the XML
document provided in the argument list to the output stream, thus sending the XML
data to the JSP. The example then shows how to use the getInputStream() method
of the URLConnection class to read the XML data that the JSAP returns to the client
application.

The following code segments from a sample JSP show how the JSP receives XML data
from the client application, parses the XML document, and sends XML data back:

BufferedReader br = new BufferedReader(request.getReader());
DocumentBuilderFactory fact = DocumentBuilderFactory.newInstance();
DocumentBuilder db = fact.newDocumentBuilder();
Document doc = db.parse(new InputSource(br));
...
PrintWriter responseWriter = response.getWriter();
responseWriter.println("<?xml version='1.0'?>");
...

For detailed information on programming WebLogic servlets and JSPs, see Developing
Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

7.2 Handling XML Documents in a JMS Application
WebLogic Server provides the following extensions to some Java Message Service
(JMS) classes to handle XML documents in a JMS application:

■ weblogic.jms.extensions.WLSession, which extends the JMS class
javax.jms.Session

■ weblogic.jms.extensions.WLQueueSession, which extends the JMS class
javax.jms.QueueSession

■ weblogic.jms.extensions.WLTopicSession, which extends the JMS class
javax.jms.TopicSession

■ weblogic.jms.extensions.XMLMessage, which extends the JMS class
javax.jms.TextMessage

If you use the XMLMessage class to send and receive XML documents in a JMS
application, rather than the more generic TextMessage class, you can use
XML-specific message selectors to filter unwanted messages. In particular, you can use
the method JMS_BEA_SELECT to specify an XPath query to search for an XML

Accessing External Entities That Do Not Have an HTTP Interface

XML Programming Techniques 7-3

fragment in the XML document. Based on the results of the query, a message
consumer might decide not to receive the message, thus possibly reducing network
traffic and improving performance of the JMS application.

To use the XMLMessage class to contain XML messages in a JMS application, you
must create either a WLQueueSession or WLTopicSession object, depending on
whether you want to use JMS queues or topics, rather than the generic
QueueSession or TopicSession objects, after you have created a JMS
Connection. Then use the createXMLMessage() method of the WLSession
interface to create an XMLMessage object.

For detailed information on using XMLMessage objects in your JMS application, see
Programming JMS for Oracle WebLogic Server.

7.3 Accessing External Entities That Do Not Have an HTTP Interface
WebLogic Server can retrieve and cache external entities that reside in external
repositories, as long as they have an HTTP interface, such as a URL, that returns the
entity. See Section 9.3, "External Entity Configuration Tasks" for detailed information
on using the XML Registry to configure external entities.

If you want to access an external entity that is stored in a repository that does not have
an HTTP interface, you must create an interface. For example, assume you store the
DTDs for your XML documents in a database table, with columns for the system id,
public id, and text of the DTD. To access the DTD as an external entity from a
WebLogic XML application, you could create a servlet that uses JDBC to access the
DTDs in the database.

Because you invoke servlets with URLs, you now have an HTTP interface to the
external entity. When you create the entity registry entry in the XML Registry, you
specify the URL that invokes the servlet as the location of the external entity. When
WebLogic Server is parsing an XML document that contains a reference to this
external entity, it invokes the servlet, passing it the public and system id, which the
servlet can internally use to query the database.

Accessing External Entities That Do Not Have an HTTP Interface

7-4 Programming XML for Oracle WebLogic Server

8

XML Application Scoping 8-1

8XML Application Scoping

The following sections describe how to configure parsers, transformers, external
entities, and the external entity cache for a particular application:

■ Section 8.1, "Overview of Application Scoping"

■ Section 8.2, "The weblogic-application.xml File"

■ Section 8.3, "Configuring a Parser or Transformer for an Enterprise Application"

■ Section 8.4, "Configuring an External Entity for an Enterprise Application"

■ Section 8.5, "Configuring the External Entity Cache for an Enterprise Application"

8.1 Overview of Application Scoping
Application scoping refers to configuring resources for a particular enterprise
application rather than for an entire WebLogic Server configuration. In the case of
XML, these resources include parser, transformer, external entity, and external entity
cache configuration. The main advantage of application scoping is that it isolates the
resources for a given application to the application itself. Using application scoping,
you can configure different parsers for different applications, store the DTDs for an
application within the EAR file or exploded enterprise directory, and so on.

Another advantage of using application scoping is that by associating the resources
with the EAR file, you can run this EAR file on another instance of WebLogic Server
without having to configure the resources for that server.

To configure XML resources for a particular application, you add information to the
weblogic-application.xml deployment descriptor file located in the META-INF
directory of the EAR file or exploded enterprise application directory.

8.2 The weblogic-application.xml File
The weblogic-application.xml file is the WebLogic Server-specific deployment
descriptor for an enterprise application. It contains configuration information about
the XML, JDBC, and EJB resources used by an enterprise application. The standard
J2EE deployment descriptor is called application.xml.

Note: You use the Administration Console to configure parser,
transformer, and external entity resources for a WebLogic Server
instance, as described in Chapter 9, "Administering WebLogic Server
XML."

The weblogic-application.xml File

8-2 Programming XML for Oracle WebLogic Server

The following sample weblogic-application.xml file shows how to configure
XML resources for an enterprise application; the body of the various elements are
shown in bold:

<weblogic-application>
 ...
 <xml>
 <parser-factory>
 <saxparser-factory>
 com.sun.org.apache.xerces.internal.jaxp.SAXParserFactoryImpl
 </saxparser-factory>
 <document-builder-factory>
 com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderFactoryImpl
 </document-builder-factory>
 <transformer-factory>
 com.sun.org.apache.xalan.internal.xsltc.trax.TransformerFactoryImpl
 </transformer-factory>
 </parser-factory>
 <entity-mapping>
 <entity-mapping-name>My Mapping</entity-mapping-name>
 <public-id>-//BEA Systems, Inc.//DTD for cars//EN</public-id>
 <system-id>http://www.bea.com/dtds/car.dtd</system-id>
 <entity-uri>dtds/car.dtd</entity-uri>
 </entity-mapping>
 </xml>
</weblogic-application>

The main element for configuring XML resources is <xml>. Figure 8–1 describes the
sub-elements of the <xml> element; the sections following this figure describe each
element.

Figure 8–1 Sub-Elements of the <xml> Element in weblogic-application.xml

The weblogic-application.xml File

XML Application Scoping 8-3

8.2.1 xml
The main element for configuring XML resources, such as parsers, transformers,
external entities, and the external entity cache for an enterprise application.

8.2.2 parser-factory
The parent element for specifying a particular parser or transformer for an enterprise
application.

8.2.3 saxparser-factory
Element that specifies the factory class to be used for SAX style parsing in this
application. If this element is not specified, the default SAX parser factory specified for
the WebLogic Server instance is used.

8.2.4 document-builder-factory
Element that specifies the factory class to be used for DOM style parsing in this
application. If this element is not specified, the default DOM parser factory specified
for the WebLogic Server instance is used.

8.2.5 transformer-factory
Element that specifies the factory class to be used when transforming documents using
the javax.xml.transform packages in this application. If this element is not
specified, the default XSLT transformer factory specified for the WebLogic Server
instance is used.

8.2.6 entity-mapping
The parent element for mapping an entity declaration in an XML file to a local copy of
the entity, such as a DTD or Schema.

8.2.7 entity-mapping-name
Element that specifies the name of the entity mapping declaration.

8.2.8 public-id
Element that specifies the public ID of the entity, such as:

 -//BEA Systems, Inc.//DTD for cars//EN.

8.2.9 system-id
Element that specifies the system ID of the entity, such as:

http://www.bea.com/dtds/car.dtd

8.2.10 entity-uri
Element that specifies the URI of the entity. The path is relative to the main directory
of the EAR archive or the exploded directory.

For example, dtds/car.dtd indicates that there is a directory called dtds in the
main EAR archive (parallel to the META-INF directory) and it contains a file called
car.dtd.

Configuring a Parser or Transformer for an Enterprise Application

8-4 Programming XML for Oracle WebLogic Server

8.2.11 when-to-cache
Element that specifies when you should cache the external entity. Valid values are:

■ cache-on-reference—WebLogic Server caches the external entity referenced
by a URL the first time the entity is referenced in an XML document.

■ cache-at-initialization—WebLogic Server caches the entity when the
server starts.

■ cache-never—WebLogic Server never caches the external entity.

The default value is cache-on-reference.

8.2.12 cache-timeout-interval
Element that specifies the number of seconds after which the cached external entity
becomes stale, or out-of-date. WebLogic Server re-retrieves the external entity from the
specified URL or pathname relative to the main directory of the EAR archive or
exploded directory if the cached copy has been in the cache for longer than this
interval.

The default value for this field is 120 seconds.

8.3 Configuring a Parser or Transformer for an Enterprise Application
You can specify that an XML application use a parser or transformer different from the
default parser or transformer configured for WebLogic Server by updating the
weblogic-application.xml file of the EAR file or exploded directory that
contains the XML application.

To configure a parser or transformer, other than the default, for an enterprise
application, follow these steps:

1. Use the <parser-factory> sub-element of the <xml> element to configure
factory classes for both SAX and DOM style parsing and for XSLT transformations
for the enterprise application, as shown in the following example:

 <parser-factory>
 <saxparser-factory>
 com.sun.org.apache.xerces.internal.jaxp.SAXParserFactoryImpl
 </saxparser-factory>
 <document-builder-factory>
 com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderFactoryImpl
 </document-builder-factory>
 <transformer-factory>
 com.sun.org.apache.xalan.internal.xsltc.trax.TransformerFactoryImpl
 </transformer-factory>
 </parser-factory>
The application corresponding to this weblogic-application.xml file uses
the
com.sun.org.apache.xerces.internal.jaxp.SAXParserFactoryImpl
factory class for SAX style parsing, the
com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderFactor
yImpl factory class for DOM style parsing, and the
com.sun.org.apache.xalan.internal.xsltc.trax.TransformerFacto
ryImpl class for XSLT transformations.

2. If you want the parser or transformer classes to be local to the EAR archive, put
the JAR file that contains the classes anywhere you want in the EAR file, then
update the Class-Path variable in the META-INF/MANIFEST.MF file.

Configuring the External Entity Cache for an Enterprise Application

XML Application Scoping 8-5

For example, if you put the parser or transformer classes in a JAR file called
myparser.jar in the directory lib/xml, update the MANIFEST.MF file as
shown:

Manifest-Version: 1.0
Created-By: 1.3.1_01 (Sun Microsystems Inc.)
Class-Path: lib/xml/myparser.jar

3. If you want to store the parser or transformer classes in a location other than the
EAR archive, be sure that you update the WebLogic Server CLASSPATH variable
to include the full pathname of the JAR file that contains the classes.

8.4 Configuring an External Entity for an Enterprise Application
You can store a local copy of an external entity, such as a DTD, in the EAR archive or
exploded directory rather than always retrieving it from the Web.

To configure an external entity for an enterprise application:

1. Create the directory lib/xml/registry under the main directory of the EAR
archive.

2. Copy the external entity, such as a DTD, to the directory.

3. Update the weblogic-application.xml file, using the <entity-mapping>
sub-element of the <xml> element to map the name of the entity to entity
declarations in any XML files processed by the application, as shown in the
following example:

<entity-mapping>
 <entity-mapping-name>My Mapping</entity-mapping-name>
 <public-id>-//BEA Systems, Inc.//DTD for cars//EN</public-id>
 <system-id>http://www.bea.com/dtds/car.dtd</system-id>
 <entity-uri>dtds/car.dtd</entity-uri>
</entity-mapping>

In the example, a local copy of a DTD called car.dtd is stored in the
lib/xml/registry/dtds directory under the main directory of the EAR
archive or exploded directory. The public ID of the entity is -//BEA Systems,
Inc.//DTD for cars//EN and the system id is
http://www.bea.com/dtds/car.dtd. Whenever the application is parsing an
XML file and it encounters an entity declaration using either one of the IDs, it will
substitute the car.dtd file.

8.5 Configuring the External Entity Cache for an Enterprise Application
You can specify that WebLogic Server cache external entities that are referenced with a
URL or a pathname relative to the main directory of the EAR archive, either at
server-startup or when the entity is first referenced.

Caching the external entity saves the remote access time and provides a local backup
in the event that the Administration Server cannot be accessed while an XML
document is being parsed, due to the network or the Administration server being
down.

Note: Specify an <entity-mapping> element for each entity
declaration for which you want to map a local copy of the entity.

Configuring the External Entity Cache for an Enterprise Application

8-6 Programming XML for Oracle WebLogic Server

You can configure the expiration date of a cached entity, at which point WebLogic
Server re-retrieves the entity from the URL or directory of the EAR and re-caches it.

Use the <when-to-cache> and <cache-timeout-interval> subelements of the
<entity-mapping> element to configure external entity caching for an enterprise
application, as shown in the following example:

<entity-mapping>
 <entity-mapping-name>My Mapping</entity-mapping-name>
 <public-id>-//BEA Systems, Inc.//DTD for cars//EN</public-id>
 <system-id>http://www.bea.com/dtds/car.dtd</system-id>
 <entity-uri>dtds/car.dtd</entity-uri>
 <when-to-cache>cache-at-initialization</when-to-cache>
 <cache-timeout-interval>300</cache-timeout-interval>
</entity-mapping>

In the example, the car.dtd is stored in the lib/xml/registry/dtds directory
under the main directory of the EAR archive or exploded directory. WebLogic Server
caches a copy of the DTD in its memory when it first starts up, and then refreshes the
cached copy if it is stored for longer than 300 seconds.

9

Administering WebLogic Server XML 9-1

9Administering WebLogic Server XML

The following sections describe XML administration with WebLogic Server:

■ Section 9.1, "Overview of Administering WebLogic Server XML"

■ Section 9.2, "XML Parser and Transformer Configuration Tasks"

■ Section 9.3, "External Entity Configuration Tasks"

9.1 Overview of Administering WebLogic Server XML
You access the XML Registry through the Administration Console and use it to
configure WebLogic Server for XML applications.

To invoke the Administration Console in your browser, enter the following URL:

http://host:port/console

where

■ host refers to the computer on which the WebLogic Administration Server is
running.

■ port refers to the port number where WebLogic Administration Server is
listening for connection requests. The default port number for WebLogic
Administration Server is 7001.

9.1.1 XML Administration Tasks
You create, configure, and use the XML Registry using the Administration Console.
Using the Administration Console XML Registry has several benefits:

■ Configuration of XML Registry changes take effect automatically at run time,
provided you use JAXP in your XML applications.

■ When you make changes to the XML Registry, it is not necessary to change your
XML application code.

■ Entity resolution is done locally. You can use the XML Registry either to define a
local copy of an entity or to specify that WebLogic Server cache an entity from the
Web for a specified duration and use the cached copy rather than the one out on
the Web.

You can use the XML Registry to specify:

■ An alternative server-wide XML parser instead of the default parser.

■ An XML parser per document type.

Overview of Administering WebLogic Server XML

9-2 Programming XML for Oracle WebLogic Server

■ An alternative server-wide transformer instead of the default transformer.

■ External entities that are to be resolved by using local copies of the entities. Once
you specify these entities, the Administration Server stores local copies of them in
the file system and automatically distributes them to the server's parser at parse
time. This feature eliminates the need to construct and set SAX EntityResolvers.

■ External entities to be cached by WebLogic Server after retrieval from the Web.
You specify how long these external entities should be cached before WebLogic
Server re-retrieves them and when WebLogic should first retrieve the entities,
either at application run time or when WebLogic Server starts.

These capabilities are for use on the server side only.

9.1.2 How the XML Registry Works
You can create as many XML Registries as you like; however, you can associate only
one XML Registry with a particular instance of WebLogic Server.

If an instance of WebLogic Server does not have an XML Registry associated with it,
then the default parser and transformer are used when parsing or transforming
documents. The default parser and transformer are those included in the JDK Version
5.0.

Once you associate an XML Registry with an instance of WebLogic Server, all XML
configuration options are available for XML applications that use that server.

You can make the following types of entries for a given XML registry:

■ Configure parsers and transformers.

■ Configure external entity resolution.

9.1.3 Parser Selection Within the XML Registry
The XML Registry is automatically consulted whenever you use JAXP to parse or
transform your XML applications. WebLogic Server follows an ordered lookup when
determining which parser class to load:

1. Use the parser defined for a particular document type.

2. Use the alternative server-wide parser defined in the XML Registry associated
with the WebLogic Server instance.

3. Use the default parser (the parser included in the JDK 5.0)

The process is also true for transformers, except for the first step, because you cannot
define a transformer for a particular document type.

Additionally, when WebLogic Server starts, a SAX entity resolver is automatically set
so that it can resolve entities that are declared in the registry. As a result, users are not
required to modify their XML application code to control the parsers used, or to set the
location of local copies of external entities. The parser being used and the location of
the external entity is controlled by the XML Registry.

Note: The XML Registry is case sensitive. For example, if you are
configuring a parser for an XML document type whose root element is
<CAR>, you must enter CAR in the Root Element Tag field and not car
or Car.

XML Parser and Transformer Configuration Tasks

Administering WebLogic Server XML 9-3

9.2 XML Parser and Transformer Configuration Tasks
By default, WebLogic Server is configured to use the default parser and transformer to
parse and transform XML documents. The default parser and transformer are those
included in the JDK 5.0. As long as you use the default, you do not have to perform
any configuration tasks for your XML applications. If you want to use a parser or
transformer other than the default, you must use the XML Registry to configure them,
as described in the following sections.

9.2.1 Configuring a Parser or Transformer Other Than the Default
The following procedure first describes how to create an XML registry that defines
SAX and DOM parsers and transformers. It then describes how to associate (or plug-in)
the new XML Registry with an instance of WebLogic Server so that the server starts to
use the new parsers and transformer.

1. Start the WebLogic Administration Server and invoke the Administration Console
in your browser. See Section 9.1, "Overview of Administering WebLogic Server
XML" for information on invoking the Administration Console.

2. Follow the steps outlined in "Create an XML registry" in the Oracle WebLogic Server
Administration Console Help.

9.2.2 Configuring a Parser for a Particular Document Type
When you configure a parser for a particular document type, you can use the
document's system id, public id, or root element to identify the document type.

To configure a parser for a particular document type, follow these steps:

1. Start the WebLogic Administration Server and invoke the Administration Console
in your browser.

See Section 9.1, "Overview of Administering WebLogic Server XML" for
information on invoking the Administration Console.

Note: If you elect to use an API provided by a parser instead of
JAXP, the XML Registry has no effect on the processing of XML
documents. For this reason, it is highly recommended that you always
use JAXP in your XML applications.

Note: You can plug-in only those parsers and transformers that are
compatible with the default WebLogic Server parser transformer. The
default parser and transformer are those that are included in the JDK
5.0.

Note: WebLogic Server searches only the first 1000 bytes of an XML
document when attempting to identify its document type. If it does
not find a DOCTYPE identifier in those first 1000 bytes, it stops
searching the document and uses the parser configured for the
WebLogic Server instance to parse the document.

External Entity Configuration Tasks

9-4 Programming XML for Oracle WebLogic Server

2. Follow the steps outlined in "Associate a Parser to a Document Type" in the Oracle
WebLogic Server Administration Console Help.

9.3 External Entity Configuration Tasks
Use the XML Registry to configure external entity resolution and to configure and
monitor the external entity cache.

9.3.1 Configuring External Entity Resolution
You can configure external entity resolution with WebLogic Server in the following
two ways:

■ Physically copy the entity files to a directory accessible by WebLogic
Administration Server and specify that the Administration Server use the local
copy whenever the external entity is referenced in an XML document.

■ Specify that a Managed Server cache external entities that are referenced with a
URL or a pathname relative to the Administration Server, either at server-startup
or when the entity is first referenced.

Caching the external entity in a Managed Server saves the remote access time and
provides a local backup in the event that the Administration Server cannot be
accessed while an XML document is being parsed, due to the network or the
Administration Server being down.

You can configure the expiration date for a cached entity, at which point
WebLogic Server re-retrieves the entity from the URL or Administration Server
and re-caches it.

To configure external entity resolution, perform the following steps:

1. Start the WebLogic Administration Server and invoke the Administration Console
in your browser.

See Section 9.1, "Overview of Administering WebLogic Server XML" for
information on invoking the Administration Console.

2. Follow the steps outlined in "Configure External Entity Resolution" in Oracle
WebLogic Server Administration Console Help.

9.3.2 Configuring the External Entity Cache
You can configure the following properties of the external entity cache:

■ Size, in KB, of the cache memory. The default value for this property is 500 KB.

■ Size, in MB, of the persistent disk cache. The default value for this property is 5
MB.

■ Number of seconds after which external entities in the cache become stale after
they have been cached by WebLogic Server. This is the default value for the entire
server - you can override this value for specific external entities when you
configure the entity. The default value for this property is 120 seconds (2 minutes).

To configure the external entity cache, follow these steps:

1. Start the WebLogic Administration Server and invoke the Administration Console
in your browser.

See Section 9.1, "Overview of Administering WebLogic Server XML" for
information on invoking the Administration Console.

External Entity Configuration Tasks

Administering WebLogic Server XML 9-5

2. Follow the steps outlined in "Create an XML Entity Cache" in Oracle WebLogic
Server Administration Console Help.

External Entity Configuration Tasks

9-6 Programming XML for Oracle WebLogic Server

A

XML Reference A-1

AXML Reference

The following sections provide links to additional information about the XML
specifications, application programming interfaces (APIs), and tools supported by
WebLogic Server:

■ Section A.1, "XML APIs"

■ Section A.2, "Code Examples"

■ Section A.3, "Related WebLogic Server Documentation"

■ Section A.4, "Tutorials and Online Courses"

■ Section A.5, "Other XML Specifications and Information"

A.1 XML APIs
■ SAX 2.0 API, at http://www.saxproject.org/

■ DOM (Document Object Model) Level 2 Specification, at
http://www.w3.org/TR/DOM-Level-2/

■ JAXP API 1.2 specification, at http://java.sun.com/xml/

A.2 Code Examples
XML code examples and supporting documentation are included in the WebLogic
Server distribution at WL_
HOME\samples\server\examples\src\examples\xml, where WL_HOME refers
to the top-level WebLogic Server directory.

A.3 Related WebLogic Server Documentation
■ Getting Started With JAX-WS Web Services for Oracle WebLogic Server

■ Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server

■ Programming JMS for Oracle WebLogic Server

■ Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

A.4 Tutorials and Online Courses
■ A Technical Introduction to XML, available at

http://www.xml.com/pub/a/98/10/guide0.html

■ XML Authoring Tutorial, available at http://www.xml.com/pub/r/32

Other XML Specifications and Information

A-2 Programming XML for Oracle WebLogic Server

■ Working with XML and Java, available at
http://java.sun.com/xml/tutorial_intro.html

■ Tutorials for using the Java 2 platform and XML technology available at
http://developerlife.com

■ Developing XML Solutions with JavaServer Pages Technology, available at
http://java.sun.com/products/jsp/html/JSPXML.html

■ XML, Java, and the Future of the Web, available at
http://www.xml.com/pub/a/w3j/s3.bosak.html

■ Chapter 17 of the XML Bible: XSL Transformations, available at
http://metalab.unc.edu/xml/books/bible/updates/14.html

■ XSL Tutorial by Miloslav Nic, available at
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.h
tml

■ XML Schema Part 0: Primer, available at
http://www.w3.org/TR/2000/CR-xmlschema-0-20001024/

A.5 Other XML Specifications and Information
■ XML 1.0 specification, available at http://www.w3.org/TR/REC-xml/

■ XMLSchema Part 1: Structures, available at
http://www.w3.org/TR/xmlschema-1/

■ XML Schema Part 2: Datatypes, available at
http://www.w3.org/TR/xmlschema-2

■ Namespaces in XML, available at http://www.w3.org/TR/REC-xml-names/

■ Extensible Stylesheet Language (XSL) 1.0 Specification, available at
http://www.w3.org/TR/xsl/

■ JSR-000031 XML Data Binding Specification, available at
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_031_
xmld.html

■ XML Path Language (XPath) Version 1.0 Specification, available at
http://www.w3.org/TR/xpath

■ XML Linking Language (XLink) Specification, available at
http://www.w3.org/TR/xlink

■ XML Pointer Language (XPointer) Specification, available at
http://www.w3.org/TR/WD-xptr

■ W3C (World Wide Web Consortium) home page at http://www.w3c.org

■ XML.com home page at http://www.xml.com

■ XML FAQ page at http://www.ucc.ie/xml/

■ XML.org, The XML Industry Portal, available at http://www.xml.org/

B

Using the WebLogic XML Streaming API (Deprecated) B-1

BUsing the WebLogic XML Streaming API
(Deprecated)

The following sections describe how to use the WebLogic XML Streaming API to parse
and generate XML documents:

■ Section B.1, "Overview of the WebLogic XML Streaming API"

■ Section B.2, "Javadocs for the WebLogic XML Streaming API"

■ Section B.3, "Parsing an XML Document: Typical Steps"

■ Section B.4, "Generating a New XML Document: Typical Steps"

B.1 Overview of the WebLogic XML Streaming API
The WebLogic XML Streaming API provides an easy and intuitive way to parse and
generate XML documents. It is similar to the SAX API, but enables a procedural,
stream-based handling of XML documents rather than requiring you to write SAX
event handlers, which can get complicated when you work with complex XML
documents. In other words, the streaming API gives you more control over parsing
than the SAX API.

When a program parses an XML document using SAX, the program must create event
listeners that listen to parsing events as they occur; the program must react to events
rather than ask for a specific event. By contrast, when you use the streaming API, you
can methodically step through an XML document, ask for certain types of events (such
as the start of an element), iterate over the attributes of an element, skip ahead in the
document, stop processing at any time, get sub-elements of a particular element, and
filter out elements as desired. Because you are asking for events rather than reacting to
them, using the streaming API is often referred to as pull parsing.

You can parse many types of XML documents with the streaming API, such as XML
files on the operating system, DOM trees, and sets of SAX events. You convert these
XML documents into a stream of events, or an XMLInputStream, and then step
through the stream, pulling events such as the start of an element, the end of the
document, and so on, off the stack as needed.

Note: The WebLogic XML Streaming API has been deprecated as of
release 9.0 of WebLogic Server. You should instead use the Streaming
API for XML (StAX), a standard specification from the Java
Community Process. For details, see Chapter 4, "Using the Streaming
API for XML (StAX)."

Javadocs for the WebLogic XML Streaming API

B-2 Programming XML for Oracle WebLogic Server

The WebLogic Streaming API uses the WebLogic FastParser as its default parser.

For a complete example of parsing an XML document using the streaming API, see the
WL_HOME\samples\server\examples\src\examples\xml\orderParser
directory, where WL_HOME refers to the top-level WebLogic Server directory.

Table B–1 describes the main interfaces and classes of the WebLogic Streaming API.

B.2 Javadocs for the WebLogic XML Streaming API
The following Javadocs provide reference material for the WebLogic XML Streaming
API features described in this chapter as well as additional features not explicitly
documented:

■ "weblogic.xml.stream"

■ "weblogic.xml.stream.util"

B.3 Parsing an XML Document: Typical Steps
The following procedure describes the typical steps for using the WebLogic XML
Streaming API to parse and manipulate an XML document.

The first two steps are required. The next steps you take depend on how you want to
process the XML file.

1. Import the weblogic.xml.stream.* classes.

2. Get an XML stream of events from an XML file, a DOM tree, or a set of SAX
events. You can also filter the XML stream to get only certain types of events,
names of specific elements, and so on. See Section B.3.2, "Getting an XML Input
Stream."

3. Iterate over the stream, returning generic XMLEvent types. See Section B.3.6,
"Iterating Over the Stream."

Table B–1 Interfaces and Classes of the XML Streaming API

Interface or Class Description

XMLInputStreamFactory Factory used to create XMLInputStream objects for parsing
XML documents.

XMLInputStream Interface used to contain the input stream of events.

BufferedXMLInputStream Extension of the XMLInputStream interface to allow
marking and resetting of the stream.

XMLOutputStreamFactory Factory used to create XMLOutputStream objects for
generating XML documents.

XMLOutputStream Interface used write events.

ElementFactory Utility to create instances of the interfaces used in this API.

XMLEvent Base interface for all types of events in an XML document,
such as the start of an element, the end of an element, and so
on.

StartElement Most important of the XMLEvent sub-interfaces. Used to get
information about a start element in an XML document.

AttributeIterator Object used to iterate over the set of attributes of an element.

Attribute Object that describes a particular attribute of an element.

Parsing an XML Document: Typical Steps

Using the WebLogic XML Streaming API (Deprecated) B-3

4. For each generic XMLEvent type, determine the specific event type. Event types
include the start of an XML document, the end of an element, an entity reference,
and so on. See Section B.3.7, "Determining the Specific XMLEvent Type."

5. Get the attributes of an element. See Section B.3.8, "Getting the Attributes of an
Element."

6. Position the stream by skipping over event, skipping to a particular event, and so
on. See Section B.3.9, "Positioning the Stream."

7. Get the children of an element. See Section B.3.10, "Getting a Substream."

8. Close the stream. See Section B.3.12, "Closing the Input Stream."

B.3.1 Example of Parsing an XML Document
The following program shows an example of using the XML Streaming API to parse
an XML document.

The program takes a single parameter, an XML file, that it converts into an XML input
stream. It then iterates over the stream, determining the type of each event, such as the
start of an XML element, the end of the XML document, and so on. The program prints
out information for three types of events: start elements, end elements, and the
character data that forms the body of an element. The program does nothing when it
encounters the other types of events, such as comments or start of the XML document.

package examples.xml.stream;
import weblogic.xml.stream.Attribute;
import weblogic.xml.stream.AttributeIterator;
import weblogic.xml.stream.ChangePrefixMapping;
import weblogic.xml.stream.CharacterData;
import weblogic.xml.stream.Comment;
import weblogic.xml.stream.XMLEvent;
import weblogic.xml.stream.EndDocument;
import weblogic.xml.stream.EndElement;
import weblogic.xml.stream.EntityReference;
import weblogic.xml.stream.ProcessingInstruction;
import weblogic.xml.stream.Space;
import weblogic.xml.stream.StartDocument;
import weblogic.xml.stream.StartPrefixMapping;
import weblogic.xml.stream.StartElement;
import weblogic.xml.stream.EndPrefixMapping;
import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLInputStreamFactory;
import weblogic.xml.stream.XMLName;
import weblogic.xml.stream.XMLStreamException;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
public class ComplexParse {
 /**
 * Helper method to get a handle on a stream.
 * Takes in a name and returns a stream. This
 * method usese the InputStreamFactory to create an
 * instance of an XMLInputStream
 * @param name The file to parse
 * @return XMLInputStream the stream to parse

Note: The code in bold font is described in detail in the sections
following the example.

Parsing an XML Document: Typical Steps

B-4 Programming XML for Oracle WebLogic Server

 */
 public XMLInputStream getStream(String name)
 throws XMLStreamException, FileNotFoundException
 {
 XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
 XMLInputStream stream = factory.newInputStream(new FileInputStream(name));
 return stream;
 }
 /**
 * Determines the type of event, such as the start
 * of an element, end of a document, and so on. If the
 * event is of type START_ELEMENT, END_ELEMENT, or
 * CHARACTER_DATA, the method prints out appropriate info;
 * otherwise, it does nothing.
 * @param event The XML event that has been parsed
 */
 public void parse(XMLEvent event)
 throws XMLStreamException
 {
 switch(event.getType()) {
 case XMLEvent.START_ELEMENT:
 StartElement startElement = (StartElement) event;
 System.out.print("<" + startElement.getName().getQualifiedName());
 AttributeIterator attributes = startElement.getAttributesAndNamespaces();
 while(attributes.hasNext()){
 Attribute attribute = attributes.next();
 System.out.print(" " + attribute.getName().getQualifiedName() +
 "='" + attribute.getValue() + "'");
 }
 System.out.print(">");
 break;
 case XMLEvent.END_ELEMENT:
 System.out.print("</" + event.getName().getQualifiedName() +">");
 break;
 case XMLEvent.SPACE:
 case XMLEvent.CHARACTER_DATA:
 CharacterData characterData = (CharacterData) event;
 System.out.print(characterData.getContent());
 break;
 case XMLEvent.COMMENT:
 // Print comment
 break;
 case XMLEvent.PROCESSING_INSTRUCTION:
 // Print ProcessingInstruction
 break;
 case XMLEvent.START_DOCUMENT:
 // Print StartDocument
 break;
 case XMLEvent.END_DOCUMENT:
 // Print EndDocument
 break;
 case XMLEvent.START_PREFIX_MAPPING:
 // Print StartPrefixMapping
 break;
 case XMLEvent.END_PREFIX_MAPPING:
 // Print EndPrefixMapping
 break;
 case XMLEvent.CHANGE_PREFIX_MAPPING:
 // Print ChangePrefixMapping
 break;

Parsing an XML Document: Typical Steps

Using the WebLogic XML Streaming API (Deprecated) B-5

 case XMLEvent.ENTITY_REFERENCE:
 // Print EntityReference
 break;
 case XMLEvent.NULL_ELEMENT:
 throw new XMLStreamException("Attempt to write a null event.");
 default:
 throw new XMLStreamException("Attempt to write unknown event
 ["+event.getType()+"]");
 }
 }
 /**
 * Helper method to iterate over a stream
 * @param name The file to parse
 */
 public void parse(XMLInputStream stream)
 throws XMLStreamException
 {
 while(stream.hasNext()) {
 XMLEvent event = stream.next();
 parse(event);
 }
 stream.close();
 }
 /** Main method. Takes a single argument: an XML file
 * that will be converted into an XML input stream.
 */
 public static void main(String args[])
 throws Exception
 {
 ComplexParse complexParse= new ComplexParse();
 complexParse.parse(complexParse.getStream(args[0]));
 }
}

B.3.2 Getting an XML Input Stream
You can use the XML Streaming API to convert a variety of objects, such as XML files,
DOM trees, or SAX events, into a stream of events.

The following example shows how to create a stream of events from an XML file:

XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
XMLInputStream stream = factory.newInputStream(new FileInputStream(name));

First you create a new instance of the XMLInputStreamFactory, then use the factory
to create a new XMLInputStream from the XML file referred to in the name variable.

The following example shows how to create a stream from a DOM tree:

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setValidating(false);
dbf.setNamespaceAware(true);
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse(new java.io.File(file));
XMLInputStream stream = XMLInputStreamFactory.newInstance().newInputStream(doc);

B.3.3 Getting a Buffered XML Input Stream
After you finish iterating over an XMLInputStream object, you cannot access the
stream again. If, however, you need to process the stream again, such as send it to

Parsing an XML Document: Typical Steps

B-6 Programming XML for Oracle WebLogic Server

another application or iterate over it again in some other way, use a
BufferedXMLInputStream object rather than a plain XMlInputStream object.

Use the newBufferedInputStream() method of the XMLInputStreamFactory
class to create a buffered XML input stream, as shown in the following example:

XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
BufferedXMLInputStream bufstream =
 factory.newBufferedInputStream(factory.newInputStream(new
 FileInputStream(name)));

You can use the mark() and reset() methods of the BufferedXMLInputStream
object to mark a particular spot in the stream, continue processing the stream, then
reset the stream back to the marked spot. See Section B.3.11, "Marking and Resetting a
Buffered XML Input Stream" for more information.

B.3.4 Filtering the XML Stream
Filtering an XML stream refers to creating a stream that contains only specified types
of events. For example, you can create a stream that contains only start elements, end
elements, and the character data that make up the body of an XML element. Another
example is filtering an XML stream so that only elements with a specified name
appear in the stream.

To filter an XML stream, you specify a filter class as the second parameter to the
XMLInputStreamFactory.newInputStream() method. You specify the events
that you want in the XML stream as parameters to the filter class. The following
example shows how to use the TypeFilter class to specify that you want only start
and end XML elements and character data in the resulting XML stream:

import weblogic.xml.stream.util.TypeFilter;
XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
XMLInputStream stream = factory.newInputStream(new FileInputStream(name),
 new TypeFilter(XMLEvent.START_ELEMENT |
 XMLEvent.END_ELEMENT |
 XMLEvent.CHARACTER_DATA));

Table B–2 describes the filters provided by the WebLogic XML Streaming API. They
are part of the weblogic.xml.stream.util package.

Table B–2 Filters Provided by WebLogic XML Streaming API

Name of Filter Description Sample Usage

TypeFilter Filter an XML stream based on
specified event types, such as
XMLEvent.START_ELEMENT,
XMLEvent.END_ELEMENT, and so
on. See Section B.3.7, "Determining
the Specific XMLEvent Type" for a
full list of event types.

TypeFilter takes an integer bitmask
as input; you OR the values to
create this bitmask, as shown in the
sample.

new TypeFilter (XMLEvent.START_ELEMENT |
 XMLEvent.END_ELEMENT |
 XMLEvent.CHARACTER_DATA)

Parsing an XML Document: Typical Steps

Using the WebLogic XML Streaming API (Deprecated) B-7

B.3.5 Creating a Custom Filter
You can also create your own filter if the ones included in the API do not meet your
needs.

1. Create a class that implements the ElementFilter interface and contains a
method called accept(XMLEvent). This method tells the
XMLInputStreamFactory.newInputStream() method whether to add a
particular event to the stream or not, as shown in the following example:

package my.filters;

import weblogic.xml.stream.XMLName;
import weblogic.xml.stream.ElementFilter;
import weblogic.xml.stream.events.NullEvent;

public class SuperDooperFilter implements ElementFilter {

 protected String name;

 public SuperDooperFilter(String name)
 {
 this.name = name;
 }

 public boolean accept(XMLEvent e) {
 if (name.equals(e.getName().getLocalName()))
 return true;
 return false;
 }
}

2. In your XML application, be sure to import the new filter class:

import my.filters.SuperDooperFilter

3. Specify the filter as the second parameter to the newInputStream() method,
passing to the filter class the types of events you want to appear in the XML
stream in whatever format required by your filter class:

XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
XMLInputStream stream = factory.newInputStream(new FileInputStream(name),
 new SuperDooperFilter(param));

NameFilter Filter an XML stream based on the
name of an element in the XML
document.

new NameFilter ("Book")

NameSpaceFilter Filter an XML stream based on the
specified namespace URI.

new NameSpaceFilter ("http://namespace.org")

NamespaceTypeFilter Filter an XML stream based on
specified event types and
namespace URI. This filter combines
the functionality of TypeFilter
and NameSpaceFilter.

new NamespaceFilter ("http://namespace.org",
XMLEvent.START_ELEMENT)

The example returns a stream where all start
elements have the specified namespace.

Table B–2 (Cont.) Filters Provided by WebLogic XML Streaming API

Name of Filter Description Sample Usage

Parsing an XML Document: Typical Steps

B-8 Programming XML for Oracle WebLogic Server

B.3.6 Iterating Over the Stream
Once you have a stream of events, the next step is to methodically step through it
using the XMLInputStream.next() and XMLInputStream.hasNext() methods,
as shown in the following example:

while(stream.hasNext()) {
 XMLEvent event = stream.next();
 System.out.print(event);
}

B.3.7 Determining the Specific XMLEvent Type
The XMLInputStream.next() method returns an object of type XMLEvent.
XMLEvent has subinterfaces that further classify what this event might be, such as the
start of the XML document, the end of an element, an entity reference, and so on. The
XMLEvent interface also contains corresponding fields, or constants, as well as a set of
methods that you can use to identify the actual event. Figure B–1 shows the hierarchy
of the XMLEvent interface and its subinterfaces.

Figure B–1 Hierarchy of the XMLEvent Interface and Its SubInterfaces

Table B–3 lists the subclasses and fields of the XMLEvent class that you can use to
identify a particular event while parsing the XML stream

Parsing an XML Document: Typical Steps

Using the WebLogic XML Streaming API (Deprecated) B-9

The following example shows how to use the Java case statement to determine the
particular type of event that was returned by the XMLInputStream.next() method.
For simplicity, the example simply prints that an event has been found; later sections
show further processing of the event.

 switch(event.getType()) {
 case XMLEvent.START_ELEMENT:
 // Start of an element
 System.out.println ("Start Element\n");
 break;

 case XMLEvent.END_ELEMENT:
 // End of an element
 System.out.println ("End Element\n");
 break;

 case XMLEvent.PROCESSING_INSTRUCTION:
 // Processing Instruction

Table B–3 Subclasses and Fields of the XMLEvent Class

XMLEvent Subclass
Field of the XMLEvent Class
used to Identify Subclass

Method used to
Identify Subclass

Description of the Subclass
Event

ChangePrefixMapping CHANGE_PREFIX_MAPPING isChangePrefixMapping Signals that a prefix mapping
has changed from an old
namespace to a new
namespace.

CharacterData CHARACTER_DATA isCharacterData Signals that the returned
XMLEvent object contains
the character data from the
body of the element.

Comment COMMENT isComment Signals that the returned
XMLEvent object contains an
XML comment.

EndDocument END_DOCUMENT isEndDocument Signals the end of the XML
document.

EndElement END_ELEMENT isEndElement Signals the end of an element
in the XML document.

EndPrefixMapping END_PREFIX_MAPPING isEndPrefixMapping Signals that a prefix mapping
has gone out of scope.

EntityReference ENTITY_REFERENCE isEntityReference Signals that the returned
XMLEvent object contains an
entity reference.

ProcessingInstruction PROCESSING_INSTRUCTION isProcessingInstruction Signals that the returned
XMLEvent object contains a
processing instruction.

Space SPACE isSpace Signals that the returned
XMLEvent object contains
whitespace.

StartDocument START_DOCUMENT isStartDocument Signals the start of an XML
document.

StartElement START_ELEMENT isStartElement Signals the start of a element
in the XML document.

StartPrefixMapping START_PREFIX_MAPPING isStartPrefixMapping Signals that a prefix mapping
has started its scope.

Parsing an XML Document: Typical Steps

B-10 Programming XML for Oracle WebLogic Server

 System.out.println ("Processing instruction\n");
 break;

 case XMLEvent.SPACE:
 // Whitespace
 System.out.println ("White space\n");
 break;

 case XMLEvent.CHARACTER_DATA:
 // Character data
 System.out.println ("Character data\n");
 break;

 case XMLEvent.COMMENT:
 // Comment
 System.out.println ("Comment\n");
 break;

 case XMLEvent.START_DOCUMENT:
 // Start of the XML document
 System.out.println ("Start Document\n");
 break;

 case XMLEvent.END_DOCUMENT:
 // End of the XML Document
 System.out.println ("End Document\n");
 break;

 case XMLEvent.START_PREFIX_MAPPING:
 // The start of a prefix mapping scope
 System.out.println ("Start prefix mapping\n");
 break;

 case XMLEvent.END_PREFIX_MAPPING:
 // The end of a prefix mapping scope
 System.out.println ("End prefix mapping\n");
 break;

 case XMLEvent.CHANGE_PREFIX_MAPPING:
 // Prefix mapping has changed namespaces
 System.out.println ("Change prefix mapping\n");
 break;

 case XMLEvent.ENTITY_REFERENCE:
 // An entity reference
 System.out.println ("Entity reference\n");
 break;
 default:

 throw new XMLStreamException("Attempt to parse unknown event
 [" + event.getType() + "]");
 }

B.3.8 Getting the Attributes of an Element
To get the attributes of an element in an XML document, you must first cast the
XMLEvent object that was returned by the XMLInputStream.next() method to a
StartElement object.

Parsing an XML Document: Typical Steps

Using the WebLogic XML Streaming API (Deprecated) B-11

Because you do not know how many attributes an element might have, you must first
create an AttributeIterator object to contain the entire list of attributes, and then
iterate over the list until there are no more attributes. The following example describes
how to do this as part of the START_ELEMENT case of the switch statement shown in
Section B.3.6, "Iterating Over the Stream":

case XMLEvent.START_ELEMENT:

 StartElement startElement = (StartElement) event;
 System.out.print("<" + startElement.getName().getQualifiedName());
 AttributeIterator attributes = startElement.getAttributesAndNamespaces();
 while(attributes.hasNext()){
 Attribute attribute = attributes.next();
 System.out.print(" " + attribute.getName().getQualifiedName() +
 "='" + attribute.getValue() + "'");
 }
 System.out.print(">");
 break;

The example first creates a StartElement object by casting the returned XMLEvent
to StartElement. It then creates an AttributeIterator object using the method
StartElement.getAttributesAndNamespaces(), and iterates over the
attributes using the AttributeIterator.hasNext() method. For each
Attribute, it uses the Attributes.getName().getQualifiedName() and
Attribute.getValue() methods to return the name and value of the attribute.

You can also use the getNamespace() and getAttributes() methods to return
just the namespaces or attributes on their own.

B.3.9 Positioning the Stream
Table B–4 describes the methods of the XMLInputStream interface that you can use to
skip ahead to specific locations in the stream.

The following example shows how you can modify the basic code for iterating over an
input stream to skip over the character data in the body of an XML element:

 while(stream.hasNext()) {
 XMLEvent peek = stream.peek();

Table B–4 Methods Used to Position the Input Stream

Method of
XMLInputStream Description

skip() Positions the input stream to the next stream event.

Note: The next event might not necessarily be an actual element in
the XML file; for example, it could be a comment or white space.

skip(int) Positions the input stream to the next event of this type.

Examples of event types are XMLEvent.START_ELEMENT and
XMLEvent.END_DOCUMENT. Refer to Table B–3 for the full list of
event types.

skip(XMLName) Positions the input stream to the next event of this name.

skip(XMLName, int) Positions the input stream to the next event of this name and type.

skipElement() Skips to the next element (does not skip to the sub-elements of the
current element).

peek() Checks the next event without actually reading it from the stream.

Parsing an XML Document: Typical Steps

B-12 Programming XML for Oracle WebLogic Server

 if (peek.getType() == XMLEvent.CHARACTER_DATA) {
 stream.skip();
 continue;
 }
 XMLEvent event = stream.next();
 parse(event);
 }

The example shows how to use the XMLInputStream.peek() method to determine
the next event on the stream. If the type of event is XMLEvent.CHARACTER_DATA,
then skip the event and go to the next one.

B.3.10 Getting a Substream
Use the XMLInputStream.getSubStream() method to get a copy of the next
element, including all its subelements. The getSubstream() method returns an
XMLInputStream object. Your position in the parent stream (or the stream from
which you called getSubStream()) does not move. In the parent stream, if you want
to skip the element you just got with getSubStream(), use the skipElement()
method.

The getSubStream() method keeps a count of the START_ELEMENT and END_
ELEMENT events it encounters, and as soon as the number is equal (or in other words,
as soon as it finds the complete next element) it stops and returns the resulting
substream as an XMLInputStream object.

For example, assume that you are using the XML Streaming API to parse the following
XML document, but you are only interested in the substream delineated by the
<content> and </content> tags:

<book>
 <title>The History of the World</title>
 <author>Juliet Shackell</author>
 <publisher>CrazyDays Publishing</publisher>
 <content>
 <chapter title='Just a Speck of Dust'>
 <synopsis>The world as a speck of dust</synopsis>
 <para>Once the world was just a speck of dust...</para>
 </chapter>
 <chapter title='Life Appears'>
 <synopsis>Move over dust, here comes life.</synopsis>
 <para>Happily, the dust got a companion: life...</para>
 </chapter>
 </content>
</book>

The following code fragment shows how you can skip to the <content> start element
tag, get the substream, and parse it using a separate ComplexParse object:

 if (stream.skip(ElementFactory.createXMLName("content")))
 {
 ComplexParse complexParse = new ComplexParse();
 complexParse.parse(stream.getSubStream());
 }

When you call this method on the previous XML document, you get the following
output:

<content>
 <chapter title='Just a Speck of Dust'>
 <synopsis>The world as a speck of dust</synopsis>

Generating a New XML Document: Typical Steps

Using the WebLogic XML Streaming API (Deprecated) B-13

 <para>Once the world was just a speck of dust...</para>
 </chapter>
 <chapter title='Life Appears'>
 <synopsis>Move over dust, here comes life.</synopsis>
 <para>Happily, the dust got a companion: life...</para>
 </chapter>
</content>

B.3.11 Marking and Resetting a Buffered XML Input Stream
If you are using a BufferedXMLInputStream object, you can use the mark() and
reset() methods to mark the stream at a particular spot, process the stream, and
then subsequently reset the stream back to the marked spot. These methods are useful
if you want to further manipulate the stream after initially iterating over it.

The following example shows a typical use of the BufferedXMLInputStream object:

 XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
 BufferedXMLInputStream bufstream =
 factory.newBufferedInputStream(factory.newInputStream(new
 FileInputStream(name)));

 // mark the start of the stream
 bufstream.mark();

 // process it locally
 bufferedParse.parse(bufstream);

 // reset the stream to the mark
 bufstream.reset();

 // send stream off to another application
 ComplexParse complexParse = new ComplexParse();
 complexParse.parse(bufstream);

B.3.12 Closing the Input Stream
It is good programming practice to explicitly close the XML input stream when you
are finished with it. To close an input stream, use the XMLInputStream.close()
method, as shown in the following example:

// close the input stream
input.close();

B.4 Generating a New XML Document: Typical Steps
The following procedure describes the typical steps for using the WebLogic XML
Streaming API to generate a new XML document.

The first two steps are required. The next steps you take depend on how you want to
generate the XML file.

1. Import the weblogic.xml.stream.* classes.

Note: If you read a buffered stream without marking it, you cannot
access what you've just read. In other words, just because the stream
is buffered, it does not automatically mean you can reread it. You
must mark it first.

Generating a New XML Document: Typical Steps

B-14 Programming XML for Oracle WebLogic Server

2. Create an XML output stream to which to write the XML document. See
Section B.4.2, "Creating an XML Output Stream."

3. Add events to the XML output stream. See Section B.4.3, "Adding Elements to the
Output Stream."

4. Add attributes to the XML output stream. See Section B.4.4, "Adding Attributes to
an Element on the Output Stream."

5. Add an input stream to the output stream. See Section B.4.5, "Adding an Input
Stream to an Output Stream."

6. Print the output stream. See Section B.4.6, "Printing an Output Stream."

7. Close the output stream. See Section B.4.7, "Closing the Output Stream."

B.4.1 Example of Generating an XML Document
The following program shows an example of using the XML Streaming API to
generate an XML document.

The program first creates an output stream based on a PrintWriter object, then
adds elements to the output stream to create a simple XML purchase order, described
in the comments of the program. The program also shows how to add an input stream
based on a separate XML file to the output stream.

package examples.xml.stream;

import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLOutputStream;
import weblogic.xml.stream.XMLInputStreamFactory;
import weblogic.xml.stream.XMLName;
import weblogic.xml.stream.XMLEvent;
import weblogic.xml.stream.StartElement;
import weblogic.xml.stream.EndElement;
import weblogic.xml.stream.Attribute;
import weblogic.xml.stream.ElementFactory;
import weblogic.xml.stream.XMLStreamException;
import weblogic.xml.stream.XMLOutputStreamFactory;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.PrintWriter;

/**
 * Program that prints out a very simple purchase order that looks
 * like the following:
 *
 * <purchase_order>
 * <name>Juliet Shackell</name>
 * <item id="1234" quantity="2">Fabulous Chair</item>
 * <!-- this is a comment-->
 * <another_file>
 * This comes from another file called "another_file.xml"
 * </another_file>
 * </purchase_order>
 *

Note: The topics following the example describe it in more detail.

Generating a New XML Document: Typical Steps

Using the WebLogic XML Streaming API (Deprecated) B-15

 * In the preceding XML file, the <another_file> element is actually another
 * XML file that is passed as an argument to the program, converted into an
 * XMLInputStream, then added to the output stream.
 */
public class PrintPurchaseOrder {

 /**
 * Helper method to get a handle on a stream.
 * Takes in a name and returns a stream. This
 * method uses the InputStreamFactory to create an
 * instance of an XMLInputStream
 * @param name The file to parse
 * @return XMLInputStream the stream to parse
 */
 public XMLInputStream getInputStream(String name)
 throws XMLStreamException, FileNotFoundException
 {
 XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
 XMLInputStream stream = factory.newInputStream(new FileInputStream(name));
 return stream;
 }
 public static void main(String args[])
 throws Exception
 {
 PrintPurchaseOrder printer = new PrintPurchaseOrder();
 //
 // Create an output stream.
 //
 XMLOutputStreamFactory factory = XMLOutputStreamFactory.newInstance();
 XMLOutputStream output = factory.newOutputStream(new
 PrintWriter(System.out,true));
 // add the <purchase_order> root element
 output.add(ElementFactory.createStartElement("purchase_order"));
 output.add(ElementFactory.createCharacterData("\n"));

 // add the <name> element
 output.add(ElementFactory.createStartElement("name"));
 output.add(ElementFactory.createCharacterData("Juliet Shackell"));
 output.add(ElementFactory.createEndElement("name"));
 output.add(ElementFactory.createCharacterData("\n"));

 // add the <item> element along with the id and quantity attributes
 output.add(ElementFactory.createStartElement("item"));
 output.add(ElementFactory.createAttribute("id","1234"));
 output.add(ElementFactory.createAttribute("quantity","2"));
 output.add(ElementFactory.createCharacterData("Fabulous Chair"));
 output.add(ElementFactory.createEndElement("item"));
 output.add(ElementFactory.createCharacterData("\n"));

 // add a comment
 output.add("<!-- this is a comment-->");
 output.add(ElementFactory.createCharacterData("\n"));

 // create an input stream from each XML file argument then add it to the output
 for (int i=0; i < args.length; i++)
 //
 // Get an input stream and add it to the output stream
 //
 output.add(printer.getInputStream(args[i]));

Generating a New XML Document: Typical Steps

B-16 Programming XML for Oracle WebLogic Server

 // Finally, end the root "purchase_order" element
 output.add(ElementFactory.createEndElement("purchase_order"));
 output.add(ElementFactory.createCharacterData("\n"));

 //
 // Print the results to the screen
 //
 output.flush();

 // Close the output streams
 output.close();
 }
}

The preceding program produces the following output:

<purchase_order>
 <name>Juliet Shackell</name>
 <item id="1234" quantity="2">Fabulous Chair</item>
 <!-- this is a comment-->
 <another_file>
 This is from another file.
 </another_file>
</purchase_order>

B.4.2 Creating an XML Output Stream
One of the first steps in generating an XML document using the Weblogic XML
Streaming API is to create an output stream which holds the document as it is being
built. Creating an XML output stream is similar to creating an input stream: you first
create an instance of the XMLOutputStreamFactory and then create an output
stream with the XMLOutputStreamFactory.newOutputStream() method, as
shown in the following example:

 XMLOutputStreamFactory factory = XMLOutputStreamFactory.newInstance();
 XMLOutputStream output = factory.newOutputStream(new
 PrintWriter(System.out,true));

The following example shows how to create an XMLOutputStream based on a DOM
tree:

 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setValidating(false);
 dbf.setNamespaceAware(true);
 Document doc = dbf.newDocumentBuilder().newDocument();
 XMLOutputStream out =
 XMLOutputStreamFactory.newInstance().newOutputStream(doc);

You can use the XMLOutputStreamFactory.newOutputStream() method to
create an output stream based on the following four Java objects, depending on what
the final form of the XML document will be (such as a file on the operating system, a
DOM tree, and so on):

■ java.io.OutputStream

■ java.io.Writer

■ org.xml.sax.ContentHandler

■ org.w3c.dom.Document

Generating a New XML Document: Typical Steps

Using the WebLogic XML Streaming API (Deprecated) B-17

B.4.3 Adding Elements to the Output Stream
Use the XMLOutputStream.add(XMLEvent) method to add elements to the output
stream. Use the ElementFactory to create the particular element.

The ElementFactory interface includes methods to create each type of element; the
general format is ElementFactory.createXXX() where XXX refers to the
particular element, such as createStartElement(), createCharacterData(),
and so on. You can create most elements by passing the name as a String or as an
XMLName.

For example, assume you want to create the following snippet of XML:

<name>Juliet Shackell</name>

The Java code to add this element to an output stream is as follows:

 output.add(ElementFactory.createStartElement("name"));
 output.add(ElementFactory.createCharacterData("Juliet Shackell"));
 output.add(ElementFactory.createEndElement("name"));
 output.add(ElementFactory.createCharacterData("\n"));

The final createCharacterData() method adds a newline character to the output
stream. This is optional, but useful if you want to create human-readable XML.

B.4.4 Adding Attributes to an Element on the Output Stream
Use the XMLOutputStream.add(Attribute) to add attributes to an element you
have just created. Use the ElementFactory.createAttribute() method to create
a particular attribute.

For example, assume you want to create the following snippet of XML:

<item id="1234" quantity="2">Fabulous Chair</item>

The Java code to add this element to an output stream is as follows:

 output.add(ElementFactory.createStartElement("item"));
 output.add(ElementFactory.createAttribute("id","1234"));
 output.add(ElementFactory.createAttribute("quantity","2"));
 output.add(ElementFactory.createCharacterData("Fabulous Chair"));
 output.add(ElementFactory.createEndElement("item"));
 output.add(ElementFactory.createCharacterData("\n"));

Tip: The XMLOutputStream does not validate your XML.

Note: Each time you create a start element, you must explicitly also
create an end element at some point. The same rule applies to creating
a start document.

Generating a New XML Document: Typical Steps

B-18 Programming XML for Oracle WebLogic Server

B.4.5 Adding an Input Stream to an Output Stream
When creating an XML output stream, you might want to add an existing XML
document, such as an XML file or a DOM tree, to the output stream. To do this, you
must first convert the XML document to an XML input stream, then use
XMLOutputStream.add(XMLInputStream) method to add the input stream to the
output stream.

The following example first shows a method called getInputStream() that creates an
XML input stream from an XML file and then how to use the method to add the
created input stream to an output stream:

 /**
 * Helper method to get a handle on a stream.
 * Takes in a name and returns a stream. This
 * method uses the InputStreamFactory to create an
 * instance of an XMLInputStream
 * @param name The file to parse
 * @return XMLInputStream the stream to parse
 */

 public XMLInputStream getInputStream(String name)
 throws XMLStreamException, FileNotFoundException
 {
 XMLInputStreamFactory factory = XMLInputStreamFactory.newInstance();
 XMLInputStream stream = factory.newInputStream(new FileInputStream(name));
 return stream;
 }

....

 // create an input stream from each XML file argument then add it to the output
 for (int i=0; i < args.length; i++)
 //
 // Get an input stream and add it to the output stream
 //
 output.add(printer.getInputStream(args[i]));

B.4.6 Printing an Output Stream
Use the XMLOutputStream.flush() method to print out the XML output stream to
whatever object you created it from. For example, if you created an XML output
stream from a PrintWriter object, then the flush() method prints the stream to
the standard output.

Note: Be sure you add attributes to an element after you create the
start element but before you create the corresponding end element.
Otherwise, although your code will compile successfully, you will get
a runtime error when you try to run the program. For example, the
following code returns an error because the attributes are added to the
<item> element after the element has been explicitly ended:

output.add(ElementFactory.createStartElement("item"));
output.add(ElementFactory.createEndElement("item"));
output.add(ElementFactory.createAttribute("id","1234"));
output.add(ElementFactory.createAttribute("quantity","2"));
output.add(ElementFactory.createCharacterData("Fabulous Chair"));
output.add(ElementFactory.createCharacterData("\n"));

Generating a New XML Document: Typical Steps

Using the WebLogic XML Streaming API (Deprecated) B-19

The following example shows how to print an output stream:

 //
 // Print the results to the screen
 //
 output.flush();

B.4.7 Closing the Output Stream
It is good programming practice to explicitly close the XML output stream when you
are finished with it. To close an output stream, use the XMLOutputStream.close()
method, as shown in the following example:

// close the output stream
output.close();

Note: If you are writing to an XMLOutputStream based on a DOM
tree, you must execute the flush() method before you can
manipulate the DOM.

Generating a New XML Document: Typical Steps

B-20 Programming XML for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 Samples for the XML Developer
	1.4.1 XML Examples in the WebLogic Server Distribution

	1.5 New and Changed XML Features in This Release
	1.6 Summary of WebLogic Server XML Features
	1.6.1 XML Document Parsers
	1.6.1.1 Difference In Default Parsers Between Versions 8.1 and 9.1 of WebLogic Server

	1.6.2 XML Document Transformer
	1.6.3 Streaming API for XML (StAX) Implementation
	1.6.4 WebLogic XPath API
	1.6.5 JAXP Pluggability Layer Implementation
	1.6.6 Java API for XML Registries Implementation
	1.6.7 WebLogic Servlet Attributes
	1.6.8 WebLogic XSLT JSP Tag Library
	1.6.9 XML Registry For Configuring Parsers and Transformers
	1.6.10 XML Registry for Configuring External Entity Resolution

	1.7 Endorsed Standards Override Mechanism for DOM/SAX: Not Supported
	1.8 Learning More About XML

	2 XML Overview
	2.1 What Is XML?
	2.2 How Do You Describe an XML Document?
	2.3 Why Use XML?
	2.4 What Are XSL and XSLT?
	2.5 What Are DOM and SAX?
	2.5.1 SAX
	2.5.2 DOM

	2.6 What Is the Streaming API for XML (StAX)?
	2.7 What Is JAXP?
	2.7.1 JAXP Packages
	2.7.2 New Feature of JAXP 1.2

	2.8 Common Uses of XML and XSLT
	2.8.1 Using XML and XSLT to Separate Content from Presentation
	2.8.2 XML as a Message Format for Business-to-Business Communication

	3 Developing XML Applications with WebLogic Server
	3.1 Developing XML Applications: Main Steps
	3.2 Parsing XML Documents
	3.2.1 Parsing XML Documents Using JAXP in SAX Mode
	3.2.2 Parsing XML Documents Using JAXP in DOM Mode
	3.2.3 Parsing XML Documents in a Servlet
	3.2.4 Using the org.xml.sax.DefaultHandler Attribute to Parse a Document
	3.2.5 Using the org.w3c.dom.Document Attribute to Parse a Document
	3.2.6 Validating and Non-Validating Parsers
	3.2.7 Handling Entity Resolution While Parsing an XML Document
	3.2.8 General Information About External Entities
	3.2.9 Using the WebLogic Server Entity Resolution Features
	3.2.10 Using Parsers Other Than the Default

	3.3 Generating New XML Documents
	3.3.1 Generating XML from a DOM Document Tree
	3.3.2 Generating XML Documents in a JSP

	3.4 Transforming XML Documents
	3.4.1 Using JAXP to Transform XML Data
	3.4.2 Example of Transforming an XML Document Using JAXP
	3.4.3 Using the JSP Tag to Transform XML Data
	3.4.4 XSLT JSP Tag Syntax
	3.4.5 XSLT JSP Tag Usage
	3.4.6 Transforming XML Documents Using an XSLT JSP Tag
	3.4.7 Example of Using the XSLT JSP Tag in a JSP
	3.4.8 Using Transformers Other Than the Default Transformer

	4 Using the Streaming API for XML (StAX)
	4.1 Overview of the Streaming API for XML
	4.1.1 Description of the Cursor API
	4.1.2 The XMLStreamReader Interface
	4.1.3 The XMLStreamWriter Interface
	4.1.4 Description of the Event Iterator API
	4.1.5 Main Interfaces and Classes of StAX

	4.2 Parsing XML With the XMLStreamReader Interface: Typical Steps
	4.2.1 Example of Parsing XML Using StAX
	4.2.2 Getting the XMLStreamReader Object
	4.2.3 Determining the Specific XML Event Type
	4.2.4 Getting the Full Name of an Element
	4.2.5 Getting the Attributes of an Element
	4.2.6 Getting the Namespaces of an Element
	4.2.7 Getting Text Data
	4.2.8 Getting Location Information
	4.2.9 Closing the Input Stream

	4.3 Generating XML Using the XMLStreamWriter Interface: Typical Steps
	4.3.1 Example of Generating XML Using StAX
	4.3.2 Getting the XMLStreamWriter Object
	4.3.3 Adding the XML Declaration to the Output Stream
	4.3.4 Adding Standard XML Events to the Output Stream
	4.3.5 Adding Attributes and Namespace Declarations to a Start Element
	4.3.6 Closing the Output Stream

	4.4 Properties Defined for the XMLInputFactory Interface
	4.5 Properties Defined for the XMLOutputFactory Interface

	5 Using Advanced XML APIs
	5.1 Using the Java API for XML Registries (JAXR) API
	5.2 Using the WebLogic XPath API
	5.2.1 Using the DOMXPath Class
	5.2.2 Example of Using the DOMXPath Class
	5.2.3 Main Steps When Using the DOMXPath Class
	5.2.4 Using the StreamXPath Class
	5.2.5 Example of Using the StreamXPath Class
	5.2.6 Main Steps When Using the StreamXPath Class

	6 XML Programming Best Practices
	6.1 When to Use the DOM, SAX, and StAX APIs
	6.2 Increasing Performance of XML Validation
	6.3 When to Use XML Schemas or DTDs
	6.4 Configuring External Entity Resolution for Maximum Performance
	6.5 Using SAX InputSources
	6.6 Improving Performance of Transformations

	7 XML Programming Techniques
	7.1 Transmitting XML Data Between A Java Client and WebLogic Server
	7.2 Handling XML Documents in a JMS Application
	7.3 Accessing External Entities That Do Not Have an HTTP Interface

	8 XML Application Scoping
	8.1 Overview of Application Scoping
	8.2 The weblogic-application.xml File
	8.2.1 xml
	8.2.2 parser-factory
	8.2.3 saxparser-factory
	8.2.4 document-builder-factory
	8.2.5 transformer-factory
	8.2.6 entity-mapping
	8.2.7 entity-mapping-name
	8.2.8 public-id
	8.2.9 system-id
	8.2.10 entity-uri
	8.2.11 when-to-cache
	8.2.12 cache-timeout-interval

	8.3 Configuring a Parser or Transformer for an Enterprise Application
	8.4 Configuring an External Entity for an Enterprise Application
	8.5 Configuring the External Entity Cache for an Enterprise Application

	9 Administering WebLogic Server XML
	9.1 Overview of Administering WebLogic Server XML
	9.1.1 XML Administration Tasks
	9.1.2 How the XML Registry Works
	9.1.3 Parser Selection Within the XML Registry

	9.2 XML Parser and Transformer Configuration Tasks
	9.2.1 Configuring a Parser or Transformer Other Than the Default
	9.2.2 Configuring a Parser for a Particular Document Type

	9.3 External Entity Configuration Tasks
	9.3.1 Configuring External Entity Resolution
	9.3.2 Configuring the External Entity Cache

	A XML Reference
	A.1 XML APIs
	A.2 Code Examples
	A.3 Related WebLogic Server Documentation
	A.4 Tutorials and Online Courses
	A.5 Other XML Specifications and Information

	B Using the WebLogic XML Streaming API (Deprecated)
	B.1 Overview of the WebLogic XML Streaming API
	B.2 Javadocs for the WebLogic XML Streaming API
	B.3 Parsing an XML Document: Typical Steps
	B.3.1 Example of Parsing an XML Document
	B.3.2 Getting an XML Input Stream
	B.3.3 Getting a Buffered XML Input Stream
	B.3.4 Filtering the XML Stream
	B.3.5 Creating a Custom Filter
	B.3.6 Iterating Over the Stream
	B.3.7 Determining the Specific XMLEvent Type
	B.3.8 Getting the Attributes of an Element
	B.3.9 Positioning the Stream
	B.3.10 Getting a Substream
	B.3.11 Marking and Resetting a Buffered XML Input Stream
	B.3.12 Closing the Input Stream

	B.4 Generating a New XML Document: Typical Steps
	B.4.1 Example of Generating an XML Document
	B.4.2 Creating an XML Output Stream
	B.4.3 Adding Elements to the Output Stream
	B.4.4 Adding Attributes to an Element on the Output Stream
	B.4.5 Adding an Input Stream to an Output Stream
	B.4.6 Printing an Output Stream
	B.4.7 Closing the Output Stream

