

Oracle® Fusion Middleware
Programming Message-Driven Beans for Oracle WebLogic
Server

11g Release 1 (10.3.3)

E15493-02

April 2010

This document is a resource for software developers who
develop applications that use message-driven beans (MDBs).

Oracle Fusion Middleware Programming Message-Driven Beans for Oracle WebLogic Server, 11g Release 1
(10.3.3)

E15493-02

Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... v

Documentation Accessibility ... v
Conventions ... v

1 Understanding Message-driven Beans

1.1 JCA-Based MDBs .. 1-1

2 MDB Life Cycle

2.1 Overview.. 2-1
2.2 MDBs and Concurrent Processing ... 2-1
2.3 Limitations for Multi-threaded Topic MDBs .. 2-2

3 MDBs and Messaging Models

3.1 Point-to-Point (Queue) Model: One Message Per Listener... 3-1
3.2 Publish/Subscribe (Topic) Model .. 3-2
3.3 Exactly-Once Processing .. 3-3

4 Deploying MDBs

4.1 Destination and MDBs: Collocation vs. non-Collocation ... 4-1
4.2 Collocated Destination/MDBs.. 4-1
4.3 Non-Collocated Destination/MDBs .. 4-2
4.4 JMS Distributed Destinations.. 4-3

5 Programming and Configuring MDBs: Main Steps

5.1 Required JMS Configuration... 5-1
5.2 Create MDB Class and Configure Deployment Elements .. 5-1

6 Programming and Configuring MDBs: Details

6.1 Configuring EJBs to Use Logical Message Destinations ... 6-1
6.1.1 Configuring Logical JMS Message Destinations for Individual MDBs 6-1
6.1.2 Configuring Application-Scoped Logical JMS Message Destinations......................... 6-2
6.2 Configuring Destination Type .. 6-3
6.3 Configuring Transaction Management Strategy for an MDB .. 6-3

iv

6.4 Configuring Suspension of Message Delivery During JMS Resource Outages................. 6-4
6.5 Configuring the Number of Seconds to Suspend a JMS Connection.................................. 6-4
6.5.1 How the EJB Container Determines How Long to Suspend a JMS Connection 6-5
6.5.2 Turning Off Suspension of a JMS Connection... 6-5
6.6 Manually Suspending and Resuming Message Delivery .. 6-5
6.7 Configuring MDBs for Destinations .. 6-5
6.7.1 Whether to Use Wrappers .. 6-6
6.7.2 How to Set provider-url.. 6-7
6.7.3 How to Set initial-context-factory ... 6-7
6.7.4 How to Set destination-jndi-name .. 6-7
6.7.5 How to Set connection-factory-jndi-name ... 6-7
6.7.6 Common Destination Scenarios: Illustrations and Key Element Settings 6-8
6.8 Configuring Durable Topic Subscriptions .. 6-10
6.8.1 Configuring a Durable Topic Subscription for a Non-Clustered Server 6-10
6.8.2 Configuring a Durable Topic Subscription for a Cluster.. 6-11
6.8.3 Configuring Automatic Deletion of Durable Topic Subscriptions............................ 6-11
6.9 Configuring Message Handling Behaviors .. 6-12
6.9.1 Ensuring Message Receipt Order .. 6-12
6.9.2 Preventing and Handling Duplicate Messages.. 6-12
6.9.3 Redelivery and Exception Handling.. 6-13
6.10 Using the Message-Driven Bean Context... 6-14
6.11 Configuring a Security Identity for a Message-Driven Bean .. 6-14
6.12 Using MDBs With Cross Domain Security .. 6-15

7 Using EJB 3.0 Compliant MDBs

7.1 Implementing EJB 3.0 Compliant MDBs ... 7-1
7.2 Programming EJB 3.0 Compliant MDBs.. 7-1
7.2.1 Example MDB Using Annotations .. 7-2
7.3 activationConfig Properties... 7-3

8 Migration and Recovery for Clustered MDBs

9 Using Batching with Message-Driven Beans

9.1 Configuring MDB Transaction Batching ... 9-1
9.2 How MDB Transaction Batching Works ... 9-2

10 Deployment Elements for MDBs

10.1 message-destination-descriptor Element of the weblogic-ejb-jar.xml File...................... 10-1
10.2 ejb Element of the weblogic-application.xml File ... 10-3
10.3 message-driven Element of the ejb-jar.xml File... 10-3
10.4 activationConfig Properties.. 10-4

v

Preface

This preface describes the document accessibility features and conventions used in this
guide—Programming Message-Driven Beans for Oracle WebLogic Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

vi

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Understanding Message-driven Beans 1-1

1Understanding Message-driven Beans

A message-driven bean (MDB) is an enterprise bean that allows J2EE applications to
process messages asynchronously. An MDB acts as a JMS or JCA message listener,
which is similar to an event listener except that it receives messages instead of events.
The messages may be sent by any J2EE component—an application client, another
enterprise bean, or a Web component—or by non-J2EE applications.

These are the key features of message-driven beans:

■ Clients do not access message-driven beans through interfaces. A message-driven
bean has only a bean class.

■ A message-driven bean's instances retain no data or conversational state for a
specific client. All instances of a message-driven bean are equivalent, allowing the
EJB container to assign a message to any message-driven bean instance. The
container can pool these instances to allow streams of messages to be processed
concurrently.

■ Throughout its life cycle, a message-driven bean instance can process messages
from multiple clients, although not concurrently.

When a message arrives, the container calls the message-driven bean's onMessage
method to process the message. The onMessage method normally casts the message
to one of the five JMS message types and handles it in accordance with the
application's business logic. The onMessage method may call helper methods, or it
may invoke a session or entity bean to process the information in the message or to
store it in a database.

A message may be delivered to a message-driven bean within a transaction context, so
that all operations within the onMessage method are part of a single transaction. If
message processing is rolled back, the message will be re-delivered.

For information about design alternatives for message-driven beans, see Section 3,
"MDBs and Messaging Models."

For a description of the overall EJB development process, see Programming WebLogic
Enterprise JavaBeans, Version 3.0 for Oracle WebLogic Server

1.1 JCA-Based MDBs
MDBs can be configured to receive messages from JCA 1.5-compliant resource
adapters, as defined by the JCA specification. To configure a MDB to use JCA, set the
resource-adapter-jndi-name deployment descriptor.

For more information, see the JCA 1.5 specification and "resource-adapter-jndi-name"
in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

JCA-Based MDBs

1-2 Programming Message-Driven Beans for Oracle WebLogic Server

2

MDB Life Cycle 2-1

2MDB Life Cycle

This section describes the phases in the life cycle of a message-driven bean instance
and how you can configure an MDB to control the life cycle.

■ Section 2.1, "Overview"

■ Section 2.2, "MDBs and Concurrent Processing"

■ Section 2.3, "Limitations for Multi-threaded Topic MDBs"

2.1 Overview
A message-driven bean implements loosely coupled or asynchronous business logic in
which the response to a request need not be immediate. A message-driven bean
receives messages from a JMS Queue or Topic, and performs business logic based on
the message contents. It is an asynchronous interface between EJBs and JMS.

Throughout its life cycle, an MDB instance can process messages from multiple clients,
although not simultaneously. It does not retain state for a specific client. All instances
of a message-driven bean are equivalent—the EJB container can assign a message to
any MDB instance. The container can pool these instances to allow streams of
messages to be processed concurrently.

The EJB container interacts directly with a message-driven bean—creating bean
instances and passing JMS messages to those instances as necessary. The container
creates bean instances at deployment time, adding and removing instances during
operation based on message traffic.

Example: In an on-line shopping application, where the process of taking an order
from a customer results in a process that issues a purchase order to a supplier, the
supplier ordering process could be implemented by a message-driven bean. While
taking the customer order always results in placing a supplier order, the steps are
loosely coupled because it is not necessary to generate the supplier order before
confirming the customer order. It is acceptable or beneficial for customer orders to
"stack up" before the associated supplier orders are issued.

2.2 MDBs and Concurrent Processing
MDBs support concurrent processing for both topics and queues. For more
information about topics and queues, see Section 3, "MDBs and Messaging Models."

WebLogic Server maintains a free pool where MDB instances that are not currently
servicing requests reside.The number of MDB instances in the free pool is controlled
by the value of the max-beans-in-free-pool attribute, the number of available

Limitations for Multi-threaded Topic MDBs

2-2 Programming Message-Driven Beans for Oracle WebLogic Server

threads in the thread pool, the type of thread pool, and sometimes other factors. See
"Tuning Message-Driven Beans" in Performance and Tuning for Oracle WebLogic Server.

■ Each MDB that is deployed to a server instance creates a single JMS connection.

■ In a queue-based JMS application (point-to-point model), each MDB instance has
its own session.

■ In a topic-based JMS application (the publish/subscribe model), all local instances
of an MDB share a JMS session. A given message is distributed to multiple
MDBs—one copy to each subscribing MDB. If multiple MDBs are deployed to
listen on the same topic, then each MDB receives a copy of every message. A
message is processed by one instance of each MDB that listens to the topic.

2.3 Limitations for Multi-threaded Topic MDBs
The default behavior for non-transactional topic MDBs is to multi-thread the message
processing. In this situation, the MDB container fails to provide reproducible behavior
when the topic is not a WebLogic JMS Topic, such as unexpected exceptions and
acknowledgement of messages that have not yet been processed. For example, if an
application throws RuntimeException from onMessage, the container may still
acknowledges the message.

Oracle recommends setting max-beans-in-free-pool to a value of 1 in the
deployment descriptor to prevent multi-threading in topic MDBs when the topic is a
foreign vendor topic (not a WebLogic JMS topic).

3

MDBs and Messaging Models 3-1

3MDBs and Messaging Models

WebLogic Server MDBs can be used in either a point-to-point (queue) or
publish/subscribe (topic) messaging model. These models are described in detail in
"Understanding WebLogic JMS" in Programming JMS for Oracle WebLogic Server.

The following sections describe the key differences between point-to-point and
publish/subscribe messaging applications.

■ Section 3.1, "Point-to-Point (Queue) Model: One Message Per Listener"

■ Section 3.2, "Publish/Subscribe (Topic) Model"

■ Section 3.3, "Exactly-Once Processing"

3.1 Point-to-Point (Queue) Model: One Message Per Listener
In the point-to-point model, a message from a JMS queue is picked up by one MDB
listener and stays in the queue until processed. If the MDB goes down, the message
remains in the queue, waiting for the MDB to come up again.

Example: A department must update its back-end inventory system to reflect items
sold throughout the day. Each message that decrements inventory must be processed
once, and only once. It is not necessary for messages to be processed immediately
upon generation or in any particular order, but it is critical that each message be
processed.

Figure 3–1 illustrates a point-to-point application. Each message is processed by single
instance of MDB_A. Message "M1" is processed by MDB_A(1), "M2" is processed by
MDB_A(2), and "M3" is processed by MDB_A(3).

Publish/Subscribe (Topic) Model

3-2 Programming Message-Driven Beans for Oracle WebLogic Server

Figure 3–1 Point-to-Point Model

3.2 Publish/Subscribe (Topic) Model
In the publish/subscribe model, a JMS topic publishes all messages to all subscribed
listeners. If an MDB listener goes down, that MDB will miss the message, unless the
topic is a durable subscription topic.

For more information on durable subscriptions and for configuration instructions, see
"Setting Up Durable Subscriptions" in Programming JMS for Oracle WebLogic Server and
Section 6.8, "Configuring Durable Topic Subscriptions."

Example: A financial news service broadcasts stock prices and financial stories to
subscribers, such as news wire services. Each message is distributed to each
subscriber.

Figure 3–2 illustrates a publish/subscribe application. In contrast to a point-to-point
application, in a publish/subscribe model, a message is processed by one instance of
each of the subscribing MDBs. Message "M1" is processed by an instance of MDB_A
and an instance of MDB_B. Similarly, "M2" is processed by an instance of each of the
subscribing MDBs.

Exactly-Once Processing

MDBs and Messaging Models 3-3

Figure 3–2 Publish/Subscribe Model

3.3 Exactly-Once Processing
An MDB pool processes each message at least once. Potentially, a message can be
processed more than once:

■ If an application fails, a transaction rolls back, or the hosting server instance fails
during or after the onMessage() method completes but before the message is
acknowledged or committed, the message will be redelivered and processed
again.

■ Non-persistent messages are also redelivered in the case of failure, except for the
case where the message's host JMS server shuts down or crashes, in which case the
messages are destroyed.

To ensure that a message is processed exactly once, use container-managed transactions
so that failures cause transactional MDB work to rollback and force the message to be
redelivered.

Exactly-Once Processing

3-4 Programming Message-Driven Beans for Oracle WebLogic Server

4

Deploying MDBs 4-1

4Deploying MDBs

This section describes various approaches for deploying MDBs and the JMS
destination to which the MDBs listen.

■ Section 4.1, "Destination and MDBs: Collocation vs. non-Collocation"

■ Section 4.2, "Collocated Destination/MDBs"

■ Section 4.3, "Non-Collocated Destination/MDBs"

■ Section 4.4, "JMS Distributed Destinations"

4.1 Destination and MDBs: Collocation vs. non-Collocation
You can deploy an MDB on the same server instance as the JMS destination to which it
listens, or on a separate server instance. These alternatives are referred to as collocation
or non-collocation, respectively.

4.2 Collocated Destination/MDBs
Collocating an MDB with the destination to which it listens keeps message traffic local
and avoids network round trips. Collocation is the best choice if you use WebLogic
Server JMS and want to minimize message processing latency and network traffic.

You cannot collocate the MDB and the JMS destination if you use a third-party JMS
provider that cannot run on WebLogic Server, such as MQ Series.

Figure 4–1 and Figure 4–2 illustrate architectures in which the MDB application is
deployed to the server instance that hosts the associated JMS destination. These
architectures vary in that the first has a distributed destination and the second does not.
In an application that uses distributed destinations, the MDB is deployed to each
server instance that hosts a member of the distributed destination set. For more
information about distributed destinations, see Section 4.4, "JMS Distributed
Destinations." As illustrated in Figure 4–1 the message "M1" is delivered to an instance
of MDB_A on each server instance where a distributed destination and MDB_A are
deployed.

Non-Collocated Destination/MDBs

4-2 Programming Message-Driven Beans for Oracle WebLogic Server

Figure 4–1 Collocated Destination/MDBs, Distributed Destination

Figure 4–2 Collocated Destination/MDBs, Non-Distributed Destination

4.3 Non-Collocated Destination/MDBs
Figure 4–3 illustrates an architecture in which an MDB runs on a separate server
instance than the JMS Destination to which the MDB listens.

Figure 4–3 Non-Collocated Application, Non-Distributed Destination

JMS Distributed Destinations

Deploying MDBs 4-3

Running your MDBs on a separate server instance from the JMS Destination to which
the MDB listens is suitable if:

■ Your application uses a 3rd-party JMS provider, such as MQ Series.

■ You want to isolate application code (the MDBs) from the JMS infrastructure. By
placing JMS destinations and MDBs on separate server instances, you prevent
application problems—for example, MDBs consuming all of your virtual
machine's memory—from interrupting the operation of the JMS infrastructure.

■ Your MDB application is very CPU-intensive. On a separate machine, your
application can use 100 percent of the CPU without affecting the operation of the
JMS infrastructure.

■ One machine in your configuration has more processing power, disk space, and
memory than other machines in the configuration.

The JMS destination and MDBs could also be deployed on non-clustered servers,
servers within the same cluster, or to servers in separate clusters.

4.4 JMS Distributed Destinations
If your MDB application runs on a WebLogic Server cluster, you can configure
multiple physical destinations (queues or topics) as a distributed destination, which
appears to message producers and consumers to be a single destination.

If you configure a distributed destination, WebLogic JMS distributes the messaging
load across available members of the distributed destination. If a member of the
destination becomes unavailable due to a server failure, message traffic is re-directed
to the other available physical destinations in the distributed destination set. You
control whether an MDB that accesses a WebLogic distributed queue in the same
cluster consumes from all distributed destination members or only those members
local to the current WebLogic Server using the
distributed-destination-connection element in the
weblogic-ejb-jar.xml file.

If you deploy an MDB and the associated distributed destination to the same cluster,
WebLogic Server automatically enumerates the distributed destination members and
ensures that there is an MDB listening on each member.

The MDBs are homogeneously deployed to each clustered server instance. Messages
are distributed across the physical destinations on the multiple server instances, and
are processed in parallel. If one server instance goes down, other nodes in the cluster
can continue to process messages. This architecture is a good choice if:

■ Your application has high availability requirements.

■ You prefer to deploy applications homogeneously so that each server runs the
same set of applications.

■ Your application processes a high volume of messages, or requires massively
parallel processing.

■ The machines in your cluster have identical or similar processing power, disk
space, and memory.

For an example, see Figure 4–1. For additional information about distributed
destinations, see "Using Distributed Destinations" in Programming JMS for Oracle
WebLogic Server.

JMS Distributed Destinations

4-4 Programming Message-Driven Beans for Oracle WebLogic Server

5

Programming and Configuring MDBs: Main Steps 5-1

5Programming and Configuring MDBs: Main
Steps

This section provides step-by-step instructions for implementing an MDB. For a
summary of key deployment elements for MDBs, see Section 10, "Deployment
Elements for MDBs."

■ Section 5.1, "Required JMS Configuration"

■ Section 5.2, "Create MDB Class and Configure Deployment Elements"

5.1 Required JMS Configuration
The steps in the following section assume that you have created the appropriate JMS
components:

■ A JMS connection factory—one that supports XA, if your MDBs are transactional.

The default WebLogic MDB connection factory is XA-capable. For information
about the default connection factories, see "Using a Default Connection Factory" in
Configuring and Managing JMS for Oracle WebLogic Server. For instructions to create
a custom WebLogic JMS connection factory, see "Create connection factories in a
system module" in Oracle WebLogic Server Administration Console Help.

The default behavior and configuration methods for other JMS providers vary. If
you use a non-Oracle JMS provider, see the vendor documentation for details.

■ A JMS destination

For instructions on configuring WebLogic JMS destinations, see Oracle WebLogic
Server Administration Console Help.

5.2 Create MDB Class and Configure Deployment Elements
Use the following steps to implement a message-driven bean:

Note: If your JMS provider is a remote WebLogic Server JMS
provider or a foreign JMS provider, and you use the wrapper
approach recommended in Section 6.7.1, "Whether to Use Wrappers,"
in addition to configuring the non-local JMS components, you must
also configure a Foreign Connection Factory and Foreign JMS
Destination in your local JNDI tree.

Create MDB Class and Configure Deployment Elements

5-2 Programming Message-Driven Beans for Oracle WebLogic Server

1. Create a source file (message-driven bean class) that implements both the
javax.ejb.MessageDrivenBean and javax.jms.MessageListener
interfaces.

The MDB class must define the following methods:

– One ejbCreate() method that the container uses to create an instance of the
message-driven bean in the free pool.

– One onMessage() method that is called by the EJB container when a
message is received. This method contains the business logic that processes
the message.

– One setMessageDrivenContext{} method that provides information to
the bean instance about its environment (certain deployment descriptor
values); the MDB also uses the context to access container services. See
Section 6.10, "Using the Message-Driven Bean Context,".

– One ejbRemove() method that removes the message-driven bean instance
from the free pool.

2. Declare the MDB in ejb-jar.xml, as illustrated in the excerpt below:

<ejb-jar>
 <enterprise-beans>
 <message-driven>
 <ejb-name>...</ejb-name>
 <ejb-class>...</ejb-class>
 <transaction-type>Container</transaction-type>
 <acknowledge-mode>auto_acknowledge</acknowledge-mode>
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 <subscription-durability>Durable</subscription-durability>
 </message-driven-destination>
 </message-driven>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>...</ejb-name>
 <method-name>onMessage()</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

The key behaviors to configure are:

– Transaction management strategy—The MDB's transaction management
strategy, in the transaction-type element. For instructions, see Section 6.3,
"Configuring Transaction Management Strategy for an MDB."

– Destination type—The type of destination to which the MDB listens. For more
information, see Section 6.2, "Configuring Destination Type."

3. Configure WebLogic-specific behaviors for the MDB in the
message-driven-descriptor element of weblogic-ejb-jar.xml. For
example:

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>exampleMessageDrivenA</ejb-name>

Create MDB Class and Configure Deployment Elements

Programming and Configuring MDBs: Main Steps 5-3

 <message-driven-descriptor>
 <pool>...</pool>
 <timer-descriptor>...</timer-descriptor>
 <destination-jndi-name>...</destination-jndi-name>
 <initial-context-factory>...</initial-context-factory>
 <provider-url>...</provider-url>
 <connection-factory-jndi-name>...</connection-factory-jndi-name>
 <jms-polling-interval-seconds>...</jms-polling-interval-seconds>
 <jms-client-id>...</jms-client-id>
 <generate-unique-jms-client-id>...</generate-unique-jms-client-id>
 <durable-subscription-deletion>...</durable-subscription-deletion>
 <max-messages-in-transaction>...</max-messages-in-transaction>
 <init-suspend-seconds>...</init-suspend-seconds>
 <max-suspend-seconds>...</max-suspend-seconds>
 </message-driven-descriptor>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

The key elements to configure are those that specify how to access the destination.
For instructions, see Section 6.7, "Configuring MDBs for Destinations."

4. Compile and generate the MDB class using the instructions in "Compile Java
Source" in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

5. Deploy the bean on WebLogic Server using the instructions in the section
"Preparing Applications and Modules for Deployment" in Deploying Applications to
Oracle WebLogic Server

If WebLogic Server cannot find an MDB's JMS destination during deployment,
deployment succeeds, but WebLogic Server prints a message saying the
destination was not found. The MDB bean then periodically tries to connect to its
JMS queue until it succeeds. For more information, see Section 8, "Migration and
Recovery for Clustered MDBs."

Create MDB Class and Configure Deployment Elements

5-4 Programming Message-Driven Beans for Oracle WebLogic Server

6

Programming and Configuring MDBs: Details 6-1

6Programming and Configuring MDBs:
Details

The topics in this section supplement the instructions in Section 5, "Programming and
Configuring MDBs: Main Steps."

■ Section 6.1, "Configuring EJBs to Use Logical Message Destinations"

■ Section 6.2, "Configuring Destination Type"

■ Section 6.3, "Configuring Transaction Management Strategy for an MDB"

■ Section 6.4, "Configuring Suspension of Message Delivery During JMS Resource
Outages"

■ Section 6.5, "Configuring the Number of Seconds to Suspend a JMS Connection"

■ Section 6.6, "Manually Suspending and Resuming Message Delivery"

■ Section 6.7, "Configuring MDBs for Destinations"

■ Section 6.8, "Configuring Durable Topic Subscriptions"

■ Section 6.9, "Configuring Message Handling Behaviors"

■ Section 6.10, "Using the Message-Driven Bean Context"

■ Section 6.11, "Configuring a Security Identity for a Message-Driven Bean"

■ Section 6.12, "Using MDBs With Cross Domain Security"

6.1 Configuring EJBs to Use Logical Message Destinations
Declare logical message destinations in an EJB's deployment descriptor and map the
logical message destinations to actual message destinations (JMS queues or topics, or
MDBs). Once you declare logical message destinations, you can then create message
destination references that are linked to the logical message destinations. EJBs use the
logical message destination name to perform a JNDI lookup and access the actual
message destination. Logical JMS message destinations can be defined for individual
MDBs or entire applications.

For information on how unresolved and unavailable message destinations are
handled, see "EJBs and Message Destination References" in Programming WebLogic
Enterprise JavaBeans for Oracle WebLogic Server.

6.1.1 Configuring Logical JMS Message Destinations for Individual MDBs
You can configure logical JMS message destinations for individual MDBs.

Configuring EJBs to Use Logical Message Destinations

6-2 Programming Message-Driven Beans for Oracle WebLogic Server

To configure an MDB to use a logical message destination to link to an actual message
destination:

1. Declare the message destination in the message-destination-descriptor
element in weblogic-ejb-jar.xml.

2. Declare message destination references in the following elements in
ejb-jar.xml:

– message-destination-ref

– message-destination-ref-name—the environment name used in the
enterprise bean code for the message destination, relative to
java:comp/env. For example,
<message-destination-ref>jms/StockQueue</message-destinati
on-ref>.

– message-destination-type—the expected type of the referenced
destination. For example,
<message-destination-type>javax.jms.Queue</message-destina
tion-type>.

– message-destination-usage—specifies whether messages are consumed from
the destination, produced for the destination, or both. For example,
<message-destination-usage>Produces<message-destination-us
age>.

– message-destination-link—links the message destination reference to
the actual message destination. This value must match the destination defined
in message-destination-name in the weblogic-ejb-jar.xml file.

6.1.2 Configuring Application-Scoped Logical JMS Message Destinations
In this release of WebLogic Server, you can configure resources for applications.
Resources that are configured for entire applications are called application-scoped
resources. This section describes application-scoped logical JMS destinations for an
EJB application. For additional information on application-scoped resources, such as
JMS and JDBC, see Programming JMS for Oracle WebLogic Server and Programming JDBC
for Oracle WebLogic Server.

Application-scoped resources, such as logical JMS message destinations, for EJBs
apply to all MDBs in the application. You can override application-scoped JMS for
specific MDBs by configuring the MDBs to use logical message destinations to link to
actual message destinations, as described in Section 6.1.1, "Configuring Logical JMS
Message Destinations for Individual MDBs."

To configure application-scoped JMS for EJBs:

1. Declare the message destination in the message-destination-descriptor
element in weblogic-ejb-jar.xml.

2. Declare message destination references in the following elements in
ejb-jar.xml:

■ message-driven

– message-destination-type—the expected type of the referenced
destination. For example,
<message-destination-type>javax.jms.Queue</message-destina
tion-type>.

Configuring Transaction Management Strategy for an MDB

Programming and Configuring MDBs: Details 6-3

– message-destination-usage—specifies whether messages are consumed
from the destination, produced for the destination, or both. For example,
<message-destination-usage>Produces<message-destination-us
age>.

– message-destination-link—links the message destination reference to
the actual message destination. For example,
<message-destination-link>ExpenseProcessingQueue<message-d
estination-link>. This value must match the destination defined in
message-destination-name in the weblogic-ejb-jar.xml file.

■ message-destination

– message-destination-name—the name of the message destination. For
example,
<message-destination-name>ExpenseProcessingQueue<message-d
estination-name>. This value must match the destination defined in
message-destination-name in weblogic-ejb-jar.xml.

6.2 Configuring Destination Type
Configure the type of destination to which the MDB listens in the
destination-type element in the message-driven-destination element of
ejb-jar.xml.

■ To specify a topic, set destination-type to javax.jms.Topic. If the
destination is a topic, specify subscription-durability as either Durable or
NonDurable.

■ To specify a queue, set destination-type to javax.jms.Queue.

For more information, see Section 6.8, "Configuring Durable Topic Subscriptions."

6.3 Configuring Transaction Management Strategy for an MDB
An MDB can manage its own transactions or defer transaction management to the
container.

To configure container-level transaction management:

■ Set the transaction-type element in the message-driven element in the
ejb-jar.xml file to Container.

■ Set the trans-attribute element in the container-transaction element in
ejb-jar.xml to Required.

■ To change the timeout period for the transaction, set trans-timeout-seconds
in the transaction-descriptor element of weblogic-ejb-jar.xml. If a
transaction times out, it is rolled back, and the message is redelivered. By default,

Note: If transaction-type is set to Container, and
trans-attribute is not set, the default transaction-attribute
values are applied: required (for EJB 3.0 MDBs) and
NotSupported (for MDBs prior to EJB 3.0). WebLogic Server allows
you to deploy the MDB, and logs a compliance error. However, if you
make this configuration error, the MDB will not run transactionally—if a
failure occurs mid-transaction, updates that occurred prior to the
failure will not be rolled back.

Configuring Suspension of Message Delivery During JMS Resource Outages

6-4 Programming Message-Driven Beans for Oracle WebLogic Server

transactions time out after 30 seconds. For an application with long-running
transactions, it may be appropriate to increase the timeout period.

To configure bean-level transaction management:

■ Set the transaction-type element in the message-driven element in the
ejb-jar.xml file to Bean.

■ Set the acknowledge-mode element to specify the desired JMS acknowledgment
semantics, either one of the following:

– AUTO_ACKNOWLEDGE (the default) as described at
http://java.sun.com/products/jms/javadoc-102a/javax/jms/Se
ssion.html#AUTO_ACKNOWLEDGE

– DUPS_OK_ACKNOWLEDGE as described at
http://java.sun.com/products/jms/javadoc-102a/javax/jms/Se
ssion.html#DUPS_OK_ACKNOWLEDGE

For more information, see "Session" in Programming JMS for Oracle WebLogic Server.

6.4 Configuring Suspension of Message Delivery During JMS Resource
Outages

In this release of WebLogic Server, you can configure how an MDB behaves when the
EJB container detects a JMS resource outage (an MDB throwing the same exception 10
times in succession).

You can configure:

■ An MDB to suspend the JMS connection and, thereby, stop receiving additional
messages when the EJB container detects a JMS resource outage. If you choose this
configuration option, you can specify:

– the initial number of seconds the MDB should wait before it first resumes
receiving messages.

– the maximum number of seconds the MDB should wait before it resumes
receiving messages.

■ An MDB to not suspend the JMS connection when the EJB container detects a JMS
resource outage.

When a JMS connection is suspended, message delivery is suspended for all JMS
sessions associated with the connection. By default, when it detects a JMS resource
outage, the EJB container suspends an MDB's JMS connection for
init-suspend-seconds.

6.5 Configuring the Number of Seconds to Suspend a JMS Connection
You may want to suspend a JMS connection during a resource outage, which can be
defined as an MDB throwing the same exception 10 times in succession.

To suspend an MDB's JMS connection, configure the following elements in the
weblogic-ejb-jar.xm file:

■ init-suspend-seconds—the initial amount of time, in seconds, to suspend a
JMS connection when the EJB container detects a JMS resource outage. The default
value is 5.

Configuring MDBs for Destinations

Programming and Configuring MDBs: Details 6-5

■ max-suspend-seconds—the maximum amount of time, in seconds, to
suspended a JMS connection when the EJB container detects a JMS resource
outage. The default value is 60.

6.5.1 How the EJB Container Determines How Long to Suspend a JMS Connection
The EJB container uses the following algorithm, based on the
init-suspend-seconds and max-suspend-seconds, to determine the amount of
time a JMS connection is suspended.

When the EJB container detects a JMS resource outage:

1. The MDB's JMS connection is suspended for the amount of time specified by
init-suspend-seconds.

2. The connection is checked. If the resource is available, go to Step 12.

3. If the value of init-suspend-seconds is greater than or equal to
max-suspend-seconds, go to Step 9.

4. The amount of time used to suspend the JMS connection, represented by Xseconds,
is calculated by multiplying the time of the previous suspension by 2.

5. The MDB's JMS connection is suspended for the amount of time specified by
Xseconds.

6. The connection is checked. If the resource is available, go to Step 12.

7. If the value of init-suspend-seconds is greater than or equal to
max-suspend-seconds, go to Step 9

8. Go to Step 4.

9. The MDB's JMS connection is suspended for the amount of time specified by
max-suspend-seconds.

10. Check the connection. If the resource is available, go to Step 12.

11. Go to Step 9.

12. Continue processing.

6.5.2 Turning Off Suspension of a JMS Connection
If you do not want an MDB's JMS connection to be suspended when the EJB container
detects a resource outage, set the value of max-suspend-seconds to 0. When the
value of max-suspend-seconds is 0, the value of init-suspend-seconds is
ignored.

6.6 Manually Suspending and Resuming Message Delivery
Administrators can use the Administration Console to manually suspend and resume
message delivery to deployed MDBs. For information see "Suspend and resume MDB
JMS connections" in Oracle WebLogic Server Administration Console Help.

6.7 Configuring MDBs for Destinations
WebLogic Server MDBs support Weblogic JMS destinations and foreign (non-Oracle)
JMS provider destinations.

A local destination is one that runs on the same machine or in the same cluster as the
MDB. A remote destination is one that runs on a different machine and is not a member

Configuring MDBs for Destinations

6-6 Programming Message-Driven Beans for Oracle WebLogic Server

of the same cluster as the MDB. Whether a destination is local or remote depends on
whether or not it and the MDB share the same JNDI context.

To be considered local to one another, an MDB and the associated JMS destination
must both run either on the same machine or within the same WebLogic Server cluster.
An MDB and a JMS destination on server instances in the same WebLogic Server
cluster are local to one another even if they are on separate machines, because the
server instances in a WebLogic Server cluster each have a copy of the same
cluster-wide JNDI tree.

Destinations that run under a non-Oracle JMS provider are referred to as foreign.
Foreign JMS providers have their own JNDI provider and foreign JMS objects do not
share the same context with a WebLogic Server MDB—unless the foreign JMS objects
are configured with wrappers to appear in the MDB's JNDI context. This approach is
discussed in Section 6.7.1, "Whether to Use Wrappers."

The nature of a destination—local versus remote and WebLogic JMS versus
non-Oracle—governs the configuration alternatives available, and dictates to some
extent how you configure these key elements in the
message-destination-descriptor for the MDB in weblogic-ejb-jar.xml:

■ initial-context-factory

■ provider-url

■ destination-jndi-name

■ connection-factory-jndi-name

For foreign and remote destinations, the simplest configuration strategy is to use
WebLogic Server JMS wrappers. Wrappers allow you to create a "symbolic link"
between a JMS object in a third-party JNDI provider or in a different WebLogic Server
cluster or domain, and an object in the local WebLogic JNDI tree.

For more information on when wrappers are appropriate, and the rules for
configuring the message-driven-descriptor in weblogic-ejb-jar.xml, see
these sections:

■ Section 6.7.1, "Whether to Use Wrappers"

■ Section 6.7.2, "How to Set provider-url"

■ Section 6.7.3, "How to Set initial-context-factory"

■ Section 6.7.4, "How to Set destination-jndi-name"

■ Section 6.7.5, "How to Set connection-factory-jndi-name"

To configure the elements in message-driven-descriptor for specific scenarios,
see Section 6.7.6, "Common Destination Scenarios: Illustrations and Key Element
Settings."

6.7.1 Whether to Use Wrappers
Using wrappers means configuring a Foreign Connection Factory and a Foreign
Destination that correspond to remote JMS objects (either non-Oracle or WebLogic
JMS) as entries in your local JNDI tree.

■ The use of wrappers is recommended if you use a foreign JMS provider or a
remote WebLogic JMS provider. For more information on JMS wrapper classes, see
"Simplified Access to Remote or Foreign JMS Providers" in "Enhanced Support for
Using WebLogic JMS with EJBs and Servlets" in Programming JMS for Oracle
WebLogic Server.

Configuring MDBs for Destinations

Programming and Configuring MDBs: Details 6-7

■ If you use a wrapper for either the connection factory or the destination, you must
use a wrappers for both of these objects.

Whether or not you use the wrapper classes determines how you configure the
initial-context-factory and destination-jndi-name, as described below.

6.7.2 How to Set provider-url
provider-url specifies the URL of the JNDI service used by the JMS provider for
the destination to which the MDB listens.

■ If the JMS provider is local to the MDB (by definition, WebLogic JMS), do not
specify provider-url.

■ If the JMS provider is remote, whether WebLogic JMS or a foreign provider, and:

– You do not use wrappers, specify provider-url.

– You do use wrappers, do not specify provider-url. The URL is implicitly
encoded in the wrapper.

6.7.3 How to Set initial-context-factory
initial-context-factory identifies the class that implements the initial context
factory used by the JMS provider.

■ If your JMS provider is WebLogic JMS, whether local or remote, do not specify
initial-context-factory.

■ If your JMS provider is foreign, and

– you do not use wrappers, specify the initial context factory used by the JMS
provider.

– you do use wrappers, do not specify initial-context-factory.

6.7.4 How to Set destination-jndi-name
destination-jndi-name identifies the JNDI name of destination to which the
MDB listens.

■ If your JMS provider is local, specify the name bound in the local JNDI tree for the
destination.

■ If your JMS provider is foreign and:

– You do not use wrappers, specify the name of the destination, as bound in the
foreign provider's JNDI tree.

– You do use wrappers, specify the name Foreign Destination you set up in your
local JNDI tree that corresponds the remote or foreign destination.

6.7.5 How to Set connection-factory-jndi-name
connection-factory-jndi-name identifies the JNDI name of the connection
factory used by the JMS provider.

■ If your JMS provider is local, do not specify connection-factory-jndi-name
unless you have configured a custom connection factory that the MDB will use.

Custom connection factories are used when the default WebLogic Server
connection factory does not satisfy your application requirements. For example,
you might configure a custom connection factory in order to specify a particular

Configuring MDBs for Destinations

6-8 Programming Message-Driven Beans for Oracle WebLogic Server

desired value for the MessagesMaximum attribute. The procedure for configuring
a connection factory is described in "Configure connection factories" in Oracle
WebLogic Server Administration Console Help.

■ If your JMS provider is remote or foreign, and:

– You do not use wrappers, specify the name of the connection factory used by
the JMS provider, as bound in the remote JNDI tree.

– You do use wrappers, specify the Foreign Connection Factory you set up in
your local JNDI tree that corresponds to the remote or foreign JMS provider's
connection factory.

6.7.6 Common Destination Scenarios: Illustrations and Key Element Settings
The figures in this section illustrate common destination configurations. For remote
and foreign destinations, scenarios with and without wrappers are included.

■ Figure 6–1, "A. Destination on a Local WebLogic JMS Server"

■ Figure 6–2, "B. Destination On a Remote WebLogic JMS Server—No Wrappers"

■ Figure 6–3, "C. Destination on Foreign JMS Server—No Wrappers"

■ Figure 6–4, "D. Destination on a Remote WebLogic Server or Foreign JMS
Server—With Wrappers"

Table 6–1 summarizes how to configure the elements in the
message-driven-descriptor element of weblogic-ejb-jar.xml for each
scenario.

Figure 6–1 A. Destination on a Local WebLogic JMS Server

Note: If you configure a custom JMS connection factory for an MDB,
be sure to set the Acknowledge Policy attribute to Previous, and
that the UserTransactionsEnabled attribute is enabled.

Configuring MDBs for Destinations

Programming and Configuring MDBs: Details 6-9

Figure 6–2 B. Destination On a Remote WebLogic JMS Server—No Wrappers

Figure 6–3 C. Destination on Foreign JMS Server—No Wrappers

Configuring Durable Topic Subscriptions

6-10 Programming Message-Driven Beans for Oracle WebLogic Server

Figure 6–4 D. Destination on a Remote WebLogic Server or Foreign JMS Server—With
Wrappers

6.8 Configuring Durable Topic Subscriptions
Durable subscriptions allow an MDB to receive messages that were delivered to a
topic while the MDB was not connected.

6.8.1 Configuring a Durable Topic Subscription for a Non-Clustered Server
Follow these instructions to configure a durable topic subscription for an MDB that is
deployed to non-clustered server instances.

1. Configure the destination-type in ejb-jar.xml to javax.jms.Topic.

2. In the message-driven-destination element of ejb-jar.xml, set:

Table 6–1 Common Configuration Scenarios

Scena
rio

If destination
is on...

Wrappers
Configured? destination-jndi-name initial-context-factory provider-url

connection-factory
-jndi-name

A Local
WebLogic JMS
server

Not
applicable
for local
WebLogic
JMS server

Name of the local
destination, as bound
in local JNDI tree

Do not specify Do not specify Specify only if using
a custom connection
factory

B Remote
WebLogic JMS
Server

No wrappers
configured

Name of the remote
destination, as bound
in the remote JNDI tree

Do not specify URL or cluster
address for the
remote
WebLogic JMS
Server

Specify only if using
a custom connection
factory on the
remote provider

C Foreign JMS
Provider

No wrappers
configured

Name of the remote
destination, as bound
in the remote JNDI tree

Name of remote initial
context factory, as
bound in remote JNDI
tree

URL to access
the foreign
JMS provider

JNDI name of
foreign connection
factory

D Remote
Weblogic JMS
Server

or

Foreign JMS
server

Wrappers
configured

The name of the
Foreign
Destination—as bound
in your local JNDI tree
—that maps to the
remote or foreign
destination

Do not specify Do not specify The name of the
Foreign Connection
Factory—as bound
in your local JNDI
tree —that maps to
the remote or
foreign connection
factory

Configuring Durable Topic Subscriptions

Programming and Configuring MDBs: Details 6-11

– destination-type to javax.jms.Topic

– subscription-durability to Durable.

3. Configure the ClientId for the MDB, as desired:

If you configure your own connection factory to suit specific application
requirements, as described in "Configure connection factories" in Oracle WebLogic
Server Administration Console Help, you can define the ClientID for the MDB
when you configure the connection factory.

If you set up your connection factory and do not assign it a ClientID, or if you
use a default connection factory, the MDB uses the value of jms-client-id in
weblogic-ejb-jar.xml as its client ID. If jms-client-id is not specified, the
default value is the ejb-name for the MDB.

6.8.2 Configuring a Durable Topic Subscription for a Cluster
In a cluster, a JMS durable subscription is uniquely identified by the combination of an
MDB's:

■ connection ID—ClientId for the connection factory, and is unique within a
cluster.

■ subscription ID—the MDB's jms-client-id. The subscription ID must be unique
on its topic, hence an MDB with a durable topic subscription cannot run on
multiple server instances in a cluster. After a first instance of the MDB starts on a
server instance in the cluster, an additional instance of the EJB can deploy
successfully on another clustered server, but when the MDB starts, a conflict is
detected and that instance of the MDB fails to fully connect to JMS.

To allow a durable subscriber MDB to run on multiple server instances in a cluster,
where each MDB instance receives a copy of each topic message, each MDB instance
should be deployed with a unique jms-client-ID or, if jms-client-ID is not
specified, ejb-name.

In a local cluster, durable subscribers subscribe directly to a distributed destination
topic. The MDB deploys only where there is a distributed destination on the server.

In a remote cluster, if durable subscribers subscribe directly to a distributed
destination topic, the MDB is deployed once on every distributed destination member.

MDB can subscribe to a physical destination using one of the following methods:

■ Configure each distributed destination topic physical destination with a unique
JNDI name and configure each durable subscriber MDB pool with a matching
destination-jndi-name

■ Configure each physical destination with the same JNDI name, and:

– Set the LocalJNDIName attribute for each physical destination. For more
information, see "JMS Topic->Configuration->General" in Oracle WebLogic
Server Administration Console Help.

– Ensure that there is only one physical destination per server instance.

6.8.3 Configuring Automatic Deletion of Durable Topic Subscriptions
You can configure an MDB to automatically delete a durable topic subscription when
the MDB is undeployed or deleted from a server. To configure an MDB to
automatically delete durable topic subscriptions, set
durable-subscription-deletion to True.

Configuring Message Handling Behaviors

6-12 Programming Message-Driven Beans for Oracle WebLogic Server

By default, durable-subscription-deletion is set to False.

6.9 Configuring Message Handling Behaviors
These topics provide guidelines for behaviors related to message delivery:

■ Section 6.9.1, "Ensuring Message Receipt Order"

■ Section 6.9.2, "Preventing and Handling Duplicate Messages"

■ Section 6.9.3, "Redelivery and Exception Handling"

6.9.1 Ensuring Message Receipt Order
Make sure that the MDB's business logic allows for asynchronous message processing.
Do not assume that MDBs receive messages in the order the client issues them. To
ensure that receipt order matches the order in which the client sent the message, you
must do the following:

■ Set max-beans-in-free-pool to 1 for the MDB. This ensures that the MDB is
the sole consumer of the message.

■ If your MDBs are deployed on a cluster, deploy them to a single node in the
cluster, as illustrated in Figure 6–5.

To ensure message ordering in the event of transaction rollback and recovery,
configure a custom connection factory with MessagesMaximum set to 1, and ensure
that no redelivery delay is configured. For more information see "Ordered Redelivery
of Messages" in Programming JMS for Oracle WebLogic Server.

See Sun's documentation on the Interface
MessageListener—javax.jms.MessageListener.onMessage()—for more
information, at http://java.sun.com/j2ee/sdk_
1.2.1/techdocs/api/javax/jms/MessageListener.html.

6.9.2 Preventing and Handling Duplicate Messages
A JMS producer expects an MDB to acknowledge received messages. If the MDB
receives the message, but fails to send an acknowledgement, the JMS producer
re-sends the same message.

Your MDB design should allow for the likelihood of duplicate messages. Duplicate
messages can be undesirable in certain cases. For example, if an MDB's onMessage()
method includes code to debit a bank account, receiving and processing that message
twice would result in the account being debited twice. In addition, re-sending
messages consumes more processing resources.

The best way to prevent delivery of duplicate messages is to use container-managed
transactions. In a container-managed transaction, message receipt and
acknowledgement occur within the transaction; either both happen or neither
happens. However, while this provides more reliability than using bean-managed
transactions, performance can be compromised because container-managed
transactions use more CPU and disk resources.

If the MDB manages its own transactions, your onMessage() code must handle
duplicate messages, as receipt and acknowledgement occur outside of a transaction. In
some applications, receipt and processing of duplicate messages is acceptable. In other
cases, such as the bank account scenario described above, if a transaction is
bean-managed, the bean code must prevent processing of duplicate messages. For
example, the MDB could track messages that have been consumed in a database.

Configuring Message Handling Behaviors

Programming and Configuring MDBs: Details 6-13

Even if an MDB's onMessage() method completes successfully, the MDB can still
receive duplicate messages if the server crashes between the time onMessage()
completes and the time the container acknowledges message delivery. Figure 6–5
illustrates this scenario.

Figure 6–5 Server Crash Between Completion of onMessage() and Container Delivery
Acknowledgement

6.9.3 Redelivery and Exception Handling
If an MDB is consuming a message when an unexpected error occurs, the MDB can
throw a system exception that causes JMS to resend, delay, and then resend or give up,
depending on how JMS is configured.

To force message redelivery for a transactional MDB, use the bean context to call
setRollbackOnly().

To force message redelivery for any MDB—transactional or non-transactional—you
can throw an exception derived from the RuntimeException or Error thrown by the
MDB. This causes the MDB instance to be destroyed and re-created, which incurs a
performance penalty.

Configure the redelivery delay based on what type of task the MDB's onMessage()
method is performing. In some cases, redelivery should be instantaneous, for example,
in an application that posts breaking news to a newswire service. In other cases, for
example, if the MDB throws an exception because the database is down, redelivery
should not occur immediately, but after the database is back up.

For instructions on configuring a redelivery delay, and other JMS exception handling
features that can be used with MDB see "Managing Rolled Back, Recovered,
Redelivered, or Expired Messages" in Programming JMS for Oracle WebLogic Server.

Note: For fully ordered MDBs, do not set a redelivery delay.

Using the Message-Driven Bean Context

6-14 Programming Message-Driven Beans for Oracle WebLogic Server

6.10 Using the Message-Driven Bean Context
WebLogic Server calls setMessageDrivenContext() to associate the MDB instance
with a container context. This is not a client context; the client context is not passed
along with the JMS message.

To access the container context's properties from within the MDB instance, use the
following methods from the MessageDrivenContext interface:

■ getCallerPrincipal())—Inherited from the EJBContext interface and
should not be called by MDB instances.

■ isCallerInRole()—Inherited from the EJBContext interface and should not
be called by MDB instances.

■ setRollbackOnly()—Can only be used by EJBs that use container-managed
transactions.

■ getRollbackOnly()— Can only be used by EJBs that use container-managed
transactions.

■ getUserTransaction()—Can only be used by EJBs that use bean-managed
transaction demarcations.

6.11 Configuring a Security Identity for a Message-Driven Bean
When a message-driven bean (MDB) receives messages from a JMS queue or topic, the
EJB container uses a Credential Mapping provider and a credential map to obtain the
security identity—username and password—to use when establishing the JMS
connection and to execute the onMessage() method. This credential mapping occurs
only once, when the MDB is started.

Once the EJB container is connected, the JMS provider uses the established security
identity to retrieve all messages.

To configure a security identity for an MDB:

1. Create a WebLogic user for the MDB. See "Users, Groups, and Security Roles" in
Securing Resources Using Roles and Policies for Oracle WebLogic Server. Assign the
user the username and password that the non-Oracle JMS provider requires to
establish a JMS connection.

2. In the ejb-jar.xml deployment descriptor, define a run-as identity for the
MDB:

<security-identity>
 <run-as>
 <role-name>admin</role-name>
 </run-as>
</security-identity>

3. To create the security-identity, you must also define the security-role
inside the assembly-descriptor element in ejb-jar.xml, as shown below.

<assembly-descriptor>
 <security-role>

Note: Although getEJBHome() is also inherited as part of the
MessageDrivenContext interface, message-driven beans do not
have a home interface. Calling getEJBHome() from within an MDB
instance causes an IllegalStateException.

Using MDBs With Cross Domain Security

Programming and Configuring MDBs: Details 6-15

 <role-name>jmsrole</role-name>
 </security-role>

</assembly-descriptor>

4. In the weblogic-ejb-jar.xml deployment descriptor, map the run-as
identity to the user defined in Step 2, as shown below:

<security-role-assignment>
 <role-name>admin</role-name>
 <principal-name>username</principal-name>
</security-role-assignment>

where username is the username for the user created in step 1.

5. If the JMS provider is not WebLogic JMS, configure the credential mapper as
described in "Create EJB component credential mappings" in Oracle WebLogic
Server Administration Console Help.

6.12 Using MDBs With Cross Domain Security
MDBs do not require you to configure Cross Domain Security. However, you should
consider the following guidelines when implementing MDBs:

■ If your MDBs must handle transactional messages, you must correctly configure
either Cross Domain Security or Security Interop Mode for all participating
domains.

Keep all the domains used by your process symmetric with respect to Cross
Domain Security configuration and Security Interop Mode. Because both settings
are set at the domain level, it is possible for a domain to be in a mixed mode,
meaning the domain has both Cross Domain Security and Security Interop Mode
set. For more information, see "Configuring Domains for Inter-Domain
Transactions" in Programming JTA for Oracle WebLogic Server.

■ MDBs handling non-transactional messages do not require you to configure Cross
Domain Security. However, you will need to configure Cross Domain Security for
all the domains your process communicates with if Cross Domain Security is
configured on one domain and the membership of the Distributed Destination that
the MDB listens to in any domain changes.

A best practice is to keep all the domains used by your process symmetric, with
respect to Cross Domain Security configuration— that is, all domains use Cross
Domain Security (or are on the appropriate exception lists) or none of the domains
have Cross Domain Security configured. See "Configuring Security for a WebLogic
Domain" in Securing Oracle WebLogic Server.

Note: If the JMS provider is WebLogic JMS, it is not necessary to
configure a credential mapper.

Using MDBs With Cross Domain Security

6-16 Programming Message-Driven Beans for Oracle WebLogic Server

7

Using EJB 3.0 Compliant MDBs 7-1

7Using EJB 3.0 Compliant MDBs

The following topics provide information on how to program and implement EJB 3.0
compliant MDBs:

■ Section 7.1, "Implementing EJB 3.0 Compliant MDBs"

■ Section 7.2, "Programming EJB 3.0 Compliant MDBs"

■ Section 7.3, "activationConfig Properties"

7.1 Implementing EJB 3.0 Compliant MDBs
To implement EJB 3.0 compliant MDBs, follow the steps described in "Overview of the
EJB 3.0 Development Process" in Programming WebLogic Enterprise JavaBeans, Version 3.0
for Oracle WebLogic Server.

7.2 Programming EJB 3.0 Compliant MDBs
To program EJB 3.0 compliant MDBs, follow the steps described in "Programming the
Bean File: Typical Steps" in Programming WebLogic Enterprise JavaBeans, Version 3.0 for
Oracle WebLogic Server.

You must use the @javax.ejb.MessageDriven annotation to declare the EJB type
as Message-driven. You can specify the following optional attributes:

■ messageListenerInterface—Specifies the message listener interface, if you
haven't explicitly implemented it or if the bean implements additional interfaces.

■ activationConfig—Specifies an array of activation configuration name-value
pairs that configure the bean in its operational environment. See Section 7.3,
"activationConfig Properties."

For detailed information on developing MDBs to support the messaging modes as
described in Section 3, "MDBs and Messaging Models," see Section 6, "Programming
and Configuring MDBs: Details."

Note: The bean class must implement, directly or indirectly, the
message listener interface required by the messaging type that it
supports or the methods of the message listener interface. In the case
of JMS, this is the javax.jms.MessageListener interface.

Programming EJB 3.0 Compliant MDBs

7-2 Programming Message-Driven Beans for Oracle WebLogic Server

7.2.1 Example MDB Using Annotations
This example demonstrates EJB 3.0 annotations for an MDB that references resources
that are not injected. The references are resolved at runtime when the MDB is invoked
instead of when the MDB instances are instantiated.

Example 7–1 Non-Injected Resources MDB Example

package test;

import javax.annotation.Resources;
import javax.annotation.Resource;
import javax.naming.*;
import javax.ejb.*;
import javax.jms.*;

import weblogic.javaee.MessageDestinationConfiguration;
import weblogic.javaee.TransactionTimeoutSeconds;

@MessageDriven(
 name = "MyMDB",
 mappedName = "JNDINameOfMDBSourceDest"
)

// optionally specify a connection factory
// there's no need to specify a connection factory if the source
// destination is a WebLogic JMS destination

@MessageDestinationConfiguration(
 connectionFactoryJNDIName = "JNDINameOfMDBSourceCF"
)

// optionally set a tx timeout, the default timeout is typically 30 seconds

@TransactionTimeoutSeconds(value = 60)

// resources that are not injected

@Resources ({
 @Resource(name="targetCFRef",
 mappedName="TargetCFJNDIName",
 type=javax.jms.ConnectionFactory.class),

 @Resource(name="targetDestRef",
 mappedName="TargetDestJNDIName",
 type=javax.jms.Destination.class)
})

public class MyMDB implements MessageListener {

 // inject a reference to the MDB context

 @Resource
 private MessageDrivenContext mdctx;

 // cache targetCF and targetDest for re-use (performance)

 private ConnectionFactory targetCF;

activationConfig Properties

Using EJB 3.0 Compliant MDBs 7-3

 private Destination targetDest;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void onMessage(Message message) {

 Connection jmsConnection = null;

 try {
 System.out.println("My MDB got message: " + message);

 if (targetCF == null)
 targetCF = (javax.jms.ConnectionFactory)mdctx.lookup("targetCFRef");

 if (targetDest == null)
 targetDest = (javax.jms.Destination)mdctx.lookup("targetDestRef");

 jmsConnection = targetCF.createConnection();
 Session s = jmsConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer mp = s.createProducer(null);

 if (message.getJMSReplyTo() != null)
 mp.send(message.getJMSReplyTo(), s.createTextMessage("My Reply"));
 else
 mp.send(targetDest, message);

 } catch (JMSException e) {
 throw new EJBException(e);

 } finally {

 // Return JMS resources to the resource reference pool for later re-use.
 // Closing a connection automatically also closes its sessions, etc.

 try { if (jmsConnection != null) jmsConnection.close(); }
 catch (JMSException ignored) {};
 }
 }
}

7.3 activationConfig Properties
activationConfig properties are name-value pairs that are passed to the MDB
container when an MDB is deployed. The properties can be declared in either an
ejb-jar.xml deployment descriptor or using the @ActivationConfigProperty
annotation on the MDB bean class. See "javax.ejb.ActivationConfigProperty" in
Programming WebLogic Enterprise JavaBeans, Version 3.0 for Oracle WebLogic Server.

Example 7–2 Example @ActivationConfigProperty Code

. . .
@ActivationConfigProperties(
 {
 @ActivationConfigProperty(
 name="connectionFactoryJndiName", value="JNDINameOfMDBSourceCF"
),
 @ActivationConfigProperty(
 name="initialContextFactory",
value="weblogic.jndi.WLInitialContextFactory"

activationConfig Properties

7-4 Programming Message-Driven Beans for Oracle WebLogic Server

)
 }
)
. . .

Table 10–4 summarizes activationConfig name-value pairs supported by
WebLogic Server.

Note: If activationConfig properties names conflict with with
existing descriptors, use the descriptor’s priority order to resolve
conflicts. The a descriptors priority order (from highest to lowest) is:
weblogic-ejb-jar.xml, WebLogic Server 10.0 annotations,
ejb-jar.xml, and finally activationConfig properties. For
example, if the same descriptor exists in the
weblogic-ejb-jar.xml and ejb-jar.xml,
weblogic-ejb-jar.xml has the higher priority order and overrides
the ejb-jar.xml value.

8

Migration and Recovery for Clustered MDBs 8-1

8Migration and Recovery for Clustered MDBs

WebLogic Server supports migration and recovery for clustered MDB applications. In
the event of failure, you can bring a JMS destination and MDBs back online. Design
your application so that when a server instance fails, your application automatically
migrates the JMS destination and its associated MDBs from the failed server in the
cluster to an available server instance.

After an MDB application migrates to another server, it reconnects to the migrated
JMS destination and begins to receive messages from the JMS destination again.

MDBs do not have migratable targets. Instead, an MDB automatically detects the JMS
Server migration target during deployment, and uses that as its migratable target. You
must ensure that MDB are deployed everywhere that a JMS Server is deployed. You
can do this in two ways:

■ Deploy MDBs homogeneously to the cluster.

■ Match an MDB's targets to the JMS migratable target list in the config.xml file
for the server instance's cluster. The MDB target server name must match the JMS
migratable target list, or MDB migration will fail. For more information on
configuring migratable targets, see "Understanding Migratable Target Servers in a
Cluster" in Using Clusters for Oracle WebLogic Server.

In Figure 8–1, Managed Servers 1, 2 and 3 are in the same cluster. Managed Server 2
and Managed Server 3 are configured as Managed Server 1's migratable targets. In the
event that Managed Server 1 fails, the JMS destination and MDB migrate to the next
available Managed Server. If a Managed Server on the target list is unavailable, the
destination and MDBs migrate to the next available Managed Server on the target list.
For instance if Managed Server 2 is unavailable with Managed Server 1 fails, the JMS
destination and MDB application migrate to Managed Server 3.

Note: An MDB can use the migratable service with clustered servers
only. The migratable service cannot span multiple clusters.

8-2 Programming Message-Driven Beans for Oracle WebLogic Server

Figure 8–1 Migration of JMS Destination

For instructions on implementing the migratable service and for background
information on WebLogic JMS migration and recovery services for clustered
architectures, see "JMS as a Migratable Service within a Cluster" in Configuring and
Managing JMS for Oracle WebLogic Server.

9

Using Batching with Message-Driven Beans 9-1

9Using Batching with Message-Driven Beans

Within an MDB, business logic, including database transactions, is performed within
the onMessage() method. Within an EJB application, multiple MDBs can perform
multiple onMessage() calls. If each onMessage() call performs a database
transaction, this can create a lot of overhead where each call requires its own database
connection.

WebLogic Server provides a mechanism for grouping onMessage() calls together as
a single transaction. This mechanism can help increase database performance of an EJB
application by grouping all of the transactions into a single I/O request. Grouping
transactions allows requires fewer transaction logs.

For information on transaction management within MDBs, see Section 6.3,
"Configuring Transaction Management Strategy for an MDB."

■ Section 9.1, "Configuring MDB Transaction Batching"

■ Section 9.2, "How MDB Transaction Batching Works"

9.1 Configuring MDB Transaction Batching
You can enable MDB transaction batching by defining the
max-messages-in-transaction element. This element is part of the
message-driven-descriptor element of the weblogic-ejb-jar.xml
deployment descriptor.

max-messages-in-transaction defines the batch size WebLogic Server uses to
process onMessage() transactions. However, increasing the batch size can increase
latency. You should start with a small value, 5 for example. You can increase this value
as your application performance allows.

When using MDB batching, more messages are processed per transaction. This may
cause more transactions to time out since more work is being performed in each
transaction. You can increase the transaction timeout be increasing the value of
trans-timeout-seconds attribute of weblogic-ejb-jar.xml.

Note: Transaction batching is not effective for all MDB applications.
For example, database deadlocks can occur in an application where an
MDB makes multiple calls to a database. Using the transaction
batching feature will cause the MDB to lock more rows per transaction
which can lead to database deadlocks.

How MDB Transaction Batching Works

9-2 Programming Message-Driven Beans for Oracle WebLogic Server

9.2 How MDB Transaction Batching Works
MDB transaction batching does not require any changes to application code. As far as
the application is concerned, individual messages are still processed one by one. There
is no application level message list.

Internally, WebLogic Server creates a queue to manage the transactions. Each message
is queued until the number of messages in the queue is equal to the batch size defined
by max-messages-in-transaction. However, if there is no next message to be
queued, the current messages in the queue are submitted for processing.

If an individual onMessage() call fails, then the entire batch is rolled back. If the
failure was due to a transaction timeout, as defined in the trans-timeout-seconds
attribute of weblogic-ejb-jar.xml, the MDB container temporarily reduces the
batch size and attempts to process the transactions with smaller batches.

If failure occurs for another reason, the MDB reprocesses each message within the
failed batch as an individual transaction. This avoids the scenario where an individual
onMessage() call can permanently hang an entire batch.

10

Deployment Elements for MDBs 10-1

10Deployment Elements for MDBs

This section lists key deployment elements that affect the behavior of MDBs:

■ Section 10.1, "message-destination-descriptor Element of the weblogic-ejb-jar.xml
File"

■ Section 10.2, "ejb Element of the weblogic-application.xml File"

■ Section 10.3, "message-driven Element of the ejb-jar.xml File"

■ Section 10.4, "activationConfig Properties"

10.1 message-destination-descriptor Element of the weblogic-ejb-jar.xml
File

Table 10–1 summarizes the deployment elements in the
message-destination-descriptor element of weblogic-ejb-jar.xml.

Table 10–1 weblogic-ejb-jar.xml Deployment Elements for MDBs

Element Description Default

connection-factory-jndi
-name

The JNDI name of the JMS ConnectionFactory
that the message-driven EJB should look up to
create its queues and topics. See Section 6.7.5,
"How to Set connection-factory-jndi-name."

weblogic.jms.MessageDr
iven.BeanConnection.Fa
ctory

connection-factory-reso
urce-link

Maps to a resource within a JMS module
defined in ejb-jar.xml to an actual JMS
Module Reference in WebLogic Server.

n/a

destination-jndi-name The JNDI name used to associate a MDB with
an actual JMS Queue or Topic deployed in the
WebLogic Server JNDI tree. See Section 6.7.4,
"How to Set destination-jndi-name."

n/a

destination-resource-li
nk

Maps to a resource within a JMS module
defined in ejb-jar.xml to an actual JMS
Module Reference in WebLogic Server.

n/a

dispatch-policy This optional element allows you to specify a
particular WorkManager for the bean.

n/a

distributed-destination
-connection

Specifies whether an MDB that accesses a
WebLogic JMS distributed queue in the same
cluster consumes from all distributed
destination members or only those members
local to the current Weblogic Server.

LocalOnly (only consumes
from members local to the
current WebLogic Server)

message-destination-descriptor Element of the weblogic-ejb-jar.xml File

10-2 Programming Message-Driven Beans for Oracle WebLogic Server

durable-subscription-de
letion

Indicates whether you want durable topic
subscriptions to be automatically deleted when
an MDB is undeployed or removed.

False

generate-unique-jms-cli
ent-id

Indicates whether or not you want the EJB
container to generate a unique client-id for
every instance of an MDB. Enabling this flag
makes it easier to deploy durable MDBs to
multiple server instances in a WebLogic Server
cluster.

False

init-suspend-seconds The initial number of seconds to suspend an
MDB's JMS connection when the EJB container
detects a JMS resource outage. See Section 6.4,
"Configuring Suspension of Message Delivery
During JMS Resource Outages."

5

initial-beans-in-free-p
ool

The number of inactive instances of an MDB
that exist in WebLogic Server when it is started.

0

initial-context-factory The initial contextFactory that the EJB container
uses to create its connection factories. See
Section 6.7.3, "How to Set
initial-context-factory."

weblogic.jndi.

WLInitialContext

Factory

jms-client-id The client id for the a message-driven bean
associated with a durable subscriber topic. See
"Defining the Client ID" in Programming JMS for
Oracle WebLogic Server.

ejb-name of the EJB

jms-polling-interval-se
conds

The number of seconds between attempts by
the EJB container to reconnect to a JMS
destination that has become unavailable. See
Section 8, "Migration and Recovery for
Clustered MDBs."

10 seconds

max-beans-in-free-pool The maximum size of the free pool of inactive
MDBs.

1000

max-messages-in-transac
tion

Specifies the maximum number of messages
that can be in a transaction for this MDB.

n/a

max-suspend-seconds The maximum number of seconds to suspend
an MDB's JMS connection when the EJB
container detects a JMS resource outage. See
Section 6.4, "Configuring Suspension of
Message Delivery During JMS Resource
Outages."

60

pool Configures the behavior of the WebLogic Server
free pool for message-driven EJBs.

n/a

provider-url The URL provider to be used by the
InitialContext. Typically, this is the host:port.
See Section 6.7.2, "How to Set provider-url."

t3://localhost:7001

resource-adapter-jndi-n
ame

Identifies the resource adapter that this MDB
receives messages from.

n/a

security-role-assignmen
t

Maps application roles in the ejb-jar.xml
file to the names of security principals available
in WebLogic Server.

n/a

Table 10–1 (Cont.) weblogic-ejb-jar.xml Deployment Elements for MDBs

Element Description Default

message-driven Element of the ejb-jar.xml File

Deployment Elements for MDBs 10-3

10.2 ejb Element of the weblogic-application.xml File
Table 9–2 lists key deployment elements for MDBs in the ejb element of
weblogic-application.xml.

10.3 message-driven Element of the ejb-jar.xml File
Table 9–3 lists key J2EE deployment elements for MDBs that you configure in the
message-driven element of ejb-jar.xml.

timer-descriptor An EJB timer object. For more information, see
Programming the EJB Timer Service in
Programming WebLogic Enterprise JavaBeans for
Oracle WebLogic Server.

n/a

trans-timeout-seconds The maximum duration for an EJB's
container-initiated transactions, in seconds,
after which the transaction is rolled back. See
Section 6.3, "Configuring Transaction
Management Strategy for an MDB."

30

use81-style-polling Enables backwards compatibility for WLS
Version 8.1-style polling.

False

Table 10–2 weblogic-application.xml Elements for MDBs

Element Description Default

start-mdbs-with-application Controls when MDBs start processing messages. With default
setting of true, an MDB starts processing messages as soon as it is
deployed, even if WebLogic Server has not completed booting.
This can cause an MDB application to access uninitialized services
or applications during boot up and, therefore, to fail.

Set to false to defer message processing until after WebLogic
Server opens its listen port.

false

Table 10–3 Key J2EE Deployment Elements for MDBs

Element Description Allowable Values

acknowledge-mode Specifies JMS message acknowledgment semantics for
the onMessage method of a message-driven bean that
uses bean managed transaction demarcation.

■ AUTO_ACKNOWLEDGE

■ DUPS_OK_ACKNOWLEDGE

activation-config Defines information about the expected configuration
properties of the message-driven bean in its operational
environment. This may include information about
message acknowledgement, message selector, expected
destination type, and so on.

The configuration information is expressed in terms of
name/value configuration properties.

The properties that are
recognized for a particular
message-driven bean are
determined by the messaging
type.

destination-type Specifies the type of the JMS destination—the Java
interface expected to be implemented by the destination.

■ javax.jms.Queue

■ javax.jms.Topic

message-destinati
on

Specifies the type of the destination. Specified by the Java interface
expected to be implemented
by the destination.

messaging-type Specifies the message listener interface of the
message-driven bean.

Valid message listener
interface.

Table 10–1 (Cont.) weblogic-ejb-jar.xml Deployment Elements for MDBs

Element Description Default

activationConfig Properties

10-4 Programming Message-Driven Beans for Oracle WebLogic Server

10.4 activationConfig Properties
Table 10–4 summarizes activationConfig name-value pairs supported by
WebLogic Server.

subscription-dura
bility

Specifies whether a JMS topic subscription is intended to
be durable or nondurable.

■ Durable

■ NonDurable

transaction-type Specifies an enterprise bean's transaction management
type.

Note: If transaction-type is set to Container,
trans-attribute must be set to Required.

■ Bean

■ Container

trans-attribute Specifies how the container must manage the transaction
boundaries when delegating a method invocation to an
enterprise bean's business method.

Set to Required for container-managed transactions.
For more information, see Section 5.6.5, "Configuring
Transaction Management Strategy for an MDB."

■ Required

■ NotSupported

Table 10–4 activationConfig Properties

ActivationConfigProperty
Property Name Description Default

connectionFactoryJndiNa
me

The JNDI name of the JMS ConnectionFactory
that the message-driven EJB should look up to
create its queues and topics. See Section 6.7.5,
"How to Set connection-factory-jndi-name."

weblogic.jms.MessageDr
iven.BeanConnection.Fa
ctory

connectionFactoryResour
ceLink

Maps to a resource within a JMS module
defined in ejb-jar.xml to an actual JMS
Module Reference in WebLogic Server.

n/a

destinationJndiName The JNDI name used to associate a MDB with
an actual JMS Queue or Topic deployed in the
WebLogic Server JNDI tree. See Section 6.7.4,
"How to Set destination-jndi-name."

n/a

destinationResourceLink Maps to a resource within a JMS module
defined in ejb-jar.xml to an actual JMS
Module Reference in WebLogic Server.

n/a

distributedDestinationC
onnection

Specifies whether an MDB that accesses a
WebLogic JMS distributed queue in the same
cluster consumes from all distributed
destination members or only those members
local to the current Weblogic Server.

LocalOnly (only consumes
from members local to the
current WebLogic Server)

durableSubscriptionDele
tion

Indicates whether you want durable topic
subscriptions to be automatically deleted when
an MDB is undeployed or removed.

False

initSuspendSeconds The initial number of seconds to suspend an
MDB's JMS connection when the EJB container
detects a JMS resource outage. See Section 6.4,
"Configuring Suspension of Message Delivery
During JMS Resource Outages."

5

initialContextFactory The initial contextFactory that the EJB container
uses to create its connection factories. See
Section 6.7.3, "How to Set
initial-context-factory."

weblogic.jndi.

WLInitialContext

Factory

Table 10–3 (Cont.) Key J2EE Deployment Elements for MDBs

Element Description Allowable Values

activationConfig Properties

Deployment Elements for MDBs 10-5

jmsClientId The client id for the a message-driven bean
associated with a durable subscriber topic. See
"Defining the Client ID" in Programming JMS for
Oracle WebLogic Server.

ejb-name of the EJB

jmsPollingIntervalSecon
ds

The number of seconds between attempts by
the EJB container to reconnect to a JMS
destination that has become unavailable. See
Section 8, "Migration and Recovery for
Clustered MDBs."

10 seconds

maxMessagesInTransactio
n

Specifies the maximum number of messages
that can be in a transaction for this MDB.

n/a

maxSuspendSeconds The maximum number of seconds to suspend
an MDB's JMS connection when the EJB
container detects a JMS resource outage. See
Section 6.4, "Configuring Suspension of
Message Delivery During JMS Resource
Outages."

60

providerURL The URL provider to be used by the
InitialContext. Typically, this is the host:port.
See Section 6.7.2, "How to Set provider-url."

t3://localhost:7001

resourceAdapterJndiName Identifies the resource adapter that this MDB
receives messages from.

n/a

use81StylePolling Enables backwards compatibility for WLS
Version 8.1-style polling.

False

Table 10–4 (Cont.) activationConfig Properties

ActivationConfigProperty
Property Name Description Default

activationConfig Properties

10-6 Programming Message-Driven Beans for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Understanding Message-driven Beans
	1.1 JCA-Based MDBs

	2 MDB Life Cycle
	2.1 Overview
	2.2 MDBs and Concurrent Processing
	2.3 Limitations for Multi-threaded Topic MDBs

	3 MDBs and Messaging Models
	3.1 Point-to-Point (Queue) Model: One Message Per Listener
	3.2 Publish/Subscribe (Topic) Model
	3.3 Exactly-Once Processing

	4 Deploying MDBs
	4.1 Destination and MDBs: Collocation vs. non-Collocation
	4.2 Collocated Destination/MDBs
	4.3 Non-Collocated Destination/MDBs
	4.4 JMS Distributed Destinations

	5 Programming and Configuring MDBs: Main Steps
	5.1 Required JMS Configuration
	5.2 Create MDB Class and Configure Deployment Elements

	6 Programming and Configuring MDBs: Details
	6.1 Configuring EJBs to Use Logical Message Destinations
	6.1.1 Configuring Logical JMS Message Destinations for Individual MDBs
	6.1.2 Configuring Application-Scoped Logical JMS Message Destinations

	6.2 Configuring Destination Type
	6.3 Configuring Transaction Management Strategy for an MDB
	6.4 Configuring Suspension of Message Delivery During JMS Resource Outages
	6.5 Configuring the Number of Seconds to Suspend a JMS Connection
	6.5.1 How the EJB Container Determines How Long to Suspend a JMS Connection
	6.5.2 Turning Off Suspension of a JMS Connection

	6.6 Manually Suspending and Resuming Message Delivery
	6.7 Configuring MDBs for Destinations
	6.7.1 Whether to Use Wrappers
	6.7.2 How to Set provider-url
	6.7.3 How to Set initial-context-factory
	6.7.4 How to Set destination-jndi-name
	6.7.5 How to Set connection-factory-jndi-name
	6.7.6 Common Destination Scenarios: Illustrations and Key Element Settings

	6.8 Configuring Durable Topic Subscriptions
	6.8.1 Configuring a Durable Topic Subscription for a Non-Clustered Server
	6.8.2 Configuring a Durable Topic Subscription for a Cluster
	6.8.3 Configuring Automatic Deletion of Durable Topic Subscriptions

	6.9 Configuring Message Handling Behaviors
	6.9.1 Ensuring Message Receipt Order
	6.9.2 Preventing and Handling Duplicate Messages
	6.9.3 Redelivery and Exception Handling

	6.10 Using the Message-Driven Bean Context
	6.11 Configuring a Security Identity for a Message-Driven Bean
	6.12 Using MDBs With Cross Domain Security

	7 Using EJB 3.0 Compliant MDBs
	7.1 Implementing EJB 3.0 Compliant MDBs
	7.2 Programming EJB 3.0 Compliant MDBs
	7.2.1 Example MDB Using Annotations

	7.3 activationConfig Properties

	8 Migration and Recovery for Clustered MDBs
	9 Using Batching with Message-Driven Beans
	9.1 Configuring MDB Transaction Batching
	9.2 How MDB Transaction Batching Works

	10 Deployment Elements for MDBs
	10.1 message-destination-descriptor Element of the weblogic-ejb-jar.xml File
	10.2 ejb Element of the weblogic-application.xml File
	10.3 message-driven Element of the ejb-jar.xml File
	10.4 activationConfig Properties

