ORACLE

Oracle® Fusion Middleware
Using ActiveCache

11g Release 1 (10.3.3)

E16517-01

April 2010

This document describes how to use ActiveCache as the
caching solution for WebLogic Server applications.

Oracle Fusion Middleware Using ActiveCache, 11g Release 1 (10.3.3)
E16517-01

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.
Primary Author: Thomas Pfaeffle

Contributing Author: Ballav Bihani, Torkel Dominique, James Kirsch, Adam Leftik, Rosemary Marano,
Lenny Phan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Preface

Contents

... v
Documentation AccesSibility ..o v
CONVENTIONS ...ttt a s v

1 Introduction and Roadmap
1.1 Document Scope and AUIENCE..........ccccuiuiiiiiiiiiiiiic e 1-1
1.2 Guide to This DOCUIMENLt ... s 1-1
1.3 Related Documentation..........ccccovuviiiiiniiiniiiiiiiii s 1-2
1.4 New and Changed Features in This Release...........cccccoovrriiiiiceeiniciiceeeccnes 1-2

2 Overview
2.1 Accessing Data Caches from WebLogic Server Applicationsccccooeueeeeeeiiiicnininicnnnn 2-2
2.2 Adding Session State Persistence and Managementcccccccoeueueueicueeeieieeiceneeeeneenas 2-2
2.3 Accessing JPA Entities in the Data Cache ..o 2-3

3 Developing Applications for ActiveCache
3.1 Developing Applications to Use ActiveCache—Main Steps..........ccooeeieiiriiiiiicccinne. 3-1
3.2 Choose the ActiveCache Deployment TOPOLOZYccocovueveviimiereinicirieiiceeecceces 3-2
3.3 Create and Configure a Data Cache............cooeeiiiiiiiiiiiic e 3-2
3.4 Access the Data Cache from your Application Codec.cccoomeiiiiiiiiiiiiiiciice 3-3
3.5 Locate the Cache Configuration Fileccccoooniiiiiiiiiicce 3-4
3.6 Access the Cache Configuration on Cache Server Startupcooeevevioreieiiiicciiiicne 3-5
3.7 Package Applications and Configure Cluster Nodes..........ccoooviriiiiiiniciiic 3-6
3.7.1 Packaging Applications and Configuring Application Server-Scoped Cluster Nodes.....

3-6
3.7.2 Packaging Applications and Configuring EAR-Scoped Cluster Nodes...................... 3-6
3.7.3 Packaging Applications and Configuring WAR-Scoped Cluster Nodes 3-8
3.8 Create and Configure Coherence CIUStETS............cccooiueiireiiiiicieieccce e 3-9
3.9 Start @ Cache SEIVET ... 3-12
3.10 Start WebLOoZiC SEIVeT ...ttt 3-14
3.11 Monitor Coherence Cluster Propertiesc.cccouvviviiiiininiiiniiniiiiiiccccccccicceennes 3-14

4 Enabling State Session Persistence

5 Accessing and Retrieving Relational Data

6 An ActiveCache Example

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

ActiveCache Example—Main Steps.........cooeiieiiiiciiiniiccecee s 6-1
Start @ Cache SETVET ..o s 6-1
Configure and Start the WebLogic Server............ooooviiiiiiiiiicce 6-2
Create @ Machine.........ccccoiiiiiiiiiiiiiiii s 6-2
Create the WebDLOZIC SEIVETSc.ceuiiriiiiiiiiiiececeecee e 6-4
Create a Coherence CIUSLETcoiiiiiiiiiiiiiiicicc s 6-6
Deploy the Shared Library Filesccocoiiiiiiiirc e 6-9
Create the Counter Web Application.........c.ccccucuiucuiiiiiiiiiiiicicccecceeeeeceeeeeeeeeeeeees 6-10
Deploy the AppliCationccucuiuiiiiiiiiiiiiiiiiic s 6-12
Start the Node Manager and the WebLogic Servers...........c.ooieiiininnieiiieeicc 6-13
Verify the EXamPLEcoiiiiiiiiiiiccc e 6-13

Preface

This preface describes the document accessibility features and conventions used in this
guide—Using ActiveCache.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

vi

Convention Meaning

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code

in examples, text that appears on the screen, or text that you enter.

1

Introduction and Roadmap

The following sections describe the contents and organization of this guide—Using
ActiveCache:

Section 1.1, "Document Scope and Audience"
Section 1.2, "Guide to This Document"
Section 1.3, "Related Documentation"

Section 1.4, "New and Changed Features in This Release"

1.1 Document Scope and Audience

This document is a resource for:

Application developers who want to develop and configure applications to use the
ActiveCache features of Coherence data caches, Coherence*Web session
management, and TopLink Grid.

Administrators who configure, manage, and monitor ActiveCache features, such
as Coherence clusters and resources.

1.2 Guide to This Document

This chapter, Chapter 1, "Introduction and Roadmap," describes the organization
of this document.

Chapter 2, "Overview," provides an overview of ActiveCache features.

Chapter 3, "Developing Applications for ActiveCache," explains how to use
ActiveCache with applications running on WebLogic Server.

Chapter 4, "Enabling State Session Persistence,” describes how to use ActiveCache
with Coherence*Web to provide HTTP session state persistence and management.

Chapter 5, "Accessing and Retrieving Relational Data," describes how to use
ActiveCache with TopLink Grid’s relational-to-object mapping capabilities to
cache relational data.

Chapter 6, "An ActiveCache Example," provides the steps for using ActiveCache
to cache session information for Web applications deployed across WebLogic
Server instances.

Chapter, "Glossary," describes important, frequently referred to files.

Introduction and Roadmap 1-1

Related Documentation

1.3 Related Documentation

For additional information, see the following Coherence and WebLogic Server
documents:

Coherence

Getting Started for Oracle Coherence
Developer’s Guide for Oracle Coherence
Client Guide for Oracle Coherence
Tutorial for Oracle Coherence

User’s Guide for Oracle Coherence*Web

WebLogic Server

Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server
Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server

Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help

1.4 New and Changed Features in This Release

ActiveCache is a new feature in this release of WebLogic Server. For a comprehensive
listing of other new WebLogic Server features introduced in this release, see Oracle
Fusion Middleware What’s New in Oracle WebLogic Server.

1-2 Using ActiveCache

2

Overview

The current release of WebLogic Server includes features that allow deployed
applications to easily use Coherence data caches. These features allow WebLogic
Server to seamlessly incorporate Coherence*Web for session management and
TopLink Grid as an object-to-relational persistence framework. Collectively, these
features are referred to as ActiveCache. ActiveCache is employed by applications
running on WebLogic Server, and combines the following functionality of Coherence
clusters, Coherence*Web, and TopLink Grid:

= Reliably stores and distributes serializable Java Objects.

= ActiveCache is fully compatible with the Coherence*Web HTTP Session
Management Module. Coherence*Web allows the data cache to enable WebLogic
Server memory resources.

» The addition of TopLink Grid gives ActiveCache the ability to scale out JPA
applications.

= Manages the life cycle of stored objects.

= Provides serialization options which reduce heap requirements and the
computational cost of deserializing session state each time it is accessed.

= Dynamically repartitions data, enabling optimal data distribution.
= Provides near caching, which keeps frequently read data on the heap.

= Provides direct access by applications to data caches. Applications that run on
WebLogic Server can use either resource injection or component-based JNDI
lookup to directly access data caches.

s Configure Coherence Cluster attributes using the WebLogic Server Administration
Console and WLST.

= Monitor cluster-related properties from the WebLogic Server Administration
Console. For example, you can use the Administration Console to monitor the
cluster size, names and identifiers of cluster members, the license mode, and the
cluster version.

ActiveCache provides replicated and distributed caching services that can make an
application's data available to all servers in a Coherence data cluster.

ActiveCache gives applications running on WebLogic Server the ability to directly
access Coherence data caches. The addition of Coherence data clusters to WebLogic
Server instances enables you to create a data tier dedicated to caching application data
and storing replicated session state. This is separate from the application tier—the
WebLogic Server instances dedicated to running the application. ActiveCache
technology allows the application tier to efficiently communicate with the data tier
and cache data in it.

Overview 2-1

Accessing Data Caches from WebLogic Server Applications

See Chapter 3, "Developing Applications for ActiveCache" for more information.

2.1 Accessing Data Caches from WebLogic Server Applications

ActiveCache can be employed for several different combinations of application and
data tiers, or cluster topologies. For example, one topology is where all WebLogic Server
instances employing Coherence (also known as Coherence nodes) are configured to store
data. The applications and the data caches are collocated, and there is no separate data
tier. Each Coherence node can serve requests and cache data.

Another possible topology is where there is a mixture of storage-enabled and
storage-disabled ActiveCache nodes. In this topology, the storage-enabled nodes act as
a data tier, while the storage-disabled nodes run the applications and serve requests.
This topology creates a separate data tier which is isolated from non-cache application
faults. All of the nodes in this topology can also be managed and monitored by
WebLogic Server tools.

A third topology consists of storage-disabled WebLogic Server nodes and stand-alone
Coherence caches. This topology also creates a separate data tier which is isolated from
non-cache application faults. However, unlike the first two topologies, the data caches
do not incur any costs related to the ActiveCache nodes’ use of heap or server startup
time.

Applications using ActiveCache can easily access the data cache. ActiveCache
provides a @Resource annotation that allows a Coherence NamedCache cache object
to be identified and dynamically injected into a servlet or EJB. As an alternative to
resource injection, applications using ActiveCache can use a component-based JNDI
tree to look up the NamedCache.

Cache services are classloader-scoped, and can be visible at an application server scope:
caches will be visible globally to all applications deployed on the server, EAR scope:
caches will be visible to all modules in the EAR, or WAR scope: caches will be visible to
the individual modules only.

Scoping is determined by where you store the cache configuration file. The cache
configuration file is where you define the cache object and cache types, then map
cache names and name patterns to the cache types.

Like the cache configuration, cluster nodes are also classloader-scoped. Scoping is
determined by where you store the coherence. jar and active-cache. jar files.
Like cache services, cluster nodes can be application server-scoped: the entire JVM acts as
a single Coherence cluster node, EAR-scoped: each application can be a Coherence
cluster node, or WAR-scoped: each Web module within an application can be a
Coherence cluster node.

ActiveCache enables you to display cluster-related properties in the WebLogic Server
Administration Console. You can configure or reset some of these properties by using
the Administration Console, WLST, or by importing a
tangosol-coherence-override.xml configuration file.

See Chapter 4, "Enabling State Session Persistence" for more information.

2.2 Adding Session State Persistence and Management

The addition of Coherence*Web to ActiveCache enables you to provide Coherence
cluster-based HTTP session state persistence to applications running on WebLogic
Server. Coherence*Web enables HTTP session sharing and management across
different Web applications, domains and heterogeneous application servers. Session

2-2 Using ActiveCache

Accessing JPA Entities in the Data Cache

data can be stored in data caches outside of the application server, thus freeing
application server heap space and enabling server restarts without losing session data.

See the User’s Guide for Oracle Coherence*Web for information on using Coherence*Web
with WebLogic Server applications.

2.3 Accessing JPA Entities in the Data Cache

TopLink Grid’s relational-to-object mapping capabilities allow ActiveCache to cache
relational data. The Coherence data caches can cache copies of database queries and
result sets. With this feature, database access occurs only when no cached copy of the
required data is available in the data cache, or when the application performs a create,
update, or delete operation that must be persisted to the database. This added
optimization provides improved scalability and performance to the system.

TopLink Grid allows JPA Entity caching. This lets you support very large, shared grid
caches that span cluster nodes. Calls for Entities cached in ActiveCache result in a get
on the associated data cache. If the data cache does not contain the object, then the
database is queried.

TopLink Grid enables you to direct queries to ActiveCache. If the desired query result
is not found in the cache, it can be read from the database and then placed in the cache,
making it available for subsequent queries. ActiveCache’s ability to manage very large
numbers of objects increases the likelihood of a result found in the cache, as reads in
one cluster member become immediately available to others.

Writing Entities to the database is also made possible by TopLink Grid. Applications
can directly write Entities to the database, then put them into the data cache (so that it
reflects the database state), or put Entities into the data cache, then have the data cache
write them to the database.

See Chapter 5, "Accessing and Retrieving Relational Data" for more information.

Overview 2-3

Accessing JPA Entities in the Data Cache

2-4 Using ActiveCache

3

Developing Applications for ActiveCache

All of the files required by ActiveCache are installed automatically as part of the
Oracle WebLogic Server Typical (default) configuration. The default root directory for
the installation is C: \Oracle\Middleware. WebLogic Server is installed in
C:\Oracle\Middleware\wlserver_10.3 and Coherence is installed in
C:\Oracle\Middleware\coherence_3.5.

The default installation includes all of the files that WebLogic Server needs to work
with Coherence, Coherence*Web, and TopLink Grid. For a description of the installed
files that are referred to frequently in this book, see the "Glossary".

3.1 Developing Applications to Use ActiveCache—Main Steps

The following steps summarize the procedure for using Coherence caches with
applications running on WebLogic Server.

1.

Choose the cluster topology on which your applications will run. You can decide
to make WebLogic Servers data members of the Coherence cache, or just clients.
See "Choose the ActiveCache Deployment Topology" on page 3-2.

Specify the configuration for the Coherence caches that your applications will use.
See "Create and Configure a Data Cache" on page 3-2.

Add code in your Web application to access the Coherence caches. You can use
either JNDI lookup or resource injection to access a Coherence NamedCache cache
object. See "Access the Data Cache from your Application Code" on page 3-3.

Store the cache configuration file with the application. Where you store the file
depends on how you want the caches to be visible to the deployed applications.
See "Locate the Cache Configuration File" on page 3-4.

Determine how the cache server will access the cache configuration file when it
starts. See "Access the Cache Configuration on Cache Server Startup” on page 3-5.

Cluster nodes are classloader-scoped. Where you deploy coherence. jar in the
classloader hierarchy determines how cluster membership is handled. See
"Package Applications and Configure Cluster Nodes" on page 3-6.

Adjust preconfigured cluster values for your deployed applications, if necessary.
You can use WLST or the WebLogic Server Administration Console to configure
some cluster-related values. See "Create and Configure Coherence Clusters" on
page 3-9.

Start the cache servers. See "Start a Cache Server" on page 3-12.

Use one of the several methods to start WebLogic Server. See "Start WebLogic
Server" on page 3-14.

Developing Applications for ActiveCache 3-1

Choose the ActiveCache Deployment Topology

10. Monitor the runtime status of the Coherence cluster from the WebLogic Server

Administration Console. See "Monitor Coherence Cluster Properties" on page 3-14.

3.2 Choose the ActiveCache Deployment Topology

A cluster is used to harness multiple computers to store and manage data. Usually, this
is for reliability and scalability purposes. One of the primary uses of Coherence is to
cluster an application's objects and data. In the simplest sense, all of the data that is
inserted into Coherence data caches is accessible by all servers in the application
cluster that share the same cache configuration.

Two different Coherence cluster topologies can be formed by mixing WebLogic Servers
and stand-alone Coherence cache servers. Here, cache servers are defined as
Coherence data servers running on JVM instances dedicated to maintaining data (such
as serialized session state data).

In the In-Process topology, all WebLogic Servers (employing ActiveCache) in the
cluster are storage-enabled. In this case, storage-enabled means that these servers
will provide cache storage and backup storage. you do not have to create a
separate data tier.

This topology is not recommended for production use. This topology is supported
mainly for development and testing. By storing the session data in-process with
the application server, this topology is very easy to get up and running quickly for
smoke tests, development and testing.

Note: There are different default settings for local storage for
Distributed caches on WebLogic Server, depending on whether you
are employing Coherence*Web. For WebLogic Server, local storage is
enabled by default for Distributed caches. However, when using
Coherence*Web on WebLogic Server, local storage is disabled by
default. In this case, you must create a separate data tier of
stand-alone Coherence caches.

In the Out-of-Process topology, use the stand-alone Coherence cache servers to host
the data. Configure the WebLogic Servers to be storage-disabled so they can be
used to serve requests. This topology creates a true, separate data tier, and further
reduces overhead for the WebLogic Servers that are processing requests.

The WebLogic Out-Of-Process topology is a slight variation on the Out-of-Process
topology. In this topology WebLogic Server instances replace storage-enabled
cache servers. This enables you to manage the lifecycle of the storage-enabled
members. The advantage of this topology is that requests and data are segregated
to their own servers. Latency for processing requests is reduced. Both
storage-enabled and -disabled servers can be managed by WebLogic Sever
management tools.

Note: For more information on the In-Process and Out-of-Process
deployment topologies, see Deployment Topologies in the User’s Guide
for Oracle Coherence*Web.

3.3 Create and Configure a Data Cache

ActiveCache can be configured to use any of the cache types supported by Oracle
Coherence. An in-depth discussion on Coherence caches and their configuration is

3-2 Using ActiveCache

Access the Data Cache from your Application Code

beyond the scope of this book. For information on working with Coherence caches and
integrating them into your applications, see Create and Use Coherence Caches in the
Developer’s Guide for Oracle Coherence.

3.4 Access the Data Cache from your Application Code

Applications that run on WebLogic Server 11gR1 (10.3.3) or later can use ActiveCache
to access a data cache. The data cache is represented by the Coherence NamedCache
cache object. This object is designed to hold resources that are shared among members
of a cluster. These resources are managed in memory, and are typically composed of
data that is also stored persistently in a database, or data that has been assembled or
calculated. Thus, these resources are referred to as cached.

Your application can obtain a NamedCache either by resource injection or by lookup in
a component-scoped JNDI resource tree. The lookup technique can be used in E]Bs,
servlets, or JSPs. The resource injection technique can be used only by servlets or E]Bs.

Note: It is not recommended that you store remote EJB references in
Coherence named caches, nor should you store them in
Coherence*Web-backed HTTP sessions.

To Obtain the NamedCache by Resource Injection

A @Resource annotation can be used in a servlet or an EJB to dynamically inject the
NamedCache. This annotation cannot be used in a JSP. The name of the cache used in
the annotation must be defined in the Coherence cache configuration file.

Example 3-1 illustrates a resource injection of the NamedCache myCache.
Example 3—1 Obtaining a NamedCache by Resource Injection

@Resource (mappedName="myCache")
com. tangosol.net.NamedCache nc;

To Obtain the NamedCache by JNDI Lookup

A component-scoped JNDI tree can be used in E]Bs, servlets, or JSPs to reference the
NamedCache.

To use a component-scoped JNDI lookup, define a resource-ref of type

com. tangosol .net .NamedCache in either the web.xml or ejb-jar.xml file.
Example 3-2 illustrates a <resource-ref> stanza that identifies myCache as the
NamedCache.

Note: The <res-auth> and <res-sharing-scope> elements do
not appear in the example. The <res-auth> element is ignored
because currently no resource sign-on is performed to access data
caches. The <res-sharing-scope> element is ignored because data
caches are sharable by default and this behavior cannot be overridden.

Example 3-2 Defining a NamedCache as resource-ref for JNDI Lookup

<resource-ref>

Developing Applications for ActiveCache 3-3

Locate the Cache Configuration File

<res-ref-name>coherence/myCache</res-ref-name>

<res-type>com. tangosol .net .NamedCache</res-type>

<mapped-name>MyCache</mapped-name>
</resource-ref>

3.5 Locate the Cache Configuration File

The location where you store the cache configuration file determines the scope of the
caches; that is, the visibility of the caches to the application. There are three options for
cache visibility:

= application server-scoped—all deployed applications in a container become part
of one cache service. Caches will be visible globally to all applications deployed on
the server.

s EAR-scoped—all deployed applications within each EAR become part of one
Coherence node. Caches will be visible to all modules in the EAR. For example,
this could be a recommended deployment if all of the modules must share the
same cache.

s WAR-scoped—each deployed Web application becomes its own Coherence node.
Caches will be visible to the individual modules only. For example, this could be a
recommended deployment for a stand-alone WAR deployment or stand-alone E]JB
deployment.

Note: The cache configuration must be consistent for both WebLogic
Server instances and Coherence cache servers.

3-4 Using ActiveCache

Access the Cache Configuration on Cache Server Startup

Table 3—-1 Storage Locations for Cache Configuration File Based on Cache Scoping

For this cache scoping ... Store the cache configuration file here = Comments
application server-scope = store the cache configuration file in the See the following section, "Access the
server’s classpath Cache Configuration on Cache Server

Startup" for more information.

application-scoped cache for = JAR file in the EAR library directory =~ Caches defined in

an EAR file coherence-cache-config.xml
and placed at EAR level can be seen
and shared by all modules in the EAR.

Caches defined at EAR level will be
visible to the individual applications
within the EAR only, but they must
have unique service names across all
the EARs in the application. Also, if
you define caches both at the EAR
level and at the module level, then the
cache, scheme, and service names
must be unique across the EAR-level
cache configuration and the module
cache configuration.

= APP-INF/classes directory of EAR

Web-component-scoped s JAR file in the WEB-INF/1ib Caches defined at module level will be

cache in an EAR, or a directory of a WAR file visible to the individual modules only,

stand-alone WAR . but they must have unique service

deployment " V‘\/]\%fl% Ifl\IIF /classes directory of a names Zcross all the mo%lules in the

ile o . .

application. Also, if you define caches
both at the EAR level and at the
module level, then the cache, scheme,
and service names must be unique
across the EAR-level cache
configuration and the module cache
configuration.

stand-alone EJB deployment = EJB-JAR file An EJB module in an EAR cannot
have module-scoped caches—they can
only be application-scoped.

3.6 Access the Cache Configuration on Cache Server Startup

The cache server must be able to access the cache configuration file on start-up. There
are two ways to do this:

= Place the cache configuration file in the server’s classpath, or

= Declare the cache configuration file location in the server start-up command with
the tangosol . coherence.cacheconfig system property. For more
information on this property, see the Developer’s Guide for Oracle Coherence.

Example 3-3 illustrates the tangosol . coherence. cacheconfig system
property in a sample startup command.

Example 3-3 Declaring the Cache Configuration File in a Server Startup Command

java -server -Xmsb512m -Xmx512m

-cp <Coherence installation dir>/lib/coherence.jar:<Coherence installation
dir>/lib/coherence-web-spi.war -Dtangosol.coherence.management.remote=true
-Dtangosol.coherence.cacheconfig=WEB-INF/classes/coherence-cache-config.xml
-Dtangosol.coherence.session.localstorage=true com.tangosol.net.DefaultCacheServer

If you are working with two (or more) applications, it is possible that they could
possibly have two (or more) different cache configurations. In this case, the cache

Developing Applications for ActiveCache 3-5

Package Applications and Configure Cluster Nodes

configuration on the cache server must contain the union of these configurations. This
allows the applications to be supported in the same cache cluster. Note that this is only
valid for the stand-alone cache server topology.

3.7 Package Applications and Configure Cluster Nodes

Coherence cluster nodes are classloader-scoped. Cluster nodes can be application
server-scoped—the entire JVM acts as a single Coherence cluster node,
EAR-scoped—each application can be a Coherence cluster node, or WAR-scoped—each
Web module within an application can be a Coherence cluster node.

The packing and configuration options for these three scenarios are described in the
following sections:

» Packaging Applications and Configuring Application Server-Scoped Cluster
Nodes

» Packaging Applications and Configuring EAR-Scoped Cluster Nodes
» Packaging Applications and Configuring WAR-Scoped Cluster Nodes

3.7.1 Packaging Applications and Configuring Application Server-Scoped Cluster
Nodes

With this configuration, all deployed applications on the WebLogic Server instance
that are accessing Coherence caches directly become part of one Coherence node.
Caches will be visible to all applications deployed on the server. This configuration
produces the smallest number of Coherence nodes in the cluster (one for each
WebLogic Server JVM instance).

Since the Coherence library is deployed in the container's classpath, only one copy of
the Coherence classes will be loaded into the JVM, thus minimizing resource
utilization. On the other hand, since all applications are using the same cluster node,
all applications will be affected if one application misbehaves.

To Use Coherence Data Caches with Application Server-Scoped Cluster Nodes

1. Edit your WebLogic Server system classpath to include coherence. jar and WL_
HOME/common/deployable-libraries/active-cache. jar in the system
classpath. The active-cache. jar should be referenced only from the
deployable-libraries folder in the system classpath and should not be
copied to any other location.

2. (Optional) If you must configure Coherence cluster properties, create a
CoherenceClusterSystemResourceMBean and reference it in the
ServerMBean.

You can use WLST to reference the MBean. See
createServerScopedCoherenceSystemResource in Example 3-9.

3.7.2 Packaging Applications and Configuring EAR-Scoped Cluster Nodes

With this configuration, all deployed applications within each EAR become part of one
Coherence node. Caches will be visible to all modules in the EAR. For example, this
could be a recommended deployment if all the modules must share the same
Coherence node. It can also be a recommended configuration if you plan on deploying
only one EAR to an application server.

3-6 Using ActiveCache

Package Applications and Configure Cluster Nodes

This configuration produces the next smallest number of Coherence nodes in the
cluster (one for each deployed EAR). Since the Coherence library is deployed in the
application's classpath, only one copy of the Coherence classes is loaded for each EAR.

Since all Web applications in the EAR use the same cluster node, all Web applications
in the EAR will be affected if one of them misbehaves. EAR-scoped cluster nodes
reduce the deployment effort as no changes to the application server classpath are
required.

To Use Coherence Caches with EAR-Scoped Cluster Nodes

1. Use either of the following methods to deploy the coherence. jar and
active-cache. jar files as shared libraries to all of the target servers where the
application will be deployed.

= Use the WebLogic Server Administration Console to deploy coherence. jar
and active-cache. jar as shared libraries. See "Install a Java EE Library" in
the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

As an alternative to the Administration Console, you can also deploy on the
command line. The following are sample deployment commands:

java weblogic.Deployer -username <> -password <> -adminurl <> -deploy
coherence.jar -name coherence -library -targets <>

java weblogic.Deployer -username <> -password <> -adminurl <> -deploy
active-cache.jar -name active-cache -library -targets <>

s Copy coherence. jar and active-cache. jar to the EAR’s
APP-INF/1ib folder of the application. However, the preferred way is to
deploy them as shared libraries.

2. Refer to the coherence.jar and active-cache. jar files as libraries.
Example 34 illustrates a sample weblogic-application.xml configuration.

Example 3—-4 coherence and active-cache JARs Referenced in the
weblogic-application.xml File

<weblogic-application>

<library-ref>
<library-name>coherence</library-name>
</library-ref>

<library-ref>
<library-name>active-cache</library-name>
</library-ref>

</weblogic-application>

3. (Optional) If you must configure Coherence cluster properties, create a
CoherenceClusterSystemResourceMBean and reference it as a
coherence-cluster-ref element in weblogic-application.xml file. This
element allows the applications to enroll in the Coherence cluster as specified by
the CoherenceClusterSystemResourceMBean attributes.

Example 3-5 illustrates a sample configuration. The myCoherenceCluster
MBean in the example is of type CoherenceClusterSystemResourceMBean.

Developing Applications for ActiveCache 3-7

Package Applications and Configure Cluster Nodes

Example 3-5 coherence-cluster-ref Element for EAR-Scoped Cluster Nodes

<weblogic-application>

<coherence-cluster-ref>
<coherence-cluster-name>
myCoherenceCluster
</coherence-cluster-name>
</coherence-cluster-ref>

</weblogic-application>

To Define a Filtering Classloader for Application-Scoped Cluster Nodes

If the coherence. jar is placed in the application server classpath, you can still
configure an EAR-scoped cluster node by defining a filtering classloader. This is
described in the following steps:

1. Place coherence. jar in the application classpath.
2. Conlfigure a filtering classloader in the EAR file.

The filtering classloader is defined in the <prefer-application-packages>
stanza of the weblogic-application.xml file. Example 3-6 illustrates a
sample filtering classloader configuration. The package-name elements indicate
the package names of the classes in the coherence. jar and
active-cache.jar.

Example 3—-6 Configuring a Filtering Classloader

<weblogic-application>

<prefer-application-packages>
<package-name>com. tangosol. *</package-name>
<package-name>weblogic.coherence.service. *</package-name>
<package-name>com.oracle.coherence.common. *</package-name>

</prefer-application-packages>

</weblogic-application>

3.7.3 Packaging Applications and Configuring WAR-Scoped Cluster Nodes

With this configuration, or if only one application wants to use Coherence, each
deployed Web application becomes its own Coherence node. Caches will be visible to
the individual modules only. For example, this could be a recommended deployment
for a stand-alone WAR deployment or stand-alone E]JB deployment.

If you are deploying multiple WAR files, note that this configuration produces the
largest number of Coherence nodes in the cluster—one for each deployed WAR file
that uses coherence. jar. It also results in the largest resource utilization of the three
configurations—one copy of the Coherence classes are loaded for each deployed WAR.
On the other hand, since each deployed Web application is its own cluster node, Web
applications are completely isolated from other potentially misbehaving Web
applications.

Note: A Web module within an EAR can have a module-scoped
Coherence node but an EJB module within an EAR can only have an
application-scoped Coherence cluster node.

3-8 Using ActiveCache

Create and Configure Coherence Clusters

To Use Coherence Caches with WAR-Scoped Cluster Nodes

1. Use the WebLogic Server Administration Console to deploy coherence. jar and
active-cache. jar as shared libraries to all of the target servers where the
application will be deployed. See "Install a Java EE Library" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

As an alternative to the Administration Console, you can also deploy on the
command line. The following are sample deployment commands:

java weblogic.Deployer -username <> -password <> -adminurl <> -deploy
coherence.jar -name coherence -library -targets <>

java weblogic.Deployer -username <> -password <> -adminurl <> -deploy
active-cache.jar -name active-cache -library -targets <>

2. Import coherence. jar and active-cache. jar as optional packages in the
manifest.mf file of each module that will be using Coherence.

As an alternative to using the manifest file, copy coherence. jar and
active-cache. jar to each WAR file's WEB-INF/1ib directory.

Example 3-7 illustrates the contents of a sample manifest .mf file.

Example 3—-7 Referencing coherence and active-cache Jar Files the manifest.mf File

Manifest-Version: 1.0

Extension-List: coherence active-cache
coherence-Extension-Name: coherence
active-cache-Extension-Name: active-cache

3. (Optional) If you must configure Coherence cluster properties, create a
CoherenceClusterSystemResourceMBean and reference it as a
coherence-cluster-ref element in weblogic.xml or
weblogic-ejb-jar.xml file.

Example 3-8 illustrates a sample configuration for WAR-scoped cluster nodes in
the weblogic.xml file. The myCoherenceCluster MBean is of type
CoherenceClusterSystemResourceMBean.

Example 3-8 coherence-cluster-ref Element for WAR-Scoped Cluster Nodes

<weblogic-web-app>

<coherence-cluster-ref>
<coherence-cluster-name>
myCoherenceCluster
</coherence-cluster-name>
</coherence-cluster-ref>

</weblogic-web-app>

3.8 Create and Configure Coherence Clusters

Using WLST or the Administration Console, you can create a Coherence cluster
configuration and select WebLogic Server instances or clusters on which the cluster
configuration is accessible.

The createCoherenceClusterMBean. py WLST script shown in Example 3-9
configures three Coherence clusters, including a server-scoped configuration that gets
deployed to the Administration Server (myserver).

Developing Applications for ActiveCache 3-9

Create and Configure Coherence Clusters

Example 3-9 createCoherenceClusterMBean.py

from java.util import *

from javax.management import *
from java.lang import *

import javax.management.Attribute

This script configures a Coherence Cluster System Resource MBean and deploys it
to the admin server

def createCoherenceSystemResource (wlsTargetNames, coherenceClusterSourceName) :

name = coherenceClusterSourceName

start creation

print 'Creating CoherenceClusterSystemResource with name '+ name

cohSR = create(name, "CoherenceClusterSystemResource")

cohBean = cohSR.getCoherenceClusterResource ()

cohCluster = cohBean.getCoherenceClusterParams ()
cohCluster.setUnicastListenAddress ("localhost")
cohCluster.setUnicastListenPort (7001)

cohCluster.setUnicastPortAutoAdjust (true)

you can set up the multicast port or define WKAs

cohCluster.setMulticastListenAddress("231.1.1.1")

cohCluster.setMulticastListenPort (8001)

cohCluster.setTimeToLive(5)

for wlsTargetName in wlsTargetNames:
cd("Servers/"+wlsTargetName)
target = cmo
cohSR.addTarget (target)
cd("../..")

def createServerScopedCoherenceSystemResource (wlsTargetNames,
coherenceClusterSourceName) :

name = coherenceClusterSourceName

start creation

print 'Creating CoherenceClusterSystemResource with name '+ name

cohSR = create(name, "CoherenceClusterSystemResource")

cohBean = cohSR.getCoherenceClusterResource ()

cohCluster = cohBean.getCoherenceClusterParams ()
cohCluster.setUnicastListenAddress ("localhost")
cohCluster.setUnicastListenPort (7002)

cohCluster.setUnicastPortAutoAdjust (true)

you can set up the multicast port or define WKAs

cohWKAs = cohCluster.getCoherenceClusterWellKnownAddresses ()

cohWKA = cohWKAs.createCoherenceClusterWellKnownAddress ("wkal")

cohWKA . setName ("wkal")

cohWKA.setListenAddress ("localhost")

cohWKA. setListenPort (9001)

for wlsTargetName in wlsTargetNames:
cd("Servers/"+wlsTargetName)
target = cmo
cohSR.addTarget (target)
print cmo
serverBean = cmo
serverBean.setCoherenceClusterSystemResource (cohSR)
cd("../..")

3-10 Using ActiveCache

Create and Configure Coherence Clusters

def createCustomCoherenceSystemResource (wlsTargetNames,
coherenceClusterSourceName, tangosolOverrideFile):

name = coherenceClusterSourceName

start creation

cohSR = getMBean ("/CoherenceClusterSystemResources/"+name)

if cohSR == None:
print 'Creating CoherenceClusterSystemResource with name '+ name
cohSR = create (name, "CoherenceClusterSystemResource")
cohSR. importCustomClusterConfigurationFile (tangosolOverrideFile)

for wlsTargetName in wlsTargetNames:
cd("Servers/"+wlsTargetName)
target = cmo
cohSR.addTarget (target)
cd("../..")

props = System.getProperties()

ADMIN_NAME = props.getProperty("admin.username")
ADMIN_PASSWORD = props.getProperty("admin.password")
ADMIN_HOST = props.getProperty("admin.host")
ADMIN_PORT = props.getProperty("admin.port")

ADMIN URL = "t3://"+ADMIN_HOST+":"+ADMIN_PORT

TANGOSOL_OVERRIDE = props.getProperty ("tangosol-override")
TARGETS = ['myserver']

print "Starting the script ..."
try :

connect (ADMIN_NAME, ADMIN_PASSWORD, ADMIN_URL)

edit()

startEdit ()

createCoherenceSystemResource (TARGETS, 'cohSystemResource')

createServerScopedCoherenceSystemResource (TARGETS,
'serverScopedCohSystemResource')

createCustomCoherenceSystemResource (TARGETS,
'customCohSystemResource', TANGOSOL_OVERRIDE)

save ()

activate(block="true")

disconnect ()

print 'Done configuring the Coherence Cluster System Resources'
except:

dumpStack ()

undo ('true','y"')

For Administration Console procedures, see "Configure Coherence" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help.

Cluster-related values are stored in a descriptor file in the WebLogic Server
configuration repository:

<domain-home>/config/coherence/CoherenceClusterSystemResourceNam
e/CoherenceClusterSystemResourceName-####-coherence.xml.

For example, C:\Oracle\Middleware\user_projects\domains\base_
domain\config\coherence\cohSystemResource\cohSystemResource-0759
-coherence.xml.

Developing Applications for ActiveCache 3-11

Start a Cache Server

Alternatively, you can configure properties that are not specified for the cluster by
configuring them in a custom configuration file, for example,
tangosol-coherence-override.xml, shown in Example 3-10.

Example 3-10 tangosol-coherence-override.xml

<?xml version='1.0'?>
<!--
This operational configuration override file is set up for use with Coherence in
a development mode.
-—>
<coherence xml-override="/tangosol-coherence-override.xml">
<cluster-config>
<multicast-listener>
<time-to-live system-property="tangosol.coherence.ttl">4</time-to-live>
<join-timeout-milliseconds>3000</join-timeout-milliseconds>
</multicast-listener>

<packet-publisher>
<packet-delivery>
<timeout-milliseconds>30000</timeout-milliseconds>
</packet-delivery>
</packet-publisher>
</cluster-config>

<logging-config>
<severity-level
system-property="tangosol.coherence.log.level ">5</severity-level>
<character-limit
system-property="tangosol.coherence.log.limit">0</character-limit>
</logging-config>
</coherence>

Use WLST to import the custom cluster configuration file (also shown in Example 3-9,
see createCustomCoherenceSystemResource) or the WebLogic Server
Administration Console. See "Import a custom cluster configuration" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help.

Note: If you specify cluster-related properties by importing a custom
configuration file, the properties specified in the file must not be the
same properties that were specified using WLST or the WebLogic
Server Administration Console.

3.9 Start a Cache Server

A Coherence data node (also known as a Cache Server) is a dedicated JVM that is
responsible for storing and managing all cached data. The senior node (which is the
first node) in a Coherence data cluster can take several seconds to start; the start up
time required by subsequent nodes is minimal. Thus, to optimize performance, you
should always start a Coherence data node before starting a WebLogic Server instance.
This will ensure that there is minimal (measured in milliseconds) startup time for
applications using Coherence. Any additional Web applications that use Coherence are
guaranteed not to be the senior data member, so they will have minimal impact on
WebLogic Server startup.

3-12 Using ActiveCache

Start a Cache Server

Note: Whether you start the cache servers first or the WebLogic
Server instances first, depends on the server topology you are
employing.

= If you are using In-Process topology (all storage-enabled
WebLogic Server instances employing ActiveCache), then it does
not matter if you start the cache servers first or WebLogic Server
instances first.

= If you are using Out-of-Process topology (storage-disabled
WebLogic server instances and stand-alone Coherence cache
servers), then start the cache servers first, followed by the
WebLogic Server instances.

= If you are using WebLogic Out-of-Process topology, your topology
is a mix of storage-enabled and storage-disabled WebLogic Server
instances. Start the storage-enabled instances first, followed by the
storage-disabled instances.

To Start a Stand-Alone Coherence Data Node

1.

Create a script for starting a Coherence data node. The following is a very simple
example of a script that starts a storage-enabled cache server to use with
ActiveCache. This example assumes that you are using a Sun JVM. See JVM
Tuning in the Developer’s Guide for Oracle Coherence for more information.

java -server -Xmsb512m -Xmx512m

-cp <Coherence installation dir>/lib/coherence.jar:<Coherence installation
dir>/1lib/coherence-web-spi.war -Dtangosol.coherence.management.remote=true
-Dtangosol .coherence.cacheconfig=WEB-INF/classes/cache configuration_file

-Dtangosol.coherence.session.localstorage=true

com. tangosol .net.DefaultCacheServer

In this example, cache_configuration_file refers to the cache configuration
in the coherence-cache-config.xml file. The cache configuration defined for
the cache server must be the same as the configuration defined for the application
servers which run on the same ActiveCache cluster.

If you run Coherence*Web for session management, then the cache configuration
information should be merged with the session configuration contained in the
session-cache-config.xml file. Similarly, the cache and session
configuration must be consistent across WebLogic Servers and cache servers.

Start one or more Coherence data nodes using the script described in the previous
step.

To Start a Storage-Enabled or -Disabled WebLogic Server Instance

By default, an ActiveCache-enabled WebLogic Server instance starts in
storage-disabled mode.

To start the WebLogic Server instance in storage-enabled mode, include the command
line property -Dtangosol.coherence.session.localstorage=true in the
server startup command.

For more information on working with WebLogic Server through the command line,
see the weblogic.Server Command-Line Reference chapter in the Oracle Fusion Middleware
Command Reference for Oracle WebLogic Server.

Developing Applications for ActiveCache 3-13

Start WebLogic Server

3.10 Start WebLogic Server

WebLogic Server provides several ways to start and stop server instances. The method
that you choose depends on whether you prefer using the Administration Console or a
command-line interface, and on whether you are using Node Manager to manage the
server's life cycle. For detailed information, see "Starting and Stopping Servers" in
Oracle Fusion Middleware Managing Server Startup and Shutdown for Oracle WebLogic
Server. For a quick reference, see "Starting and Stopping Servers: Quick Reference."

3.11 Monitor Coherence Cluster Properties

The WebLogic Server Administration Console displays run-time monitoring
information for Coherence clusters associated with a particular application or module,
such as cluster size, members, and version. For more information, see "Monitoring
Coherence Clusters" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

3-14 Using ActiveCache

4

Enabling State Session Persistence

ActiveCache can use Coherence*Web to provide HTTP session state persistence and
management. Coherence*Web is a session management module that uses Coherence
for storing and managing session data. Built on top of Oracle Coherence,
Coherence*Web:

brings Coherence data grid’s data scalability, availability, reliability, and
performance to in-memory session management and storage.

allows session sharing and management across Web applications, domains, and
heterogeneous application servers.

allows storage of session data outside of the Java EE application server, freeing
application server heap space and enabling server restarts without session data
loss.

supports multiple advanced session models (that is, Monolithic, Traditional, and
Split Session) which define how the session state is serialized / deserialized in the
cluster.

supports fine-grained session and session attribute scoping by way of pluggable
policies.

For information on using Coherence*Web with WebLogic Server applications, see the
User’s Guide for Oracle Coherence*Web.

Enabling State Session Persistence 4-1

4-2 Using ActiveCache

O

Accessing and Retrieving Relational Data

TopLink Grid marries the standardization and simplicity of application development
using the Java Persistence API (JPA) with the scalability and distributed processing
power of Oracle’s Coherence Data Grid. Developers can leverage their investment in
JPA and take advantage of the scalability of Coherence. Standard JPA applications
interact directly with their primary data store, typically a relational database, but with
TopLink Grid developers can choose to store some or all of their domain model in the
Coherence data grid.

To Use TopLink-Grid with Application Server-Scoped Cluster Nodes

If you are using TopLink Grid to store JPA (Java Persistence API) Entities in Coherence
caches, follow these steps:

1. Follow the instructions in "Packaging Applications and Configuring Application
Server-Scoped Cluster Nodes" on page 3-6 to include coherence. jar and
active-cache. jar in the system classpath.

2. Edit your WebLogic Server system classpath to include toplink-grid.jar in
the system classpath.

To Use TopLink Grid with EAR-Scoped Cluster Nodes
If you are using TopLink Grid to store JPA (Java Persistence API) Entities in Coherence
caches, follow these steps:

1. Follow the instructions in "Packaging Applications and Configuring EAR-Scoped
Cluster Nodes" on page 3-6 to deploy the coherence. jar and
active-cache. jar files as shared libraries.

2. Use either of the following methods to deploy toplink-grid. jar as a shared
library.

= Use the WebLogic Server Administration Console or the command line to
deploy toplink-grid. jar as a shared library.

java weblogic.Deployer -username <> -password <> -adminurl <> -deploy

toplink-grid.jar -name toplink-grid -library -targets <>

If you deploy toplink-grid. jar as a shared library, refer to it in the
weblogic-application.xml fileasa library-ref. Example 5-1
illustrates the toplink-grid. jar referenced in the
weblogic-application.xml file.

Example 5-1 Reference to toplink-grid.jar in the weblogic-application.xml File

<weblogic-application>

Accessing and Retrieving Relational Data 5-1

<library-ref>
<library-name>coherence</library-name>
</library-ref>

<library-ref>
<library-name>active-cache</library-name>

</library-ref>

<library-ref>
<library-name>toplink-grid</library-name>

</library-ref>

</weblogic-application>

s Copy toplink-grid. jar to the application EAR’s APP-INF/11ib folder.
However, the preferred way is to deploy it as a shared library.

To Use TopLink Grid with WAR-Scoped Cluster Nodes

If you are using TopLink Grid to store JPA (Java Persistence API) Entities in Coherence
caches, follow these steps:

1. Follow the instructions in "Packaging Applications and Configuring WAR-Scoped
Cluster Nodes" on page 3-8 to deploy the coherence. jar and
active-cache. jar files.

2. Use the WebLogic Server Administration Console or the command line to deploy
toplink-grid. jar. The following is a sample command line:

java weblogic.Deployer -username <> -password <> -adminurl <> -deploy
toplink-grid.jar -name toplink-grid -library -targets <>

3. Import toplink-grid. jar as an optional package in the manifest .mf file of
each module that will be using Coherence. As an alternative, you can copy it to
each of the application WAR’s WEB-INF/1ib directories.

Example 5-2 illustrates a sample manifest file.

Example 5-2 Manifest File with coherence, active-cache, and toplink-grid

Manifest-Version: 1.0

Extension-List: coherence active-cache toplink-grid
coherence-Extension-Name: coherence
active-cache-Extension-Name: active-cache
toplink-grid-Extension-Name: toplink-grid

5-2 Using ActiveCache

6

An ActiveCache Example

The following example demonstrates how to use ActiveCache to cache session
information for Web application instances that are deployed across WebLogic Server
instances. To do this, you will create a Web application and deploy it to two server
instances. The application is a simple counter that stores the current count as a session
attribute. Coherence*Web automatically serializes and replicates the attribute across
both server instances. A browser is used to access each application instance to
demonstrate that the same session attribute is used among the instances.

The Coherence*Web module is included in the default installation of WebLogic Server
11gR1 (10.3.3). For more information, see the User’s Guide for Oracle Coherence*Web.

6.1 ActiveCache Example—Main Steps
Follow these steps to complete the ActiveCache example.
1. Start a Cache Server

Configure and Start the WebLogic Server

Create a Machine

Create the WebLogic Servers

Create a Coherence Cluster

Deploy the Shared Library Files

Create the Counter Web Application

Deploy the Application

© ® N o a » 0 DN

Start the Node Manager and the WebLogic Servers
10. Verify the Example

6.2 Start a Cache Server

Start a Coherence cache server. Example 6-1 illustrates a sample script to start the
cache server. In this example, tangosol.coherence.clusterport=7777 is the
default multicast listen port of a Coherence cluster and
tangosol.coherence.clusteraddress=231.1.1.1 is the default multicast
listen address.

Example 6—-1 Script to Start the Cache Server

setlocal

An ActiveCache Example 6-1

Configure and Start the WebLogic Server

set COHERENCE_HOME=c:\oracle\product\coherence

set COH_OPTS=%COH_OPTS% -server -cp %COHERENCE_HOMES$\lib\coherence.jar; $COHERENCE_
HOME%\1lib\coherence-web-spi.war;

set COH_OPTS=%COH_OPTS% -Dtangosol.coherence.management.remote=true
-Dtangosol.coherence.cacheconfig=/WEB-INF/classes/session-cache-config.xml
-Dtangosol.coherence.distributed. localstorage=true
-Dtangosol.coherence.clusterport=7777
-Dtangosol.coherence.clusteraddress=231.1.1.1
-Dtangosol.coherence.session.localstorage=true

java %$COH_OPTS% -Xms512m -Xmx512m com.tangosol.net.DefaultCacheServer

rexit

6.3 Configure and Start the WebLogic Server
This example requires a Coherence Cluster.

1. Run the Oracle WebLogic Configuration Wizard (Start > All Programs > Oracle
WebLogic > WebLogic Server 11gR1 > Tools > Configuration Wizard) to create a
WebLogic domain called test_domain.

Before exiting the wizard, select the Start Admin Server check box, and click
Done. The configuration wizard automatically starts the Administration Server.

2. Start the WebLogic Server Administration Console.

From the browser, log in to the Oracle WebLogic Server Administration Console
using the following URL:http://hostname:7001/console. The console starts,
and the domain home page displays.

6.4 Create a Machine
Create a Machine on which to host WebLogic Server instances.

From the Domain Structure window, select Environment > Machines. Click New. The
Create a New Machine page displays. Enter a name for the Machine (in this case, Test)
and click OK.

6-2 Using ActiveCache

Create a Machine

Figure 6-1 Creating a New Machine

Create a Mew Machine

] Cancel

Machine Properties

The following properties will be used to identify your new Machine.,
Indicates required Fields

wehat wwould wiou like to name your new Machine?

* Mame: Tast

Specify the kvpe of machine operating syskem.

Machine O%: Cithar

] Cancel

The Summary of Machines page should look similar to Figure 6-2.

An ActiveCache Example 6-3

Create the WebLogic Servers

Figure 6—-2 Summary of Machines

Messages
&# All changes have been activaked. Mo restarts are necessary,

£ Machine created successfully

Summary of Machines |

& machine is the logical representation of the camputer that hosts ane or mare WebLogic Server
instances (servers), Weblogic Server uses configured machine names ko determine the optimum server
in a cluster to which certain tasks, such as HTTP session replication, are delegated. The Administration
Server uses the machine definition in conjunction with Node Manager to stark remote servers,

This page displays keyw information about 2ach machine that has been configured in the current
Weblogic Server domain,

f Customize this table

Machine:i_
[e Clone [elete Showing 1 to 1 af 1 Previous | Next
[1| Name &% Type
[| Test Machine
M e Clare Delete Showing 1to 1 of 1 Previous | Mext

6.5 Create the WebLogic Servers

Create two server instances associated with the Machine. The application will be
deployed to these servers in a later step.

1. Click the name of the Machine in the Summary of Machines page to open the
Settings for <machine> page. Click the Servers tab then Add to create a server.

2. Select Create a new server and associate it with this machine in the Add a Server
to Machine page, and click Next.

3. Provide details about the server in the Add a Server to Machine page.

Enter ServerA as the Server Name and 8080 as the Server Listen Port. Enter the
appropriate value for the Server Listen Address. Click Finish.

6-4 Using ActiveCache

Create the WebLogic Servers

Figure 6-3 Adding a Server to a Machine
Create a New Server

fact M et | Firiizh | Cancel

Server Properties

The Following properties will be used to identify wour new server,
* Indicates required figlds

What wauld wau like ko name your new server?
& .
Server Mame: Sapsan,

Where will this server lisken For incoming connections?

Server Listen Address:
* Geryer Listen Pork: a080

Should this server belong to a cluster?

T - -
() Mo, this is a stand-alone server.

! Yes, create a new cluster for this server.

Back [et | Finizh | Cancel

4. When you are returned to the Settings for machine page, repeat the previous three
steps to create a second server.

Enter ServerB as the Server Name and 8081 as the Server Listen Port. Enter the
appropriate value for the Server Listen Address. Click Finish.

5. Expand Environment in the Domain Structure menu and click Servers.

The Summary of Servers page displays and should be similar to Figure 6—4:

An ActiveCache Example 6-5

Create a Coherence Cluster

Figure 6—4 Summary of Servers Page

Summary of Servers

Configuration | Control

& server is an instance of- Weblogic Server that runs in its own Java Yirbual Machine (¥ and has its own

configuration,

This page summarizes each server that has been configured in the current Weblogic Server daomain,

Q2

¢ Customize this table

Servers (Filtered - More Columns Exist)

Ngw Clane [elgte Showing 1 ko 3of 3 Prewious | Mext
[]| Mame &% Cluster Machine State Health Listen Pork
[| adminseryer admin) RUMMING # o 7001
[| servera SHLUTE N Gag0
[| servers SHUTD N G031
New__ Clone [lelete Showing 1 ko 3 of 3 Previous | Mest

6.6 Create a Coherence Cluster

Create a Coherence Cluster.

1. Click Services in the domain Structure Window. Then click Coherence Clusters.
In the Summary of Coherence Clusters page, click New. In the Create Coherence
Cluster Configuration page, enter CoherenceCluster in the Name field, then

click Next.

6-6 Using ActiveCache

Create a Coherence Cluster

Figure 6-5 Creating a Coherence Cluster
Create Coherence Cluster Configuration
pact P et | Finih Cancel

Coherence Cluster Properties

The Following properties will be used toidentify your new Coherence clusker configuration.
* Indicates required fislds

What wauld wau like ko name yvour new Caoherence clusker configuration?

& "
Name: CoherenceCluster

Coherence clusters may be configured externally’in a custom confiquration file or configured within WeblLaogic Server,
How waoild wou like ko configure this Coherence cluster?

[] use a Custom Cluster Configuration File

Back Mext | Firizh | Cahize|
2. Enter a value such as 8085, in the Unicast Listen Port field. Do not change any of

the other values and click Next.

Figure 6—6 Specifying a Unicast Listen Port for a Coherence Cluster
Create Coherence Cluster Configuration
Back _Nnﬂ | Finigh | Eﬂcel

Coherence Cluster Addressing

This page indicates how this Coherence cluster will be located,

Howe should this Coherence cluster be addressed?

Unicast Listen Address: |localhost
Unicast Listen Port: 2085

Unicast Port Auto Adjust

Multicast Listen Address: 2311111

Multicast Listen Port: 7777

An ActiveCache Example 6-7

Create a Coherence Cluster

3. In the Coherence Cluster Targets page, select Servera and ServerB as the
targets. Click Finish.

Figure 6—7 Choosing Coherence Cluster Targets
Create Coherence Cluster Configuration

Back | | Mesl | Firizh | Cancel

Coherence Cluster Targets

This page indicates on which WeblLogic Server instances o clusters the Coherence Clusker is accessible.

Servers

] Adminserver

Serverh

ServerB

The Summary of Coherence Clusters page should look similar to Figure 6-8.
Figure 6-8 Summary of Coherence Clusters

summary of Coherence Clusters

Coherence provides replicated and distributed data management and caching services thak wou can
use ko reliably make an application's objecks and data available to all servers in-a Coherence cluster,

To do khis, WeblLogic Server retains configuration information used to locate and communicate wikth a
Coherence clusker,

This page displays the Coherence cluster configurations that have been created in this domain,

[Customize this table

Coherence Clusters (Filtered - More Columns Exist)

_Ne_w_ Ifin_aln-:-te Showing 1to 1 aof 1 Prewvious | Mext
[] [mMame ¢ ¥ersion Logging Enabled Targets
[] | Coherencecluster ke Serverf, Serverb

M ew [iglete Showing 1 to 1 af 1 Previous | Mext

6-8 Using ActiveCache

Deploy the Shared Library Files

6.7 Deploy the Shared Library Files

In addition to the coherence. jar file, Coherence provides a deployable shared
library, coherence-web-spi .war, that contains a native plug-in to WebLogic
Server's HTTP Session Management interface. Coherence also provides the
active-cache-1.0.jar file which contains the classes that allow WebLogic Server
to interact with Coherence.

You do not have to deploy coherence. jar for this example. It will be bundled with
the application in a later step.

To deploy the coherence-web-spi.war and active-cache-1.0. jar files:

1. From the Domain Structure menu, click Deployments. The Summary of
Deployments page displays.

2. Click Install. The Install Application Assistant screen displays.

3. Use the Install Application Assistant to deploy coherence-web-spi.war asa
library to the Servera and ServerB.

a. Locate and select the coherence-web-spi .war file. Click Next.

Figure 6-9 Selecting the coherence-web-spi.jar File for Deployment

Install Application Assistant

|||

Locate deployiment to install and prepare for deployment

Selacttha file path that representz the application ot directary, archive file,
exploded archive directony, or apolication module descriptor thal vou want to
install Yoo can also enter the path of the application directoneor file in the
Fath field:

Mote: Onlyvalid file paths are displayed below, If vou cannotfind your
deplovmeant files, nplnadyour flels) andfor confirm that vour application
contains the required deployment descriptors.

Path: Choraclelaroductcoherenceilibicoherance-wab-coiwar
Recenthy [NonE)
Used Paths:
Current | 30359950 VooV oraclad prodact L catrerence ik
Location:
! backup

| coharenca_ar_contards
— zacurity

O colerence-hiher nate.ja
O 7 Coherence-jpajm

O O coherence-loaubalancer jai
O O conerence-mockjar

' [coherence-toplink.jar

@ coherence-tirar

#T
L

o~ = :
2 caherence-wehospiwar

=
w1 colwreneacilp.jar

An ActiveCache Example 6-9

Create the Counter Web Application

b. Select ServerA and ServerB as the deployment targets (do not deploy
coherence-web-spi.war to the AdminServer). Click Next.

c. In the Optional Settings page, select the Copy this application onto every
target for me option in the Source accessibility section.

Figure 6—-10 Copying Files to Targets

Source accessibility

How should the source files be made accessible?

i) Use the defaults defined by the deployment's targets
Recommended selection,

] = - -

[+ Copy this application onto every target for me

During deployrment, the files will be copied automatically ko the managed servers to which the application is
kargeted,

) T will make the deployment accessible from the following location

Location: Choracleproductl324\coherence_3 5Vibhcoherence-w

Praovide the location From whete all targets will access this application's files, This is often a shared directory, Yoo
st ensure the application files exist in this location and that each target can reach the location,

d. You can click Finish to skip the rest of the steps in the Install Application
Assistant. The Summary of Deployments page displays after the application
is deployed.

4. Repeat Steps 1-3 to deploy active-cache-1.0.jar to ServerA and ServerB
(donot deploy active-cache-1.0. jar to the AdminServer).

6.8 Create the Counter Web Application

The Counter Web application is a simple counter implemented as a JSP. The counter is
stored as an HTTP session attribute and increments each time the page is accessed.

To create the Counter Web application:
1. Create a standard Web application directory as follows:

/
/WEB-INF

2. Copy the following code to a text file and save it as web . xml in the /WEB-INF
directory.

<?xml version = '1.0' encoding = 'windows-1252'?>

<web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

xmlns="http://java.sun.com/xml/ns/j2ee" version="2.5">
<description>Empty web.xml file for Web Application</description>

</web-app>

6-10 Using ActiveCache

Create the Counter Web Application

3.

Create a weblogic.xml file in the /WEB-INF directory.
= Add alibrary references for the coherence-web-spi .war file.
= Reference the Coherence Cluster in a coherence-cluster-ref stanza.

Example 6-2 illustrates a sample weblogic.xml file.

Example 6-2 Sample weblogic.xml File

<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.0/weblogic-web-app.xsd">

<library-ref>
<library-name>coherence-web-spi</library-name>
<specification-version>1.0.0.0</specification-version>
<implementation-version>1.0.0.0</implementation-version>
</library-ref>
<coherence-cluster-ref>
<coherence-cluster-name>CoherenceCluster</coherence-cluster-name>
</coherence-cluster-ref>

</weblogic-web-app>

4.

Bundle the coherence. jar file with the application: copy coherence. jar to
the WEB-INF/1ib directory.

Copy the following code for the counter JSP to a text file and save the file as
counter. jsp in the root of the Web application directory.

<html>
<body>

<h3>
Counter :
<%
Integer counter = new Integer(l);
HttpSession httpsession = request.getSession(true);
if (httpsession.isNew()) {
httpsession.setAttribute("count", counter);
out.println(counter) ;
} else {
int count = ((Integer)
httpsession.getAttribute("count")) .intValue();
httpsession.setAttribute("count", new Integer (++count));
out.println(count);

%>

</h3>

</body>
</html>

Create amanifest .mf file in the META-INF directory. Add references to the
active-cache JAR file. Example 6-3 illustrates a sample manifest .mf file.

Example 6-3 Sample manifest.mf File

Extension-List: active-cache
active-cache-Extension-Name: active-cache
active-cache-Specification-Version: 1.0

An ActiveCache Example 6-11

Deploy the Application

active-cache-Implmenentation-Version: 1.0

7. The Web application directory should appear as follows:

/

/counter.jsp
/META-INF/manifest.mf
/WEB-INF/web.xml
/WEB-INF/weblogic.xml
/WEB-INF/1lib/coherence.jar

8. ZIP or JAR the Web application directory and save the file as counter .war.

6.9 Deploy the Application
To deploy the counter.war application:

1. Open the Summary of Deployments page by clicking Deployments in the
Domain Structure menu in the Oracle WebLogic Server Administration Console.

2. Click Install. The Install Application Assistant screen displays.

3. Use the Install Application Assistant to deploy counter.war to Servera and
ServerB. In the Optional Settings page, select the Copy this application onto
every target for me option in the Source accessibility section.

The Summary of Deployments page displays after the application is deployed.
Figure 6-11 illustrates the deployments table with the counter Web application.

Figure 6—-11 Deployments Window Showing the Deployed Application and Libraries

Summmary of Peployments

Control | Monitoring

This page displays alisk of Java EE applicatons and skand-alons application modules that have besn instaled bo this
domain. Instaled apoliations and modules cen be started, stopped, updated (redeploved), o deleted from Che
doman by Frs: selecting the appication name and Lsing the controls on this page.

To inskall a new applcation or module For deployment to bargets in this domain, chick the Instal butkon,

Iz Customize this Lable
Deployments
Lirgtall | | Updale | | Dsleta || Slanv | Slop Showing 1k 30f 3 Previeus | Hext
(]| Mamie <% Stabe | Health | Type gﬁlﬂmnt
rder
[] | fF=ctve-cachedl 0,1.0) Bobive Library 100
Fl ﬂ.ﬂjc-'ul':ﬁrenre-?-mh-ﬁpiﬂ 00010000 Bk Librayy 100
1= I.{..In_-_l.lnl.'i:,r fctve | ¥R fp?:ﬁi:&tinn 10a
_Ir:stall Lpdale L':"!F.":'._E Star Shops Showing 1 bo3 of 3 Previcus | Mext

6-12 Using ActiveCache

Verify the Example

6.10 Start the Node Manager and the WebLogic Servers

Start the Node Manager then start the WebLogic Servers from the WebLogic Server
Administration Console. The Node Manager is a Java utility that runs as a separate
process from Oracle WebLogic Server, and enables you to perform common operations
for a Managed Server, regardless of its location with respect to its Administration
Server.

1.

Start the Node Manager from Start > All Programs > Oracle Fusion Middleware
> WebLogic Server10.3 > Tools > Node Manager.

Click Environment > Servers in the domain Structure Window. From the
Summary of Servers screen in the WebLogic Server Administration Console, click
the Control tab and start both server instances.

6.11 Verify the Example

To verify the example:

1.

Open a browser and access the Servera counter instance using the following
URL:

http://host:8080/counter/counter.jsp

The counter page displays and the counter is set to 1 as follows:

Figure 6-12 Counter Page with Counter Set to 1

%) Mozilla Firefox

File Edit Wiew History Bookmarks Tools Help

Counter: 1

Done

In a new browser (or new browser tab), access the ServerB counter instance
using the following URL:

http://host:8081/counter/counter.jsp

The counter page displays and the counter increments to 2 based on the session
data.

Figure 6—-13 Counter Page with Counter Set to 2

"J Mozilla Firefox

File Edit ‘Wiew History Bookmarks Tools Help

|| httpiffloc, . ounter, jsp [] http:/ /lo..unter.jsp G -
, P

Counter : 2 I
L

Done

An ActiveCache Example 6-13

Verify the Example

3. If you refresh the page, the counter increments to 3. Return to the original browser
(or browser tab), refresh the instance and the counter displays 4.

6-14 Using ActiveCache

7

Glossary

active-cache.jar

This file contains the Coherence integration classes for WebLogic. The file is installed
regardless of whether you install Coherence. The default installation directory for this
fileis: oracle/Middleware/wlserver
10.3/common/deployable-libraries.

coherence.jar

The main development and run-time library for Coherence. The default installation
directory for this file is oracle\Middleware\coherence_3.5\1ib. The JAR
contains a set of default XML configuration files that provide a default setup that
allows Coherence to be used out-of-box with minimal changes. Among the several
default configuration files, the most important in this book are
coherence-cache-config.xml and tangosol-coherence.xml.

Coherence cluster

A group of Coherence nodes that share a group address which allows them to
communicate. Coherence clusters consist of nodes formed by applications, modules, or
application servers (WebLogic Server instances or cache servers). There can be many
data caches within a single Coherence node.

coherence-cache-config.xml

This file is used to specify the various types of caches which can be used within a
cluster. This file is typically referred to as the cache configuration deployment
descriptor. The DTD for this file is cache-config. dtd file.

coherence-eclipselink.jar

This JAR contains the Coherence integration for EclipseLink. This JAR is required on
the classpath if you are integrating your EclipseLink JPA application with Oracle
Coherence.

coherence-web-spi.war

Contains a native plugin to WebLogic Server's HTTP Session Management interface.
The WAR file provides the necessary support files to enable HTTP session
management for applications running on WebLogic Server. The session state can be
managed in the various caching topologies available in Coherence. This WAR is
installed in the COHERENCE_HOME/ 11ib directory.

Coherence node

Any application or server process that is running the Coherence software is called a
Coherence node.

Glossary -1

eclipselink.jar

A single server process (WLS instance or cache server), WLS application (EAR), or
application module (Web application) can be a Coherence node.

There can be many data caches within a single Coherence node.

eclipselink.jar

This JAR contains the EclipseLink persistence framework. EclipseLink supports
virtually any type of data source, including relational databases, XML, or EIS systems.

session-cache-config.xml

Provides the configuration for the Coherence caches used by the Coherence*Web SPI.
This file is located inside the coherence-web-spi .war file under the
WEB-INF\classes directory. Any cache configuration change should defined in
session-cache-config.xml, and then repackaged inside
coherence-web-spi.war.

tangosol-coherence.xml

This files provides operational and run-time settings and is used to create and
configure cluster, communication, and data management services. This file is typically
referred to as the operational deployment descriptor. The DTD for this file is the
coherence.dtd file.

You can override the settings in the default tangosol-coherence.xmnl file by
creating a tangosol-coherence-override.xml file and placing it in the classpath
at run time. The override file and the operational deployment descriptor have the
same structure, however all of the elements in the override file are optional. The
override file includes only the elements that are being changed. Any missing elements
are loaded from the tangosol-coherence.xml file.

weblogic.xml

The WebLogic-specific deployment descriptor file that defines how named resources
in the web . xm1 file are mapped to resources residing elsewhere in WebLogic Server.
This file is also used to define JSP and HTTP session attributes.

weblogic-application.xml

The WebLogic Server-specific deployment descriptor extension for the
application.xml deployment descriptor from Sun Microsystems. This is where you
configure features such as shared Java EE libraries referenced in the application and
EJB caching. The file is located in the META-INF subdirectory of the application
archive.

weblogic-ejb-jar.xml

The WebLogic Server-specific deployment descriptor extension for the ejb-jar.xml
deployment descriptor from Sun Microsystems.

WebLogic Server cluster

A group of WebLogic Server instances that work to provide scalability and
high-availability for applications.

WebLogic Server node

One WebLogic Server instance hosting one or more Coherence nodes.

-2 Using ActiveCache

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 Overview
	2.1 Accessing Data Caches from WebLogic Server Applications
	2.2 Adding Session State Persistence and Management
	2.3 Accessing JPA Entities in the Data Cache

	3 Developing Applications for ActiveCache
	3.1 Developing Applications to Use ActiveCache-Main Steps
	3.2 Choose the ActiveCache Deployment Topology
	3.3 Create and Configure a Data Cache
	3.4 Access the Data Cache from your Application Code
	3.5 Locate the Cache Configuration File
	3.6 Access the Cache Configuration on Cache Server Startup
	3.7 Package Applications and Configure Cluster Nodes
	3.7.1 Packaging Applications and Configuring Application Server-Scoped Cluster Nodes
	3.7.2 Packaging Applications and Configuring EAR-Scoped Cluster Nodes
	3.7.3 Packaging Applications and Configuring WAR-Scoped Cluster Nodes

	3.8 Create and Configure Coherence Clusters
	3.9 Start a Cache Server
	3.10 Start WebLogic Server
	3.11 Monitor Coherence Cluster Properties

	4 Enabling State Session Persistence
	5 Accessing and Retrieving Relational Data
	6 An ActiveCache Example
	6.1 ActiveCache Example-Main Steps
	6.2 Start a Cache Server
	6.3 Configure and Start the WebLogic Server
	6.4 Create a Machine
	6.5 Create the WebLogic Servers
	6.6 Create a Coherence Cluster
	6.7 Deploy the Shared Library Files
	6.8 Create the Counter Web Application
	6.9 Deploy the Application
	6.10 Start the Node Manager and the WebLogic Servers
	6.11 Verify the Example

	Glossary

