

Oracle® Fusion Middleware
Programming Advanced Features of JAX-WS Web Services for
Oracle WebLogic Server

11g Release 1 (10.3.3)

E13734-02

April 2010

This document is a resource for software developers who
program advanced features of WebLogic Web services using
JAX-WS.

Oracle Fusion Middleware Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic
Server, 11g Release 1 (10.3.3)

E13734-02

Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Related Documents .. vii
Conventions ... viii

1 Introduction

2 Invoking a Web Service Using Asynchronous Request-Response

2.1 Overview of the Asynchronous Request-Response Feature .. 2-1
2.2 Using Asynchronous Request-Response: Main Steps ... 2-1
2.3 Applying Asynchronous Binding Declaration to WSDL.. 2-2
2.4 Updating the build.xml File When Using Asynchronous Request-Response 2-3
2.5 Creating the Asynchronous Client ... 2-3

3 Using Web Services Atomic Transactions

3.1 Overview of Web Services Atomic Transactions ... 3-1
3.2 Configuring the Domain Resources Required for Web Service Advanced Features 3-3
3.3 Enabling Web Services Atomic Transactions on Web Services ... 3-3
3.3.1 Using the @Transactional Annotation in Your JWS File.. 3-5
3.3.1.1 Example: Using @Transactional Annotation on a Web Service Class 3-5
3.3.1.2 Example: Using @Transactional Annotation on a Web Service Method 3-7
3.3.1.3 Example: Using the @Transactional and the EJB @TransactionAttribute

Annotations Together .. 3-8
3.3.2 Enabling Web Services Atomic Transactions Starting From WSDL 3-8
3.4 Enabling Web Services Atomic Transactions on Web Service Clients................................ 3-9
3.4.1 Using @Transactional Annotation with the @WebServiceRef Annotation.............. 3-10
3.4.2 Passing the TransactionalFeature to the Client .. 3-12
3.5 Configuring Web Services Atomic Transactions Using the Administration Console... 3-14
3.5.1 Securing Messages Exchanged Between the Coordinator and Participant.............. 3-14
3.5.2 Enabling and Configuring Web Services Atomic Transactions................................. 3-15
3.6 Using Web Services Atomic Transactions in a Clustered Environment.......................... 3-15
3.7 More Examples of Using Web Services Atomic Transactions... 3-15

4 Managing Web Services in a Cluster

4.1 Overview of Web Services Cluster Routing.. 4-1

iv

4.2 Cluster Routing Scenarios.. 4-2
4.2.1 Scenario 1: Routing a Web Service Response to a Single Server................................... 4-2
4.2.2 Scenario 2: Routing Web Service Requests to a Single Server Using Routing

Information ... 4-3
4.2.3 Scenario 3: Routing Web Service Requests to a Single Server Using an ID 4-4
4.3 How Web Service Cluster Routing Works.. 4-5
4.3.1 Adding Routing Information to Outgoing Requests.. 4-6
4.3.2 Detecting Routing Information in Incoming Requests .. 4-6
4.3.3 Routing Requests Within the Cluster ... 4-6
4.3.4 Maintaining the Routing Map on the Front-end SOAP Router 4-7
4.3.4.1 X-weblogic-wsee-storetoserver-list HTTP Response Header 4-7
4.3.4.2 X-weblogic-wsee-storetoserver-hash HTTP Response Header 4-7
4.4 Configuring Web Services in a Cluster.. 4-8
4.4.1 Setting Up the WebLogic Cluster .. 4-8
4.4.2 Configuring the Domain Resources Required for Web Service Advanced Features in a

Clustered Environment... 4-8
4.4.3 Extending the Front-end SOAP Router to Support Web Services................................ 4-9
4.4.4 Enabling Routing of Web Services Atomic Transaction Messages 4-9
4.4.5 Configuring the Identity of the Front-end SOAP Router .. 4-9
4.5 Monitoring Cluster Routing Performance ... 4-10

5 Publishing a Web Service Endpoint

6 Using Callbacks

6.1 Overview of Callbacks ... 6-1
6.2 Example Callback Implementation .. 6-1
6.3 Programming Callbacks: Main Steps ... 6-2
6.4 Programming Guidelines for Target Web Service ... 6-4
6.5 Programming Guidelines for the Callback Client Web Service... 6-5
6.6 Programming Guidelines for the Callback Web Service... 6-6
6.7 Updating the build.xml File for the Target Web Service .. 6-7

7 Optimizing Binary Data Transmission Using MTOM/XOP

7.1 Sending Binary Data Using MTOM/XOP .. 7-1
7.1.1 Annotating the Data Types .. 7-2
7.1.1.1 Annotating the Data Types: Start From Java.. 7-2
7.1.1.2 Annotating the Data Types: Start From WSDL.. 7-3
7.1.2 Enabling MTOM on the Web Service ... 7-3
7.1.2.1 Enabling MTOM on the Web Service Using Annotation 7-3
7.1.2.2 Enabling MTOM on the Web Services Using WS-Policy File 7-3
7.1.3 Enabling MTOM on the Client .. 7-5
7.1.4 Setting the Attachment Threshold .. 7-5
7.2 Streaming SOAP Attachments .. 7-5
7.2.1 Client Side Example .. 7-6
7.2.2 Server Side Example.. 7-7
7.2.3 Configuring Streaming SOAP Attachments .. 7-8
7.2.3.1 Configuring Streaming SOAP Attachments on the Server 7-8

v

7.2.3.2 Configuring Streaming SOAP Attachments on the Client 7-9

8 Creating Dynamic Proxy Clients

8.1 Additional Considerations When Specifying WSDL Location .. 8-2

9 Using XML Catalogs

9.1 Overview of XML Catalogs ... 9-1
9.2 Defining and Referencing XML Catalogs.. 9-3
9.2.1 Defining an External XML Catalog ... 9-3
9.2.1.1 Creating an External XML Catalog File... 9-3
9.2.1.2 Referencing the External XML Catalog File ... 9-4
9.2.2 Embedding an XML Catalog.. 9-4
9.2.2.1 Creating an Embedded XML Catalog ... 9-4
9.2.2.2 Referencing an Embedded XML Catalog.. 9-5
9.3 Disabling XML Catalogs in the Client Runtime ... 9-5
9.4 Getting a Local Copy of XML Resources... 9-6

10 Creating and Using SOAP Message Handlers

10.1 Overview of SOAP Message Handlers ... 10-1
10.2 Adding Server-side SOAP Message Handlers: Main Steps... 10-2
10.3 Adding Client-side SOAP Message Handlers: Main Steps ... 10-2
10.4 Designing the SOAP Message Handlers and Handler Chains ... 10-3
10.4.1 Server-side Handler Execution ... 10-4
10.4.2 Client-side Handler Execution.. 10-5
10.5 Creating the SOAP Message Handler... 10-5
10.5.1 Example of a SOAP Handler... 10-6
10.5.2 Example of a Logical Handler... 10-7
10.5.3 Implementing the Handler.handleMessage() Method.. 10-8
10.5.4 Implementing the Handler.handleFault() Method.. 10-8
10.5.5 Implementing the Handler.close() Method .. 10-9
10.5.6 Using the Message Context Property Values and Methods....................................... 10-9
10.5.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ .. 10-10
10.5.7.1 The SOAPPart Object .. 10-10
10.5.7.2 The AttachmentPart Object .. 10-11
10.5.7.3 Manipulating Image Attachments in a SOAP Message Handler 10-11
10.6 Configuring Handler Chains in the JWS File... 10-12
10.7 Creating the Handler Chain Configuration File.. 10-13
10.8 Compiling and Rebuilding the Web Service ... 10-13
10.9 Configuring the Client-side SOAP Message Handlers .. 10-14

11 Programming RESTful Web Services

11.1 Overview of RESTful Web Services .. 11-1
11.2 Programming RESTful Web Services: Main Steps.. 11-2
11.3 Programming Guidelines for the RESTful Web Service .. 11-2
11.4 Accessing the RESTful Web Service from a Client ... 11-5

vi

11.5 Securing RESTful Web Services... 11-5

12 Programming Stateful JAX-WS Web Services Using HTTP Session

12.1 Overview of Stateful Web Services ... 12-1
12.2 Accessing HTTP Session on the Server... 12-1
12.3 Enabling HTTP Session on the Client ... 12-2
12.4 Developing Stateful Services in a Cluster Using Session State Replication 12-3
12.5 A Note About the JAX-WS RI @Stateful Extension .. 12-3

13 Publishing and Finding Web Services Using UDDI

13.1 Overview of UDDI... 13-1
13.1.1 UDDI and Web Services .. 13-2
13.1.2 UDDI and Business Registry... 13-2
13.1.3 UDDI Data Structure.. 13-3
13.2 WebLogic Server UDDI Features... 13-3
13.3 UDDI 2.0 Server ... 13-3
13.3.1 Configuring the UDDI 2.0 Server ... 13-4
13.3.2 Configuring an External LDAP Server ... 13-4
13.3.2.1 51acumen.ldif File Contents... 13-5
13.3.3 Description of Properties in the uddi.properties File.. 13-8
13.4 UDDI Directory Explorer.. 13-13
13.5 UDDI Client API .. 13-14
13.6 Pluggable tModel ... 13-14
13.6.1 XML Elements and Permissible Values... 13-15
13.6.2 XML Schema for Pluggable tModels ... 13-15
13.6.3 Sample XML for a Pluggable tModel... 13-16

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic
Server

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Other Product One
Release 7.0 documentation set or in the Oracle Other Product Two Release 6.1
documentation set:

■ Oracle Other Product One Release Notes

viii

■ Oracle Other Product One Configuration Guide

■ Oracle Other Product Two Getting Started Guide

■ Oracle Other Product Two Reference Guide

■ Oracle Other Product Two Tuning and Performance Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

This document is a resource for software developers who program advanced features
for WebLogic Web services using JAX-WS. The advanced features described are
summarized in the following table.

Table 1–1 Programming Advanced Features Using JAX-WS

Advanced Features Description

Chapter 3, "Using Web Services
Atomic Transactions"

Describes how to use Web services atomic transactions to
more tbd.....

Chapter 4, "Managing Web
Services in a Cluster"

Provides best practices for using Web services in a cluster.

Chapter 5, "Publishing a Web
Service Endpoint"

Publish a Web service endpoint at runtime, without
deploying the Web service.

Chapter 6, "Using Callbacks" Notify a client of a Web service that an event has
happened by programming a callback.

Chapter 7, "Optimizing Binary
Data Transmission Using
MTOM/XOP"

Send binary data using MTOM/XOP and/or streaming
SOAP attachments to optimize transmission of binary
data.

Chapter 8, "Creating Dynamic
Proxy Clients"

Invoke a Web service based on a service endpoint interface
(SEI) dynamically at run-time without using clientgen.

Chapter 9, "Using XML Catalogs" Use XML catalogs to resolve network resources to versions
that are stored locally.

Chapter 10, "Creating and Using
SOAP Message Handlers"

Create and configure SOAP message handlers for a Web
service.

Chapter 11, "Programming
RESTful Web Services"

Create a Web service that follows the RESTful design
paradigm.

Chapter 12, "Programming
Stateful JAX-WS Web Services
Using HTTP Session"

Create a Web service that maintains state between service
calls.

Chapter 13, "Publishing and
Finding Web Services Using
UDDI"

Use the UDDI features of WebLogic Web service.

1-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

For an overview of WebLogic Web services, standards, samples, and related
documentation, see Introducing Web Services.

JAX-WS supports Web Services Security (WS-Security) 1.1 (except for WS-Secure
Conversation). For information about WebLogic Web service security, see Securing
WebLogic Web Services for Oracle WebLogic Server.

Note: The JAX-WS implementation in Oracle WebLogic Server is
extended from the JAX-WS Reference Implementation (RI) developed
by the Glassfish Community (see
https://jax-ws.dev.java.net/). All features defined in the
JAX-WS specification (JSR-224) are fully supported by Oracle
WebLogic Server.

The JAX-WS RI also contains a variety of extensions, provided by
Glassfish contributors. Unless specifically documented, JAX-WS RI
extensions are not supported for use in Oracle WebLogic Server.

2

Invoking a Web Service Using Asynchronous Request-Response 2-1

2Invoking a Web Service Using
Asynchronous Request-Response

The following sections describe how to invoke a Web service using asynchronous
request-response:

■ Section 2.1, "Overview of the Asynchronous Request-Response Feature"

■ Section 2.2, "Using Asynchronous Request-Response: Main Steps"

■ Section 2.5, "Creating the Asynchronous Client"

■ Section 2.4, "Updating the build.xml File When Using Asynchronous
Request-Response"

2.1 Overview of the Asynchronous Request-Response Feature
When you invoke a Web service synchronously, the invoking client application waits
for the response to return before it can continue with its work. In cases where the
response returns immediately, this method of invoking the Web service is common.
However, because request processing can be delayed, it is often useful for the client
application to continue its work and handle the response later on, or in other words,
use the asynchronous request-response feature of WebLogic Web services.

When implementing asynchronous request-response in your client, rather than
invoking the operation directly, you invoke an asynchronous flavor of the same
operation. (This asynchronous flavor of the operation is automatically generated by
the clientgen Ant task.) For example, rather than invoking an operation called
addNumbers directly, you would invoke addNumbersAsync instead. The
asynchronous flavor of the operation always returns void, even if the original
operation returns a value. You then include methods in your client that handle the
asynchronous response or failures when it returns later on. You put any business logic
that processes the return value of the Web service operation invoke or a potential
failure in these methods.

2.2 Using Asynchronous Request-Response: Main Steps
The following procedure describes how to create a client that asynchronously invokes
an operation in a Web service. For clarity, it is assumed in the procedure that:

■ The client Web service is called AsyncClient.

■ The AsyncClientService service is going to invoke the testEcho() operation
of the already deployed AddNumbersService service whose WSDL is found at
the following URL:

Applying Asynchronous Binding Declaration to WSDL

2-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

http://localhost:7001/async/AddNumbers?WSDL

It is further assumed that you have set up an Ant-based development environment
and that you have a working build.xml file to which you can add targets for
running the jwsc Ant task and deploying the generated service. For more
information, see the following sections in Getting Started With JAX-WS Web Services for
Oracle WebLogic Server.

■ Use Cases and Examples

■ Developing WebLogic Web Services

■ Programming the JWS File

■ Invoking Web Services

2.3 Applying Asynchronous Binding Declaration to WSDL
To generate asynchronous polling and callback methods in the service endpoint
interface when the WSDL is compiled, enable the jaxws:enableAsyncMapping
binding declaration in the WSDL file.

You can create an external binding declarations file that contains all binding
declarations for a specific WSDL or XML Schema document. Then, pass the binding
declarations file to the <binding> child element of the wsdlc, jwsc, or clientgen
Ant task.

The following provides an example of a binding declarations file that enables the
jaxws:enableAsyncMapping binding declaration:

<bindings
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation="AddNumbers.wsdl"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="wsdl:definitions">
 <package name="examples.webservices.async"/>
 <enableAsyncMapping>true</enableAsyncMapping>
 </bindings>

Table 2–1 Steps to Use Asynchronous Request-Response

Step Description

1 Create an external binding
declaration file to enable the
creation of the asynchronous
methods.

See Section 2.3, "Applying Asynchronous Binding
Declaration to WSDL".

2 Update your build.xml file
to compile the asynchronous
client.

You pass the external binding declaration file to the
clientgen task to automatically generate the
asynchronous flavor of the Web service operations. See
Section 2.4, "Updating the build.xml File When Using
Asynchronous Request-Response".

3 Create the asynchronous
client.

Within the client, you define an asynchronous callback
handler to receive the callback notification and invoke the
asynchronous flavor of the Web service method passing a
handle to the asynchronous callback handler. Use your
favorite IDE or text editor. See Section 2.5, "Creating the
Asynchronous Client".

3 Run the Ant target to build
the AsyncClient.

For example:

prompt> ant build-client

Creating the Asynchronous Client

Invoking a Web Service Using Asynchronous Request-Response 2-3

</bindings>

For more information, see "Creating an External Binding Declarations File Using
JAX-WS Binding Declarations" in Getting Started With JAX-WS Web Services for Oracle
WebLogic Server.

2.4 Updating the build.xml File When Using Asynchronous
Request-Response

To update a build.xml file to generate client artifacts and compile the client that
invokes a Web service operation asynchronously, add taskdefs and a
build-client target that includes a reference to the external binding declarations
file containing the asynchronous binding declaration. See the description following the
example for details.

<taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<target name="build_client">

<clientgen
 type="JAXWS"
 wsdl="AddNumbers.wsdl"
 destDir="${clientclasses.dir}"
 packageName="examples.webservices.async.client">
 <binding file="jaxws-binding.xml" />
 </clientgen>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/hello_world/client/**/*.java"/>

</target>

Use the taskdef Ant task to define the full classname of the clientgen Ant tasks.
Apply the asynchronous binding declaration by specifying an external binding
declarations file, as described in Section 2.3, "Applying Asynchronous Binding
Declaration to WSDL". In this case, the clientgen Ant task generates both
synchronous and asynchronous flavors of the Web service operations in the JAX-WS
stubs.

2.5 Creating the Asynchronous Client
The following example shows a simple client file, AsyncClient, that has a single
method, AddNumbersTestDrive, that asynchronously invokes the
AddNumbersAsync method of the AddNumbersService service. The Java code in
bold is described following the code sample.

package examples.webservices.async.client;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;

import javax.xml.ws.BindingProvider;

import java.util.concurrent.Future;

Creating the Asynchronous Client

2-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

public class AsyncClient {

 private AddNumbersPortType port = null;
 protected void setUp() throws Exception {
 AddNumbersService service = new AddNumbersService();
 port = service.getAddNumbersPort();
 String serverURI = System.getProperty("wls-server");
 ((BindingProvider) port).getRequestContext().put(
 BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://" + serverURI + "/JAXWS_ASYNC/AddNumbersService");
 }

/**
*
* Asynchronous callback handler
*/
 class AddNumbersCallbackHandler implements AsyncHandler<AddNumbersResponse> {
 private AddNumbersResponse output;
 public void handleResponse(Response<AddNumbersResponse> response) {
 try {
 output = response.get();
 } catch (ExecutionException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 AddNumbersResponse getResponse() {
 return output;
 }
 }

 public void AddNumbersTestDrive() throws Exception {
 int number1 = 10;
 int number2 = 20;
 AddNumbersCallbackHandler callbackHandler =
 new AddNumbersCallbackHandler();
 Future<?> resp = port.addNumbersAsync(number1, number2,
 callbackHandler);
 // For the purposes of a test, block until the async call completes
 resp.get(5L, TimeUnit.MINUTES);
int result = callbackHandler.getResponse().getReturn();
 }
}

When creating the asynchronous client file, you need to perform the following tasks:

1. Create an asynchronous handler that implements the
javax.xml.ws.AsyncHandler<T> interface (see
http://java.sun.com/javase/6/docs/api/javax/xml/ws/AsyncHandl
er.html). The asynchronous handler defines one method, handleResponse,
that enables clients to receive callback notifications at the completion of service
endpoint operations that are invoked asynchronously. The type should be set to
AddNumberResponse.

class AddNumbersCallbackHandler implements AsyncHandler<AddNumbersResponse> {
 private AddNumbersResponse output;

Creating the Asynchronous Client

Invoking a Web Service Using Asynchronous Request-Response 2-5

 public void handleResponse(Response<AddNumbersResponse> response) {
 try {
 output = response.get();
 } catch (ExecutionException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();

 }
 }

 AddNumbersResponse getResponse() {
 return output;
 }
}

2. Instantiate the asynchronous callback handler.

AddNumbersCallbackHandler callbackHandler =
 new AddNumbersCallbackHandler();

3. Instantiate the AddNumbersService Web service and call the asynchronous
version of the Web service method, addNumbersAsync, passing a handle to the
asynchronous callback handler.

AddNumbersService service = new AddNumbersService();
port = service.getAddNumbersPort();
...

Future<?> resp = port.addNumbersAsync(number1, number2,
 callbackHandler);

java.util.concurrent.Future (see
http://java.sun.com/javase/6/docs/api/java/util/concurrent/Fu
ture.html) represents the result of an asynchronous computation and provides
methods for checking the status of the asynchronous task, getting the result, or
canceling the task execution.

4. Get the result of the asynchronous computation. In this example, a timeout value
is specified to wait for the computation to complete.

resp.get(5L, TimeUnit.MINUTES);

5. Use the callback handler to access the response message.

int result = callbackHandler.getResponse().getReturn();

Creating the Asynchronous Client

2-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

3

Using Web Services Atomic Transactions 3-1

3Using Web Services Atomic Transactions

This section describes how to use Web services atomic transactions to enable
interoperability with other external transaction processing systems.

■ Section 3.1, "Overview of Web Services Atomic Transactions"

■ Section 3.2, "Configuring the Domain Resources Required for Web Servcie
Advanced Features"

■ Section 3.3, "Enabling Web Services Atomic Transactions on Web Services"

■ Section 3.4, "Enabling Web Services Atomic Transactions on Web Service Clients"

■ Section 3.5, "Configuring Web Services Atomic Transactions Using the
Administration Console"

■ Section 3.6, "Using Web Services Atomic Transactions in a Clustered Environment"

■ Section 3.7, "More Examples of Using Web Services Atomic Transactions"

3.1 Overview of Web Services Atomic Transactions
WebLogic Web services enable interoperability with other external transaction
processing systems, such as Websphere, JBoss, Microsoft .NET, and so on, through the
support of the following specifications:

■ Web Services Atomic Transaction (WS-AtomicTransaction) Versions 1.0, 1.1, and
1.2:
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wst
x-wsat-1.2-spec-cs-01.html

■ Web Services Coordination (WS-Coordination) Versions 1.0, 1.1, and 1.2:
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/w
stx-wscoor-1.2-spec-cs-01.html

These specifications define an extensible framework for coordinating distributed
activities among a set of participants. The coordinator, shown in the following figure,
is the central component, managing the transactional state (coordination context) and
enabling Web services and clients to register as participants.

Overview of Web Services Atomic Transactions

3-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Figure 3–1 Web Services Atomic Transactions Framework

The following table describes the components of Web services atomic transactions,
shown in the previous figure.

The following figure shows two instances of WebLogic Server interacting within the
context of a Web services atomic transaction. For simplicity, two WebLogic Web service
applications are shown.

Figure 3–2 Web Services Atomic Transactions in WebLogic Server Environment

Please note the following:

■ Using the local JTA transaction manager, a transaction can be imported to or
exported from the local JTA environment as a subordinate transaction, all within the
context of a Web service request.

■ Creation and management of the coordination context is handled by the local JTA
transaction manager.

Table 3–1 Components of Web Services Atomic Transactions

Component Description

Coordinator Manages the transactional state (coordination context) and
enables Web services and clients to register as participants.

Activation Service Enables the application to activate a transaction and create a
coordination context for an activity. Once created, the
coordination context is passed with the transaction flow.

Registration Service Enables an application to register as a participant.

Application Protocol X, Y Supported coordination protocols, such as
WS-AtomicTransaction.

Enabling Web Services Atomic Transactions on Web Services

Using Web Services Atomic Transactions 3-3

■ All transaction integrity management and recovery processing is done by the local
JTA transaction manager.

For more information about JTA, see Programming JTA for Oracle WebLogic Server.

The following describes a sample end-to-end Web services atomic transaction
interaction, illustrated in Figure 3–2:

1. Application A begins a transaction on the current thread of control using the JTA
transaction manager on Server A.

2. Application A calls a Web service method in Application B on Server B.

3. Server A updates its transaction information and creates a SOAP header that
contains the coordination context, and identifies the transaction and local
coordinator.

4. Server B receives the request for Application B, detects that the header contains a
transaction coordination context and determines whether it has already registered
as a participant in this transaction. If it has, that transaction is resumed and if not,
a new transaction is started.

Application B executes within the context of the imported transaction. All
transactional resources with which the application interacts are enlisted with this
imported transaction.

5. Server B enlists itself as a participant in the WS-AtomicTransaction transaction by
registering with the registration service indicated in the transaction coordination
context.

6. Server A resumes the transaction.

7. Application A resumes processing and commits the transaction.

3.2 Configuring the Domain Resources Required for Web Servcie
Advanced Features

When creating or extending a domain, if you expect that you will be using other Web
service advanced features in addition to Web service atomic transactions (either now
or in the future), you can apply the WebLogic Advanced Web Services for JAX-WS
Extension template (wls_webservices_jaxws.jar) to configure automatically the
resources required to support the advanced Web service features. Although use of this
extension template is not required, it makes the configuration of the required resources
much easier. Alternatively, you can manually configure the resources required for
these advanced features using the Oracle WebLogic Administration Console or WLST.
For more information, see "Configuring Your Domain for Advanced Web Service
Features" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

3.3 Enabling Web Services Atomic Transactions on Web Services
To enable Web services atomic transactions on a Web service:

Note: If you do not expect to use other Web service advanced
features with Web service atomic transactions, application of this
extension template is not required, minimizing start-up times and
memory footprint.

Enabling Web Services Atomic Transactions on Web Services

3-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ When starting from Java (bottom-up), add the
@weblogic.wsee.wstx.wsat.Transactional annotation to the Web service
endpoint implementation class or method. For more information, see Section 3.3.1,
"Using the @Transactional Annotation in Your JWS File".

■ When starting from WSDL (top-down), use wsdlc to generate a Web service from
an existing WSDL file. In this case, The WS-AtomicTransaction policy assertions
that are advertised in the WSDL are carried forward and are included in the
WSDL file for the new Web service generated by wsdlc. See Section 3.3.2,
"Enabling Web Services Atomic Transactions Starting From WSDL".

■ At deployment time, enable and configure Web services atomic transactions at the
Web service endpoint or method level using the WebLogic Server Administration
Console. For more information, see Section 3.5, "Configuring Web Services Atomic
Transactions Using the Administration Console".

The following tables summarizes the configuration options that you can set when
enabling Web services atomic transactions.

The following table summarizes the valid values for flow type and their meaning on
the Web service and client. The table also summarizes the valid value combinations
when configuring web services atomic transactions for an EJB-style web service that
uses the @TransactionAttribute annotation.

Table 3–2 Web Services Atomic Transactions Configuration Options

Attribute Description

Version Version of the Web services atomic transaction coordination context that is used for
Web services and clients. For clients, it specifies the version used for outbound
messages only. The value specified must be consistent across the entire transaction.

Valid values include WSAT10, WSAT11, WSAT12, and DEFAULT. The DEFAULT value
for Web services is all three versions (driven by the inbound request); the DEFAULT
value for Web service clients is WSAT10.

Flow type Whether the Web services atomic transaction coordination context is passed with the
transaction flow. For valid values, see Table 3–3.

Enabling Web Services Atomic Transactions on Web Services

Using Web Services Atomic Transactions 3-5

3.3.1 Using the @Transactional Annotation in Your JWS File
To enable Web services atomic transactions, specify the
@weblogic.wsee.wstx.wsat.Transactional annotation on the Web service
endpoint implementation class or method.

Please note the following:

■ If you specify the @Transactional annotation at the Web service class level, the
settings apply to all two-way methods defined by the service endpoint interface.
You can override the flow type value at the method level; however, the version
must be consistent across the entire transaction.

■ You cannot explicitly specify the @Transactional annotation on a Web method
that is also annotated with @Oneway.

■ Web services atomic transactions cannot be used with the client-side asynchronous
programming model.

The format for specifying the @Transactional annotation is as follows:

@Transactional(
 version=Transactional.Version.[WSAT10|WSAT11|WSAT12|DEFAULT],
 value=Transactional.TransactionFowType.[MANDATORY|SUPPORTS|NEVER]
)

Table 3–3 Flow Types Values

Value Web Service Client Web Service
Valid EJB @TransactionAttribute
Values

NEVER JTA transaction: Do not
export transaction
coordination context.

No JTA transaction: Do
not export transaction
coordination context.

Transaction flow exists: Do
not import transaction
coordination context. If the
CoordinationContext header
contains
mustunderstand="true",
a SOAP fault is thrown.

No transaction flow: Do not
import transaction
coordination context.

NEVER, NOT_SUPPORTED, REQUIRED,
REQUIRES_NEW, SUPPORTS

SUPPORTS
(Default)

JTA transaction: Export
transaction coordination
context.

No JTA transaction: Do
not export transaction
coordination context.

Transaction flow exists:
Import transaction context.

No transaction flow: Do not
import transaction
coordination context.

REQUIRED, SUPPORTS

MANDATORY JTA transaction: Export
transaction coordination
context.

No JTA transaction: An
exception is thrown.

Transaction flow exists:
Import transaction context.

No transaction flow:
Service-side exception is
thrown.

MANDATORY, REQUIRED, SUPPORTS

Note: This annotation is not to be mistaken with
weblogic.jws.Transactional, which ensures that the annotated
class or operation runs inside of a transaction, but not an atomic
transaction.

Enabling Web Services Atomic Transactions on Web Services

3-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

For more information about the version and flow type configuration options, see
Table 3–2.

The following sections provide examples of using the @Transactional annotation at
the Web service implementation class and method levels, and with the EJB
@TransactionAttribute annotation.

■ Section 3.3.1.1, "Example: Using @Transactional Annotation on a Web Service
Class"

■ Section 3.3.1.2, "Example: Using @Transactional Annotation on a Web Service
Method"

■ Section 3.3.1.3, "Example: Using the @Transactional and the EJB
@TransactionAttribute Annotations Together"

3.3.1.1 Example: Using @Transactional Annotation on a Web Service Class
The following example shows how to add @Transactional annotation on a Web
service class. Relevant code is shown in bold. As shown in the example, there is an
active JTA transaction.

package examples.webservices.jaxws.wsat.simple.service;
. . .
import weblogic.jws.Policy;
import javax.transaction.UserTransaction;
. . .
import javax.jws.WebService;
import weblogic.wsee.wstx.wsat.Transactional;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.wsee.wstx.wsat.Transactional.TransactionFlowType;

/**
 * This JWS file forms the basis of a WebLogic WS-Atomic Transaction Web Service with the
 * operations: createAccount, deleteAccount, transferMonet, listAccount
 *
 */

@WebService(serviceName = "WsatBankTransferService", targetNamespace = "http://tempuri.org/",
 portName = "WSHttpBindingIService")
@Transactional(value=Transactional.TransactionFlowType.MANDATORY,
 version=weblogic.wsee.wstx.wsat.Transactional.Version.WSAT10)
public class WsatBankTransferService {

 public String createAccount(String acctNo, String amount) throws java.lang.Exception{
 Context ctx = null;
 UserTransaction tx = null;
 try {
 ctx = new InitialContext();
 tx = (UserTransaction)ctx.lookup("javax.transaction.UserTransaction");
 try {
 DataSource dataSource = (DataSource)ctx.lookup("examples-demoXA-2");
 String sql = "insert into wsat_acct_remote (acctno, amount) values (" + acctNo +
 ", " + amount + ")";

Note: The following excerpt is borrowed from the Web services
atomic transaction example that is delivered with the WebLogic Server
Samples Server. For more information, see Section 3.7, "More
Examples of Using Web Services Atomic Transactions".

Enabling Web Services Atomic Transactions on Web Services

Using Web Services Atomic Transactions 3-7

 int insCount = dataSource.getConnection().prepareStatement(sql).executeUpdate();
 if (insCount != 1)
 throw new java.lang.Exception("insert fail at remote.");
 return ":acctno=" + acctNo + " amount=" + amount + " creating. ";
 } catch (SQLException e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new SQLException("SQL Exception during createAccount() at remote.");
 }
 } catch (java.lang.Exception e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new java.lang.Exception(e);
 }
 }
 public String deleteAccount(String acctNo) throws java.lang.Exception{
 ...
 }
 public String transferMoney(String acctNo, String amount, String direction) throws
 java.lang.Exception{
 ...
 }
 public String listAccount() throws java.lang.Exception{
 ...
 }
}

3.3.1.2 Example: Using @Transactional Annotation on a Web Service Method
The following example shows how to add @Transactional annotation on a Web
service implementation method. Relevant code is shown in bold.

package examples.webservices.jaxws.wsat.simple.service;
. . .
import weblogic.jws.Policy;
import javax.transaction.UserTransaction;
. . .
import javax.jws.WebService;
import weblogic.wsee.wstx.wsat.Transactional;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.wsee.wstx.wsat.Transactional.TransactionFlowType;

/**
 * This JWS file forms the basis of a WebLogic WS-Atomic Transaction Web Service with the
 * operations: createAccount, deleteAccount, transferMonet, listAccount
 *
 */

@WebService(serviceName = "WsatBankTransferService", targetNamespace = "http://tempuri.org/",
 portName = "WSHttpBindingIService")
public class WsatBankTransferService {

@Transactional(value=Transactional.TransactionFlowType.MANDATORY,
 version=weblogic.wsee.wstx.wsat.Transactional.Version.WSAT10)
 public String createAccount(String acctNo, String amount) throws java.lang.Exception{
 Context ctx = null;
 UserTransaction tx = null;
 try {
 ctx = new InitialContext();
 tx = (UserTransaction)ctx.lookup("javax.transaction.UserTransaction");

Enabling Web Services Atomic Transactions on Web Services

3-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 try {
 DataSource dataSource = (DataSource)ctx.lookup("examples-demoXA-2");
 String sql = "insert into wsat_acct_remote (acctno, amount) values (" + acctNo +
 ", " + amount + ")";
 int insCount = dataSource.getConnection().prepareStatement(sql).executeUpdate();
 if (insCount != 1)
 throw new java.lang.Exception("insert fail at remote.");
 return ":acctno=" + acctNo + " amount=" + amount + " creating. ";
 } catch (SQLException e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new SQLException("SQL Exception during createAccount() at remote.");
 }
 } catch (java.lang.Exception e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new java.lang.Exception(e);
 }
 }
 public String deleteAccount(String acctNo) throws java.lang.Exception{
 ...
 }
 public String transferMoney(String acctNo, String amount, String direction) throws
 java.lang.Exception{
 ...
 }
 public String listAccount() throws java.lang.Exception{
 ...
 }
}

3.3.1.3 Example: Using the @Transactional and the EJB @TransactionAttribute
Annotations Together
The following example illustrates how to use the @Transactional and EJB
@TransactionAttribute annotations together. In this case, the flow type values
must be compatible, as outlined in Table 3–3. Relevant code is shown in bold.

package examples.webservices.jaxws.wsat.simple.service;
. . .
import weblogic.jws.Policy;
import javax.transaction.UserTransaction;
. . .
import javax.jws.WebService;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import weblogic.wsee.wstx.wsat.Transactional;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.wsee.wstx.wsat.Transactional.TransactionFlowType;

/**
 * This JWS file forms the basis of a WebLogic WS-Atomic Transaction Web Service with the
 * operations: createAccount, deleteAccount, transferMonet, listAccount
 *
 */

@WebService(serviceName = "WsatBankTransferService", targetNamespace = "http://tempuri.org/",
 portName = "WSHttpBindingIService")
@Transactional(value=Transactional.TransactionFlowType.MANDATORY,

Enabling Web Services Atomic Transactions on Web Service Clients

Using Web Services Atomic Transactions 3-9

 version=weblogic.wsee.wstx.wsat.Transactional.Version.WSAT10)
@TransactionAttribute(TransactionAttributeType.REQUIRED
public class WsatBankTransferService {
. . .
}

3.3.2 Enabling Web Services Atomic Transactions Starting From WSDL
When enabled, Web services atomic transactions are advertised in the WSDL file using
a policy assertion.

Table 3–4 summarizes the WS-AtomicTransaction 1.2 policy assertions that correspond
to a set of common Web services atomic transaction flow type and EJB Transaction
attribute combinations.

You can use wsdlc Ant task to generate, from an existing WSDL file, a set of artifacts
that together provide a partial Java implementation of the Web service described by
the WSDL file. The WS-AtomicTransaction policy assertions that are advertised in the
WSDL are carried forward and are included in the WSDL file for the new Web service
generated by wsdlc.

The wsdlc Ant tasks creates a JWS file that contains a partial (stubbed-out)
implementation of the generated JWS interface. You need to modify this file to include
your business code. After you have coded the JWS file with your business logic, run
the jwsc Ant task to generate a complete Java implementation of the Web service. Use
the compiledWsdl attribute of jwsc to specify the JAR file generated by the wsdlc
Ant task which contains the JWS interface file and data binding artifacts. By specifying
this attribute, the jwsc Ant task does not generate a new WSDL file but instead uses
the one in the JAR file. Consequently, when you deploy the Web service and view its
WSDL, the deployed WSDL will look just like the one from which you initially started
(with the WS-AtomicTransaction policy asssertions).

For complete details about using wsdlc to generate a Web service from a WSDL file,
see "Developing WebLogic Web Services Starting From a WSDL File: Main Steps" in
Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

3.4 Enabling Web Services Atomic Transactions on Web Service Clients
On a Web service client, enable Web services atomic transactions using one of the
following methods:

■ Add the @weblogic.wsee.wstx.wsat.Transactional annotation on the
Web service reference injection point for a client. For more information, see

Table 3–4 Web Services Atomic Transaction Policy Assertion Values (WS-AtomicTransaction 1.2)

Atomic Transaction Flow
Type

EJB
@TransactionAttribut
e WS-AtomicTransaction 1.2 Policy Assertion

MANDATORY MANDATORY, REQUIRED,
SUPPORTS

<wsat:ATAssertion/>

SUPPORTS REQUIRED, SUPPORTS <wsat:ATAssertion wsp:Optional="true"/>

NEVER REQUIRED, REQUIRES_
NEW, NEVER, SUPPORTS,
NOT_SUPPORTED

No policy advertisement

Enabling Web Services Atomic Transactions on Web Service Clients

3-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Section 3.4.1, "Using @Transactional Annotation with the @WebServiceRef
Annotation".

■ Pass the weblogic.wsee.wstx.wsat.TransactionalFeature as a
parameter when creating the Web service proxy or dispatch. For more information,
see Section 3.4.2, "Passing the TransactionalFeature to the Client".

■ At deployment time, enable and configure Web services atomic transactions at the
Web service client endpoint or method level using the WebLogic Server
Administration Console. For more information, see Section 3.5, "Configuring Web
Services Atomic Transactions Using the Administration Console".

■ At run-time, if the non-atomic transactional Web service client calls an atomic
transaction-enabled Web service, then based on the flow type settings, as defined
in Table 3–3:

– If the flow type is set to SUPPORTS or NEVER on the service-side, then the call
is included as part of the transaction.

– If the flow type is set to MANDATORY, then an exception is thrown.

For information about the configuration options that you can set when enabling Web
services atomic transactions, see Table 3–2.

3.4.1 Using @Transactional Annotation with the @WebServiceRef Annotation
To enable Web services atomic transactions, specify the
@weblogic.wsee.wstx.wsat.Transactional annotation on the Web service
client at the Web service reference (@WebServiceRef) injection point.

The format for specifying the @Transactional annotation is as follows:

@Transactional(
 version=Transactional.Version.[WSAT10|WSAT11|WSAT12|DEFAULT],
 value=Transactional.TransactionFlowType.[MANDATORY|SUPPORTS|NEVER]
)

For more information about the version and flow type configuration options, see
Table 3–2.

The following example illustrates how to annotate the Web service reference injection
point. Relevant code is shown in bold. As shown in the example, the active JTA
transaction becomes a part of the atomic transaction.

package examples.webservices.jaxws.wsat.simple.client;
. . .
import javax.servlet.*;
import javax.servlet.http.*;
. . .
import java.net.URL;
import javax.xml.namespace.QName;

import javax.transaction.UserTransaction;
import javax.transaction.SystemException;

Note: The following excerpt is borrowed from the Web services
atomic transaction example that is delivered with the WebLogic Server
Samples Server. For more information, see Section 3.7, "More
Examples of Using Web Services Atomic Transactions".

Enabling Web Services Atomic Transactions on Web Service Clients

Using Web Services Atomic Transactions 3-11

import javax.xml.ws.WebServiceRef;
import weblogic.wsee.wstx.wsat.Transactional;
*/

/**
 * This example demonstrates using a WS-Atomic Transaction to create or delete an account,
 * or transfer money via Web service as a single atomic transaction.
 */

public class WsatBankTransferServlet extends HttpServlet {
. . .
 String url = "http://localhost:7001";
 URL wsdlURL = new URL(url + "/WsatBankTransferService/WsatBankTransferService");
. . .
 DataSource ds = null;
 UserTransaction utx = null;

 try {
 ctx = new InitialContext();
 utx = (UserTransaction) ctx.lookup("javax.transaction.UserTransaction");
 utx.setTransactionTimeout(900);
 } catch (java.lang.Exception e) {
 e.printStackTrace();
 }

 WsatBankTransferService port = getWebService(wsdlURL);

 try {
 utx.begin();
 if (remoteAccountNo.length() > 0) {
 if (action.equals("create")) {
 result = port.createAccount(remoteAccountNo, amount);
 } else if (action.equals("delete")) {
 result = port.deleteAccount(remoteAccountNo);
 } else if (action.equals("transfer")) {
 result = port.transferMoney(remoteAccountNo, amount, direction);
 }
 }
 utx.commit();
 result = "The transaction is committed " + result;
 } catch (java.lang.Exception e) {
 try {
 e.printStackTrace();
 utx.rollback();
 result = "The transaction is rolled back. " + e.getMessage();
 } catch(java.lang.Exception ex) {
 e.printStackTrace();
 result = "Exception is caught. Check stack trace.";
 }
 }
 request.setAttribute("result", result);
 . . .
 @Transactional(value = Transactional.TransactionFlowType.MANDATORY,
 version = Transactional.Version.WSAT10)
 @WebServiceRef()
 WsatBankTransferService_Service service;
 private WsatBankTransferService getWebService() {
 return service.getWSHttpBindingIService();
 }

Enabling Web Services Atomic Transactions on Web Service Clients

3-12 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 public String createAccount(String acctNo, String amount) throws java.lang.Exception{
 Context ctx = null;
 UserTransaction tx = null;
 try {
 ctx = new InitialContext();
 tx = (UserTransaction)ctx.lookup("javax.transaction.UserTransaction");
 try {
 DataSource dataSource = (DataSource)ctx.lookup("examples-dataSource-demoXAPool");
 String sql = "insert into wsat_acct_local (acctno, amount) values (
 " + acctNo + ", " + amount + ")";
 int insCount = dataSource.getConnection().prepareStatement(sql).executeUpdate();
 if (insCount != 1)
 throw new java.lang.Exception("insert fail at local.");
 return ":acctno=" + acctNo + " amount=" + amount + " creating.. ";
 } catch (SQLException e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new SQLException("SQL Exception during createAccount() at local.");
 }
 } catch (java.lang.Exception e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new java.lang.Exception(e);
 }
 }

 public String deleteAccount(String acctNo) throws java.lang.Exception{
 . . .
 }
 public String transferMoney(String acctNo, String amount, String direction) throws
 java.lang.Exception{
 . . .
 }
 public String listAccount() throws java.lang.Exception{
 . . .
 }
}

3.4.2 Passing the TransactionalFeature to the Client
To enable Web services atomic transactions on the client of the Web service, you can
pass the weblogic.wsee.wstx.wsat.TransactionalFeature as a parameter
when creating the Web service proxy or dispatch, as illustrated in the following
example. Relevant code is shown in bold.

package examples.webservices.jaxws.wsat.simple.client;
. . .
import javax.servlet.*;
import javax.servlet.http.*;
. . .
import java.net.URL;
import javax.xml.namespace.QName;

Note: The following excerpt is borrowed from the Web services
atomic transaction example that is delivered with the WebLogic Server
Samples Server. For more information, see Section 3.7, "More
Examples of Using Web Services Atomic Transactions".

Enabling Web Services Atomic Transactions on Web Service Clients

Using Web Services Atomic Transactions 3-13

import javax.transaction.UserTransaction;
import javax.transaction.SystemException;

import weblogic.wsee.wstx.wsat.TransactionalFeature;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.wsee.wstx.wsat.Transactional.TransactionFlowType;
*/

/**
 * This example demonstrates using a WS-Atomic Transaction to create or delete an account,
 * or transfer money via Web service as a single atomic transaction.
 */

public class WsatBankTransferServlet extends HttpServlet {
. . .
 String url = "http://localhost:7001";
 URL wsdlURL = new URL(url + "/WsatBankTransferService/WsatBankTransferService");
. . .
 DataSource ds = null;
 UserTransaction utx = null;

 try {
 ctx = new InitialContext();
 utx = (UserTransaction) ctx.lookup("javax.transaction.UserTransaction");
 utx.setTransactionTimeout(900);
 } catch (java.lang.Exception e) {
 e.printStackTrace();
 }

 WsatBankTransferService port = getWebService(wsdlURL);

 try {
 utx.begin();
 if (remoteAccountNo.length() > 0) {
 if (action.equals("create")) {
 result = port.createAccount(remoteAccountNo, amount);
 } else if (action.equals("delete")) {
 result = port.deleteAccount(remoteAccountNo);
 } else if (action.equals("transfer")) {
 result = port.transferMoney(remoteAccountNo, amount, direction);
 }
 }
 utx.commit();
 result = "The transaction is committed " + result;
 } catch (java.lang.Exception e) {
 try {
 e.printStackTrace();
 utx.rollback();
 result = "The transaction is rolled back. " + e.getMessage();
 } catch(java.lang.Exception ex) {
 e.printStackTrace();
 result = "Exception is caught. Check stack trace.";
 }
 }
 request.setAttribute("result", result);
 . . .
 // Passing the TransactionalFeature to the Client
 private WsatBankTransferService getWebService(URL wsdlURL) {
 TransactionalFeature feature = new TransactionalFeature();

Configuring Web Services Atomic Transactions Using the Administration Console

3-14 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 feature.setFlowType(TransactionFlowType.MANDATORY);
 feature.setVersion(Version.WSAT10);
 WsatBankTransferService_Service service = new WsatBankTransferService_Service(wsdlURL,
 new QName("http://tempuri.org/", "WsatBankTransferService"));
 return service.getWSHttpBindingIService(new javax.xml.ws.soap.AddressingFeature(),
 feature);
 }

 public String createAccount(String acctNo, String amount) throws java.lang.Exception{
 Context ctx = null;
 UserTransaction tx = null;
 try {
 ctx = new InitialContext();
 tx = (UserTransaction)ctx.lookup("javax.transaction.UserTransaction");
 try {
 DataSource dataSource = (DataSource)ctx.lookup("examples-dataSource-demoXAPool");
 String sql = "insert into wsat_acct_local (acctno, amount) values (
 " + acctNo + ", " + amount + ")";
 int insCount = dataSource.getConnection().prepareStatement(sql).executeUpdate();
 if (insCount != 1)
 throw new java.lang.Exception("insert fail at local.");
 return ":acctno=" + acctNo + " amount=" + amount + " creating.. ";
 } catch (SQLException e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new SQLException("SQL Exception during createAccount() at local.");
 }
 } catch (java.lang.Exception e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new java.lang.Exception(e);
 }
 }

 public String deleteAccount(String acctNo) throws java.lang.Exception{
 . . .
 }
 public String transferMoney(String acctNo, String amount, String direction) throws
 java.lang.Exception{
 . . .
 }
 public String listAccount() throws java.lang.Exception{
 . . .
 }
}

3.5 Configuring Web Services Atomic Transactions Using the
Administration Console

The following sections describe how to configure Web services atomic transactions
using the Administration Console.

■ Section 3.5.1, "Securing Messages Exchanged Between the Coordinator and
Participant"

■ Section 3.5.2, "Enabling and Configuring Web Services Atomic Transactions"

More Examples of Using Web Services Atomic Transactions

Using Web Services Atomic Transactions 3-15

3.5.1 Securing Messages Exchanged Between the Coordinator and Participant
Using transport-level security, you can secure messages exchanged between the Web
services atomic transaction coordinator and participant by configuring the properties
defined in the following table using the WebLogic Server Administration Console.
These properties are configured at the domain level. For detailed steps, see "Configure
Web services atomic transactions" in the Oracle WebLogic Server Administration Console
Help.

3.5.2 Enabling and Configuring Web Services Atomic Transactions
To enable Web services atomic transactions and configure the version and flow type,
you can customize the configuration at the endpoint or method level for the Web
service or client. For detailed steps, see "Configure Web services atomic transactions"
in the Oracle WebLogic Server Administration Console Help.

3.6 Using Web Services Atomic Transactions in a Clustered Environment
For considerations when using atomic transaction-enabled Web services in a clustered
environment, see Chapter 4, "Managing Web Services in a Cluster".

3.7 More Examples of Using Web Services Atomic Transactions
Refer to the following sections for additional examples of using Web services atomic
transactions:

■ For an example of how to sign and encrypt message headers exchanged during the
Web services atomic transaction, see "Securing Web Services Atomic Transactions"
in Securing WebLogic Web Services for Oracle WebLogic Server.

Table 3–5 Securing Web Services Atomic Transactions

Property Description

Web Services Transactions Transport Security Mode Specifies whether two-way SSL is used for the message
exchange between the coordinator and participant. This
property can be set to one of the following values:

■ SSL Not Required—All Web service transaction
protocol messages are exchanged over the HTTP
channel.

■ SSL Required—All Web service transaction protocol
messages are exchanged over the HTTPS channel. This
flag must be enabled when invoking Microsoft .NET
Web services that have atomic transactions enabled.

■ Client Certificate Required—All Web service
transaction protocol messages are exchanged over
HTTPS and a client certificate is required.

For more information, see "Configure two-way SSL" in the
Oracle WebLogic Server Administration Console Help.

Web Service Transactions Issued Token Enabled Flag the specifies whether to use an issued token to enable
authentication between the coordinator and participant.

The IssuedToken is issued by the coordinator and consists
of a security context token (SCT) and a session key used for
signing. The participant sends the signature, signed using
the shared session key, in its registration message. The
coordinator authenticates the participant by verifying the
signature using the session key.

More Examples of Using Web Services Atomic Transactions

3-16 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ A detailed example of Web services atomic transactions is provided as part of the
WebLogic Server sample application. For more information about running the
sample application and accessing the example, see "Sample Application and Code
Examples" in Information Roadmap for Oracle WebLogic Server .

Note: You can secure applications that enable Web service atomic
transactions using only WebLogic Web service security policies. You
cannot secure them using Orace Web Services Manager (WSM)
policies.

4

Managing Web Services in a Cluster 4-1

4Managing Web Services in a Cluster

The following sections describe how to manage Web services in a cluster.

■ Section 4.1, "Overview of Web Services Cluster Routing"

■ Section 4.2, "Cluster Routing Scenarios"

■ Section 4.3, "How Web Service Cluster Routing Works"

■ Section 4.4, "Configuring Web Services in a Cluster"

■ Section 4.5, "Monitoring Cluster Routing Performance"

4.1 Overview of Web Services Cluster Routing
Clustering of stateless Web services—services that do not require knowledge of state
information from prior invocations—is straightforward and works with existing
WebLogic HTTP routing features on a third-party HTTP load balancer.

Clustering of stateful Web services provides more challenges. Each instance of a Web
service is associated with state information that must be managed and persisted. The
cluster routing decision is based on whether the message is bound to a specific server
in the cluster. For example, if a particular server stores state information that is needed
to process the message, and that state information is available only locally on that
server.

In addition to ensuring that the Web service requests are routed to the appropriate
server, the following general clustering requirements must be satisfied:

■ The internal topology of a cluster must be transparent to clients. Clients interact
with the cluster only through the front-end host, and do not need to be aware of
any particular server in the cluster. This enables the cluster to scale over time to
meet the demands placed upon it.

■ Cluster migration must be transparent to clients. Resources within the cluster
(including persistent stores and other resources required by a Web service or Web
service client) can be migrated from one server to another as the cluster evolves,
responds to failures, and so on.

To meet the above requirements, the following methods are available for routing Web
services in a cluster:

■ In-place SOAP router—Assumes request messages arrive on the correct server
and, if not, forwards the messages to the correct server ("at most one bad hop").
The routing decision is made by the Web service that receives the message. This
routing strategy is the simplest to implement and requires no additional
configuration. Though, it is not as robust as the next option.

Cluster Routing Scenarios

4-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ Front-end SOAP router—Message routing is managed by the front-end host that
accepts messages on behalf of the cluster and forwards them onto a selected
member server of the cluster. For Web services, the front-end SOAP router inspects
information in the SOAP message to determine the correct server to which it
should route messages.

The front-end SOAP router can be one of the following:

– Servlet

– Dedicated process

– Dedicated hardware-based

This routing strategy is more complicated to configure, but is the most efficient
since messages are routed directly to the appropriate server (avoiding any "bad
hops").

This chapter describes how to configure your environment to optimize the routing of
Web services within a cluster. Use of the HTTP cluster servlet for the front-end SOAP
router is described. The in-place SOAP router is also enabled and is used in the event
the HTTP cluster servlet is not available or has not yet been initialized.

4.2 Cluster Routing Scenarios
The following sections illustrate several scenarios for routing Web service request and
response messages within a clustered environment:

■ Section 4.2.1, "Scenario 1: Routing a Web Service Response to a Single Server"

■ Section 4.2.2, "Scenario 2: Routing Web Service Requests to a Single Server Using
Routing Information"

■ Section 4.2.3, "Scenario 3: Routing Web Service Requests to a Single Server Using
an ID"

4.2.1 Scenario 1: Routing a Web Service Response to a Single Server
In this scenario, an incoming request is load balanced to a server. Any responses to
that request must be routed to that same server, which maintains state information on
behalf of the original request.

Cluster Routing Scenarios

Managing Web Services in a Cluster 4-3

Figure 4–1 Routing a Web Service Response to a Single Server

As shown in the previous figure:

1. The front-end SOAP router routes an incoming HTTP request and sends it to
Server2 using standard load balancing techniques.

2. Server2 calls Myservice at the Web service endpoint address. The ReplyTo header
in the SOAP message contains a pointer back to the front-end SOAP router.

3. MyService returns the response to the front-end SOAP router.

4. The front-end SOAP router must determine where to route the response. Because
Server2 maintains state information that is relevant to the response, the front-end
SOAP router routes the response to Server2.

4.2.2 Scenario 2: Routing Web Service Requests to a Single Server Using Routing
Information

In this scenario, an incoming request is load balanced to a server. Any subsequent
requests contain routing information are returned by the response message.

Cluster Routing Scenarios

4-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Figure 4–2 Routing Web Service Requests to a Single Server

As shown in the previous figure:

1. The front-end SOAP router routes an incoming HTTP request (Request1) and
sends it to Server 2 using standard load balancing techniques. The request has no
routing information.

2. Server2 calls the Myservice at the Web service endpoint address. The ReplyTo
header in the SOAP message contains a pointer back to the front-end SOAP router.

3. MyService returns the response to the caller. The response contains routing
information that targets Server2 for any subsequent requests. The caller is
responsible for passing the routing information contained in the response in any
subsequent requests (for example, Request2).

4. The front-end SOAP router uses the routing information passed with Request2 to
route the request to Server2.

4.2.3 Scenario 3: Routing Web Service Requests to a Single Server Using an ID
In this scenario, an incoming SOAP request contains an identifier, but no routing
information. All subsequent requests with the same identifier must go to the same
server.

How Web Service Cluster Routing Works

Managing Web Services in a Cluster 4-5

Figure 4–3 Routing Web Service Requests to a Single Server Using an ID

As shown in the previous figure:

1. A request comes from a Web service client that includes an ID that will be shared
by future requests that are relevant to Request1. The form of this ID is
protocol-specific.

2. The front-end SOAP router detects an ID in Request1 and checks the affinity store
to determine if the ID is associated with a particular server in the cluster. In this
case, there is no association defined.

3. The front-end SOAP router load balances the request and sends it to Server 2 for
handling.

4. The MyService Web service instance on Server2 handles the request (generating a
response, if required). Unlike in Section 4.2.2, "Scenario 2: Routing Web Service
Requests to a Single Server Using Routing Information", routing information
cannot be propagated in this case.

5. Request2 arrives at the front-end SOAP router using the same ID as that used in
Request1.

6. The front-end SOAP router detects the ID and checks the affinity store to
determine if the ID is associated with a particular server. This time, it determines
that the ID is mapped to Server2.

7. Based on the affinity information, the front-end SOAP router routes Request2 to
Server2.

4.3 How Web Service Cluster Routing Works
The following sections describe how Web service cluster routing works:

■ Section 4.3.1, "Adding Routing Information to Outgoing Requests"

■ Section 4.3.2, "Detecting Routing Information in Incoming Requests"

■ Section 4.3.3, "Routing Requests Within the Cluster"

■ Section 4.3.4, "Maintaining the Routing Map on the Front-end SOAP Router"

How Web Service Cluster Routing Works

4-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

4.3.1 Adding Routing Information to Outgoing Requests
The Web services runtime adds routing information to the SOAP header of any
outgoing message to ensure proper routing of messages in the following situations:

■ The request is sent from a Web service client that uses a store that is not accessible
from every member server in the cluster.

■ The request requires in-memory state information used to process the response.

When processing an outgoing message, the Web services runtime:

■ Creates a message ID for the outgoing request, if one has not already been
assigned, and stores it in the RelatesTo/MessageID SOAP header using the
following format:

uuid:WLSformat_version:store_name:uniqueID

Where:

– format_version specifies the WebLogic Server format version, for example
WLS1.

– store_name specifies the name of the persistent store, which specifies the
store in use by the current Web service or Web service client sending the
message. For example, Server1Store. This value may be a
system-generated name, if the default persistent store is used, or an empty
string if no persistent store is configured.

– unique_ID specifies the unique message ID. For example:
68d6fc6f85a3c1cb:-2d3b89ab8:12068ad2e60:-7feb

■ Allows other Web service components to inject routing information into the
message before it is sent.

4.3.2 Detecting Routing Information in Incoming Requests
The SOAP router (in-place or front-end) inspects incoming requests for routing
information. In particular, the SOAP router looks for a RelatesTo/MessageID
SOAP header to find the name of the persistent store and routes the message back to
the server that hosts that persistent store.

In the event that there is an error in determining the correct server using front-end
SOAP routing, then the message is sent to any server within the cluster and the
in-place SOAP router is used. If in-place SOAP routing fails, then the sender of the
message receives a fault on the protocol-specific back channel.

4.3.3 Routing Requests Within the Cluster
To assist in making a routing determination, the SOAP router (in-place or front-end)
uses a dynamic map of store-to-server name associations. This dynamic map
originates on the Managed Servers within a cluster and is accessed in memory by the
in-place SOAP router and via HTTP response headers by the front-end SOAP router.
The HTTP response headers are included automatically by WebLogic Server in every
HTTP response sent by a Web service in the cluster.

Note: SOAP message headers that contain routing information must
be presented in clear text; they cannot be encrypted.

How Web Service Cluster Routing Works

Managing Web Services in a Cluster 4-7

Initially, the dynamic map is empty. It is only initialized after receiving its first
response back from a Managed Server in the cluster. Until it receives back its first
response with the HTTP response headers, the front-end SOAP router simply load
balances the requests, and the in-place SOAP router routes the request to the
appropriate server.

In the absence of SOAP-based routing information, then the front-end SOAP router
uses standard WebLogic Server HTTP session state replication to manage session state
for stateful Web services. For more information, see "HTTP Session State Replication"
in Using Clusters for Oracle WebLogic Server.

4.3.4 Maintaining the Routing Map on the Front-end SOAP Router
As noted in Section 4.3.3, "Routing Requests Within the Cluster", to assist in making a
routing determination, the SOAP router (in-place or front-end) uses a dynamic map of
store-to-server name associations.

To generate this dynamic map, two new HTTP response headers are provided, as
described in the following sections. These headers are included automatically by
WebLogic Server in every HTTP response sent by a Web service in the cluster.

4.3.4.1 X-weblogic-wsee-storetoserver-list HTTP Response Header
A complete list of store-to-server mappings is maintained in the
X-weblogic-wsee-storetoserver-list HTTP response header. The front-end
SOAP router uses this header to populate a mapping that can be referenced at runtime
to route messages.

The X-weblogic-wsee-storetoserver-list HTTP response header has the
following format:

storename1:host_server_spec | storename2:host_server_spec |
storename3:host_server_spec

In the above:

■ storename specifies the name of the persistent store.

■ host_server_spec is specifies using the following format:
servername:host:port:sslport. If not known, the sslport is set to -1.

4.3.4.2 X-weblogic-wsee-storetoserver-hash HTTP Response Header
A hash mapping of the store-to-server list is provided in
X-weblogic-wsee-storetoserver-hash HTTP response header. This header
enables you to determine whether the new mapping list needs to be refreshed.

The X-weblogic-wsee-storetoserver-hash HTTP response header contains a
String value representing the hash value of the list contained in the

Note: For more information about the HTTP response headers, see
Section 4.3.4, "Maintaining the Routing Map on the Front-end SOAP
Router".

Note: When implementing a third-party front-end, to include the
HTTP response headers described below, clients should send an HTTP
request header with the following variable set to any value:
X-weblogic-wsee-request-storetoserver-list

Configuring Web Services in a Cluster

4-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

X-weblogic-wsee-storetoserver-list HTTP response header. By keeping
track of the last entry in the list, it can be determined whether the list needs to be
refreshed.

4.4 Configuring Web Services in a Cluster
The following table summarizes the steps to configure Web services in a cluster.

4.4.1 Setting Up the WebLogic Cluster
Set up the WebLogic cluster, as described in "Setting up WebLogic Clusters" in Using
Clusters for Oracle WebLogic Server. Please note:

■ To configure the clustered domain, see Section 4.4.2, "Configuring the Domain
Resources Required for Web Service Advanced Features in a Clustered
Environment."

■ To proxy and load balance HTTP requests, configure an HTTP cluster servlet, as
described in "Set Up the HttpClusterServlet" in Using Clusters for Oracle WebLogic
Server.

4.4.2 Configuring the Domain Resources Required for Web Service Advanced Features
in a Clustered Environment

When creating or extending a domain using Configuration Wizard, you can apply the
WebLogic Advanced Web Services for JAX-WS Extension template (wls_
webservices_jaxws.jar) to configure automatically the resources required to
support the advanced Web service features in a clustered environment. Although use
of this extension template is not required, it makes the configuration of the required
resources much easier. Alternatively, you can manually configure the resources

Table 4–1 Steps to Manage Web Services in a Cluster

Step Description

1 Set up the WebLogic cluster. See Section 4.4.1, "Setting Up the WebLogic Cluster.".

2 Configure the clustered domain resources required
for advanced Web service features.

You can configure automatically the clustered domain
resources required using the cluster extension
template script. Alternatively, you can manually
configure the resources using the Oracle WebLogic
Administration Console or WLST. See Section 4.4.2,
"Configuring the Domain Resources Required for
Web Service Advanced Features in a Clustered
Environment.".

3 Extend the front-end SOAP router to support Web
services.

Note: This step is required only if you are using the
front-end SOAP router.

The Web services routing servlet extends the
functionality of the WebLogic HTTP cluster servlet to
support routing of Web services in a cluster. See
Section 4.4.3, "Extending the Front-end SOAP Router
to Support Web Services.".

4 Enable routing of Web services atomic transaction
messages.

See Section 4.4.4, "Enabling Routing of Web Services
Atomic Transaction Messages."

5 Configure the identity of the front-end SOAP router. Each WebLogic Server instance in the cluster must be
configured with the address and port of the front-end
SOAP router. See Section 4.4.5, "Configuring the
Identity of the Front-end SOAP Router.".

Configuring Web Services in a Cluster

Managing Web Services in a Cluster 4-9

required for these advanced features using the Oracle WebLogic Administration
Console or WLST. For more information, see "Configuring Your Domain for Advanced
Web Service Features" in Getting Started With JAX-WS Web Services for Oracle WebLogic
Server.

4.4.3 Extending the Front-end SOAP Router to Support Web Services

You extend the front-end SOAP router to support Web services by specifying the
RoutingHandlerClassName parameter shown in the following example (in bold),
as part of the WebLogic HTTP cluster servlet definition.

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <servlet>
 <servlet-name>HttpClusterServlet</servlet-name>
 <servlet-class>weblogic.servlet.proxy.HttpClusterServlet</servlet-class>
 <init-param>
 <param-name>WebLogicCluster</param-name>
 <param-value>Server1:7001|Server2:7001</param-value>
 </init-param>
 <init-param>
 <param-name>RoutingHandlerClassName</param-name>
 <param-value>
 weblogic.wsee.jaxws.cluster.proxy.SOAPRoutingHandler
 </param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>HttpClusterServlet</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>
. . .
</web-app>

4.4.4 Enabling Routing of Web Services Atomic Transaction Messages
High availability and routing of Web services atomic transaction messages is
automatically enabled in Web service clustered environments. However, if the
WebLogic HTTP cluster servlet is being used as the front-end server, you need to set
the following system property to false on the server hosting the WebLogic HTTP
cluster servlet:

weblogic.wsee.wstx.wsat.deployed=false

4.4.5 Configuring the Identity of the Front-end SOAP Router
Each WebLogic Server instance in the cluster must be configured with the address and
port of the front-end SOAP router. Network channels enable you to provide a
consistent way to access the front-end address of a cluster. For more information about

Note: If you are not using the front-end SOAP router, then this step
is not required.

Monitoring Cluster Routing Performance

4-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

network channels, see "Understanding Network Channels" in Configuring Server
Environments for Oracle WebLogic Server.

For each server instance:

1. Create a network channel for the protocol you use to invoke the Web service. You
must name the network channel weblogic-wsee-proxy-channel-XXX, where
XXX refers to the protocol. For example, to create a network channel for HTTPS,
call it weblogic-wsee-proxy-channel-https.

See "Configure custom network channels" in Oracle WebLogic Server Administration
Console Help for general information about creating a network channel.

2. Configure the network channel, updating the External Listen Address and
External Listen Port fields with the address and port of the proxy server,
respectively.

4.5 Monitoring Cluster Routing Performance
You can monitor the following cluster routing statistics to evaluate the application
performance:

■ Total number of requests and responses.

■ Total number of requests and responses that were routed specifically to the server.

■ Routing failure information, including totals and last occurrence.

You can use the WebLogic Server Administration Console or WLST to monitor cluster
routing performance. For information about using WebLogic Server Administration
Console to monitor cluster routing performance, see "Monitor Web services" and
"Monitor Web service clients,", in Oracle WebLogic Server Administration Console Help.

5

Publishing a Web Service Endpoint 5-1

5Publishing a Web Service Endpoint

The javax.xml.ws.Endpoint API (see
http://java.sun.com/javase/6/docs/api/javax/xml/ws/Endpoint.html
) enables you to create a Web service endpoint at runtime without deploying the Web
service to a WebLogic Server instance.

The following table summarizes the steps to publish a Web service endpoint.

Table 5–1 Steps to Publish a Web Service Endpoint

Step Description

1 Create a Web service endpoint. Use the javax.xml.ws.Endpoint create()
method to create the endpoint, specify the
implementor (that is, the Web service implementation)
to which the endpoint is associated, and optionally
specify the binding type. If not specified, the binding
type defaults to SOAP1.1/HTTP. The endpoint is
associated with only one implementation object and
one javax.xml.ws.Binding, as defined at
runtime; these values cannot be changed.

For example, the following example creates a Web
service endpoint for the CallbackWS()
implementation.

Endpoint callbackImpl = Endpoint.create(new
CallbackWS());

2 Publish the Web service endpoint
to accept incoming requests.

Use the javax.xml.ws.Endpoint publish()
method to specify the server context, or the address
and optionally the implementor of the Web service
endpoint.

Note: If you wish to update the metadata documents
(WSDL or XML schema) associated with the
endpoint, you must do so before publishing the
endpoint.

For example, the following example publishes the
Web service endpoint created in Step 1 using the
server context.

Object sc
context.getMessageContext().get(MessageContex
t.SERVLET_CONTEXT);
callbackImpl.publish(sc);

5-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

For an example of publishing a Web service endpoint within the context of a callback
example, see Section 6.5, "Programming Guidelines for the Callback Client Web
Service".

In addition to the steps described in the previous table, you can defined the following
using the javax.xml.ws.Endpoint API methods:

■ Endpoint metadata documents (WSDL or XML schema) associated with the
endpoint. You must define metadata before publishing the Web service endpoint.

■ Endpoint properties.

■ java.util.concurrent.Executor that will be used to dispatch incoming
requests to the application (see
http://java.sun.com/javase/6/docs/api/java/util/concurrent/Ex
ecutor.html).

For more information, see the javax.xml.ws.Endpoint Javadoc at
http://java.sun.com/javase/6/docs/api/javax/xml/ws/Endpoint.html
.

3 Stop the Web service endpoint to
shut it down and prevent
additional requests after
processing is complete.

Use the javax.xml.ws.Endpoint stop()
method to shut down the endpoint and stop
accepting incoming requests. Once stopped, an
endpoint cannot be republished.

For example:

callbackImpl.stop()

Table 5–1 (Cont.) Steps to Publish a Web Service Endpoint

Step Description

6

Using Callbacks 6-1

6Using Callbacks

The following sections describe how to use callbacks to notify clients of events:

■ Section 6.1, "Overview of Callbacks"

■ Section 6.2, "Example Callback Implementation"

■ Section 6.3, "Programming Callbacks: Main Steps"

■ Section 6.4, "Programming Guidelines for Target Web Service"

■ Section 6.5, "Programming Guidelines for the Callback Client Web Service"

■ Section 6.6, "Programming Guidelines for the Callback Web Service"

6.1 Overview of Callbacks
A callback is a contract between a client and service that allows the service to invoke
operations on a client-provided endpoint during the invocation of a service method
for the purpose of querying the client for additional data, allowing the client to inject
behavior, or notifying the client of progress. The service advertises the requirements
for the callback using a WSDL that defines the callback port type and the client
informs the service of the callback endpoint address using WS-Addressing.

6.2 Example Callback Implementation
The example callback implementation described in this section consists of the
following three Java files:

■ JWS file that implements the callback Web service: The callback Web service
defines the callback methods. The implementation simply passes information back
to the target Web service that, in turn, passes the information back to the client
Web service.

In the example in this section, the callback Web service is called
CallbackService. The Web service defines a single callback method called
callback().

■ JWS file that implements the target Web service: The target Web service includes
one or more standard operations that invoke a method defined in the callback
Web service and sends the message back to the client Web service that originally
invoked the operation of the target Web service.

In the example, this Web service is called TargetService and it defines a single
standard method called targetOperation().

Programming Callbacks: Main Steps

6-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ JWS file that implements the client Web service: The client Web service invokes
an operation of the target Web service. Often, this Web service will include one or
more methods that specify what the client should do when it receives a callback
message back from the target Web service via a callback method.

In the example, this Web service is called CallerService. The method that
invokes TargetService in the standard way is called call().

The following shows the flow of messages for the example callback implementation.

Figure 6–1 Example Callback Implementation

1. The call() method of the CallerService Web service, running in one
WebLogic Server instance, explicitly invokes the targetOperation() method of
the TargetService and passes a Web service endpoint to the
CallbackService. Typically, the TargetService service is running in a
separate WebLogic Server instance.

2. The implementation of the TargetService.targetOperation() method
explicitly invokes the callback() method of the CallbackService, which
implements the callback service, using the Web service endpoint that is passed in
from CallerService when the method is called.

3. The CallbackService.callback() method sends information back to the
TargetService Web service.

4. The TargetService.targetOperation() method, in turn, sends the
information back to the CallerService service, completing the callback
sequence.

6.3 Programming Callbacks: Main Steps
The procedure in this section describes how to program and compile the three JWS
files that are required to implement callbacks: the target Web service, the client Web
service, and the callback Web service. The procedure shows how to create the JWS files
from scratch; if you want to update existing JWS files, you can also use this procedure
as a guide.

It is assumed that you have set up an Ant-based development environment and that
you have a working build.xml file to which you can add targets for running the
jwsc Ant task and deploying the Web services. For more information, see Getting
Started With JAX-WS Web Services for Oracle WebLogic Server.

Programming Callbacks: Main Steps

Using Callbacks 6-3

Table 6–1 Steps to Program Callbacks

Step Description

1 Create a new JWS file, or
update an existing one,
that implements the
target Web service.

Use your favorite IDE or text editor. See Section 6.4,
"Programming Guidelines for Target Web Service".

Note: The JWS file that implements the target Web service
invokes one or more callback methods of the callback Web
service. However, the step that describes how to program the
callback Web service comes later in this procedure. For this
reason, programmers typically program the three JWS files at
the same time, rather than linearly as implied by this
procedure. The steps are listed in this order for clarity only.

2 Update your
build.xml file to
include a call to the
jwsc Ant task to
compile the target JWS
file into a Web service.

See Section 6.7, "Updating the build.xml File for the Target
Web Service".

3 Run the Ant target to
build the target Web
service.

For example:

prompt> ant build-target

4 Deploy the target Web
service as usual.

See "Deploying and Undeploying WebLogic Web Services" in
Getting Started With JAX-WS Web Services for Oracle WebLogic
Server.

5 Create a new JWS file, or
update an existing one,
that implements the
client Web service.

It is assumed that the client Web service is deployed to a
different WebLogic Server instance from the one that hosts the
target Web service. See Section 6.5, "Programming Guidelines
for the Callback Client Web Service".

6 Create the JWS file that
implements the callback
Web service.

See Section 6.6, "Programming Guidelines for the Callback
Web Service".

7 Update the build.xml
file that builds the client
Web service.

The jwsc Ant task that builds the client Web service also
compiles CallbackWS.java and includes the class file in
the WAR file using the Fileset Ant task element. For
example:

<clientgen
 type="JAXWS"
 wsdl="${awsdl}"
 packageName="jaxws.callback.client.add"/>
<clientgen
 type="JAXWS"
 wsdl="${twsdl}"
 packageName="jaxws.callback.client.target"/>
<FileSet dir="." >
 <include name="CallbackWS.java" />
</FileSet>

8 Run the Ant target to
build the client and
callback Web services.

For example:

prompt> ant build-caller

9 Deploy the client Web
service as usual.

See "Deploying and Undeploying WebLogic Web Services" in
Getting Started With JAX-WS Web Services for Oracle WebLogic
Server.

Programming Guidelines for Target Web Service

6-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

6.4 Programming Guidelines for Target Web Service
The following example shows a simple JWS file that implements the target Web
service; see the explanation after the example for coding guidelines that correspond to
the Java code in bold.

package examples.webservices.callback;

import javax.jws.WebService;
import javax.xml.ws.BindingType;
import javax.xml.ws.wsaddressing.W3CEndpointReference;
import examples.webservices.callback.callbackservice.*;

@WebService(
 portName="TargetPort",
 serviceName="TargetService",
 targetNamespace="http://example.oracle.com",
 endpointInterface=
 "examples.webservices.callback.target.TargetPortType",
 wsdlLocation="/wsdls/Target.wsdl")
@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http")

public class TargetImpl {
 public String targetOperation(String s, W3CEndpointReference callback)
 {
 CallbackService aservice = new CallbackService();
 CallbackPortType aport =
 aservice.getPort(callback, CallbackPortType.class);
 String result = aport.callback(s);
 return result + " processed by target";
 }
}

Follow these guidelines when programming the JWS file that implements the target
Web service. Code snippets of the guidelines are shown in bold in the preceding
example.

■ Import the packages required to pass the callback service endpoint and access the
CallbackService stub implementation.

import javax.xml.ws.wsaddressing.W3CEndpointReference;
import examples.webservices.callback.callbackservice.*;

■ Create an instance of the CallbackService implementation using the stub
implementation and get a port by passing the CallbackService service
endpoint, which is passed by the calling application (CallerService).

CallbackService aservice = new CallbackService();
CallbackPortType aport =
 aservice.getPort(callback, CallbackPortType.class);

■ Invoke the callback operation of CallbackService using the port you
instantiated:

String result = aport.callback(s);

■ Return the result to the CallerService service.

return result + " processed by target";

Programming Guidelines for the Callback Client Web Service

Using Callbacks 6-5

6.5 Programming Guidelines for the Callback Client Web Service
The following example shows a simple JWS file for a client Web service that invokes
the target Web service described in Section 6.4, "Programming Guidelines for Target
Web Service"; see the explanation after the example for coding guidelines that
correspond to the Java code in bold.

package examples.webservices.callback;

import javax.annotation.Resource;
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.ws.BindingType;
import javax.xml.ws.Endpoint;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.WebServiceException;
import javax.xml.ws.WebServiceRef;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.wsaddressing.W3CEndpointReference;

import examples.webservices.callback.target.*;

@WebService(
 portName="CallerPort",
 serviceName="CallerService",
 targetNamespace="http://example.oracle.com")
@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http")

public class CallerImpl
{
 @Resource
 private WebServiceContext context;

 @WebServiceRef()
 private TargetService target;

 @WebMethod()
 public String call(String s) {
 Object sc =
 context.getMessageContext().get(MessageContext.SERVLET_CONTEXT);
 Endpoint callbackImpl = Endpoint.create(new CallbackWS());
 callbackImpl.publish(sc);
 TargetPortType tPort = target.getTargetPort();
 String result = tPort.targetOperation(s,
 callbackImpl.getEndpointReference(W3CEndpointReference.class));
 callbackImpl.stop();
 return result;
 }
}

Follow these guidelines when programming the JWS file that invokes the target Web
service; code snippets of the guidelines are shown in bold in the preceding example:

■ Import the packages required to access the servlet context, publish the Web service
endpoint, and access the TargetService stub implementation.

import javax.xml.ws.Endpoint;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.wsaddressing.W3CEndpointReference;
import examples.webservices.callback.target.*;

Programming Guidelines for the Callback Web Service

6-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ Get the servlet context using the WebServiceContext and MessageContext.
You will use the servlet context when publishing the Web service endpoint, later.

@Resource
private WebServiceContext context;
.
.
.
Object sc
 context.getMessageContext().get(MessageContext.SERVLET_CONTEXT);

For more information about accessing runtime information using
WebServiceContext and MessageContext, see "Accessing Runtime
Information About a Web service" in Getting Started With JAX-WS Web Services for
Oracle WebLogic Server.

■ Create a Web service endpoint to the CallbackService implementation and
publish that endpoint to accept incoming requests.

Endpoint callbackImpl = Endpoint.create(new CallbackWS());
callbackImpl.publish(sc);

For more information about Web service publishing, see Chapter 5, "Publishing a
Web Service Endpoint."

■ Access an instance of the TargetService stub implementation and invoke the
targetOperation operation of TargetService using the port you
instantiated. You pass the CallbackService service endpoint as a
javax.xml.ws.wsaddressing.W3CEndpointReference data type:

@WebServiceRef()
private TargetService target;
.
.
.
TargetPortType tPort = target.getTargetPort();
String result = tPort.targetOperation(s,
 callbackImpl.getEndpointReference(W3CEndpointReference.class));

■ Stop publishing the endpoint:

callbackImpl.stop();

6.6 Programming Guidelines for the Callback Web Service
The following example shows a simple JWS file for a callback Web service. The
callback operation is shown in bold.

package examples.webservices.callback;

import javax.jws.WebService;
import javax.xml.ws.BindingType;

@WebService(
 portName="CallbackPort",
 serviceName="CallbackService",
 targetNamespace="http://example.oracle.com",
 endpointInterface=
 "examples.webservices.callback.callbackservice.CallbackPortType",
 wsdlLocation="/wsdls/Callback.wsdl")

Updating the build.xml File for the Target Web Service

Using Callbacks 6-7

@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http")

public class CallbackWS implements
 examples.webservices.callback.callbackservice.CallbackPortType {

 public CallbackWS() {
 }

 public java.lang.String callback(java.lang.String arg0) {
 return arg0.toUpperCase();
 }
}

6.7 Updating the build.xml File for the Target Web Service
You update a build.xml file to generate a target Web service that invokes the
callback Web service by adding taskdefs and a build-target target that looks
something like the following example. See the description after the example for details.

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <target name="build-target">
 <jwsc srcdir="src" destdir="${ear-dir}" listfiles="true">
 <jws file="TargetImpl.java"
 compiledWsdl="${cowDir}/target/Target_wsdl.jar" type="JAXWS">
 <WLHttpTransport contextPath="target" serviceUri="TargetService"/>
 </jws>
 <clientgen
 type="JAXWS"
 wsdl="Callback.wsdl"
 packageName="examples.webservices.callback.callbackservice"/>
 </jwsc>
 <zip destfile="${ear-dir}/jws.war" update="true">
 <zipfileset dir="src/examples/webservices/callback" prefix="wsdls">
 <include name="Callback*.wsdl"/>
 </zipfileset>
 </zip>
 </target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks. Update
the jwsc Ant task that compiles the client Web service to include:

■ <clientgen> child element of the <jws> element to generate and compile the
Service interface stubs for the deployed CallbackService Web service. The
jwsc Ant task automatically packages them in the generated WAR file so that the
client Web service can immediately access the stubs. You do this because the
TartgetImpl JWS file imports and uses one of the generated classes.

■ <zip> element to include the WSDL for the CallbackService service in the
WAR file so that other Web services can access the WSDL from the following URL:
http://${wls.hostname}:${wls.port}/callback/wsdls/Callback.ws
dl.

For more information about jwsc, see "Running the jwsc WebLogic Web Services Ant
Task" in Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

Updating the build.xml File for the Target Web Service

6-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

7

Optimizing Binary Data Transmission Using MTOM/XOP 7-1

7Optimizing Binary Data Transmission Using
MTOM/XOP

The following sections describe how to use MTOM/XOP to send binary data:

■ Section 7.1, "Sending Binary Data Using MTOM/XOP"

■ Section 7.2, "Streaming SOAP Attachments"

7.1 Sending Binary Data Using MTOM/XOP
SOAP Message Transmission Optimization Mechanism/XML-binary Optimized
Packaging (MTOM/XOP) defines a method for optimizing the transmission of XML
data of type xs:base64Binary or xs:hexBinary in SOAP messages. When the
transport protocol is HTTP, MIME attachments are used to carry that data while at the
same time allowing both the sender and the receiver direct access to the XML data in
the SOAP message without having to be aware that any MIME artifacts were used to
marshal the base64Binary or hexBinary data. The binary data optimization
process involves the following steps: 1) encode the binary data, 2) remove the binary
data from the SOAP envelope, 3) compress the binary data, 4) attach the binary data to
the MIME package, and 5) add references to the MIME package in the SOAP envelope.

MTOM/XOP support is standard in JAX-WS via the use of JWS annotations. The
MTOM specification does not require that, when MTOM is enabled, the Web service
runtime use XOP binary optimization when transmitting base64binary or
hexBinary data. Rather, the specification allows the runtime to choose to do so. This
is because in certain cases the runtime may decide that it is more efficient to send the
binary data directly in the SOAP Message; an example of such a case is when
transporting small amounts of data in which the overhead of conversion and transport
consumes more resources than just inlining the data as is.

The following Java types are mapped to the base64Binary XML data type, by
default: javax.activation.DataHandler, java.awt.Image, and
javax.xml.transform.Source. The elements of type base64Binary or
hexBinary are mapped to byte[], by default.

The following table summarizes the steps required to use MTOM/XOP to send
base64Binary or hexBinary attachments.

Sending Binary Data Using MTOM/XOP

7-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

7.1.1 Annotating the Data Types
Depending on your programming model, you can annotate your Java class or WSDL
to define the MIME content types that are used for sending binary data. This step is
optional.

The following table defines the mapping of MIME content types to Java types. In some
cases, a default MIME type-to-Java type mapping exists. If no default exists, the MIME
content types are mapped to DataHandler.

The following sections describe how to annotate the data types based on whether you
are starting from Java or WSDL.

■ Section 7.1.1.1, "Annotating the Data Types: Start From Java"

■ Section 7.1.1.2, "Annotating the Data Types: Start From WSDL"

7.1.1.1 Annotating the Data Types: Start From Java
When starting from Java, to define the content types that are used for sending binary
data, annotate the field that holds the binary data using the @XmlMimeType
annotation.

The field that contains the binary data must be of type DataHandler.

The following example shows how to annotate a field in the Java class that holds the
binary data.

@WebMethod
@Oneway
public void dataUpload(

Table 7–1 Steps to Use MTOM/XOP to Send Binary Data

Step Description

1 Annotate the data types that
you are going to use as an
MTOM attachment.
(Optional)

Depending on your programming model, you can
annotate your Java class or WSDL to define the content
types that are used for sending binary data. This step is
optional. By default, XML binary types are mapped to
Java byte[]. For more information, see Section 7.1.1,
"Annotating the Data Types".

2 Enable MTOM on the Web
service.

See Section 7.1.2, "Enabling MTOM on the Web Service".

3 Enable MTOM on the client of
the Web service.

See Section 7.1.3, "Enabling MTOM on the Client".

4 Set the attachment threshold. Set the attachment threshold to specify when the
xs:binary64 data is sent inline or as an attachment. See
Section 7.1.4, "Setting the Attachment Threshold".

Table 7–2 Mapping of MIME Content Types to Java Types

MIME Content Type Java Type

image/gif java.awt.Image

image/jpeg java.awt.Image

text/plain java.lang.String

text/xml or application/xml javax.xml.transform.Source

/ javax.activation.DataHandler

Sending Binary Data Using MTOM/XOP

Optimizing Binary Data Transmission Using MTOM/XOP 7-3

 @XmlMimeType("application/octet-stream") DataHandler data)
{
}

7.1.1.2 Annotating the Data Types: Start From WSDL
When starting from WSDL, to define the content types that are used for sending
binary data, annotate the WSDL element of type xs:base64Binary or
xs:hexBinary using one of the following attributes:

■ xmime:contentType - Defines the content type of the element.

■ xmime:expectedContentType - Defines the range of media types that are
acceptable for the binary data.

The following example maps the image element of type base64binary to
image/gif MIME type (which maps to the java.awt.Image Java type).

<element name="image" type="base64Binary"
xmime:expectedContentTypes="image/gif"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime"/>

7.1.2 Enabling MTOM on the Web Service
You can enable MTOM on the Web service using an annotation or WS-Policy file, as
described in the following sections:

■ Enabling MTOM on the Web Service Using Annotation

■ Enabling MTOM on the Web Services Using WS-Policy File

7.1.2.1 Enabling MTOM on the Web Service Using Annotation
To enable MTOM in the Web service, specify the @java.xml.ws.soap.MTOM
annotation on the service endpoint implementation class, as illustrated in the
following example. Relevant code is shown in bold.

package examples.webservices.mtom;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.ws.soap.MTOM;

@MTOM
@WebService(name="MtomPortType",
 serviceName="MtomService",
 targetNamespace="http://example.org")
public class MTOMImpl {
 @WebMethod
 public String echoBinaryAsString(byte[] bytes) {
 return new String(bytes);

 }
}

7.1.2.2 Enabling MTOM on the Web Services Using WS-Policy File
In addition to the @MTOM annotation, described in the previous section, support for
MTOM/XOP in WebLogic JAX-WS Web services is implemented using the
pre-packaged WS-Policy file Mtom.xml. WS-Policy files follow the WS-Policy
specification, described at http://www.w3.org/TR/ws-policy; this specification
provides a general purpose model and XML syntax to describe and communicate the

Sending Binary Data Using MTOM/XOP

7-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

policies of a Web service, in this case the use of MTOM/XOP to send binary data. The
installation of the pre-packaged Mtom.xml WS-Policy file in the types section of the
Web service WSDL is as follows (provided for your information only; you cannot
change this file):

<wsp:Policy wsu:Id="myService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsoma:OptimizedMimeSerialization

xmlns:wsoma="http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserializati
on" />
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>

When you deploy the compiled JWS file to WebLogic Server, the dynamic WSDL will
automatically contain the following snippet that references the MTOM WS-Policy file;
the snippet indicates that the Web service uses MTOM/XOP:

<wsdl:binding name="BasicHttpBinding_IMtomTest"
 type="i0:IMtomTest">
 <wsp:PolicyReference URI="#myService_policy" />
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />

You can associate the Mtom.xml WS-Policy file with a Web service at
development-time by specifying the @Policy metadata annotation in your JWS file.
Be sure you also specify the attachToWsdl=true attribute to ensure that the
dynamic WSDL includes the required reference to the Mtom.xml file; see the example
below.

You can associate the Mtom.xml WS-Policy file with a Web service at deployment time
by modifying the WSDL to add the Policy to the types section just before deployment.

In addition, you can attach the file at runtime using by the Administration Console; for
details, see "Associate a WS-Policy file with a Web service" in the Oracle WebLogic
Server Administration Console Help. This section describes how to use the JWS
annotation.

The following simple JWS file example shows how to use the
@weblogic.jws.Policy annotation in your JWS file to specify that the
pre-packaged Mtom.xml file should be applied to your Web service (relevant code
shown in bold):

package examples.webservices.mtom;
import javax.jws.WebMethod;
import javax.jws.WebService;
 import weblogic.jws.Policy;
@WebService(name="MtomPortType",
 serviceName="MtomService",
 targetNamespace="http://example.org")
@Policy(uri="policy:Mtom.xml", attachToWsdl=true)
public class MtomImpl {
 @WebMethod
 public String echoBinaryAsString(byte[] bytes) {
 return new String(bytes);
 }

Streaming SOAP Attachments

Optimizing Binary Data Transmission Using MTOM/XOP 7-5

7.1.3 Enabling MTOM on the Client
To enable MTOM on the client of the Web service, pass the
javax.xml.ws.soap.MTOMFeature as a parameter when creating the Web service
proxy or dispatch, as illustrated in the following example. Relevant code is shown in
bold.

package examples.webservices.mtom.client;

import javax.xml.ws.soap.MTOMFeature;

public class Main {
 public static void main(String[] args) {
 String FOO = "FOO";
 MtomService service = new MtomService()
 MtomPortType port = service.getMtomPortTypePort(new MTOMFeature());
 String result = null;
 result = port.echoBinaryAsString(FOO.getBytes());
 System.out.println("Got result: " + result);
 }
}

7.1.4 Setting the Attachment Threshold
You can set the attachment threshold to specify when the xs:binary64 data is sent
inline or as an attachment. By default, the attachment threshold is 0 bytes. All
xs:binary64 data is sent as an attachment.

To set the attachment threshold:

■ On the Web service, pass the threshold attribute to the
@java.xml.ws.soap.MTOM annotation. For example:

@MTOM(threshold=3072)

■ On the client of the Web service, pass the threshold value to
javax.xml.ws.soap.MTOMFeature. For example:

MtomPortType port = service.getMtomPortTypePort(new MTOMFeature(3072));

In each of the examples above, if a message is greater than or equal to 3 KB, it will be
sent as an attachment. Otherwise, the content will be sent inline, as part of the SOAP
message body.

7.2 Streaming SOAP Attachments

Using MTOM and the javax.activation.DataHandler and
com.sun.xml.ws.developer.StreamingDataHandler APIs you can specify
that a Web service use a streaming API when reading inbound SOAP messages that

Note: The
com.sun.xml.ws.developer.StreamingDataHandler API (see
https://jax-ws-architecture-document.dev.java.net/no
nav/doc/com/sun/xml/ws/developer/StreamingAttachment
.html) is supported as an extension to the JAX-WS RI, provided by
Sun Microsystems. Because this API is not provided as part of the
WebLogic software, it is subject to change.

Streaming SOAP Attachments

7-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

include attachments, rather than the default behavior in which the service reads the
entire message into memory. This feature increases the performance of Web services
whose SOAP messages are particularly large.

The following sections describe how to employ streaming SOAP attachments on the
client and server sides.

7.2.1 Client Side Example
The following provides an example that employs streaming SOAP attachments on the
client side.

package examples.webservices.mtomstreaming.client;

import java.util.Map;
import java.io.InputStream;
import javax.xml.ws.soap.MTOMFeature;
import javax.activation.DataHandler;
import javax.xml.ws.BindingProvider;
import com.sun.xml.ws.developer.JAXWSProperties;
import com.sun.xml.ws.developer.StreamingDataHandler;

public class Main {
 public static void main(String[] args) {
 MtomStreamingService service = new MtomStreamingService();
 MTOMFeature feature = new MTOMFeature();
 MtomStreamingPortType port = service.getMtomStreamingPortTypePort(
 feature);
 Map<String, Object> ctxt=((BindingProvider)port).getRequestContext();
 ctxt.put(JAXWSProperties.HTTP_CLIENT_STREAMING_CHUNK_SIZE, 8192);
 DataHandler dh = new DataHandler(new
 FileDataSource("/tmp/example.jar"));
 port.fileUpload("/tmp/tmp.jar",dh);

 DataHandler dhn = port.fileDownload("/tmp/tmp.jar");
 StreamingDataHandler sdh = {StreamingDataHandler)dh;
 try{
 File file = new File("/tmp/tmp.jar");
 sdh.moveTo(file);
 sdh.close();
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }
}

The preceding example demonstrates the following:

■ To enable MTOM on the client of the Web service, pass the
javax.xml.ws.soap.MTOMFeature as a parameter when creating the Web
service proxy or dispatch.

■ Configure HTTP streaming support by enabling HTTP chunking on the MTOM
streaming client.

Note: Streaming MTOM cannot be used in conjunction with message
encryption.

Streaming SOAP Attachments

Optimizing Binary Data Transmission Using MTOM/XOP 7-7

Map<String, Object> ctxt = ((BindingProvider)port).getRequestContext();
 ctxt.put(JAXWSProperties.HTTP_CLIENT_STREAMING_CHUNK_SIZE, 8192);

■ Call the port.fileUpload method.

■ Cast the DataHandler to StreamingDataHandler and use the
StreamingDataHandler.readOnce() method to read the attachment.

7.2.2 Server Side Example
The following provides an example that employs streaming SOAP attachments on the
server side.

package examples.webservices.mtomstreaming;

import java.io.File;
import java.jws.Oneway;
import javax.jws.WebMethod;
import java.io.InputStream;
import javax.jws.WebService;
import javax.xml.bind.annotation.XmlMimeType;
import javax.xml.ws.WebServiceException;
import javax.xml.ws.soap.MTOM;
import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import com.sun.xml.ws.developer.StreamingAttachment;
import com.sun.xml.ws.developer.StreamingDataHandler;

@StreamingAttachment(parseEagerly=true, memoryThreshold=40000L)
@MTOM
@WebService(name="MtomStreaming",
 serviceName="MtomStreamingService",
 targetNamespace="http://example.org",
 wsdlLocation="StreamingImplService.wsdl")
@Oneway
@WebMethod
public class StreamingImpl {

 // Use @XmlMimeType to map to DataHandler on the client side
 public void fileUpload(String fileName,
 @XmlMimeType("application/octet-stream")
 DataHandler data) {
 try {
 StreamingDataHandler dh = (StreamingDataHandler) data;
 File file = new File(fileName);
 dh.moveTo(file);
 dh.close();
 } catch (Exception e) {
 throw new WebServiceException(e);
 }

 @XmlMimeType("application/octet-stream")
 @WebMethod
 public DataHandler fileDownload(String filename)
 {
 return new DataHandler(new FileDataSource(filename));
 }
}

The preceding example demonstrates the following:

Streaming SOAP Attachments

7-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ The @StreamingAttachement annotation is used to configure the streaming
SOAP attachment. For more information, see "Configuring Streaming SOAP
Attachments" on page 7-8.

■ The @XmlMimeType annotation is used to map the DataHandler, as follows:

– If starting from WSDL, it is used to map the
xmime:expectedContentTypes="application/octet-stream" to
DataHandler in the generated SEI.

– If starting from Java, it is used to generate an appropriate schema type in the
generated WSDL.

■ Cast the DataHandler to StreamingDataHandler and use the
StreamingDataHandler.moveTo(File) method to store the contents of the
attachment to a file.

7.2.3 Configuring Streaming SOAP Attachments
You can configure streaming SOAP attachments on the client and server sides to
specify the following:

■ Directory in which large attachments are stored.

■ Whether to parse eagerly the streaming attachments.

■ Maximum attachment size (bytes) that can be stored in memory. Attachments that
exceed the specified number of bytes are written to a file.

7.2.3.1 Configuring Streaming SOAP Attachments on the Server

To configure streaming SOAP attachments on the server, add the
@StreamingAttachment annotation on the endpoint implementation. The following
example specifies that streaming attachments are to be parsed eagerly and sets the
memory threshold to 4MB. Attachments under 4MB are stored in memory.

...
import com.sun.xml.ws.developer.StreamingAttachment;
import javax.jws.WebService;

@StreamingAttachment(parseEagerly=true, memoryThreshold=4000000L)
@WebService(name="HelloWorldPortType", serviceName="HelloWorldService")
public class StreamingImpl {
}

Note: The
com.sun.xml.ws.developer.StreamingAttachment API (see
https://jax-ws-architecture-document.dev.java.net/no
nav/doc/com/sun/xml/ws/developer/StreamingAttachment
.html) is supported as an extension to the JDK 6.0, provided by Sun
Microsystems. Because this API is not provided as part of the JDK 6.0
kit, it is subject to change.

Streaming SOAP Attachments

Optimizing Binary Data Transmission Using MTOM/XOP 7-9

7.2.3.2 Configuring Streaming SOAP Attachments on the Client

To configure streaming SOAP attachments on the client, create a
StreamingAttachmentFeature object and pass this as an argument when creating
the PortType stub implementation. The following example sets the directory in
which large attachments are stored to /tmp, specifies that streaming attachments are
to be parsed eagerly and sets the memory threshold to 4MB. Attachments under 4MB
are stored in memory.

...
import com.sun.xml.ws.developer.StreamingAttachmentFeature;
...
MTOMFeature mtom = new MTOMFeature();
StreamingAttachmentFeature stf = new StreamingAttachmentFeature("/tmp", true,
4000000L);
MtomStreamingService service = new MtomStreamingService();
MtomStreamingPortType port = service.getMtomStreamingPortTypePort(
 mtom, stf);
...

Note: The
com.sun.xml.ws.developer.StreamingAttachmentFeature
API (see
https://jax-ws-architecture-document.dev.java.net/no
nav/doc/com/sun/xml/ws/developer/StreamingAttachment
.html) is supported as an extension to the JDK 6.0, provided by Sun
Microsystems. Because this API is not provided as part of the JDK 6.0
kit, it is subject to change.

Streaming SOAP Attachments

7-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

8

Creating Dynamic Proxy Clients 8-1

8Creating Dynamic Proxy Clients

A dynamic proxy client enables a Web service client to invoke a Web service based on a
service endpoint interface (SEI) dynamically at run-time without using clientgen.
The steps to create a dynamic proxy client are outlined in the following table. For more
information, see the javax.xml.ws.Service Javadoc at
http://java.sun.com/javase/6/docs/api/javax/xml/ws/Service.html.

Table 8–1 Steps to Create a Dynamic Proxy Client

Step Description

1 Create the
javax.xml.ws.Service
instance.

Create the Service instance using the Service.create
method.

You must pass the service name and optionally the location
of the WSDL document. The method details are as follows:

public static Service create (QName serviceName)
throws javax.xml.ws.WebServiceException {}
public static Service create (URL
wsdlDocumentLocation, QName serviceName) throws
javax.xml.ws.WebServiceException {}

For example:

URL wsdlLocation = new
URL("http://example.org/my.wsdl");
QName serviceName = new
QName("http://example.org/sample", "MyService");
Service s = Service.create(wsdlLocation,
serviceName);

See Section 8.1, "Additional Considerations When
Specifying WSDL Location" for additional usage
information.

2 Create the proxy stub. Use the Service.getPort method to create the proxy
stub. You can use this stub to invoke operations on the
target service endpoint.

You must pass the service endpoint interface (SEI) and
optionally the name of the port in the WSDL service
description. The method details are as follows:

public <T> T getPort(QName portName, Class<T>
serviceEndpointInterface) throws
javax.xml.ws.WebServiceException {}
public <T> T getPort(Class<T>
serviceEndpointInterface) throws
javax.xml.ws.WebServiceException {}

For example:

MyPort port = s.getPort(MyPort.class);

Additional Considerations When Specifying WSDL Location

8-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

8.1 Additional Considerations When Specifying WSDL Location
If you use HTTPS to get the Web service from the WSDL, and the hostname definition
in the WebLogic Server SSL certificate does not equal the hostname of the peer HTTPS
server or is not one of the following, the action fails with a hostname verification error:

■ localhost

■ 127.0.0.1

■ hostname of localhost

■ IP address of localhost

The hostname verification error is as follows:

EchoService service = new EchoService(https-wsdl, webservice-qName);
:
:
javax.xml.ws.WebServiceException: javax.net.ssl.SSLKeyException:
Security:090504 Certificate chain received from host.company.com - 10.167.194.63
failed hostname verification check. Certificate contained {....} but
check expected host.company.com

The recommended workaround is to use HTTP instead of HTTPS to get the Web
service from a WSDL when creating the service, and your own hostname verifier code
to verify the hostname after the service is created:

EchoService service = Service.create(http_wsdl, qname);
//get Port
EchoPort port = service.getPort(...);
//set self-defined hostname verifier
((BindingProvider) port).getRequestContext().put(
 com.sun.xml.ws.developer.JAXWSProperties.HOSTNAME_VERIFIER,
 new MyHostNameVerifier());
/*
*/

Optionally, you can ignore hostname verification by setting the binding provider
property:

((BindingProvider) port).getRequestContext().put(
 BindingProviderProperties.HOSTNAME_VERIFICATION_PROPERTY,
 "true");

However, if you must use HTTPS to get the Web service from the WSDL, there are
several possible workarounds:

■ Turn off hostname verification if you are using the WebLogic Server HTTPS
connection. To do this, set the global system property to ignore hostname
verification:

weblogic.security.SSL.ignoreHostnameVerification=true

The system property does not work for service creation if the connection is a JDK
connection or other non-WebLogic Server connection.

■ Set your own hostname verifier for the connection before you get the Web service
from the WSDL, then use HTTPS to get the Web service from the WSDL:

//set self-defined hostname verifier
URL url = new URL(https_wsdl);
HttpsURLConnection connection = (HttpsURLConnection)url.openConnection();
connection.setHostnameVerifier(new MyHostNameVerifier());

Additional Considerations When Specifying WSDL Location

Creating Dynamic Proxy Clients 8-3

//then initiate the service
EchoService service = Service.create(https_wsdl, qname);

//get port and set self-defined hostname verifier to binding provider
...

For the workarounds in which you set your own hostname verifier, an example
hostname verifier might be as follows:

public class MyHostnameVerifier implements HostnameVerifier {
 public boolean verify(String hostname, SSLSession session) {
 if (hostname.equals(“the host you want”))
 return true;
 else
 return false;
 }
}

Additional Considerations When Specifying WSDL Location

8-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

9

Using XML Catalogs 9-1

9Using XML Catalogs

The following sections describe how to use XML catalogs:

■ Section 2.1, "Overview of the Asynchronous Request-Response Feature"

■ Section 9.2, "Defining and Referencing XML Catalogs"

■ Section 9.3, "Disabling XML Catalogs in the Client Runtime"

■ Section 9.4, "Getting a Local Copy of XML Resources"

9.1 Overview of XML Catalogs
An XML catalog enables your application to reference imported XML resources, such
as WSDLs and XSDs, from a source that is different from that which is part of the
description of the Web service. Redirecting the XML resources in this way may be
required to improve performance or to ensure your application runs properly in your
local environment.

For example, a WSDL may be accessible during client generation, but may no longer
be accessible when the client is run. You may need to reference a resource that is local
to or bundled with your application rather than a resource that is available over the
network. Using an XML catalog file, you can specify the location of the WSDL that will
be used by the Web service at runtime.

The following table summarizes how XML catalogs are supported in the WebLogic
Server Ant tasks.

Overview of XML Catalogs

9-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

The following sections describe how to:

■ Define and reference an XML catalog to specify the XML resources that you want
to redirect. See Section 9.2, "Defining and Referencing XML Catalogs",

■ Disable XML catalogs in the client runtime. See Section 9.3, "Disabling XML
Catalogs in the Client Runtime".

■ Get a local copy of the WSDL and its imported XML resources using wsdlget.
These files can be packaged with your application and referenced from within an
XML catalog. See Section 9.4, "Getting a Local Copy of XML Resources".

Table 9–1 Support for XML Catalogs in WebLogic Server Ant Tasks

Ant Task Description

clientgen Define and reference XML catalogs in one of the following ways:

■ Use the catalog attribute to specify the name of the external XML
catalog file. For more information, see Section 9.2.1, "Defining an External
XML Catalog".

■ Use the <xmlcatalog> child element to reference an embedded XML
catalog file. For more information, see Section 9.2.2, "Embedding an XML
Catalog".

When you execute the clientgen Ant task to build the client (or the jwsc
Ant task if the clientgen task is embedded), the jax-ws-catalog.xml
file is generated and copied to the client runtime environment. The
jax-ws-catalog.xml file contains the XML catalog(s) that are defined in
the external XML catalog file(s) and/or embedded in the build.xml file.
This file is copied, along with the referenced XML targets, to the META-INF or
WEB-INF folder for Enterprise or Web applications, respectively.

Note: The contents of the XML resources are not impacted during this
process.

You can disable the jax-ws-catalog.xml file from being copied to the
client runtime environment, as described in Section 9.3, "Disabling XML
Catalogs in the Client Runtime".

wsdlc Define and reference XML catalogs in one of the following ways:

■ Use the catalog attribute to specify the name of the external XML
catalog file. For more information, see Section 9.2.1, "Defining an External
XML Catalog".

■ Use the <xmlcatalog> child element to reference an embedded XML
catalog file. For more information, see Section 9.2.2, "Embedding an XML
Catalog".

When you execute the wsdlc Ant task, the XML resources are copied to the
compiled WSDL JAR file or exploded directory.

wsdlget Define and reference XML catalogs in one of the following ways:

■ Use the catalog attribute to specify the name of the external XML
catalog file. For more information, see Section 9.2.1, "Defining an External
XML Catalog".

■ Use the <xmlcatalog> child element to reference an embedded XML
catalog file. For more information, see Section 9.2.2, "Embedding an XML
Catalog".

When you execute the wsdlget Ant task, the WSDL and imported resources
are downloaded to the specified directory.

Note: The contents of the XML resources are updated to reference the
resources defined in the XML catalog(s).

Defining and Referencing XML Catalogs

Using XML Catalogs 9-3

For more information about XML catalogs, see the Oasis XML Catalogs specification at
http://www.oasis-open.org/committees/download.php/14809/xml-cata
logs.html.

9.2 Defining and Referencing XML Catalogs
You define an XML catalog and then reference it from the clientgen or wsdlc Ant
task in your build.xml file in one of the following ways:

■ Define an external XML catalog - Define an external XML catalog file and
reference that file from the clientgen or wsdlc Ant tasks in your build.xml
file using the catalogs attribute. For more information, see Section 9.2.1,
"Defining an External XML Catalog".

■ Embed an XML catalog - Embed the XML catalog directly in the build.xml file
using the <xmlcatalog> element and reference it from the clientgen or wsdlc
Ant tasks in your build.xml file using the <xmlcatalog> child element. For
more information, see Section 9.2.2, "Embedding an XML Catalog".

In the event of a conflict, entries defined in an embedded XML catalog take precedence
over those defined in an external XML catalog.

9.2.1 Defining an External XML Catalog
To define an external XML catalog:

1. Create an external XML catalog file that defines the XML resources that you want
to be redirected. See Section 9.2.1.1, "Creating an External XML Catalog File".

2. Reference the XML catalog file from the clientgen or wsdlc Ant task in your
build.xml file using the catalogs attribute. See Section 9.2.1.2, "Referencing
the External XML Catalog File".

Each step is described in more detail in the following sections.

9.2.1.1 Creating an External XML Catalog File
The <catalog> element is the root element of the XML catalog file and serves as the
container for the XML catalog entities. To specify XML catalog entities, you can use the
system or public elements, for example.

The following provides a sample XML catalog file:

<catalog xmln="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 prefer="system">
 <system systemId="http://foo.org/hello?wsdl"
 uri="HelloService.wsdl" />
 <public publicId="ISO 8879:1986//ENTITIES Added Latin 1//EN"
 uri="wsdl/myApp/myApp.wsdl"/>
</catalog>

In the above example:

■ The <catalog> root element defines the XML catalog namespace and sets the
prefer attribute to system to specify that system matches are preferred.

Note: You can use the wsdlget Ant task to get a local copy of the
XML resources, as described in Section 9.3, "Disabling XML Catalogs
in the Client Runtime".

Defining and Referencing XML Catalogs

9-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ The <system> element associates a URI reference with a system identifier.

■ The <public> element associates a URI reference with a public identifier.

For a complete description of the XML catalog file syntax, see the Oasis XML Catalogs
specification at
http://www.oasis-open.org/committees/download.php/14809/xml-cata
logs.html.

9.2.1.2 Referencing the External XML Catalog File
To reference the XML catalog file from the clientgen or wsdlc Ant task in your
build.xml file, use the catalogs attribute.

The following example shows how to reference an XML catalog file using clientgen.
Relevant code lines are shown in bold.

<target name="clientgen">
<clientgen
 type="JAXWS"
 wsdl="${wsdl}"
 destDir="${clientclasses.dir}"
 packageName="xmlcatalog.jaxws.clientgen.client"
 catalog="wsdlcatalog.xml"/>
</clientgen>
</target>

9.2.2 Embedding an XML Catalog
To embed an XML catalog:

1. Create an embedded XML catalog in the build.xml file. See Section 9.2.2.1,
"Creating an Embedded XML Catalog".

2. Reference the embedded XML catalog from the clientgen or wsdlc Ant task
using the xmlcatalog child element. See Section 9.2.2.2, "Referencing an
Embedded XML Catalog".

Each step is described in more detail in the following sections.

9.2.2.1 Creating an Embedded XML Catalog
The <xmlcatalog> element enables you to embed an XML catalog directly in the
build.xml file. The following shows a sample of an embedded XML catalog in the
build.xml file.

<xmlcatalog id="wsimportcatalog">
 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"
 location="${basedir}/HelloTypes.xsd"/>
</xmlcatalog>

For a complete description of the embedded XML catalog syntax, see the Oasis XML
Catalogs specification at
http://www.oasis-open.org/committees/download.php/14809/xml-cata
logs.html.

Note: In the event of a conflict, entries defined in an embedded XML
catalog take precedence over those defined in an external XML
catalog.

Disabling XML Catalogs in the Client Runtime

Using XML Catalogs 9-5

9.2.2.2 Referencing an Embedded XML Catalog
The <xmlcatalog> child element of the clientgen or wsdlc Ant tasks enables you
to reference an embedded XML catalog. To specify the <xmlcatalog> element, use
the following syntax:

<xmlcatalog refid="id"/>

The id referenced by the <xmlcatalog> child element must match the ID of the
embedded XML catalog.

The following example shows how to reference an embedded XML catalog using
clientgen. Relevant code lines are shown in bold.

<target name="clientgen">
<clientgen
 type="JAXWS"
 wsdl="${wsdl}"
 destDir="${clientclasses.dir}"
 packageName="xmlcatalog.jaxws.clientgen.client"
 catalog="wsdlcatalog.xml"/>
 <xmlcatalog refid="wsimportcatalog"/>
</clientgen>
</target>
<xmlcatalog id="wsimportcatalog">
 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"
 location="${basedir}/HelloTypes.xsd"/>
</xmlcatalog>

9.3 Disabling XML Catalogs in the Client Runtime
By default, when you define and reference XML catalogs in your build.xml file, as
described in Section 9.2, "Defining and Referencing XML Catalogs", when you execute
the clientgen Ant task to build the client, the jax-ws-catalog.xml file is
generated and copied to the client runtime environment. The jax-ws-catalog.xml
file contains the XML catalog(s) that are defined in the external XML catalog file(s)
and/or embedded in the build.xml file. This file is copied, along with the referenced
XML targets, to the META-INF or WEB-INF folder for Enterprise or Web applications,
respectively.

You can disable the generation of the XML catalog artifacts in the client runtime
environment by setting the genRuntimeCatalog attribute of the clientgen to
false. For example:

<clientgen
 type="JAXWS"
 wsdl="${wsdl}"
 destDir="${clientclasses.dir}"
 packageName="xmlcatalog.jaxws.clientgen.client"
 catalog="wsdlcatalog.xml"
 genRuntimeCatalog="false"/>

In this case, the jax-ws-catalog.xml file will not be copied to the runtime
environment.

If you generated your client with the genRuntimeCatalog attribute set to false, to
subsequently enable the XML catalogs in the client runtime, you will need to create the
jax-ws-catalog.xml file manually and copy it to the META-INF or WEB-INF
folder for Enterprise or Web applications, respectively. Ensure that the
jax-ws-catalog.xml file contains all of the entries defined in the external XML
catalog file(s) and/or embedded in the build.xml file.

Getting a Local Copy of XML Resources

9-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

9.4 Getting a Local Copy of XML Resources
The wsdlget Ant task enables you to get a local copy of XML resources, such as
WSDL and XSD files. Then, you can refer to the local version of the XML resources
using an XML catalog, as described in Section 9.2, "Defining and Referencing XML
Catalogs".

The following excerpt from an Ant build.xml file shows how to use the wsdlget
Ant task to download a WSDL and its XML resources. The XML resources will be
saved to the wsdl folder in the directory from which the Ant task is run.

<target name="wsdlget"
 <wsdlget
 wsdl="http://host/service?wsdl"
 destDir="./wsdl/"
 />
</target>

10

Creating and Using SOAP Message Handlers 10-1

10Creating and Using SOAP Message Handlers

The following sections provide information about creating and using SOAP message
handlers:

■ Section 10.1, "Overview of SOAP Message Handlers"

■ Section 10.2, "Adding Server-side SOAP Message Handlers: Main Steps"

■ Section 10.3, "Adding Client-side SOAP Message Handlers: Main Steps"

■ Section 10.4, "Designing the SOAP Message Handlers and Handler Chains"

■ Section 10.5, "Creating the SOAP Message Handler"

■ Section 10.6, "Configuring Handler Chains in the JWS File"

■ Section 10.7, "Creating the Handler Chain Configuration File"

■ Section 10.8, "Compiling and Rebuilding the Web Service"

■ Section 10.9, "Configuring the Client-side SOAP Message Handlers"

10.1 Overview of SOAP Message Handlers
Web services and their clients may need to access the SOAP message for additional
processing of the message request or response. You can create SOAP message handlers
to enable Web services and clients to perform this additional processing on the SOAP
message. A SOAP message handler provides a mechanism for intercepting the SOAP
message in both the request and response of the Web service.

A simple example of using handlers is to access information in the header part of the
SOAP message. You can use the SOAP header to store Web service specific
information and then use handlers to manipulate it.

You can also use SOAP message handlers to improve the performance of your Web
service. After your Web service has been deployed for a while, you might discover that
many consumers invoke it with the same parameters. You could improve the
performance of your Web service by caching the results of popular invokes of the Web
service (assuming the results are static) and immediately returning these results when
appropriate, without ever invoking the back-end components that implement the Web
service. You implement this performance improvement by using handlers to check the
request SOAP message to see if it contains the popular parameters.

JAX-WS supports two types of SOAP message handlers: SOAP handlers and logical
handlers. SOAP handlers can access the entire SOAP message, including the message
headers and body. Logical handlers can access the payload of the message only, and
cannot change any protocol-specific information (like headers) in a message.

Adding Server-side SOAP Message Handlers: Main Steps

10-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

10.2 Adding Server-side SOAP Message Handlers: Main Steps
The following procedure describes the high-level steps to add SOAP message handlers
to your Web service.

It is assumed that you have created a basic JWS file that implements a Web service and
that you want to update the Web service by adding SOAP message handlers and
handler chains. It is also assumed that you have set up an Ant-based development
environment and that you have a working build.xml file that includes a target for
running the jwsc Ant task. For more information, see in Getting Started With JAX-WS
Web Services for Oracle WebLogic Server:

■ Use Cases and Examples

■ Developing WebLogic Web Services

■ Programming the JWS File

■ Invoking Web Services

10.3 Adding Client-side SOAP Message Handlers: Main Steps
You can configure client-side SOAP message handlers for both stand-alone clients and
clients that run inside of WebLogic Server. You create the actual Java client-side
handler in the same way you create a server-side handler (by creating a Java class that
implements the SOAP message handler interface). In many cases you can use the exact
same handler class on both the Web service running on WebLogic Server and the client
applications that invoke the Web service. For example, you can write a generic logging
handler class that logs all sent and received SOAP messages, both for the server and
for the client.

Note: If SOAP handlers are used in conjunction with policies
(security, WS-ReliableMessaging, MTOM, and so on), for inbound
messages, the policy interceptors are executed before the user-defined
message handlers. For outbound messages, this order is reversed.

Table 10–1 Steps to Add SOAP Message Handlers to a Web Service

Step Description

1 Design the handlers and
handler chains.

Design SOAP message handlers and group them together
in a handler chain. See Section 10.4, "Designing the SOAP
Message Handlers and Handler Chains".

2 For each handler in the
handler chain, create a Java
class that implements the
SOAP message handler
interface.

See Section 10.5, "Creating the SOAP Message Handler".

3 Update your JWS file, adding
annotations to configure the
SOAP message handlers.

See Section 10.6, "Configuring Handler Chains in the JWS
File".

4 Create the handler chain
configuration file.

See Section 10.7, "Creating the Handler Chain
Configuration File".

5 Compile all handler classes in
the handler chain and rebuild
your Web service.

See Section 10.8, "Compiling and Rebuilding the Web
Service".

Designing the SOAP Message Handlers and Handler Chains

Creating and Using SOAP Message Handlers 10-3

The following procedure describes the high-level steps to add client-side SOAP
message handlers to the client application that invokes a Web service operation.

It is assumed that you have created the client application that invokes a deployed Web
service, and that you want to update the client application by adding client-side SOAP
message handlers and handler chains. It is also assumed that you have set up an
Ant-based development environment and that you have a working build.xml file
that includes a target for running the clientgen Ant task. For more information, see
"Invoking a Web service from a Stand-alone Client: Main Steps" in Getting Started With
JAX-WS Web Services for Oracle WebLogic Server.

When you next run the client application, the SOAP messaging handlers listed in the
configuration file automatically execute before the SOAP request message is sent and
after the response is received.

10.4 Designing the SOAP Message Handlers and Handler Chains
When designing your SOAP message handlers, you must decide:

■ The number of handlers needed to perform the work.

■ The sequence of execution.

You group SOAP message handlers together in a handler chain. Each handler in a
handler chain may define methods for both inbound and outbound messages.

Table 10–2 Steps to Use Client-side SOAP Message Handlers

Step Description

1 Design the handlers and
handler chains.

This step is similar to designing the server-side SOAP
message handlers, except the perspective is from the
client application, rather than a Web service. See
Section 10.4, "Designing the SOAP Message Handlers and
Handler Chains".

2 For each handler in the
handler chain, create a Java
class that implements the
SOAP message handler
interface.

This step is similar to designing the server-side SOAP
message handlers, except the perspective is from the
client application, rather than a Web service. See
Section 10.5, "Creating the SOAP Message Handler" for
details about programming a handler class.

3 Update your client to
programmatically configure
the SOAP message handlers.

See Section 10.9, "Configuring the Client-side SOAP
Message Handlers".

4 Update the build.xml file that
builds your application,
specifying to the clientgen
Ant task the customization
file.

See Section 10.8, "Compiling and Rebuilding the Web
Service".

5 Rebuild your client
application by running the
relevant task.

prompt> ant build-client

Note: You do not have to update your actual client application to
invoke the client-side SOAP message handlers; as long as you specify
to the clientgen Ant task the handler configuration file, the
generated interface automatically takes care of executing the handlers
in the correct sequence.

Designing the SOAP Message Handlers and Handler Chains

10-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Typically, each SOAP message handler defines a separate set of steps to process the
request and response SOAP message because the same type of processing typically
must happen for the inbound and outbound message. You can, however, design a
handler that processes only the SOAP request and does no equivalent processing of
the response. You can also choose not to invoke the next handler in the handler chain
and send an immediate response to the client application at any point.

10.4.1 Server-side Handler Execution
When invoking a Web service, WebLogic Server executes handlers as follows:

1. The inbound methods for handlers in the handler chain are all executed in the
order specified by the JWS annotation. Any of these inbound methods might
change the SOAP message request.

2. When the last handler in the handler chain executes, WebLogic Server invokes the
back-end component that implements the Web service, passing it the final SOAP
message request.

3. When the back-end component has finished executing, the outbound methods of
the handlers in the handler chain are executed in the reverse order specified by the
JWS annotation. Any of these outbound methods might change the SOAP message
response.

4. When the first handler in the handler chain executes, WebLogic Server returns the
final SOAP message response to the client application that invoked the Web
service.

For example, assume that you are going to use the @HandlerChain JWS annotation
in your JWS file to specify an external configuration file, and the configuration file
defines a handler chain called SimpleChain that contains three handlers, as shown in
the following sample:

<?xml version="1.0" encoding="UTF-8" ?>
<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>
 <handler-class>
 Handler1
 </handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <handler>
 <handler-class>
 Handler2
 </handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <handler>
 <handler-class>
 Handler3
 </handler-class>
 </handler>
 </handler-chain>
</handler-chains>

The following graphic shows the order in which WebLogic Server executes the
inbound and outbound methods of each handler.

Creating the SOAP Message Handler

Creating and Using SOAP Message Handlers 10-5

Figure 10–1 Order of Execution of Handler Methods

10.4.2 Client-side Handler Execution
In the case of a client-side handler, the handler executes twice:

■ Directly before the client application sends the SOAP request to the Web service

■ Directly after the client application receives the SOAP response from the Web
service

10.5 Creating the SOAP Message Handler
There are two types of SOAP message handlers that you can create, as defined in the
following table.

Each type of message handler extends the javax.xml.ws.Handler interface (see
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/Handl
er.html), which defines the methods defined in the following table.

Table 10–3 Types of SOAP Message Handlers

Handler Type Description

SOAP handler Enables you to access the full SOAP message including headers.
SOAP handlers are defined using the
javax.xml.ws.handler.soap.SOAPHandler interface. They
are invoked using the import
javax.xml.ws.handler.soap.SOAPMessageContext which
extends javax.xml.ws.handler.MessageContext The
SOAPMessageContext.getMessage() method returns a
javax.xml.soap.SOAPMessage.

Logical handlers Provides access to the payload of the message. Logical handlers
cannot change any protocol-specific information (like headers) in a
message. Logical handlers are defined using the
javax.xml.ws.handler.LogicalHandler interface (see
http://java.sun.com/javase/6/docs/api/javax/xml/w
s/handler/LogicalHandler.html). They are invoked using
the javax.xml.ws.handler.LogicalMessageContext which
extends javax.xml.ws.handler.MessageContext The
LogicalMessageContext.getMessage() method returns a
javax.xml.ws.LogicalMessage.

The payload can be accessed either as a JAXB object or as a
javax.xml.transform.Source object (see
http://java.sun.com/javase/6/docs/api/javax/xml/w
s/LogicalMessage.html).

Creating the SOAP Message Handler

10-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

In addition, you can use the @javax.annotation.PostConstruct and
@javax.annotation.PreDestroy annotations to identify methods that must be
executed after the handler is created and before the handler is destroyed, respectively.

Sometimes you might need to directly view or update the SOAP message from within
your handler, in particular when handling attachments, such as image. In this case, use
the javax.xml.soap.SOAPMessage abstract class, which is part of the SOAP With
Attachments API for Java 1.1 (SAAJ) specification at
http://java.sun.com/webservices/saaj/docs.html For details, see
Section 10.5.7, "Directly Manipulating the SOAP Request and Response Message Using
SAAJ".

10.5.1 Example of a SOAP Handler
The following example illustrates a simple SOAP handler that returns whether the
message is inbound or outbound along with the message content.

package examples.webservices.handler;

import java.util.Set;
import java.util.Collections;
import javax.xml.namespace.QName;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPMessageContext;
import javax.xml.soap.SOAPMessage;

public class Handler1 implements SOAPHandler<SOAPMessageContext>
{
 public Set<QName> getHeaders()
 {
 return Collections.emptySet();
 }

 public boolean handleMessage(SOAPMessageContext messageContext)
 {
 Boolean outboundProperty = (Boolean)
 messageContext.get (MessageContext.MESSAGE_OUTBOUND_PROPERTY);

 if (outboundProperty.booleanValue()) {
 System.out.println("\nOutbound message:");
 } else {
 System.out.println("\nInbound message:");
 }

Table 10–4 Handler Interface Methods

Method Description

handleMessage() Manages normal processing of inbound and outbound messages. A
property in the MessageContext object is used to determine if the
message is inbound or outbound. See Section 10.5.3, "Implementing
the Handler.handleMessage() Method".

handleFault() Manages fault processing of inbound and outbound messages. See
Section 10.5.4, "Implementing the Handler.handleFault() Method".

close() Concludes the message exchange and cleans up resources that were
accessed during processing. See Section 10.5.5, "Implementing the
Handler.close() Method".

Creating the SOAP Message Handler

Creating and Using SOAP Message Handlers 10-7

 System.out.println("** Response: "+messageContext.getMessage().toString());
 return true;
 }

 public boolean handleFault(SOAPMessageContext messageContext)
 {
 return true;
 }

 public void close(MessageContext messageContext)
 {
 }
}

10.5.2 Example of a Logical Handler
The following example illustrates a simple logical handler that returns whether the
message is inbound or outbound along with the message content.

package examples.webservices.handler;

import java.util.Set;
import java.util.Collections;
import javax.xml.namespace.QName;
import javax.xml.ws.handler.LogicalHandler;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.LogicalMessageContext;
import javax.xml.ws.LogicalMessage;
import javax.xml.transform.Source;

public class Handler2 implements LogicalHandler<LogicalMessageContext>
{
 public Set<QName> getHeaders()
 {
 return Collections.emptySet();
 }

 public boolean handleMessage(LogicalMessageContext messageContext)
 {
 Boolean outboundProperty = (Boolean)
 messageContext.get (MessageContext.MESSAGE_OUTBOUND_PROPERTY);
 if (outboundProperty.booleanValue()) {
 System.out.println("\nOutbound message:");
 } else {
 System.out.println("\nInbound message:");
 }

 System.out.println("** Response: "+messageContext.getMessage().toString());
 return true;
 }

 public boolean handleFault(LogicalMessageContext messageContext)
 {
 return true;
 }

 public void close(MessageContext messageContext)
 {
 }
}

Creating the SOAP Message Handler

10-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

10.5.3 Implementing the Handler.handleMessage() Method
The Handler.handleMessage() method is called to intercept a SOAP message
request before and after it is processed by the back-end component. Its signature is:

public boolean handleMessage(C context)
 throws java.lang.RuntimeException, java.xml.ws.ProtocolException {}

Implement this method to perform such tasks as encrypting/decrypting data in the
SOAP message before or after it is processed by the back-end component, and so on.

C extends javax.xml.ws.handler.MessageContext (see
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/Messa
geContext.html). The MessageContext properties allow the handlers in a handler
chain to determine if a message is inbound or outbound and to share processing state.
Use the SOAPMessageContext or LogicalMessageContext sub-interface of
MessageContext to get or set the contents of the SOAP or logical message,
respectively. For more information, see Section 10.5.6, "Using the Message Context
Property Values and Methods".

After you code all the processing of the SOAP message, code one of the following
scenarios:

■ Invoke the next handler on the handler request chain by returning true.

The next handler on the request chain is specified as the next <handler>
subelement of the <handler-chain> element in the configuration file specified
by the @HandlerChain annotation.

■ Block processing of the handler request chain by returning false.

Blocking the handler request chain processing implies that the back-end
component does not get executed for this invoke of the Web service. You might
want to do this if you have cached the results of certain invokes of the Web service,
and the current invoke is on the list.

Although the handler request chain does not continue processing, WebLogic
Server does invoke the handler response chain, starting at the current handler.

■ Throw the java.lang.RuntimeException or
java.xml.ws.ProtocolException for any handler-specific runtime errors.

WebLogic Server catches the exception, terminates further processing of the
handler request chain, logs the exception to the WebLogic Server log file, and
invokes the handleFault() method of this handler.

10.5.4 Implementing the Handler.handleFault() Method
The Handler.handleFault() method processes the SOAP faults based on the
SOAP message processing model. Its signature is:

public boolean handleFault(C context)
 throws java.lang.RuntimeException, java.xml.ws.ProtocolException{}

Implement this method to handle processing of any SOAP faults generated by the
handleMessage() method, as well as faults generated by the back-end component.

C extends javax.xml.ws.handler.MessageContext (see
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/Messa
geContext.html). The MessageContext properties allow the handlers in a handler
chain to determine if a message is inbound or outbound and to share processing
state.Use the LogicalMessageContext or SOAPMessageContext sub-interface of

Creating the SOAP Message Handler

Creating and Using SOAP Message Handlers 10-9

MessageContext to get or set the contents of the logical or SOAP message,
respectively. For more information, see Section 10.5.6, "Using the Message Context
Property Values and Methods".

After you code all the processing of the SOAP fault, do one of the following:

■ Invoke the handleFault() method on the next handler in the handler chain by
returning true.

■ Block processing of the handler fault chain by returning false.

10.5.5 Implementing the Handler.close() Method
The Handler.close() method concludes the message exchange and cleans up
resources that were accessed during processing. Its signature is:

public boolean close(MessageContext context) {}

10.5.6 Using the Message Context Property Values and Methods
The following context objects are passed to the SOAP message handlers.

Each context object extends javax.xml.ws.handler.MessageContext, which
enables you to access a set of runtime properties of a SOAP message handler from the
client application or Web service, or directly from the
javax.xml.ws.WebServiceContext from a Web service (see
https://jax-ws.dev.java.net/nonav/jax-ws-20-pfd/api/javax/xml/ws
/WebServiceContext.html).

For example, the MessageContext.MESSAGE_OUTBOUND_PROPERTY holds a
Boolean value that is used to determine the direction of a message. During a request,
you can check the value of this property to determine if the message is an inbound or
outbound request. The property would be true when accessed by a client-side
handler or false when accessed by a server-side handler.

For more information about the MessageContext property values that are available,
see "Using the MessageContext Property Values" in Getting Started With JAX-WS Web
Services for Oracle WebLogic Server.

The LogicalMessageContext class defines the following method for processing the
Logical message. For more information, see the
java.xml.ws.handler.LogicalMessageContext Javadoc at
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/Logic
alMessageContext.html.

Table 10–5 Message Context Property Values

Message Context Property Values Description

javax.xml.ws.handler.LogicalMessageContext Context object for logical
handlers.

javax.xml.ws.handler.soap.SOAPMessageContext Context object for SOAP
handlers.

Table 10–6 LogicalMessageContext Class Method

Method Description

getMessage() Gets a javax.xml.ws.LogicalMessage object that contains the SOAP
message.

Creating the SOAP Message Handler

10-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

The SOAPMessageContext class defines the following methods for processing the
SOAP message. For more information, see the
java.xml.ws.handler.soap.SOAPMessageContext Javadoc at
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/soap/
SOAPMessageContext.html.

10.5.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ
The javax.xml.soap.SOAPMessage abstract class is part of the SOAP With
Attachments API for Java 1.1 (SAAJ) specification at
http://java.sun.com/webservices/saaj/docs.html. You use the class to
manipulate request and response SOAP messages when creating SOAP message
handlers. This section describes the basic structure of a SOAPMessage object and some
of the methods you can use to view and update a SOAP message.

A SOAPMessage object consists of a SOAPPart object (which contains the actual
SOAP XML document) and zero or more attachments.

Refer to the SAAJ Javadocs for the full description of the SOAPMessage class.

10.5.7.1 The SOAPPart Object
The SOAPPart object contains the XML SOAP document inside of a SOAPEnvelope
object. You use this object to get the actual SOAP headers and body.

The following sample Java code shows how to retrieve the SOAP message from a
MessageContext object, provided by the Handler class, and get at its parts:

SOAPMessage soapMessage = messageContext.getMessage();
SOAPPart soapPart = soapMessage.getSOAPPart();
SOAPEnvelope soapEnvelope = soapPart.getEnvelope();
SOAPBody soapBody = soapEnvelope.getBody();
SOAPHeader soapHeader = soapEnvelope.getHeader();

10.5.7.2 The AttachmentPart Object
The javax.xml.soap.AttachmentPart object (see
http://java.sun.com/javase/6/docs/api/javax/xml/soap/AttachmentP

Note: The SOAP message itself is stored in a
javax.xml.soap.SOAPMessage object at
http://java.sun.com/javase/6/docs/api/javax/xml/soap
/SOAPMessage.html. For detailed information on this object, see
Section 10.5.7, "Directly Manipulating the SOAP Request and
Response Message Using SAAJ".

Table 10–7 SOAPMessageContext Class Methods

Method Description

getHeaders() Gets headers that have a particular qualified name from the message in the
message context.

getMessage() Gets a javax.xml.soap.SOAPMessage object that contains the SOAP
message.

getRoles() Gets the SOAP actor roles associated with an execution of the handler
chain.

setMessage() Sets the SOAP message.

Configuring Handler Chains in the JWS File

Creating and Using SOAP Message Handlers 10-11

art.html) contains the optional attachments to the SOAP message. Unlike the rest of
a SOAP message, an attachment is not required to be in XML format and can therefore
be anything from simple text to an image file.

Use the following methods of the SOAPMessage class to manipulate the attachments.
For more information, see the javax.xml.soap.SOAPMessage Javadoc at
http://java.sun.com/javase/6/docs/api/javax/xml/soap/SOAPMessage
.html.

10.5.7.3 Manipulating Image Attachments in a SOAP Message Handler
It is assumed in this section that you are creating a SOAP message handler that
accesses a java.awt.Image attachment and that the Image has been sent from a
client application that uses the client JAX-WS ports generated by the clientgen Ant
task.

In the client code generated by the clientgen Ant task, a java.awt.Image
attachment is sent to the invoked WebLogic Web service with a MIME type of
text/xml rather than image/gif, and the image is serialized into a stream of
integers that represents the image. In particular, the client code serializes the image
using the following format:

■ int width

■ int height

■ int[] pixels

This means that, in your SOAP message handler that manipulates the received Image
attachment, you must deserialize this stream of data to then re-create the original
image.

10.6 Configuring Handler Chains in the JWS File
The @javax.jws.HandlerChain annotation (also called @HandlerChain in this
chapter for simplicity) enables you to configure a handler chain for a Web service. Use
the file attribute to specify an external file that contains the configuration of the
handler chain you want to associate with the Web service. The configuration includes
the list of handlers in the chain, the order in which they execute, the initialization
parameters, and so on.

Note: If you are going to access a java.awt.Image attachment
from your SOAP message handler, see Section 10.5.7.3, "Manipulating
Image Attachments in a SOAP Message Handler" for important
information.

Table 10–8 SOAPMessage Class Methods to Manipulate Attachments

Method Description

addAttachmentPart() Adds an AttachmentPart object, after it has been
created, to the SOAPMessage.

countAttachments() Returns the number of attachments in this SOAP message.

createAttachmentPart() Create an AttachmentPart object from another type of
Object.

getAttachments() Gets all the attachments (as AttachmentPart objects)
into an Iterator object.

Creating the Handler Chain Configuration File

10-12 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

The following JWS file shows an example of using the @HandlerChain annotation;
the relevant Java code is shown in bold:

package examples.webservices.handler;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.HandlerChain;
import javax.annotation.Resource;
import javax.xml.ws.WebServiceContext;
@WebService(name = "Handler", targetNamespace = "http://example.org")
@HandlerChain(file="handler-chain.xml")
public class HandlerWS
{
 @Resource
 WebServiceContext ctx;
 @WebMethod()
 public String getProperty(String propertyName)
 {
 return (String) ctx.getMessageContext().get(propertyName);
 }
}

Before you use the @HandlerChain annotation, you must import it into your JWS
file, as shown above.

Use the file attribute of the @HandlerChain annotation to specify the name of the
external file that contains configuration information for the handler chain. The value of
this attribute is a URL, which may be relative or absolute. Relative URLs are relative to
the location of the JWS file at the time you run the jwsc Ant task to compile the file.

For details about creating the external configuration file, see Section 10.7, "Creating the
Handler Chain Configuration File".

For additional detailed information about the standard JWS annotations discussed in
this section, see the Web services Metadata for the Java Platform specification at
http://www.jcp.org/en/jsr/detail?id=181.

10.7 Creating the Handler Chain Configuration File
As described in the previous section, you use the @HandlerChain annotation in your
JWS file to associate a handler chain with a Web service. You must create the handler
chain file that consists of an external configuration file that specifies the list of handlers
in the handler chain, the order in which they execute, the initialization parameters,
and so on.

Because this file is external to the JWS file, you can configure multiple Web services to
use this single configuration file to standardize the handler configuration file for all
Web services in your enterprise. Additionally, you can change the configuration of the
handler chains without needing to recompile all your Web services.

The configuration file uses XML to list one or more handler chains, as shown in the
following simple example:

<?xml version="1.0" encoding="UTF-8"?>

Note: It is an error to specify more than one @HandlerChain
annotation in a single JWS file.

Compiling and Rebuilding the Web Service

Creating and Using SOAP Message Handlers 10-13

<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>
 <handler-class>examples.webservices.handler.Handler1</handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <handler>
 <handler-class>examples.webservices.handler.Handler2</handler-class>
 </handler>
 </handler-chain>
</handler-chains>

In the example, the handler chain contains two handlers implemented with the class
names specified with the <handler-class> element. The two handlers execute in
forward order before the relevant Web service operation executes, and in reverse order
after the operation executes.

Use the <init-param> and <soap-role>child elements of the <handler> element
to specify the handler initialization parameters and SOAP roles implemented by the
handler, respectively.

You can include logical and SOAP handlers in the same handler chain. At runtime, the
handler chain is re-ordered so that all logical handlers are executed before SOAP
handlers for an outbound message, and vice versa for an inbound message.

For the XML Schema that defines the external configuration file, additional
information about creating it, and additional examples, see the Web services Metadata
for the Java Platform specification at
http://www.jcp.org/en/jsr/detail?id=181.

10.8 Compiling and Rebuilding the Web Service
It is assumed in this section that you have a working build.xml Ant file that
compiles and builds your Web service, and you want to update the build file to
include handler chain. See "Developing WebLogic Web Services" in Getting Started
With JAX-WS Web Services for Oracle WebLogic Server for information on creating this
build.xml file.

Follow these guidelines to update your development environment to include message
handler compilation and building:

■ After you have updated the JWS file with the @HandlerChain annotation, you
must rerun the jwsc Ant task to recompile the JWS file and generate a new Web
service. This is true anytime you make a change to an annotation in the JWS file.

If you used the @HandlerChain annotation in your JWS file, reran the jwsc Ant
task to regenerate the Web service, and subsequently changed only the external
configuration file, you do not need to rerun jwsc for the second change to take
affect.

■ The jwsc Ant task compiles SOAP message handler Java files into handler classes
(and then packages them into the generated application) if all the following
conditions are true:

– The handler classes are referenced in the @HandlerChain annotation of the
JWS file.

– The Java files are located in the directory specified by the sourcepath
attribute.

Configuring the Client-side SOAP Message Handlers

10-14 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

– The classes are not currently in your CLASSPATH.

If you want to compile the handler classes yourself, rather than let jwsc compile
them automatically, ensure that the compiled classes are in your CLASSPATH
before you run the jwsc Ant task.

■ You deploy and invoke a Web service that has a handler chain associated with it in
the same way you deploy and invoke one that has no handler chain. The only
difference is that when you invoke any operation of the Web service, the WebLogic
Web services runtime executes the handlers in the handler chain both before and
after the operation invoke.

10.9 Configuring the Client-side SOAP Message Handlers
You configure client-side SOAP message handlers in one of the following ways:

■ Set a handler chain directly on the javax.xml.ws.BindingProvider, such as a
port proxy or javax.xml.ws.Dispatch object. For example:

package examples.webservices.handler.client;

import javax.xml.namespace.QName;
import java.net.MalformedURLException;
import java.net.URL;

import javax.xml.ws.handler.Handler;
import javax.xml.ws.Binding;
import javax.xml.ws.BindingProvider;
import java.util.List;

import examples.webservices.handler.Handler1;
import examples.webservices.handler.Handler2;

public class Main {
 public static void main(String[] args) {
 HandlerWS test;
 try {
 test = new HandlerWS(new URL(args[0] + "?WSDL"), new
 QName("http://example.org", "HandlerWS"));
 } catch (MalformedURLException murl) { throw new
RuntimeException(murl); }
 HandlerWSPortType port = test.getHandlerWSPortTypePort();

 Binding binding = ((BindingProvider)port).getBinding();
 List<Handler> handlerList = binding.getHandlerChain();
 handlerList.add(new Handler1());
 handlerList.add(new Handler2());
 binding.setHandlerChain(handlerList);
 String result = null;
 result = port.sayHello("foo bar");
 System.out.println("Got result: " + result);
 }
}

■ Implement a javax.xml.ws.handler.HandlerResolver on a Service
instance. For example:

 public static class MyHandlerResolver implements HandlerResolver {
 public List<Handler> getHandlerChain(PortInfo portInfo) {
 List<Handler> handlers = new ArrayList<Handler>();
 // add handlers to list based on PortInfo information

Configuring the Client-side SOAP Message Handlers

Creating and Using SOAP Message Handlers 10-15

 return handlers;
 }
 }

Add a handler resolver to the Service instance using the
setHandlerResolver() method. In this case, the port proxy or Dispatch
object created from the Service instance uses the HandlerResolver to
determine the handler chain. For example:

test.setHandlerResolver(new MyHandlerResolver());

■ Create a customization file that includes a <binding> element that contains a
handler chain description. The schema for the <handler-chains> element is the
same for both handler chain files (on the server) and customization files. For
example:

<bindings xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation="http://localhost:7001/handler/HandlerWS?WSDL"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="wsdl:definitions"
 xmlns:jws="http://java.sun.com/xml/ns/javaee">
 <handler-chains>
 <handler-chain>
 <handler>
 <handler-class>examples.webservices.handler.Handler1
 </handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <handler>
 <handler-class>examples.webservices.handler.Handler2
 </handler-class>
 </handler>
 </handler-chain>
 </handler-chains>
</bindings>

Use the <binding> child element of the clientgen command to pass the
customization file.

Configuring the Client-side SOAP Message Handlers

10-16 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

11

Programming RESTful Web Services 11-1

11Programming RESTful Web Services

The following sections describe how to program RESTful Web services:

■ Section 11.1, "Overview of RESTful Web Services"

■ Section 11.2, "Programming RESTful Web Services: Main Steps"

■ Section 11.3, "Programming Guidelines for the RESTful Web Service"

■ Section 11.4, "Accessing the RESTful Web Service from a Client"

■ Section 11.5, "Securing RESTful Web Services"

11.1 Overview of RESTful Web Services
Representational State Transfer (REST) describes any simple interface that transmits
data over a standardized interface (such as HTTP) without an additional messaging
layer, such as SOAP. REST provides a set of design rules for creating stateless services
that are viewed as resources, or sources of specific information, and can be identified by
their unique URIs. A client accesses the resource using the URI, a standardized fixed
set of methods, and a representation of the resource is returned. The client is said to
transfer state with each new resource representation.

When using the HTTP protocol to access RESTful resources, the resource identifier is
the URL of the resource and the standard operation to be performed on that resource is
one of the HTTP methods: GET, PUT, DELETE, POST, or HEAD.

You build RESTful endpoints using the invoke() method of the
javax.xml.ws.Provider<T> interface (see
http://java.sun.com/javaee/5/docs/api/javax/xml/ws/Provider.html
). The Provider interface provides a dynamic alternative to building an service
endpoint interface (SEI).

Note: In this JAX-WS implementation, the set of supported HTTP
methods is limited to GET and POST. DELETE, PUT, and HEAD are
not supported. Any HTTP requests containing these methods will be
rejected with a 405 Method Not Allowed error.

If the functionality of PUT and DELETE are required, the desired
action can be accomplished by tunneling the actual method to be
executed on the POST method. This is a workaround referred to as
overloaded POST. (A Web search on "REST overloaded POST" will
return a number of ways to accomplish this.

Programming RESTful Web Services: Main Steps

11-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

11.2 Programming RESTful Web Services: Main Steps
The procedure in this section describes how to program and compile the JWS file
required to implement the RESTful Web service. The procedure shows how to create
the JWS file from scratch; if you want to update an existing JWS file, you can also use
this procedure as a guide.

It is assumed that you have set up an Ant-based development environment and that
you have a working build.xml file to which you can add targets for running the
jwsc Ant task and deploying the Web services. For more information, see Getting
Started With JAX-WS Web Services for Oracle WebLogic Server.

11.3 Programming Guidelines for the RESTful Web Service
The following example shows a simple JWS file that implements a RESTful Web
service; see the explanation after the example for coding guidelines that correspond to
the Java code in bold.

package examples.webservices.jaxws.rest;
import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.BindingType;
import javax.xml.ws.Provider;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.http.HTTPBinding;
import javax.xml.ws.http.HTTPException;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.annotation.Resource;
import java.io.ByteArrayInputStream;
import java.util.StringTokenizer;

@WebServiceProvider(
 targetNamespace="http://example.org",

Table 11–1 Steps to Program RESTful Web Services

Step Description

1 Create a new JWS file, or
update an existing one, that
implements the RESTful Web
service.

Use your favorite IDE or text editor. See Section 11.3,
"Programming Guidelines for the RESTful Web Service".

2 Update your build.xml file
to include a call to the jwsc
Ant task to compile the
RESTful JWS file into a Web
service.

For example:

 <jwsc srcdir="." destdir="output/restEar">
 <jws file="NearbyCity.java" type="JAXWS"/>
 </jwsc>

For more information, see "Running the jwsc WebLogic
Web Services Ant Task" in Getting Started With JAX-WS
Web Services for Oracle WebLogic Server.

3 Run the Ant target to build
the RESTful Web service.

For example:

prompt> ant build-rest

4 Deploy the RESTful Web
service as usual.

See "Deploying and Undeploying WebLogic Web
Services" in Getting Started With JAX-WS Web Services for
Oracle WebLogic Server.

5 Access the RESTful Web
service from your Web service
client.

See Section 11.4, "Accessing the RESTful Web Service
from a Client".

Programming Guidelines for the RESTful Web Service

Programming RESTful Web Services 11-3

 serviceName = "NearbyCityService")
@BindingType(value = HTTPBinding.HTTP_BINDING)

public class NearbyCity implements Provider<Source> {
 @Resource(type=Object.class)
 protected WebServiceContext wsContext;

 public Source invoke(Source source) {
 try {
 MessageContext messageContext = wsContext.getMessageContext();

 // Obtain the HTTP mehtod of the input request.
 javax.servlet.http.HttpServletRequest servletRequest =
 (javax.servlet.http.HttpServletRequest)messageContext.get(
 MessageContext.SERVLET_REQUEST);
 String httpMethod = servletRequest.getMethod();
 if (httpMethod.equalsIgnoreCase("GET"));
 {

 String query =
 (String)messageContext.get(MessageContext.QUERY_STRING);
 if (query != null && query.contains("lat=") &&
 query.contains("long=")) {
 return createSource(query);
 } else {
 System.err.println("Query String = "+query);
 throw new HTTPException(404);
 }
 } catch(Exception e) {
 e.printStackTrace();
 throw new HTTPException(500);
 }
 }
 } else {
 // This operation only supports "GET"
 throw new HTTPException405);
 }
 private Source createSource(String str) throws Exception {
 StringTokenizer st = new StringTokenizer(str, "=&/");
 String latLong = st.nextToken();
 double latitude = Double.parseDouble(st.nextToken());
 latLong = st.nextToken();
 double longitude = Double.parseDouble(st.nextToken());
 City nearby = City.findNearBy(latitude, longitude);
 String body = nearby.toXML();
 return new StreamSource(new ByteArrayInputStream(body.getBytes()));
 }

 static class City {
 String city;
 String state;
 double latitude;
 double longitude;
 City(String city, double lati, double longi, String st) {
 this.city = city;
 this.state = st;
 this.latitude = lati;
 this.longitude = longi;
 }

Programming Guidelines for the RESTful Web Service

11-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 double distance(double lati, double longi) {
 return Math.sqrt((lati-this.latitude)*(lati-this.latitude) +
 (longi-this.longitude)*(longi-this.longitude)) ;
 }

 static final City[] cities = {
 new City("San Francisco",37.7749295,-122.4194155,"CA"),
 new City("Columbus",39.9611755,-82.9987942,"OH"),
 new City("Indianapolis",39.7683765,-86.1580423,"IN"),
 new City("Jacksonville",30.3321838,-81.655651,"FL"),
 new City("San Jose",37.3393857,-121.8949555,"CA"),
 new City("Detroit",42.331427,-83.0457538,"MI"),
 new City("Dallas",32.7830556,-96.8066667,"TX"),
 new City("San Diego",32.7153292,-117.1572551,"CA"),
 new City("San Antonio",29.4241219,-98.4936282,"TX"),
 new City("Phoenix",33.4483771,-112.0740373,"AZ"),
 new City("Philadelphia",39.952335,-75.163789,"PA"),
 new City("Houston",29.7632836,-95.3632715,"TX"),
 new City("Chicago",41.850033,-87.6500523,"IL"),
 new City("Los Angeles",34.0522342,-118.2436849,"CA"),
 new City("New York",40.7142691,-74.0059729,"NY")};
 static City findNearBy(double lati, double longi) {
 int n = 0;
 for (int i = 1; i < cities.length; i++) {
 if (cities[i].distance(lati, longi) <
 cities[n].distance(lati, longi)) {
 n = i;
 }
 }
 return cities[n];
 }

 public String toXML() {
 return "<ns:NearbyCity xmlns:ns=\"http://example.org\"><City>"
 +this.city+"</City><State>"+ this.state+"</State><Lat>"
 +this.latitude +
 "</Lat><Lng>"+this.longitude+"</Lng></ns:NearbyCity>";
 }
 }
}

Follow these guidelines when programming the JWS file that implements the RESTful
Web service. Code snippets of the guidelines are shown in bold in the preceding
example.

■ Import the packages required to implement the RESTful Web service.

import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.BindingType;
import javax.xml.ws.Provider;

■ Annotate the Provider implementation class and set the binding type to HTTP.

@WebServiceProvider(
 targetNamespace="http://example.org",
 serviceName = "NearbyCityService")
@BindingType(value = HTTPBinding.HTTP_BINDING)

■ Implement the invoke() method of the Provider interface.

public class NearbyCity implements Provider<Source> {
 @Resource(type=Object.class)

Securing RESTful Web Services

Programming RESTful Web Services 11-5

 protected WebServiceContext wsContext;

 public Source invoke(Source source) {
 ...
 }

■ Get the request string using the QUERY_STRING field in the
javax.xml.ws.handler.MessageContext for processing (see message URL
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/Me
ssageContext.html). The query string is then passed to the createSource()
method that returns the city, state, longitude, and latitude that is closest to the
specified values.

String query =
 (String)messageContext.get(MessageContext.QUERY_STRING);
.
.
.
return createSource(query);

11.4 Accessing the RESTful Web Service from a Client
To access a RESTful Web service from a Web service client, use the resource URI. For
example:

URL url = new URL
(http://localhost:7001/NearbyCity/NearbyCityService?lat=35&long=-120);
HttpURLConnection conn = (HttpURLConnection)url.openConnection();
connection.setRequestMethod("POST");
// Get result
InputStream is = connection.getInputStream();

In this example, you set the latitude (lat) and longitude (long) values, as required, to
access the required resource.

11.5 Securing RESTful Web Services
You can secure RESTful Web services using the same methods that you use to secure
Web applications. For more information, see "Options for Securing Web Application
and EJB Resources" in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

Securing RESTful Web Services

11-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

12

Programming Stateful JAX-WS Web Services Using HTTP Session 12-1

12Programming Stateful JAX-WS Web
Services Using HTTP Session

This chapter describes how you can develop JAX-WS Web services that interact with
an Oracle database.

■ Overview of Stateful Web Services

■ Accessing HTTP Session on the Server

■ Enabling HTTP Session on the Client

■ Developing Stateful Services in a Cluster Using Session State Replication

■ A Note About the JAX-WS RI @Stateful Extension

12.1 Overview of Stateful Web Services
Normally, a JAX-WS Web service is stateless: that is, none of the local variables and
object values that you set in the Web service object are saved from one invocation to
the next. Even sequential requests from a single client are treated each as independent,
stateless method invocations.

There are Web service use cases where a client may want to save data on the service
during one invocation and then use that data during a subsequent invocation. For
example, a shopping cart object may be added to by repeated calls to the addToCart
web method and then fetched by the getCart web method. In a stateless Web service,
the shopping cart object would always be empty, no matter how many addToCart
methods were called. But by using HTTP Sessions to maintain state across Web service
invocations, the cart may be built up incrementally, and then returned to the client.

Enabling stateful support in a JAX-WS Web service requires a minimal amount of
coding on both the client and server.

12.2 Accessing HTTP Session on the Server
On the server, every Web service invocation is tied to an HttpSession object. This object
may be accessed from the Web service Context that, in turn, may be bound to the Web
service object using resource injection. Once you have access to your HttpSession
object, you can "hang" off of it any stateful objects you want. The next time your client
calls the Web service, it will find that same HttpSession object and be able to lookup
the objects previously stored there. Your Web service is stateful!

The steps required on the server:

1. Add the @Resource (defined by Common Annotations for the Java Platform, JSR
250) to the top of your Web service.

Enabling HTTP Session on the Client

12-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

2. Add a variable of type WebServiceContext that will have the context injected into
it.

3. Using the Web service context, get the HttpSession object.

4. Save objects in the HttpSession using the setAttribute method and retrieve saved
object using getAttribute. Objects are identified by a string value you assign.

The following snippet shows its usage:

Example 12–1 Accessing HTTP Session on the Server

@WebService
public class ShoppingCart {
 @Resource // Step 1
 private WebServiceContext wsContext; // Step 2
 public int addToCart(Item item) {
 // Find the HttpSession
 MessageContext mc = wsContext.getMessageContext(); // Step 3
 HttpSession session =
((javax.servlet.http.HttpServletRequest)mc.get(MessageContext.SERVLET_
REQUEST)).getSession();
 if (session == null)
 throw new WebServiceException("No HTTP Session found");
 // Get the cart object from the HttpSession (or create a new one)
 List<Item> cart = (List<Item>)session.getAttribute("myCart"); // Step 4
 if (cart == null)
 cart = new ArrayList<Item>();
 // Add the item to the cart (note that Item is a class defined
 // in the WSDL)
 cart.add(item);
 // Save the updated cart in the HTTPSession (since we use the same
 // "myCart" name, the old cart object will be replaced)
 session.setAttribute("myCart", cart);
 // return the number of items in the stateful cart
 return cart.size();
 }
}

12.3 Enabling HTTP Session on the Client
The client-side code is quite simple. All you need to do is set the SESSION_
MAINTAIN_PROPERTY on the request context. This tells the client to pass back the
HTTP Cookies that it receives from the Web service. The cookie contains a session ID
that allows the server to match the Web service invocation with the correct
HttpSession, providing access to any saved stateful objects.

Example 12–2 Enabling HTTP Session on the Client

ShoppingCart proxy = new CartService().getCartPort();
((BindingProvider)proxy).getRequestContext().put(BindingProvider.SESSION_MAINTAIN_
PROPERTY, true);
// Create a new Item object with a part number of '123456' and an item
// count of 4.
Item item = new Item('123456', 4);
// After first call, we'll print '1' (the return value is the number of objects
// in the Cart object)
System.out.println(proxy.addToCart(item));
// After the second call, we'll print '2', since we've added another
// Item to the stateful, saved Cart object.

A Note About the JAX-WS RI @Stateful Extension

Programming Stateful JAX-WS Web Services Using HTTP Session 12-3

System.out.println(proxy.addToCart(item));

12.4 Developing Stateful Services in a Cluster Using Session State
Replication

In a high-availability environment, a JAX-WS Web service may be replicated across
multiple server instances in a cluster. A stateful JAX-WS Web service is supported in
this environment through the use of the WebLogic Server HTTP Session State
Replication feature. For more information, see "HTTP Session State Replication" in
Using Clusters for Oracle WebLogic Server.

There are a variety of techniques and configuration requirements for setting up a
clustered environment using session state replication (for example, supported servers
and load balancers, and so on). From the JAX-WS programming perspective, the only
new consideration is that the objects you store in the HttpSession using the
HttpSession.setAttribute method (as in Example 12–1) must be Serializable. If they are
Serializable, then these stateful objects become available to the Web service on all
replicated Web service instances in the cluster, providing both load balancing and
failover capabilities for JAX-WS stateful Web services.

12.5 A Note About the JAX-WS RI @Stateful Extension
The JAX-WS 2.1 Reference Implementation (RI) contains a vendor extension that
supports a different model for stateful JAX-WS Web services using the @Stateful
annotation. It's implementation "pins" the state to a particular instance and is not
designed to be scalable or fault-tolerant. This feature is not supported for WebLogic
Server JAX-WS Web services.

A Note About the JAX-WS RI @Stateful Extension

12-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

13

Publishing and Finding Web Services Using UDDI 13-1

13Publishing and Finding Web Services Using
UDDI

The following sections provide information about publishing and finding Web
services through the UDDI registry:

■ Section 13.1, "Overview of UDDI"

■ Section 13.2, "WebLogic Server UDDI Features"

■ Section 13.3, "UDDI 2.0 Server"

■ Section 13.4, "UDDI Directory Explorer"

■ Section 13.5, "UDDI Client API"

■ Section 13.6, "Pluggable tModel"

13.1 Overview of UDDI
UDDI stands for Universal Description, Discovery, and Integration. The UDDI Project
is an industry initiative aims to enable businesses to quickly, easily, and dynamically
find and carry out transactions with one another.

A populated UDDI registry contains cataloged information about businesses; the
services that they offer; and communication standards and interfaces they use to
conduct transactions.

Built on the Simple Object Access Protocol (SOAP) data communication standard,
UDDI creates a global, platform-independent, open architecture space that will benefit
businesses.

The UDDI registry can be broadly divided into two categories:

■ Section 13.1.1, "UDDI and Web Services"

■ Section 13.1.2, "UDDI and Business Registry"

For details about the UDDI data structure, see Section 13.1.3, "UDDI Data Structure".

Note: The UDDI v2.0 registry and UDDIExplorer applications are
deprecated in this release. Customers are encouraged to consider
upgrading to Oracle Enterprise Repository or Oracle Service Registry,
which provide SOA visibility and governance. For more information,
see
http://www.oracle.com/technologies/soa/docs/enterpri
se-repository-svc-registry-datasheet.pdf.

Overview of UDDI

13-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

13.1.1 UDDI and Web Services
The owners of Web services publish them to the UDDI registry. Once published, the
UDDI registry maintains pointers to the Web service description and to the service.

The UDDI allows clients to search this registry, find the intended service, and retrieve
its details. These details include the service invocation point as well as other
information to help identify the service and its functionality.

Web service capabilities are exposed through a programming interface, and usually
explained through Web services Description Language (WSDL). In a typical
publish-and-inquire scenario, the provider publishes its business; registers a service
under it; and defines a binding template with technical information on its Web service.
The binding template also holds reference to one or several tModels, which represent
abstract interfaces implemented by the Web service. The tModels might have been
uniquely published by the provider, with information on the interfaces and URL
references to the WSDL document.

A typical client inquiry may have one of two objectives:

■ To find an implementation of a known interface. In other words, the client has a
tModel ID and seeks binding templates referencing that tModel.

■ To find the updated value of the invocation point (that is., access point) of a
known binding template ID.

13.1.2 UDDI and Business Registry
As a Business Registry solution, UDDI enables companies to advertise the business
products and services they provide, as well as how they conduct business transactions
on the Web. This use of UDDI complements business-to-business (B2B) electronic
commerce.

The minimum required information to publish a business is a single business name.
Once completed, a full description of a business entity may contain a wealth of
information, all of which helps to advertise the business entity and its products and
services in a precise and accessible manner.

A Business Registry can contain:

■ Business Identification - Multiple names and descriptions of the business,
comprehensive contact information, and standard business identifiers such as a
tax identifier.

■ Categories - Standard categorization information (for example a D-U-N-S business
category number).

■ Service Description - Multiple names and descriptions of a service. As a container
for service information, companies can advertise numerous services, while clearly
displaying the ownership of services. The bindingTemplate information
describes how to access the service.

■ Standards Compliance - In some cases it is important to specify compliance with
standards. These standards might display detailed technical requirements on how
to use the service.

■ Custom Categories - It is possible to publish proprietary specifications (tModels)
that identify or categorize businesses or services.

UDDI 2.0 Server

Publishing and Finding Web Services Using UDDI 13-3

13.1.3 UDDI Data Structure
The data structure within UDDI consists of four constructions: a businessEntity
structure, a businessService structure, a bindingTemplate structure and a
tModel structure.

The following table outlines the difference between these constructions when used for
Web service or Business Registry applications.

13.2 WebLogic Server UDDI Features
WebLogic Server provides the following UDDI features:

■ Section 13.3, "UDDI 2.0 Server"

■ Section 13.4, "UDDI Directory Explorer"

■ Section 13.5, "UDDI Client API"

■ Section 13.6, "Pluggable tModel"

13.3 UDDI 2.0 Server
The UDDI 2.0 Server is part of WebLogic Server and is started automatically when
WebLogic Server is started. The UDDI Server implements the UDDI 2.0 server
specification at http://uddi.xml.org.

Table 13–1 UDDI Data Structure

Data Structure Web Service Business Registry

businessEntity Represents a Web service provider:

■ Company name

■ Contact detail

■ Other business information

Represents a company, a division or
a department within a company:

■ Company name(s)

■ Contact details

■ Identifiers and Categories

businessService A logical group of one or several
Web services.

API(s) with a single name stored as a
child element, contained by the
business entity named above.

A group of services may reside in a
single businessEntity.

■ Multiple names and
descriptions

■ Categories

■ Indicators of compliancy with
standards

bindingTemplate A single Web service.

Technical information needed by
client applications to bind and
interact with the target Web service.

Contains access point (that is, the
URI to invoke a Web service).

Further instances of standards
conformity.

Access points for the service in form
of URLs, phone numbers, email
addresses, fax numbers or other
similar address types.

tModel Represents a technical specification;
typically a specifications pointer, or
metadata about a specification
document, including a name and a
URL pointing to the actual
specifications. In the context of Web
services, the actual specifications
document is presented in the form of
a WSDL file.

Represents a standard or technical
specification, either well established
or registered by a user for specific
use.

UDDI 2.0 Server

13-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

13.3.1 Configuring the UDDI 2.0 Server
To configure the UDDI 2.0 Server:

1. Stop WebLogic Server.

2. Update the uddi.properties file, located in the WL_HOME/server/lib
directory, where WL_HOME refers to the main WebLogic Server installation
directory.

3. Restart WebLogic Server.

Never edit the uddi.properties file while WebLogic Server is running. Should you
modify this file in a way that prevents the successful startup of the UDDI Server, refer
to the WL_HOME/server/lib/uddi.properties.booted file for the last known
good configuration.

To restore your configuration to its default, remove the uddi.properties file from
the WL_HOME/server/lib directory. Oracle strongly recommends that you move
this file to a backup location, because a new uddi.properties file will be created
and with its successful startup, the uddi.properties.booted file will also be
overwritten. After removing the properties file, start the server. Minimal default
properties will be loaded and written to a newly created uddi.properties file.

The following section describes the UDDI Server properties that you can include in the
uddi.properites file. The list of properties has been divided according to
component, usage, and functionality. At any given time, you do not need all these
properties to be present.

13.3.2 Configuring an External LDAP Server
The UDDI 2.0 Server is automatically configured with an embedded LDAP server.
You can, however, also configure an external LDAP Server by following the procedure
in this section.

To configure the SunOne Directory Server to be used with UDDI, follow these steps:

1. Create a file called 51acumen.ldif in the LDAP_DIR/Sun/MPS/slapd-LDAP_
INSTANCE_NAME/config/schema directory, where LDAP_DIR refers to the root
installation directory of your SunOne Directory Server and LDAP_INSTANCE_
NAME refers to the instance name.

2. Update the 51acumen.ldif file with the content described in Section 13.3.2.1,
"51acumen.ldif File Contents".

3. Restart the SunOne Directory Server.

4. Update the uddi.properties file of the WebLogic UDDI 2.0 Server, adding the
following properties:

Note: If your WebLogic Server domain was created by a user
different from the user that installed WebLogic Server, the WebLogic
Server administrator must change the permissions on the
uddi.properties file to give access to all users.

Note: Currently, WebLogic Server supports only the SunOne
Directory Server for use with the UDDI 2.0 Server.

UDDI 2.0 Server

Publishing and Finding Web Services Using UDDI 13-5

datasource.ldap.manager.password
datasource.ldap.manager.uid
datasource.ldap.server.root
datasource.ldap.server.url

The value of the properties depends on the configuration of your SunOne
Directory Server. The following example shows a possible configuration that uses
default values:

datasource.ldap.manager.password=password
datasource.ldap.manager.uid=cn=Directory Manager
datasource.ldap.server.root=dc=beasys,dc=com
datasource.ldap.server.url=ldap://host:port

See Table 13–1 for information about these properties.

5. Restart WebLogic Server.

13.3.2.1 51acumen.ldif File Contents
Use the following content to create the 51acumen.ldif file:

dn: cn=schema
#
attribute types:
#
attributeTypes: (11827.0001.1.0 NAME 'uddi-Business-Key' DESC 'Business Key' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.1 NAME 'uddi-Authorized-Name' DESC 'Authorized Name for
publisher of data' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.2 NAME 'uddi-Operator' DESC 'Name of UDDI
Registry Operator' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.3 NAME 'uddi-Name' DESC 'Business Entity
Name' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.4 NAME 'uddi-Description' DESC 'Description of
Business Entity' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.7 NAME 'uddi-Use-Type' DESC 'Name of convention
that the referenced document follows' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.8 NAME 'uddi-URL' DESC 'URL' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.9 NAME 'uddi-Person-Name' DESC 'Name of Contact
Person' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.10 NAME 'uddi-Phone' DESC 'Telephone Number'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{50} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.11 NAME 'uddi-Email' DESC 'Email address'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.12 NAME 'uddi-Sort-Code' DESC 'Code to sort
addresses' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{10} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.13 NAME 'uddi-tModel-Key' DESC 'Key to reference a
tModel entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.14 NAME 'uddi-Address-Line' DESC 'Actual address lines
in free form text' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{80} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.15 NAME 'uddi-Service-Key' DESC 'Service Key' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.16 NAME 'uddi-Service-Name' DESC 'Service Name' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.17 NAME 'uddi-Binding-Key' DESC 'Binding Key' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')

UDDI 2.0 Server

13-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

attributeTypes: (11827.0001.1.18 NAME 'uddi-Access-Point' DESC 'A text field to
convey the entry point address for calling a web service' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255}
X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.19 NAME 'uddi-Hosting-Redirector' DESC 'Provides a Binding
Key attribute to redirect reference to a different binding template' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.20 NAME 'uddi-Instance-Parms' DESC 'Parameters to use a
specific facet of a bindingTemplate description' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.21 NAME 'uddi-Overview-URL' DESC 'URL reference to a
long form of an overview document' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.22 NAME 'uddi-From-Key' DESC 'Unique key reference
to first businessEntity assertion is made for' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.23 NAME 'uddi-To-Key' DESC 'Unique key reference
to second businessEntity assertion is made for' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.24 NAME 'uddi-Key-Name' DESC 'An attribute of the
KeyedReference structure' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.25 NAME 'uddi-Key-Value' DESC 'An attribute of the
KeyedReference structure' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.26 NAME 'uddi-Auth-Info' DESC 'Authorization
information' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{4096} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.27 NAME 'uddi-Key-Type' DESC 'The key for all UDDI
entries' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.28 NAME 'uddi-Upload-Register' DESC 'The upload register'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.29 NAME 'uddi-URL-Type' DESC 'The type for the
URL' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.30 NAME 'uddi-Ref-Keyed-Reference' DESC 'reference to a
keyedReference entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.31 NAME 'uddi-Ref-Category-Bag' DESC 'reference to a
categoryBag entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.32 NAME 'uddi-Ref-Identifier-Bag' DESC 'reference to a
identifierBag entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.33 NAME 'uddi-Ref-TModel' DESC 'reference to a
TModel entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
id names for each entry
attributeTypes: (11827.0001.1.34 NAME 'uddi-Contact-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.35 NAME 'uddi-Discovery-URL-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.36 NAME 'uddi-Address-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.37 NAME 'uddi-Overview-Doc-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.38 NAME 'uddi-Instance-Details-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.39 NAME 'uddi-tModel-Instance-Info-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.40 NAME 'uddi-Publisher-Assertions-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')

UDDI 2.0 Server

Publishing and Finding Web Services Using UDDI 13-7

attributeTypes: (11827.0001.1.41 NAME 'uddi-Keyed-Reference-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.42 NAME 'uddi-Ref-Attribute' DESC 'a reference to
another entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.43 NAME 'uddi-Entity-Name' DESC 'Business entity
Name' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.44 NAME 'uddi-tModel-Name' DESC 'tModel Name' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.45 NAME 'uddi-tMII-TModel-Key' DESC 'tModel key
referneced in tModelInstanceInfo' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.46 NAME 'uddi-Keyed-Reference-TModel-Key' DESC 'tModel key
referneced in KeyedReference' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.47 NAME 'uddi-Address-tModel-Key' DESC 'tModel key
referneced in Address' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.48 NAME 'uddi-isHidden' DESC 'a flag to indicate
whether an entry is hidden' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.49 NAME 'uddi-Time-Stamp' DESC 'modification time
satmp' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.50 NAME 'uddi-next-id' DESC 'generic counter'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.51 NAME 'uddi-tModel-origin' DESC 'tModel origin'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.52 NAME 'uddi-tModel-type' DESC 'tModel type' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.53 NAME 'uddi-tModel-checked' DESC 'tModel field to
check or not' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.54 NAME 'uddi-user-quota-entity' DESC 'quota for business
entity' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.55 NAME 'uddi-user-quota-service' DESC 'quota for business
services per entity' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.56 NAME 'uddi-user-quota-binding' DESC 'quota for binding
templates per service' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined'
)
attributeTypes: (11827.0001.1.57 NAME 'uddi-user-quota-tmodel' DESC 'quota for tmodels'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.58 NAME 'uddi-user-quota-assertion' DESC 'quota for publisher
assertions' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.59 NAME 'uddi-user-quota-messagesize' DESC 'quota for maximum
message size' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.60 NAME 'uddi-user-language' DESC 'user language'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.61 NAME 'uddi-Name-Soundex' DESC 'name in soundex
format' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.62 NAME 'uddi-var' DESC 'generic variable'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'acumen defined')
#
objectclasses:
#
objectClasses: (11827.0001.2.0 NAME 'uddi-Business-Entity' DESC 'Business Entity
object' SUP top STRUCTURAL MUST (uddi-Business-Key $ uddi-Entity-Name $ uddi-isHidden $
uddi-Authorized-Name) MAY (uddi-Name-Soundex $ uddi-Operator $ uddi-Description $
uddi-Ref-Identifier-Bag $ uddi-Ref-Category-Bag) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.1 NAME 'uddi-Business-Service' DESC 'Business Service
object' SUP top STRUCTURAL MUST (uddi-Service-Key $ uddi-Service-Name $ uddi-isHidden) MAY (
uddi-Name-Soundex $ uddi-Description $ uddi-Ref-Category-Bag) X-ORIGIN 'acumen defined')

UDDI 2.0 Server

13-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

objectClasses: (11827.0001.2.2 NAME 'uddi-Binding-Template' DESC 'Binding Template
object' SUP TOP STRUCTURAL MUST (uddi-Binding-Key $ uddi-isHidden) MAY (uddi-Description $
uddi-Access-Point $ uddi-Hosting-Redirector) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.3 NAME 'uddi-tModel' DESC 'tModel object' SUP
top STRUCTURAL MUST (uddi-tModel-Key $ uddi-tModel-Name $ uddi-isHidden $ uddi-Authorized-Name)
MAY (uddi-Name-Soundex $ uddi-Operator $ uddi-Description $ uddi-Ref-Identifier-Bag $
uddi-Ref-Category-Bag $ uddi-tModel-origin $ uddi-tModel-checked $ uddi-tModel-type) X-ORIGIN
'acumen defined')
objectClasses: (11827.0001.2.4 NAME 'uddi-Publisher-Assertion' DESC 'Publisher Assertion
object' SUP TOP STRUCTURAL MUST (uddi-Publisher-Assertions-ID $ uddi-From-Key $ uddi-To-Key $
uddi-Ref-Keyed-Reference) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.5 NAME 'uddi-Discovery-URL' DESC 'Discovery URL' SUP
TOP STRUCTURAL MUST (uddi-Discovery-URL-ID $ uddi-Use-Type $ uddi-URL) X-ORIGIN 'acumen
defined')
objectClasses: (11827.0001.2.6 NAME 'uddi-Contact' DESC 'Contact Information'
SUP TOP STRUCTURAL MUST (uddi-Contact-ID $ uddi-Person-Name) MAY (uddi-Use-Type $
uddi-Description $ uddi-Phone $ uddi-Email $ uddi-tModel-Key) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.7 NAME 'uddi-Address' DESC 'Address information
for a contact entry' SUP TOP STRUCTURAL MUST (uddi-Address-ID) MAY (uddi-Use-Type $
uddi-Sort-Code $ uddi-Address-tModel-Key $ uddi-Address-Line) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.8 NAME 'uddi-Keyed-Reference' DESC 'KeyedReference' SUP
TOP STRUCTURAL MUST (uddi-Keyed-Reference-ID $ uddi-Key-Value) MAY (uddi-Key-Name $
uddi-Keyed-Reference-TModel-Key) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.9 NAME 'uddi-tModel-Instance-Info' DESC 'tModelInstanceInfo'
SUP TOP STRUCTURAL MUST (uddi-tModel-Instance-Info-ID $ uddi-tMII-TModel-Key) MAY (
uddi-Description) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.10 NAME 'uddi-Instance-Details' DESC 'instanceDetails' SUP
TOP STRUCTURAL MUST (uddi-Instance-Details-ID) MAY (uddi-Description $ uddi-Instance-Parms)
X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.11 NAME 'uddi-Overview-Doc' DESC 'overviewDoc' SUP TOP
STRUCTURAL MUST (uddi-Overview-Doc-ID) MAY (uddi-Description $ uddi-Overview-URL) X-ORIGIN
'acumen defined')
objectClasses: (11827.0001.2.12 NAME 'uddi-Ref-Object' DESC 'an object class
conatins a reference to another entry' SUP TOP STRUCTURAL MUST (uddi-Ref-Attribute) X-ORIGIN
'acumen defined')
objectClasses: (11827.0001.2.13 NAME 'uddi-Ref-Auxiliary-Object' DESC 'an auxiliary type
object used in another structural class to hold a reference to a third entry' SUP TOP AUXILIARY
MUST (uddi-Ref-Attribute) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.14 NAME 'uddi-ou-container' DESC 'an organizational
unit with uddi attributes' SUP organizationalunit STRUCTURAL MAY (uddi-next-id $ uddi-var)
X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.15 NAME 'uddi-User' DESC 'a User with uddi
attributes' SUP inetOrgPerson STRUCTURAL MUST (uid $ uddi-user-language $ uddi-user-quota-entity $
uddi-user-quota-service $ uddi-user-quota-tmodel $ uddi-user-quota-binding $
uddi-user-quota-assertion $ uddi-user-quota-messagesize) X-ORIGIN 'acumen defined')

13.3.3 Description of Properties in the uddi.properties File
The following tables describe properties of the uddi.properties file, categorized by
the type of UDDI feature they describe:

■ Table 13–1, " UDDI Data Structure"

■ Table 13–2, " Basic UDDI Configuration"

■ Table 13–3, " UDDI User Defaults"

■ Table 13–4, " General Server Configuration"

■ Table 13–5, " Logger Configuration"

■ Table 13–6, " Connection Pools"

UDDI 2.0 Server

Publishing and Finding Web Services Using UDDI 13-9

■ Table 13–7, " LDAP Datastore Configuration"

■ Table 13–8, " Replicated LDAP Datastore Configuration"

■ Table 13–9, " File Datastore Configuration"

■ Table 13–10, " General Security Configuration"

■ Table 13–11, " LDAP Security Configuration"

■ Table 13–12, " File Security Configuration"

Table 13–2 Basic UDDI Configuration

UDDI Property Key Description

auddi.discoveryurl DiscoveryURL prefix that is set for each saved business
entity. Typically this is the full URL to the uddilistener
servlet, so that the full DiscoveryURL results in the
display of the stored BusinessEntity data.

auddi.inquiry.secure Permissible values are true and false. When set to
true, inquiry calls to UDDI Server are limited to secure
https connections only. Any UDDI inquiry calls through a
regular http URL are rejected.

auddi.publish.secure Permissible values are true and false. When set to
true, publish calls to UDDI Server are limited to secure
https connections only. Any UDDI publish calls through a
regular http URL are rejected.

auddi.search.maxrows Maximum number of returned rows for search
operations. When the search results in a higher number of
rows then the limit set by this property, the result is
truncated.

auddi.search.timeout Timeout value for search operations. The value is
indicated in milliseconds.

auddi.siteoperator Name of the UDDI registry site operator. The specified
value will be used as the operator attribute, saved in all
future BusinessEntity registrations. This attribute will
later be returned in responses, and indicates which UDDI
registry has generated the response.

security.cred.life Credential life, specified in seconds, for authentication.
Upon authentication of a user, an AuthToken is assigned
which will be valid for the duration specified by this
property.

pluggableTModel.file.list UDDI Server is pre-populated with a set of Standard
TModels. You can further customize the UDDI server by
providing your own taxonomies, in the form of TModels.
Taxonomies must be defined in XML files, following the
provided XML schema. The value of this property a
comma-separated list of URIs to such XML files. Values
that refer to these TModels are checked and validated
against the specified taxonomy.

Table 13–3 UDDI User Defaults

UDDI Property Key Description

auddi.default.lang User's initial language, assigned to user profile by default
at the time of creation. User profile settings can be
changed at sign-up or later.

UDDI 2.0 Server

13-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

auddi.default.quota.assertion User's initial assertion quota, assigned to user profile by
default at the time of creation. The assertion quota is the
maximum number of publisher assertions that the user is
allowed to publish. To impose no limits, set a value of -1.
A user's profile settings can be changed at sign-up or
later.

auddi.default.quota.binding User's initial binding quota, assigned to user profile by
default at the time of creation. The binding quota is the
maximum number of binding templates that the user is
allowed to publish, per each business service. To impose
no limits, set a value of -1. A user's profile settings can be
changed at sign-up or later.

auddi.default.quota.entity User's initial business entity quota, assigned to user
profile by default at the time of creation. The entity quota
is the maximum number of business entities that the user
is allowed to publish. To impose no limits, set a value of
-1. A user's profile settings can be changed at sign-up or
later.

auddi.default.quota.messageSi
ze

User's initial message size limit, assigned to his user
profile by default at the time of creation. The message size
limit is the maximum size of a SOAP call that the user
may send to UDDI Server. To impose no limits, set a
value of -1. A user's profile settings can be changed at
sign-up or later.

auddi.default.quota.service User's initial service quota, assigned to user profile by
default at the time of creation. The service quota is the
maximum number of business services that the user is
allowed to publish, per each business entity. To impose
no limits, set a value of -1. A user's profile settings can be
changed at sign-up or later.

auddi.default.quota.tmodel User's initial TModel quota, assigned to user profile by
default at the time of creation. The TModel quota is the
maximum number of TModels that the user is allowed to
publish. To impose no limits, set a value of -1. A user's
profile settings can be changed at sign-up or later.

Table 13–4 General Server Configuration

UDDI Property Keys Description

auddi.datasource.type Location of physical storage of UDDI data. This value
defaults to WLS, which indicates that the internal LDAP
directory of WebLogic Server is to be used for data
storage. Other permissible values include LDAP,
ReplicaLDAP, and File.

auddi.security.type UDDI Server's security module (authentication). This
value defaults to WLS, which indicates that the default
security realm of WebLogic Server is to be used for UDDI
authentication. As such, a WebLogic Server user would be
an UDDI Server user and any WebLogic Server
administrator would also be an UDDI Server
administrator, in addition to members of the UDDI Server
administrator group, as defined in UDDI Server settings.
Other permissible values include LDAP and File.

Table 13–3 (Cont.) UDDI User Defaults

UDDI Property Key Description

UDDI 2.0 Server

Publishing and Finding Web Services Using UDDI 13-11

Table 13–5 Logger Configuration

UDDI Property Key Description

logger.file.maxsize Maximum size of logger output files (if output is sent to
file), in Kilobytes. Once an output file reaches maximum
size, it is closed and a new log file is created.

logger.indent.enabled Permissible values are true and false. When set to
true, log messages beginning with "+" and "-", typically
TRACE level logs, cause an increase or decrease of
indentation in the output.

logger.indent.size Size of each indentation (how many spaces for each
indent), specified as an integer.

logger.log.dir Absolute or relative path to a directory where log files are
stored.

logger.log.file.stem String that is prefixed to all log file names.

logger.log.type Determines whether log messages are sent to the screen,
to a file or to both destinations. Permissible values,
respectively, are: LOG_TYPE_SCREEN, LOG_TYPE_FILE,
and LOG_TYPE_SCREEN_FILE.

logger.output.style Determines whether logged output will simply contain
the message, or thread and timestamp information will be
included. Permissible values are OUTPUT_LONG and
OUTPUT_SHORT.

logger.quiet Determines whether the logger itself displays information
messages. Permissible values are true and false.

logger.verbosity Logger's verbosity level. Permissible values (case
sensitive) are TRACE, DEBUG, INFO, WARNING and ERROR,
where each severity level includes the following ones
accumulatively.

Table 13–6 Connection Pools

UDDI Property Key Description

datasource.ldap.pool.incremen
t

Number of new connections to create and add to the pool
when all connections in the pool are busy

datasource.ldap.pool.initials
ize

Number of connections to be stored at the time of creation
and initialization of the pool.

datasource.ldap.pool.maxsize Maximum number of connections that the pool may hold.

datasource.ldap.pool.systemma
xsize

Maximum number of connections created, even after the
pool has reached its capacity. Once the pool reaches its
maximum size, and all connections are busy, connections
are temporarily created and returned to the client, but not
stored in the pool. However, once the system max size is
reached, all requests for new connections are blocked
until a previously busy connection becomes available.

Table 13–7 LDAP Datastore Configuration

UDDI Property Key Description

datasource.ldap.manager.uid Back-end LDAP server administrator or privileged user
ID, (for example, cn=Directory Manager) who can save
data in LDAP.

UDDI 2.0 Server

13-12 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

datasource.ldap.manager.passw
ord

Password for the datasource.ldap.manager.uid,
establishes connections with the LDAP directory used for
data storage.

datasource.ldap.server.url "ldap://" URL to the LDAP directory used for data
storage.

datasource.ldap.server.root Root entry of the LDAP directory used for data storage
(e.g., dc=acumenat, dc=com).

Note: In a replicated LDAP environment, there are "m" LDAP
masters and "n" LDAP replicas, respectively numbered from 0 to (m-1)
and from 0 to (n-1). The fifth part of the property keys below, quoted
as "i", refers to this number and differs for each LDAP server instance
defined.

Table 13–8 Replicated LDAP Datastore Configuration

UDDI Property Key Description

datasource.ldap.server.master.i.manag
er.uid

Administrator or privileged user ID for this
"master" LDAP server node, (for example,
cn=Directory Manager) who can save data in
LDAP.

datasource.ldap.server.master.i.manag
er.password

Password for the
datasource.ldap.server.master.i.manager.uid,
establishes connections with the relevant
"master" LDAP directory to write data.

datasource.ldap.server.master.i.url "ldap://" URL to the corresponding LDAP
directory node.

datasource.ldap.server.master.i.root Root entry of the corresponding LDAP
directory node (for example, dc=acumenat,
dc=com).

datasource.ldap.server.replica.i.mana
ger.uid

User ID for this "replica" LDAP server node (for
example, cn=Directory Manager); this person
can read the UDDI data from LDAP.

datasource.ldap.server.replica.i.mana
ger.password

Password for
datasource.ldap.server.replica.i.manager.uid,
establishes connections with the relevant
"replica" LDAP directory to read data.

datasource.ldap.server.replica.i.url "ldap://" URL to the corresponding LDAP
directory node.

datasource.ldap.server.replica.i.root Root entry of the corresponding LDAP
directory node (for example, dc=acumenat,
dc=com).

Table 13–9 File Datastore Configuration

UDDI Property Key Description

datasource.file.directory Directory where UDDI data is stored in the file system.

Table 13–7 (Cont.) LDAP Datastore Configuration

UDDI Property Key Description

UDDI Directory Explorer

Publishing and Finding Web Services Using UDDI 13-13

13.4 UDDI Directory Explorer
The UDDI Directory Explorer allows authorized users to publish Web services in
private WebLogic Server UDDI registries and to modify information for previously
published Web services. The Directory Explorer provides access to details about the
Web services and associated WSDL files (if available.)

The UDDI Directory Explorer also enables you to search both public and private UDDI
registries for Web services and information about the companies and departments that
provide these Web services.

To invoke the UDDI Directory Explorer in your browser, enter:

http://host:port/uddiexplorer

where

■ host is the computer on which WebLogic Server is running.

■ port is the port number where WebLogic Server listens for connection requests.
The default port number is 7001.

You can perform the following tasks with the UDDI Directory Explorer:

Table 13–10 General Security Configuration

UDDI Property Key Description

security.custom.group.operators Security group name, where the members of this
group are treated as UDDI administrators.

Table 13–11 LDAP Security Configuration

UDDI Property Key Description

security.custom.ldap.manager.uid Security LDAP server administrator or privileged user
ID (for example, cn=Directory Manager); this person
can save data in LDAP.

security.custom.ldap.manager.pas
sword

The value of this property is the password for the
above user ID, and is used to establish connections
with the LDAP directory used for security.

security.custom.ldap.url The value of this property is an "ldap://" URL to the
LDAP directory used for security.

security.custom.ldap.root Root entry of the LDAP directory used for security
(for example, dc=acumenat, dc=com).

security.custom.ldap.userroot User's root entry on the security LDAP server. For
example, ou=People.

security.custom.ldap.group.root Operator entry on the security LDAP server. For
example, "cn=UDDI Administrators, ou=Groups".
This entry contains IDs of all UDDI administrators.

Table 13–12 File Security Configuration

UDDI Property Key Description

security.custom.file.userdir Directory where UDDI security information (users and
groups) is stored in the file system.

UDDI Client API

13-14 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ Search public registries

■ Search private registries

■ Publish to a private registry

■ Modify private registry details

■ Setup UDDI directory explorer

For more information about using the UDDI Directory Explorer, click the Explorer
Help link on the main page.

13.5 UDDI Client API
WebLogic Server includes an implementation of the client-side UDDI API that you can
use in your Java client applications to programmatically search for and publish Web
services.

The two main classes of the UDDI client API are Inquiry and Publish. Use the
Inquiry class to search for Web services in a known UDDI registry and the Publish
class to add your Web service to a known registry.

WebLogic Server provides an implementation of the following client UDDI API
packages:

■ weblogic.uddi.client.service

■ weblogic.uddi.client.structures.datatypes

■ weblogic.uddi.client.structures.exception

■ weblogic.uddi.client.structures.request

■ weblogic.uddi.client.structures.response

For detailed information on using these packages, see the UDDI API Javadocs.

13.6 Pluggable tModel
A taxonomy is basically a tModel used as reference by a categoryBag or identifierBag.
A major distinction is that in contrast to a simple tModel, references to a taxonomy are
typically checked and validated. WebLogic Server's UDDI Server takes advantage of
this concept and extends this capability by introducing custom taxonomies, called
"pluggable tModels". Pluggable tModels allow users (UDDI administrators) to add
their own checked taxonomies to the UDDI registry, or overwrite standard
taxonomies.

To add a pluggable tModel:

1. Create an XML file conforming to the specified format described in Section 13.6.2,
"XML Schema for Pluggable tModels", for each tModelKey/categorization.

2. Add the comma-delimited, fully qualified file names to the
pluggableTModel.file.list property in the uddi.properties file used to
configure UDDI Server. For example:

pluggableTModel.file.list=c:/temp/cat1.xml,c:/temp/cat2.xml

Note: To access the UDDI Directory Explorer pages, use your Oracle
WebLogic Server username and password.

Pluggable tModel

Publishing and Finding Web Services Using UDDI 13-15

See Section 13.3.1, "Configuring the UDDI 2.0 Server" for details about the
uddi.properties file.

3. Restart WebLogic Server.

The following sections include a table detailing the XML elements and their
permissible values, the XML schema against which pluggable tModels are validated,
and a sample XML.

13.6.1 XML Elements and Permissible Values
The following table describes the elements of the XML file that describes your
pluggable tModels.

13.6.2 XML Schema for Pluggable tModels
The XML Schema against which pluggable tModels are validated is as follows:

Table 13–13 Description of the XML Elements to Configure Pluggable tModels

Element/Attri
bute Required Role Values Comments

Taxonomy Required Root Element - -

checked Required Whether this
categorization is
checked or not.

true / false If false,
keyValue will
not be
validated.

type Required The type of the
tModel.

categorization /
identifier /
valid values as
defined in
uddi-org-types

See
uddi-org-types
tModel for valid
values.

applicability Optional Constraints on
where the
tModel may be
used.

- No constraint is
assumed if this
element is not
provided

scope Required if the
applicability
element is
included.

Constraints on
where the
tModel may be
used.

businessEntity /
businessService
/
bindingTemplat
e / tModel

tModel may be
used in
tModelInstanceI
nfo if scope
"bindingTempla
te" is specified.

tModel Required The actual
tModel,
according to the
UDDI data
structure.

Valid
tModelKey
must be
provided.

-

categories Required if
checked is set to
true.

- - -

category Required if
element
categories is
included

Holds actual
keyName and
keyValue pairs.

keyName /
keyValue pairs

category may be
nested for
grouping or tree
structure.

keyName Required - - -

keyValue Required - - -

Pluggable tModel

13-16 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

<simpleType name="type">
 <restriction base="string"/>
</simpleType>

<simpleType name="checked">
 <restriction base="NMTOKEN">
 <enumeration value="true"/>
 <enumeration value="false"/>
 </restriction>
</simpleType>

<element name="scope" type="string"/>

<element name = "applicability" type = "uddi:applicability"/>

<complexType name = "applicability">
 <sequence>
 <element ref = "uddi:scope" minOccurs = "1" maxOccurs = "4"/>
 </sequence>
</complexType>

<element name="category" type="uddi:category"/>

<complexType name = "category">
 <sequence>
 <element ref = "uddi:category" minOccurs = "0" maxOccurs = "unbounded"/>

 </sequence>
 <attribute name = "keyName" use = "required" type="string"/>
 <attribute name = "keyValue" use = "required" type="string"/>
</complexType>

<element name="categories" type="uddi:categories"/>

<complexType name = "categories">
 <sequence>
 <element ref = "uddi:category" minOccurs = "1" maxOccurs = "unbounded"/>
 </sequence>
</complexType>

<element name="Taxonomy" type="uddi:Taxonomy"/>

<complexType name="Taxonomy">
 <sequence>
 <element ref = "uddi:applicability" minOccurs = "0" maxOccurs = "1"/>
 <element ref = "uddi:tModel" minOccurs = "1" maxOccurs = "1"/>
 <element ref = "uddi:categories" minOccurs = "0" maxOccurs = "1"/>
 </sequence>
 <attribute name = "type" use = "required" type="uddi:type"/>
 <attribute name = "checked" use = "required" type="uddi:checked"/>
</complexType>

13.6.3 Sample XML for a Pluggable tModel
The following shows a sample XML for a pluggable tModel:

<?xml version="1.0" encoding="UTF-8" ?>

 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

Pluggable tModel

Publishing and Finding Web Services Using UDDI 13-17

 <SOAP-ENV:Body>

 <Taxonomy checked="true" type="categorization" xmlns="urn:uddi-org:api_v2" >
 <applicability>
 <scope>businessEntity</scope>
 <scope>businessService</scope>
 <scope>bindingTemplate</scope>
 </applicability>
 <tModel tModelKey="uuid:C0B9FE13-179F-41DF-8A5B-5004DB444tt2" >
 <name> sample pluggable tModel </name>
 <description>used for test purpose only </description>
 <overviewDoc>
 <overviewURL>http://www.abc.com </overviewURL>
 </overviewDoc>
 </tModel>
 <categories>
 <category keyName="name1 " keyValue="1">
 <category keyName="name11" keyValue="12">
 <category keyName="name111" keyValue="111">
 <category keyName="name1111" keyValue="1111"/>
 <category keyName="name1112" keyValue="1112"/>
 </category>
 <category keyName="name112" keyValue="112">
 <category keyName="name1121" keyValue="1121"/>
 <category keyName="name1122" keyValue="1122"/>
 </category>
 </category>
 </category>
 <category keyName="name2 " keyValue="2">
 <category keyName="name21" keyValue="22">
 <category keyName="name211" keyValue="211">
 <category keyName="name2111" keyValue="2111"/>
 <category keyName="name2112" keyValue="2112"/>
 </category>
 <category keyName="name212" keyValue="212">
 <category keyName="name2121" keyValue="2121"/>
 <category keyName="name2122" keyValue="2122"/>
 </category>
 </category>
 </category>
 </categories>
 </Taxonomy>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Pluggable tModel

13-18 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	2 Invoking a Web Service Using Asynchronous Request-Response
	2.1 Overview of the Asynchronous Request-Response Feature
	2.2 Using Asynchronous Request-Response: Main Steps
	2.3 Applying Asynchronous Binding Declaration to WSDL
	2.4 Updating the build.xml File When Using Asynchronous Request-Response
	2.5 Creating the Asynchronous Client

	3 Using Web Services Atomic Transactions
	3.1 Overview of Web Services Atomic Transactions
	3.2 Configuring the Domain Resources Required for Web Servcie Advanced Features
	3.3 Enabling Web Services Atomic Transactions on Web Services
	3.3.1 Using the @Transactional Annotation in Your JWS File
	3.3.1.1 Example: Using @Transactional Annotation on a Web Service Class
	3.3.1.2 Example: Using @Transactional Annotation on a Web Service Method
	3.3.1.3 Example: Using the @Transactional and the EJB @TransactionAttribute Annotations Together

	3.3.2 Enabling Web Services Atomic Transactions Starting From WSDL

	3.4 Enabling Web Services Atomic Transactions on Web Service Clients
	3.4.1 Using @Transactional Annotation with the @WebServiceRef Annotation
	3.4.2 Passing the TransactionalFeature to the Client

	3.5 Configuring Web Services Atomic Transactions Using the Administration Console
	3.5.1 Securing Messages Exchanged Between the Coordinator and Participant
	3.5.2 Enabling and Configuring Web Services Atomic Transactions

	3.6 Using Web Services Atomic Transactions in a Clustered Environment
	3.7 More Examples of Using Web Services Atomic Transactions

	5 Publishing a Web Service Endpoint
	6 Using Callbacks
	6.1 Overview of Callbacks
	6.2 Example Callback Implementation
	6.3 Programming Callbacks: Main Steps
	6.4 Programming Guidelines for Target Web Service
	6.5 Programming Guidelines for the Callback Client Web Service
	6.6 Programming Guidelines for the Callback Web Service
	6.7 Updating the build.xml File for the Target Web Service

	7 Optimizing Binary Data Transmission Using MTOM/XOP
	7.1 Sending Binary Data Using MTOM/XOP
	7.1.1 Annotating the Data Types
	7.1.1.1 Annotating the Data Types: Start From Java
	7.1.1.2 Annotating the Data Types: Start From WSDL

	7.1.2 Enabling MTOM on the Web Service
	7.1.2.1 Enabling MTOM on the Web Service Using Annotation
	7.1.2.2 Enabling MTOM on the Web Services Using WS-Policy File

	7.1.3 Enabling MTOM on the Client
	7.1.4 Setting the Attachment Threshold

	7.2 Streaming SOAP Attachments
	7.2.1 Client Side Example
	7.2.2 Server Side Example
	7.2.3 Configuring Streaming SOAP Attachments
	7.2.3.1 Configuring Streaming SOAP Attachments on the Server
	7.2.3.2 Configuring Streaming SOAP Attachments on the Client

	8 Creating Dynamic Proxy Clients
	8.1 Additional Considerations When Specifying WSDL Location

	9 Using XML Catalogs
	9.1 Overview of XML Catalogs
	9.2 Defining and Referencing XML Catalogs
	9.2.1 Defining an External XML Catalog
	9.2.1.1 Creating an External XML Catalog File
	9.2.1.2 Referencing the External XML Catalog File

	9.2.2 Embedding an XML Catalog
	9.2.2.1 Creating an Embedded XML Catalog
	9.2.2.2 Referencing an Embedded XML Catalog

	9.3 Disabling XML Catalogs in the Client Runtime
	9.4 Getting a Local Copy of XML Resources

	10 Creating and Using SOAP Message Handlers
	10.1 Overview of SOAP Message Handlers
	10.2 Adding Server-side SOAP Message Handlers: Main Steps
	10.3 Adding Client-side SOAP Message Handlers: Main Steps
	10.4 Designing the SOAP Message Handlers and Handler Chains
	10.4.1 Server-side Handler Execution
	10.4.2 Client-side Handler Execution

	10.5 Creating the SOAP Message Handler
	10.5.1 Example of a SOAP Handler
	10.5.2 Example of a Logical Handler
	10.5.3 Implementing the Handler.handleMessage() Method
	10.5.4 Implementing the Handler.handleFault() Method
	10.5.5 Implementing the Handler.close() Method
	10.5.6 Using the Message Context Property Values and Methods
	10.5.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ
	10.5.7.1 The SOAPPart Object
	10.5.7.2 The AttachmentPart Object
	10.5.7.3 Manipulating Image Attachments in a SOAP Message Handler

	10.6 Configuring Handler Chains in the JWS File
	10.7 Creating the Handler Chain Configuration File
	10.8 Compiling and Rebuilding the Web Service
	10.9 Configuring the Client-side SOAP Message Handlers

	11 Programming RESTful Web Services
	11.1 Overview of RESTful Web Services
	11.2 Programming RESTful Web Services: Main Steps
	11.3 Programming Guidelines for the RESTful Web Service
	11.4 Accessing the RESTful Web Service from a Client
	11.5 Securing RESTful Web Services

	12 Programming Stateful JAX-WS Web Services Using HTTP Session
	12.1 Overview of Stateful Web Services
	12.2 Accessing HTTP Session on the Server
	12.3 Enabling HTTP Session on the Client
	12.4 Developing Stateful Services in a Cluster Using Session State Replication
	12.5 A Note About the JAX-WS RI @Stateful Extension

	13 Publishing and Finding Web Services Using UDDI
	13.1 Overview of UDDI
	13.1.1 UDDI and Web Services
	13.1.2 UDDI and Business Registry
	13.1.3 UDDI Data Structure

	13.2 WebLogic Server UDDI Features
	13.3 UDDI 2.0 Server
	13.3.1 Configuring the UDDI 2.0 Server
	13.3.2 Configuring an External LDAP Server
	13.3.2.1 51acumen.ldif File Contents

	13.3.3 Description of Properties in the uddi.properties File

	13.4 UDDI Directory Explorer
	13.5 UDDI Client API
	13.6 Pluggable tModel
	13.6.1 XML Elements and Permissible Values
	13.6.2 XML Schema for Pluggable tModels
	13.6.3 Sample XML for a Pluggable tModel

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

