

Oracle® Fusion Middleware
Developer’s Guide for Oracle Data Integrator

11g Release 1 (11.1.1)

E12643-03

October 2010

Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator, 11g Release 1 (11.1.1)

E12643-03

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: Laura Hofman Miquel

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. xvii

Audience.. xvii
Documentation Accessibility .. xvii
Related Documents ... xviii
Conventions ... xviii

What’s New In Oracle Data Integrator? ... xix

Release Themes.. xix
New Features ... xxi

Part I Understanding Oracle Data Integrator

1 Introduction to Oracle Data Integrator

1.1 Introduction to Data Integration with Oracle Data Integrator... 1-1
1.1.1 Data Integration ... 1-1
1.1.2 Oracle Data Integrator... 1-1
1.1.3 E-LT.. 1-2
1.2 Oracle Data Integrator Concepts .. 1-3
1.2.1 Introduction to Declarative Design... 1-3
1.2.2 Introduction to Knowledge Modules ... 1-4
1.2.3 Introduction to Integration Interfaces... 1-5
1.2.3.1 Datastores .. 1-6
1.2.3.2 Declarative Rules .. 1-6
1.2.3.3 Data Flow... 1-7
1.3 Typical ODI Integration Projects .. 1-9
1.3.1 Batch Oriented Integration... 1-9
1.3.2 Event Oriented Integration.. 1-10
1.3.3 Service-Oriented Architecture .. 1-10
1.3.4 Data Quality with ODI... 1-11
1.3.5 Managing Environments ... 1-12
1.4 Oracle Data Integrator Architecture.. 1-14
1.4.1 Repositories ... 1-15
1.4.2 User Interfaces... 1-16
1.4.3 Design-time Projects... 1-17
1.4.4 Run-Time Agent.. 1-17

iv

2 Oracle Data Integrator QuickStart

2.1 Oracle Data Integrator QuickStart List .. 2-1

Part II Administering the Oracle Data Integrator Architecture

3 Administering the Oracle Data Integrator Repositories

3.1 Introduction to Oracle Data Integrator Repositories ... 3-1
3.2 Creating Repository Storage Spaces... 3-2
3.3 Creating the Master Repository .. 3-3
3.4 Connecting to the Master Repository .. 3-5
3.5 Creating a Work Repository.. 3-6
3.6 Connecting to a Work Repository .. 3-7
3.7 Changing the Work Repository Password.. 3-8
3.8 Advanced Actions for Administering Repositories .. 3-8
3.8.1 Attaching and Deleting a Work Repository... 3-8
3.8.2 Erasing a Work Repository... 3-9
3.8.3 Renumbering Repositories .. 3-10

4 Setting-up the Topology

4.1 Introduction to the Oracle Data Integrator Topology ... 4-1
4.1.1 Physical Architecture .. 4-1
4.1.2 Contexts... 4-2
4.1.3 Logical Architecture .. 4-2
4.1.4 Agents.. 4-2
4.1.5 Languages ... 4-4
4.1.6 Repositories .. 4-4
4.2 Setting Up the Topology .. 4-4
4.2.1 Creating a Context ... 4-5
4.2.2 Creating a Data Server .. 4-5
4.2.2.1 Pre-requisites and Guidelines... 4-5
4.2.2.2 Creating a Data Server ... 4-6
4.2.2.3 Creating a Data Server (Advanced Settings) .. 4-7
4.2.2.4 Testing a Data Server Connection.. 4-9
4.2.3 Creating a Physical Schema ... 4-9
4.2.4 Creating a Logical Schema .. 4-10
4.2.5 Creating a Physical Agent ... 4-10
4.2.6 Creating a Logical Agent ... 4-11
4.3 Managing Agents... 4-11
4.3.1 Standalone Agent.. 4-11
4.3.1.1 Configuring the Standalone Agent .. 4-11
4.3.1.2 Launching a Standalone Agent ... 4-13
4.3.1.3 Stopping an Agent... 4-13
4.3.2 Java EE Agent.. 4-14
4.3.2.1 Deploying an Agent in a Java EE Application Server (Oracle WebLogic Server)

4-15
4.3.2.1.1 Define the Java EE Agent in the Topology ... 4-15

v

4.3.2.1.2 Create an WLS template for the Java EE Agent... 4-16
4.3.2.2 Deploying Datasources from Oracle Data Integrator in WLS for an Agent 4-17
4.3.3 Load Balancing Agents .. 4-18
4.3.3.1 Delegating Sessions ... 4-18
4.3.3.2 Agent Unavailable... 4-18
4.3.3.3 Setting Up Load Balancing... 4-18

Part III Managing and Reverse-Engineering Metadata

5 Creating and Reverse-Engineering a Model

5.1 Introduction to Models .. 5-1
5.1.1 Datastores ... 5-1
5.1.2 Data Integrity ... 5-2
5.1.3 Reverse-engineering.. 5-2
5.1.4 Changed Data Capture ... 5-2
5.2 Creating and Reverse-Engineering a Model ... 5-3
5.2.1 Creating a Model ... 5-3
5.2.2 Reverse-engineering a Model .. 5-3
5.3 Creating and Reverse-Engineering a Datastore ... 5-5
5.3.1 Creating a Datastore.. 5-5
5.3.2 Reverse-Engineering File Datastores .. 5-6
5.3.2.1 Reverse-Engineering Fixed Files .. 5-6
5.3.2.2 Reverse-Engineering Delimited Files .. 5-6
5.3.2.3 Reverse-Engineering COBOL Files .. 5-6
5.3.3 Adding and Deleting Datastore Columns .. 5-7
5.3.4 Adding and Deleting Constraints and Filters ... 5-7
5.3.4.1 Keys .. 5-7
5.3.4.2 References .. 5-8
5.3.4.3 Conditions .. 5-8
5.3.4.4 Mandatory Columns ... 5-8
5.3.4.5 Filter ... 5-9
5.4 Editing and Viewing a Datastore's Data.. 5-9
5.5 Using Partitioning... 5-9
5.5.1 Defining Manually Partitions and Sub-Partitions of Model Datastores................... 5-10
5.6 Checking Data Quality in a Model.. 5-10
5.6.1 Introduction to Data Integrity... 5-11
5.6.2 Checking a Constraint.. 5-11
5.6.3 Perform a Static Check on a Model, Sub-Model or Datastore.................................... 5-11
5.6.4 Reviewing Erroneous Records.. 5-12

6 Working with Common Format Designer

6.1 Introduction to Common Format Designer .. 6-1
6.1.1 What is a Diagram? ... 6-1
6.1.2 Why assemble datastores and columns from other models? .. 6-2
6.1.3 Graphical Synonyms ... 6-2
6.2 Using the Diagram.. 6-2

vi

6.2.1 Creating a New Diagram.. 6-2
6.2.2 Create Datastores and Columns .. 6-2
6.2.3 Creating Graphical Synonyms... 6-3
6.2.4 Creating and Editing Constraints and Filters.. 6-3
6.2.5 Printing a Diagram .. 6-4
6.3 Generating DDL scripts ... 6-5
6.4 Generating Interface IN/OUT .. 6-6

7 Working with Changed Data Capture

7.1 Introduction to Changed Data Capture... 7-1
7.1.1 The Journalizing Components ... 7-1
7.1.2 Simple vs. Consistent Set Journalizing ... 7-2
7.2 Setting up Journalizing .. 7-2
7.2.1 Setting up and Starting Journalizing .. 7-2
7.2.2 Journalizing Infrastructure Details ... 7-6
7.2.3 Journalizing Status... 7-7
7.3 Using Changed Data .. 7-7
7.3.1 Viewing Changed Data... 7-8
7.3.2 Using Changed Data: Simple Journalizing .. 7-8
7.3.3 Using Changed Data: Consistent Set Journalizing ... 7-8
7.3.4 Journalizing Tools... 7-10
7.3.5 Package Templates for Using Journalizing... 7-10

8 Working with Data Services

8.1 Introduction to Data Services.. 8-1
8.2 Setting Up Data Services.. 8-1
8.2.1 Configuring the Web Services Container... 8-2
8.2.2 Setting up the Data Sources.. 8-3
8.2.3 Configuring the Model ... 8-3
8.3 Generating and Deploying Data Services ... 8-4
8.3.1 Generating and Deploying Data Services .. 8-5
8.3.2 Overview of Generated Services ... 8-5
8.3.3 Testing Data Services .. 8-6

Part IV Developing Integration Projects

9 Creating an Integration Project

9.1 Introduction to Integration Projects ... 9-1
9.1.1 Oracle Data Integrator Project Components.. 9-1
9.1.1.1 Oracle Data Integrator Project Components .. 9-1
9.1.1.2 Global Components.. 9-3
9.1.2 Project Life Cycle ... 9-3
9.2 Creating a New Project .. 9-3
9.3 Managing Knowledge Modules ... 9-3
9.3.1 Knowledge Modules Naming Convention.. 9-4
9.3.2 Choosing the Right Knowledge Modules .. 9-6

vii

9.3.3 Importing and Replacing Knowledge Modules.. 9-7
9.3.4 Encrypting and Decrypting a KM ... 9-8
9.4 Organizing the Project with Folders .. 9-9

10 Working with Packages

10.1 Introduction to Packages .. 10-1
10.1.1 Introduction to Steps .. 10-1
10.1.2 Introduction to Creating Packages... 10-3
10.1.3 Introduction to the Package editor... 10-3
10.2 Creating a new Package .. 10-4
10.3 Working with Steps ... 10-4
10.3.1 Adding a Step.. 10-4
10.3.1.1 Executing an Interface... 10-4
10.3.1.2 Executing a Procedure .. 10-5
10.3.1.3 Variable Steps... 10-5
10.3.1.4 Adding Oracle Data Integrator Tool Steps .. 10-7
10.3.1.5 Model, Sub-Models and Datastore Related Steps... 10-7
10.3.1.6 Checking a Model, Sub-Model or Datastore .. 10-7
10.3.1.7 Journalizing a Model or a Datastore... 10-8
10.3.1.8 Reverse-Engineering a Model ... 10-8
10.3.2 Deleting a Step .. 10-9
10.3.3 Duplicating a Step... 10-9
10.3.4 Running a Step .. 10-9
10.3.5 Editing a Step’s Linked Object.. 10-9
10.3.6 Arranging the Steps Layout .. 10-10
10.4 Defining the Sequence of Steps.. 10-10
10.5 Running the Package... 10-11

11 Working with Integration Interfaces

11.1 Introduction to Integration Interfaces... 11-1
11.1.1 Components of an Integration Interface.. 11-1
11.2 Introduction to the Interface Editor .. 11-3
11.3 Creating an Interface ... 11-4
11.3.1 Create a New Interface... 11-4
11.3.2 Define the Target Datastore .. 11-5
11.3.2.1 Permanent Target Datastore .. 11-5
11.3.2.2 Temporary Target Datastore.. 11-6
11.3.2.3 Define the Update Key.. 11-7
11.3.3 Define the Datasets ... 11-8
11.3.4 Define the Source Datastores and Lookups.. 11-8
11.3.4.1 Define the Source Datastores ... 11-9
11.3.4.2 Define Lookups.. 11-10
11.3.4.3 Define Filters on the Sources.. 11-11
11.3.4.4 Define Joins between Sources ... 11-12
11.3.5 Define the Mappings .. 11-13
11.3.6 Define the Interface Flow... 11-14

viii

11.3.7 Set up Flow Control and Post-Integration Control.. 11-15
11.3.7.1 Set up Flow Control .. 11-16
11.3.7.2 Set up Post-Integration Control... 11-16
11.3.8 Execute the Integration Interface.. 11-16
11.4 Using the Quick-Edit Editor... 11-17
11.4.1 Adding and Removing a Component ... 11-17
11.4.1.1 Adding Components... 11-17
11.4.1.2 Removing Components .. 11-19
11.4.2 Editing a Component ... 11-19
11.4.3 Adding, Removing, and Configuring Datasets.. 11-20
11.4.4 Changing the Target DataStore .. 11-20
11.4.5 Customizing Tables .. 11-21
11.4.6 Using Keyboard Navigation for Common Tasks... 11-21
11.5 Designing Integration Interfaces: E-LT- and ETL-Style Interfaces 11-21

12 Working with Procedures, Variables, Sequences, and User Functions

12.1 Working with Procedures... 12-1
12.1.1 Introduction to Procedures.. 12-1
12.1.2 Creating Procedures ... 12-2
12.1.2.1 Create a New Procedure... 12-2
12.1.2.2 Define the Procedure's Options... 12-3
12.1.2.3 Create and Manage the Procedure's Commands.. 12-4
12.1.3 Using Procedures.. 12-8
12.1.3.1 Executing the Procedure... 12-8
12.1.3.2 Using a Procedure in a Package .. 12-9
12.1.3.3 Generating a Scenario for a Procedure... 12-9
12.1.4 Encrypting and Decrypting Procedures.. 12-9
12.1.4.1 Encrypting a KM or Procedure.. 12-9
12.1.4.2 Decrypting a KM or Procedure ... 12-10
12.2 Working with Variables .. 12-10
12.2.1 Introduction to Variables... 12-10
12.2.2 Creating Variables .. 12-11
12.2.3 Using Variables ... 12-12
12.2.3.1 Using Variables in Packages .. 12-13
12.2.3.2 Using Variables in Interfaces ... 12-14
12.2.3.3 Using Variables in Object Properties .. 12-15
12.2.3.4 Using Variables in Procedures... 12-15
12.2.3.5 Using Variables within Variables.. 12-16
12.2.3.6 Using Variables in the Resource Name of a Datastore 12-16
12.2.3.7 Using Variables in a Server URL... 12-17
12.2.3.8 Passing a Variable to a Scenario .. 12-18
12.2.3.9 Generating a Scenario for a Variable .. 12-18
12.3 Working with Sequences .. 12-18
12.3.1 Introduction to Sequences ... 12-19
12.3.2 Creating Sequences... 12-19
12.3.2.1 Creating Standard Sequences .. 12-19
12.3.2.2 Creating Specific Sequences... 12-20

ix

12.3.2.3 Creating Native Sequences .. 12-20
12.3.3 Using Sequences and Identity Columns ... 12-21
12.3.3.1 Tips for Using Standard and Specific Sequences.. 12-22
12.3.3.2 Identity Columns... 12-22
12.4 Working with User Functions.. 12-23
12.4.1 Introduction User Functions ... 12-23
12.4.2 Creating User Functions .. 12-23
12.4.3 Using User Functions ... 12-24

13 Working with Scenarios

13.1 Introduction to Scenarios.. 13-1
13.2 Generating a Scenario.. 13-2
13.3 Regenerating a Scenario.. 13-2
13.4 Generating a Group of Scenarios... 13-3
13.5 Exporting Scenarios ... 13-4
13.6 Importing Scenarios in Production ... 13-4
13.6.1 Import Scenarios ... 13-5
13.6.2 Replace a Scenario .. 13-5
13.6.3 Working with a Scenario from a Different Repository ... 13-5
13.7 Encrypting and Decrypting a Scenario... 13-6

14 Working with Web Services in Oracle Data Integrator

14.1 Introduction to Web Services in Oracle Data Integrator.. 14-1
14.2 Data Services... 14-2
14.3 Oracle Data Integrator Run-Time Services... 14-3
14.4 Invoking Third-Party Web Services .. 14-3
14.4.1 Introduction to Web Service Invocation.. 14-3
14.4.2 Using the OdiInvokeWebService Tool .. 14-3
14.4.3 Web Service Invocation in Integration Flows... 14-7

15 Working with Oracle Data Quality Products

15.1 Introduction to Oracle Data Quality Products .. 15-1
15.2 The Data Quality Process.. 15-1
15.2.1 Create a Quality Input File .. 15-2
15.2.2 Create an Entity... 15-2
15.2.2.1 Step 1: Validate Loader Connections.. 15-2
15.2.2.2 Step 2: Create Entity and Import Data ... 15-3
15.2.2.3 Step 3: Verify Entity .. 15-4
15.2.3 Create a Profiling Project ... 15-5
15.2.4 Create a Oracle Data Quality Project ... 15-5
15.2.5 Export the Data Quality Project.. 15-5
15.2.6 Reverse-engineer the Entities.. 15-8
15.2.7 Use Oracle Data Quality Input and Output Files in Interfaces.................................. 15-9
15.2.8 Run this Quality Project from Oracle Data Integrator ... 15-9
15.2.9 Sequence the Process in a Package... 15-9

x

Part V Managing Integration Projects

16 Organizing and Documenting your Work

16.1 Organizing Projects with Folders .. 16-1
16.1.1 Creating a New Folder... 16-1
16.1.2 Arranging Project Folders ... 16-2
16.2 Organizing Models with Folders... 16-2
16.2.1 Creating a New Model Folder .. 16-2
16.2.2 Arranging Model Folders .. 16-2
16.2.3 Creating and Organizing Sub-Models... 16-2
16.3 Using Cross-References... 16-4
16.3.1 Browsing Cross-References ... 16-4
16.3.2 Resolving Missing References... 16-5
16.4 Using Markers and Memos .. 16-5
16.4.1 Markers .. 16-6
16.4.2 Memos .. 16-7
16.5 Handling Concurrent Changes.. 16-7
16.5.1 Concurrent Editing Check... 16-7
16.5.2 Object Locking... 16-8
16.6 Creating PDF Reports.. 16-9
16.6.1 Generating a Topology Report ... 16-9
16.6.2 Generating a Report for the Version Comparison Results ... 16-9
16.6.3 Generating a Report for an Oracle Data Integrator Object ... 16-9
16.6.4 Generating a Diagram Report... 16-10

17 Working with Version Management

17.1 Working with Object Flags ... 17-1
17.2 Working with Versions ... 17-2
17.3 Working with the Version Comparison Tool .. 17-4
17.3.1 Viewing the Differences between two Versions .. 17-4
17.3.2 Using Comparison Filters.. 17-5
17.3.3 Generating and Printing a Report of your Comparison Results 17-6
17.4 Working with Solutions .. 17-6
17.4.1 Working with Elements in a Solution.. 17-7
17.4.2 Synchronizing Solutions .. 17-7
17.4.3 Restoring and Checking in a Solution ... 17-8
17.4.4 Importing and Exporting Solutions ... 17-8

18 Exporting/Importing

18.1 Import and Export Concepts .. 18-1
18.1.1 Internal Identifiers (IDs) .. 18-1
18.1.2 Relationships between Objects ... 18-2
18.1.3 Import Modes.. 18-3
18.1.4 Tips for Import/Export.. 18-5
18.2 Exporting and Importing Objects .. 18-6
18.2.1 Exporting one ODI Object ... 18-7

xi

18.2.2 Export Multiple ODI Objects .. 18-8
18.2.3 Importing Objects ... 18-8
18.3 Repository-Level Export/Import .. 18-10
18.3.1 Exporting and Importing the Master Repository... 18-10
18.3.2 Export/Import the Topology and Security Settings.. 18-12
18.3.3 Exporting and Importing a Work Repository .. 18-13
18.4 Exporting the Technical Environment .. 18-14

Part VI Running and Monitoring Integration Processes

19 Running Integration Processes

19.1 Understanding ODI Executions... 19-1
19.2 Executing Interfaces, Procedures, Packages and Model Operations 19-3
19.3 Executing a Scenario.. 19-3
19.3.1 Executing a Scenario from the Studio.. 19-3
19.3.2 Executing a Scenario from a Command Line ... 19-3
19.4 Restarting a Session ... 19-5
19.4.1 Restarting a Session from the Studio ... 19-6
19.4.2 Restarting a Session from a Command Line... 19-6
19.5 Scheduling Scenarios... 19-7
19.5.1 Scheduling a Scenario with the Built-in Scheduler.. 19-7
19.5.1.1 Scheduling a Scenario ... 19-7
19.5.1.2 Updating an Agent’s Schedule .. 19-9
19.5.1.3 Displaying the Schedule ... 19-9
19.5.2 Scheduling a Scenario with an External Scheduler ... 19-10
19.6 Simulating an Execution ... 19-10
19.7 Managing Executions Using Web Services .. 19-11
19.7.1 Introduction to Run-Time Web Services ... 19-11
19.7.2 Executing a Scenario Using a Web Service ... 19-12
19.7.3 Monitoring a Session Status Using a Web Service... 19-12
19.7.4 Restarting a Session Using a Web Service... 19-13
19.7.5 Listing Contexts Using a Web Service ... 19-13
19.7.6 Listing Scenarios Using a Web Service.. 19-13
19.7.7 Accessing the Web Service from a Command Line... 19-13

20 Monitoring Integration Processes

20.1 Introduction to Monitoring .. 20-1
20.1.1 Introduction to Operator Navigator .. 20-1
20.1.2 Sessions .. 20-2
20.1.3 Scenarios and Schedules .. 20-3
20.2 Reviewing your Execution Results.. 20-3
20.2.1 Status .. 20-3
20.2.2 Managing Errors ... 20-4
20.2.3 Managing Successful Executions.. 20-4
20.3 Managing your Executions... 20-5
20.3.1 Managing Sessions ... 20-5

xii

20.3.1.1 Starting a Session ... 20-6
20.3.1.2 Stopping a Session... 20-6
20.3.1.3 Restarting a Session... 20-6
20.3.1.4 Cleaning Stale Sessions... 20-6
20.3.2 Managing the Log... 20-7
20.3.2.1 Filtering Sessions ... 20-7
20.3.2.2 Purging the Log ... 20-8
20.3.2.3 Organizing the Log with Session Folders .. 20-8
20.3.2.4 Exporting and Importing Log Data .. 20-9
20.3.3 Managing Scenarios ... 20-10
20.3.3.1 Scenario Folders... 20-11
20.3.3.2 Importing Scenarios and Solutions in Production.. 20-11
20.3.4 Managing Schedules .. 20-11

21 Working with Oracle Data Integrator Console

21.1 Introduction to Oracle Data Integrator Console.. 21-1
21.1.1 Introduction to Oracle Data Integrator Console .. 21-1
21.1.2 Oracle Data Integrator Console Interface.. 21-2
21.2 Using Oracle Data Integrator Console.. 21-3
21.2.1 Connecting to Oracle Data Integrator Console .. 21-3
21.2.2 Generic User Operations.. 21-4
21.2.3 Managing Scenarios and Sessions.. 21-5
21.2.4 Using Data Lineage and Flow Map ... 21-7
21.2.5 Performing Administrative Operations .. 21-8

Part VII Managing the Security Settings

22 Managing the Security in Oracle Data Integrator

22.1 Introduction to Oracle Data Integrator Security ... 22-1
22.1.1 Objects, Instances and Methods ... 22-1
22.1.2 Profiles.. 22-2
22.1.3 Users ... 22-3
22.2 Setting up a Security Policy.. 22-4
22.2.1 Security Policy Approach .. 22-4
22.2.2 Managing Profiles... 22-5
22.2.2.1 Creating a New Profile ... 22-5
22.2.2.2 Duplicating a Profile ... 22-5
22.2.2.3 Deleting a Profile ... 22-5
22.2.3 Managing Users .. 22-5
22.2.3.1 Creating a New User... 22-5
22.2.3.2 Assigning a Profile to a User.. 22-6
22.2.3.3 Removing a Profile from a User .. 22-6
22.2.3.4 Deleting a User... 22-6
22.2.4 Managing Privileges... 22-7
22.2.4.1 Granting a Profile Method or User Method .. 22-7
22.2.4.2 Revoking a Profile Method or User Method ... 22-7

xiii

22.2.4.3 Granting an Authorization by Object Instance ... 22-7
22.2.4.4 Revoking an Authorization by Object Instance .. 22-8
22.2.4.5 Cleaning up Unused Authorizations.. 22-8
22.3 Advanced Security... 22-9
22.3.1 Setting Up External Password Storage .. 22-9
22.3.1.1 Setting the Password Storage... 22-9
22.3.1.2 Switching the Password Storage ... 22-10
22.3.1.3 Recovering the Password Storage... 22-10
22.3.2 Setting Up External Authentication ... 22-11
22.3.2.1 Configuring ODI Components for External Authentication 22-11
22.3.2.2 Setting the Authentication Mode .. 22-12
22.3.2.3 Switching the Authentication Mode... 22-12
22.3.3 Enforcing Password Policies ... 22-14

A Oracle Data Integrator Tools Reference

A.1 Using the Oracle Data Integrator Tools .. A-1
A.1.1 Using a Tool in a Package.. A-1
A.1.2 Using a Tool in a Knowledge Module or a Procedure Command A-2
A.1.3 Using a Tool from a Command Line ... A-2
A.2 Using Open Tools .. A-2
A.2.1 Installing and Declaring an Open Tool ... A-3
A.2.1.1 Installing an Open Tool .. A-3
A.2.1.2 Declaring a New Open Tool .. A-3
A.2.2 Using Open Tools in a Package or Procedure .. A-4
A.3 Developing Open Tools .. A-4
A.3.1 Classes .. A-4
A.3.2 Developing a New Open Tool .. A-4
A.3.2.1 Implementing the Class .. A-5
A.3.2.1.1 Declaration .. A-5
A.3.2.1.2 Importing Packages.. A-5
A.3.2.1.3 Defining the Parameters.. A-6
A.3.2.1.4 Implementing Informational Functions.. A-6
A.3.2.1.5 Execution ... A-7
A.3.3 Open Tools at Run Time .. A-7
A.4 ODI Tools per Category .. A-8
A.4.1 Metadata... A-8
A.4.2 Oracle Data Integrator Objects.. A-8
A.4.3 Utilities ... A-8
A.4.4 Internet Related Tasks.. A-9
A.4.5 Files ... A-9
A.4.6 SAP.. A-9
A.4.7 XML .. A-9
A.4.8 Event Detection ... A-10
A.4.9 Changed Data Capture .. A-10
A.5 Alphabetic List of ODI Tools.. A-10
A.5.1 OdiAnt.. A-12
A.5.2 OdiBeep.. A-13

xiv

A.5.3 OdiDataQuality... A-13
A.5.4 OdiDeleteScen ... A-14
A.5.5 OdiExportAllScen ... A-14
A.5.6 OdiExportEnvironmentInformation.. A-16
A.5.7 OdiExportLog.. A-17
A.5.8 OdiExportMaster .. A-18
A.5.9 OdiExportObject ... A-19
A.5.10 OdiExportScen .. A-21
A.5.11 OdiExportWork... A-22
A.5.12 OdiFileAppend ... A-23
A.5.13 OdiFileCopy .. A-24
A.5.14 OdiFileDelete... A-26
A.5.15 OdiFileMove.. A-28
A.5.16 OdiFileWait.. A-29
A.5.17 OdiFtpGet .. A-32
A.5.18 OdiFtpPut .. A-33
A.5.19 OdiGenerateAllScen... A-35
A.5.20 OdiImportObject ... A-36
A.5.21 OdiImportScen .. A-37
A.5.22 OdiInvokeWebService ... A-37
A.5.23 OdiKillAgent ... A-40
A.5.24 OdiMkDir... A-40
A.5.25 OdiOSCommand .. A-41
A.5.26 OdiOutFile ... A-42
A.5.27 OdiPingAgent.. A-43
A.5.28 OdiPurgeLog ... A-43
A.5.29 OdiReadMail ... A-45
A.5.30 OdiRefreshJournalCount ... A-47
A.5.31 OdiReinitializeSeq .. A-48
A.5.32 OdiReverseGetMetaData... A-49
A.5.33 OdiReverseResetTable ... A-50
A.5.34 OdiReverseSetMetaData.. A-50
A.5.35 OdiRetrieveJournalData .. A-50
A.5.36 OdiSAPALEClient and OdiSAPALEClient3 .. A-52
A.5.37 OdiSAPALEServer and OdiSAPALEServer3 ... A-53
A.5.38 OdiScpGet .. A-55
A.5.39 OdiScpPut .. A-57
A.5.40 OdiSendMail.. A-59
A.5.41 OdiSftpGet ... A-61
A.5.42 OdiSftpPut ... A-63
A.5.43 OdiSleep ... A-65
A.5.44 OdiSqlUnload.. A-65
A.5.45 OdiStartScen .. A-67
A.5.46 OdiUnZip... A-69
A.5.47 OdiUpdateAgentSchedule .. A-70
A.5.48 OdiWaitForChildSession ... A-70
A.5.49 OdiWaitForData.. A-72

xv

A.5.50 OdiWaitForLogData... A-75
A.5.51 OdiWaitForTable .. A-78
A.5.52 OdiXMLConcat ... A-79
A.5.53 OdiXMLSplit ... A-81
A.5.54 OdiZip .. A-83

B User Parameters

xvi

xvii

Preface

This manual describes how to use Oracle Data Integrator.

This preface contains the following topics:.

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This document is intended for developers and administrators who want to use Oracle
Data Integrator as a development tool for their integration processes. This guide
explains how to work with the graphical components that make up the Oracle Data
Integrator graphical user interface. It guides you through common tasks and worked
examples of development in Oracle Data Integrator. It includes conceptual and
background information on the features and functionalities of Oracle Data Integrator.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

xviii

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see the following Oracle resources:

■ Oracle Fusion Middleware Getting Started with Oracle Data Integrator

■ Oracle Fusion Middleware Installation Guide for Oracle Data Integrator

■ Oracle Fusion Middleware Upgrade Guide for Oracle Data Integrator

■ Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator

■ Oracle Fusion Middleware Connectivity and Modules Guide for Oracle Data Integrator

■ Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator

■ Oracle Fusion Middleware Knowledge Module Developer's Guide for Oracle Data
Integrator

■ Oracle Data Integrator 11g Online Help

■ Oracle Data Integrator 11g Release Notes, included with your Oracle Data Integrator 11g
installation, and on Oracle Technology Network

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xix

What’s New In Oracle Data Integrator?

This document describes the new and enhanced features introduced with Oracle Data
Integrator 11g Release 1 (11.1.1).

This chapter includes the following sections:

■ Release Themes. This section provides the primary themes of this release and
associated features.

■ New Features. This section provides a complete list of the new features for this
release.

Release Themes
While the new features of Oracle Data Integrator for this release cover a number of
different areas, the most important changes for new and existing customers are:

■ New Architectures Supported for Enterprise-Scale Deployment Options

■ Core Design-Time Features for Enhanced Productivity and Performance

■ Standard JDeveloper-Based IDE: Oracle Data Integrator Studio

■ Developer Usability and Productivity Enhancements

■ New Features for Administration

■ Enhanced Diagnostic Features and Capabilities

■ Technologies and Knowledge Modules Enhancements

New Architectures Supported for Enterprise-Scale Deployment Options
Oracle Data Integrator now provides several deployment options for lightweight
standalone deployments and enhanced architectures for deployments based on
cluster-able and fault tolerant application server frameworks. Features in this area
include:

■ Standalone Agent deployment when agents should be deployed on the same
hardware where database software is running

■ Java EE Agent when agents are used in a clustered Java EE configuration

■ External Password Storage and External Authentication and SSO for hardening
security and support centralized authentication

■ Repository Connection Retry, OPMN Integration and Support for WLS Clustering
for high-availability

xx

■ Java EE Agent Template Generation, Pre-Packaged WebLogic Server Templates for
Java EE Components and Automatic Datasource Creation for WebLogic Server

Core Design-Time Features for Enhanced Productivity and Performance
Oracle Data Integrator now provides a set of core features for increasing development
productivity and the performance of the integration flows. Features in this area
include:

■ Datasets and Set-Based Operators

■ Support for Natural Joins

■ Partitioning

■ Lookups

■ Derived Select for Temporary Interfaces

■ Automatic Temporary Index Management

■ Support for Native Sequences

Standard JDeveloper-Based IDE: Oracle Data Integrator Studio
The Oracle Data Integrator User Interface now uses the JDeveloper-based integrated
development environment (IDE), and is renamed Oracle Data Integrator Studio.

The user interface has been entirely redesigned in this release to improve developer
productivity and make advanced features more accessible. This new IDE provides the
following key features:

■ New Navigator Organization

■ New Look and Feel

■ Redesigned Editors

■ Improved User Assistance

Developer Usability and Productivity Enhancements
In addition to the entire redesign of the development interface, features have been
added to improve the developer’s experience and productivity while working in
Oracle Data Integrator. Features in this area include:

■ New Interface Editor

■ Quick-Edit to edit interface in a tabular view

■ Auto fixing errors from the interface editor

■ Scenario Naming Convention

■ Oracle Data Integrator Java API to programmatically manage design and run-time
operations.

New Features for Administration
Features have been added to improve manageability of the Oracle Data Integrator
components and sessions. Features in this area include:

■ New Oracle Data Integrator Console

■ Oracle Fusion Middleware Control Console Integration

■ Stale Session Detection and Management

xxi

■ Kill Sessions Immediate

■ Import Report and Repository Corruption Prevention

Enhanced Diagnostic Features and Capabilities
Oracle Data Integrator has been improved with features to facilitate problems
troubleshooting and fixing. Features in this area include:

■ Enhanced Error Messages

■ Enhanced Notifications and Logging

■ Code Simulation

■ Row-By-Row KMs for Debugging.

Technologies and Knowledge Modules Enhancements
New technologies and knowledge modules planned for this release have been
continuously delivered during the 10g lifecycle patch sets. In addition, existing
knowledge modules and technologies have been enhanced to support new core
product features and diagnostics.

Features added in 10g Release 3 patch sets include:

■ Oracle GoldenGate Knowledge Modules

■ Oracle E-Business Suite Knowledge Modules

■ Oracle OLAP Knowledge Modules

■ Oracle PeopleSoft Knowledge Modules

■ Oracle Siebel Knowledge Modules

■ JDE EnterpriseOne Knowledge Modules

■ Oracle Changed Data Capture Adapters/Attunity Streams Knowledge Modules

■ Hyperion Adapters

■ Row-By-Row KMs for Debugging

■ Teradata Optimizations

■ SAP ERP Adapter

■ SAP BW Adapter

Features added for this release include:

■ KM Enhancements for New Core Features

■ Oracle Business Intelligence Enterprise Dietitian - Physical

■ Oracle Multi-Table Inserts

■ Teradata Multi-Statements

New Features
Release 11.1.1 includes many new features. These features are listed below and
grouped in the followings component and functional areas:

■ Runtime Agent

■ Oracle WebLogic Server Integration

xxii

■ Web Services

■ Advanced Security Capabilities

■ Production and Monitoring

■ High Availability

■ Improved Integration Design

■ Oracle Data Integrator Studio

■ Export/Import

■ KM Enhancements in Release 10.1.3 Patch sets

■ KM Enhancements in Release 11.1.1

Runtime Agent
Oracle Data Integrator runtime agent has been enhanced with the features listed in this
section.

Java EE Agent
The Runtime Agent can now be deployed as a Java EE component within an
application server. It benefits in this configuration from the application server layer
features such as clustering and connection pooling for large configurations. This Java
EE Agent exposes an MBeans interface enabling lifecycle operations (start/stop) from
the application server console and metrics that can be used by the application server
console to monitor the agent activity and health.

Standalone Agent
In addition to the Java EE Agent, a Standalone Agent, similar to the one available in
previous Oracle Data Integrator releases, is still available. It runs in a simple Java
Virtual Machine and can be deployed where needed to perform the integration flows.

Connected Scheduler
Both agent flavors are now always connected to a master repository, and are started
with the built-in scheduler service. This scheduler service takes its schedules from all
the Work Repositories attached to the connected Master.

HTTP Protocol for Component Communication
Communications with the run-time agents (for example, when sending an execution
request to a remote agent) now use standard HTTP protocol. This feature facilitates
network management and security for Oracle Data Integrator components in
distributed environments.

Oracle WebLogic Server Integration
Oracle Data Integrator components integrate seamlessly with Oracle’s Java EE
application server.

Java EE Agent Template Generation
Oracle Data Integrator provides a wizard to automatically generate templates for
deploying Java EE agents in Oracle WebLogic Server. Such a template includes the
Java EE Agent and its configuration, and can optionally include the JDBC datasources
definitions required for this agent as well as the drivers and libraries files for these
datasources to work.

xxiii

By using the Oracle WebLogic Configuration Wizard, domain administrators can
extend their domains or create a new domain for the Oracle Data Integrator Java EE
runtime agents.

Automatic Datasource Creation for WebLogic Server
Java EE Components use JDBC datasources to connect to the repositories as well as to
the source and target data servers, and benefit, when deployed in an application
server, from the connection pooling feature of their container.

To facilitate the creation of these datasources in the application server, Oracle Data
Integrator Studio provides an option to deploy a datasource into a remote Oracle
WebLogic application server.

Pre-Packaged WebLogic Server Templates for Java EE Components
Oracle Data Integrator Java EE components that can be deployed in an application
server are provided now with pre-packaged templates for Oracle WebLogic Server.
Oracle Data Integrator provides templates for:

■ Java EE Runtime Agent

■ Oracle Data Integrator Console

■ Public Web Service

These templates are used to create a WLS domain for Oracle Data Integrator or extend
an existing domain with Oracle Data Integrator components.

Web Services
Oracle Data Integrator web services support has been enhanced with the features
listed in this section.

JAX-WS Support for Web Services
Oracle Data Integrator Web Services - including the Public Web Service as well as the
generated Data Services - now support the market standard Java API for XML Web
Services (JAX-WS 2.0). As a consequence, they can be deployed into any web service
container that implements this API. The use of the Axis2 stack for these web services is
deprecated.

Web Services Changes and Reorganization
The web services have been reorganized and the following run-time web operations
are now part of the run-time agent application:

■ getVersion - Retrieve agent version. This operation is new in this version.

■ getSessionStatus - Retrieve the status of a session.

■ invokeRestartSess - Restart a session.

■ invokeStartScen -Start a scenario.

The Public Web Service application retains the following operations:

■ listScenario - List the scenarios.

■ listContext- List the contexts.

Advanced Security Capabilities
Security in Oracle Data Integrator can be hardened with the enterprise features listed
in this section.

xxiv

External Password Storage
Source and target data server passwords, as well as the context passwords, can
optionally be stored in an external credential store instead of storing them in an
encrypted form in the master repository. This credential store is accessed via the Java
Platform Security (JPS) Credential Store Framework (CSF). The password storage
method (internal or external with JPS) is defined at repository creation, and can be
switched for existing repositories.

With this password storage approach, administrators can choose to rely on a corporate
credential store for securing their data server passwords.

External Authentication and SSO
Oracle Data Integrator users can be authenticated using an external authentication
service. Using Oracle Platform Security Services (OPSS), Oracle Data Integrator users
authenticate against an external Enterprise Identity Store (LDAP, Oracle Internet
Directory, Active Directory), which contains in a central place enterprise user and
passwords.

With this feature, the master repository retains the Oracle Data Integrator-specific
privileges and the user names, but passwords rely in a centralized identity store, and
authentication always takes place against this external store. The authentication mode
(internal or external) is defined at repository creation, and can be switched for existing
repositories.

This feature enables Single Sign-On (SSO) for Oracle Data Integrator Console, and
seamless authentication integration between Enterprise Manager and Oracle Data
Integrator Console.

Default Password Policy
Oracle Data Integrator is now installed with a default password policy that prevents
from setting passwords with a low security level.

Java EE Components Passwords in Credential Store
When deploying in Oracle WebLogic Server a Java EE component that requires a
bootstrap connection to a repository (Java EE Agent, Oracle Data Integrator Console),
the configuration of this component contains a Supervisor user login. To enforce a
strong security policy this user's password is not stored within the application
configuration, but centralized in the WLS Credential Store. The configuration will refer
to this centralized store.

Production and Monitoring
Oracle Data Integrator provides new features for an enhanced experience in
production.

Enhanced Error Messages
Error messages raised by Oracle Data Integrator Components and Sessions have been
enhanced to provide administrators and production operators with precise
information for troubleshooting and fixing the status of the architecture, and
debugging the sessions. Enhanced messages cover:

■ Component lifecycle (startup, shutdown, schedule refresh, etc.)

■ Session lifecycle (incorrect scenario version, load balancing issue, agent not
available, etc.)

xxv

■ Session Tasks/Steps (source/target not available, interface error). Database errors
are enriched with information allowing developers or production operators to
quickly identify the location and reason for an error.

These error messages are standardized with Oracle Data Integrator error codes.

Enhanced Notifications and Logging
Oracle Data Integrator components are now using the Oracle Logging Framework.
Logging in any component can be configured to meet the requirements of
development, test and production environments.

In addition to this logging capability, agent components can now raise status and
session information in the form of Java Management Extension (JMX) notifications that
propagate to any administration console.

Error Tables
Error tables can now be managed via Oracle Data Integrator Console. Production
operators can review the content of the error tables and purge their content selectively.

Purge Log on Session Count
The OdiPurgeLog tool has been enhanced to support a purge of the log while retaining
only a number of sessions in the log. Purged sessions can be automatically archived by
the tool before performing the purge.

New Oracle Data Integrator Console
The Metadata Navigator UI has been replaced with the Oracle Data Integrator
Console. This web interface for production operations has been rewritten using the
ADF-Faces Ajax Framework for a rich user experience. Using this console, production
users can set up an environment, export/import the repositories, manage run-time
operations, monitor the sessions, diagnose the errors, browse through design-time
artifacts, and generate lineage reports.

This web interface integrates seamlessly with Oracle Fusion Middleware Control
Console and allows Fusion Middleware administrators to drill down into the details of
Oracle Data Integrator components and sessions.

Oracle Fusion Middleware Control Console Integration
Oracle Data Integrator provides an extension integrated into the Oracle Fusion
Middleware Control Console. The Oracle Data Integrator components can be
monitored as a domain via this console and administrators can have a global view of
these components along with other Fusion Middleware components from a single
administration console.

This extension discovers Oracle Data Integrator components and allows
administrators to:

■ Monitor the status and view the metrics of the master and work repositories, Java
EE and Standalone Agents components, and the Oracle Data Integrator Console

■ Review from a central location the notifications raised by any of these components

■ Transparently drill down into Oracle Data Integrator console to browse detailed
information stored in the repositories

■ Start and stop Oracle Data Integrator Console and Java EE Agent applications

■ Monitor session executions and review session statistics attached to any of those
components

xxvi

■ Search for specific sessions, view a session status, and drill down into the session
details in Oracle Data Integrator Console.

Kill Sessions Immediate
Sessions can now be stopped in an immediate mode. This new mode attempts to abort
the current operation (for example, SQL statements launched against a database
engine) instead of waiting for its completion.

High Availability
For an enterprise scale deployment, the features enable high available of the Oracle
Data Integrator components.

Stale Session Detection and Management
Oracle Data Integrator is now able to detect sessions pending due to an unexpected
shutdown of the agent or repository. Such stale session are now managed and pushed
to an error state.

Repository Connection Retry
The Agent, when connected to a repository based on Oracle RAC technology, can be
configured with connection retry logic. If the one of the Oracle RAC nodes supporting
sessions for an agent becomes unavailable, the agent is able to retry and continue its
session on another node of the Oracle RAC infrastructure.

Support for WLS Clustering
Clustering is supported for the Java EE agents deployed on a WebLogic Server.
Clustering includes schedule porting on a different cluster node. Unrecoverable
running sessions are automatically moved to an error state.

OPMN Integration
Standalone agent can be now made highly available using Oracle Process Manager
and Notification Server (OPMN). Scripts are provided to configure OPMN to protect
standalone agents against failure.

Improved Integration Design
Integration interface design and performance are enhanced with the following
features.

Partitioning
Oracle Data Integrator now supports partitioning features of the data servers.
Partitions can be reverse-engineered using RKMs or manually created in models.
When designing an interface, it is possible to define the partition to address on the
sources and target datastores. Oracle Data Integrator code generation handles the
partition usage syntax for each technology that supports this feature.

Lookups
A wizard is available in the interface editor to create lookups using a source as the
driving table and a model or target datastore as the driving table. These lookups now
appear as a compact graphical object in the Sources diagram of the interface. The user
can choose how the lookup is generated: as a Left Outer Join in the FROM clause or as
an expression in the SELECT clause (in-memory lookup with nested loop). This second
syntax is sometimes more efficient on small lookup tables.

xxvii

This feature simplifies the design and readability of interfaces using lookups, and
allows for optimized code for executing lookups.

Datasets and Set-Based Operators
This major enhancement introduces the notion of dataset in interfaces. A dataset
represents the data flow coming from a group of joined and filtered source datastores.
Each dataset includes the target mappings for this group of sources. Several datasets
can be merged into the interface target datastore using set-based operators such as
Union and Intersect.

This feature accelerates the interface design and reduces the number of interfaces
needed to merge several data flows into the same target datastore.

Derived Select for Temporary Interfaces
When using a temporary interface as a source or a lookup table in another interface,
you can choose not to persist the target of the temporary interface, and generate
instead a Derived Select (sub-select) statement corresponding to the loading of the
temporary datastore. Consequently, the temporary interface no longer needs to be
executed to load the temporary datastore. The code generated for the sub-select is
either a default generated code, or a customized syntax defined in an IKM.

This feature eliminates the need for complex packages handling temporary interfaces
and simplifies the execution of cascades of temporary interfaces.

Support for Native Sequences
Oracle Data Integrator now provides support for a new type of sequence that directly
maps to database-defined sequences. When created, these can be picked from a list
retrieved from the database. Native Sequences are used as regular Oracle Data
Integrator sequences, and the code generation automatically handles
technology-specific syntax for sequences.

This feature simplifies the use of native sequences in all expressions, and enables cross
references when using such sequences.

Support for Natural Joins
Oracle Data Integrator now provides support for the Natural join, defined at
technology level. This join does not require any join expression to be specified, and is
handled by the engine that processes it. This engine matches automatically columns
with the same name.

Automatic Temporary Index Management
When creating joins or filters on source tables, it is possible to have Oracle Data
Integrator automatically generate temporary indexes for optimizing the execution of
these joins or filters. The user selects the type of index that needs to be created in the
list of index types for the technology. Knowledge modules automatically generate the
code for handling indexes creation before executing the join and filters as well as
deletion after usage.

This feature provides automated optimization of the joins and filters execution, and
enables better performances for integration interfaces.

New Interface Editor
The interface editor, used to create the integration interfaces, has been entirely
redesigned to use the JDeveloper diagramming framework.

The advantages of this new diagram include:

xxviii

■ Improved look and feel and better user experience

■ Support for graphical options on diagram objects. For example, compact and
expanded view can be used for better readability.

■ Thumbnail and zoom in/out is supported on the sources and flow diagram to
navigate large diagrams.

■ Multiple source columns can be dropped directly onto the target datastore for
faster mapping.

■ Target mapping table is improved. Mapping properties (Position, Indicator, Name
and Mapping expression) can be displayed selectively and sorted.

■ Sources, targets, filters, joins can be selected and edited directly in the flow
diagram.

Quick-Edit
The new interface editor includes a new Quick-Edit tab to edit the interface diagram
faster. Quick-Edit displays these components in a tabular form, supports mass-updates
and intuitive keyboard navigation.

Auto fixing
When saving an interface or clicking the error button from the interface editor toolbar,
a list of all the design errors in the interface is displayed with meaningful messages
and tips. Automated fixes are suggested and can be applied with a single click.

Code Simulation
When performing an execution of design-time objects from the Oracle Data Integrator
Studio (for example, when running an interface, a procedure, a package or a
customized reverse-engineering process), it is possible to make a code simulation
instead of a full execution.

Code simulation displays a session simulation report. This report includes complete
session, step, and task information and contains the full generated code. The session
simulation report can be reviewed and saved in XML or HTML format.

With this features Oracle Data Integrator developers can easily review the generated
code for troubleshooting, debugging, optimization purposes, and save this generated
code for documentation or archive purposes.

Reverse-Engineering Improvements
When a model is created the reverse-engineering context is automatically set to the
default context, instead of having to select it manually. In addition, when performing a
selective reverse-engineering, the system tables are now hidden from the display.

Scenario Naming Convention
When generating a scenario or a group of scenarios from the Studio or using a tool, the
naming convention that is used for naming the scenario can be defined in a pattern
(using the object name, folder path or project name) using the Scenario Naming
Convention user parameter.

Object Name Length Extension
Object names have been extended to support long database object names (128
characters) and repository object labels (400 characters).

xxix

Oracle Data Integrator Java API
Oracle Data Integrator provides a Java API for managing run-time and design time
artifacts. Using this API, Java developers can embed Oracle Data Integrator in their
product and can drive integration process creation from their own user interface.

Oracle Data Integrator Studio
Oracle Data Integrator provides a new IDE called the Studio, based on JDeveloper.
This component includes the following features:

New Navigator Organization
The new Oracle Data Integrator studio is used as a replacement for all Oracle Data
Integrator modules (Designer, Topology, Operator and Security Manager). All the
features of these modules now appear as Navigators within the Oracle Data Integrator
Studio window.

This new Navigator organization provides the following features:

■ Navigators can be docked/undocked and displayed/hidden using the View
menu. These Navigators allow access to the former module-specific actions from
their Navigator toolbar menu (for example, the export/import master repository
operations in the Topology Navigator)

■ Accordions group the tree views that appear in the Navigators (for example the
Project and Models accordions in the Designer Navigator). Accordions that are not
frequently used can be minimized into the lower section of the Navigator to allow
more room for the other tree views. Accordions allow access to the tree
view-specific actions from their toolbar menu (for example, import project from
the Project Accordion in the Designer Navigator).

■ Tree Views objects are provided with context menus and markers the same way as
in Oracle Data Integrator 10g. Tree view objects can be dragged and dropped
within a tree view or across tree views for defining the security policies. Double
clicking an object opens by default the corresponding Object Editor.

■ Context Menus have been reorganized into groups with separators and
normalized across the interface.

This feature provides a single user interface from which the user can perform all the
tasks in a project lifecycle. It also provides a better productivity for the user.

New Look and Feel
The look and feel of Oracle Data Integrator has been enhanced with the use of the
JDeveloper base IDE. This new look and feel is customizable with the Preferences
menu option. Icons are being redesigned in a new, trendy style to enhance the overall
visual appeal of Oracle Data Integrator

Redesigned Editors
All object editors in Oracle Data Integrator have been redesigned for better usability.

Main changes include:

■ Tabs are organized as finger tabs on the left hand-side of the editor. Complex
editors (as for example Interface or Package Editors) have also tabs appearing in
the bottom of the editor.

■ Fields have been grouped under headers. These field groups implement an
expand/collapse behavior.

xxx

■ Fields and labels have been organized in a standard way for all editors for a better
readability of the editors.

■ Text Buttons in the editors are transformed into hyperlinks, and all buttons
appearing in editors have been redesigned.

■ Knowledge Modules, Actions and Procedure editors have been redesigned in
order to edit the Lines directly from the main editor instead of opening a separate
editor.

Window Management
The windows, editors and navigators in the Oracle Data Integrator Studio benefit from
the following JDeveloper IDE features:

■ Full Docking Support: All windows, editors and navigators can now be docked
and undocked intuitively. The visual feedback provided when repositioning editor
windows and dockable windows has been improved. You now see an outline
shape of where the window will be placed when the mouse is released. You can
also now reorder the document tabs using drag and drop.

■ Fast maximize and restore: To quickly maximize a dockable window or the editor
area, double-click on the title bar of the window you want to maximize. To restore
the window to its previous dimensions, double-click again on the title bar.

■ Title bars as tabs: The tab for a dockable window (when tabbed with another
dockable window) is now also the title bar. This makes more effective use of the
space on the screen. Reposition a window by dragging its tab. Some additional
related enhancements include a new context menu from the gray background area
behind the tab, change in terminology from "auto-hide" and "show" to "minimize"
and "restore", ability to minimize a set of tabbed windows with a single click, and
toggling the display of a minimized window by clicking on its button.

Document Management and Navigation
Object edition has been enhanced in the Oracle Data Integrator Studio with improved
document management. This includes:

■ Save and close multiple editors: You can easily save all your work with a single
click using the File > Save All option and close all opened editors similarly. You
can also close all the editors but the current one.

■ Forward and back buttons: Now you can easily return to a previously visited
document with the convenient browser-style forward and back buttons on the
main toolbar. These buttons maintain a history, so you can drop down the back or
forward button to get a list of the documents and edit locations you have visited.
Alt+Left and Alt+Right activate the back and forward buttons.

■ Quick document switching: Switching between editors and navigators is also
possible. Now when you press Ctrl+Tab or Ctrl+F6, you can choose which
document you want to switch from a list ordered by the most recently used. You
can use the same technique to switch between open dockable windows by first
placing focus in a dockable window, then pressing Ctrl+Tab or Ctrl+F6.

Improved User Assistance
Oracle Data Integrator introduces intuitive new features that improve usability:

■ Help Center/Welcome Page: The Welcome page has been transformed into the
Help Center, redesigned to provide the user with quick access to help topics and
common tasks, as well as links to useful Oracle resources.

xxxi

■ New On-Line Help: The online help has been entirely re-written for supporting
the new user interface.

■ Help bookmarks: The Help window has a tab labeled Favorites. While browsing
the help, you can click on the Add to Favorites button to add the document to this
tab.

Export/Import
Export/import is enhanced in this new release with the following features:

Import Report
After objects have been imported, an import report displays the objects that have been
imported or deleted in the target repository. In addition, missing objects referenced by
the imported objects are indicated as missing references, and missing references fixed
by the import are also indicated. Import reports can be saved in XML or HTML format

With this feature, importing objects becomes a very transparent operation as all
changes can be identified and archived.

Repository Corruption Prevention
When importing objects across repositories, the following cases have been taken into
account to avoid the risks of import errors and repository corruption:

■ The import in Synonym mode that may result in overwriting a text (for example, a
mapping expression) with a text from a different origin (for example, a filter
expression) is now verified and not allowed.

■ It is not allowed to import objects from two repositories with the same repository
identifier into a target repository. This avoids object collision and corruption.

■ When attaching a work repository that contains objects imported from another
repository, a warning is raised to the user.

In addition, import of objects that reference non-existing objects now create missing
references, identified in the import report. Such references can be resolved by
importing the missing object.

Repository Renumbering
It is now possible to change the identifier of a master or work repository after its
creation. This operation automatically updates the internal identifier of the objects
created in this repository to match the new identifier.

This feature facilitates configuration management and fixing import/export situations
when multiple repositories have been created with the same identifier.

KM Enhancements in Release 10.1.3 Patch sets
The following improved and new knowledge modules have been delivered in 10gR3
patch sets and are available in this release.

Oracle GoldenGate Knowledge Modules
Oracle Data Integrator uses Oracle GoldenGate to replicate online data from a source
to a staging database. A Journalizing KM manages the Oracle Data Integrator CDC
infrastructure and automatically generates the configuration for Oracle GoldenGate.

xxxii

Oracle E-Business Suite Knowledge Modules
Oracle Data Integrator Knowledge Modules for E-Business Suite provide
comprehensive, bidirectional connectivity between Oracle Data Integrator and
E-Business Suite, which enables you to extract and load data. The Knowledge Modules
support all modules of E-Business Suite and provide bidirectional connectivity
through EBS objects tables/views and interface tables.

Oracle OLAP Knowledge Modules
The Oracle Data Integrator Knowledge Modules for Oracle OLAP provide integration
and connectivity between Oracle Data Integrator and Oracle OLAP cubes. The Oracle
Data Integrator KMs for Oracle OLAP support reverse-engineering of Oracle OLAP
data structures (all tables used by a ROLAP or a MOLAP cube) and data integration in
an Oracle Analytical Workspace target in incremental update mode.

Oracle PeopleSoft Knowledge Modules
The Oracle Data Integrator Knowledge Modules for PeopleSoft provide integration
and connectivity between Oracle Data Integrator and the PeopleSoft platform. These
KMs enable Data-level integration for PeopleSoft and support reverse-engineering of
PeopleSoft data structures (Business Objects, tables, views, columns, keys, and foreign
keys) and data extraction from PeopleSoft.

Oracle Siebel Knowledge Modules
The Oracle Data Integrator Siebel Knowledge Modules support reverse-engineering
Siebel data structures (Business Components and Business Objects) and Enterprise
Integration Manager (EIM) tables, data extraction from Siebel using data-level
integration and data extraction and integration with Siebel using the EIM tables

JDE EnterpriseOne Knowledge Modules
The Oracle Data Integrator Knowledge Modules for JDE EnterpriseOne provide
connectivity and integration of the JDE EnterpriseOne platform with any database
application through Oracle Data Integrator. These KM support reverse-engineering of
JDE EnterpriseOne data structures, data extraction from JDE EnterpriseOne (Direct
Database Integration) and integration through the Z-tables to an JDE Application
(Interface Table Integration)

Oracle Changed Data Capture Adapters/Attunity Streams Knowledge Modules
The Oracle Data Integrator CDC Knowledge Module provides integration from Oracle
Changed Data Capture Adapters/Attunity Streams Staging Areas via a JDBC
interface. This KM reads changed data, loads this data into a staging area and handles
the Oracle Changed Data Capture Adapters/Attunity Streams context to ensure
consistent consumption of the changes read.

Hyperion Adapters
Knowledge Modules and technologies have been added for integrating the Hyperion
technologies using Oracle Data Integrator.

These KMs support the following Hyperion products:

■ Hyperion Financial Management, to load and extract metadata and data.

■ Hyperion Planning, to load metadata and data into Hyperion Planning.

■ Hyperion Essbase, to load and extract Essbase metadata and data.

xxxiii

Row-By-Row KMs for Debugging
Knowledge modules supporting row-by-row loading (LKM SQL to SQL (row by row))
and integration (IKM SQL Incremental Update (row by row)) have been introduced for
debugging purposes. These KMs allow logging of each row operation performed by
the KM.

Teradata Optimizations
Teradata knowledge modules have been enhanced for Teradata to enable best
performances.

This includes the following features:

■ Support for Teradata Utilities (TTU).

■ Support for customized Primary Indexes (PI) for temporary tables.

■ Support for named pipes when using TTU.

■ Optimized Management of Temporary tables.

SAP ERP Adapter
The SAP ERP Adapter allows extraction of data from SAP ERP systems. The Oracle
Data Integrator SAP ABAP Knowledge Modules included in this adapter provide
integration from SAP ERP systems using SAP JCo libraries and generated ABAP
programs.

SAP BW Adapter
The SAP BW Adapter allows extraction of data from SAP BW systems. The Oracle
Data Integrator SAP BW Knowledge Modules included in this adapter provide
integration from SAP BW using SAP JCo libraries and generated ABAP programs. This
adapter supports ODS, Info Objects, Info Cubes, Open Hub and Delta Extraction.

KM Enhancements in Release 11.1.1
The following knowledge modules enhancements are new to this release.

KM Enhancements for New Core Features
Knowledge modules have been enhanced to support the core features added in this
version of Oracle Data Integrator. The following KMs have been updated to support
these features:

■ Support for Partitioning: Oracle RKM reverse-engineers partitions.

■ Datasets and Set-Based Operators: All IKMs have been updated to support this
feature.

■ Automatic Temporary Index Management: Oracle and Teradata IKMs and LKMs
have been updated to support this feature.

Oracle Business Intelligence Enterprise Dietitian - Physical
Oracle Data Integrator provides the ability to reverse-engineer View Objects that are
exposed in Oracle Business Intelligence Enterprise Edition (OBI-EE) physical layer.
These objects can be used as sources of integration interfaces.

Oracle Multi-Table Inserts
A new Integration KM for Oracle allows populating several target tables from a single
source, reading the data only once. It uses the INSERT ALL statement.

xxxiv

Teradata Multi-Statements
A new Teradata Integration KM provides support for Teradata Multi-Statements,
allowing integration of several flows in parallel.

Part I
Part I Understanding Oracle Data Integrator

This part provides an introduction to Oracle Data Integrator and the basic steps of
creating an integration project with Oracle Data Integrator.

This part contains the following chapters:

■ Chapter 1, "Introduction to Oracle Data Integrator"

■ Chapter 2, "Oracle Data Integrator QuickStart"

1

Introduction to Oracle Data Integrator 1-1

1Introduction to Oracle Data Integrator

This chapter contains the following sections:

■ Section 1.1, "Introduction to Data Integration with Oracle Data Integrator"

■ Section 1.2, "Oracle Data Integrator Concepts"

■ Section 1.3, "Typical ODI Integration Projects"

■ Section 1.4, "Oracle Data Integrator Architecture"

1.1 Introduction to Data Integration with Oracle Data Integrator
Data Integration ensures that information is timely, accurate, and consistent across
complex systems. This section provides an introduction to data integration and
describes how Oracle Data Integrator provides support for Data Integration.

1.1.1 Data Integration
Integrating data and applications throughout the enterprise, and presenting them in a
unified view is a complex proposition. Not only are there broad disparities in
technologies, data structures, and application functionality, but there are also
fundamental differences in integration architectures. Some integration needs are Data
Oriented, especially those involving large data volumes. Other integration projects
lend themselves to an Event Driven Architecture (EDA) or a Service Oriented
Architecture (SOA), for asynchronous or synchronous integration.

Data Integration ensures that information is timely, accurate, and consistent across
complex systems. Although it is still frequently referred as Extract-Load-Transform
(ETL) - Data Integration was initially considered as the architecture used for loading
Enterprise Data Warehouse systems - data integration now includes data movement,
data synchronization, data quality, data management, and data services.

1.1.2 Oracle Data Integrator
Oracle Data Integrator provides a fully unified solution for building, deploying, and
managing complex data warehouses or as part of data-centric architectures in a SOA
or business intelligence environment. In addition, it combines all the elements of data
integration—data movement, data synchronization, data quality, data management,
and data services—to ensure that information is timely, accurate, and consistent across
complex systems.

Oracle Data Integrator (ODI) features an active integration platform that includes all
styles of data integration: data-based, event-based and service-based. ODI unifies silos
of integration by transforming large volumes of data efficiently, processing events in

Introduction to Data Integration with Oracle Data Integrator

1-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

real time through its advanced Changed Data Capture (CDC) capability, and
providing data services to the Oracle SOA Suite. It also provides robust data integrity
control features, assuring the consistency and correctness of data. With powerful core
differentiators - heterogeneous E-LT, Declarative Design and Knowledge Modules -
Oracle Data Integrator meets the performance, flexibility, productivity, modularity and
hot-pluggability requirements of an integration platform.

1.1.3 E-LT
Traditional ETL tools operate by first Extracting the data from various sources,
Transforming the data in a proprietary, middle-tier ETL engine that is used as the
staging area, and then Loading the transformed data into the target data warehouse or
integration server. Hence the term ETL represents both the names and the order of the
operations performed, as shown in Figure 1–1.

Figure 1–1 Traditional ETL versus ODI E-LT

The data transformation step of the ETL process is by far the most compute-intensive,
and is performed entirely by the proprietary ETL engine on a dedicated server. The
ETL engine performs data transformations (and sometimes data quality checks) on a
row-by-row basis, and hence, can easily become the bottleneck in the overall process.
In addition, the data must be moved over the network twice – once between the
sources and the ETL server, and again between the ETL server and the target data
warehouse. Moreover, if one wants to ensure referential integrity by comparing data
flow references against values from the target data warehouse, the referenced data
must be downloaded from the target to the engine, thus further increasing network
traffic, download time, and leading to additional performance issues.

In response to the issues raised by ETL architectures, a new architecture has emerged,
which in many ways incorporates the best aspects of manual coding and automated
code-generation approaches. Known as E-LT, this new approach changes where and
how data transformation takes place, and leverages existing developer skills, RDBMS
engines and server hardware to the greatest extent possible. In essence, E-LT moves
the data transformation step to the target RDBMS, changing the order of operations to:
Extract the data from the source tables, Load the tables into the destination server, and
then Transform the data on the target RDBMS using native SQL operators. Note, with
E-LT there is no need for a middle-tier engine or server as shown in Figure 1–1.

Oracle Data Integrator supports both ETL- and E-LT-Style data integration. See
Section 11.5, "Designing Integration Interfaces: E-LT- and ETL-Style Interfaces" for
more information.

Oracle Data Integrator Concepts

Introduction to Oracle Data Integrator 1-3

1.2 Oracle Data Integrator Concepts
This section provides an introduction to the main concepts of Oracle Data Integrator.

1.2.1 Introduction to Declarative Design
To design an integration process with conventional ETL systems, a developer needs to
design each step of the process: Consider, for example, a common case in which sales
figures must be summed over time for different customer age groups. The sales data
comes from a sales management database, and age groups are described in an age
distribution file. In order to combine these sources then insert and update appropriate
records in the customer statistics systems, you must design each step, which includes:

1. Load the customer sales data in the engine

2. Load the age distribution file in the engine

3. Perform a lookup between the customer sales data and the age distribution data

4. Aggregate the customer sales grouped by age distribution

5. Load the target sales statistics data into the engine

6. Determine what needs to be inserted or updated by comparing aggregated
information with the data from the statistics system

7. Insert new records into the target

8. Update existing records into the target

This method requires specialized skills, depending on the steps that need to be
designed. It also requires significant efforts in development, because even repetitive
succession of tasks, such as managing inserts/updates in a target, need to be
developed into each task. Finally, with this method, maintenance requires significant
effort. Changing the integration process requires a clear understanding of what the
process does as well as the knowledge of how it is done. With the conventional ETL
method of design, the logical and technical aspects of the integration are
intertwined.Declarative Design is a design method that focuses on “What” to do (the
Declarative Rules) rather than “How” to do it (the Process). In our example, “What”
the process does is:

■ Relate the customer age from the sales application to the age groups from the
statistical file

■ Aggregate customer sales by age groups to load sales statistics

“How” this is done, that is the underlying technical aspects or technical strategies for
performing this integration task – such as creating temporary data structures or calling
loaders – is clearly separated from the declarative rules.

Declarative Design in Oracle Data Integrator uses the well known relational paradigm
to declare in the form of an Interface the declarative rules for a data integration task,
which includes designation of sources, targets, and transformations.

Declarative rules often apply to metadata to transform data and are usually described
in natural language by business users. In a typical data integration project (such as a
Data Warehouse project), these rules are defined during the specification phase in
documents written by business analysts in conjunction with project managers. They
can very often be implemented using SQL expressions, provided that the metadata
they refer to is known and qualified in a metadata repository.

The four major types of Declarative Rules are mappings, joins, filters and constraints:

Oracle Data Integrator Concepts

1-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ A mapping is a business rule implemented as an SQL expression. It is a
transformation rule that maps source columns (or fields) onto one of the target
columns. It can be executed by a relational database server at run-time. This server
can be the source server (when possible), a middle tier server or the target server.

■ A join operation links records in several data sets, such as tables or files. Joins are
used to link multiple sources. A join is implemented as an SQL expression linking
the columns (fields) of two or more data sets. Joins can be defined regardless of the
physical location of the source data sets involved. For example, a JMS queue can
be joined to an Oracle table. Depending on the technology performing the join, it
can be expressed as an inner join, right outer join, left outer join and full outer join.

■ A filter is an expression applied to source data sets columns. Only the records
matching this filter are processed by the data flow.

■ A constraint is an object that defines the rules enforced on data sets’ data. A
constraint ensures the validity of the data in a given data set and the integrity of
the data of a model. Constraints on the target are used to check the validity of the
data before integration in the target.

Table 1–1 gives examples of declarative rules.

1.2.2 Introduction to Knowledge Modules
Knowledge Modules (KM) implement “how” the integration processes occur. Each
Knowledge Module type refers to a specific integration task:

■ Reverse-engineering metadata from the heterogeneous systems for Oracle Data
Integrator (RKM). Refer to Chapter 5, "Creating and Reverse-Engineering a Model"
for more information on how to use the RKM.

■ Handling Changed Data Capture (CDC) on a given system (JKM). Refer to
Chapter 7, "Working with Changed Data Capture" for more information on how to
use the Journalizing Knowledge Modules.

■ Loading data from one system to another, using system-optimized methods
(LKM). These KMs are used in interfaces. See Chapter 11, "Working with

Table 1–1 Examples of declarative rules

Declarative Rule Type SQL Expression

Sum of all amounts or items
sold during October 2005
multiplied by the item price

Mapping SUM(
 CASE WHEN SALES.YEARMONTH=200510 THEN
 SALES.AMOUNT*product.item_PRICE
 ELSE
 0
 END
)

Products that start with
’CPU’ and that belong to the
hardware category

Filter Upper(PRODUCT.PRODUCT_NAME)like ’CPU%’
And PRODCUT.CATEGORY = ’HARDWARE’

Customers with their orders
and order lines

Join CUSTOMER.CUSTOMER_ID = ORDER.ORDER_ID
And ORDER.ORDER_ID = ORDER_LINE.ORDER_
ID

Reject duplicate customer
names

Unique Key
Constraint

Unique key (CUSTOMER_NAME)

Reject orders with a link to
an non-existent customer

Reference
Constraint

Foreign key on ORDERS(CUSTOMER_ID)
references CUSTOMER(CUSTOMER_ID)

Oracle Data Integrator Concepts

Introduction to Oracle Data Integrator 1-5

Integration Interfaces" for more information on how to use the Loading
Knowledge Modules.

■ Integrating data in a target system, using specific strategies (insert/update, slowly
changing dimensions) (IKM). These KMs are used in interfaces. See Chapter 11,
"Working with Integration Interfaces"for more information on how to use the
Integration Knowledge Modules.

■ Controlling Data Integrity on the data flow (CKM). These KMs are used in data
model’s static check and interfaces flow checks. See Chapter 5, "Creating and
Reverse-Engineering a Model" and Chapter 11, "Working with Integration
Interfaces"for more information on how to use the Check Knowledge Modules.

■ Exposing data in the form of web services (SKM). Refer to Chapter 8, "Working
with Data Services" for more information on how to use the Service Knowledge
Modules.

A Knowledge Module is a code template for a given integration task. This code is
independent of the Declarative Rules that need to be processed. At design-time, a
developer creates the Declarative Rules describing integration processes. These
Declarative Rules are merged with the Knowledge Module to generate code ready for
runtime. At runtime, Oracle Data Integrator sends this code for execution to the source
and target systems it leverages in the E-LT architecture for running the process.

Knowledge Modules cover a wide range of technologies and techniques. Knowledge
Modules provide additional flexibility by giving users access to the most-appropriate
or finely tuned solution for a specific task in a given situation. For example, to transfer
data from one DBMS to another, a developer can use any of several methods
depending on the situation:

■ The DBMS loaders (Oracle’s SQL*Loader, Microsoft SQL Server’s BCP, Teradata
TPump) can dump data from the source engine to a file then load this file to the
target engine

■ The database link features (Oracle Database Links, Microsoft SQL Server’s Linked
Servers) can transfer data directly between servers

These technical strategies amongst others corresponds to Knowledge Modules tuned
to exploit native capabilities of given platforms.

Knowledge modules are also fully extensible. Their code is opened and can be edited
through a graphical user interface by technical experts willing to implement new
integration methods or best practices (for example, for higher performance or to
comply with regulations and corporate standards). Without having the skill of the
technical experts, developers can use these custom Knowledge Modules in the
integration processes.

For more information on Knowledge Modules, refer to the Connectivity and Modules
Guide for Oracle Data Integrator and the Knowledge Module Developer's Guide for Oracle
Data Integrator.

1.2.3 Introduction to Integration Interfaces
An integration interface is an Oracle Data Integrator object stored that enables the
loading of one target datastore with data transformed from one or more source
datastores, based on declarative rules implemented as mappings, joins, filters and
constraints.

An integration interface also references the Knowledge Modules (code templates) that
will be used to generate the integration process.

Oracle Data Integrator Concepts

1-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

1.2.3.1 Datastores
A datastore is a data structure that can be used as a source or a target in an integration
interface. It can be:

■ a table stored in a relational database

■ an ASCII or EBCDIC file (delimited, or fixed length)

■ a node from a XML file

■ a JMS topic or queue from a Message Oriented Middleware

■ a node from a enterprise directory

■ an API that returns data in the form of an array of records

Regardless of the underlying technology, all data sources appear in Oracle Data
Integrator in the form of datastores that can be manipulated and integrated in the
same way. The datastores are grouped into data models. These models contain all the
declarative rules –metadata - attached to datastores such as constraints.

1.2.3.2 Declarative Rules
The declarative rules that make up an interface can be expressed in human language,
as shown in the following example: Data is coming from two Microsoft SQL Server
tables (ORDERS joined to ORDER_LINES) and is combined with data from the
CORRECTIONS file. The target SALES Oracle table must match some constraints such
as the uniqueness of the ID column and valid reference to the SALES_REP table.

Data must be transformed and aggregated according to some mappings expressed in
human language as shown in Figure 1–2.

Figure 1–2 Example of a business problem

Translating these business rules from natural language to SQL expressions is usually
straightforward. In our example, the rules that appear in Figure 1–2 could be
translated as shown in Table 1–2.

Oracle Data Integrator Concepts

Introduction to Oracle Data Integrator 1-7

Implementing this business problem using Oracle Data Integrator is a very easy and
straightforward exercise. It is done by simply translating the business rules into an
interface. Every business rule remains accessible from the interface’s diagram, as
shown in Figure 1–3.

Figure 1–3 Implementation using Oracle Data Integrator

1.2.3.3 Data Flow
Business rules defined in the interface are automatically converted into a data flow
that will carry out the joins filters, mappings, and constraints from source data to
target tables.

Table 1–2 Business rules translated

Type Rule SQL Expression/Constraint

Filter Only ORDERS marked as closed ORDERS.STATUS = ’CLOSED’

Join A row from LINES has a matching
ORDER_ID in ORDERS

ORDERS.ORDER_ID = LINES.ORDER_ID

Mapping Target’s SALES is the sum of the
order lines’ AMOUNT grouped
by sales rep, with the corrections
applied

SUM(LINES.AMOUNT + CORRECTIONS.VALUE)

Mapping Sales Rep = Sales Rep ID from
ORDERS

ORDERS.SALES_REP_ID

Constraint ID must not be null ID is set to "not null" in the data model

Constraint ID must be unique A unique key is added to the data model with (ID) as
set of columns

Constraint The Sales Rep ID should exist in
the Target SalesRep table

A reference (foreign key) is added in the data model on
SALES.SALES_REP = SALES_REP.SALES_REP_ID

Oracle Data Integrator Concepts

1-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

By default, Oracle Data Integrator will use the Target RBDMS as a staging area for
loading source data into temporary tables and applying all the required mappings,
staging filters, joins and constraints. The staging area is a separate area in the RDBMS
(a user/database) where Oracle Data Integrator creates its temporary objects and
executes some of the rules (mapping, joins, final filters, aggregations etc.). When
performing the operations this way, Oracle Data Integrator behaves like an E-LT as it
first extracts and loads the temporary tables and then finishes the transformations in
the target RDBMS.

In some particular cases, when source volumes are small (less than 500,000 records),
this staging area can be located in memory in Oracle Data Integrator’s in-memory
relational database – In-Memory Engine. Oracle Data Integrator would then behave
like a traditional ETL tool.

Figure 1–4 shows the data flow automatically generated by Oracle Data Integrator to
load the final SALES table. The business rules will be transformed into code by the
Knowledge Modules (KM). The code produced will generate several steps. Some of
these steps will extract and load the data from the sources to the staging area (Loading
Knowledge Modules - LKM). Others will transform and integrate the data from the
staging area to the target table (Integration Knowledge Module - IKM). To ensure data
quality, the Check Knowledge Module (CKM) will apply the user defined constraints
to the staging data to isolate erroneous records in the Errors table.

Figure 1–4 Oracle Data Integrator Knowledge Modules in action

Oracle Data Integrator Knowledge Modules contain the actual code that will be
executed by the various servers of the infrastructure. Some of the code contained in the
Knowledge Modules is generic. It makes calls to the Oracle Data Integrator
Substitution API that will be bound at run-time to the business-rules and generates the
final code that will be executed.

At design time, declarative rules are defined in the interfaces and Knowledge Modules
are only selected and configured.

Typical ODI Integration Projects

Introduction to Oracle Data Integrator 1-9

At run-time, code is generated and every Oracle Data Integrator API call in the
Knowledge Modules (enclosed by <% and %>) is replaced with its corresponding
object name or expression, with respect to the metadata provided in the Repository.
The generated code is orchestrated by Oracle Data Integrator run-time component -
the Agent – on the source and target systems to make them perform the processing, as
defined in the E-LT approach.

Refer to Chapter 11, "Working with Integration Interfaces" for more information on
how to work with integration interfaces.

1.3 Typical ODI Integration Projects
Oracle Data Integrator provides a wide range of integration features. This section
introduces the most typical ODI Integration Projects.

1.3.1 Batch Oriented Integration
ODI is a comprehensive data integration platform with a built-in connectivity to all
major databases, data warehouse and analytic applications providing high-volume
and high-performance batch integration.

The main goal of a data warehouse is to consolidate and deliver accurate indicators to
business users to help them make decisions regarding their everyday business. A
typical project is composed of several steps and milestones. Some of these are:

■ Defining business needs (Key Indicators)

■ Identifying source data that concerns key indicators; specifying business rules to
transform source information into key indicators

■ Modeling the data structure of the target warehouse to store the key indicators

■ Populating the indicators by implementing business rules

■ Measuring the overall accuracy of the data by setting up data quality rules

■ Developing reports on key indicators

■ Making key indicators and metadata available to business users through adhoc
query tools or predefined reports

■ Measuring business users’ satisfaction and adding/modifying key indicators

Oracle Data Integrator will help you cover most of these steps, from source data
investigation to metadata lineage, and through loading and data quality audit. With its
repository, ODI will centralize the specification and development efforts and provide a
unique architecture on which the project can rely to succeed.

Scheduling and Operating Scenarios
Scheduling and operating scenarios is usually done in the Test and Production
environments in separate Work Repositories. Any scenario can be scheduled by an
ODI Agent or by any external scheduler, as scenarios can be invoked by an operating
system command.

When scenarios are running in production, agents generate execution logs in an ODI
Work Repository. These logs can be monitored either through the Operator Navigator
or through any web browser when Oracle Data Integrator Console is setup. Failing
jobs can be restarted and ad-hoc tasks submitted for execution.

Typical ODI Integration Projects

1-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

E-LT
ODI uses a unique E-LT architecture that leverages the power of existing RDBMS
engines by generating native SQL and bulk loader control scripts to execute all
transformations.

1.3.2 Event Oriented Integration
Capturing events from a Message Oriented Middleware or an Enterprise Service Bus
has become a common task in integrating applications in a real-time environment.
Applications and business processes generate messages for several subscribers, or they
consume messages from the messaging infrastructure.

Oracle Data Integrator includes technology to support message-based integration and
that complies with the Java Message Services (JMS) standard. For example, a
transformation job within Oracle Data Integrator can subscribe and source messages
from any message queue or topic. Messages are captured and transformed in real time
and then written to the target systems.

Other use cases of this type of integration might require capturing changes at the
database level. Oracle Data Integrator Changed Data Capture (CDC) capability
identifies and captures inserted, updated, or deleted data from the source and makes it
available for integration processes.

ODI provides two methods for tracking changes from source datastores to the CDC
framework: triggers and RDBMS log mining. The first method can be deployed on
most RDBMS that implement database triggers. This method is optimized to minimize
overhead on the source systems. For example, changed data captured by the trigger is
not duplicated, minimizing the number of input/output operations, which slow down
source systems. The second method involves mining the RDBMS logs—the internal
change history of the database engine. This has little impact on the system’s
transactional performance and is supported for Oracle (through the Log Miner feature)
and IBM DB2/400.

The CDC framework used to manage changes, based on Knowledge Modules, is
generic and open, so the change-tracking method can be customized. Any third-party
change provider can be used to load the framework with changes.

Changes frequently involve several data sources at the same time. For example, when
an order is created, updated, or deleted, both the orders table and the order lines table
are involved. When processing a new order line, it is important that the new order, to
which the line is related, is taken into account too. ODI provides a mode of change
tracking called Consistent Set CDC. This mode allows for processing sets of changes
for which data consistency is guaranteed.

For example, incoming orders can be detected at the database level using CDC. These
new orders are enriched and transformed by ODI before being posted to the
appropriate message queue or topic. Other applications such as Oracle BPEL or Oracle
Business Activity Monitoring can subscribe to these messages, and the incoming
events will trigger the appropriate business processes.

For more information on how to use the CDC framework in ODI, refer to Chapter 7,
"Working with Changed Data Capture".

1.3.3 Service-Oriented Architecture
Oracle Data Integrator can be integrated seamlessly in a Service Oriented Architecture
(SOA) in several ways:

Typical ODI Integration Projects

Introduction to Oracle Data Integrator 1-11

Data Services are specialized Web services that provide access to data stored in
database tables. Coupled with the Changed Data Capture capability, data services can
also provide access to the changed records for a given subscriber. Data services are
automatically generated by Oracle Data Integrator and deployed as Web services to a
Web container, usually a Java application server. For more information on how to set
up, generate and deploy data services, refer to Chapter 8, "Working with Data
Services".

Oracle Data Integrator can also expose its transformation processes as Web services to
enable applications to use them as integration services. For example, a LOAD_SALES
batch process used to update the CRM application can be triggered as a Web service
from any service-compliant application, such as Oracle BPEL, Oracle Enterprise
Service Bus, or Oracle Business Activity Monitoring. Transformations developed using
ODI can therefore participate in the broader Service Oriented Architecture initiative.

Third-party Web services can be invoked as part of an ODI workflow and used as part
of the data integration processes. Requests are generated on the fly and responses
processed through regular transformations. Suppose, for example, that your company
subscribed to a third-party service that exposes daily currency exchange rates as a Web
service. If you want this data to update your multiple currency data warehouse, ODI
automates this task with a minimum of effort. You would simply invoke the Web
service from your data warehouse workflow and perform any appropriate
transformation to the incoming data to make it fit a specific format. For more
information on how to use web services in ODI, refer to Chapter 14, "Working with
Web Services in Oracle Data Integrator".

1.3.4 Data Quality with ODI
With an approach based on declarative rules, Oracle Data Integrator is the most
appropriate tool to help you build a data quality framework to track data
inconsistencies.

Oracle Data Integrator uses declarative data integrity rules defined in its centralized
metadata repository. These rules are applied to application data to guarantee the
integrity and consistency of enterprise information. The Data Integrity benefits add to
the overall Data Quality initiative and facilitate integration with existing and future
business processes addressing this particular need.

Oracle Data Integrator automatically retrieves existing rules defined at the data level
(such as database constraints) by a reverse-engineering process. ODI also allows
developers to define additional, user-defined declarative rules that may be inferred
from data discovery and profiling within ODI, and immediately checked.

Oracle Data Integrator provides a built-in framework to check the quality of your data
in two ways:

■ Check data in your data servers, to validate that this data does not violate any of
the rules declared on the datastores in Oracle Data Integrator. This data quality
check is called a static check and is performed on data models and datastores. This
type of check allows you to profile the quality of the data against rules that are not
enforced by their storage technology.

■ Check data while it is moved and transformed by an interface, in a flow check that
checks the data flow against the rules defined on the target datastore. With such a
check, correct data can be integrated into the target datastore while incorrect data
is automatically moved into error tables.

Typical ODI Integration Projects

1-12 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Both static and flow checks are using the constraints that are defined in the datastores
and data models, and both use the Check Knowledge Modules (CKMs). For more
information refer to Section 11.3.7, "Set up Flow Control and Post-Integration Control".

These checks check the integrity of the data and validate constraints. For advanced
data quality projects (for example for name and address cleansing projects) as well as
advanced data profiling, the Oracle Data Profiling and Oracle Data Quality for Data
Integrator products can be used along with Oracle Date Integrator.

Oracle Data Quality and Oracle Data Profiling Integration
Oracle Data Profiling and Oracle Data Quality for Data Integrator (also referred to as
Oracle Data Quality Products) extend the inline Data Quality features of Oracle Data
Integrator to provide more advanced data governance capabilities.

Oracle Data Profiling is a data investigation and quality monitoring tool. It allows
business users to assess the quality of their data through metrics, to discover or deduce
rules based on this data, and to monitor the evolution of data quality over time.

Oracle Data Quality for Data Integrator is a comprehensive award-winning data
quality platform that covers even the most complex data quality needs. Its powerful
rule-based engine and its robust and scalable architecture places data quality and
name and address cleansing at the heart of an enterprise data integration strategy.

For more information on Oracle Data Quality and Oracle Data Profiling refer to
Chapter 15, "Working with Oracle Data Quality Products".

1.3.5 Managing Environments
Integration projects exist in different environments during their lifecycle
(development, test, product) and may even run in different environments in
production (multiple site deployment). Oracle Data Integrator makes easier the
definition and maintenance of these environments, as well as the lifecycle of the
project across these environments using the Topology

The Topology describes the physical and logical architecture of your Information
System. It gives you a very flexible way of managing different servers, environments
and agents. All the information of the Topology is stored in the master repository and
is therefore centralized for an optimized administration. All the objects manipulated
within Work Repositories refer to the Topology. That’s why it is the most important
starting point when defining and planning your architecture.

The Topology is composed of data servers, physical and logical schemas, and contexts.

Data servers describe connections to your actual physical application servers and
databases. They can represent for example:

■ An Oracle Instance

■ An IBM DB2 Database

■ A Microsoft SQL Server Instance

■ A Sybase ASE Server

■ A File System

■ An XML File

■ A Microsoft Excel Workbook

■ and so forth.

Typical ODI Integration Projects

Introduction to Oracle Data Integrator 1-13

At runtime, Oracle Data Integrator uses the connection information you have
described to connect to the servers.

Physical schemas indicate the physical location of the datastores (tables, files, topics,
queues) inside a data server. All the physical schemas that need to be accessed have to
be registered under their corresponding data server, physical schemas are used to
prefix object names and access them with their qualified names. When creating a
physical schema, you need to specify a temporary, or work schema that will store
temporary or permanent object needed at runtime.

A logical schema is an alias that allows a unique name to be given to all the physical
schemas containing the same datastore structures. The aim of the logical schema is to
ensure the portability of procedures and models on different design-time and run-time
environments.

A Context represents one of these environments. Contexts are used to group physical
resources belonging to the same environment.

Typical projects will have separate environments for Development, Test and
Production. Some projects will even have several duplicated Test or Production
environments. For example, you may have several production contexts for subsidiaries
running their own production systems (Production New York, Production Boston etc).
There is obviously a difference between the logical view of the information system and
its physical implementation as described in Figure 1–5.

Oracle Data Integrator Architecture

1-14 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Figure 1–5 Logical and Physical View of the Infrastructure

The logical view describes logical schemas that represent the physical schemas of the
existing applications independently of their physical implementation. These logical
schemas are then linked to the physical resources through contexts.

Designers always refer to the logical view defined in the Topology. All development
done therefore becomes independent of the physical location of the resources they
address. At runtime, the logical information is mapped to the physical resources, given
the appropriate contexts. The same scenario can be executed on different physical
servers and applications simply by specifying different contexts. This brings a very
flexible architecture where developers don’t have to worry about the underlying
physical implementation of the servers they rely on.

1.4 Oracle Data Integrator Architecture
The architecture of Oracle Data Integrator relies on different components that
collaborate together, as described in Figure 1–6.

Oracle Data Integrator Architecture

Introduction to Oracle Data Integrator 1-15

Figure 1–6 Functional Architecture Overview

1.4.1 Repositories
The central component of the architecture is the Oracle Data Integrator Repository. It
stores configuration information about the IT infrastructure, metadata of all
applications, projects, scenarios, and the execution logs. Many instances of the
repository can coexist in the IT infrastructure. The architecture of the repository is
designed to allow several separated environments that exchange metadata and
scenarios (for example: Development, Test, Maintenance and Production
environments). In the figure above, two repositories are represented: one for the
development environment, and another one for the production environment. The
repository also acts as a version control system where objects are archived and
assigned a version number. The Oracle Data Integrator Repository can be installed on
an OLTP relational database.

The Oracle Data Integrator Repository is composed of a master repository and several
Work Repositories. Objects developed or configured through the user interfaces are
stored in one of these repository types.

There is usually only one master repository that stores the following information:

■ Security information including users, profiles and rights for the ODI platform

■ Topology information including technologies, server definitions, schemas,
contexts, languages etc.

■ Versioned and archived objects.

The Work Repository is the one that contains actual developed objects. Several work
repositories may coexist in the same ODI installation (for example, to have separate

Oracle Data Integrator Architecture

1-16 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

environments or to match a particular versioning life cycle). A Work Repository stores
information for:

■ Models, including schema definition, datastores structures and metadata, fields
and columns definitions, data quality constraints, cross references, data lineage
etc.

■ Projects, including business rules, packages, procedures, folders, Knowledge
Modules, variables etc.

■ Scenario execution, including scenarios, scheduling information and logs.

When the Work Repository contains only the execution information (typically for
production purposes), it is then called an Execution Repository.

For more information on how to manage ODI repositories, refer to Chapter 3,
"Administering the Oracle Data Integrator Repositories".

1.4.2 User Interfaces
Administrators, Developers and Operators use the Oracle Data Integrator Studio to
access the repositories. This Fusion Client Platform (FCP) based UI is used for
administering the infrastructure (security and topology), reverse-engineering the
metadata, developing projects, scheduling, operating and monitoring executions.

Business users (as well as developers, administrators and operators), can have read
access to the repository, perform topology configuration and production operations
through a web based UI called Oracle Data Integrator Console. This Web application can
deployed in a Java EE application server such as Oracle WebLogic.

ODI Studio provides four Navigators for managing the different aspects and steps of
an ODI integration project:

■ Topology Navigator

■ Designer Navigator

■ Operator Navigator

■ Security Navigator

Topology Navigator
Topology Navigator is used to manage the data describing the information system's
physical and logical architecture. Through Topology Navigator you can manage the
topology of your information system, the technologies and their datatypes, the data
servers linked to these technologies and the schemas they contain, the contexts, the
language and the agents, as well as the repositories. The site, machine, and data server
descriptions will enable Oracle Data Integrator to execute the same interfaces in
different environments.

Designer Navigator
Designer Navigator is used to design data integrity checks and to build
transformations such as for example:

■ Automatic reverse-engineering of existing applications or databases

■ Graphical development and maintenance of transformation and integration
interfaces

■ Visualization of data flows in the interfaces

■ Automatic documentation generation

Oracle Data Integrator Architecture

Introduction to Oracle Data Integrator 1-17

■ Customization of the generated code

The main objects you handle through Designer Navigator are Models and Projects.

Operator Navigator
Operator Navigator is the production management and monitoring tool. It is designed
for IT production operators. Through Operator Navigator, you can manage your
interface executions in the sessions, as well as the scenarios in production.

Security Navigator
Security Navigator is the tool for managing the security information in Oracle Data
Integrator. Through Security Navigator you can create users and profiles and assign
user rights for methods (edit, delete, etc) on generic objects (data server, datatypes,
etc), and fine-tune these rights on the object instances (Server 1, Server 2, etc).

1.4.3 Design-time Projects
A typical project is composed of several steps and milestones.

Some of these are:

■ Define the business needs

■ Identify and declare the sources and targets in the Topology

■ Design and Reverse-engineer source and target data structures in the form of data
models

■ Implement data quality rules on these data models and perform static checks on
these data models to validate the data quality rules

■ Develop integration interfaces using datastores from these data models as sources
and target

■ Develop additional components for tasks that cannot be achieved using interfaces,
such as Receiving and sending e-mails, handling files (copy, compress, rename and
such), executing web services

■ Integrate interfaces and additional components for building Package workflows

■ Version your work and release it in the form of scenarios

■ Schedule and operate scenarios.

Oracle Data Integrator will help you cover most of these steps, from source data
investigation to metadata lineage, and through loading and data quality audit. With its
repository, Oracle Data Integrator will centralize the specification and development
efforts and provide a unique architecture on which the project can rely to succeed.

Chapter 2, "Oracle Data Integrator QuickStart" introduces you to the basic steps of
creating an integration project with Oracle Data Integrator. Chapter 9, "Creating an
Integration Project" gives you more detailed information on the several steps of
creating an integration project in ODI.

1.4.4 Run-Time Agent
At design time, developers generate scenarios from the business rules that they have
designed. The code of these scenarios is then retrieved from the repository by the
Run-Time Agent. This agent then connects to the data servers and orchestrates the
code execution on these servers. It retrieves the return codes and messages for the

Oracle Data Integrator Architecture

1-18 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

execution, as well as additional logging information – such as the number of
processed, execution time etc. - in the Repository.

The Agent comes in two different flavors:

■ The Java EE Agent can be deployed as a web application and benefit from the
features of an application server.

■ The Standalone Agent runs in a simple Java Machine and can be deployed where
needed to perform the integration flows.

Both these agents are multi-threaded java programs that support load balancing and
can be distributed across the information system. This agent holds its own execution
schedule which can be defined in Oracle Data Integrator, and can also be called from
an external scheduler. It can also be invoked from a Java API or a web service
interface. Refer to Chapter 4, "Setting-up the Topology" for more information on how
to create and manage agents.

2

Oracle Data Integrator QuickStart 2-1

2Oracle Data Integrator QuickStart

The Oracle Data Integrator QuickStart will introduce you to the basic steps of creating
an integration project with Oracle Data Integrator and show you how to put them
immediately to work for you. It will help you get started with Oracle Data Integrator
by pointing out only the basic functionalities and the minimum required steps.

This section is not intended to be used for advanced configuration, usage or
troubleshooting.

2.1 Oracle Data Integrator QuickStart List
To perform the minimum required steps of an Oracle Data Integrator integration
project follow the ODI QuickStart list and go directly to the specified section of this
guide.

Before performing the QuickStart procedure ensure that you have:

1. Installed Oracle Data Integrator according to the instructions in the Oracle Fusion
Middleware Installation Guide for Oracle Data Integrator.

2. Set up the Oracle Data Integrator repository architecture. This means create the
repositories to store the metadata for the applications involved in the
transformation and integration processing, the developed project versions and all
of the information required for their use (planning, scheduling and execution
reports). To set up the Oracle Data Integrator repository architecture:

1. You need to create one master repository containing information on the
topology of a company's IT resources, on security and on version management
of projects and data models. Refer to Section 3.3, "Creating the Master
Repository"for more details.

To test your master repository connection, refer to Section 3.4, "Connecting to
the Master Repository".

2. You need to create at least one Work Repository containing information about
data models, projects, and their operations. Refer to Section 3.5, "Creating a
Work Repository"for more details.

To test your work repository connection and access this repository through
Designer and Operator, refer to the section Section 3.6, "Connecting to a Work
Repository".

ODI QuickStart list
The first part of the QuickStart (steps 1 to 3) consists of setting up the topology of your
information system by defining the data servers, the schemas they contain, and the

Oracle Data Integrator QuickStart List

2-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

contexts. Refer to the Chapter 1, "Introduction to Oracle Data Integrator" if you are not
familiar with these concepts.

The second part of the QuickStart (step 4) consists of creating a model. A model is a set
of datastores corresponding to data structures contained in a physical schema: tables,
files, JMS messages, elements from an XML file are represented as datastores.

The third part of the QuickStart (steps 5 to 7) consists of creating your integration
project. In this project you create integration interfaces to load data from one or several
source datastores to one target datastore.

The last part of the QuickStart (steps 8 and 9) consists of executing the interface you
have create d in step 7 and viewing and monitoring the execution results.

1. To connect source and target systems you need to declare data servers. A data
server can be a database, a MOM, a connector or a file server and is always linked
with one specific technology. How to create a data server corresponding to the
servers used in Oracle Data Integrator is covered in the Chapter 4.2.2, "Creating a
Data Server".

2. A physical schema is a defining component of a data server. It allows the
datastores to be classified and the objects stored in the data server to be accessed.
For each data server, create the physical schemas. Chapter 4.2.3, "Creating a
Physical Schema". Use the default Global context.

3. In Oracle Data Integrator, you perform developments on top of a logical topology.
Refer to the Chapter 1, "Introduction to Oracle Data Integrator" if you are not
familiar with the logical architecture. Create the logical schemas and associate
them with the physical schemas in the Global context. Chapter 4.2.4, "Creating a
Logical Schema".

4. Integration interfaces use data models containing the source and target datastores.
Data Models are usually reverse-engineered from your data servers metadata into
the Oracle Data Integrator repository. Create a model according to the Section 5.2,
"Creating and Reverse-Engineering a Model".

5. The developed integration components are stored in a project. How to create a
new project is covered in the Section 9.2, "Creating a New Project".

6. Integration interfaces use Knowledge Modules to generate their code. For more
information refer to the E-LT concept in the Chapter 1, "Introduction to Oracle
Data Integrator". Before creating integration interfaces you need to import the
Knowledge Modules corresponding to the technology of your data. How to
import a Knowledge Module is covered in the Section 18.2.3, "Importing Objects".
Which Knowledge Modules you need to import is covered in the Oracle Fusion
Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator.

7. To load your target datastores with the data from the source datastores you need
to create an interface. An interface consists of a set of rules that define the loading
from one or more source datastores to one target datastore. How to create a new
interface for your integration project is covered in the Section 11.3, "Creating an
Interface".

8. Once you have finished creating the integration interface, you can execute it. The
interface execution is covered in the Section 11.3.8, "Execute the Integration
Interface". Select Local (No Agent) to execute the interface directly by Oracle Data
Integrator.

9. You can view and monitor the execution results in Operator. How to follow the
interface’s execution in Operator is covered in the Chapter 20, "Monitoring
Integration Processes".

Oracle Data Integrator QuickStart List

Oracle Data Integrator QuickStart 2-3

10. An integration workflow may require the loading of several target datastores in a
precise sequence. If you want to sequence your interfaces, create a package. This is
optional step covered in Chapter 10.2, "Creating a new Package".

Oracle Data Integrator QuickStart List

2-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Part II
Part II Administering the Oracle Data Integrator

Architecture

This part describes the Oracle Data Integrator Architecture.

This part contains the following chapters:

■ Chapter 3, "Administering the Oracle Data Integrator Repositories"

■ Chapter 4, "Setting-up the Topology"

3

Administering the Oracle Data Integrator Repositories 3-1

3Administering the Oracle Data Integrator
Repositories

This chapter describes how to create and administer Oracle Data Integrator
repositories. An overview of the repositories used in Oracle Data Integrator is
provided.

This chapter includes the following sections:

■ Section 3.1, "Introduction to Oracle Data Integrator Repositories"

■ Section 3.2, "Creating Repository Storage Spaces"

■ Section 3.3, "Creating the Master Repository"

■ Section 3.4, "Connecting to the Master Repository"

■ Section 3.5, "Creating a Work Repository"

■ Section 3.6, "Connecting to a Work Repository"

■ Section 3.7, "Changing the Work Repository Password"

■ Section 3.8, "Advanced Actions for Administering Repositories"

3.1 Introduction to Oracle Data Integrator Repositories
There are two types of repositories in Oracle Data Integrator:

■ Master Repository: This is a data structure containing information on the
topology of the company's IT resources, on security and on version management
of projects and data models. This repository is stored on a relational database
accessible in client/server mode from the different Oracle Data Integrator
modules. In general, you need only one master repository. However, it may be
necessary to create several master repositories in one of the following cases:

– Project construction over several sites not linked by a high-speed network
(off-site development, for example).

– Necessity to clearly separate the interfaces' operating environments
(development, test, production), including on the database containing the
master repository. This may be the case if these environments are on several
sites.

■ Work Repository: This is a data structure containing information on data models,
projects, and their use. This repository is stored on a relational database accessible
in client/server mode from the different Oracle Data Integrator modules. Several
work repositories can be created with several master repositories if necessary.

Creating Repository Storage Spaces

3-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

However, a work repository can be linked with only one master repository for
version management purposes.

The standard method for creating repositories is using Repository Creation Utility
(RCU). RCU automatically manages storage space as well as repository creation.
However, if you want to create the repositories manually, it is possible to manually
create and configure the repositories.

The steps needed to create and configure repositories are detailed in the following
sections:

■ Section 3.2, "Creating Repository Storage Spaces"

■ Section 3.3, "Creating the Master Repository"

■ Section 3.4, "Connecting to the Master Repository"

■ Section 3.5, "Creating a Work Repository"

■ Section 3.6, "Connecting to a Work Repository"

Advanced actions for administering repositories are detailed in Section 3.8, "Advanced
Actions for Administering Repositories".

3.2 Creating Repository Storage Spaces
Oracle Data Integrator repositories can be installed on database engines supported by
Oracle Fusion Middleware 11g. For the latest list of supported databases versions as
well as the requirements for each database, see:

http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html

For each database that will contain a repository, a storage space must be created.

Your master repository can be stored in the same schema as one of your work
repositories. However, you cannot create two different work repositories in the same
schema.

The examples in the following table are supplied as a guide:

Note: Oracle recommends that you regularly perform the following
maintenance operations: purge the execution logs in order to reduce
the work repository size, and back up the Oracle Data Integrator
repositories on the database.

Caution: For reasons of maintenance and back-up, we strongly
recommend that repositories be stored in a different space from where
your application data is kept (for example in a different schema for an
Oracle database, or in a different database for Sybase or Microsoft SQL
Server).

Creating the Master Repository

Administering the Oracle Data Integrator Repositories 3-3

3.3 Creating the Master Repository
Creating the master repository creates an empty repository structure and seeds
metadata (for example, technology definitions, or built-in security profiles) into this
repository structure.

To create the master repository:

1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, select ODI.

3. Select from the Items list the Master Repository Creation Wizard.

4. Click OK.

The Master Repository Creation wizard opens.

5. Specify the Database Connection parameters as follows:

Technology Steps to follow

Oracle Create a schema odim to host the Master repository and a schema odiw
to host the work repository.

The schemas are created by the following SQL commands:

SQL> create user MY_SCHEMA identified by MY_PASS
 default tablespace MY_TBS
 temporary tablespace MY_TEMP;
SQL> grant connect, resource to MY_SCHEMA;

Where:

MY_SCHEMA corresponds to the name of the schema you want to
create.

MY_PASS corresponds to the password you have given it <MY_TBS>
the Oracle tablespace where the data will be stored

MY_TEMP temporary default tablespace

Microsoft SQL Server
or Sybase ASE

Create a database db_odim to host the master repository and a
database db_odiw to host the work repository. Create two logins odim
and odiw which have these databases by default.

Use Enterprise Manager to create the two databases db_odim and db_
odiw.

Use Query Analyzer or I-SQL to launch the following commands:

CREATE LOGIN mylogin
 WITH PASSWORD = 'mypass',
 DEFAULT_DATABASE = defaultbase,
 DEFAULT_LANGUAGE = us_english;
USE defaultbase;
CREATE USER dbo FOR LOGIN mylogin;
GO

Where:

mylogin corresponds to odim or odiw.

mypass corresponds to a password for these logins.

defaultbase corresponds to db_odim and db_odiw respectively.

DB2/400 Create a library odim to host the Master repository and a schema odiw
to host the work repository. Create two users odim and odiw who have
these libraries by default.

Note: The libraries must be created in the form of SQL collections.

Creating the Master Repository

3-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ Technology: From the list, select the technology that will host your master
repository. Default is Oracle.

■ JDBC Driver: The driver used to access the technology, that will host the
repository.

■ JDBC URL: The URL used to establish the JDBC connection to the database.

Note that the parameters JDBC Driver and URL are synchronized and the
default values are technology dependant.

■ User: The user ID / login of the owner of the tables (for example, odim).

■ Password: This user's password.

6. Specify the Repository Configuration parameters as follows:

■ ID: A specific ID for the new repository, rather than the default 0.

7. Click Test Connection to test the connection to your master repository.

The Information dialog opens and informs you whether the connection has been
established. If the connection fails, fix the connection to your master repository
before moving to next step.

8. Click Next.

9. Do one of the following:

■ Select Use ODI Authentication to manage users using ODI’s internal security
system and enter the following supervisor login information:

■ Select Use External Authentication to use an external enterprise identity store,
such as Oracle Internet Directory, to manage user authentication and enter the
following supervisor login information:

Note: It is strongly recommended that this ID is unique and not used
for any other master repository, as it affects imports and exports
between repositories

Properties Description

Supervisor User User name of the ODI supervisor.

Supervisor Password This user’s password

Confirm Password This user’s password

Properties Description

Supervisor User User name of the ODI supervisor

Supervisor Password This user’s password

Note: In order to use the external authentication option, ODI Studio
has to be configured for external authentication. See Section 22.3.2,
"Setting Up External Authentication" for more information and restart
ODI Studio.

Connecting to the Master Repository

Administering the Oracle Data Integrator Repositories 3-5

10. Click Next.

11. Specify the password storage details:

■ Select Internal Password Storage if you want to store passwords in the Oracle
Data Integrator master repository

■ Select External Password Storage if you want use JPS Credential Store
Framework (CSF) to store the data server and context passwords in a remote
credential store. Indicate the MBean Server Parameters to access the
credential store. Refer to Chapter 22, "Managing the Security in Oracle Data
Integrator" for more information.

12. In the Master Repository Creation Wizard click Finish to validate your entries.

Oracle Data Integrator begins creating your master repository. You can follow the
procedure on your Messages – Log. To test your master repository, refer to the
Section 3.4, "Connecting to the Master Repository".

3.4 Connecting to the Master Repository
To connect to the Master repository:

1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, select ODI.

3. Select from the Items list Create a New ODI Repository Login.

4. Click OK.

The Repository Connection Information dialog appears.

5. Specify the Oracle Data Integrator connection details as follows:

■ Login name: A generic alias (for example: Repository)

■ User: The ODI supervisor user name you have defined when creating the
master repository or an ODI user name you have defined in the Security
Navigator after having created the master repository.

■ Password: The ODI supervisor password you have defined when creating the
master repository or an ODI user password you have defined in the Security
Navigator after having created the master repository.

6. Specify the Database Connection (Master Repository) details as follows:

■ User: Database user ID/login of the schema (database, library) that contains
the ODI master repository

■ Password: This user's password

■ Driver List: Select the driver required to connect to the DBMS supporting the
master repository you have just created from the dropdown list.

■ Driver Name: The complete driver name

■ JDBC URL: The URL used to establish the JDBC connection to the database
hosting the repository

Note that the parameters JDBC Driver and URL are synchronized and the
default values are technology dependant.

7. Select Master Repository Only.

8. Click Test to check that the connection is working.

Creating a Work Repository

3-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

9. Click OK to validate your entries.

3.5 Creating a Work Repository
Several work repositories can be designated with several master repositories if
necessary. However, a work repository can be linked with only one master repository
for version management purposes.

To launch a work repository creation:

1. In the Topology Navigator, go to the Repositories panel.

2. Right-click the Work Repositories node and select New Work Repository.

The Create Work Repository Wizard opens.

3. Specify the Oracle Data Integrator work repository connection details as follows:

■ Technology: Choose the technology of the server to host your work repository.
Default is Oracle.

■ JDBC Driver: The driver used to access the technology, that will host the
repository.

■ JDBC URL: The complete path of the data server to host the work repository.

Note that the parameters JDBC Driver and URL are synchronized and the
default values are technology dependant

■ User: User ID / login of the owner of the tables you are going to create and
host of the work repository.

■ Password: This user's password.

4. Click Test Connection to check the connection is working.

5. Click Next.

Oracle Data Integrator verifies whether a work repository already exists on the
connection specified in step 3:

■ If an existing work repository is detected on this connection, the next steps
will consist in attaching the work repository to the master repository. Refer to
"Specify the Password of the Oracle Data Integrator work repository to attach."
for further instructions.

■ If no work repository is detected on this connection, a new work repository is
created. Continue with the creation of a new work repository and provide the
work repository details in step 6.

6. Specify the Oracle Data Integrator work repository properties:

■ ID: A specific ID for the new repository, rather than the default 0.

■ Name: Give a unique name to your work repository (for example:
DEVWORKREP1).

■ Password: Enter the password for the work repository.

■ Type: Select the type for the work repository:

Note: It is strongly recommended that this ID is unique and not used
for any other work repository, as it affects imports and exports
between repositories

Connecting to a Work Repository

Administering the Oracle Data Integrator Repositories 3-7

– Development: This type of repository allows management of design-time
objects such as data models and projects (including interfaces, procedures,
etc). A development repository includes also the run-time objects
(scenarios and sessions). This type of repository is suitable for
development environments.

– Execution: This type of repository only includes run-time objects
(scenarios, schedules and sessions). It allows launching and monitoring of
data integration jobs in Operator Navigator. Such a repository cannot
contain any design-time artifacts. Designer Navigator cannot be used with
it. An execution repository is suitable for production environments.

7. Click Finish.

8. The Create Work Repository login dialog opens. If you want to create a login for
the work repository, click Yes and you will be asked to enter the Login Name in a
new dialog. If you do not want to create a work repository login, click No.

9. Click Save in the toolbar.

For more information, refer to Section 3.6, "Connecting to a Work Repository".

3.6 Connecting to a Work Repository
To connect to an existing work repository and launch Designer Navigator:

1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, select ODI.

3. Select from the Items list Create a New ODI Repository Login.

4. Click OK.

The Repository Connection Information dialog opens.

5. Specify the Oracle Data Integrator connection details as follows:

■ Login name: A generic alias (for example: Repository)

■ User: The ODI supervisor user name you have defined when creating the
master repository or an ODI user name you have defined in the Security
Navigator after having created the master repository.

■ Password: The ODI supervisor password you have defined when creating the
master repository or an ODI user password you have defined in the Security
Navigator after having created the master repository.

6. Specify the Database Connection (Master Repository) details as follows:

■ User: Database user ID/login of the schema (database, library) that contains
the ODI master repository

■ Password: This user's password

■ Driver List: Select the driver required to connect to the DBMS supporting the
master repository you have just created from the dropdown list.

■ Driver Name: The complete driver name

■ URL: The url used to establish the JDBC connection to the database hosting
the repository

7. Click on Test Connection to check the connection is working.

8. Select Work Repository and specify the work repository details as follows:

Changing the Work Repository Password

3-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ Work repository name: The name you gave your work repository in the
previous step (WorkRep1 in the example). You can display the list of work
repositories available in your master repository by clicking on the button to
the right of this field.

9. Click OK to validate your entries.

3.7 Changing the Work Repository Password
To change the work repository password:

1. In the Repositories tree of Topology Navigator expand the Work Repositories
node.

2. Double-click the work repository. The Work Repository Editor opens.

3. On the Definition tab of the Work Repository Editor click Change password.

4. Enter the current password and the new one.

5. Click OK.

3.8 Advanced Actions for Administering Repositories
Advanced actions for administering repositories do not concern the creation process of
repositories. The actions described in this section deal with advanced actions
performed on already existing repositories. Once the repositories are created you may
want to switch the password storage or you may need to recover the password storage
after a credential store crash. Actions dealing with password handling are covered in
Section 22.3.1, "Setting Up External Password Storage". The export and import of
master and work repositories is covered in Chapter 18, "Exporting/Importing".

3.8.1 Attaching and Deleting a Work Repository
Attaching a work repository consists of linking an existing work repository to the
current master repository. This existing work repository already exists in the database
and has been previously detached from this or another master repository.

Deleting a work repository deletes its link to the master repository. This is an opposite
operation to attaching. This operation does not destroy the work repository content.

Attaching a Work Repository
To attach a work repository to a master repository:

1. In the Topology Navigator, go to the Repositories panel.

2. Right-click the Work Repositories node and select New Work Repository.

The Create Work Repository Wizard opens.

3. Specify the Oracle Data Integrator work repository connection details as follows:

■ Technology: From the list, select the technology that will host your work
repository. Default is Oracle.

■ JDBC Driver: The driver used to access the technology, that will host the
repository.

■ JDBC URL: The complete path of the data server to host the work repository.

Note that the parameters JDBC Driver and URL are synchronized and the
default values are technology dependant

Advanced Actions for Administering Repositories

Administering the Oracle Data Integrator Repositories 3-9

■ User: User ID / login of the owner of the tables you are going to create and
host of the work repository.

■ Password: This user's password.

4. Click Test Connection to check the connection is working.

5. Click Next.

6. Specify the Password of the Oracle Data Integrator work repository to attach.

7. Click Next.

8. Specify the Name of the Oracle Data Integrator work repository to attach.

9. Click Finish.

Deleting a Work Repository
To delete the link to the master repository:

1. In the Topology Navigator, go to the Repositories panel.

2. Expand the Work Repositories node and right-click the work repository you want
to delete.

3. Select Delete.

4. In the Confirmation dialog click Yes.

5. The work repository is detached from the master repository and is deleted from
the Repositories panel in Topology Navigator.

3.8.2 Erasing a Work Repository
Deleting a work repository is equivalent to detaching a work repository from the
master repository. For more information, refer to Section 3.8.1, "Attaching and Deleting
a Work Repository".

Erasing a work repository consists of deleting the work repository from the database.

Erasing a Work Repository
To erase a work repository from the database:

1. In the Topology Navigator, go to the Repositories panel.

2. Expand the Work Repositories node and right-click the work repository you want
to delete.

3. Select Erase from Database.

4. In the Confirmation dialog click Yes, if you want to definitively erase the work
repository from the database.

5. The work repository is erased from the database and is deleted from the
Repositories panel in Topology Navigator.

WARNING: Erasing your work repository is an irreversible
operation. All information stored in the work repository will be
definitively deleted, including the metadata of your models,
projects and run-time information such as scenarios, schedules, and
logs.

Advanced Actions for Administering Repositories

3-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

3.8.3 Renumbering Repositories
Renumbering a repository consists of changing the repository ID and the internal ID of
the objects stored in the repository.

Renumbering a repository is advised when two repositories have been created with
the same ID. Renumbering one of these repositories allows object import/export
between these repositories without object conflicts.

Renumbering a Work Repository
To renumber a work repository:

1. In the Topology Navigator, go to the Repositories panel.

2. Expand the Work Repositories node and right-click the work repository you want
to renumber.

3. Select Renumber...

4. In the Renumbering the Repository - Step 1 dialog click Yes.

5. In the Renumbering the Repository - Step 2 dialog click OK.

6. In the Renumbering the Repository - Step 3 dialog enter a new and unique ID for
the work repository and click OK.

7. In the Renumbering the Repository - Step 4 dialog click Yes.

8. The work repository and all the objects attached to it are renumbered.

Renumbering a Master Repository
1. In the Topology Navigator, go to the Repositories panel.

2. Expand the right-click the master repository you want to renumber.

3. Select Renumber...

4. In the Renumbering the Repository - Step 1 dialog click Yes.

5. In the Renumbering the Repository - Step 2 dialog enter a new and unique ID for
the master repository and click OK.

6. The master repository and all the details stored in it such as topology, security, and
version management details are renumbered.

WARNING: Renumbering a repository is an administrative
operation that requires you to perform a backup of the repository
that will b renumbered on the database.

4

Setting-up the Topology 4-1

4Setting-up the Topology

This chapter describes how to set up the topology in Oracle Data Integrator. An
overview of Oracle Data Integrator topology concepts and components is provided.

This chapter contains these sections:

■ Section 4.1, "Introduction to the Oracle Data Integrator Topology"

■ Section 4.2, "Setting Up the Topology"

■ Section 4.3, "Managing Agents"

4.1 Introduction to the Oracle Data Integrator Topology
The Oracle Data Integrator Topology is the physical and logical representation of the
Oracle Data Integrator architecture and components.

This section contains these topics:

■ Section 4.1.1, "Physical Architecture"

■ Section 4.1.2, "Contexts"

■ Section 4.1.3, "Logical Architecture"

■ Section 4.1.4, "Agents"

■ Section 4.1.5, "Languages"

■ Section 4.1.6, "Repositories"

4.1.1 Physical Architecture
The physical architecture defines the different elements of the information system, as
well as their characteristics taken into account by Oracle Data Integrator. Each type of
database (Oracle, DB2, etc.), file format (XML, Flat File), or application software is
represented in Oracle Data Integrator by a technology.

A technology handles formatted data. Therefore, each technology is associated with one
or more data types that allow Oracle Data Integrator to generate data handling scripts.

The physical components that store and expose structured data are defined as data
servers. A data server is always linked to a single technology. A data server stores
information according to a specific technical logic which is declared into physical
schemas attached to this data server. Every database server, JMS message file, group of
flat files, and so forth, that is used in Oracle Data Integrator, must be declared as a data
server. Every schema, database, JMS Topic, etc., used in Oracle Data Integrator, must
be declared as a physical schema.

Introduction to the Oracle Data Integrator Topology

4-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Finally, the physical architecture includes the definition of the Physical Agents. These
are the Java software components that run Oracle Data Integrator jobs.

4.1.2 Contexts
Contexts bring together components of the physical architecture (the real Architecture)
of the information system with components of the Oracle Data Integrator logical
architecture (the Architecture on which the user works).

For example, contexts may correspond to different execution environments
(Development, Test and Production) or different execution locations (Boston Site,
New-York Site, and so forth.) where similar physical resource exist.

Note that during installation the default GLOBAL context is created.

4.1.3 Logical Architecture
The logical architecture allows a user to identify as a single Logical Schema a group of
similar physical schemas - that is containing datastores that are structurally identical -
but located in different physical locations. Logical Schemas, like their physical
counterpart, are attached to a technology.

Context allow to resolve logical schemas into physical schemas. In a given context, one
logical schema resolves in a single physical schema.

For example, the Oracle logical schema Accounting may correspond to two Oracle
physical schemas:

■ Accounting Sample used in the Development context

■ Accounting Corporate used in the Production context

These two physical schemas are structurally identical (they contain accounting data),
but are located in different physical locations. These locations are two different Oracle
schemas (Physical Schemas), possibly located on two different Oracle instances (Data
Servers).

All the components developed in Oracle Data Integrator are designed on top of the
logical architecture. For example, a data model is always attached to logical schema,
and data flows are defined with this model. By specifying a context at run-time, the
model’s logical schema resolves to a single physical schema, and the data contained in
this schema in the data server can be accessed by the integration processes.

4.1.4 Agents
Oracle Data Integrator run-time Agents orchestrate the execution of jobs. These agents
are Java components.

The run-time agent functions as a listener and a scheduler agent. The agent executes jobs
on demand (model reverses, packages, scenarios, interfaces, and so forth), for example
when the job is manually launched from a user interface or from a command line. The
agent is also to start the execution of scenarios according to a schedule defined in
Oracle Data Integrator.

Third party scheduling systems can also trigger executions on the agent. See
Section 19.5.2, "Scheduling a Scenario with an External Scheduler" for more
information.

Typical projects will require a single Agent in production; however, Section 4.3.3,
"Load Balancing Agents"describes how to set up several load-balanced agents.

Introduction to the Oracle Data Integrator Topology

Setting-up the Topology 4-3

Agent Lifecycle
The lifecycle of an agent is as follows:

1. When the agent starts it connects to the master repository.

2. Through the master repository it connects to any work repository attached to the
Master repository and performs the following tasks at startup:

■ Clean stale sessions in each work repository. These are the sessions left
incorrectly in a running state after an agent or repository crash.

■ Retrieve its list of scheduled scenarios in each work repository, and compute
its schedule.

3. The agent starts listening on its port.

■ When an execution request arrives on the agent, the agent acknowledges this
request and starts the session.

■ The agent launches the sessions start according to the schedule.

■ The agent is also able to process other administrative requests in order to
update its schedule, stop a session, respond to a ping or clean stale sessions.
The standalone agent can also process a stop signal to terminate its lifecycle.

Refer to Chapter 19, "Running Integration Processes" for more information about a
session lifecycle.

Agent Features
Agents are not data transformation servers. They do not perform any data
transformation, but instead only orchestrate integration processes. They delegate data
transformation to database servers, operating systems or scripting engines.

Agents are multi-threaded lightweight components. An agent can run multiple
sessions in parallel. When declaring a physical agent, it is recommended that you
adjust the maximum number of concurrent sessions it is allowed to execute
simultaneously from a work repository. When this maximum number is reached, any
new incoming session will be queued by the agent and executed later when other
sessions have terminated. If you plan to run multiple parallel sessions, you can
consider load balancing executions as described in Section 4.3.3, "Load Balancing
Agents".

Standalone and Java EE Agents
The Oracle Data Integrator agents exists in two flavors: standalone agent and Java EE
agent.

A standalone agent runs in a separate Java Virtual Machine (JVM) process. It connects
to the work repository and to the source and target data servers via JDBC. Standalone
agents can be installed on any server with a Java Machine installed. This type of agent
is more appropriate when you need to use a resource that is local to one of your data
servers (for example, the file system or a loader utility installed with the database
instance), and you do not want to install a Java EE application server on this machine.

A Java EE agent is deployed as a web application in a Java EE application server (for
example Oracle WebLogic Server). The Java EE agent can benefit from all the features
of the application server (for example, JDBC data sources or clustering for Oracle
WebLogic Server). This type of agent is more appropriate when there is a need for
centralizing the deployment and management of all applications in an enterprise
application server, or when you have requirements for high availability.

Setting Up the Topology

4-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

It is possible to mix in a single environment standalone and Java EE agents in a
distributed environment.

Physical and Logical Agents
A physical agent corresponds to a single standalone agent or a Java EE agent. A
physical agent should have a unique name in the Topology.

Similarly to schemas, physical agents having an identical role in different
environments can be grouped under the same logical agent. A logical agent is related
to physical agents through contexts. When starting an execution, you indicate the
logical agent and the context. Oracle Data Integrator will translate this information
into a single physical agent that will receive the execution request.

Agent URL
An agent runs on a host and a port and is identified on this port by an application name.
The agent URL also indicates the protocol to use for the agent connection. Possible
values for the protocol are http or https. These four components make the agent
URL. The agent is reached via this URL.

For example:

■ A standalone agent started on port 8080 on the odi_production machine will be
reachable at the following URL:

http://odi_production:8080/oraclediagent.

■ A Java EE agent started as an application called oracledi on port 8000 in a WLS
server deployed on the odi_wls host will be reachable at the following URL:

 http://odi_wls:8000/oracledi.

4.1.5 Languages
Languages defines the languages and language elements available when editing
expressions at design-time. Languages provided by default in Oracle Data Integrator
do not require any user change.

4.1.6 Repositories
The topology contains information about the Oracle Data Integrator repositories.
Repository definition, configuration and installation is covered in the Installation and
Upgrade Guide for Oracle Data Integrator.

4.2 Setting Up the Topology
The following steps are a guideline to create the topology. You can always modify the
topology after an initial setting:

1. Create the contexts corresponding to your different environments.

2. Create the data servers corresponding to the servers used by Oracle Data
Integrator.

Note: The application name for a standalone agent is always
oraclediagent and cannot be changed.

Setting Up the Topology

Setting-up the Topology 4-5

3. For each data server, create the physical schemas corresponding to the schemas
containing data to be integrated with Oracle Data Integrator.

4. Create logical schemas and associate them with physical schemas in the contexts.

5. Create the physical agents corresponding to the standalone or Java EE agents that
are installed in your information systems.

6. Create logical agents and associate them with physical agents in the contexts.

4.2.1 Creating a Context
To create a context:

1. In Topology Navigator expand the Contexts accordion.

2. Click New context in the accordion header.

3. Fill in the following fields:

■ Name: Name of the context, as it appears in the Oracle Data Integrator
graphical interface.

■ Code: Code of the context, allowing a context to be referenced and identified
among the different repositories.

■ Password: Password requested when the user requests switches to this context
in a graphical interface. It is recommended to use a password for critical
contexts (for example, contexts pointing to Production data)

■ Check Default if you want this context to be displayed by default in the
different lists in Designer Navigator or Operator Navigator.

4. From the File menu, click Save.

4.2.2 Creating a Data Server
A Data Server corresponds for example to a Database, JMS server instance, a scripting
engine or a file system accessed with Oracle Data Integrator in the integration flows.
Under a data server, subdivisions are created in the form of Physical Schemas.

4.2.2.1 Pre-requisites and Guidelines
It is recommended to follow the guidelines below when creating a data server.

Review the Technology Specific Requirements
Some technologies require the installation and the configuration of elements such as:

■ Installation of a JDBC Driver. See the Oracle Fusion Middleware Installation and
Upgrade Guide for Oracle Data Integrator for more information.

■ Installation of a Client Connector,

■ Data source configuration.

Refer to the documentation of the technology you are connecting to through the data
server and to the Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for
Oracle Data Integrator. The connection information may also change depending on the

Note: Frequently used technologies have their data server creation
methods detailed in the Oracle Fusion Middleware Connectivity and
Knowledge Modules Guide for Oracle Data Integrator.

Setting Up the Topology

4-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

technology. Refer to the server documentation provided, and contact the server
administrator to define the connection methods.

Create an Oracle Data Integrator User
For each database engine used by Oracle Data Integrator, it is recommended to create a
user dedicated for ODI on this data server (typically named ODI_TEMP).

Grant this user privileges to

■ Create/drop objects and perform data manipulation in his own schema.

■ Manipulate data into objects of the other schemas of this data server according to
the operations required for the integration processes.

This user should be used as follows:

■ Use this user name/password in the data server user/password definition.

■ Use this user's schema as your Work Schema for all data schemas on this server.

4.2.2.2 Creating a Data Server
To create a Data Server:

1. In Topology Navigator expand the Technologies node in the Physical Architecture
accordion.

2. Select the technology you want to create a data server for.

3. Right-click and select New Data Server

4. Fill in the following fields in the Definition tab:

■ Name: Name of the Data Server that will appear in Oracle Data Integrator.

For naming data servers, it is recommended to use the following naming
standard: <TECHNOLOGY_NAME>_<SERVER_NAME>.

■ ... (Data Server): This is the physical name of the data server used by other
data servers to identify it. Enter this name if your data servers can be
inter-connected in a native way. This parameter is not mandatory for all
technologies.

For example, for Oracle, this name corresponds to the name of the instance,
used for accessing this data server from another Oracle data server through
DBLinks.

■ User/Password: User name and password for connecting to the data server.
This parameter is not mandatory for all technologies, as for example for the
File technology.

Depending on the technology, this could be a "Login", a "User", or an
"account". For some connections using the JNDI protocol, the user name and
its associated password can be optional (if they have been given in the LDAP
directory).

5. Define the connection parameters for the data server:

A technology can be accessed directly through JDBC or the JDBC connection to
this data server can be served from a JNDI directory.

If the technology is accessed through a JNDI directory:

1. Check the JNDI Connection on the Definition tab.

2. Go to the JNDI tab, and fill in the following fields:

Setting Up the Topology

Setting-up the Topology 4-7

If the technology is connected through JDBC:

1. Un-check the JNDI Connection box.

2. Go to the JDBC tab, and fill in the following fields:

You can get a list of pre-defined JDBC drivers and URLs by clicking Display
available drivers or Display URL sample.

6. From the File menu, click Save to validate the creation of the data server.

4.2.2.3 Creating a Data Server (Advanced Settings)
The following actions are optional.

Adding Connection Properties
These properties are passed when creating the connection, in order to provide optional
configuration parameters. Each property is a (key, value) pair.

■ For JDBC: These properties depend on the driver used. Please see the driver
documentation for a list of available properties. It is possible in JDBC to specify
here the user and password for the connection, instead of specifying there in the
Definition tab.

■ For JNDI: These properties depend on the resource used.

Field Description

JNDI authentication ■ None: Anonymous access to the naming or directory service

■ Simple: Authenticated access, non-encrypted

■ CRAM-MD5: Authenticated access, encrypted MD5

■ <other value>: authenticated access, encrypted according to
<other value>

JNDI User/Password User/password connecting to the JNDI directory

JNDI Protocol Protocol used for the connection

Note that only the most common protocols are listed here. This is
not an exhaustive list.

■ LDAP: Access to an LDAP directory

■ SMQP: Access to a SwiftMQ MOM directory

■ <other value>: access following the sub-protocol <other
value>

JNDI Driver The driver allowing the JNDI connection

Example Sun LDAP directory:
com.sun.jndi.ldap.LdapCtxFactory

JNDI URL The URL allowing the JNDI connection

For example: ldap://suse70:389/o=linuxfocus.org

JNDI Resource The directory element containing the connection parameters

For example: cn=sampledb

Field Description

JDBC Driver Name of the JDBC driver used for connecting to the data server

JDBC URL URL allowing you to connect to the data server.

Setting Up the Topology

4-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

To add a connection property to a data server:

1. On the Properties tab click Add a Property.

2. Specify a Key identifying this property. This key is case-sensitive.

3. Specify a value for the property.

4. From the File menu, click Save.

Defining Data Sources
On the Data Sources tab you can define JDBC data sources that will be used by Oracle
Data Integrator Java EE Agents deployed on application servers to connect to this data
server. Note that data sources are not applicable for standalone agents.

Defining data sources is not mandatory, but allows the Java EE agent to benefit from
the data sources and connection pooling features available on the application server.
Connection pooling allows reusing connections across several sessions. If a data source
is not declared for a given data server in a Java EE agent, this Java EE agent always
connects the data server using direct JDBC connection, that is without using any of the
application server data sources.

Before defining the data sources in Oracle Data Integrator, please note the following:

■ Datasources for WebLogic Server should be created with the Statement Cache
Size parameter set to 0 in the Connection Pool configuration. Statement caching
has a minor impact on data integration performances, and may lead to unexpected
results such as data truncation with some JDBC drivers. Note that this concerns
only data connections to the source and target data servers, not the repository
connections.

■ If using Connection Pooling with datasources, it is recommended to avoid ALTER
SESSION statements in procedures and Knowledge Modules. If a connection
requires ALTER SESSION statements, it is recommended to disable connection
pooling in the related datasources.

To define JDBC data sources for a data server:

1. On the DataSources tab of the Data Server editor click Add a DataSource

2. Select a physical Agent in the Agent field.

3. Enter the data source name in the JNDI Name field.

Note that this name must match the name of the data source in your application
server.

4. Check JNDI Standard if you want to use the environment naming context (ENC).

When JNDI Standard is checked, Oracle Data Integrator automatically prefixes
the data source name with the string java:comp/env/ to identify it in the
application server’s JNDI directory.

Note that the JNDI Standard is not supported by Oracle WebLogic Server and for
global data sources.

5. From the File menu, click Save.

After having defined a data source for a Java EE agent, you must create it in the
application server into which the Java EE agent is deployed. There are several ways to
create data sources in the application server, including:

■ Configure the data sources from the application server console. For more
information, refer to your application server documentation.

Setting Up the Topology

Setting-up the Topology 4-9

■ Deploying Datasources from Oracle Data Integrator in WLS for an Agent

■ Deploying an Agent in a Java EE Application Server (Oracle WebLogic Server)

4.2.2.4 Testing a Data Server Connection
It is recommended to test the data server connection before proceeding in the topology
definition.

To test a connection to a data server:

1. In Topology Navigator expand the Technologies node in the Physical
Architecture accordion and then expand the technology containing your data
server.

2. Double-click the data server you want to test. The Data Server Editor opens.

3. Click Test Connection.

The Test Connection dialog is displayed.

4. Select the agent that will carry out the test. Local (No Agent) indicates that the
local station will attempt to connect.

5. Click Detail to obtain the characteristics and capacities of the database and JDBC
driver.

6. Click Test to launch the test.

A window showing "connection successful!" is displayed if the test has worked; if not,
an error window appears. Use the detail button in this error window to obtain more
information about the cause of the connection failure.

4.2.3 Creating a Physical Schema
An Oracle Data Integrator Physical Schema corresponds to a pair of Schemas:

■ A (Data) Schema, into which Oracle Data Integrator will look for the source and
target data structures for the interfaces.

■ A Work Schema, into which Oracle Data Integrator can create and manipulate
temporary work data structures associated to the sources and targets contained in
the Data Schema.

Frequently used technologies have their physical schema creation methods detailed in
the Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data
Integrator.

Before creating a Physical Schema, note the following:

■ Not all technologies support multiple schemas. In some technologies, you do not
specify the work and data schemas since one data server has only one schema.

■ Some technologies do not support the creation of temporary structures. The work
schema is useless for these technologies.

■ The user specified in the data server to which the Physical Schema is attached
must have appropriate privileges on the schemas attached to this data server.

To create a Physical Schema:

1. Select the data server, Right-click and select New Physical Schema. The Physical
Schema Editor appears.

2. If the technology supports multiple schemas:

Setting Up the Topology

4-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

a. Select or type the Data Schema for this Data Integrator physical schema in ...
(Schema). A list of the schemas appears if the technologies supports schema
listing.

b. Select or type the Work Schema for this Data Integrator physical schema in ...
(Work Schema). A list of the schemas appears if the technologies supports
schema listing.

3. Check the Default box if you want this schema to be the default one for this data
server (The first physical schema is always the default one).

4. Go to the Context tab.

5. Click Add.

6. Select a Context and an existing Logical Schema for this new Physical Schema.

If no Logical Schema for this technology exists yet, you can create it from this
Editor.

To create a Logical Schema:

1. Select an existing Context in the left column.

2. Type the name of a Logical Schema in the right column.

This Logical Schema is automatically created and associated to this physical
schema in this context when saving this Editor.

7. From the File menu, click Save.

4.2.4 Creating a Logical Schema
To create a logical schema:

1. In Topology Navigator expand the Technologies node in the Logical Architecture
accordion.

2. Select the technology you want to attach your logical schema to.

3. Right-click and select New Logical Schema.

4. Fill in the schema name.

5. For each Context in the left column, select an existing Physical Schema in the right
column. This Physical Schema is automatically associated to the logical schema in
this context. Repeat this operation for all necessary contexts.

6. From the File menu, click Save.

4.2.5 Creating a Physical Agent
To create a Physical Agent:

1. In Topology Navigator right-click the Agents node in the Physical Architecture
accordion.

2. Select New Agent.

3. Fill in the following fields:

■ Name: Name of the agent used in the Java graphical interface.

■ Host: Network name or IP address of the machine the agent will been
launched on.

■ Port: Listening port used by the agent. By default, this port is the 20910.

Managing Agents

Setting-up the Topology 4-11

■ Web Application Context: Name of the web application corresponding to the
Java EE agent deployed on an application server. For standalone agents, this
field should be set to oraclediagent.

■ Protocol: Protocol to use for the agent connection. Possible values are http or
https. Default is http.

■ Maximum number of sessions supported by this agent.

4. If you want to setup load balancing, go to the Load balancing tab and select a set
of linked physical agent to which the current agent can delegate executions. See
Section 4.3.3.3, "Setting Up Load Balancing" for more information.

5. If the agent is launched, click Test. The successful connection dialog is displayed.

6. Click Yes.

4.2.6 Creating a Logical Agent
To create a logical agent:

1. In Topology Navigator right-click the Agents node in the Logical Architecture
accordion.

2. Select New Logical Agent.

3. Fill in the Agent Name.

4. For each Context in the left column, select an existing Physical Agent in the right
column. This Physical Agent is automatically associated to the logical agent in this
context. Repeat this operation for all necessary contexts.

5. From the File menu, click Save.

4.3 Managing Agents
This section describes how to work with a standalone agent, a Java EE agent and how
to handle load balancing.

4.3.1 Standalone Agent
Managing the standalone agent involves the actions discussed in these sections:

■ Section 4.3.1.1, "Configuring the Standalone Agent"

■ Section 4.3.1.2, "Launching a Standalone Agent"

■ Section 4.3.1.3, "Stopping an Agent"

4.3.1.1 Configuring the Standalone Agent
The odiparams file is a configuration script that contains the parameters for the Oracle
Data Integrator standalone agent command line scripts. It contains the repository
connection and credential information for starting the standalone agent. It is necessary
to have this configuration done before starting a standalone agent.

Note: The agent command line scripts, which are required for
performing the tasks described in this section, are only available if you
have installed the Oracle Data Integrator Standalone Agent. See the
Oracle Fusion Middleware Installation Guide for Oracle Data Integrator for
information about how to install the Standalone Agent.

Managing Agents

4-12 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

This file is in the /agent/bin directory of the Oracle Data Integrator installation
directory.

■ On UNIX system:

odiparams.sh

■ On Windows system:

odiparams.bat

This file can be edited with a text editor to set the configuration parameters.

See Table 4–1 for the list of these parameters.

Note: The odiparams file is preconfigured if you have installed your
standalone agent using Oracle Universal Installer and have selected to
configure a repository connection during installation.

Table 4–1 Repository Connection Information

Parameter Description

ODI_MASTER_DRIVER JDBC driver used to connect the master repository.

ODI_MASTER_URL JDBC URL used to connect the master repository

ODI_MASTER_USER Database account used to connect the master repository

ODI_MASTER_ENCODED_PASS Database account password. The password must be encoded
with the encode.[sh|bat] <password> command.

ODI_SECU_WORK_REP Name of the work repository to connect to. This work repository
is the default repository into which the scenarios are started. See
Chapter 19, "Running Integration Processes" for more
information.

ODI_SUPERVISOR Name of an ODI SUPERVISOR user. This SUPERVISOR user is
used by the agent to connect the master repository.

ODI_SUPERVISOR_ENCODED_PASS This SUPERVISOR user’s password. The password must be
encoded with the encode.[sh|bat] <password>
command.

ODI_USER Name of an ODI user used to start scenarios. This user’s
credentials are used when starting a scenario from a command
line. See Chapter 19, "Running Integration Processes" for more
information.

ODI_ENCODED_PASS This ODI user password

ODI_CONNECTION_RETRY_COUNT The number of retries to re-establish the connection in the event
of a repository connection failures. Default is 0. No retry is
performed when the default value is not modified by the user.

Note that the RETRY parameters (ODI_CONNECTION_RETRY_
COUNT and ODI_CONNECTION_RETRY_DELAY) allow the agent
to continue sessions if the repository falls down and is made
available shortly after. These parameters enable high availability
(HA) recovery for a repository residing on an Oracle RAC
database.

ODI_CONNECTION_RETRY_DELAY Time in milliseconds between repository connection retries.
Default is 7000.

Managing Agents

Setting-up the Topology 4-13

4.3.1.2 Launching a Standalone Agent
The standalone agent is able to execute scenarios on predefined schedules or on
demand.

To launch a standalone agent:

1. Change directory to the /agent/bin directory of the Oracle Data Integrator
Agent.

2. Enter the following command to start the agent.

■ On UNIX system:

./agent.sh

■ On Windows system:

agent.bat

The agent is then launched as listener. The agent can take the optional parameters
listed in Table 4–2.

Agent Configuration Parameters
Table 4–2 lists the different parameters that allow the agent to be configured. The
parameters are prefixed by the "-" character and the possible values are preceded by
the "=" character. When entering the command, consider the operating system specific
syntax of the delimiters.

For example, on UNIX, the following command

./agent.sh -PORT=20300 -NAME=agent_001

launches the standalone agent declared in the repository as agent_001 on the port
20300.

4.3.1.3 Stopping an Agent
You can stop a standalone agent by stopping the Java process of this agent.

Table 4–2 Agent Configuration Parameters

Parameters Description

-PORT=<port> Port on which the agent is listening. Default value is 20910. This
port should exactly match the port specified in the physical
agent definition in the topology.

-NAME=<agent name> This is the name of the physical agent used. This name should
match the name of the physical agent as defined in the topology.
If this parameter is not specified, the agent starts with the
default name OracleDIAgent.

-JMXPORT=<jmx_port> JMX agent port number. The agent listens on this port for JMX
request to provide its metrics. Default value is the listening port
+ 1000. For example, if <port>=20910 then <jmx_
port>=21910.

WARNING: On Windows platforms, it is necessary to "delimit" the
command arguments containing "=" signs or spaces, by using
double quotes. For example:

agent.bat "-PORT=20300" "-NAME=agent_001"

Managing Agents

4-14 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

You can stop a standalone agent remotely using the agentstop command.

To stop a standalone agent:

1. Change directory to the /agent/bin directory of the Oracle Data Integrator
Agent.

2. Enter the following command to stop the agent.

■ On UNIX system:

./agentstop.sh

■ On Windows system:

agentstop.bat

The listening agent is stopped.

Examples:

■ On Windows: agentstop "-PORT=20300" stops the agent on the port 20300.

■ On UNIX: ./agentstop.sh stops the agent on the default port.

AgentStop Command Parameters
The table below lists the different parameters for the command to stop the agent. The
parameters are preceded by the "-" character and the possible values are preceded by
the "=" character. When entering the command, consider the operating system specific
syntax of the delimiters.

4.3.2 Java EE Agent
Managing a Java EE agent involves the actions discussed in the sections:

Parameters Description

-PORT=<port> This parameter is deprecated. It is used to stop a
standalone agent on the same machine. It is a shortcut to
-AGENT_
URL=http://localhost:<port>/oraclediagent.

The default port is 20910.

-AGENT_URL=<agent_url> URL of the standalone agent to stop. This parameter has
precedence over the AGENT_NAME and PORT
parameters is deprecated.

-NAME=<agent name> If this parameter is specified, the physical agent whose
name is provided is killed. This agent may be a local or
remote agent, and must be declared in the master
repository. This parameter has precedence over the
PORT parameter.

-IMMEDIATE=<true(default)|false> If this parameter is set to yes then the agent is killed
without waiting for completion of its running sessions.
If it is set to no then the agent is killed after all its
running sessions reach completion or after the MAX_
WAIT timeout is reached. Default value is No.

-MAX_WAIT=<stop timeout in millis> This parameter can be used when IMMEDIATE is set to
No. It defines a timeout in milliseconds after which the
agent is killed regardless of the running sessions.
Default is 0, meaning no timeout and the agent is killed
after all its running sessions reach completion.

Managing Agents

Setting-up the Topology 4-15

■ Section 4.3.2.1, "Deploying an Agent in a Java EE Application Server (Oracle
WebLogic Server)"

■ Section 4.3.2.2, "Deploying Datasources from Oracle Data Integrator in WLS for an
Agent"

4.3.2.1 Deploying an Agent in a Java EE Application Server (Oracle WebLogic
Server)
The easiest way for deploying an Oracle Data Integrator agent in Oracle WebLogic
Server (WLS) is to generate a WLS template with Oracle Data Integrator. This template
can directly be deployed into WLS Configuration Wizard.

To deploy an agent in a Java EE Application Server (Oracle Web Logic Server), follow
the procedure in the following tasks.

■ Task 1: "Define the Java EE Agent in the Topology"

■ Task 2: "Create an WLS template for the Java EE Agent"

4.3.2.1.1 Define the Java EE Agent in the Topology

Defining a Java EE agent consists of two tasks. First, you need to create the physical
agent corresponding to your Java EE agent, then, a logical agent.

To create a physical agent:

1. In Topology Navigator right-click the Agents node in the Physical Architecture
accordion.

2. Select New Agent.

3. In the Definition tab, pay attention to the following parameters.

■ Name is the name of the Java EE agent.

■ Host must correspond to the WLS host name.

■ Port is the HTTP port of the Java EE Agent application.

■ Protocol: Protocol to use for the agent connection. Possible values are http or
https. Default is http.

■ Web Application Context is name of the web application corresponding to the
Java EE agent.

4. Drag and drop the work repositories or data servers to be managed as Java EE
data sources from the Repositories accordion in the Topology Navigator into the
DataSources tab of this agent's Editor.

5. Provide a JNDI name for these data sources.

6. Drag and drop the source/target data servers that this agent will access from the
Physical Architecture accordion in the Topology Navigator into the DataSources
tab of this agent's Editor.

7. Provide a JNDI name for these data sources.

8. From the File menu, click Save to save the Physical Agent.

To create a logical agent:

1. Create a Logical Agent for this Physical Agent as described in Section 4.2.6,
"Creating a Logical Agent".

2. Map the Logical Agent in the appropriate context.

Managing Agents

4-16 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

4.3.2.1.2 Create an WLS template for the Java EE Agent

Oracle Data Integrator provides a WLS Template Generation wizard to help you create
an WLS template for a run-time agent.

To open the WLS Template Generation wizard:

1. From the Physical Agent Editor toolbar menu, select Generate WLS Template.
This starts the Template Generation wizard.

2. In the Agent Information step, review the agent information and modify the
default configuration if needed.

The Agent Information includes the following parameters:

■ General

Agent Name: Displays the name of the Agent that you want to deploy.

■ Master Repository Connection

JNDI Datasource Name: The name of the datasource used by the Java EE agent
to connect to the master repository. The template can contain a definition of
this datasource. Default is jdbc/odiMasterRepository.

■ Connection Retry Settings

Connection Retry Count: Number of retry attempts done if the agent loses the
connection to the repository. Note that setting this parameter to a non-zero
value, enables a high availability connection retry feature if the ODI repository
resides on an Oracle RAC database. If this feature is enabled, the agent can
continue to execute sessions without interruptions even if one or more Oracle
RAC nodes become unavailable.

Retry Delay (milliseconds): Interval (in milliseconds) between each connection
retry attempt.

■ Supervisor Authentication

Supervisor Key: Name of the key in the application server credential store that
contains the login and the password of an ODI user with Supervisor
privileges. This agent will use this user credentials to connect to the repository.

3. Click Next.

4. In the Libraries and Drivers step, select from the list the external libraries and
drivers to deploy with this agent. Only libraries added by the user appear here.

Note that the libraries can be any JAR or ZIP file that is required for this agent.
Additional JDBC drivers or libraries for accessing the source and target data
servers must be selected here.

You can use the corresponding buttons in the toolbar to select or deselect all
libraries and/or drivers in the list.

5. Click Next.

6. In the Datasources step, select the datasources definitions that you want to include
in this agent template. You can only select datasources from the wizard. Naming
and adding these datasources is done in the Data Sources tab of the Physical
Agent editor.

7. Click Next.

8. In Template Target and Summary step, enter the Target Template Path where the
WLS template will be generated.

Managing Agents

Setting-up the Topology 4-17

9. Click Finish to close the wizard and generate the WLS template.

The Template generation information dialog appears.

10. Click OK to close the dialog.

The generated template can be used to deploy the agent in WLS using the WLS
configuration wizard. Refer to the Oracle Fusion Middleware Installation Guide for Oracle
Data Integrator for more information.

Declare the Supervisor in the WLS Credential Store
After deploying the template, it is necessary to declare the Supervisor into the WLS
Credential Store. Refer to the Oracle Fusion Middleware Installation Guide for Oracle Data
Integrator for more information.

4.3.2.2 Deploying Datasources from Oracle Data Integrator in WLS for an Agent
You can create datasources from the Topology Navigator into a WebLogic Server for
which a Java EE agent is configured.

To deploy datasources in a Oracle WebLogic Server:

1. Open the Physical Agent Editor configured for the WLS application server into
which you want to deploy the datasources.

2. Go to the Datasources tab.

3. Drag and Drop the source/target data servers from the Physical Architecture tree
in the Topology Navigator into the DataSources tab.

4. Provide a JNDI Name for these datasources.

5. Right-click any of the datasource, then select Deploy Datasource on WLS.

6. Fill in the following fields:

■ Host: Host name or IP address of the WLS Admin Server.

■ Port: Port of the WLS Admin Server

■ User: WebLogic server user name.

■ Password: this user’s password

■ Target: WLS Target into which this datasource will be deployed.

7. Click OK.

WLS Datasource Configuration and Usage
When setting up datasources in WebLogic Server for Oracle Data Integrator, please
note the following:

■ Datasources should be created with the Statement Cache Size parameter set to 0
in the Connection Pool configuration. Statement caching has a minor impact on

Note: This operation only creates the Datasources definition in
WebLogic Server. It does not install drivers or library files needed for
these datasources to work. Additional drivers added to the Studio
classpath can be included into a WLS Agent Template. See
Section 4.3.2.1.2, "Create an WLS template for the Java EE Agent" for
more information.

Managing Agents

4-18 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

data integration performances, and may lead to unexpected results such as data
truncation with some JDBC drivers.

■ If using Connection Pooling with datasources, it is recommended to avoid ALTER
SESSION statements in procedures and Knowledge Modules. If a connection
requires ALTER SESSION statements, it is recommended to disable connection
pooling in the related datasources, as an altered connection returns to the
connection pool after usage.

4.3.3 Load Balancing Agents
Oracle Data Integrator allows to load balance parallel session execution between
physical agents.

Each physical agent is defined with:

■ A maximum number of sessions it can execute simultaneously from a work
repository

The maximum number of sessions is a value that must be set depending on the
capabilities of the machine running the agent. It can be also set depending on the
amount of processing power you want to give to the Oracle Data Integrator agent.

■ Optionally, a number of linked physical agents to which it can delegate sessions'
executions.

An agent's load is determined at a given time by the ratio (Number of running
sessions / Maximum number of sessions) for this agent.

4.3.3.1 Delegating Sessions
When a session is started on an agent with linked agents, Oracle Data Integrator
determines which one of the linked agents is less loaded, and the session is delegated
to this linked agent.

An agent can be linked to itself, in order to execute some of the incoming sessions,
instead of delegating them all to other agents. Note that an agent not linked to itself is
only able to delegate sessions to its linked agents, and will never execute a session.

Delegation cascades in the hierarchy of linked agents. If agent A has agent B1 and B2
linked to it, and agent B1 has agent C1 linked to it, then sessions started on agent A
will be executed by agent B2 or agent C1. Note that it is not recommended to make
loops in agents links.

If the user parameter "Use new Load Balancing" is set to Yes, sessions are also
re-balanced each time a session finishes. This means that if an agent runs out of
sessions, it will possibly be reallocated sessions already allocated to another agent.

4.3.3.2 Agent Unavailable
When for a given agent the number of running sessions reaches its maximum number
of sessions, the agent will put incoming sessions in a "queued" status until the number
of running sessions falls below the maximum of sessions.

If an agent is unavailable (because it crashed for example), all its sessions in queue will
be re-assigned to another load balanced agent that is neither running any session nor
having sessions in queue if the user parameter Use the new load balancing is set to Yes.
See Appendix B, "User Parameters" for more information.

4.3.3.3 Setting Up Load Balancing
To setup load balancing:

Managing Agents

Setting-up the Topology 4-19

1. Define a set of physical agents, and link them in a hierarchy of agents (See
"Creating a Physical Agent" for more information.)

2. Start all the physical agents corresponding to the agents defined in the topology.

3. Run the executions on the root agent of your hierarchy. Oracle Data Integrator will
balance the load of the executions between its linked agents.

Managing Agents

4-20 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Part III
Part III Managing and Reverse-Engineering

Metadata

This part describes how to manage and reverse-engineer metadata in Oracle Data
Integrator.

This part contains the following chapters:

■ Chapter 5, "Creating and Reverse-Engineering a Model"

■ Chapter 6, "Working with Common Format Designer"

■ Chapter 7, "Working with Changed Data Capture"

■ Chapter 8, "Working with Data Services"

5

Creating and Reverse-Engineering a Model 5-1

5Creating and Reverse-Engineering a Model

This chapter describes how to create a model, how to reverse-engineer this model to
populate it with datastores and how to create manually datastores of a model. This
chapter also explains how to use partitioning and check the quality of the data in a
model.

This chapter includes the following sections:

■ Section 5.1, "Introduction to Models"

■ Section 5.2, "Creating and Reverse-Engineering a Model"

■ Section 5.3, "Creating and Reverse-Engineering a Datastore"

■ Section 5.4, "Editing and Viewing a Datastore's Data"

■ Section 5.5, "Using Partitioning"

■ Section 5.6, "Checking Data Quality in a Model"

5.1 Introduction to Models
A Model is the description of a set of datastores. It corresponds to a group of tabular
data structures stored in a data server. A model is based on a Logical Schema defined
in the topology. In a given Context, this Logical Schema is mapped to a Physical
Schema. The Data Schema of this Physical Schema contains physical data structure:
tables, files, JMS messages, elements from an XML file, that are represented as
datastores.

Models as well as all their components are based on the relational paradigm (table,
columns, keys, etc.). Models in Data Integrator only contain Metadata, that is the
description of the data structures. They do not contain a copy of the actual data.

Models can be organized into model folders and the datastores of a model can be
organized into sub-models. Section 16.2, "Organizing Models with Folders" describes
how to create and organize model folders and sub-models.

5.1.1 Datastores
A datastore represents a data structure. It can be a table, a flat file, a message queue or
any other data structure accessible by Oracle Data Integrator.

Note: Frequently used technologies have their reverse and model
creation methods detailed in the Oracle Fusion Middleware Connectivity
and Knowledge Modules Guide for Oracle Data Integrator.

Introduction to Models

5-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

A datastore describes data in a tabular structure. Datastores are composed of columns.

As datastores are based on the relational paradigm, it is also possible to associate the
following elements to a datastore:

■ Keys

A Key is a set of columns with a specific role in the relational paradigm. Primary
and Alternate Keys identify each record uniquely. Non-Unique Indexes enable
optimized record access.

■ References

A Reference is a functional link between two datastores. It corresponds to a
Foreign Key in a relational model. For example: The INVOICE datastore references
the CUSTOMER datastore through the customer number.

■ Conditions and Filters

Conditions and Filters are a WHERE-type SQL expressions attached to a datastore.
They are used to validate or filter the data in this datastore.

5.1.2 Data Integrity
A model contains constraints such as Keys, References or Conditions, but also
non-null flags on columns. Oracle Data Integrator includes a data integrity framework
for ensuring the quality of a data model.

This framework allows to perform:

■ Static Checks to verify the integrity of the data contained in a data model. This
operation is performed to assess the quality of the data in a model when
constraints do not physically exist in the data server but are defined in Data
Integrator only.

■ Flow Check to verify the integrity of a data flow before it is integrated into a given
datastore. The data flow is checked against the constraints defined in Oracle Data
Integrator for the datastore that is the target of the data flow.

5.1.3 Reverse-engineering
A new model is created with no datastores. Reverse-engineering is the process that
populates the model in Oracle Data Integrator by retrieving metadata from the data
server containing the data structures. There are two different types of
reverse-engineering:

■ Standard reverse-engineering uses standard JDBC driver features to retrieve the
metadata.

■ Customized reverse-engineering uses a technology-specific Reverse Knowledge
Module (RKM) to retrieve the metadata, using a method specific to the given
technology. This method usually retrieves more information than the Standard
reverse-engineering method.

Other methods for reverse-engineering exist for flat file datastores. They are detailed
in the Reverse-Engineering File Datastores section.

5.1.4 Changed Data Capture
Change Data Capture (CDC), also referred to as Journalizing, allows to trap changes
occurring on the data. CDC is used in Oracle Data Integrator to eliminate the transfer

Creating and Reverse-Engineering a Model

Creating and Reverse-Engineering a Model 5-3

of unchanged data. This feature can be used for example for data synchronization and
replication.

Journalizing can be applied to models, sub-models or datastores based on certain type
of technologies.

For information about setting up Changed Data Capture, see Chapter 7, "Working with
Changed Data Capture".

5.2 Creating and Reverse-Engineering a Model
Now that the key components of an ODI model have been described, an overview is
provided on how to create and reverse-engineer a model.

5.2.1 Creating a Model
A Model is a set of datastores corresponding to data structures contained in a Physical
Schema.

To create a Model:

1. In Designer Navigator expand the Models panel.

2. Right-click then select New Model.

3. Fill in the following fields in the Definition tab:

■ Name: Name of the model used in the user interface.

■ Technology: Select the model's technology.

■ Logical Schema: Select the Logical Schema on which your model will be
based.

4. Go to the Reverse tab, and select a Context which will be used for the model's
reverse-engineering.

Note that if there is only one context that maps the logical schema, this context will
be set automatically.

5. Select Save from the File main menu.

The model is created, but contains no datastore yet.

5.2.2 Reverse-engineering a Model
To automatically populate datastores into the model you need to perform a
reverse-engineering for this model.

Standard Reverse-Engineering
A Standard Reverse-Engineering uses the capacities of the JDBC driver used to
connect the data server to retrieve the model metadata.

To perform a Standard Reverse- Engineering:

1. In the Reverse tab of your Model:

■ Select Standard.

■ Select the Context used for the reverse-engineering

■ Select the Types of objects to reverse-engineer. Only object of these types will
be taken into account by the reverse-engineering process.

Creating and Reverse-Engineering a Model

5-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ Enter in the Mask field the mask of tables to reverse engineer. The mask
selects the objects to reverse. This mask uses the SQL LIKE syntax. The percent
(%) symbol means zero or more characters, and the underscore (_) symbol
means one character.

■ Optionally, you can specify the characters to remove for the table alias. These
are the characters to delete in order to derive the alias. Note that if the datastores
already exist, the characters specified here will not be removed from the table alias.
Updating a datastore is not applied to the table alias.

2. In the Selective Reverse tab select Selective Reverse, New Datastores, Existing
Datastores and Objects to Reverse.

3. A list of datastores to be reverse-engineered appears. Leave those you wish to
reverse-engineer checked.

4. Select Save from the File main menu.

5. Click Reverse Engineer in the Model toolbar menu.

6. Oracle Data Integrator launches a reverse-engineering process for the selected
datastores. A progress bar indicates the progress of the reverse-engineering
process.

The reverse-engineered datastores appear under the model node in the Models panel.

Customized Reverse-Engineering
A Customized Reverse-Engineering uses a Reverse-engineering Knowledge Module
(RKM), to retrieve metadata for a specific type of technology and create the
corresponding datastore definition in the data model.

For example, for the Oracle technology, the RKM Oracle accesses the database
dictionary tables to retrieve the definition of tables, columns, keys, etc, that are created
in the model.

To perform a Customized Reverse-Engineering using a RKM:

1. In the Reverse tab of your Model:

■ Select Customized.

■ Select the Context used for the reverse-engineering

■ Select the Types of objects to reverse-engineer. Only object of these types will
be taken into account by the reverse-engineering process.

■ Enter in the Mask the mask of tables to reverse engineer.

■ Select the KM that you want to use for performing the reverse-engineering
process. This KM is typically called RKM <technology>.<name of the
project>.

■ Optionally, you can specify the characters to remove for the table alias. These
are the characters to delete in order to derive the alias. Note that if the datastores
already exist, the characters specified here will not be removed from the table alias.
Updating a datastore is not applied to the table alias.

Note: Using a RKM requires that you import this RKM into a project.
Refer to Chapter 9, "Creating an Integration Project" for more
information on KM import.

Creating and Reverse-Engineering a Datastore

Creating and Reverse-Engineering a Model 5-5

2. Click Reverse Engineer in the Model toolbar menu, then Yes to validate the
changes.

3. Click OK.

4. The Session Started Window appears.

5. Click OK.

You can review the reverse-engineering tasks in the Operator Navigator. If the
reverse-engineering process completes correctly, reverse-engineered datastores appear
under the model node in the Models panel.

5.3 Creating and Reverse-Engineering a Datastore
Although the recommended method for creating datastores in a model is
reverse-engineering, it is possible to manually define datastores in a blank model. It is
the recommended path for creating flat file datastores.

5.3.1 Creating a Datastore
To create a datastore:

1. From the Models tree in Designer Navigator, select a Model or a Sub-Model.

2. Right-click and select New Datastore.

3. In the Definition tab, fill in the following fields:

■ Name of the Datastore: This is the name that appears in the trees and that is
used to reference the datastore from a project

■ Resource Name: Name of the object in the form recognized by the data server
which stores it. This may be a table name, a file name, the name of a JMS
Queue, etc.

■ Alias: This is a default alias used to prefix this datastore’s columns names in
expressions.

4. If the datastore represents a flat file (delimited or fixed), in the File tab, fill in the
following fields:

■ File Format: Select the type of your flat file, fixed or delimited.

■ Header: Number of header lines for the flat file.

■ Record Separator and Field Separator define the characters used to separate
records (lines) in the file, and fields within one record.

Record Separator: One or several characters separating lines (or records) in
the file:

– MS-DOS: DOS carriage return

– Unix: UNIX carriage return

– Other: Free text you can input as characters or hexadecimal codes

Field Separator: One ore several characters separating the fields in a record.

– Tabulation

– Space

– Other: Free text you can input as characters or hexadecimal code

Creating and Reverse-Engineering a Datastore

5-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

5. Select Save from the File main menu.

The datastore is created. If this is a File datastore, refer to the Reverse-Engineering File
Datastores section for creating columns for this datastore. It is also possible to
manually edit columns for all datastores. See Adding and Deleting Datastore Columns
for more information.

5.3.2 Reverse-Engineering File Datastores
Oracle Data Integrator provides specific methods for reverse-engineering flat files. The
methods for reversing flat files are described below.

5.3.2.1 Reverse-Engineering Fixed Files
Fixed files can be reversed engineered using a wizard into which the boundaries of the
fixed columns and their parameters can be defined.

1. Go to the Columns tab the file datastore that has a fixed format.

2. Click the Reverse button. A window opens displaying the first records of your file.

3. Click on the ruler (above the file contents) to create markers delimiting the
columns. Right-click in the ruler to delete a marker.

4. Columns are created with pre-generated names (C1, C2, and so on). You can edit
the column name by clicking in the column header line (below the ruler).

5. In the properties panel (on the right), you can edit the parameters of the selected
column.

6. You must set at least the Column Name, Datatype and Length for each column.
Note that column names of File datastores cannot contain spaces.

7. Click OK when the columns definition is complete to close the wizard.

8. Select Save from the File main menu.

5.3.2.2 Reverse-Engineering Delimited Files
Delimited files can be reversed engineered using a a built-in JDBC which analyzes the
file to detect the columns and reads the column names from the file header.

1. Go to the Columns tab the file datastore that has a delimited format.

2. Click the Reverse button.

3. Oracle Data Integrator creates the list of columns according to your file content.
The column type and length are set to default values. Column names are
pre-generated names (C1, C2, and so on) or names taken from the first Header line
declared for this file.

4. Review and if needed modify the Column Name, Datatype and Length for each
column. Note that column names of File datastores cannot contain spaces.

5. Select Save from the File main menu.

5.3.2.3 Reverse-Engineering COBOL Files
Fixed COBOL files structures are frequently described in Copybook files. Oracle Data
Integrator can reverse-engineer the Copybook file structure into a datastore structure.

1. Go to the Columns tab the file datastore that has a delimited format.

2. Click the Reverse COBOL Copybook button.

Creating and Reverse-Engineering a Datastore

Creating and Reverse-Engineering a Model 5-7

3. Fill in the following fields:

■ File: Location of the Copybook file.

■ Character Set: Copybook file character set.

■ Description format (EBCDIC or ASCII): Copybook file format

■ Data format (EBCDIC or ASCII): Data file format.

4. Click OK. The columns described in the Copybook are reverse-engineered and
appear in the column list.

5. Select Save from the File main menu.

5.3.3 Adding and Deleting Datastore Columns
To add columns to a datastore:

1. In the Columns tab of the datastore, click Add Column in the toolbar menu.

2. An empty line appears. Fill in the information about the new column. You should
at least fill in the Name, Datatype and Length fields.

3. Repeat steps 1 and 2 for each column you want to add to the datastore.

4. Select Save from the File main menu.

To delete columns from a datastore:

1. In the Columns tab of the datastore, select the column to delete.

2. Click the Delete Column button. The column disappears from the list.

5.3.4 Adding and Deleting Constraints and Filters
Oracle Data Integrator manages constraints on data model including Keys, References,
Conditions and Mandatory Columns. It includes a data integrity framework for
ensuring the quality of a data model based on these constraints.

Filters are not constraints but are defined similarly to Conditions. A Filter is not used
to enforce a data quality rule on a datastore, but is used to automatically filter this
datastore when using it as a source.

5.3.4.1 Keys
To create a key for a datastore:

1. In the Designer Navigator, expand in the Model tree the model and then the
datastore into which you want to add the key.

2. Select the Constraints node, right-click and select New Key.

3. Enter the Name for the constraint, and then select the Key or Index Type. Primary
Keys and Alternate Keys can be checked and can act as an update key in an
interface. Non-Unique Index are used mainly for performance reasons.

4. In the Columns tab, select the list of columns that belong to this key.

5. In the Control tab, select whether this constraint should be checked by default in a
Static or Flow check.

6. By clicking the Check button, you can retrieve the number of records that do not
respect this constraint.

7. Select Save from the File main menu.

Creating and Reverse-Engineering a Datastore

5-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

5.3.4.2 References
To create a reference between two datastores:

1. In the Designer Navigator, expand in the Model tree the model and then one of
the datastores into which you want to add the reference.

2. Select the Constraints node, right-click and select New Reference.

3. Enter the Name for the constraint, and then select the Type for the reference. In a
User Reference the two datastores are linked based on column equality. In a
Complex User Reference any expression can be used to link the two datastores. A
Database Reference is a reference based on column equality that has been
reverse-engineered from a database engine.

4. If you want to reference a datastore that exists in a model, select the Model and
the Table that you want to link to the current datastore.

5. If you want to link a table that does not exist in a model, leave the Model and
Table fields undefined, and set the Catalog, Schema and Table names to identify
your datastore.

6. If you are defining a User or Database reference, in the Columns tab, define the
matching columns from the two linked datastores.

7. If you are defining a Complex User reference, enter in the Expression tab the
expression that relates columns from the two linked datastores.

8. In the Control tab, select whether this constraint should be checked by default in a
Static or Flow check.

9. By clicking the Check button, you can retrieve the number of records that respect
or do not respect this constraint.

10. Select Save from the File main menu.

5.3.4.3 Conditions
To create a condition for a datastore:

1. In the Designer Navigator, expand in the Model tree the model and then one of
the datastores into which you want to add the condition.

2. Select the Constraints node, right-click and select New Condition.

3. Enter the Name for the constraint, and then select the Type for the condition. An
Oracle Data Integrator Condition is a condition that exists only in the model and
does not exist in the database. A Database Condition is a condition that is defined
in the database and has been reverse-engineered.

4. In the Where field enter the expression that implements the condition. This
expression is a SQL WHERE expression that valid records should respect.

5. Type in the Message field the error message for this constraint.

6. In the Control tab, select whether this constraint should be checked by default in a
Static or Flow check.

7. By clicking the Check button, you can retrieve the number of records that do not
respect this constraint.

8. Select Save from the File main menu.

5.3.4.4 Mandatory Columns
To define mandatory columns for a datastore:

Using Partitioning

Creating and Reverse-Engineering a Model 5-9

1. In the Designer Navigator, expand in the Model tree the model containing the
datastores.

2. Double-click the datastore containing the column that must be set as mandatory.
The Datastore Editor appears.

3. In the Columns tab, check the Not Null field for each column that is mandatory.

4. Select Save from the File main menu.

5.3.4.5 Filter
To add a filter to a datastore:

1. In the Designer Navigator, expand in the Model tree the model and then one of
the datastores into which you want to add the filter.

2. Select the Filter node, right-click and select New Condition.

3. Enter the Name for the filter.

4. In the Where field enter the expression that implements the filter. This expression
is a SQL WHERE expression used to filter source records.

5. In the Control tab, check Filter Active for Static Control if you want data from
this table to be filtered prior to checking it a static control.

6. Select Save from the File main menu.

5.4 Editing and Viewing a Datastore's Data
To view a datastore's data:

1. Select the datastore from the model in the Designer Navigator.

2. Right-click and select View Data.

The data appear in a non editable grid.

To edit a datastore's data:

1. Select the datastore from the model in the Designer Navigator.

2. Right-click and select Data...

The data appear in an editable grid in the Data Editor. The Refresh button enables you
to edit and run again the query returning the datastore data. You can filter the data
and perform free queries on the datastore using this method.

It is possible to edit a datastore's data if the connectivity used and the data server
user's privileges allow it, and if the datastore structure enables to identify each row of
the datastore (PK, etc.).

5.5 Using Partitioning
Oracle Data Integrator is able to use database-defined partitions when processing data
in partitioned tables used as source or targets of integration interfaces. These partitions
are created in the datastore corresponding to the table, either through the

Note: The data displayed is the data stored in the physical schema
corresponding to the model's logical schema, in the current working
context.

Checking Data Quality in a Model

5-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

reverse-engineering process or manually. For example with the Oracle technology,
partitions are reverse-engineered using the RKM Oracle.

The partitioning methods supported depend on the technology of the datastore. For
example, for the Oracle technology the following partitioning methods are supported:
Range, Hash, List.

Once defined on a datastore, partitions can be selected when this datastore is used as a
source or a target of an interface. Refer to Chapter 11, "Working with Integration
Interfaces" for information.

If using the common format designer, you can also create partitions when performing
the Generate DDL operation.

5.5.1 Defining Manually Partitions and Sub-Partitions of Model Datastores
Partition information can be reverse-engineered along with the datastore structures or
defined manually.

To define manually partitions and sub-partitions for a datastore:

1. In the Models accordion, double-click the datastore for which you want to define
the partition or sub-partition. The Datastore Editor opens.

2. In the Partitions tab, enter the following details to define the partition and
sub-partition:

■ Partition by

Select the partitioning method. This list displays the partitioning methods
supported by the technology on which the model relies.

■ Sub-Partition by

If you want to define sub-partitions in addition to partitions, select the
sub-partitioning method. This list displays the partitioning methods
supported by the technology on which the model relies.

3. Click Add Partition.

4. In the Name field, enter a name for the partition, for example: FY08.

5. In the Description field, enter a description for the partition, for example:
Operations for Fiscal Year 08.

6. If you want to add:

■ additional partitions, repeat steps 3 through 5.

■ a sub-partition of a selected partition, click Add Sub-Partition and repeat
steps 4 and 5.

7. From the File menu, select Save.

5.6 Checking Data Quality in a Model
Data Quality control is essential in ensuring the overall consistency of the data in your
information system's applications.

Note: Standard reverse-engineering does not support the
revers-engineering of partitions. To reverse-engineer partitions and
sub-partitions, you have to use customized reverse-engineering.

Checking Data Quality in a Model

Creating and Reverse-Engineering a Model 5-11

Application data is not always valid for the constraints and declarative rules imposed
by the information system. You may, for instance, find orders with no customer, or
order lines with no product, etc. In addition, such incorrect data may propagate via
integration flows.

5.6.1 Introduction to Data Integrity
Oracle Data Integrator provides a working environment to detect these constraint
violation and store them for recycling or reporting purposes.

There are two different main types of controls: Static Control and Flow Control. We
will examine the differences between the two.

Static Control
Static Control implies the existence of rules that are used to verify the integrity of your
application data. Some of these rules (referred to as constraints) may already be
implemented in your data servers (using primary keys, reference constraints, etc.)

With Oracle Data Integrator, you can refine the validation of your data by defining
additional constraints, without implementing them directly in your servers. This
procedure is called Static Control since it allows you to perform checks directly on
existing - or static - data.

Flow Control
The information systems targeted by transformation and integration processes often
implement their own declarative rules. The Flow Control function is used to verify an
application's incoming data according to these constraints before loading the data into
these targets. Setting up flow control is detailed in to Chapter 11, "Working with
Integration Interfaces".

5.6.2 Checking a Constraint
While creating a constraint in Oracle Data Integrator, it is possible to retrieve the
number of lines violating this constraint. This action, referred as Synchronous Control
is performed from the Control tab of the given constraint Editor by clicking the Check
button.

The result of a synchronous control is not persistent. This type of control is used to
quickly evaluate the validity of a constraint definition.

5.6.3 Perform a Static Check on a Model, Sub-Model or Datastore
To perform a Static Check on a Model, Sub-Model or Datastore:

1. In the Models tree in the Designer Navigator, select the model that you want to
check.

2. Double-click this model to edit it.

3. In the Control tab of the model Editor, select the Check Knowledge Module
(CKM) used in the static check.

4. From the File menu, select Save All.

5. Right-click the model, sub-model or datastore that you want to check in the Model
tree in the Designer Navigator and select Control > Check.

6. In the Execution window, select the execution parameters:

1. Select the Context into which the data must be checked.

Checking Data Quality in a Model

5-12 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

2. Select the Logical Agent that will run the check tasks.

3. Check the Delete Errors from the Checked Tables option if you want rows
detected as erroneous to be removed from the checked tables.

See Table 19–1 for more information about the execution parameters.

7. Click OK.

8. The Session Started Window appears.

9. Click OK.

You can review the check tasks in the Operator Navigator. If the control process
completes correctly, you can review the erroneous records for each datastore that has
been checked.

5.6.4 Reviewing Erroneous Records
To view a datastore's errors:

1. Select the datastore from the model in the Designer Navigator.

2. Right-click and select Control > Errors....

The erroneous rows detected for this datastore appear in a grid.

6

Working with Common Format Designer 6-1

6Working with Common Format Designer

This chapter describes how to use Oracle Data Integrator’s Common Format Designer
feature for creating a data model by assembling elements from other models. It also
details how to generate the DDL scripts for creating or updating a model’s
implementation in your data servers, and how to automatically generate the interfaces
to load data from and to a model.

This chapter includes the following sections:

■ Section 6.1, "Introduction to Common Format Designer"

■ Section 6.2, "Using the Diagram"

■ Section 6.3, "Generating DDL scripts"

■ Section 6.4, "Generating Interface IN/OUT"

6.1 Introduction to Common Format Designer
Common Format Designer (CFD) is used to quickly design a data model in Oracle
Data Integrator. This data model may be designed as an entirely new model or
assembled using elements from other data models. CFD can automatically generate
the Data Definition Language (DDL) scripts for implementing this model into a data
server.

Users can for example use Common Format Designer to create operational datastores,
datamarts, or master data canonical format by assembling heterogeneous sources.

CFD enables a user to modify an existing model and automatically generate the DDL
scripts for synchronizing differences between a data model described in Oracle Data
Integrator and its implementation in the data server.

6.1.1 What is a Diagram?
A diagram is a graphical view of a subset of the datastores contained in a sub-model
(or data model). A data model may have several diagrams attached to it.

A diagram is built:

■ by assembling datastores from models and sub-models.

■ by creating blank datastores into which you either create new columns or
assemble columns from other datastores.

Using the Diagram

6-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

6.1.2 Why assemble datastores and columns from other models?
When assembling datastores and columns from other models or sub-models in a
diagram, Oracle Data Integrator keeps track of the origin of the datastore or column
that is added to the diagram. These references to the original datastores and columns
enable Oracle Data Integrator to automatically generate the integration interfaces to
the assembled datastores (Interfaces IN)

Automatic interface generation does not work to load datastores and columns that are
not created from other model's datastores and columns. It is still possible to create the
integration interfaces manually, or complete generated interface for the columns not
automatically mapped.

6.1.3 Graphical Synonyms
In a diagram, a datastore may appear several times as a Graphical Synonym. A
synonym is a graphical representation of a datastore. Graphical synonyms are used to
make the diagram more readable.

If you delete a datastore from a diagram, Designer prompts you to delete either the
synonym (the datastore remains), or the datastore itself (all synonyms for this
datastore are deleted).

References in the diagram are attached to a datastore's graphical synonym. It is
possible create graphical synonyms at will, and move the references graphical
representation to any graphical synonym of the datastores involved in the references.

6.2 Using the Diagram
From a diagram, you can edit all the model elements (datastore, columns, references,
filters, etc) visible in this diagram, using their popup menu, directly available from the
diagram. Changes performed in the diagram immediately apply to the model.

6.2.1 Creating a New Diagram
To create a new diagram:

1. In the Models tree in Designer Navigator, expand the data model or sub-model
into which you want to create the diagram, then select the Diagrams node.

2. Right-click, then select New Diagram to open the Diagram Editor.

3. On the Definition tab of the Diagram Editor enter the diagram’s Name and
Description.

4. Select Save from the File main menu.

The new diagram appears under the Diagrams node of the model.

6.2.2 Create Datastores and Columns
To insert an existing datastore in a diagram:

1. Open the Diagram Editor by double-clicking the diagram under the Diagrams
node under the model’s node.

2. In the Diagram Editor, select the Diagram tab.

3. Select the datastore from the Models tree in Designer Navigator.

Using the Diagram

Working with Common Format Designer 6-3

4. Drag this datastore into the diagram. If the datastore comes from a
model/sub-model different from the current model/sub-model, Designer will
prompt you to create a copy of this datastore in the current model. If the datastore
already exists in the diagram, Oracle Data Integrator will prompt you to either
create new graphical synonym, or create a duplicate of the datastore.

The new graphical synonym for the datastore appears in the diagram. If you have
added a datastore from another model, or chosen to create a duplicate, the new
datastore appears in model.

If references (join) existed in the original models between tables inserted to the
diagram, these references are also copied.

To create a graphical synonym of a datastore already in the diagram select Create
Graphical Synonym in the popup menu of the datastore.

To create a new datastore in a diagram:

1. In the Diagram Editor, select the Diagram tab.

2. In the Diagram Editor toolbar, click Add Datastore.

3. Click into the diagram workbench.

4. An Editor appears for this new datastore. Follow the process described in
Chapter 5, "Creating and Reverse-Engineering a Model" for creating your
datastore.

To add columns from another datastore:

1. In the Diagram Editor, select the Diagram tab.

2. Select a column under a datastore from the Models tree of the Designer Navigator.

3. Drag this column into the datastore in the diagram to which you want to append
this column. The Column Editor appears to edit this new column. Edit the column
according to your needs.

4. Select Save from the File main menu. The new column is added to the datastore.

6.2.3 Creating Graphical Synonyms
To create a graphical synonym for a datastore:

1. In the Diagram tab, select the datastore.

2. Right-click, then select Create Graphical Synonym.

The new graphical synonym appears in the diagram.

This operation does not add a new datastore. It creates only a new representation for
the datastore in the diagram.

6.2.4 Creating and Editing Constraints and Filters
To add a new condition, filter, key to a datastore:

1. In the Diagram tab, select the datastore.

2. Right-click then select the appropriate option: Add Key, Add Filter, etc.

3. A new Editor appears for the new condition, filter, key, etc. Follow the process
described in Chapter 5, "Creating and Reverse-Engineering a Model" for creating
this element.

Using the Diagram

6-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Conditions, filters and references are added to the diagram when you add the
datastore which references them into the diagram. It is possible to drag into the
diagram these objects if they have been added to the datastore after you have added it
to the diagram.

To edit a key on a column:

If a column is part of a key (Primary, Alternate), it is possible to edit the key from this
column in the diagram.

1. In the Diagram tab, select one of the column participating to the key.

2. Right-click then select the name of the key in the pop-up menu, then select Edit in
the sub-menu.

To create a reference between two datastores:

1. In the Diagram Editor, select the Diagram tab.

2. In the toolbar click the Add Reference button.

3. Click the first datastore of the reference, then drag the cursor to the second
datastore while keeping the mouse button pressed.

4. Release the mouse button. The Reference Editor appears.

5. Set this reference's parameters according to the process described in Chapter 5,
"Creating and Reverse-Engineering a Model".

To move a reference to another graphical synonym:

1. In the Diagram Editor, select the Diagram tab.

2. In the Diagram tab, select the reference you wish to modify.

3. Right-click and select Display Options.

4. Select the synonyms to be used as the parent and child of the reference.

5. Click OK. The reference representation appears now on the selected synonyms.

This operation does not change the reference itself. It only alters its representation in
the diagram.

6.2.5 Printing a Diagram
Once you have saved your diagram you can save the diagram in PNG format, print it
or generate a complete PDF report.

To print or generate a diagram report:

1. On the Diagram tab of your diagram, select Print Options from the Diagram
menu.

2. In the Data Model Printing editor select according to your needs one of the
following options:

■ Generate the complete PDF report

■ Save the diagram in PNG

■ Print your diagram

3. Click OK.

Generating DDL scripts

Working with Common Format Designer 6-5

6.3 Generating DDL scripts
When data structure changes have been performed in a data server, you usually
perform an incremental reverse-engineering in Oracle Data Integrator to retrieve the
new metadata from the data server.

When a diagram or data model is designed or modified in Oracle Data Integrator, it is
necessary to implement the data model or the changes in the data server containing
the model implementation. This operation is performed with DDL scripts. The DDL
scripts are generated in the form of Oracle Data Integrator procedures containing DDL
commands (create table, alter table, etc). This procedure may be executed on the data
server to apply the changes.

To generate the DDL scripts:

1. In the Models tree of Designer Navigator, select the data model for which you
want to generate the DDL scripts.

2. Right-click, then select Generate DDL. The Generate DDL for Oracle Data
Integrator Model dialog is displayed.

3. Click Yes if you want to process tables that are not in the Oracle Data Integrator
model, otherwise click No.

Oracle Data Integrator retrieves current state of the data structure from the data
server, and compares it to the model definition. The progression is displayed in the
status bar. The Generate DDL Editor appears, with the differences detected.

4. Select the Action Group to use for the DDL script generation.

5. Click the ... button to select the Generation Folder into which the procedure will
be created.

6. Select the folder and click OK.

7. Filter the type of changes you want to display using the Filters check boxes.

8. Select the changes to apply by checking the Synchronization option. The
following icons indicate the type of changes:

■ - : Element existing in the data model but not in the data server.

■ + : Element existing in the data server but not in the data model.

■ = : Element existing in both the data model and the data server, but with
differences in its properties (example: a column resized) or attached elements
(example: a table including new columns).

9. Click OK to generate the DDL script.

Oracle Data Integrator generates the DDL scripts in a procedure and opens the
Procedure Editor for this procedure.

Note: The templates for the DDL scripts are defined as Action
Groups. Check in the Topology Navigator that you have the
appropriate action group for the technology of the model before
starting DDL scripts generation. For more information on action
groups, please refer to the Knowledge Module Developer's Guide for
Oracle Data Integrator.

Generating Interface IN/OUT

6-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

6.4 Generating Interface IN/OUT
For a given model or datastore assembled using Common Format Designer, Oracle
Data Integrator is able to generate:

■ Interfaces IN: These integration interfaces are used to load the model's datastores
assembled from other datastores/columns. They are the integration process
merging data from the original datastores into the composite datastores.

■ Interfaces OUT: These integration interfaces are used to extract data from the
model's datastores. They are generated using the interfaces (including the
interfaces IN) already loading the model's datastore. They reverse the integration
process to propagate the data from the composite datastore to the original
datastores.

For example, an Active Integration Hub (AIH) assembles information coming from
several other applications. It is made up of composite datastores built from several
data models, assembled in a diagram. The AIH is loaded using the Interfaces IN, and
is able to send the data it contains to the original systems using the Interfaces OUT.

To generate the Interfaces IN:

1. In the Models tree of Designer Navigator, select the data model or datastore for
which you want to generate the interfaces.

2. Right-click, then select Generate Interfaces IN. Oracle Data Integrator looks for
the original datastores and columns used to build the current model or datastore.
The Generate Interfaces IN Editor appears with a list of datastores for which
Interfaces IN may be generated.

3. Select an Optimization Context for your interfaces. This context will define how
the flow for the generated interfaces will look like, and will condition the
automated selection of KMs.

4. Click the ... button to select the Generation Folder into which the interfaces will be
generated.

5. In the Candidate Datastores table, check the Generate Interface option for the
datastores to load.

6. Edit the content of the Interface Name column to rename the integration
interfaces.

7. Click OK. Interface generation starts.

The generated interfaces appear in the specified folder.

To generate the Interface OUT:

Note: Interfaces automatically generated are built using predefined
rules based on repository metadata. These interfaces can not be
executed immediately. They must be carefully reviewed and modified
before execution

Note: If no candidate datastore is found when generating the
interfaces IN, then it is likely that the datastores you are trying to load
are not built from other datastores or columns. Automatic interface
generation does not work to load datastores and columns that are not
created from other model's datastores and columns.

Generating Interface IN/OUT

Working with Common Format Designer 6-7

1. In the Models tree of Designer Navigator, select the data model or datastore for
which you want to generate the interfaces.

2. Right-click, then select Generate Interfaces OUT. Oracle Data Integrator looks for
the existing Interfaces loading these the datastores. The Generate Interfaces OUT
Editor appears with a list of datastores for which Interfaces OUT may be
generated.

3. Select an Optimization Context for your interfaces. This context will define how
the flow for the generated interfaces will look like, and will condition the
automated selection of KMs.

4. Click the ... button to select the Generation Folder into which the interfaces will be
generated.

5. In the Candidate Datastores, check the Generation and Generate Interface
checkboxes to select either all or some of the candidate datastore to load from the
target datastore of the existing interfaces.

6. Edit the content of the Interface Name column to rename the integration
interfaces.

7. Click OK. Interface generation starts.

The generated interfaces appear in the specified folder.

Note: Interfaces automatically generated are built using the available
metadata and do not always render the expected rules. These
interfaces must be carefully reviewed and modified before execution.

Note: If no candidate datastore is found when generating the
interfaces OUT, then it is likely that no interface loads the datastores
you have selected to generate the interfaces OUT. The interfaces OUT
from a datastore are generated from the interfaces loading this
datastore. Without any valid interface loading a datastore, not
propagation interface from this datastore can be generated.

Generating Interface IN/OUT

6-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

7

Working with Changed Data Capture 7-1

7Working with Changed Data Capture

This chapter describes how to use Oracle Data Integrator’s Changed Data Capture
feature to detect changes occurring on the data and only process these changes in the
integration flows.

This chapter includes the following sections:

■ Section 7.1, "Introduction to Changed Data Capture"

■ Section 7.2, "Setting up Journalizing"

■ Section 7.3, "Using Changed Data"

7.1 Introduction to Changed Data Capture
Changed Data Capture (CDC) allows Oracle Data Integrator to track changes in source
data caused by other applications. When running integration interfaces, thanks to
CDC, Oracle Data Integrator can avoid processing unchanged data in the flow.

Reducing the source data flow to only changed data is useful in many contexts, such
as data synchronization and replication. It is essential when setting up an
event-oriented architecture for integration. In such an architecture, applications make
changes in the data ("Customer Deletion", "New Purchase Order") during a business
process. These changes are captured by Oracle Data Integrator and transformed into
events that are propagated throughout the information system.

Changed Data Capture is performed by journalizing models. Journalizing a model
consists of setting up the infrastructure to capture the changes (inserts, updates and
deletes) made to the records of this model's datastores.

Oracle Data Integrator supports two journalizing modes:

■ Simple Journalizing tracks changes in individual datastores in a model.

■ Consistent Set Journalizing tracks changes to a group of the model's datastores,
taking into account the referential integrity between these datastores. The group of
datastores journalized in this mode is called a Consistent Set.

7.1.1 The Journalizing Components
The journalizing components are:

■ Journals: Where changes are recorded. Journals only contain references to the
changed records along with the type of changes (insert/update, delete).

■ Capture processes: Journalizing captures the changes in the source datastores
either by creating triggers on the data tables, or by using database-specific
programs to retrieve log data from data server log files. See the Oracle Fusion

Setting up Journalizing

7-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator for
more information on the capture processes available for the technology you are
using.

■ Subscribers: CDC uses a publish/subscribe model. Subscribers are entities
(applications, integration processes, etc.) that use the changes tracked on a
datastore or on a consistent set. They subscribe to a model's CDC to have the
changes tracked for them. Changes are captured only if there is at least one
subscriber to the changes. When all subscribers have consumed the captured
changes, these changes are discarded from the journals.

■ Journalizing views: Provide access to the changes and the changed data captured.
They are used by the user to view the changes captured, and by integration
processes to retrieve the changed data.

These components are implemented in the journalizing infrastructure.

7.1.2 Simple vs. Consistent Set Journalizing
Simple Journalizing enables you to journalize one or more datastores. Each
journalized datastore is treated separately when capturing the changes.

This approach has a limitation, illustrated in the following example: You want to
process changes in the ORDER and ORDER_LINE datastores (with a referential
integrity constraint based on the fact that an ORDER_LINE record should have an
associated ORDER record). If you have captured insertions into ORDER_LINE, you
have no guarantee that the associated new records in ORDERS have also been
captured. Processing ORDER_LINE records with no associated ORDER records may
cause referential constraint violations in the integration process.

Consistent Set Journalizing provides the guarantee that when you have an ORDER_
LINE change captured, the associated ORDER change has been also captured, and vice
versa. Note that consistent set journalizing guarantees the consistency of the captured
changes. The set of available changes for which consistency is guaranteed is called the
Consistency Window. Changes in this window should be processed in the correct
sequence (ORDER followed by ORDER_LINE) by designing and sequencing
integration interfaces into packages.

Although consistent set journalizing is more powerful, it is also more difficult to set
up. It should be used when referential integrity constraints need to be ensured when
capturing the data changes. For performance reasons, consistent set journalizing is also
recommended when a large number of subscribers are required.

It is not possible to journalize a model (or datastores within a model) using both
consistent set and simple journalizing.

7.2 Setting up Journalizing
This section explains how to set up and start the journalizing infrastructure, and check
that this infrastructure is running correctly. It also details the components of this
infrastructure.

7.2.1 Setting up and Starting Journalizing
The basic process for setting up CDC on an Oracle Data Integrator data model is as
follows:

■ Set the CDC parameters in the data model

Setting up Journalizing

Working with Changed Data Capture 7-3

■ Add the datastores to the CDC

■ For consistent set journalizing, set the datastores order

■ Add subscribers

■ Start the journals

Set the CDC parameters
Setting up the CDC parameters is performed on a data model. This consists of
selecting or changing the journalizing mode and journalizing Knowledge Module
used for the model.

To set up the CDC parameters:

1. In the Models tree in the Designer Navigator, select the model that you want to
journalize.

2. Double-click this model to edit it.

3. In the Journalizing tab, select the journalizing mode you want to use: Consistent
Set or Simple.

4. Select the Journalizing Knowledge Module (JKM) you want to use for this model.
Only Knowledge Modules suitable for the data model's technology and
journalizing mode, and that have been previously imported into at least one of
your projects will appear in the list.

5. Set the Options for this KM. See the Oracle Fusion Middleware Connectivity and
Knowledge Modules Guide for Oracle Data Integrator for more information about this
KM and its options.

6. From the File menu, select Save All.

Add or remove datastores for the CDC:
You must flag the datastores that you want to journalize within the journalized model.
A change in the datastore flag is taken into account the next time the journals are
(re)started. When flagging a model or a sub-model, all of the datastores contained in
the model or sub-model are flagged.

To add or remove datastores for the CDC:

1. Right-click the model, sub-model or datastore that you want to add to/remove
from the CDC in the Model tree in the Designer Navigator.

2. Right-click then select Changed Data Capture > Add to CDC or Changed Data
Capture > Remove from CDC to add to the CDC or remove from the CDC the
selected datastore, or all datastores in the selected model/sub-model.

The datastores added to CDC should now have a marker icon. The journal icon
represents a small clock. It should be yellow, indicating that the journal infrastructure
is not yet in place.

Note: If the model is already being journalized, it is recommended
that you stop journalizing with the existing configuration before
modifying the data model journalizing parameters.

Setting up Journalizing

7-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Set the datastores order (consistent set journalizing only):
You only need to arrange the datastores in order when using consistent set
journalizing. You should arrange the datastores in the consistent set in an order which
preserves referential integrity when using their changed data. For example, if an
ORDER table has references imported from an ORDER_LINE datastore (i.e. ORDER_
LINE has a foreign key constraint that references ORDER), and both are added to the
CDC, the ORDER datastore should come before ORDER_LINE. If the PRODUCT
datastore has references imported from both ORDER and ORDER_LINE (i.e. both
ORDER and ORDER_LINE have foreign key constraints to the PRODUCT table), its
order should be lower still.

To set the datastores order:

1. In the Models tree in the Designer Navigator, select the model journalized in
consistent set mode.

2. Double-click this model to edit it.

3. Go to the Journalized Tables tab.

4. If the datastores are not currently in any particular order, click the Reorganize
button. This feature suggests an order for the journalized datastores based on the
foreign keys defined in the model. Review the order suggested and edit the
datastores order if needed.

5. Select a datastore from the list, then use the Up and Down buttons to move it
within the list. You can also directly edit the Order value for this datastore.

6. Repeat the previous step until the datastores are ordered correctly.

7. From the File menu, select Save All.

Add or remove subscribers:
Each subscriber consumes in a separate thread changes that occur on individual
datastores for Simple Journalizing or on a model for Consistent Set Journalizing.
Adding or removing a subscriber registers it to the CDC infrastructure in order to trap
changes for it.

To add subscribers:

Note: It is possible to add datastores to the CDC after the journal
creation phase. In this case, the journals should be re-started.

If a datastore with journals running is removed from the CDC in
simple mode, the journals should be stopped for this individual
datastore. If a datastore is removed from CDC in Consistent Set mode,
the journals should be restarted for the model (Journalizing
information is preserved for the other datastores).

Note: Changes to the order of datastores are taken into account the
next time the journals are (re)started.

If existing scenarios consume changes from this CDC set, you should
regenerate them to take into account the new organization of the CDC
set.

Setting up Journalizing

Working with Changed Data Capture 7-5

1. In the Models tree in the Designer Navigator, select the journalized data model if
using Consistent Set Journalizing or select a data model or an individual datastore
if using Simple Journalizing.

2. Right-click, then select Changed Data Capture > Subscriber > Subscribe. A
window appears which lets you select your subscribers.

3. Type a Subscriber name, then click the Add Subscriber button. Repeat the
operation for each subscriber you want to add.

4. Click OK.

5. In the Execution window, select the execution parameters:

■ Select the Context into which the subscribed must be registered.

■ Select the Logical Agent that will run the journalizing tasks.

6. Click OK.

7. The Session Started Window appears.

8. Click OK.

You can review the journalizing tasks in the Operator Navigator.

Removing a subscriber is a similar process. Select the Changed Data Capture >
Subscriber > Unsubscribe option instead.

You can also add subscribers after starting the journals. Subscribers added after
journal startup will only retrieve changes captured since they were added to the
subscribers list.

Start/Drop the journals:
Starting the journals creates the CDC infrastructure if it does not exist yet. It also
validates the addition, removal and order changes for journalized datastores.

Dropping the journals deletes the entire journalizing infrastructure.

To start or drop the journals:

1. In the Models tree in the Designer Navigator, select the journalized data model if
using Consistent Set Journalizing or select a data model or an individual datastore
if using Simple Journalizing.

2. Right-click, then select Changed Data Capture > Start Journal if you want to start
the journals, or Changed Data Capture > Drop Journal if you want to stop them.

3. In the Execution window, select the execution parameters:

■ Select the Context into which the journals must be started or dropped.

■ Select the Logical Agent that will run the journalizing tasks.

Note: Subscriber names cannot contain single quote characters.

Note: Dropping the journals deletes all captured changes as well as
the infrastructure. For simple journalizing, starting the journal in
addition deletes the journal contents. Consistent Set JKMs support
restarting the journals without losing any data.

Setting up Journalizing

7-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

4. Click OK.

5. The Session Started Window appears.

6. Click OK.

A session begins to start or drops the journals. You can review the journalizing tasks in
the Operator Navigator.

Automate journalizing setup:
The journalizing infrastructure is implemented by the journalizing KM at the physical
level. Consequently, Add Subscribers and Start Journals operations should be performed
in each context where journalizing is required for the data model. It is possible to
automate these operations using Oracle Data Integrator packages. Automating these
operations is recommended to deploy a journalized infrastructure across different
contexts.

For example, a developer will manually configure CDC in the Development context.
When the development phase is complete, he provides a package that automates the
CDC infrastructure. CDC is automatically deployed in the Test context by using this
package. The same package is also used to deploy CDC in the Production context.

An overview designing such a package follows. See Chapter 10, "Working with
Packages" for more information on package creation.

To automate CDC configuration:

1. Create a new package.

2. Drag and drop from the Models accordion the model or datastore you want to
journalize into the package Diagram tab. A new package step appears.

3. Double-Click the step icon in the package diagram. The properties inspector for
this steps opens.

4. In the Type list, select Journalizing Model/Datastore.

5. Check the Start box to start the journals.

6. Check the Add Subscribers box, then enter the list of subscribers into the
Subscribers group.

7. Enter the first subscriber in the subscriber field, and click the Add button to add it
to the Subscribers list. Repeat this operation for all your subscribers.

8. From the File menu, select Save.

When this package is executed in a context, it starts the journals according to the
model configuration and creates the specified subscribers in this context.

It is possible to split subscriber and journal management into different steps and
packages. Deleting subscribers and stopping journals can be automated in the same
manner.

7.2.2 Journalizing Infrastructure Details
When the journals are started, the journalizing infrastructure (if not installed yet) is
deployed or updated in the following locations:

■ When the journalizing Knowledge Module creates triggers, they are installed on
the tables in the Work Schema for the Oracle Data Integrator physical schema
containing the journalized tables. Journalizing trigger names are prefixed with the
prefix defined in the Journalizing Elements Prefixes for the physical schema. The

Using Changed Data

Working with Changed Data Capture 7-7

default value for this prefix is T$. For details about database-specific capture
processes see the Oracle Fusion Middleware Connectivity and Knowledge Modules
Guide for Oracle Data Integrator.

■ A CDC common infrastructure for the data server is installed in the Work Schema
for the Oracle Data Integrator physical schema that is flagged as Default for this
data server. This common infrastructure contains information about subscribers,
consistent sets, etc. for all the journalized schemas of this data server. This
common infrastructure consists of tables whose names are prefixed with SNP_
CDC_.

■ Journal tables and journalizing views are installed in the Work Schema for the
Oracle Data Integrator physical schema containing the journalized tables. The
journal table and journalizing view names are prefixed with the prefixes defined
in the Journalizing Elements Prefixes for the physical schema. The default value is
J$ for journal tables and JV$ for journalizing views

All components (except the triggers) of the journalizing infrastructure (like all Data
Integrator temporary objects, such as integration, error and loading tables) are
installed in the Work Schema for the Oracle Data Integrator physical schemas of the
data server. These work schemas should be kept separate from the schema containing
the application data (Data Schema).

7.2.3 Journalizing Status
Datastores in models or interfaces have an icon marker indicating their journalizing
status in Designer's current context:

■ OK - Journalizing is active for this datastore in the current context, and the
infrastructure is operational for this datastore.

■ No Infrastructure - Journalizing is marked as active in the model, but no
appropriate journalizing infrastructure was detected in the current context.
Journals should be started. This state may occur if the journalizing mode
implemented in the infrastructure does not match the one declared for the model.

■ Remnants - Journalizing is marked as inactive in the model, but remnants of the
journalizing infrastructure such as the journalizing table have been detected for
this datastore in the context. This state may occur if the journals were not stopped
and the table has been removed from CDC.

7.3 Using Changed Data
Once journalizing is started and changes are tracked for subscribers, it is possible to
use the changes captured. These can be viewed or used when the journalized datastore
is used as a source of an interface.

Important: The journalizing triggers are the only components for
journalizing that must be installed, when needed, in the same schema
as the journalized data. Before creating triggers on tables belonging to
a third-party software package, please check that this operation is not
a violation of the software agreement or maintenance contract. Also
ensure that installing and running triggers is technically feasible
without interfering with the general behavior of the software package.

Using Changed Data

7-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

7.3.1 Viewing Changed Data
To view the changed data:

1. In the Models tree in the Designer Navigator, select the journalized datastore.

2. Right-click and then select Changed Data Capture > Journal Data....

The changes captured for this datastore in the current context appear in a grid with
three additional columns describing the change details:

■ JRN_FLAG: Flag indicating the type of change. It takes the value I for an
inserted/updated record and D for a deleted record.

■ JRN_SUBSCRIBER: Name of the Subscriber.

■ JRN_DATE: Timestamp of the change.

Journalized data is mostly used within integration processes. Changed data can be
used as the source of integration interfaces. The way it is used depends on the
journalizing mode.

7.3.2 Using Changed Data: Simple Journalizing
Using changed data from simple journalizing consists of designing interfaces using
journalized datastores as sources. See Chapter 11, "Working with Integration
Interfaces" for detailed instructions for creating interfaces.

Designing Interfaces with Simple Journalizing
When a journalized datastore is inserted into an interface diagram, a Journalized Data
Only check box appears in this datastore's property panel.

When this box is checked:

■ The journalizing columns (JRN_FLAG, JRN_DATE and JRN_SUBSCRIBER)
become available for the datastore.

■ A journalizing filter is also automatically generated on this datastore. This filter
will reduce the amount of source data retrieved to the journalized data only. It is
always executed on the source. You can customize this filter (for instance, to
process changes in a time range, or only a specific type of change). A typical filter
for retrieving all changes for a given subscriber is: JRN_SUBSCRIBER =
'<subscriber_name>'.

In simple journalizing mode all the changes taken into account by the interface (after
the journalizing filter is applied) are automatically considered consumed at the end of
the interface and removed from the journal. They cannot be used by a subsequent
interface.

When processing journalized data, the SYNC_JRN_DELETE option of the integration
Knowledge Module should be set carefully. It invokes the deletion from the target
datastore of the records marked as deleted (D) in the journals and that are not
excluded by the journalizing filter. If this option is set to No, integration will only
process inserts and updates.

7.3.3 Using Changed Data: Consistent Set Journalizing
Using Changed data in Consistent journalizing is similar to simple journalizing for
interface design. It requires extra steps before and after processing the changed data in
the interfaces in order to enforce changes consistently within the set.

Using Changed Data

Working with Changed Data Capture 7-9

These operations can be performed either manually from the context menu of the
journalized model or automated with packages.

Operations Before Using the Changed Data
The following operations should be undertaken before using the changed data when
using consistent set journalizing:

■ Extend Window: The Consistency Window is a range of available changes in all
the tables of the consistency set for which the insert/update/delete are possible
without violating referential integrity. The extend window operation (re)computes
this window to take into account new changes captured since the latest Extend
Window operation. This operation is implemented using a package step with the
Journalizing Model Type. This operation can be scheduled separately from other
journalizing operations.

■ Lock Subscribers: Although the extend window is applied to the entire
consistency set, subscribers consume the changes separately. This operation
performs a subscriber(s) specific "snapshot" of the changes in the consistency
window. This snapshot includes all the changes within the consistency window
that have not been consumed yet by the subscriber(s). This operation is
implemented using a package step with the Journalizing Model Type. It should
be always performed before the first interface using changes captured for the
subscriber(s).

Designing Interfaces
The changed data in consistent set journalizing are also processed using interfaces
sequenced into packages.

Designing interfaces when using consistent set journalizing is similar to simple
journalizing, except for the following differences:

■ The changes taken into account by the interface (that is filtered with JRN_FLAG,
JRN_DATE and JRN_SUBSCRIBER) are not automatically purged at the end of the
interface. They can be reused by subsequent interfaces. The unlock subscriber and
purge journal operations described below are required to commit consumption of
these changes, and remove useless entries from the journal respectively.

■ In consistent mode, the JRN_DATE column should not be used in the journalizing
filter. Using this timestamp to filter the changes consumed does not entirely ensure
consistency in these changes.

Operations after Using the Changed Data
After using the changed data, the following operations should be performed:

■ Unlock Subscribers: This operation commits the use of the changes that where
locked during the Lock Subscribers operations for the subscribers. It should be
processed only after all the changes for the subscribers have been processed. This
operation is implemented using a package step with the Journalizing Model Type.
It should be always performed after the last interface using changes captured for
the subscribers. If the changes need to be processed again (for example, in case of
an error), this operation should not be performed.

■ Purge Journal: After all subscribers have consumed the changes they have
subscribed to, entries still remain in the journalizing tables and should be deleted.
This is performed by the Purge Journal operation. This operation is implemented
using a package step with the Journalizing Model Type. This operation can be
scheduled separately from the other journalizing operations.

Using Changed Data

7-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Automate Consistent Set CDC Operations
To automate the consistent set CDC usage, you can use a package performing these
operations.

1. Create a new package.

2. Drag and drop from the Models tree the journalized model into the package
Diagram tab. A new package step appears.

3. Double-Click the step icon in the package diagram. The properties inspector for
this step opens.

4. In the Type list, select Journalizing Model/Datastore.

5. Check the consistent set operations you want to perform.

6. If you checked the Lock Subscriber or Unlock Subscriber operations, enter the
first subscriber in the subscriber field, and click the Add button to add it to the
Subscribers list. Repeat this operation for all the subscribers you want to lock or
unlock.

7. From the File menu, select Save All.

7.3.4 Journalizing Tools
Oracle Data Integrator provides a set of tools that can be used in journalizing to refresh
information on the captured changes or trigger other processes:

■ OdiWaitForData waits for a number of rows in a table or a set of tables.

■ OdiWaitForLogData waits for a certain number of modifications to occur on a
journalized table or a list of journalized tables. This tool calls
OdiRefreshJournalCount to perform the count of new changes captured.

■ OdiWaitForTable waits for a table to be created and populated with a
pre-determined number of rows.

■ OdiRetrieveJournalData retrieves the journalized events for a given table list or
CDC set for a specified journalizing subscriber. Calling this tool is required if
using Database-Specific Processes to load journalizing tables. This tool needs to be
used with specific Knowledge Modules. See the Knowledge Module description
for more information.

■ OdiRefreshJournalCount refreshes the number of rows to consume for a given
table list or CDC set for a specified journalizing subscriber.

See Appendix A, "Oracle Data Integrator Tools Reference" for more information on
these functions.

7.3.5 Package Templates for Using Journalizing
A number of templates may be used when designing packages to use journalized data.
Below are some typical templates. See Chapter 10, "Working with Packages" for more
information on package creation.

Note: It is possible to perform an Extend Window or Purge Journal
on a datastore. These operations process changes for tables that are in
the same consistency set at different frequencies. These options should
be used carefully, as consistency for the changes may be no longer
maintained at the consistency set level

Using Changed Data

Working with Changed Data Capture 7-11

Template 1: One Simple Package (Consistent Set)
■ Step 1: Extend Window + Lock Subscribers

■ Step 2 to n-1: Interfaces using the journalized data

■ Step n: Unlock Subscribers + Purge Journal

This package is scheduled to process all changes every minutes. This template is
relevant if changes are made regularly in the journalized tables.

Template 2: One Simple Package (Simple Journalizing)
Step 1 to n: Interfaces using the journalized data

This package is scheduled to process all changes every minutes. This template is
relevant if changes are made regularly in the journalized tables.

Template 3: Using OdiWaitForLogData (Consistent Set or Simple)
■ Step 1: OdiWaitForLogData. If no new log data is detected after a specified

interval, end the package.

■ Step 2: Execute a scenario equivalent to the template 1 or 2, using OdiStartScen

This package is scheduled regularly. Changed data will only be processed if new
changes have been detected. This avoids useless processing if changes occur
sporadically to the journalized tables (i.e. to avoid running interfaces that would
process no data).

Template 4: Separate Processes (Consistent Set)
This template dissociates the consistency window, the purge, and the changes
consumption (for two different subscribers) in different packages.

Package 1: Extend Window

■ Step 1: OdiWaitForLogData. If no new log data is detected after a specified
interval, end the package.

■ Step 2: Extend Window.

This package is scheduled every minute. Extend Window may be resource consuming.
It is better to have this operation triggered only when new data appears.

Package 2: Purge Journal (at the end of week)

Step 1: Purge Journal

This package is scheduled once every Friday. We will keep track of the journals for the
entire week.

Package 3: Process the Changes for Subscriber A

■ Step 1: Lock Subscriber A

■ Step 2 to n-1: Interfaces using the journalized data for subscriber A

■ Step n: Unlock Subscriber A

This package is scheduled every minute. Such a package is used for instance to
generate events in a MOM.

Package 4: Process the Changes for Subscriber B

■ Step 1: Lock Subscriber B

■ Step 2 to n-1: Interfaces using the journalized data for subscriber B

Using Changed Data

7-12 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ Step n: Unlock Subscriber B

This package is scheduled every day. Such a package is used for instance to load a data
warehouse during the night with the changed data.

8

Working with Data Services 8-1

8Working with Data Services

This chapter describes how to configure and generate data services with Oracle Data
Integrator. Data services enable access to your data via a web service interface. It also
allows access to the changes captured using Oracle Data Integrator’s Changed Data
Capture feature.

This chapter includes the following sections:

■ Section 8.1, "Introduction to Data Services"

■ Section 8.2, "Setting Up Data Services"

■ Section 8.3, "Generating and Deploying Data Services"

8.1 Introduction to Data Services
Data Services are specialized Web Services that provide access to data in datastores,
and to changes captured for these datastores using Changed Data Capture. These Web
Services are automatically generated by Oracle Data Integrator and deployed to a Web
Services container in an application server.

Data Services can be generated and deployed into:

■ A web service stack implementing the Java API for XML Web Services (JAX-WS),
such as Oracle WebLogic Server.

■ Apache Axis2 , installed in an application server.

8.2 Setting Up Data Services
Data services are deployed in a web service container (an application server into
which the web service stack is installed). This web service container must be declared
in the topology in the form of a data server, attached to the Axis2 or JAX-WS
technology.

As data services are deployed in an application server, data sources must also be
defined in the topology for accessing the data from this application server, and
deployed or created in the application server.

Setting up data services involves steps covered in the following sections:

■ Section 8.2.1, "Configuring the Web Services Container"

WARNING: Axis2 is deprecated in this version. Customers using
Axis2 should migrate their data services implementation by
regenerating and re-deploying them in a JAX-WS container.

Setting Up Data Services

8-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ Section 8.2.2, "Setting up the Data Sources"

■ Section 8.2.3, "Configuring the Model"

8.2.1 Configuring the Web Services Container
You must declare the web service container as a data server in the topology, in order to
let Oracle Data Integrator deploy Data Services into it.

Web service containers declared in Oracle Data Integrator have one of three modes of
deploying Web Services:

■ Copying files directly onto the server, if you have file access to the server.

■ Uploading onto the server by FTP.

■ Uploading with the Web Service Upload method with Axis2.

The next steps in the configuration of the Web Services container depend on type of
web service container and the deployment mode you choose to use.

To configure a web service container:

1. In Topology Navigator expand the Technologies node in the Physical Architecture
panel.

2. Select the technology corresponding to the web server container: Axis2 or
JAX-WS. If you are using Oracle WebLogic Server or another JEE 5 compatible
application server, use JAX-WS.

3. Right-click and select Insert Data Server

4. Fill in the following fields in the Definition tab:

■ Name: Name of the Data Server that will appear in Oracle Data Integrator.

For naming data servers, it is recommended to use the following naming
standard: <TECHNOLOGY_NAME>_<SERVER_NAME>.

■ Base URL for published services: Enter the base URL from which the web
services will be available. For Axis2, it is http://<host>:<HTTP
Port>/axis2/services/, and for Oracle WebLogic Server it is
http://<host>:<HTTP Port>/

5. Select one of the following Deployment options: the connection parameters for the
data server:

■ Save web services into directory: directory into which the web service will be
created. It can be a network directory on the application server or a local
directory if you plan to deploy the web services separately into the container.

■ Upload web services by FTP: select this option to upload the generated web
service to the container. You must provide a FTP URL as well as a User name
and Password for performing the upload operation.

■ Upload web services with Axis2: select this option to upload the generated
web service to the container using Axis2 web service upload mechanism. This

Note: Be careful not to mistake the web service containers and the
servers containing the data. While both are declared as data servers in
Oracle Data Integrator, the former do not contain any data. They are
only used to publish Data Services.

Setting Up Data Services

Working with Data Services 8-3

option appears only for Axis2 containers. You must provide the Base URL for
Axis2 web application - typically http://<host>:<HTTP
Port>/axis2/axis2admin/ - as well as an Axis2 User name and Password
for performing the upload operation.

6. From the File menu, click Save. The data server appears in the physical
architecture.

7. Select this data server, right-click and select New Physical Schema. A new
physical schema Editor appears. In the Context tab, and create a logical schema for
this new physical schema, or associate it to an existing logical schema. The process
for creating logical schemas is detailed in Chapter 4, "Setting-up the Topology".

8. From the File menu, click Save.

You only need to configure one physical schema for the web container. Note that the
logical schema/context/physical schema association is important here as the context
will condition the container into which deployment will take place.

8.2.2 Setting up the Data Sources
The Data Services generated by Oracle Data Integrator do not contain connection
information for sources and targets. Instead, they make use of data sources defined
within the Web Services container or on the application server. These data sources
contain connection properties required to access data, and must correspond to data
servers already defined within the Oracle Data Integrator topology.

To set up a data source, you can either:

■ Configure the data sources from the application server console. For more
information, refer to your application server documentation.

■ Deploy the data source from Oracle Data Integrator if the container is an Oracle
WebLogic Server. See Chapter 4, "Setting-up the Topology" for more information
on data source deployment.

8.2.3 Configuring the Model
To configure Data Services, you must first create and populate a model. See Chapter 5,
"Creating and Reverse-Engineering a Model" for more information.

You should also have imported the appropriate Service Knowledge Module (SKM)
into one of your projects. The SKM contains the code template from which the Data
Services will be generated. For more information on importing KMs, see Chapter 9,
"Creating an Integration Project".

To configure a model for data services:

1. In the Models tree in the Designer Navigator, select the model.

2. Double-click this model to edit it.

3. Fill in the following fields in the Services tab:

■ Application server: select the logical schema corresponding to the container
you have previously defined.

■ Namespace: type in the namespace that will be used in the web services
WSDL.

■ Package name: Name of the generated Java package that contains your Web
Service. Generally, this is of the form com.<company name>.<project
name>.

Generating and Deploying Data Services

8-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ Name of the data source, as defined in your container. Depending on the
Application server you are using, the data source might be local or global:

– If your data source is global, you only need to enter the data source name
in the Datasource name field.

– If your data source is local, the data source name should be prefixed by
java:/comp/env/.

Note that OC4J uses per default a global data source, Tomcat a local data
source. Refer to the documentation of your application server for more
information.

■ Name of data service: This name is used for the data services operating at the
model level. You can also define a data service name for each datastore later.

4. Select a Service Knowledge Module (SKM) from the list, and set its options. See
the Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle
Data Integrator for more information about this KM and its options. Only SKMs
imported into projects appear in this list.

5. Go to the Deployed Datastores tab.

6. Select every datastore that you wish to expose with a data service. For each of
those, specify a Data Service Name and the name of the Published Entity.

7. From the File menu, click Save.

Although not required, you can also fine-tune the configuration of the generated data
services at the datastore and column level.

For example, you can specify the operations that will be permitted for each column.
One important use of this is to lock a column against being written to via data services.

To configure data services options at the datastore level:

1. In the Models tree in the Designer Navigator, select the datastore.

2. Double-click this datastore to edit it.

3. Select the Services tab.

4. Check Deploy as Data Service if you want the datastore to be deployed.

5. Enter the Data Service Name and the name of the Published Entity for the
datastore.

6. From the File menu, click Save.

To configure data service options at the column level:

1. In the Models tree in the Designer Navigator, select the column.

2. Double-click this column to edit it.

3. Select the Services tab.

4. Check the operation that you want to allow: SELECT, INSERT, DELETE. The
INSERT action includes the UPDATE action.

5. From the File menu, click Save.

8.3 Generating and Deploying Data Services
Once the model, data sources and container have been configured, it is possible to
generate and deploy the data services.

Generating and Deploying Data Services

Working with Data Services 8-5

8.3.1 Generating and Deploying Data Services
Generating data services for a model generates model-level data services as well as the
data services for the selected datastores in this model.

To generate Data Services for a model:

1. In the Models tree in the Designer Navigator, select the model.

2. Right-click, and select Generate Service. The Generating Data Service window
opens.

3. In the Generating Data Service window, fill in the following fields:

■ Store generated Data Services in: Oracle Data Integrator places the generated
source code and the compiled Web Service here. This directory is a temporary
location that can be deleted after generation. You can review the generated
source code for the data services here.

■ Context: Context into which the data services are generated and deployed.
This context choice has three effects:

– Determining the JDBC/Java datatype bindings at generation time.

– Determining which physical schemas are used to serve the data.

– Determining which physical Web Services container is deployed to

■ Generation Phases: Choose one or more generation phases. For normal
deployment, all three phases should be selected. However, it may be useful to
only perform the generation phase when testing new SKMs, for instance. See
below for the meaning of these phases.

4. Click OK to start data service generation and deployment.

8.3.2 Overview of Generated Services
The data services generated by Oracle Data Integrator include model-level services
and datastore level services. These services are described below.

Phase Description

Generate code This phase performs the following operation.

■ Deletes the content of the generation directory.

■ Generates the Java source code for the data services using the code
template from the SKM.

Compilation This phase performs the following operations:

■ Extracts web service framework.

■ Compiles the Java source code.

Deployment This phase performs the following operations:

■ Packages the compiled code.

■ Deploys the package to the deployment target, using the deployment
method selected for the container.

Generate 10.x
style WSDL

This is not an generation phase. This is an option available when generating
Axis2 web services. Select this option to generate web services compatible
with a 10g ODI WSDL.

Generating and Deploying Data Services

8-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Model-level services
Data services are generated at model-level when the model is enabled for consistent
set CDC.

The following services are available at model-level:

■ extend Window (no parameters): Carries out an extend window operation.

■ lock (Subscriber Name): Locks the consistent set for the named subscriber. To lock
the consistent set for several subscribers, call the service several times, using
several OdiInvokeWebService steps for example.

■ unlock (Subscriber Name): Unlocks the consistent set for the named subscriber.

■ purge (no parameters): Purges consumed changes.

See Chapter 7, "Working with Changed Data Capture" for more information on these
operations.

Datastore-level services
The range of operations offered by each generated data service depends on the SKM
used to generate it. There are several common properties shared by the SKMs available
with Oracle Data Integrator. In almost every case the name of the published entity
forms part of the name of each operation. In the following examples, the published
entity "Customer" is used.

The following operations are available at datastore-level:

■ Operations on a single entity. These operations allow a single record to be
manipulated, by specifying a value for its primary key. Other fields may have to
be supplied to describe the new row, if any. Examples: addcustomer, getcustomer,
deletecustomer, updatecustomer.

■ Operations on a group of entities specified by filter. These operations involve
specifying values for one or several fields to define a filter, then optionally
supplying other values for the changes to made to those rows. In general, a
maximum number of rows to return can also be specified. Examples:
getcustomerfilter, deletecustomerfilter, updatecustomerfilter.

■ Operations on a list of entities. This list is constructed by supplying a several
individual entities, as described in the "single entity" case above. Examples:
addcustomerlist, deletecustomerlist, getcustomerlist, updatecustomerlist.

8.3.3 Testing Data Services
The easiest way to test generated data services is to use the graphical interface for the
OdiInvokeWebService Oracle Data Integrator tool. See Chapter 14, "Working with Web
Services in Oracle Data Integrator" for more information on this subject.

Part IV
Part IV Developing Integration Projects

This part describes how to develop integration projects in Oracle Data Integrator.

This part contains the following chapters:

■ Chapter 9, "Creating an Integration Project"

■ Chapter 10, "Working with Packages"

■ Chapter 11, "Working with Integration Interfaces"

■ Chapter 12, "Working with Procedures, Variables, Sequences, and User Functions"

■ Chapter 13, "Working with Scenarios"

■ Chapter 14, "Working with Web Services in Oracle Data Integrator"

■ Chapter 15, "Working with Oracle Data Quality Products"

9

Creating an Integration Project 9-1

9Creating an Integration Project

This chapter describes the different components involved in an integration project, and
explains how to start a project.

This chapter contains these sections:

■ Section 9.1, "Introduction to Integration Projects"

■ Section 9.2, "Creating a New Project"

■ Section 9.3, "Managing Knowledge Modules"

■ Section 9.4, "Organizing the Project with Folders"

9.1 Introduction to Integration Projects
An integration project is composed of several components. These components include
organizational objects, such as folder, and development objects such as interfaces or
variables. Section 9.1.1, "Oracle Data Integrator Project Components" details the
different components involved in an integration project.

A project has also a defined life cycle which can be adapted to your practises.
Section 9.1.2, "Project Life Cycle" suggests a typical project lifestyle.

9.1.1 Oracle Data Integrator Project Components
Components involved in a project include components contained in the project and
global components referenced by the project. In addition, a project also uses
components defined in the models and topology.

9.1.1.1 Oracle Data Integrator Project Components
The following components are stored into a project. The appear in the in the Project
accordion in the Designer Navigator, under the project’s node.

Folder
Folders are components that help organizing the work into a project. Sub-folders can
be inserted into folders. Folders contain Packages, Interfaces and Procedure.

Packages
The package is the largest unit of execution in Oracle Data Integrator. A package is a
workflow, made up of a sequence of steps organized into an execution diagram.
Packages assemble and reference other components from a project such as interfaces,
procedure or variable. See Chapter 10, "Working with Packages" for more information
on packages.

Introduction to Integration Projects

9-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Interface
An interface is a reusable dataflow. It is set of declarative rules that describe the
loading of a datastore or a temporary target structure from one or more source
datastores. See Chapter 11, "Working with Integration Interfaces" for more information
on interfaces.

Procedure
A Procedure is a reusable component that groups a sequence of operations that do not
fit in the interface concept.

Examples of procedures:

■ wait and unzip a file

■ send a batch of files via FTP

■ receive emails

■ purge a database

Variable
A variable's value is stored in Oracle Data Integrator. This value may change during
the execution.

Sequence
A sequence is an variable automatically incremented when used. Between two uses
the value is persistent.

User Functions
User functions enable to define customized functions or "functions aliases", for which
you will define technology-dependant implementations. They are usable in the
interfaces and procedures.

See Chapter 12, "Working with Procedures, Variables, Sequences, and User Functions"
for more information about the components described above.

Knowledge Modules
Oracle Data Integrator uses Knowledge Modules at several points of a project design.
a Knowledge Module is a code template related to a given technology that provides a
specific function (loading data, reverse-engineering, journalizing).

Marker
Component of a project may be flagged in order to reflect a methodology or
organization. Flags are defined using the markers. These markers are organized into
groups, and can be applied to most objects in a project. See Chapter 16, "Organizing
and Documenting your Work" for more information on markers.

Scenario
When a package, interface, procedure or variable component is finished, it is compiled
in a scenario. A scenario is the execution unit for production. Scenarios can be
scheduled for automated execution. See Chapter 13, "Working with Scenarios" for
more information on scenarios.

Managing Knowledge Modules

Creating an Integration Project 9-3

9.1.1.2 Global Components
Global components are similar to the project objects. The main different is their scope.
They have a global scope and can be used in any project. Global objects include
Variables, Sequences, Markers and User Functions.

9.1.2 Project Life Cycle
The project life cycle depends on the methods and organization of your development
team. The following steps must be considered as guidelines for creating, working with
and maintaining an integration project.

1. Create a new project and import Knowledge Modules for this project.

2. Define the project organization and practises using folders, markers and
documentation.

3. Create reusable components: interfaces, procedures, variables, sequences. Perform
unitary tests.

4. Assemble these components into packages. Perform integration tests.

5. Release the work in scenarios

9.2 Creating a New Project
To create a project:

1. In Designer Navigator, click New Project in the toolbar of the Projects accordion.

2. Enter the Name of the project.

3. Keep or change the automatically-generated project Code. As this code is used to
identify objects within this project, it is recommended to make this code for a
compact string. For example, if the project is called Corporate Datawarehouse, a
compact code could be CORP_DWH.

4. From the File menu, click Save.

The new project appears in the Projects tree with one empty folder.

9.3 Managing Knowledge Modules
Knowledge Modules (KMs) are components of Oracle Data Integrator' Open
Connector technology. KMs contain the knowledge required by Oracle Data Integrator
to perform a specific set of tasks against a specific technology or set of technologies.

Oracle Data Integrator uses six different types of Knowledge Modules:

■ RKM (Reverse Knowledge Modules) are used to perform a customized
reverse-engineering of data models for a specific technology. These KMs are used
in data models. See Chapter 5, "Creating and Reverse-Engineering a Model".

■ LKM (Loading Knowledge Modules) are used to extract data from source systems
(files, middleware, database, etc.). These KMs are used in interfaces. See
Chapter 11, "Working with Integration Interfaces".

■ JKM (Journalizing Knowledge Modules) are used to create a journal of data
modifications (insert, update and delete) of the source databases to keep track of
the changes. These KMs are used in data models and used for Changed Data
Capture. See Chapter 7, "Working with Changed Data Capture".

Managing Knowledge Modules

9-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ IKM (Integration Knowledge Modules) are used to integrate (load) data to the
target tables. These KMs are used in interfaces. See Chapter 11, "Working with
Integration Interfaces"

■ CKM (Check Knowledge Modules) are used to check that constraints on the
sources and targets are not violated. These KMs are used in data model’s static
check and interfaces flow checks. See Chapter 5, "Creating and
Reverse-Engineering a Model" and Chapter 11, "Working with Integration
Interfaces".

■ SKM (Service Knowledge Modules) are used to generate the code required for
creating data services. These KMs are used in data models. See Chapter 8,
"Working with Data Services".

9.3.1 Knowledge Modules Naming Convention
Oracle Data Integrator’s KMs are named according to a convention that facilitates the
choice of the KM. This naming convention is described below.

Loading Knowledge Modules
They are named with the following convention: LKM <source technology> to <target
technology> [(loading method)].

In this convention the source and target technologies are the source and target of the
data movement this LKM can manage. When the technology is SQL, then the
technology can be any technology supporting JDBC and SQL. When the technology is
JMS, the technology can be any technology supporting JMS connectivity.

The loading method is the technical method used for moving the data. This method is
specific to the technology involved. When no method is specified, the technical
method used is a standard Java connectivity (JDBC, JMS and such) and data is loaded
via the run-time agent. Using a KM that uses a loading method specific to the source
and/or target technology usually brings better performances.

Examples of LKMs are given below:

■ LKM Oracle to Oracle (DBLink) loads data from an Oracle data server to another
Oracle data server using the Oracle DBLink.

■ LKM File to Oracle (SQLLDR) loads data from a file into an Oracle data server
using SQLLoader.

■ LKM SQL to SQL loads data from a data server supporting SQL into another one.
This is the most generic loading Knowledge Module, which works for most data
servers.

Integration Knowledge Modules
They are named with the following convention: IKM [<staging technology>] <target
technology> [<integration mode>] [(<integration method>)].

In this convention, the target technology is the technology of the target into which data
will be integrated. IKMs may have a staging technology when the target is not located
on the same server as the staging area. These KMs are referred to as Multi-technology
IKMs. They are used when the target cannot be used as the staging area. For example,
with the File technology.

The integration mode is the mode used for integrating record from the data flow into the
target. Common modes are:

Managing Knowledge Modules

Creating an Integration Project 9-5

■ Append: Insert records from the flow into the target. It is possible to optionally
delete all records from the target before the insert. Existing records are not
updated.

■ Control Append: Same as above, but in addition the data flow is checked in the
process.

■ Incremental Update: Same as above. In addition, it is possible to update existing
records with data from the flow.

■ Slowly Changing Dimension: Integrate data into a table using Type 2 slowly
changing dimensions (SCD).

The integration method is the technical method used for integrating the data into the
target. This method is specific to the technologies involved. When no method is
specified, the technical method used is a standard Java connectivity (JDBC, JMS and
such) and SQL language. Using a KM that uses a integration method specific to a
given technology usually brings better performances.

Examples of IKMs are given below:

■ IKM Oracle Incremental Update (MERGE) integrates data from an Oracle staging
area into an Oracle target using the incremental update mode. This KM uses the
Oracle Merge Table feature.

■ IKM SQL to File Append integrates data from a SQL-enabled staging area into a file.
It uses the append mode.

■ IKM SQL Incremental Update integrates data from a SQL-enabled staging area into
a target located in the same data server. This IKM is suitable for all cases when the
staging area is located on the same data server as the target, and works with most
technologies.

■ IKM SQL to SQL Append integrates data from a SQL-enabled staging area into a
target located in a different SQL-enabled data server. This IKM is suitable for cases
when the staging area is located on a different server than the target, and works
with most technologies.

Check Knowledge Modules
They are named with the following convention: CKM <staging technology>.

In this convention, the staging technology is the technology of the staging area into
which data will be checked.

Examples of CKMs are given below:

■ CKM SQL checks the quality of an integration flow when the staging area is in a
SQL-enabled data server. This is a very generic check Knowledge Module that
works with most technologies.

■ CKM Oracle checks the quality of an integration flow when the staging area is in an
Oracle data server.

Reverse-engineering Knowledge Modules
They are named with the following convention: RKM <reversed technology> [(reverse
method>)].

In this convention, the reversed technology is the technology of the data model that is
reverse-engineered. The reverse method is the technical method used for performing
the reverse-engineering process.

Examples of RKMs are given below:

Managing Knowledge Modules

9-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ RKM Oracle reverse-engineers an Oracle data model

■ RKM Netezza reverse-engineers a Netezza data model

Journalizing Knowledge Modules
They are named with the following convention: JKM <journalized technology>
<journalizing mode> (<journalizing method>).

In this convention, the journalized technology is the technology into which changed data
capture is activated. The journalizing mode is either Consistent or Simple. For more
information about these modes, see Chapter 7, "Working with Changed Data Capture".

The journalizing method is the technical method for capturing the changes. When not
specified, the method used for performing the capture process is triggers.

Examples of JKMs are given below:

■ JKM Oracle 11g Consistent (Streams) enables CDC for Oracle 11g in consistent set
mode using Oracle Streams features.

■ JKM Oracle Simple enables CDC for Oracle in simple mode using triggers.

■ JKM DB2 400 Simple (Journal) enables CDC for DB2/400 simple mode using
DB2/400 Journals technology.

Service Knowledge Modules
They are named with the following convention: SKM <data server technology>.

In this convention, the data server technology is the technology into which the data to be
accessed with web services is stored.

9.3.2 Choosing the Right Knowledge Modules
Oracle Data Integrator provides a large range of Knowledge Modules out of the box.
When starting an integration project, you must import the Knowledge Module
appropriate for your project.

It is possible to import additional KMs after setting up the project, and it is possible to
change the KMs used afterwards. The following guidelines can be used for choosing
the right KMs when starting a new project:

■ Start with Generic KMs. The SQL KMs work with almost all technologies. If you
are not comfortable with the source/target technologies you are working with,
you can start by using the generic SQL KMs, as they use standard SQL. A simple
project can start with the following generic KMs: LKM File to SQL, LKM SQL to
SQL, IKM SQL to SQL Append, IKM SQL Control Append, CKM SQL.

■ Start with simple KMs. If you are not comfortable with the technologies you are
integrating, do not start using the KMs using complex integration methods or
modes.

■ Select KMs that match your source/target combinations to increase performance.
The more specific the KM to a technology combination, the better the performance.
For achieving the best performances, make sure to switch to KMs that match the
source/target combination you have, and that leverage the features from these
sources/targets.

■ Select KMs according to your infrastructure limitations. If it is not possible to use
the target data servers as the staging area for security reasons, make sure to have
multi-technology IKMs available in your project.

Managing Knowledge Modules

Creating an Integration Project 9-7

■ Select JKMs and SKMs only if you need them. Do not import JKMs or SKMs if you
do not plan to use Changed Data Capture or Data Services. You can import them
later when needed.

■ Review the KM documentation and options. KMs include a Description field that
contain useful information. Each of the KM options is also described. All KMs are
detailed in the Oracle Fusion Middleware Connectivity and Knowledge Modules Guide
for Oracle Data Integrator.

9.3.3 Importing and Replacing Knowledge Modules
Two main operations allow you to manage KMs into a project: When you create a new
project or want to use new KMs into an existing project, you must import the KMs into
this project. If you want to start using a new version of an existing KM, or if you want
to replace an existing KM in use with another one, then you can replace this KM into
the project

Importing a KM
To import a Knowledge Module into a project:

1. In the Projects accordion in Designer Navigator, select the project into which you
want to import the KM.

2. Right-click and select Import > Import Knowledge Modules....

3. Specify the File Import Directory. A list of the KMs export files available in this
directory appears.

4. Select several KMs from the list and then click OK.

5. Oracle Data Integrator imports the selected KMs and presents an import report.

6. Click Close to close this report.

The Knowledge Modules are imported into you project. They are arranged under the
Knowledge Modules node of the project, grouped per KM type.

Replacing a KM
When you want to replace a KM in a project by another one and have all interfaces and
models automatically use the new KM, you must use the import replace mode.

To import a Knowledge Module in replace mode:

1. In the Projects tree in Designer Navigator, expand the project, and select the KM
you want to replace.

2. Right-click and select Import Replace.

3. Select the export file of the KM you want to use as a replacement.

4. Click OK

The Knowledge Module is now replaced by the new one.

Note: Knowledge modules can be imported in Duplication mode
only. To replace an existing Knowledge Modules, use the import
replace method described below. When importing a KM in
Duplication mode and if the KM already exists in the project, ODI
creates a new KM with prefix copy_of.

Managing Knowledge Modules

9-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

9.3.4 Encrypting and Decrypting a KM
Encrypting a Knowledge Module (KM) allows you to protect valuable code. An
encrypted KM cannot be read or modified if it is not decrypted. The commands
generated in the log by an Encrypted KM or procedure are also unreadable.

Oracle Data Integrator uses a DES Encryption algorithm based on a personal
encryption key. This key can be saved in a file and can be reused to perform
encryption or decryption operations.

To Encrypt a KM or a Procedure:
1. In the Projects tree in Designer Navigator, expand the project, and select the KM

you want to encrypt.

2. Right-click and select Encrypt.

3. In the Encryption Options window, you can either:

■ Encrypt with a personal key that already exists by giving the location of the
personal key file or by typing in the value of the personal key.

■ Or click Get a new encryption key to have a new key generated.

4. Click OK to encrypt the KM. If you have chosen to generate a new key, a window
will appear with the new key. You can save the key in a file from here.

To decrypt a KM or a procedure:
1. In the Projects tree in Designer Navigator, expand the project, and select the KM

you want to decrypt.

2. Right-click and select Decrypt.

3. In the KM Decryption window, either

■ Select an existing encryption key file;

Note: When replacing a Knowledge module by another one, Oracle
Data Integrator sets the options in interfaces for the new module using
the option name similarities with the old module's options. When a
KM option was set by the user in an interface, this value is preserved
if the new KM has an option with the same name. New options are set
to the default value. It is advised to check the values of these options
in the interfaces.

Replacing a KM by another one may lead to issues if the KMs have
different structure or behavior, for example when you replace a IKM
with a RKM. It is advised to check the interfaces' design and execution
with the new KM.

WARNING: There is no way to decrypt an encrypted KM or
procedure without the encryption key. It is therefore strongly
advised to keep this key in a safe location.

Note: If you type in a personal key with too few characters, an
invalid key size error appears. In this case, please type in a longer
personal key. A personal key of 10 or more characters is required.

Organizing the Project with Folders

Creating an Integration Project 9-9

■ or type in (or paste) the string corresponding to your personal key.

4. Click OK to decrypt.

9.4 Organizing the Project with Folders
In a project, interfaces, procedures and packages are organized into folders and
sub-folders. It recommended to maintain a good organization of the project by using
folders. Folders simplify finding objects developed in the project and facilitate the
maintenance tasks. Organization is detailed in Chapter 16, "Organizing and
Documenting your Work".

Organizing the Project with Folders

9-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

10

Working with Packages 10-1

10Working with Packages

This chapter gives an introduction to Packages and Steps. It also passes through the
creating process of a Package and provides additional information about handling
steps within a Package.

This chapter includes the following sections:

■ Section 10.1, "Introduction to Packages"

■ Section 10.2, "Creating a new Package"

■ Section 10.3, "Working with Steps"

■ Section 10.4, "Defining the Sequence of Steps"

■ Section 10.5, "Running the Package"

10.1 Introduction to Packages
The Package is the largest unit of execution in Oracle Data Integrator. A Package is
made up of a sequence of steps organized into an execution diagram.

Each step can either succeed or fail its execution. Depending on the execution result
(success or failure), a step can branch to another step.

10.1.1 Introduction to Steps
Table 10–1 lists the different types of steps. References are made to sections that
provide additional details

Table 10–1 Step Types

Type Description See Section

Flow
(Interface)

Executes an Interface. Section 10.3.1.1, "Executing an Interface"

Procedure Executes a Procedure. Section 10.3.1.2, "Executing a Procedure"

Variable Declares, sets, refreshes or
evaluates the value of a
variable.

Section 10.3.1.3, "Variable Steps"

Oracle Data
Integrator
Tools

These tools, available in the
Toolbox, enable to access
all Oracle Data Integrator
API commands, or perform
operating system calls

Section 10.3.1.4, "Adding Oracle Data Integrator
Tool Steps"

Introduction to Packages

10-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Figure 10–1 Sample Package

For example, the "Load Customers and Invoice" Package example shown in
Figure 10–1 performs the following actions:

1. Execute procedure "System Backup" that runs some backup operations.

2. Execute interface "Customer Group" that loads the customer group datastore.

3. Execute interface "Customer" that loads the customer datastore.

4. Execute interface "Product" that loads the product datastore.

5. Refresh variable "Last Invoice ID" step to set the value of this variable for use later
in the Package.

6. Execute interface "Invoice Header" that load the invoice header datastore.

7. Execute interface "Invoice Lines" that load the invoices datastore.

8. If any of the steps above fails, then the Package runs the "Send Alert" step that
sends an email to the administrator using an Oracle Data Integrator tool.

Models,
Sub-models,
and Datastores

Performs journalizing,
static check or
reverse-engineering
operations on these objects

Section 10.3.1.5, "Model, Sub-Models and
Datastore Related Steps"

Table 10–1 (Cont.) Step Types

Type Description See Section

Introduction to Packages

Working with Packages 10-3

10.1.2 Introduction to Creating Packages
Packages are created in the Package Diagram Editor. See Section 10.1.3, "Introduction
to the Package editor" for more information.

Creating a Package consists of the following main steps:

1. Creating a New Package. See Section 10.2, "Creating a new Package" for more
information.

2. Working with Steps in the Package (add, duplicate, delete,...). See Section 10.3,
"Working with Steps" for more information.

3. Defining Step Sequences. See Section 10.4, "Defining the Sequence of Steps" for
more information.

4. Running the Package. See Section 10.5, "Running the Package" for more
information.

10.1.3 Introduction to the Package editor
The Package editor provides a single environment for designing Packages. Figure 10–2
gives an overview of the Package editor.

Figure 10–2 Package editor

Creating a new Package

10-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

10.2 Creating a new Package
To create a new Package:

1. In the Project tree in Designer Navigator, click the Packages node in the folder
where you want to create the Package.

2. Right-click and select New Package.

3. Type in the Name of the Package.

4. Go to the Diagram tab.

5. Add steps as described in Section 10.3, "Working with Steps"

6. From the File menu, click Save.

10.3 Working with Steps
Packages are an organized sequence of steps. Designing a Package consists mainly in
working with the steps of this Package.

10.3.1 Adding a Step
Adding a step depends on the nature of the steps being inserted. See Table 10–1 for
more information on the different types of steps. The procedures for adding the
different type of steps are given below.

10.3.1.1 Executing an Interface
To insert a Flow (Interface) step:

1. Open the Package editor and go to the Diagram tab.

2. Select the interface to add to the Package from the Designer Navigator Projects
tree.

3. Drag and drop the interface into the diagram. A flow Step appears.

Table 10–2 Package editor Sections

Section Location in Figure Description

Designer
Navigator

Left side The Designer Navigator displays the tree views
for projects, models, solutions, and other (global)
components.

Package
Diagram

Middle You drag components such as interfaces,
procedures, datastores, models, sub-models or
variables from the Designer Navigator into the
Package Diagram for creating steps for these
components.

You can also define sequence of steps and
organize steps in this diagram.

Package
Toolbox

Left side of the Package
diagram

The Toolbox shows the list of Oracle Data
Integrator tools available and that can be added
to a Package. These tools are grouped by type.

Package
Toolbar

Top of the Package diagram The Package Toolbar provides tools for
organizing and sequencing the steps in the
Package.

Properties
Panel

Under the Package diagram This panel displays the properties for the object
that is selected in the Package Diagram.

Working with Steps

Working with Packages 10-5

4. Click the step icon in the diagram. The properties panel opens.

5. In the General tab, edit the Step Name field.

6. From the File menu, click Save.

10.3.1.2 Executing a Procedure
To insert a Procedure step:

1. Open the Package editor and go to the Diagram tab.

2. Select the procedure to add to the Package from the Designer Navigator Projects
tree.

3. Drag and drop the procedure into the diagram. A procedure step appears.

4. Click the step icon in the diagram. The properties panel opens.

5. In the General tab, edit the Step Name field.

6. In the Options tab, set the procedure options if needed.

7. From the File menu, click Save.

10.3.1.3 Variable Steps
There are different variable steps within Oracle Data Integrator:

■ Declare Variable: When a variable is used in a Package (or in elements of the
topology which are used in the Package), it is strongly recommended that you
insert a Declare Variable step in the Package. This step explicitly declares the
variable in the Package.

■ Refresh Variable: This step refreshes the variable by running the query specified
in the variable definition.

■ Set Variable: There are two functions for this step:

■ Assign sets the current value of a variable.

■ Increment increases or decreases a numeric value by the specified amount.

■ Evaluate Variable: This step compares the value of the variable with a given value
according to an operator. If the condition is met, then the evaluation step is true,
otherwise it is false. This step allows for branching in Packages.

Declaring a Variable
To insert a Declare Variable step:

1. Open the Package editor and go to the Diagram tab.

2. In Designer Navigator, select the variable to add to the Package from the Projects
tree for a project variable or from the Others tree for a global variable.

3. Drag and drop the variable into the diagram. A variable step appears.

4. Click on the step icon in the diagram. The properties panel opens.

5. In the General tab, fill in the Step Name field. Select Declare Variable in the Step
Type.

6. From the File menu, click Save.

Refreshing a Variable
To insert a Refresh Variable step:

Working with Steps

10-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

1. Open the Package editor and go to the Diagram tab.

2. In Designer Navigator, select the variable to add to the Package from the Projects
tree for a project variable or from the Others tree for a global variable.

3. Drag and drop the variable into the diagram. A variable step appears.

4. Click on the step icon in the diagram. The properties panel opens.

5. In the General tab, fill in the Step Name field. Select Refresh Variable in the Step
Type.

6. From the File menu, click Save.

Setting a Variable
To insert a Set Variable step:

1. Open the Package editor and go to the Diagram tab.

2. In Designer Navigator, select the variable to add to the Package from the Projects
tree for a project variable or from the Others tree for a global variable.

3. Drag and drop the variable into the diagram. A variable step appears.

4. Click on the step icon in the diagram. The properties panel opens.

5. In the General tab, fill in the Step Name field. Select Set Variable in the Step Type.

6. Select Assign or Increment depending on the operation you want to perform on
the variable value.

7. Type in the Value field the value to set or the increment. This value may be
another variable.

8. From the File menu, click Save.

Evaluating a Variable
To insert an Evaluate Variable step:

1. Open the Package editor and go to the Diagram tab.

2. In Designer Navigator, select the variable to add to the Package from the Projects
tree for a project variable or from the Others tree for a global variable.

3. Drag and drop the variable into the diagram. A variable step appears.

4. Click on the step icon in the diagram. The properties panel opens.

5. In the General tab, fill in the Step Name field. Select Evaluate Variable in the Step
Type.

6. Select the Operator used to compare the variable value.

7. Type in the Value field the value to compare with your variable. This value may be
another variable.

8. From the File menu, click Save.

Note: You can specify a list of values in the Value field. When using
the IN operator, use the semicolon character (;) to separate the values
of a list.

Working with Steps

Working with Packages 10-7

An evaluate variable step can be branched based on the evaluation result. See
Section 10.4, "Defining the Sequence of Steps" for more information on branching
steps.

10.3.1.4 Adding Oracle Data Integrator Tool Steps
Oracle Data Integrator provides tools that can be used within Packages for performing
simple operations. The tools are either built-in tools or Open Tools that enable the user
to enrich the data integrator toolbox.

To insert an Oracle Data Integrator Tool step:

1. Open the Package editor and go to the Diagram tab.

2. From the Package Toolbox, select the tool that you want to use. Note that Open
tools appear in the Plugins group.

3. Click in the Package diagram. A step corresponding to your tool appears.

4. In the General tab of the properties panel, fill in the Step Name field.

5. Set the values for the parameters of the tool. The parameters descriptions appear
when you select one, and are detailed in Appendix A, "Oracle Data Integrator
Tools Reference".

6. You can edit the code of this tool call in the Command tab.

7. From the File menu, click Save.

The following tools are frequently used in Oracle Data Integrator Package:

■ OdiStartScen: starts an Oracle Data Integrator scenario synchronously or
asynchronously. To create an OdiStartScen step, you can directly drag and drop
the scenario from the Designer Navigator into the diagram.

■ OdiInvokeWebService: invokes a web service and saves the response in an XML
file.

■ OS Command: calls an Operating System command. Using an operating system
command may make your Package platform-dependant.

The Oracle Data Integrator tools are listed in Appendix A, "Oracle Data Integrator
Tools Reference".

10.3.1.5 Model, Sub-Models and Datastore Related Steps
You can perform journalizing, static check or reverse-engineering operations on
models, sub-models, and datastores. The process for creating these steps are described
in the following sections.

10.3.1.6 Checking a Model, Sub-Model or Datastore
To insert a check step in a Package:

Note: When setting the parameters of a tool via the steps properties
panel, graphical helpers allow value selection in a user-friendly
manner. For example, if a parameter requires a project identifier, the
graphical interface will redesign it and display a list of project names
for selection. By switching to the Command tab, you can review the
raw command and see the identifier.

Working with Steps

10-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

1. Open the Package editor and go to the Diagram tab.

2. In Designer Navigator, select the model, sub-model or datastore to check from the
Models tree.

3. Drag and drop this model, sub-model or datastore into the diagram.

4. In the General tab or the properties panel, fill in the Step Name field. Select
Model, Datastore or Sub-Model Check in the step type.

5. Select Delete Error from the Checked Tables if you want this static check to
remove erroneous rows from the tables checked in this process.

6. From the File menu, click Save.

10.3.1.7 Journalizing a Model or a Datastore
To insert a journalizing step:

1. Open the Package editor and go to the Diagram tab.

2. In Designer Navigator, select the model or datastore to check from the Models
tree.

3. Drag and drop this model or datastore into the diagram.

4. In the General tab or the properties panel, fill in the Step Name field. Select
Journalizing Model or Journalizing Datastore in the step type.

5. Set the journalizing options. See Chapter 7, "Working with Changed Data Capture"
for more information on these options.

6. From the File menu, click Save.

10.3.1.8 Reverse-Engineering a Model
To insert a reverse-engineering step:

1. Open the Package editor and go to the Diagram tab.

2. In Designer Navigator, select the model to reverse-engineer from the Models tree.

3. Drag and drop this model into the diagram.

4. In the General tab or the properties panel, fill in the Step Name field. Select
Model Reverse in the step type.

5. From the File menu, click Save.

Note: It is necessary to define the CKM in the model to perform this
static check.

Note: It is necessary to define the JKM in the model to perform the
journalizing operations.

Note: The reverse-engineering options set in the model definition are
used for performing this reverse-engineering process.

Working with Steps

Working with Packages 10-9

10.3.2 Deleting a Step
To delete a step:

1. In the Package toolbar tab, select the Free Choice tool.

2. Select the step to delete in the diagram.

3. Right-click and then select Delete Step.

4. Click OK.

The step disappears from the diagram.

10.3.3 Duplicating a Step
To duplicate a step:

1. In the Package toolbar tab, select the Free Choice tool.

2. Select the step to duplicate in the diagram.

3. Right-click and then select Duplicate Step.

A copy of the step appears in the diagram.

10.3.4 Running a Step
To run a step:

1. In the Package toolbar tab, select the Free Choice tool.

2. Select the step to run in the diagram.

3. Right-click and then select Execute Step.

4. In the Execution window, select the execution parameters:

■ Select the Context into which the step must be executed.

■ Select the Logical Agent that will run the step.

5. Click OK.

6. The Session Started Window appears.

7. Click OK.

You can review the step execution in the Operator Navigator.

10.3.5 Editing a Step’s Linked Object
The step's linked object is the interface, procedure, variable, and so forth from which
the step is created. You can edit this object from the Package diagram.

To edit a step's linked object:

1. In the Package toolbar tab, select the Free Choice tool.

2. Select the step to edit in the diagram.

3. Right-click and then select Edit Linked Object.

The Editor for the linked object opens.

Note: It is not possible to undo a delete operation in the Package
diagram.

Defining the Sequence of Steps

10-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

10.3.6 Arranging the Steps Layout
The steps can be rearranged in the diagram in order to make it more readable.

To arrange the steps in the diagram:

1. From the Package toolbar menu, select the Free Choice tool.

2. Select the more steps you wish to arrange:

■ Keep the CTRL key pressed and select each step

■ Drag the cursor on the diagram with the left mouse button pressed.

3. To arrange the selected steps, you may either:

■ Drag them to arrange their position into the diagram

■ Right-click, then select a Vertical Alignment or Horizontal Alignment option
from the context menu.

It is also possible to use the Reorganize button from the toolbar to automatically
reorganize the steps.

10.4 Defining the Sequence of Steps
Once the steps are created, you must reorder them into a data processing chain. This
chain has the following rules:

■ It starts with a unique step defined as the First Step.

■ Each step has two termination states: Success or Failure.

■ A step in failure or success can be followed by another step, or by the end of the
Package.

■ In case of failure, it is possible to define a number of retries.

A Package has one entry point, the First Step, but several possible termination steps.

Failure Conditions
The table below details the conditions that lead a step to a Failure state. In other
situations, the steps ends in a Success state.

Step Type Failure conditions

Flow ■ Error in an interface command.

■ Maximum number or percentage of errors allowed reached.

Procedure Error in a procedure command.

Refresh Variable Error while running the refresh query.

Set Variable Error when setting the variable (invalid value).

Evaluate Variable The condition defined in the step is not matched.

Declare Variable This step has no failure condition and always succeeds.

Oracle Data
Integrator Tool

Oracle Data Integrator Tool return code is different from zero. If this tool is an OS
Command, a failure case is a command return code different from zero.

Journalize Datastore,
Model or Sub-Model

Error in a journalizing command.

Check Datastore,
Model or Sub-Model

Error in the check process.

Running the Package

Working with Packages 10-11

Defining the Sequence
To define the first step of the Package:

1. In the Package toolbar tab, select the Free Choice tool.

2. Select the step to set as the first one in the diagram.

3. Right-click and then select First Step.

The first step symbol appears on the step's icon.

To define the next step upon success:

1. In the Package toolbar tab, select the Next Step on Success tool.

2. Select one step in the diagram.

3. Keep the mouse button pressed and move the cursor to the icon of the step that
must follow in case of a success, then release the mouse button.

4. Repeat this operation to link all your steps in a success path sequence. This
sequence should start from the step defined as the First Step.

Green arrows representing the success path between the steps, with a ok labels on
these arrows. In the case of an evaluate variable step, the label is true.

To define the next step upon failure:

1. In the Package toolbar tab, select the Next Step on Failure tool.

2. Select one step in the diagram.

3. Keep the mouse button pressed and move the cursor to the icon of the step that
must follow in case of a failure, then release the mouse button.

4. Repeat this operation to link steps according to your workflow logic.

Red arrows representing the success path between the steps, with a ko labels on these
arrows. In the case of an evaluate variable step, the arrow is green and the label is false.

To define the end of the Package upon failure:

By default, a step that is linked to no other step after a success or failure condition will
terminate the Package when this success or failure condition is met. You can set this
behavior by editing the step’s behavior.

1. In the Package toolbar tab, select the Free Choice tool.

2. Select the step to edit.

3. In the properties panel, select the Advanced tab.

4. Select End in Processing after failure or Processing after update. The links after
the step disappear from the diagram.

5. You can optionally set a Number of attempts and an Time between attempts for
the step to retry a number of times with an interval between the retries.

10.5 Running the Package
To run a Package:

Reverse Model Error in the reverse-engineering process.

Step Type Failure conditions

Running the Package

10-12 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

1. In the Project tree in Designer Navigator, select the Package you want to execute.

2. Right-click and select Execute.

3. In the Execution window, select the execution parameters:

■ Select the Context into which the Package will be executed.

■ Select the Logical Agent that will run the step.

4. Click OK.

5. The Session Started Window appears.

6. Click OK.

You can review the Package execution in the Operator Navigator.

11

Working with Integration Interfaces 11-1

11Working with Integration Interfaces

This chapter describes how to work with integration interfaces. An overview of the
interface components and the Interface Editor is provided.

This chapter includes the following sections:

■ Section 11.1, "Introduction to Integration Interfaces"

■ Section 11.2, "Introduction to the Interface Editor"

■ Section 11.3, "Creating an Interface"

■ Section 11.4, "Using the Quick-Edit Editor"

■ Section 11.5, "Designing Integration Interfaces: E-LT- and ETL-Style Interfaces"

11.1 Introduction to Integration Interfaces
An interface consists of a set of rules that define the loading of a datastore or a
temporary target structure from one or more source datastores.

Before creating an integration interface in Section 11.3, "Creating an Interface", you
must first understand the key components of an integration interface and the Interface
Editor. An overview of the components that you use to design an integration interface
is provided in Section 11.1.1, "Components of an Integration Interface". The interface
Editor is described in Section 11.2, "Introduction to the Interface Editor".

11.1.1 Components of an Integration Interface
An integration interface is made up of and defined by the following components:

■ Target Datastore

The target datastore is the element that will be loaded by the interface. This
datastore may be permanent (defined in a model) or temporary (created by the
interface).

■ Datasets

One target is loaded with data coming from several datasets. Set-based operators
(Union, Intersect, etc) are used to merge the different datasets into the target
datastore.

Each Dataset corresponds to one diagram of source datastores and the mappings
used to load the target datastore from these source datastores.

■ Diagram of Source Datastores

Introduction to Integration Interfaces

11-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

A diagram of sources is made of source datastores - possibly filtered - related
using joins. The source diagram also includes lookups to fetch additional
information for loading the target.

Two types of objects can be used as a source of an interface: datastores from the
models and interfaces. If an interface is used, its target datastore -temporary or
not- will be taken as a source.

The source datastores of an interface can be filtered during the loading process,
and must be put in relation through joins. Joins and filters are either copied from
the models or can be defined for the interface. Join and filters are implemented in
the form of SQL expressions.

■ Mapping

A mapping defines the transformations performed on one or several source
columns to load one target column. These transformations are implemented in the
form of SQL expressions. Each target column has one mapping per dataset. If a
mapping is executed on the target, the same mapping applies for all datasets.

■ Staging Area

The staging area is a logical schema into which some of the transformations (joins,
filters and mappings) take place. It is by default the same schema as the target’s
logical schema.

It is possible to locate the staging area on a different location (including one of the
sources). It is the case if the target’s logical schema is not suitable for this role. For
example, if the target is a file datastore, as the file technology has no
transformation capability.

Mappings can be executed either on the source, target or staging area. Filters and
joins can be executed either on the source or staging area.

■ Flow

The flow describes how the data flows between the sources, the staging area if it is
different from the target, and the target as well as where joins and filters take
place. The flow also includes the loading and integration methods used by this
interface. These are selected by choosing Loading and Integration Knowledge
Modules (LKM, IKM).

■ Control

An interface implements two points of control. Flow control checks the flow of
data before it is integrated into the target, Post-Integration control performs a
static check on the target table at the end of the interface. The check strategy for
Flow and Post-Integration Control is defined by a Check Knowledge Module
(CKM).

The interfaces use the following components that should be created before the
interface:

■ Datastores that will be used as sources and target of the loading process must be
populated into the data models. See Chapter 5, "Creating and Reverse-Engineering
a Model" for more information.

■ The correct physical and logical schemas along with their mapping in the
interface’s execution context must be defined prior to creating the interface, if the
staging area is to be defined in a schema different than any of the sources or the
target. See Chapter 4, "Setting-up the Topology"for more information.

Introduction to the Interface Editor

Working with Integration Interfaces 11-3

■ Knowledge Modules (IKM, LKM, CKM) that will be selected in the flow must be
imported into the project. See Chapter 9, "Creating an Integration Project" for more
information.

■ Variables, Sequence and User Functions that will be used in the mapping, filter or
join expressions must be created in the project. See Chapter 12, "Working with
Procedures, Variables, Sequences, and User Functions" for more information.

11.2 Introduction to the Interface Editor
The interface Editor provides a single environment for designing integration
interfaces. The interface Editor enables you to create and edit integration interfaces.

Figure 11–1 Interface Editor

The Interface Editor consists of the sections described in Table 11–1:

Table 11–1 Interface Editor Sections

Section Location in Figure Description

Designer
Navigator

Left side The Designer Navigator displays the tree views
for projects, models, solutions, and other (global)
components.

Source
Diagram

Middle You drag the source datastores from the Models
tree and Interfaces from the Projects tree into the
Source Diagram. You can also define and edit
joins and filters from this diagram.

Source
Diagram
Toolbar

Middle, above the Source
Diagram.

This toolbar contains the tools that can be used
for the source diagram, as well as display options
for the diagram.

Dataset Tabs Middle, below the Source
Diagram.

Datasets are displayed as tabs in the Interface
Editor.

Creating an Interface

11-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

11.3 Creating an Interface
Creating an interface follows a standard process which can vary depending on the use
case. The following step sequence is usually performed when creating an interface,
and can be used as a guideline to design your first interfaces:

1. Create a New Interface

2. Define the Target Datastore

3. Define the Datasets

4. Define the Source Datastores and Lookups

5. Define the Mappings

6. Define the Interface Flow

7. Set up Flow Control and Post-Integration Control

8. Execute the Integration Interface

Note that you can also use the Quick-Edit Editor to perform the steps 2 to 5. See
Section 11.4, "Using the Quick-Edit Editor" for more information.

11.3.1 Create a New Interface
To create a new interface:

1. In Designer Navigator select the Interfaces node in the folder under the project
where you want to create the interface.

2. Right-click and select New Interface. The Interface Editor is displayed.

3. On the Definition tab fill in the interface Name.

Interface
Editor tabs

Middle, below the Dataset
tabs

The Interface Editor tabs are ordered according to
the interface creation process. These tabs are:

■ Overview

■ Mapping

■ Quick-Edit

■ Flow

■ Controls

■ Scenarios

■ Execution

Target
Datastore
Panel

Upper right You drag the target datastore from the Models
tree in the Designer Navigator into the Target
Datastore panel. The target datastore, with the
mapping for each column, is displayed in this
panel. To edit the datastore in the Property
Inspector, select the datastore’s title or a specific
column. You can also create a temporary target
for this interface from this panel.

Property
Inspector

Bottom Displays properties for the selected object.

If the Property Inspector does not display, select
Property Inspector from the View menu.

Table 11–1 (Cont.) Interface Editor Sections

Section Location in Figure Description

Creating an Interface

Working with Integration Interfaces 11-5

4. Select a Staging Area and an Optimization Context for your interface.

5. Go to the Mapping tab to proceed. The steps described in Section 11.3.2, "Define
the Target Datastore" to Section 11.3.5, "Define the Mappings" take place in the
Mapping tab of the Interface Editor.

11.3.2 Define the Target Datastore
The target datastore is the element that will be loaded by the interface. This datastore
may be permanent (defined in a model) or temporary (created by the interface in the
staging area).

11.3.2.1 Permanent Target Datastore
To insert the permanent target datastore in an interface:

1. In the Designer Navigator, expand the Models tree and expand the model or
sub-model containing the datastore to be inserted as the target.

2. Select this datastore, then drag it into the Target Datastore panel. The target
datastore appears.

3. In the Property Inspector, select the Context for this datastore if you want to target
this datastore in a fixed context. By default, the datastore is targeted on the context
into which the interface is executed. This is an optional step.

Note: The staging area defaults to the target. It may be necessary to
put it on a different logical schema if the target does not have the
required transformation capabilities for the interface. This is the case
for File, JMS, etc. logical schemas. After defining the target datastore
for your interface, you will be able to set a specific location for the
Staging Area from the Overview tab by clicking the Staging Area
Different From Target option and selecting a logical schema that will
be used as the staging area.

If your interface has a temporary target datastore, then the Staging
Area Different From Target option is grayed out. In this case, the
staging area as well as the target are one single schema, into which the
temporary target is created. You must select here this logical schema.

Oracle Data Integrator includes a built-in lightweight database engine
that can be used when no database engine is available as a staging
area (for example, when performing file to file transformations). To
use this engine, select In_MemoryEngine as the staging area schema.
This engine is suitable for processing small volumes of data only.

Note: The optimization context defines the physical organization of
the datastores used for designing an optimizing the interface. This
physical organization is used to group datastores into sourcesets,
define the possible locations of transformations and ultimately
compute the structure of the flow. For example, if in the optimization
context, two datastores on two different logical schema are resolved as
located in the same data server, the interface will allow a join between
them to be set on the source.

Creating an Interface

11-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

4. If you want to target a specific partition of this target datastore, select in the
Property Inspector the partition or sub-partition defined for this datastore from
the list. This is an optional step.

Once you have defined your target datastore you may wish to view its data.

To display the data of the permanent target datastore of an interface:

1. Right-click the title of the target datastore in the Target Datastore panel.

2. Select Data...

The Data Editor containing the data of the target datastore appears. Data in a
temporary target datastore cannot be displayed since this datastore is created by the
interface.

11.3.2.2 Temporary Target Datastore
To add a temporary target datastore:

1. In the Target Datastore panel, select the title of the target datastore <Temporary
Target Datastore> to display the Property Inspector for the target datastore.

2. On the Diagram Property tab of Property Inspector, type in a Name for this
datastore.

3. Select the Context for this datastore if you want to target this datastore in a
predefined context. By default, the datastore is targeted on the context into which
the interface is executed. This is an optional step.

4. Specify the Temporary Datastore Location. Select Work Schema or Data Schema
if you wish to create the temporary datastore in the work or data schema of the
physical schema that will act as the staging area. See Chapter 4, "Setting-up the
Topology" for more information on schemas.

5. Go to the Overview tab and select the logical schema into which this temporary
target datastore is created.

The temporary target datastore is created without columns. They must be added to
define its structure.

To add a column to a temporary target datastore:

1. In the Target Datastore panel, right-click the title bar that shows the name of the
target datastore.

2. Select Add Column.

3. A new empty column appears in the Target Datastore panel. Select this new
column.

4. In Diagram Property tab of the Target Mapping Property Inspector give the new
column definition in the Target Column field group. You must define the column
Name, Datatype, Length and Scale.

To delete a column from a temporary target datastore:

1. Right-click the column to be deleted In the Target Datastore panel.

Note: The temporary target datastore will be created only if you
activate the IKM option CREATE_TARG_TABLE when defining the
flow.

Creating an Interface

Working with Integration Interfaces 11-7

2. Select Delete.

To add one or several columns from a source datastore to a temporary target datastore:

1. Add the source datastore as described in Section 11.3.4, "Define the Source
Datastores and Lookups".

2. In the Source Diagram, select the source datastore columns you wish to add.

3. Right-click and select Add Column to Target Table.

4. The columns are added to the target datastore. Data types are set automatically.

To add all of the columns from a source datastore to a temporary target datastore:

1. Add the source datastore.

2. In the Source Diagram, select the title of the entity representing the source
datastore.

3. Right-click and select Add to Target.

4. The columns are added to the Target Datastore. Data types are set automatically.

11.3.2.3 Define the Update Key
If you want to use update or flow control features in your interface, it is necessary to
define an update key on the target datastore.

The update key identifies each record to update or check before insertion into the
target. This key can be a unique key defined for the target datastore in its model, or a
group of columns specified as a key for the interface.

To define the update key from a unique key:

1. In the Target Datastore panel, select the title bar that shows the name of the target
datastore to display the Property Inspector.

2. In the Diagram Property tab, select the Update Key from the list.

You can also define an update key from the columns if:

■ You don't have a unique key on your datastore. This is always the case on a
temporary target datastore.

■ You want to specify the key regardless of already defined keys.

When you define an update key from the columns, you select manually individual
columns to be part of the update key.

To define the update key from the columns:

1. Unselect the update key, if it is selected. This step applies only for permanent
datastores.

2. In the Target Datastore panel, select one of the columns that is part of the update
key to display the Property Inspector.

3. In the Diagram Property tab, check the Key box. A key symbol appears in front of
the column in the Target Datastore panel.

4. Repeat the operation for each column that is part of the update key.

Note: Only unique keys defined in the model for this datastore
appear in this list.

Creating an Interface

11-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

To define the update key from the columns:

1. In the Target Datastore panel, select one of the columns that is part of the update
key to display the Property Inspector.

2. In the Diagram Property tab, check the Key box. A key symbol appears in front of
the column in the Target Datastore panel.

3. Repeat the operation for each column that is part of the update key.

11.3.3 Define the Datasets
A dataset represents the data flow coming from a group of datastores. Several datasets
can be merged into the interface target datastore using set-based operators such as
Union and Intersect. The support for datasets as well as the set-based operators
supported depend on the capabilities of the staging area’s technology.

You can add, remove, and order the datasets of an interface and define the operators
between them in the DataSets Configuration dialog. Note that the set-based operators
are always executed on the staging area.

When designing the integration interface, the mappings for each dataset must be
consistent, this means that each dataset must have the same number of target columns
mapped.

To create a new dataset:

1. In the Source Diagram toolbar click Add /Remove DataSet... to display the
DataSet Configuration dialog.

2. Click Add New DataSet... A new line is added for the new dataset at the bottom
of the list.

3. In the DataSet Name field, give the name of the new dataset. This name will be
displayed in the dataset tab.

4. In the Operator field, select the set-based operator for your dataset. Repeat steps 2
to 4 if you wish to add more datasets.

5. Click Close.

To arrange the order of the datasets:

1. Select a dataset in the DataSet Configuration dialog.

2. Click the Up and Down arrows to move the dataset up or down in the list.

To delete a dataset:

1. Select a dataset in the DataSet Configuration dialog.

2. Click Delete.

11.3.4 Define the Source Datastores and Lookups
The source datastores contain data used to load the target datastore. Two types of
datastores can be used as an interface source: datastores from the models and
temporary datastores that are the target of an interface.

When using a temporary datastore that is the target of another interface as a source or
as a lookup table, you can choose:

■ To use a persistent temporary datastore: You will run a first interface creating and
loading the temporary datastore, and then a second interface sourcing from it. In
this case, you would typically sequence the two interfaces in a package.

Creating an Interface

Working with Integration Interfaces 11-9

■ Not to use a persistent datastore: The second interface generates a sub-select
corresponding to the loading of the temporary datastore. This option is not always
available as it requires all datastores of the source interface to belong to the same
data server (for example, the source interface must not have any source sets). You
activate this option by selecting Use Temporary Interface as Derived Table on the
source. Note that the generated sub-select syntax can be either a standard
sub-select syntax (default behavior) or the customized syntax from the IKM used
in the first interface.

The source datastores of an interface can be filtered during the loading process and
must be put in relation through joins. Joins and filters can be automatically copied
from the model definitions and can also be defined for the interface.

A lookup is a datastore (from a model or the target datastore of an interface) - called
the lookup table - associated to a source datastore - the driving table - via a join
expression and from which data can be fetched and used into mappings.

The lookup data is used in the mapping expressions. Lookup tables are added with the
Lookup Wizard. Depending on the database, two syntaxes can be used for a lookup:

■ SQL Left-Outer Join in the FROM clause: The lookup is processed as a regular
source and a left-outer join expression is generated to associate it with its driving
table.

■ SQL expression in the SELECT clause: The lookup is performed within the select
clause that fetches the data from the lookup table. This second syntax may
sometimes be more efficient for small lookup tables.

11.3.4.1 Define the Source Datastores
To add a permanent-type source datastore to an interface:

1. In the Designer Navigator, expand the Models tree and expand the model or
sub-model containing the datastore to be inserted as a source.

2. Select this datastore, then drag it into the Source Diagram. The source datastore
appears in the diagram.

3. In the Diagram Property tab of the Property Inspector, modify the Alias of the
source datastore. The alias is used to prefix column names. This is an optional step
that improves readability of the mapping, joins and filter expressions.

4. Select the Context for this datastore if you want to source data from this datastore
in a fixed context. By default, the datastore is accessed in the context into which
the interface is executed. This is an optional step.

5. If you want to source from a specific partition of this datastore, select the partition
or sub-partition defined for this datastore from the list. This is an optional step

Caution: If there are in the model filters defined on the datastore, or
references between this datastore and datastores already in the
diagram, they appear along with the datastore. These references and
filters are copied as joins and filters in the interface. They are not links
to the references and filters from the model. Therefore, modifying a
reference or a filter in a model does not affect the join or filter in the
interface, and vice versa.

Creating an Interface

11-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

To add a temporary-type source datastore to an interface:

1. In the Designer Navigator, expand the Projects tree and expand the project
containing the interface to be inserted as a source.

2. Select this interface, then drag it into the Source Diagram. The source datastore
appears in the diagram.

3. In the Diagram Property tab of the Property Inspector, modify the Alias of the
source datastore. The alias is used to prefix column names. This is an optional step
that improves readability of the mapping, joins and filter expressions.

4. If you want this interface to generate a sub-select corresponding to the loading of
the temporary datastore, check the Use Temporary Interface as Derived Table
(Sub-Select) box. If this box is not checked, make sure to run the interface loading
the temporary datastore before running the current interface.

To delete a source datastore from an interface:

1. Right-click the title of the entity representing the source datastore in the Source
Diagram.

2. Select Delete.

3. Click OK in the Confirmation dialog.

The source datastore disappears, along with the associated filters and joins. Note that
if this source datastore contained columns that were used in mappings, these
mappings will be in error.

To display the data or the number for rows of a source datastore of an interface:

1. Right-click the title of the entity representing the source datastore in the Source
Diagram.

2. Select Number of Lines to display the number of rows in this source datastore or
Display Data to display the source datastore data.

A window containing the number or rows or the data of the source datastore appears.

11.3.4.2 Define Lookups
To add a lookup to an interface:

1. From the Source Diagram toolbar menu, select Add a new Lookup. The Lookup
Tables Wizard opens.

2. In the Lookup Table Wizard select your Driving Table from the left pane. Source
datastores for the current diagram appear here. Note that lookups do not appear
in the list.

3. From the tree in the Lookup Table pane on the right, do one of the following:

■ From the Datastores tab, select a datastore from a model to use as a lookup
table.

Note: If the source datastore is journalized, it is possible to use only
the journalized data in the interface flow. Check the Journalized Data
Only box in the source datastore properties. A Journalizing filter is
automatically created in the diagram. See Chapter 7, "Working with
Changed Data Capture" for more information.

Creating an Interface

Working with Integration Interfaces 11-11

■ From the Interfaces tab, select an interface whose target will be used as the
lookup table. If this target is temporary and you want this interface to generate
a sub-select corresponding to the loading of the temporary datastore, check
the Use Temporary Interface as Derived Table (Sub-Select) box. If this box is
not checked, make sure to run the interface loading the temporary datastore
before running the current interface.

4. Modify the Alias of the lookup table. The alias is used to prefix column names.
This is an optional step that improves readability of the expressions.

5. Click Next.

6. On the left pane, select one or several source columns from the driving table you
wish to join.

7. On the right pane, select one or several columns of the lookup table you wish to
join.

8. Click Join. The join condition appears in the Lookup condition text field. You can
edit the join condition in this field.

9. Specify the Lookup options:

■ Execute on: Execution location (Source or Staging Area) of the lookup.

■ Lookup type: Indicates whether to use SQL left-outer join in the FROM clause
or SQL expression in the SELECT clause during the SQL code generation.

10. Click Finish. Your lookup appears in the Source Diagram of your dataset.

To edit Lookup tables:
1. Select a Lookup in the Source Diagram of your dataset. The Lookup table

properties are displayed in the Property Inspector.

2. Edit the lookup properties in the Property Inspector.

You cannot change from here the driving and lookup tables. To change these, you
must delete the lookup and recreate it.

To delete a Lookup table:
1. Select a Lookup in the Source Diagram of your dataset.

2. Right-click and select Delete.

11.3.4.3 Define Filters on the Sources
To define a filter on a source datastore:

1. In the Source Diagram, select one or several columns in the source datastore you
want to filter, and then drag and drop these columns onto the source diagram. A
filter appears. Click this filter to open the Property Inspector.

2. In the Diagram Property tab of the Property Inspector, modify the
Implementation expression to create the required filter. You may call the
expression Editor by clicking Launch Expression Editor button. The filter
expression must be in the form SQL condition. For example, if you want to take in
the CUSTOMER table (that is the source datastore with the CUSTOMER alias)

Note: In order to use columns from this lookup, you need to expand
the graphical artifact representing it. Right-click the lookup icon in the
diagram and select View As > Symbolic.

Creating an Interface

11-12 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

only those of the customers with a NAME that is not null, an expression would be
CUSTOMER.NAME IS NOT NULL.

3. Select the execution location: Source or Staging Area.

4. Click the Check the Expression in the DBMS to validate the expression.

5. Check the Active Filter box to enable or disable this filter. It is enabled by default.

6. If you want ODI to automatically generate a temporary index to optimize the
execution of the filter, select the index type to create from the Create Temporary
Index list. This step is optional.

To delete a filter on a source datastore:

1. In the Source Diagram, select the filter.

2. Right-click and select Delete.

To display the data or the number of rows resulting from a filter:

1. In the Source Diagram, select the filter.

2. Right-click and select Number of Lines to display the number of rows after the
filter or Display Data to display the filtered data.

A window containing the data or the number of rows after the filter appears.

11.3.4.4 Define Joins between Sources
To create a join between the source datastores of an interface:

1. In the Source Diagram, select a column in the first source datastore to join, and
drag and drop this column on a column in the second source datastore to join. A
join linking the two datastores appears. Click this join to open the Property
Inspector.

2. In the Diagram Property tab of the Property Inspector, modify the
Implementation expression to create the required join. You may call the
expression Editor by clicking Launch Expression Editor button. The join
expression must be in the form of an SQL expression.

3. Select the execution location: Source or Staging Area.

4. Optionally, you can click the Check the Expression in the DBMS to validate the
expression.

5. Select the type of join (right/left, inner/outer, cross, natural). The text describing
which rows are retrieved by the join is updated.

6. If you want to use an ordered join syntax for this join, check the Ordered Join
(ISO) box and then specify the Order Number into which this join is generated.
This step is optional.

7. Check the Active Clause box to enable or disable this join. You can disable a join
for debugging purposes. It is enabled by default.

Note: The creation of temporary indexes may be a time consuming
operation in the overall flow. It is advised to review the execution
statistics and to compare the execution time saved with the indexes to
the time spent creating them.

Creating an Interface

Working with Integration Interfaces 11-13

8. If you want ODI to automatically generate temporary indexes to optimize the
execution of this join, select the index type to create from the Temporary Index On
lists. This step is optional.

To delete a join between source datastores of an interface:

1. In the Source Diagram, select the join.

2. Right-click and select Delete.

To display the data or the number of rows resulting from a join:

1. In the Source Diagram, select the join.

2. Right-click and select Number of Lines to display the number of rows returned by
the join or Display Data to display the result of the join.

A window containing the data or the number of rows resulting from the join appears.

11.3.5 Define the Mappings
A mapping defines the transformations on one or several source columns to load one
target column.

Empty mappings are automatically filled when you add a source or target datastore by
column name matching. The user-defined mapping always takes precedence over
automatic mapping.

To regenerate the automatic mapping by column name matching:

1. Right-click the target datastore.

2. Select Redo Auto Mapping.

The target datastore columns are automatically mapped on the source datastores'
columns with the same name.

To define the mapping of a target column:

1. In the Target Datastore Panel, select the column of the target datastore to display
the Property Inspector.

2. In the Diagram Property tab of the Property Inspector, modify the
Implementation to create the required transformation. The columns of all the
tables in the model can be drag-and-dropped into the text. You may call the
expression Editor by clicking Launch Expression Editor.

3. Optionally, click Check the expression in the DBMS to validate the expression.

4. Select the execution location: Source, Target or Staging Area. Some limitations
exist when designing mappings. When a mapping does not respect these
limitations, a red cross icon appears on the target column in the Target Datastore
Panel. For example:

■ Mappings that contain constants cannot be mapped on the source without
having selected a source datastore.

Note: The creation of temporary indexes may be a time consuming
operation in the overall flow. It is advised to review the execution
statistics and to compare the execution time saved with the indexes to
the time spent creating them.

Creating an Interface

11-14 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ Mappings that contain reference source columns cannot be mapped on the
target.

■ A mandatory column should be mapped.

■ A mapping mapped in one dataset must be mapped in all other datasets.

5. Check the Update boxes if you want the mapping to be executed in Insert or
Update operations. You can also check the UD1 to UD10 boxes to enable
KM-specific options on columns. These options are optional, and must be used if
the Knowledge Module documentation indicates it. Otherwise, they are ignored.

6. Check Active Mapping if you want this mapping to be used for the execution of
the interface. Note that if you enter a mapping text in a disabled mapping, this
mapping will automatically be enabled.

11.3.6 Define the Interface Flow
In the Flow tab, you define the loading and integration strategies for mapped data.
Oracle Data Integrator automatically computes the flow depending on the
configuration in the interface's diagram. It proposes default KMs for the data flow. The
Flow tab enables you to view the data flow and select the KMs used to load and
integrate data.

In the flow, the following items appear:

■ Source Sets: Source Datastores that are within the same dataset, located on the
same physical data server and which are joined with Joins located on the Source
are grouped in a single source set in the flow diagram. A source set represents a
group of datastores that can be extracted at the same time.

■ DataSets: Datasets appear as yellow boxes in the Staging Area.

■ Staging Area: It appears as a box that includes the different datasets, the target (if
located on the same data server), and possibly some of the sources (if located on
the same data server).

■ Target: It appears as a separate box if it is located in a different schema from the
staging area (If the Staging Area Different from Target option is selected).

You use the following KMs in the flow:

■ LKM: They define how data is moved. One LKM is selected for each Source Set for
moving data from the sources to the staging area. It can be also selected to move
data from the Staging Area - when different from the Target - to the Target, when a
single technology IKM is selected for the Staging Area.

■ IKM: They define how data is integrated into the target. One IKM is typically
selected on the Target. When the staging area is different from the target, the
selected IKM can be a multi-technology IKM that moves and integrates data from
the Staging Area into the Target.

Tip: Before proceeding, you can check the consistency and errors in
your diagram by clicking the Display Interface Errors Report in the
Source Diagram Toolbar. This report will show you errors that may
exist in your interface such as mappings incorrectly located.

At this stage, you may receive some errors because the Knowledge
Modules are not selected yet for this interface.

Creating an Interface

Working with Integration Interfaces 11-15

To change the LKM in use:
1. In the Flow tab, select one of the Source Sets or the Staging Area, if it is not into

the Target group, by clicking its title. The Property Inspector opens for this object.

2. If you are working on a Source Set, change the Name of this source set. This step is
optional and improves readability of the flow.

3. Select a LKM from the LKM Selector list.

4. KMs are set with default options that work in most use cases. You can optionally
modify the KM Options.

Note that KM options of the previous KM are retained using homonymy when
switching from a KM to another. By changing KMs several times you might lose
custom KM option values.

To change the IKM in use:
1. In the Flow tab, select the Target by clicking its title. The Property Inspector opens

for this object.

2. In the Property Inspector, select a IKM from the IKM Selector list.

3. Check the Distinct option if you want to automatically apply a DISTINCT
statement on your data flow and avoid possible duplicate rows.

4. KMs are set with default options that work in most use cases. You can optionally
modify the KM Options.

Note that KM options of the previous KM are retained using homonymy when
switching from a KM to another. By changing KMs several times you might lose
custom KM option values.

An important option to set is FLOW_CONTROL. This option triggers flow control
and requires that you set up flow control.

11.3.7 Set up Flow Control and Post-Integration Control
In an integration interface, it is possible to set two points of control. Flow Control
checks the data in the incoming flow before it gets integrated into the target, and
Post-Integration Control checks the target datastore as if in a static check at the end of
the interface.

Note: Only KMs that have already been imported in the project can
be selected in the interface. Make sure that you have imported the
appropriate KMs in the project before proceeding.

Note: Knowledge modules with an Incremental Update strategy, as
well as flow control, require that you set an update key for the target
datastore of the interface.

Note: For more information on the KMs and their options, refer to
the KM description and to the Oracle Fusion Middleware Connectivity
and Knowledge Modules Guide for Oracle Data Integrator.

Creating an Interface

11-16 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

11.3.7.1 Set up Flow Control
The flow control strategy defines how data is checked against the constraints defined
on the target datastore before being integrated into this datastore. It is defined by a
CKM. In order to have the flow control running, you must set the FLOW_CONTROL
option in the IKM to true. Flow control also requires that an update key is selected on
the target datastore of this interface. Refer to Section 11.3.2.3, "Define the Update Key"
for more information.

To define the CKM used in an interface:

1. In the Controls tab of the interface, select a CKM from the CKM Selector list.

2. Set the KM Options.

3. Select the Constraints to be checked.

4. Fill in the Maximum number of errors allowed. Note that if you leave this field
empty, an infinite numbers of errors is allowed. The interface stops during the
flow control (if any) or the post-integration control (if any) if the number of errors
allowed is reached.

5. Check the % box if you want the interface to fail when a percentage of errors is
reached during flow or post-integration control, rather than a fixed number of
errors. This percentage is calculated with the following formula:

errors_detected * 100 / checked_rows

where:

■ checked_rows is the number of checked rows during flow and
post-integration control.

■ errors_detected are the number of errors detected during flow and
post-integration control.

This formula is calculated at the end of the execution of the interface. If the result
of this formula is superior to the indicated percentage, the interface status will be
in error. If the interface falls into error during a flow control, no changes are
performed into the target. If the interface falls into error after a post-integration
control, the changes performed to the target are not committed by the Knowledge
Module.

11.3.7.2 Set up Post-Integration Control
The post-integration control strategy defines how data is checked against the
constraints defined on the target datastore. This check takes place once the data is
integrated into the target datastore. It is defined by a CKM. In order to have the
post-integration control running, you must set the STATIC_CONTROL option in the
IKM to true. Post-integration control requires that a primary key is defined in the
data model for the target datastore of your interface.

Concerning the maximum number of errors allowed the same behavior is applied as
for flow control.

Post-integration control uses the same CKM as the flow control.

11.3.8 Execute the Integration Interface
Once the interface is created, it is possible to execute it.

To run an interface:

1. While editing the interface, click Execute in the toolbar.

Using the Quick-Edit Editor

Working with Integration Interfaces 11-17

2. In the Execution window, select the execution parameters:

■ Select the Context into which the interface must be executed.

■ Select the Logical Agent that will run the interface.

3. Click OK.

4. The Session Started Window appears.

5. Click OK.

11.4 Using the Quick-Edit Editor
You can use the Quick-Edit Editor to perform the same actions as on the Mapping tab
of the Interface Editor in a non-graphical form:

■ Adding and Removing a Component

■ Editing a Component

■ Adding, Removing, and Configuring Datasets

■ Changing the Target DataStore

The Quick-Edit Editor allows to:

■ Work with the Interface components in tabular form.

■ Perform mass updates of components properties when editing the components.
See Section 11.4.2, "Editing a Component" for more information.

■ Use keyboard navigation for common tasks. See Section 11.4.6, "Using Keyboard
Navigation for Common Tasks" for more information.

The properties of the following components are displayed in tabular form and can be
edited in the Quick-Edit Editor:

■ Sources

■ Lookups

■ Joins

■ Filters

■ Mappings

Note that components already defined on the Mapping tab of the Interface Editor are
displayed in the Quick-Edit Editor and that the components defined in the Quick-Edit
Editor will also be reflected in the Mapping tab.

11.4.1 Adding and Removing a Component
With the Quick-Edit Editor, you can add or remove components of an integration
interface.

11.4.1.1 Adding Components
To add a source, lookup, join, filter, or temporary target column with the Quick-Edit
Editor:

1. In the Interface Editor, go to the Quick-Edit tab.

2. From the Select DataSet list, select the dataset to which you want to add the new
components.

Using the Quick-Edit Editor

11-18 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

3. Expand the section of the components to add.

4. From the toolbar menu, select Add.

5. The next tasks depend on the type of component you are adding:

If you are adding a new temporary target column, a new line representing the
temporary target column is added to your target datastore table. You can modify
directly the cells of this temporary target column in the target datastore table
according to your needs.

If you are adding a source, lookup, join, or filter, a wizard will guide you through
the next steps.

■ Add Sources Wizard

■ Lookup Tables Wizard

■ Join Table Wizard

■ Filter Table Wizard

Add Sources Wizard
Use the Add Sources Wizard to add the sources of your Interfaces. You can add
datastores or integration interfaces as sources.

To a datastore as a source of the Interface:

1. Select the Datastores tab.

The Add Sources Wizard displays the list of datastores with their Models and
Model folders that can be used as a source of the Interface.

2. From the list, select the datastore that you want to add as a source of the Interface.

Note that you can browse through the list or filter this list by entering a partial or
complete name of the datastore in the search field.

3. Modify the alias of the datastore (optional).

4. Click OK.

To add an integration interface as a source of the Interface:

1. Select the Interfaces tab.

The Add Sources Wizard displays the list of Interfaces.

2. From the list, select the Interface that you want to add as a source of the Interface.

Note that you can browse through the list or filter this list by entering a partial or
complete name of the Interface in the search field.

3. Modify the alias of the Interface (optional).

4. Click OK.

Lookup Tables Wizard
Use the Lookup Tables Wizard to add lookup tables to your integration interface. For
more information, see Section 11.3.4.2, "Define Lookups".

Join Table Wizard
Use the Join Table Wizard to create joins between the source datastores of an interface.

To create a join:

Using the Quick-Edit Editor

Working with Integration Interfaces 11-19

1. From the Left Source list in the Specify Join Criteria section, select the source
datastore that contains the left column for your join.

2. From the Right Source list, select the source datastore that contains the right
column for your join.

3. Select the left source and right source column and click Join. The join condition is
displayed in the Join Condition field.

4. You can modify the join condition to create the required join. Note that the join
expression must be in the form of an SQL expression. You may call the Expression
Editor by clicking Launch Expression Editor to modify the join condition.

5. Select the execution location: Source or Staging Area.

6. Select the type of join you want to create: Inner Join, Cross, Natural, Left Outer,
Right Outer, or Full. The text describing which rows are retrieved by the join is
updated.

7. Click OK.

Filter Table Wizard
Use the Filter Table Wizard to define the filter criteria of your source datastore.

To define a filter on a source datastore:

1. From the source list, select the source datastore you want to filter.

2. From the columns list, select the source column on which you want to create the
filter. The filter condition is displayed in the Filter Condition field.

3. You can modify this filter condition to create the required filter. You may call the
expression Editor by clicking Launch Expression Editor. Note that the filter
expression must be in the form SQL condition.

4. Select the execution location: Source or Staging Area.

5. Click OK.

11.4.1.2 Removing Components
To remove a source, lookup, join, filter, or temporary target column with the
Quick-Edit Editor:

1. In the Interface Editor, go to the Quick-Edit tab.

2. From the Select DataSet list, select the dataset from which you want to remove the
components.

3. Expand the section of the components to remove.

4. Select the lines you want to remove.

5. From the toolbar menu, select Remove.

The selected components are removed.

11.4.2 Editing a Component
To edit the sources, lookups, joins, filters, mappings or target column properties with
the Quick-Edit Editor:

1. In the Interface Editor, go to the Quick-Edit tab.

Using the Quick-Edit Editor

11-20 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

2. From the Select DataSet list, select the dataset that contains the components to
modify.

3. Expand the section of the component to modify.

4. Modify the table entry either by selecting or entering a new value.

Performing Mass Updates
The mass updates allow quick updates of several component properties at a time. You
can perform mass updates in the Quick-Edit Editor using the Copy-Paste feature in the
component tables.

To perform a mass update of component properties:

1. In the component table, select the cell that contains the value you want to apply to
other cells.

2. Copy the cell value.

3. Select multiple cells in the same column.

4. Paste the copied value.

The copied value is set to all selected cells.

11.4.3 Adding, Removing, and Configuring Datasets
You can create, remove, and configure datasets with the Quick-Edit Editor.

To create, remove, and configure datasets with the Quick-edit Editor:

1. From the Select DataSet list, select Manage DataSets...

2. The DataSets Configuration dialog is displayed. Define the datasets as described
in Section 11.3.3, "Define the Datasets".

11.4.4 Changing the Target DataStore
You can change the target datastore of your integration interface with the Quick-Edit
Editor.

To change the target datastore of your Interface with the Quick-Edit Editor:

1. In the Interface Editor, go to the Quick-Edit tab.

2. Expand the Mappings section.

3. Click Add or Modify Target Datastore.

4. In the Add or Modify Target Datastore Dialog, do one of the following:

■ If you want to create a temporary target datastore, select Use Temporary
Target and enter the name of the new temporary target datastore.

■ If you want to use a permanent target datastore, select the datastore that you
want to add as the target of the Interface from the list.

Note that you can browse through the list or filter this list by entering a partial
or complete name of the datastore in the search field.

Note: The Copy-Paste feature is provided for text cells, drop down
lists, and checkboxes.

Designing Integration Interfaces: E-LT- and ETL-Style Interfaces

Working with Integration Interfaces 11-21

5. Click OK.

11.4.5 Customizing Tables
There two ways to customize the tables of the Quick-Edit Editor:

■ From the table toolbar, select Select Columns and then, from the drop down
menu, select the columns to display in the table.

■ Use the Customize Table Dialog.

1. From the table toolbar, select Select Columns.

2. From the drop down menu, select Select Columns...

3. In the Customize Table Dialog, select the columns to display in the table.

4. Click OK.

11.4.6 Using Keyboard Navigation for Common Tasks
This section describes the keyboard navigation in the Quick-Edit Editor.

Table 11–2 shows the common tasks and the keyboard navigation used in the
Quick-Edit Editor.

11.5 Designing Integration Interfaces: E-LT- and ETL-Style Interfaces
In an E-LT-style integration interface, ODI processes the data in a staging area, which
is located on the target. Staging area and target are located on the same RDBMS. The
data is loaded from the source(s) to the target. To create an E-LT-style integration
interface, follow the standard procedure described in Section 11.3, "Creating an
Interface".

Table 11–2 Keyboard Navigation for Common Tasks

Navigation Task

Arrow keys Navigate: move one cell up, down, left, or right

TAB Move to next cell

SHIFT+TAB Move to previous cell

SPACEBAR Start editing a text, display items of a list, or change value of a
checkbox

CTRL+C Copy the selection

CTRL+V Paste the selection

ESC Cancel an entry in the cell

ENTER Complete a cell entry and move to the next cell or activate a
button

DELETE Clear the content of the selection (for text fields only)

BACKSPACE Delete the content of the selection or delete the preceding
character in the active cell (for text fields only)

HOME Move to the first cell of the row

END Move to the last cell of the row

PAGE UP Move up to the first cell of the column

PAGE DOWN Move down to the last cell of the column

Designing Integration Interfaces: E-LT- and ETL-Style Interfaces

11-22 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

In an ETL-style interface, ODI processes the data in a staging area, which is different
from the target. The data is first extracted from the source(s) and then loaded to the
staging area. The data transformations take place in the staging area and the
intermediate results are stored in temporary tables in the staging area. The data
loading and transformation tasks are performed with the standard ELT KMs.

Oracle Data Integrator provides two ways for loading the data from the staging area to
the target:

■ Using a Multi-connection IKM

■ Using an LKM and a mono-connection IKM

Depending on the KM strategy that is used, flow and static control are supported. See
"Designing an ETL-Style Interface" in the Oracle Fusion Middleware Connectivity and
Knowledge Modules Guide for Oracle Data Integrator for more information.

Using a Multi-connection IKM
A multi-connection IKM allows updating a target where the staging area and sources
are on different data servers. Figure 11–2 shows the configuration of an integration
interface using a multi-connection IKM to update the target data.

Figure 11–2 ETL-Interface with Multi-connection IKM

See the chapter in the Oracle Fusion Middleware Connectivity and Knowledge Modules
Guide for Oracle Data Integrator that corresponds to the technology of your staging area
for more information on when to use a multi-connection IKM.

To use a multi-connection IKM in an ETL-style interface:

1. Create an integration interface using the standard procedure as described in
Section 11.3, "Creating an Interface". This section describes only the ETL-style
specific steps.

2. In the Definition tab of the Interface Editor, select Staging Area different from
Target and select the logical schema of the source tables or another logical schema
that is not a source or the target. This schema will be used as the staging area.

3. In the Flow tab, select one of the Source Sets, by clicking its title. The Property
Inspector opens for this object.

4. Select an LKM from the LKM Selector list to load from the source(s) to the staging
area. See the chapter in the Oracle Fusion Middleware Connectivity and Knowledge
Modules Guide for Oracle Data Integrator that corresponds to the technology of your
staging area to determine the LKM you can use.

5. Optionally, modify the KM options.

Designing Integration Interfaces: E-LT- and ETL-Style Interfaces

Working with Integration Interfaces 11-23

6. In the Flow tab, select the Target by clicking its title. The Property Inspector opens
for this object.

In the Property Inspector, select an ETL multi-connection IKM from the IKM
Selector list to load the data from the staging area to the target. See the chapter in
the Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle
Data Integrator that corresponds to the technology of your staging area to
determine the IKM you can use.

7. Optionally, modify the KM options.

Using an LKM and a mono-connection IKM
If there is no dedicated multi-connection IKM, use a standard exporting LKM in
combination with a standard mono-connection IKM. Figure 11–3 shows the
configuration of an integration interface using an exporting LKM and a
mono-connection IKM to update the target data. The exporting LKM is used to load
the flow table from the staging area to the target. The mono-connection IKM is used to
integrate the data flow into the target table.

Figure 11–3 ETL-Interface with an LKM and a Mono-connection IKM

See the chapter in the Oracle Fusion Middleware Connectivity and Knowledge Modules
Guide for Oracle Data Integrator that corresponds to the technology of your staging area
for more information on when to use the combination of a standard LKM and a
mono-connection IKM.

To use an LKM and a mono-connection IKM in an ETL-style interface:

1. Create an integration interface using the standard procedure as described in
Section 11.3, "Creating an Interface". This section describes only the ETL-style
specific steps.

2. In the Definition tab of the Interface Editor, select Staging Area different from
Target and select the logical schema of the source tables or a third schema.

3. In the Flow tab, select one of the Source Sets.

4. In the Property Inspector, select an LKM from the LKM Selector list to load from
the source(s) to the staging area. See the chapter in the Oracle Fusion Middleware
Connectivity and Knowledge Modules Guide for Oracle Data Integrator that
corresponds to the technology of your staging area to determine the LKM you can
use.

5. Optionally, modify the KM options.

6. Select the Staging Area. In the Property Inspector, select an LKM from the LKM
Selector list to load from the staging area to the target. See the chapter in the Oracle

Designing Integration Interfaces: E-LT- and ETL-Style Interfaces

11-24 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data
Integrator that corresponds to the technology of your staging area to determine the
LKM you can use.

7. Optionally, modify the options.

8. Select the Target by clicking its title. The Property Inspector opens for this object.

In the Property Inspector, select a standard mono-connection IKM from the IKM
Selector list to update the target. See the chapter in the Oracle Fusion Middleware
Connectivity and Knowledge Modules Guide for Oracle Data Integrator that
corresponds to the technology of your staging area to determine the IKM you can
use.

9. Optionally, modify the KM options.

12

Working with Procedures, Variables, Sequences, and User Functions 12-1

12Working with Procedures, Variables,
Sequences, and User Functions

This chapter describes how to work with procedures, variables, sequences, and user
functions. An overview of these components and how to work with them is provided.

This chapter includes the following sections:

■ Section 12.1, "Working with Procedures"

■ Section 12.2, "Working with Variables"

■ Section 12.3, "Working with Sequences"

■ Section 12.4, "Working with User Functions"

12.1 Working with Procedures
This section provides an introduction to procedures and describes how to create and
use procedures in Oracle Data Integrator.

12.1.1 Introduction to Procedures
A Procedure is a set of commands that can be executed by an agent. These commands
concern all technologies accessible by Oracle Data Integrator (OS, JDBC, JMS
commands, etc).

A Procedure is a reusable component that allows you to group actions that do not fit in
the Interface framework. Procedures should be considered only when what you need
to do can’t be achieved in an interface. In this case, rather than writing an external
program or script, you would include the code in Oracle Data Integrator and execute it
from your packages. Procedures require you to develop all your code manually, as
opposed to interfaces.

A procedure is composed of command lines, possibly mixing different languages.
Every command line may contain two commands that can be executed on a source and
on a target. The command lines are executed sequentially. Some command lines may
be skipped if they are controlled by an option. These options parameterize whether or
not a command line should be executed as well as the code of the commands.

The code within a procedure can be made generic by using string options and the ODI
Substitution API.

Before creating a procedure, note the following:

■ Although you can perform data transformations in procedures, using them for this
purpose is not recommended; use interfaces instead.

Working with Procedures

12-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ If you start writing a complex procedure to automate a particular recurring task
for data manipulation, you should consider converting it into a Knowledge
Module. Refer to the Knowledge Module Developer's Guide for Oracle Data Integrator
for more information.

■ Whenever possible, try to avoid operating-system-specific commands. Using them
makes your code dependent on the operating system that runs the agent. The
same procedure executed by 2 agents on 2 different operating systems (such as
Unix and Windows) will not work properly.

The following sections describe how to create and use procedures.

12.1.2 Creating Procedures
Creating a procedure follows a standard process which can vary depending on the use
case. The following step sequence is usually performed when creating a procedure:

1. Create a New Procedure

2. Define the Procedure's Options

3. Create and Manage the Procedure's Commands.

When creating procedures, it is important to understand the following coding
guidelines:

■ Writing Code in Procedures

■ Using the Substitution API

■ Handling RDBMS Transactions

■ Binding Source and Target Data

12.1.2.1 Create a New Procedure
To create a new procedure:

1. In Designer Navigator select the Procedures node in the folder under the project
where you want to create the procedure.

2. Right-click and select New Procedure.

3. On the Definition tab fill in the procedure Name.

4. Check the Multi-Connections if you want the procedure to manage more than one
connection at a time.

Multi-Connections: It is useful to choose a multi-connection procedure if you
wish to use data that is retrieved by a command sent on a connection (the source
connection, indicated on the Source tab) in a command sent to another connection
(the target connection, indicated on the Target tab). This data will pass though the
execution agent. If you access one connection at a time (which enables you to
access different connections, but only one at a time) leave the Multi-Connections
box unchecked.

5. Select the Target Technology and if the Multi-Connections box is checked also
select the Source Technology. Each new Procedure line will be based on this
technology. You can also leave these fields empty and specify the technologies in
each procedure command.

Working with Procedures

Working with Procedures, Variables, Sequences, and User Functions 12-3

6. From the File menu, click Save.

A new procedure is created, and appears in the Procedures list in the tree under your
Project.

12.1.2.2 Define the Procedure's Options
Procedure options act like parameters for your steps and improve the code reusability.

There are two types of options:

■ Boolean options called Check Boxes. Their value can be used to determine
whether individual command are executed or not. They act like an “if” statement.

■ Value and Text options used to pass in short or long textual information
respectively. The values of these options can only be recovered in the code of the
procedure's commands, using the getOption() substitution method. When using
your procedure in a package, its values can be set on the step.

To create procedure's options:

1. In Designer Navigator select your procedure's node.

2. Right-click and select New Option. The Procedure Option Editor is displayed.

3. Fill in the following fields:

■ Name: Name of the option as it appears in the graphical interface

■ Type: Type of the option.

– Check Box: The option is boolean: Yes = 1/No = 0. These are the only
options used for procedures and KMs to determine if such tasks should be
executed or not.

– Default Value: It is an alphanumerical option. Maximum size is 250
characters.

– Text: It is an alphanumerical option. Maximum size is not limited.
Accessing this type of option is slower than for default value options.

■ Description: Short description of the option. For Check Box options, this is
displayed on the Command editor where you select which options will trigger
the execution of the command.

■ Position: Determines the order of appearance of the option when the
procedure or KM options list is displayed.

■ Help: Descriptive help on the option. For KMs, is displayed in the properties
pane when the KM is selected in an interface.

■ Default value: Value that the option will take, if no value has been specified
by the user of the procedure or the KM.

4. From the File menu, click Save.

5. Repeat these operations for each option that is required for the procedure.

Caution: Source and target technologies are not mandatory for
saving the Procedure. However, the execution of the Procedure might
fail, if the related commands require to be associated with certain
technologies and logical schemas.

Working with Procedures

12-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Options appear in the Projects accordion under the Procedure node and on the
Options tab of the Procedure Editor.

12.1.2.3 Create and Manage the Procedure's Commands
To create a procedure's command line:

1. In Designer Navigator double-click the procedure for which you want to create a
command. The Procedure Editor opens.

2. In the Procedure Editor, go to the Details tab

3. Click Add. Enter the name for your new command. The Command Line Editor
opens.

4. In the Command Line Editor fill in the following fields:

■ Log Counter: Shows which counter (Insert, Update, Delete or Errors) will
record the number of rows processed by this command. Note that the Log
Counter works only for Insert, Update, Delete, and Errors rows resulting from
an Insert or Update SQL statement.

After executing the Procedure, you can view the counter results in Operator
Navigator. They are displayed on the Definition tab of the Step and Task editor
in the Record Statistics section.

■ Log level: Logging level of the command. At execution time, the task
generated for this command will be kept in the Session log based on this value
and the log level defined in the execution parameters. Refer to Table 19–1 for
more details on the execution parameters.

■ Ignore Errors must be checked if you do not want the procedure to stop if this
command returns an error. If this box is checked, the procedure command will
go into "warning" instead of "error", and the procedure will not be stopped.

5. In the Command on Target tab, fill in the following fields:

■ Technology: Technology used for this command. If it is not set, the technology
specified on the Definition tab of the Procedure editor is used.

■ Transaction Isolation: The transaction isolation level for the command.

■ Context: Forced Context for the execution. If it is left undefined, the execution
context will be used. You can leave it undefined to ensure the portability of the
code in any context.

■ Schema: Logical schema for execution of the command.

■ Transaction: Transaction where the command will be executed.

■ Commit: Indicates the commit mode of the command in the transaction.

■ Command: Text of the command to execute. You may call the expression
Editor by clicking Launch the Expression Editor.

The command must be entered in a language appropriate for the selected
technology. Refer to Writing Code in Procedures for more information.

It is advised to use the substitution methods to make the code generic and
dependent on the topology information. Refer to Using the Substitution API.

The Transaction and Commit options allow you to run commands within
transactions. Refer to Handling RDBMS Transactions for more information.

Working with Procedures

Working with Procedures, Variables, Sequences, and User Functions 12-5

Most of the procedures use only commands on the target. In some cases, it is
required to read data and perform actions using this data. For these use case, you
specify the command to read the data in the Command on Source tab and the
actions performed with this data in the Command on Target tab. Refer to "Binding
Source and Target Data" for more information. Skip step 6 if you are not in this use
case.

6. For Multi-Connections Procedures, repeat step 5 for the Command on Source tab.

7. In the Options section, check the Always Execute box if you want this command
to be executed all the time regardless of the option values. Otherwise, check the
options of type boolean that control the command execution. At run-time, if any of
the selected options is set to Yes, the command is executed.

8. From the File menu, click Save.

To duplicate a command:

1. Go to the Details tab of the Procedure.

2. Select the command to duplicate.

3. Right-click then select Duplicate. The Command Line Editor opens. It is a copy of
the selected command.

4. Make the necessary modifications and from the File menu, click Save.

The new command is listed on the Details tab.

To delete a command line:

1. Go to the Details tab of the Procedure.

2. Select the command line to delete.

3. From the Editor toolbar, click Delete.

The command line will disappear from the list.

To order the command lines:

The command lines are executed in the order displayed in the Details tab of the
Procedure Editor. It may be necessary to reorder them.

1. Go to the Details tab of the Procedure.

2. Click on the command line you wish to move.

3. From the Editor toolbar, click the arrows to move the command line to the
appropriate position.

Writing Code in Procedures
Commands within a procedure can be written in several languages. These include:

■ SQL: or any language supported by the targeted RDBMS such as PL/SQL,
Transact SQL etc. Usually these commands can contain Data Manipulation
Language (DML) or Data Description Language (DDL) statements. Using SELECT
statements or stored procedures that return a result set is subject to some
restrictions. To write a SQL command, you need to select:

Note: The transaction, commit and transaction isolation options
work only for technologies supporting transactions.

Working with Procedures

12-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

– A valid RDBMS technology that supports your SQL statement, such as
Teradata or Oracle etc.

– A logical schema that indicates where it should be executed. At runtime, this
logical schema will be converted to the physical data server location selected
to execute this statement.

– Additional information for transaction handling as described further in
section Handling RDBMS Transactions.

■ Operating System Commands: Useful when you want to run an external
program. In this case, your command should be the same as if you wanted to
execute it from the command interpreter of the operating system of the Agent in
charge of the execution. When doing so, your objects become dependent on the
platform on which the agent is running. To write an operating system command,
select “Operating System” from the list of technologies of you current step. It is
recommended to use for these kind of operations the OdiOSCommand tool as this
tool prevents you from calling and setting the OS command interpreter.

■ ODI Tools: ODI offers a broad range of built-in tools that you can use in
procedures to perform some specific tasks. These tools include functions for file
manipulation, email alerts, event handling, etc. They are described in detail in the
online documentation. To use an ODI Tool, select ODITools from the list of
technologies of your current step.

■ Scripting Language: You can write a command in any scripting language
supported by Oracle Data Integrator. By default, ODI includes support for the
following scripting languages that you can access from the technology list box of
the current step: Jython, JavaScript, NetRexx and Java BeanShell.

Using the Substitution API
It is recommended that you use the ODI substitution API when writing commands in
a procedure to keep it independent of the context of execution. You can refer to the
online documentation for information about this API. Common uses of the
substitution API are given below:

■ Use getObjectName()to obtain the qualified name of an object in the current
logical schema regardless of the execution context, rather than hard coding it.

■ Use getInfo() to obtain general information such as driver, URL, user etc. about
the current step

■ Use getSession() to obtain information about the current session

■ Use getOption() to retrieve the value of a particular option of your procedure

■ Use getUser() to obtain information about the ODI user executing your
procedure.

Handling RDBMS Transactions
Oracle Data Integrator procedures include an advanced mechanism for transaction
handling across multiple steps or even multiple procedures. Transaction handling
applies only for RDBMS steps and often depends on the transaction capabilities of the
underlying database. Within procedures, you can define for example a set of steps that
would be committed or rolled back in case of an error. You can also define up to 10
(from 0 to 9) independent sets of transactions for your steps on the same server. Using
transaction handling is of course recommended when your underlying database
supports transactions. Note that each transaction opens a connection to the database.

Working with Procedures

Working with Procedures, Variables, Sequences, and User Functions 12-7

However, use caution when using this mechanism as it can lead to deadlocks across
sessions in a parallel environment.

Binding Source and Target Data
Data binding in Oracle Data Integrator is a mechanism in procedures that allows
performing an action for every row returned by a SQL SELECT statement.

To bind source and target data:

1. Open the Command Line Editor.

2. In the Command on Source tab, specify the SELECT statement.

3. In the Command on Target tab, specify the action code. The action code can itself
be an INSERT, UPDATE or DELETE SQL statement or any other code such as an
ODI Tool call or Jython. Refer to Appendix A, "Oracle Data Integrator Tools
Reference" for details about the ODI Tools syntax.

The values returned by the source result set can be referred to in the action code using
the column names returned by the SELECT statement. They should be prefixed by
colons “:” whenever used in a target INSERT, UPDATE or DELETE SQL statement and
will act as “bind variables”. If the target statement is not a DML statement, then they
should be prefixed by a hash “#” sign and will act as substituted variables. Note also
that if the resultset of the Source tab is passed to the Target tab using a hash "#" sign,
the target command is executed as many times as there are values returned from the
Source tab command.

The following examples give you common uses for this mechanism. There are, of
course, many other applications for this powerful mechanism.

Example 12–1 Loading Data from a Remote SQL Database

Suppose you want to insert data into the Teradata PARTS table from an Oracle
PRODUCT table. Table 12–1 gives details on how to implement this in a procedure
step.

ODI will implicitly loop over every record returned by the SELECT statement and
bind its values to “:MY_PRODUCT_ID” and “:PRODUCT_NAME” bind variables. It
then triggers the INSERT statement with these values after performing the appropriate
data type translations.

Table 12–1 Procedure Details for Loading Data from a Remote SQL Database

Source Technology Oracle

Source Logical Schema ORACLE_INVENTORY

Source Command select PRD_ID MY_PRODUCT_ID,
 PRD_NAME PRODUCT_NAME,
from <%=odiRef.getObjectName("L","PRODUCT","D")%>

Target Technology Teradata

Target Logical Schema TERADATA_DWH

Target Command insert into PARTS
(PART_ID, PART_ORIGIN, PART_NAME)
values
(:MY_PRODUCT_ID, ’Oracle Inventory’,
:PRODUCT_NAME)

Working with Procedures

12-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

When batch update and array fetch are supported by the target and source
technologies respectively, ODI prepares arrays in memory for every batch, making the
overall transaction more efficient.

Example 12–2 Sending Multiple Emails

Suppose you have a table that contains information about all the people that need to
be warned by email in case of a problem during the loading of your Data Warehouse.
You can do it using a single procedure step as described in Table 12–2.

The “–TO” parameter will be substituted by the value coming from the “Email”
column of your source SELECT statement. The “OdiSendMail” command will
therefore be triggered for every operator registered in the “Operators” table.

12.1.3 Using Procedures
A procedure can be used in the following ways:

■ Executing the Procedure directly in Designer Navigator for testing its execution.

■ Using a Procedure in a Package along with interfaces and other development
artifacts for building a data integration workflow.

■ Generating a Scenario for a Procedure for launching only this procedure in a
run-time environment.

12.1.3.1 Executing the Procedure
To run a procedure:

1. In the Project view of the Designer Navigator, select the procedure you want to
execute.

Note: This mechanism is known to be far less efficient than a fast or
multi load in the target table. You should only consider it for very
small volumes of data.

The section Using the Agent in the Loading Strategies further
discusses this mechanism.

Table 12–2 Procedure Details for Sending Multiple Emails

Source Technology Oracle

Source Logical Schema ORACLE_DWH_ADMIN

Source Command Select FirstName FNAME, EMailaddress EMAIL
From <%=odiRef.getObjectName("L","Operators","D")%>
Where RequireWarning = ’Yes’

Target Technology ODITools

Target Logical Schema None

Target Command OdiSendMail -MAILHOST=my.smtp.com
-FROM=admin@mycompany.com “-TO=#EMAIL” “-SUBJECT=Job
Failure”
Dear #FNAME,
I’m afraid you’ll have to take a look at ODI Operator,
because session <%=snpRef.getSession(“SESS_NO”)%> has
just failed!
-Admin

Working with Procedures

Working with Procedures, Variables, Sequences, and User Functions 12-9

2. Right-click and select Execute.

3. In the Execution dialog, set the execution parameters. Refer to Table 19–1 for more
information.

4. Click OK.

5. The Session Started Window appears.

6. Click OK.

12.1.3.2 Using a Procedure in a Package
Procedures can be used as package steps. Refer to the Section 10.3.1.2, "Executing a
Procedure" for more information on how to execute a procedure in a package step.
Note that if you use a procedure in a package step, the procedure is not a copy of the
procedure you created but a link to it. If this procedure is modified outside of the
package, the package using the procedure will be changed, too.

12.1.3.3 Generating a Scenario for a Procedure
It is possible to generate a scenario to run a procedure in production environment, or
to schedule its execution without having to create a package using this procedure. The
generated scenario will be a scenario with a single step running this procedure. How
to generate a scenario for a procedure is covered in Section 13.2, "Generating a
Scenario".

12.1.4 Encrypting and Decrypting Procedures
Encrypting a Knowledge Module (KM) or a procedure allows you to protect valuable
code. An encrypted KM or procedure can neither be read nor modified if it is not
decrypted. The commands generated in the log by an Encrypted KM or procedure are
also unreadable.

Oracle Data Integrator uses a DES Encryption algorithm based on a personal
encryption key. This key can be saved in a file and reused to perform encryption or
decryption operations.

12.1.4.1 Encrypting a KM or Procedure
To encrypt a KM or a Procedure:

1. Right-click the KM or procedure you wish to encrypt.

2. Select Encrypt.

Note: During this execution the Procedure uses the option values set
on the Options tab of the Procedure editor.

Note: If you don’t want to use the option values set on the Options
tab of the Procedure, set the new options values directly in the
Options tab of the Procedure step.

WARNING: There is no way to decrypt an encrypted KM or
procedure without the encryption key. It is therefore strongly
advised to keep this key in a safe location. It is also advised to use a
unique key for all the developments.

Working with Variables

12-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

3. In the Encryption Option dialog, either:

■ Select the Encrypt with a personal key option and select an existing
Encryption Key file

■ Select the Encrypt with a personal key option and then type in (or paste) the
string corresponding to your personal key

■ or let Oracle Data Integrator generate a key using the Get a new encryption
key option.

4. The Encryption Key dialog appears when the encryption is finished. From this
dialog, you can save the key.

Note that if you type in a personal key with too few characters, an invalid key size
error appears. In this case, please type in a longer personal key. A personal key of 10 or
more characters is required.

12.1.4.2 Decrypting a KM or Procedure
To decrypt a KM or a procedure:

1. Right-click the KM or procedure that you wish to decrypt.

2. Select Decrypt.

3. In the KM/Procedure Decryption dialog, either:

■ Select an existing encryption key file

■ or type in (or paste) the string corresponding to your personal key.

A message appears when the decryption has finished.

12.2 Working with Variables
This section provides an introduction to variables and describes how to create and use
variables in Oracle Data Integrator.

12.2.1 Introduction to Variables
A variable is an object that stores a single value. This value can be a string, a number
or a date. The variable value is stored in Oracle Data Integrator. It can be used in
several places in your projects, and its value can be updated at run-time.

Depending on the variable type, a variable can have the following characteristics:

■ It has a default value defined at creation time.

■ Its value can be passed as a parameter when running a scenario using the variable.

■ Its value can be refreshed with the result of a statement executed on one of your
data servers. For example, it can retrieve the current date and time from a
database.

■ Its value can be set or incremented in package steps.

■ It can be evaluated to create conditions and branches in packages.

■ It can be used in the expressions and code of interfaces, procedures, steps,...

Variables can be used in any expression (SQL or others), as well as within the
metadata of the repository. A variable is resolved when the command containing it is
executed by the agent or the graphical interface.

Working with Variables

Working with Procedures, Variables, Sequences, and User Functions 12-11

A variable can be created as a global variable or in a project. This defines the variable
scope. Global variables can be used in all projects, while project variables can only be
used within the project in which they are defined.

The variable scope is detailed in Section 12.2.3, "Using Variables".

The following section describes how to create and use variables.

12.2.2 Creating Variables
To create a variable:

1. In Designer Navigator select the Variables node in a project or the Global
Variables node in the Others view.

2. Right-click and select New Variable. The Variable Editor opens.

3. Specify the following variable parameters:

4. If you want the variable's value to be set by a query:

1. Select the Refreshing tab.

2. Select the logical Schema where the command will be executed, then edit the
command text in the language of the schema's technology. You can use the
Expression Editor for editing the command text. It is recommended to use

Properties Description

Name Name of the variable, in the form it will be used. This name should not
contain characters that could be interpreted as word separators (blanks,
etc.) by the technologies the variable will be used on. Variable names
are case-sensitive. That is, "YEAR" and "year" are considered to be two
different variables. The variable name is limited to a length of 400
characters.

Datatype Type of variable:

■ Alphanumeric (255 characters)

■ Date (This format is a Java date format that matches your
machine's local parameters. Note that you may need to adapt the
format depending to the RDBMS)

■ Numeric (Maximum 10 digits)

■ Text (Unlimited length)

Action This parameter shows the length of time the value of a variable is kept
for:

■ Non-persistent: The value of the variable is kept in memory for a
whole session.

■ Last value: Oracle Data Integrator stores in its repository the latest
value held by the variable.

■ Historize: Oracle Data Integrator keeps a history of all the values
held by this variable. Use this option if you want to keep a history
of the variable values or for debugging purposes.

Note that Historize should be used selectively as the variable
history is not automatically purged and grows each time the
variable is used. Using history for many variables has an impact
on the size of the work repository.

Default Value The value assigned to the variable by default.

Description Detailed description of the variable

Working with Variables

12-12 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Substitution methods such as getObjectName in the syntax of your query
expression.

3. Click Testing query on the DBMS to check the syntax of your expression.

4. Click Refresh to test the variable by executing the query immediately. If the
variable action is set to Historize or Latest Value, you can view the returned
value on the History tab of the Variable editor.

5. From the File menu, click Save.

The variable appears in the Projects or Others tree in Designer Navigator.

12.2.3 Using Variables
Using Variables is highly recommended to create reusable packages or packages with a
complex conditional logic, interfaces and procedures. Variables can be used
everywhere within ODI. Their value can be stored persistently in the ODI Repository
if their action type is set to “Historize” or “Last Value”. Otherwise, with an action type
of “Non-Persistent”, their value will only be kept in the memory of the agent during
the execution of the current session.

This section provides an overview of how to use variables in Oracle Data Integrator.
Variables can be used in the following cases:

■ Using Variables in Packages

■ Using Variables in Interfaces

■ Using Variables in Object Properties

■ Using Variables in Procedures

■ Using Variables within Variables

■ Using Variables in the Resource Name of a Datastore

■ Passing a Variable to a Scenario

■ Generating a Scenario for a Variable

Variable scope
Use the Expression editor to refer to your variables in Packages, integration interfaces,
and procedures. When you use the Expression editor the variables are retrieved
directly from the repository.

You should only manually prefix variable names with GLOBAL or the PROJECT_
CODE, when the Expression editor is not available.

Referring to variable MY_VAR in your objects should be done as follows:

■ #MY_VAR: With this syntax, the variable must be in the same project as the object
referring to it. Its value will be substituted. To avoid ambiguity, consider using
fully qualified syntax by prefixing the variable name with the project code.

Note: It is advised to use the Expression editor when you refer to
variables. By using the Expression editor, you can avoid the most
common syntax errors. For example, when selecting a variable in the
Expression editor, the variable name will be automatically prefixed
with the correct code depending on the variable scope. Refer to
Variable scope for more information on how to refer to your variables.

Working with Variables

Working with Procedures, Variables, Sequences, and User Functions 12-13

■ #MY_PROJECT_CODE.MY_VAR: Using this syntax allows you to use variables by
explicitly stating the project that contains the variable. It prevents ambiguity when
2 variables with the same name exist for example at global and project level. The
value of the variable will be substituted at runtime.

■ #GLOBAL.MY_VAR: This syntax allows you to refer to a global variable. Its value
will be substituted in your code. Refer to section Global Objects for details.

■ Using “:” instead of “#”: You can use the variable as a SQL bind variable by
prefixing it with a colon rather than a hash. However this syntax is subject to
restrictions as it only applies to SQL DML statements, not for OS commands or
ODI API calls and using the bind variable may result in performance loss. It is
advised to use ODI variables prefixed with the '#'character to ensure optimal
performance at runtime.

– When you reference an ODI Variable prefixed with the ':' character, the name
of the Variable is NOT substituted when the RDBMS engine determines the
execution plan. The variable is substituted when the RDBMS executes the
request. This mechanism is called Binding. If using the binding mechanism, it
is not necessary to enclose the variables which store strings into delimiters
(such as quotes) because the RDBMS is expecting the same type of data as
specified by the definition of the column for which the variable is used.

For example, if you use the variable TOWN_NAME = :GLOBAL.VAR_TOWN_
NAME the VARCHAR type is expected.

– When you reference an ODI variable prefixed with the "#" character, ODI
substitutes the name of the variable by the value before the code is executed
by the technology. The variable reference needs to be enclosed in single quote
characters, for example TOWN = '#GLOBAL.VAR_TOWN'. The call of the
variable works for OS commands, SQL, and ODI API calls.

12.2.3.1 Using Variables in Packages
Variables can be used in packages for different purposes:

■ Declaring a variable: When a variable is used in a package (or in certain elements
of the topology that are used in the package), it is strongly recommended that you
insert a Declare Variable step in the packaget. This step explicitly declares the
variable in the package. How to create a Declare Variable step is covered in
"Declaring a Variable". Other variables that you explicitly use in your packages for
setting, refreshing or evaluating their values do not need to be declared.

■ Refreshing a variable from its SQL SELECT statement: A Refresh Variable step
allows you to re-execute the command or query that computes the variable value.
How to create a Refresh Variable step is covered in "Refreshing a Variable".

■ Assigning the value of a variable: A Set Variable step of type Assign sets the
current value of a variable.

In Oracle Data Integrator you can assign a value to a variable in the following
ways:

– Retrieving the variable value from a SQL SELECT statement: When creating
your variable, define a SQL statement to retrieve its value. For example, you
can create a variable NB_OF_OPEN_ORDERS and set its SQL statement to:
select COUNT(*) from
<%=odiRef.getObjectName("L","ORDERS","D")%> where STATUS =
‘OPEN’.

Working with Variables

12-14 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Then in your package, you will simply drag and drop your variable and select
the “Refresh Variable” option in the Properties panel. At runtime, the ODI
agent will execute the SQL statement and assign the first returned value of the
result set to the variable.

– Explicitly setting the value in a package: You can also manually assign a
value to your variable for the scope of your package. Simply drag and drop
your variable into your package and select the “Set Variable” and “Assign”
options in the Properties panel as well as the value you want to set.

– Incrementing the value: Incrementing only applies to variables defined with a
numeric data type. Drag and drop your numeric variable into the package and
select the “Set Variable” and “Assign” options in the Properties panel as well
as the desired increment. Note that the increment value can be positive or
negative.

– Assigning the value at runtime: When you start a scenario generated from a
package containing variables, you can set the values of its variables. You can
do that in the StartScenario command by specifying the VARIABLE=VALUE
list. Refer to the OdiStartScen API command and the section Section 19.3.2,
"Executing a Scenario from a Command Line".

How to create a Assign Variable step is covered in "Setting a Variable".

■ Incrementing a numeric value: A Set Variable step of type Increment increases or
decreases a numeric value by the specified amount. How to create a Set Variable
step is covered in "Setting a Variable".

■ Evaluating the value for conditional branching: An Evaluate Variable step acts
like an IF-ELSE step. It tests the current value of a variable and branches in a
package depending on the result of the comparison. For example, you can choose
to execute interfaces A and B of your package only if variable EXEC_A_AND_B is
set to “YES”, otherwise you would execute interfaces B and C. To do this, you
would simply drag and drop the variable in your package diagram, and select the
“Evaluate Variable” type in the properties panel. Evaluating variables in a package
allows great flexibility in designing reusable, complex workflows. How to create
an Evaluate Variable step is covered in Evaluating a Variable.

12.2.3.2 Using Variables in Interfaces
Variables can be used in interfaces in two different ways:

1. As a value for a textual option of a Knowledge Module.

2. In all Oracle Data Integrator expressions such as mappings, filters, joins, and
constraints.

To substitute the value of the variable into the text of an expression, precede its name
by the '#' character. The agent or the graphical interface will substitute the value of the
variable in the command before executing it.

The following example shows the use of a global variable named 'YEAR':

Update CLIENT set LASTDATE = sysdate where DATE_YEAR = '#GLOBAL.YEAR' /* DATE_YEAR
is CHAR type */
Update CLIENT set LASTDATE = sysdate where DATE_YEAR = #GLOBAL.YEAR /* DATE_YEAR
is NUMERIC type */

The "bind variable" mechanism of the SQL language can also be used, however, this is
less efficient, because the relational database engine does not know the value of the
variable when it constructs the execution plan for the query. To use this mechanism,

Working with Variables

Working with Procedures, Variables, Sequences, and User Functions 12-15

precede the variable by the ':' character, and make sure that the datatype being
searched is compatible with that of the variable. For example:

update CLIENT set LASTDATE = sysdate where DATE_YEAR =:GLOBAL.YEAR

You can drag-and-drop a variable into most expressions with the Expression Editor.

12.2.3.3 Using Variables in Object Properties
It is also possible to use variables as substitution variables in graphical module fields
such as resource names or schema names in the topology. You must use the fully
qualified name of the variable (Example: #GLOBAL.MYTABLENAME) directly in the
Oracle Data Integrator graphical module's field.

Using this method, you can parameterize elements for execution, such as:

■ The physical names of files and tables (Resource field in the datastore) or their
location (Physical schema's schema (data) in the topology)

■ Physical Schema

■ Data Server URL

12.2.3.4 Using Variables in Procedures
You can use variables anywhere within your procedures’ code as illustrated in the
Table 12–4.

Table 12–3 Examples of how to use Variables in Interfaces

Type Expression

Mapping ‘#PRODUCT_PREFIX’
|| PR.PRODUCT_
CODE

Concatenates the current project’s product prefix
variable with the product code. As the value of the
variable is substituted, you need to enclose the
variable with single quotes because it returns a
string.

Join CUS.CUST_ID =
#DEMO.UID *
1000000 +
FF.CUST_NO

Multiply the value of the UID variable of the
DEMO project by 1000000 and add the CUST_NO
column before joining it with the CUST_ID column.

Filter ORDERS.QTY
between #MIN_QTY
and #MAX_QTY

Filter orders according to the MIN_QTY and MAX_
QTY thresholds.

Option Value TEMP_FILE_NAME:
#DEMO.FILE_NAME

Use the FILE_NAME variable as the value for the
TEMP_FILE_NAME option.

Table 12–4 Example of how to use Variables in a Procedure

Step ID: Step Type Step Code Description

1 SQL Insert into #DWH.LOG_TABLE_
NAME

Values (1, ‘Loading Step
Started’, current_date)

Add a row to a log table that
has a name only known at
runtime

2 Jython f = open(‘#DWH.LOG_FILE_
NAME’, ‘w’)

f.write(‘Inserted a row in
table %s’ % (‘#DWH.LOG_
TABLE_NAME’))

f.close()

Open file defined by LOG_
FILE_NAME variable and
write the name of the log table
into which we have inserted a
row.

Working with Variables

12-16 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

You should consider using options rather than variables whenever possible in
procedures. Options act like input parameters. Therefore, when executing your
procedure in a package you would set your option values to the appropriate values.

In the example of Table 12–4, you would write Step 1’s code as follows:

Insert into <%=snpRef.getOption(“LogTableName”)%>
Values (1, ‘Loading Step Started’, current_date)

Then, when using your procedure as a package step, you would set the value of option
LogTableName to #DWH.LOG_TABLE_NAME.

12.2.3.5 Using Variables within Variables
It is sometimes useful to have variables depend on other variable values as illustrated
in Table 12–5.

In Table 12–5, you would build your package as follows:

1. Drag and drop the STORE_ID variable to declare it. This would allow you to pass
it to your scenario at runtime.

2. Drag and drop the STORE_NAME variable to refresh its value. When executing
this step, the agent will run the select query with the appropriate STORE_ID value.
It will therefore retrieve the corresponding STORE_NAME value.

3. Drag and drop the other interfaces or procedures that use any of these variables.

12.2.3.6 Using Variables in the Resource Name of a Datastore
You may face some situations where the names of your source or target datastores are
dynamic. A typical example of this is when you need to load flat files into your Data
Warehouse with a file name composed of a prefix and a dynamic suffix such as the
current date. For example the order file for March 26 would be named
ORD2009.03.26.dat.

Note that you can only use variables in the resource name of a datastore in a scenario
when the variable has been previously declared.

To develop your loading interfaces, you would follow these steps:

1. Create the FILE_SUFFIX variable in your DWH project and set its SQL SELECT
statement to select current_date (or any appropriate date transformation to
match the actual file suffix format)

Table 12–5 Example of how to use a variable within another variable

Variable Name Variable Details Description

STORE_ID Alphanumeric variable. Passed as a
parameter to the scenario

Gives the ID of a store

STORE_NAME Alphanumeric variable.

SELECT statement:

Select name
From
<%=odiRef.getObjectName("L","ST
ORES","D")%>
Where id=‘#DWH.STORE_
ID’||’#DWH.STORE_CODE’

The name of the current store is
derived from the Stores table
filtered by the value returned by
the concatenation of the STORE_ID
and STORE_CODE variables.

Working with Variables

Working with Procedures, Variables, Sequences, and User Functions 12-17

2. Define your ORDERS file datastore in your model and set its resource name to:
ORD#DWH.FILE_SUFFIX.dat.

3. Use your file datastore normally in your interfaces.

4. Design a package as follows:

1. Drag and drop the FILE_SUFFIX variable to refresh it.

2. Drag and drop all interfaces that use the ORDERS datastore.

At runtime, the source file name will be substituted to the appropriate value.

12.2.3.7 Using Variables in a Server URL
There are some cases where using contexts for different locations is less appropriate
than using variables in the URL definition of your data servers. For example, when the
number of sources is high (> 100), or when the topology is defined externally in a
separate table. In these cases, you can refer to a variable in the URL of a server’s
definition.

Suppose you want to load your warehouse from 250 source applications - hosted in
Oracle databases - used within your stores. Of course, one way to do it would be to
define one context for every store. However, doing so would lead to a complex
topology that would be difficult to maintain. Alternatively, you could define a table
that references all the physical information to connect to your stores and use a variable
in the URL of your data server’s definition. Example 12–3 illustrates how you would
implement this in Oracle Data Integrator:

Example 12–3 Referring to a Variable in the URL of a Server’s Definition

1. Create a StoresLocation table as follows:

2. Create three variables in your EDW project:

■ STORE_ID: takes the current store ID as an input parameter

■ STORE_URL: refreshes the current URL for the current store ID with SELECT
statement: select StoreUrl from StoresLocation where StoreId
= #EDW.STORE_ID

■ STORE_ACTIVE: refreshes the current activity indicator for the current store
ID with SELECT statement: select IsActive from StoresLocation
where StoreId = #EDW.STORE_ID

Note: The variable in the datastore resource name must be fully
qualified with its project code.

When using this mechanism, it is not possible to view the data of your
datastore from within Designer.

Table 12–6 Stores Location table

StoreID Store Name Store URL IsActive

1 Denver 10.21.32.198:1521:ORA1 YES

2 San Francisco 10.21.34.119:1525:SANF NO

3 New York 10.21.34.11:1521:NY YES

...

Working with Sequences

12-18 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

3. Define one physical data server for all your stores and set its JDBC URL to:

jdbc:oracle:thin:@#EDW.STORE_URL

4. Define your package for loading data from your store.

The input variable STORE_ID will be used to refresh the values for STORE_URL
and STORE_ACTIVE variables from the StoresLocation table. If STORE_ACTIVE
is set to “YES”, then the next 3 steps will be triggered. The interfaces refer to
source datastores that the agent will locate according to the value of the STORE_
URL variable.

To start such a scenario on Unix for the New York store, you would issue the
following operating system command:

startscen.sh LOAD_STORE 1 PRODUCTION “EDW.STORE_ID=3”

If you want to trigger your LOAD_STORE scenario for all your stores in parallel,
you would simply need to create a procedure with a single SELECT/action
command as follows:

The LOAD_STORE scenario will then be executed for every store with the appropriate
STORE_ID value. The corresponding URL will be set accordingly.

Refer to "Binding Source and Target Data" and Section 4.3, "Managing Agents" for
further details.

12.2.3.8 Passing a Variable to a Scenario
It is also possible to pass a variable to a scenario in order to customize its behavior. To
do this, pass the name of the variable and its value on the OS command line which
executes the scenario. For more information, see Section 19.3.2, "Executing a Scenario
from a Command Line".

12.2.3.9 Generating a Scenario for a Variable
It is possible to generate a single step scenario for running a variable.

How to generate a scenario for a variable is covered in Section 13.2, "Generating a
Scenario".

12.3 Working with Sequences
This section provides an introduction to sequences and describes how to create and
use sequences in Oracle Data Integrator.

Table 12–7 SELECT/action command

Source Technology Oracle (technology of the data server containing the
StoresLocation table).

Source Logical Schema Logical schema containing the StoresLocation table.

Source Command Select StoreId
From StoresLocation

Target Technology ODITools

Target Logical Schema None

Target Command SnpsStartScen “-SCEN_NAME=LOAD_STORE” “-SCEN_VERSION=1”
“-SYNC_MODE=2” “-EDW.STORE_ID=#StoreId”

Working with Sequences

Working with Procedures, Variables, Sequences, and User Functions 12-19

12.3.1 Introduction to Sequences
A Sequence is a variable that increments itself automatically each time it is used.
Between two uses, the value can be stored in the repository or managed within an
external RDBMS table. Sequences can be strings, lists, tuples or dictionaries.

Oracle Data Integrator sequences are intended to map native sequences from RDBMS
engines, or to simulate sequences when they do not exist in the RDBMS engine.
Non-native sequences’ values can be stored in the Repository or managed within a cell
of an external RDBMS table.

A sequence can be created as a global sequence or in a project. Global sequences are
common to all projects, whereas project sequences are only available in the project
where they are defined.

Oracle Data Integrator supports three types of sequences:

■ Standard sequences, whose current values ares stored in the Repository.

■ Specific sequences, whose current values are stored in an RDBMS table cell.
Oracle Data Integrator reads the value, locks the row (for concurrent updates) and
updates the row after the last increment.

■ Native sequence, that maps a RDBMS-managed sequence.

Note the following on standard and specific sequences:

■ Oracle Data Integrator locks the sequence when it is being used for multi-user
management, but does not handle the sequence restart points. In other words, the
SQL statement ROLLBACK does not return the sequence to its value at the
beginning of the transaction.

■ Oracle Data Integrator standard and specific sequences were developed to
compensate for their absence on some RDBMS. If native sequences exist, they
should be used. This may prove to be faster because it reduces the dialog between
the agent and the database.

The following sections describe how to create and use sequences.

12.3.2 Creating Sequences
The procedure for creating sequences vary depending on the sequence type. Refer to
the corresponding section:

■ Creating Standard Sequences

■ Creating Specific Sequences

■ Creating Native Sequences

12.3.2.1 Creating Standard Sequences
To create a standard sequence:

1. In Designer Navigator select the Sequences node in a project or the Global
Sequences node in the Others view.

2. Right-click and select New Sequence. The Sequence Editor opens.

3. Enter the sequence Name, then select Standard Sequence.

4. Enter the Increment.

5. From the File menu, click Save.

The sequence appears in the Projects or Others tree in Designer Navigator.

Working with Sequences

12-20 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

12.3.2.2 Creating Specific Sequences
Select this option for storing the sequence value in a table in a given data schema.

To create a specific sequence:

1. In Designer Navigator select the Sequences node in a project or the Global
Sequences node in the Others view.

2. Right-click and select New Sequence. The Sequence Editor opens.

3. Enter the sequence Name, then select Specific Sequence.

4. Enter the Increment value.

5. Specify the following sequence parameters:

6. From the File menu, click Save.

The sequence appears in the Projects or Others tree in Designer Navigator.

12.3.2.3 Creating Native Sequences
Select this option if your sequence is implemented in the database engine. Position and
increment are fully handled by the database engine.

To create a native sequence:

1. In Designer Navigator select the Sequences node in a project or the Global
Sequences node in the Others view.

2. Right-click and select New Sequence. The Sequence Editor opens.

3. Enter the sequence Name, then select Native Sequence.

4. Select the logical Schema containing your native sequence.

5. Type in the Native Sequence Name or click the browse button to select a sequence
from the list pulled from the data server.

6. If you clicked the Browse button, in the Native Sequence Choice dialog, select a
Context to display the list of sequences in this context for your logical schema.

7. Select one of these sequences and click OK.

Schema Logical schema containing the sequences table

Table Table containing the sequence value

Column Name of the column containing the sequence value.

Filter to retrieve a
single row

Type in a Filter which will allow Oracle Data Integrator to
locate a specific row in the table when the sequence table
contains more than one row. This filter picks up the SQL
syntax of the data server.

For example: CODE_TAB = '3'

You can use the Expression Editor to edit the filter. Click
Testing query on the DBMS to check the syntax of your
expression.

Note: When Oracle Data Integrator wants to access the specific
sequence value, the query executed on the schema will be SELECT
column FROM table WHERE filter.

Working with Sequences

Working with Procedures, Variables, Sequences, and User Functions 12-21

8. From the File menu, click Save.

The sequence appears in the Projects or Others tree in Designer Navigator.

12.3.3 Using Sequences and Identity Columns
In order to increment sequences, the data needs to be processed row-by-row by the
agent. Therefore, using sequences is not recommended when dealing with large
numbers of records. In this case, you would use database-specific sequences such as
identity columns in Teradata, IBM DB2, Microsoft SQL Server or sequences in Oracle.

The sequences can be used in all Oracle Data Integrator expressions, such as in:

■ Mappings,

■ Filters,

■ Joins,

■ Constraints,

■ ...

Sequences can be used either as:

■ A substituted value, using the #<SEQUENCE_NAME>_NEXTVAL syntax

■ A bind variable in SQL statements, using the :<SEQUENCE_NAME>_NEXTVAL
syntax

Using a sequence as a substituted value
A sequence can be used in all statements with the following syntax: #<SEQUENCE_
NAME>_NEXTVAL

With this syntax, the sequence value is incremented only once before the command is
run and then substituted by its valued into the text of the command. The sequence
value is the same for all records.

Using a sequence as a bind variable
Only for SQL statements on a target command of a KM or procedure, sequences can be
used with the following syntax: :<SEQUENCE_NAME>_NEXTVAL

With this syntax, the sequence value is incremented, then passed as a bind variable of
the target SQL command. The sequence value is incremented in each record processed
by the command. The behavior differs depending on the sequence type:

■ Native sequences are always incremented for each processed record.

■ Standard and specific sequences are resolved by the run-time agent and are
incremented only when records pass through the agent. The command in a KM or
procedure that uses such a sequence must use a SELECT statement on the source
command and an INSERT or UPDATE statement on the target command rather
than a single INSERT/UPDATE... SELECT in the target command.

For example:

■ In the SQL statement insert into fac select :NO_FAC_NEXTVAL, date_
fac, mnt_fac the value of a standard or specific sequence will be incremented
only once, even if the SQL statement processes 10,000 rows, because the agent
does not process each record, but just sends the command to the database engine.
A native sequence will be incremented for each row.

Working with Sequences

12-22 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ To increment the value of a standard or specific sequence for each row, the data
must pass through the agent. To do this, use a KM or procedure that performs a
SELECT on the source command and an INSERT on the target command:

SELECT date_fac, mnt_fac /* on the source connection */

INSERT into FAC (ORDER_NO, ORDER_DAT, ORDER_AMNT) values (:NO_FAC_NEXTVAL,
:date_fac, :mnt_fac) /* on the target connection */

Sequence Scope
Unlike for variables, you do not need to state the scope of sequences explicitly in code.

12.3.3.1 Tips for Using Standard and Specific Sequences
To make sure that a sequence is updated for each row inserted into a table, each row
must be processed by the Agent. To make this happen, follow the steps below:

1. Make the mapping containing the sequence be executed on the target.

2. Set the mapping to be active for inserts only. Updates are not supported for
sequences.

3. If you are using an "incremental update" IKM, you should make sure that the
update key in use does not contain a column populated with the sequence. For
example, if the sequence is used to load the primary key for a datastore, you
should use an alternate key as the update key for the interface.

4. If using Oracle Data Integrator sequences with bind syntax (:<SEQUENCE_
NAME>_NEXTVAL), you must configure the data flow such that the IKM transfers
all the data through the agent. You can verify this by checking the generated
integration step in Operator. It should have separate INSERT and SELECT
commands executed on different connections, rather than a single
SELECT...INSERT statement.

Limitations of Sequences
Sequences have the following limitations:

■ A column mapped with a sequence should not be checked for not null.

■ Similarly, static control and flow control cannot be performed on a primary or
alternate key that references the sequence.

12.3.3.2 Identity Columns
Certain databases also natively provide identity columns, which are automatically
populated with unique, self-incrementing values.

When populating an identity column, you should follow these steps:

1. The mapping loading the identity column should be blank and inactive. It should
not be activated for inserts or updates.

2. If you are using "incremental update" IKMs, make sure that the update key in use
does not contain the identity column. If the identity column is part of the primary
key, you should define an alternate key as the update key for the interface.

Limitations of Identity Columns
Identity columns have the following limitations:

■ Not null cannot be checked for an identity column.

Working with User Functions

Working with Procedures, Variables, Sequences, and User Functions 12-23

■ Static and flow control cannot be performed on a primary or alternate key
containing the identity column.

12.4 Working with User Functions
This section provides an introduction to user functions and describes how to create
and use user functions in Oracle Data Integrator.

12.4.1 Introduction User Functions
User functions are used for defining customized functions that can be used in
interfaces or procedures. It is recommended to use them in your projects when the
same complex transformation pattern needs to be assigned to different datastores
within different interfaces. User functions improve code sharing and reusability and
facilitate the maintenance and the portability of your developments across different
target platforms.

User functions are implemented in one or more technologies and can be used
anywhere in mappings, joins, filters and conditions. Refer to Section 12.4.3, "Using
User Functions".

A function can be created as a global function or in a project. In the first case, it is
common to all projects, and in the second, it is attached to the project in which it is
defined.

User functions can call other user functions. A user function cannot call itself
recursively.

The following sections describe how to create and use user functions.

12.4.2 Creating User Functions
To create a user function:

1. In Designer Navigator select the User Functions node in a project or the Global
User Functions node in the Others view.

2. Right-click and select New User Function. The User Function Editor opens.

3. Fill in the following fields:

■ Name: Name of the user function, for example NullValue

■ Group: Group of the user function. If you type a group name that does not
exist, a new group will be created with this group name when the function is
saved.

■ Syntax: Syntax of the user function that will appear in the expression Editor;
The arguments of the function must be specified in this syntax, for example
NullValue($(variable), $(default))

4. From the File menu, click Save.

The function appears in the Projects or Others tree in Designer Navigator. Since it has
no implementation, it is unusable.

Note: Aggregate functions are not supported User Functions. The
aggregate function code will be created, but the GROUP BY
expression will not be generated.

Working with User Functions

12-24 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

To create an implementation:

1. In Designer Navigator double-click the User Function for which you want to
create the implementation. The User Function Editor opens.

2. In the Implementations tab of the User Function Editor, click Add
Implementation. The Implementation dialog opens.

3. In the Implementation syntax field, type the code of the implementation, for
example nvl($(variable), $(default))

4. Check the boxes for the implementation's Linked technologies

5. Check Automatically include new technologies if you want the new technologies
to use this syntax.

6. Click OK.

7. From the File menu, click Save.

To change an implementation:

1. In the Implementations tab of the User Function Editor, select an implementation,
then click Edit.

2. In the Implementations tab of the user function, select an implementation, then
click Edit Implementation. The Implementation dialog opens.

3. Change the Implementation syntax and the Linked technologies of this
implementation

4. Check Automatically include new technologies if you want the new technologies
to use this syntax.

5. Click OK.

6. From the File menu, click Save.

To remove an implementation:

In the implementations tab of the user function, select an implementation, then click
Delete Implementation.

12.4.3 Using User Functions
The user functions can be used in all Oracle Data Integrator expressions:

■ Mappings,

■ Filters,

■ Joins,

■ Constraints,

■ ...

A user function can be used directly by specifying its syntax, for example:
NullValue(CITY_NAME, 'No City')

User functions are implemented in one or more technologies. For example, the Oracle
nvl(VARIABLE,DEFAULT_VALUE), function - which returns the value of VARIABLE,
or DEFAULT_VALUE if VARIABLE is null - has no equivalent in all technologies and
must be replaced by the formula:

case when VARIABLE is null
then DEFAULT_VALUE

Working with User Functions

Working with Procedures, Variables, Sequences, and User Functions 12-25

else VARIABLE
end

With user functions, it is possible to declare a function called
NullValue(VARIABLE,DEFAULT_VALUE) and to define two implementations for the
syntax above. When executing, depending on the technology on which the order will
be executed, the NullValue function will be replaced by one syntax or the other.

The next example illustrates how to implement a user function that would be
translated into code for different technologies:

Suppose you want to define a function that, given a date, gives you the name of the
month. You want this function to be available for your mappings when executed on
Oracle, Teradata or Microsoft SQL Server. Table 12–8 shows how to implement this as
a user function.

You can now use this function safely in your interfaces for building your mappings,
filters and joins. Oracle Data Integrator will generate the appropriate code depending
on the execution location of your expression.

Another example of a user function translated into code for different technologies is
defining the following mapping:

substring(GET_MONTH_NAME(CUSTOMER.LAST_ORDER_DATE), 1, 3), Oracle
Data Integrator will generate code similar to the following, depending on your
execution technology:

Table 12–8 User Function Translated into Code for Different Technologies (Example 1)

Function Name GET_MONTH_NAME

Function Syntax GET_MONTH_NAME($(date_input))

Description Retrieves the month name from a date provided as date_input

Implementation for
Oracle

Initcap(to_char($(date_input), 'MONTH'))

Implementation for
Teradata

case
when extract(month from $(date_input)) = 1 then ‘January’
when extract(month from $(date_input)) = 2 then ‘February’
when extract(month from $(date_input)) = 3 then ‘March’
when extract(month from $(date_input)) = 4 then ‘April’
when extract(month from $(date_input)) = 5 then ‘May’
when extract(month from $(date_input)) = 6 then ‘June’
when extract(month from $(date_input)) = 7 then ‘July’
when extract(month from $(date_input)) = 8 then ‘August’
when extract(month from $(date_input)) = 9 then ‘September’
when extract(month from $(date_input)) = 10 then ‘October’
when extract(month from $(date_input)) = 11 then ‘November’
when extract(month from $(date_input)) = 12 then ‘December’
end

Implementation for
Microsoft SQL

datename(month, $(date_input))

Table 12–9 User Function Translated into Code for Different Technologies (Example 2)

Implementation for Oracle substring(Initcap(to_char(CUSTOMER.LAST_ORDER_
DATE 'MONTH')) , 1, 3)

Working with User Functions

12-26 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

A function can be created as a global function or in a project. In the first case, it is
common to all projects, and in the second, it is attached to the project in which it is
defined.

User functions can call other user functions.

Implementation for
Teradata

substring(case when extract(month from CUSTOMER.LAST_
ORDER_DATE) = 1 then ‘January’when extract(month from
CUSTOMER.LAST_ORDER_DATE) = 2 then ‘February’...end, 1,
3)

Implementation for
Microsoft SQL

substring(datename(month, CUSTOMER.LAST_ORDER_
DATE) , 1, 3)

Table 12–9 (Cont.) User Function Translated into Code for Different Technologies

13

Working with Scenarios 13-1

13Working with Scenarios

This chapter describes how to work with scenarios. A scenario is designed to put a
source component (interface, package, procedure, variable) into production. A
scenario results from the generation of code (SQL, shell, etc) for this component.

This chapter includes the following sections:

■ Section 13.1, "Introduction to Scenarios"

■ Section 13.2, "Generating a Scenario"

■ Section 13.3, "Regenerating a Scenario"

■ Section 13.4, "Generating a Group of Scenarios"

■ Section 13.5, "Exporting Scenarios"

■ Section 13.6, "Importing Scenarios in Production"

■ Section 13.7, "Encrypting and Decrypting a Scenario"

13.1 Introduction to Scenarios
When a component is finished and tested, you can generate the scenario
corresponding its actual state. This operation takes place in Designer Navigator.

The scenario code (the language generated) is frozen, and all subsequent modifications
of the components which contributed to creating it will not change it in any way.

It is possible to generate scenarios for packages, procedures, interfaces or variables.
Scenarios generated for procedures, interfaces or variables are single step scenarios
that execute the procedure, interface or refresh the variable.

Scenario variables are variables used in the scenario that should be set when starting
the scenario to parameterize its behavior.

Once generated, the scenario is stored inside the work repository. The scenario can be
exported then imported to another repository (remote or not) and used in different
contexts. A scenario can only be created from a development work repository, but can
be imported into both development and production work repositories.

Scenarios appear in a development environment under the source component in the
Projects tree of Designer Navigator, and appear - for development and production
environments - in the Scenarios tree of Operator Navigator.

Scenarios can also be versioned. See Chapter 17, "Working with Version Management"
for more information.

Scenarios can be launched from a command line, from the Oracle Data Integrator
Studio and can be scheduled using the built-in scheduler of the run-time agent or an

Generating a Scenario

13-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

external scheduler. Scenario execution and scheduling scenarios is covered in
Chapter 19, "Running Integration Processes".

13.2 Generating a Scenario
Generating a scenario for an object compiles the code for this object for deployment
and execution in a production environment.

To generate a scenario:

1. In Designer Navigator double-click the Package, Interface, Procedure or Variable
under the project for which you want to generate the scenario. The corresponding
Object Editor opens.

2. On the Scenarios tab, click Generate Scenario. The New Scenario dialog appears.

3. Enter the Name and the Version of the scenario. As this name can be used in an
operating system command, the name is automatically uppercased and special
characters are replaced by underscores.

Note that the Name and Version fields of the Scenario are preset with the
following values:

– Name: The same name as the latest scenario generated for the component

– Version: The version number is automatically incremented (if the latest
version is an integer) or set to the current date (if the latest version is not an
integer)

If no scenario has been created yet for the component, a first version of the
scenario is automatically created.

New scenarios are named after the component according to the Scenario Naming
Convention user parameter. See Appendix B, "User Parameters" for more
information.

4. Click OK.

5. If you use variables in the scenario, you can define in the Scenario Variables dialog
the variables that will be considered as parameters for the scenario. Select Use All
if you want all variables to be parameters, or Use Selected and check the
parameter variables.

6. Click OK.

The scenario appears on the Scenarios tab and under the Scenarios node of the source
object under the project.

13.3 Regenerating a Scenario
An existing scenario can be regenerated with the same name and version number. This
lets you replace the existing scenario by a scenario generated from the source object
contents. Schedules attached to this scenario are preserved.

To regenerate a scenario:

1. Select the scenario in the Projects accordion.

2. Right-click and select Regenerate...

3. Click OK.

Generating a Group of Scenarios

Working with Scenarios 13-3

13.4 Generating a Group of Scenarios
When a set of packages, interfaces, procedures and variables grouped under a project
or folder is finished and tested, you can generate the scenarios. This operation takes
place in Designer Navigator.

To generate a group of scenarios:

1. Select the Project or Folder containing the group of objects.

2. Right-click and select Generate All Scenarios...

3. In the Scenario Generation dialog, select the scenario Generation Mode:

■ Replace: Overwrites for each object the last scenario version with a new one
with the same ID, name and version. Sessions, scenario reports and schedules
are deleted. If no scenario exists for an object, a scenario with version number
001 is created.

■ Re-generate: Overwrites for each object the last scenario version with a new
one with the same id, name and version. It preserves the schedule, sessions
and scenario reports. If no scenario exists for an object, no scenario is created
using this mode.

■ Creation: Creates for each object a new scenario with the same name as the
last scenario version and with an automatically incremented version number.
If no scenario exists for an object, a scenario named after the object with
version number 001 is created.

4. In the Objects to Generate section, select the types of objects for which you want
to generate scenarios.

5. In the Marker Filter section, you can filter the components to generate according
to a marker from a marker group.

6. Click OK.

7. If you use variables in the scenario, you can define in the Scenario Variables dialog
the variables that will be considered as parameters for the scenario. Select Use All
if you want all variables to be parameters, or Use Selected and check the
parameter variables.

Caution: Regenerating a scenario cannot be undone. For important
scenarios, it is better to generate a scenario with a new version
number.

Note: If no scenario has been created yet for the component, a first
version of the scenario is automatically created.

New scenarios are named after the component according to the
Scenario Naming Convention user parameter. See Appendix B, "User
Parameters" for more information

If the version of the last scenario is an integer, it will be automatically
incremented by 1 when selecting the Creation generation mode. If not,
the version will be automatically set to the current date.

Exporting Scenarios

13-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

13.5 Exporting Scenarios
The export (and import) procedure allows you to transfer Oracle Data Integrator
objects from one repository to another.

It is possible to export a single scenario or groups of scenarios.

Exporting one single scenario is covered in Section 18.2.1, "Exporting one ODI Object".

To export a group of scenarios:

1. Select the Project or Folder containing the group of scenarios.

2. Right-click and select Export All Scenarios... The Export all scenarios dialog
opens.

3. In the Export all scenarios dialog, specify the export parameters as follows:

4. Select the type of objects whose scenarios you want to export.

5. Set the advanced options. This set of options allow to parameterize the XML
output file format. It is recommended that you leave the default values.

6. Click OK.

The XML-formatted export files are created at the specified location.

13.6 Importing Scenarios in Production
A scenario generated from Designer can be exported and then imported into a
development or production repository. This operation is used to deploy scenarios in a
different repository, possibly in a different environment or site.

Parameter Description

Export Directory Directory in which the export file will be created.

Note that if the Export Directory is not specified, the export file is
created in the Default Export Directory.

Child components export If this option is checked, the objects linked to the object to be
exported will be also exported. These objects are those visible
under the exported object in the tree. It is recommended to leave
this option checked. See Exporting an Object with its Child
Components for more details.

Replace existing files
without warning

If this option is checked, the existing file will be replaced by the
ones of the export.

Parameter Description

XML Version XML Version specified in the export file. Parameter xml version in
the XML file header.

<?xml version="1.0" encoding="ISO-8859-1"?>

Character Set Encoding specified in the export file. Parameter encoding in the
XML file header.

<?xml version="1.0" encoding="ISO-8859-1"?>

Java Character Set Java character set used to generate the file.

Importing Scenarios in Production

Working with Scenarios 13-5

Importing a scenario in a development repository is performed via Designer or
Operator Navigator. With a production repository, only Operator Navigator is
available for this purpose.

There are two ways to import a scenario:

■ Import uses the standard object import method. During this import process, it is
possible to choose to import the schedules attached to the exported scenario.

■ Import Replace replaces an existing scenario with the content of an export file,
preserving references from other objects to this scenario. Sessions, scenario reports
and schedules from the original scenario are deleted and replaced with the
schedules from the export file.

Scenarios can also be deployed and promoted to production using versions and
solutions. See Chapter 17, "Working with Version Management" for more information.

13.6.1 Import Scenarios
To import one or more scenarios into Oracle Data Integrator:

1. In Operator Navigator, select the Scenarios panel.

2. Right-click and select Import > Import Scenario.

3. Select the Import Type. Refer to Chapter 18, "Exporting/Importing" for more
information on the import modes.

4. Specify the File Import Directory.

5. Check the Import schedules option, if you want to import the schedules exported
with the scenarios as well.

6. Select one or more scenarios to import from the Select the file(s) to import list.

7. Click OK.

The scenarios are imported into the work repository. They appear in the Scenarios tree
of the Operator Navigator. If this work repository is a development repository, these
scenario are also attached to their source Package, Interface, Procedure or Variable.

13.6.2 Replace a Scenario
Use the import replace mode if you want to replace a scenario with an exported one.

To import a scenario in replace mode:

1. In Designer or Operator Navigator, select the scenario you wish to replace.

2. Right-click the scenario, and select Import Replace...

3. In the Replace Object dialog, specify the scenario export file.

4. Click OK.

13.6.3 Working with a Scenario from a Different Repository
A scenario may have to be operated from a different work repository than the one
where it was generated.

Examples
Here are two examples of organizations that give rise to this type of process:

Encrypting and Decrypting a Scenario

13-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ A company has a large number of agencies equipped with the same software
applications. In its IT headquarters, it develops packages and scenarios to
centralize data to a central data center. These scenarios are designed to be executed
identically in each agency.

■ A company has three distinct IT environments for developing, qualifying and
operating its software applications. The company's processes demand total
separation of the environments, which cannot share the Repository.

Prerequisites
The prerequisite for this organization is to have a work repository installed on each
environment (site, agency or environment). The topology of the master repository
attached to this work repository must be compatible in terms of its logical architecture
(the same logical schema names). The connection characteristics described in the
physical architecture can differ.

Note that in cases where some procedures or interfaces explicitly specify a context
code, the target topology must have the same context codes. The topology, that is, the
physical and logical architectures, can also be exported from a development master
repository, then imported into the target repositories. Use the Topology module to
carry out this operation. In this case, the physical topology (the servers' addresses)
should be personalized before operating the scenarios. Note also that a topology
import simply references the new data servers without modifying those already
present in the target repository.

To operate a scenario from a different work repository:

1. Export the scenario from its original repository (right-click, export)

2. Forward the scenario export file to the target environment

3. Open Designer Navigator in the target environment (connection to the target
repository)

4. Import the scenario from the export file

13.7 Encrypting and Decrypting a Scenario
Encrypting a scenario allows you to protect valuable code. An encrypted scenario can
be executed but cannot be read or modified if it is not decrypted. The commands
generated in the log by an encrypted scenario are also unreadable.

Oracle Data Integrator uses a DES Encryption algorithm based on a personal
encryption key. This key can be saved in a file and can be reused to perform
encryption or decryption operations.

To encrypt a scenario:

1. In Designer or Operator Navigator, select the scenario you want to encrypt.

2. Right-click and select Encrypt.

3. In the Encryption Options dialog, you can either:

WARNING: There is no way to decrypt an encrypted scenario or
procedure without the encryption key. It is therefore strongly
advised to keep this key in a safe location.

Encrypting and Decrypting a Scenario

Working with Scenarios 13-7

■ Encrypt with a personal key that already exists by giving the location of the
personal key file or by typing in the value of the personal key.

■ Get a new encryption key to have a new key generated.

4. Click OK to encrypt the scenario. If you have chosen to generate a new key, a
dialog will appear with the new key. Click Save to save the key in a file.

To decrypt a scenario:

1. Right-click the scenario you want to decrypt.

2. Select Decrypt.

3. In the Scenario Decryption dialog, either

■ Select an existing encryption key file

■ or type in (or paste) the string corresponding to your personal key.

A message appears when decryption is finished.

Note: If you type in a personal key with too few characters, an
invalid key size error appears. In this case, please type in a longer
personal key. A personal key of 10 or more characters is required.

Encrypting and Decrypting a Scenario

13-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

14

Working with Web Services in Oracle Data Integrator 14-1

14Working with Web Services in Oracle Data
Integrator

This chapter describes how to work with web services in Oracle Data Integrator.

This chapter includes the following sections:

■ Section 14.1, "Introduction to Web Services in Oracle Data Integrator"

■ Section 14.2, "Data Services"

■ Section 14.3, "Oracle Data Integrator Run-Time Services"

■ Section 14.4, "Invoking Third-Party Web Services"

14.1 Introduction to Web Services in Oracle Data Integrator
Oracle Data Integrator provides the following entry points into a service-oriented
architecture (SOA):

■ Data Services

■ Oracle Data Integrator Run-Time Services

■ Invoking Third-Party Web Services

Figure 14–1 gives an overview of how the different types of Web services can interact.

Data Services

14-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Figure 14–1 Web Services in Action

It shows a simple example with the Data Services, Run-Time Web services (Public Web
Service and Agent Web Service) and the OdiInvokeWebService tool.

The Data Services and Run-Time Web Services components are invoked by a
third-party application, whereas the OdiInvokeWebService tool invokes a third-party
Web service:

■ The Data Services provides access to data in data stores (both source and target
data stores), as well as changes trapped by the Changed Data Capture framework.
This web service is generated by Oracle Data Integrator and deployed in a Java EE
application server.

■ The Public Web Service connects to the repository to retrieve a list of context and
scenarios. This web service is deployed in a Java EE application server.

■ The Agent Web Service commands the Oracle Data Integrator Agent to start and
monitor a scenario and to restart a session. Note that this web service is built-in
the Java EE or Standalone Agent.

■ The OdiInvokeWebService tool is used in a package and invokes a specific operation
on a port of the third-party Web service, for example to trigger a BPEL process.

Oracle Data Integrator Run-Time Web services and Data Services are two different types of
Web services. Oracle Data Integrator Run-Time Web services enable you to access the
Oracle Data Integrator features through Web services, whereas the Data Services are
generated by Oracle Data Integrator to give you access to your data through Web
services.

14.2 Data Services
Data Services are specialized Web Services that provide access to data in datastores, and
to changes captured for these datastores using Changed Data Capture. These Web
Services are automatically generated by Oracle Data Integrator and deployed to a Web
Services container in an application server.

For more information on how to set up, generate and deploy Data Services refer to
Chapter 8, "Working with Data Services".

Invoking Third-Party Web Services

Working with Web Services in Oracle Data Integrator 14-3

14.3 Oracle Data Integrator Run-Time Services
Oracle Data Integrator Run-Time Services are web services that enable users to leverage
Oracle Data Integrator features in a service-oriented architecture (SOA). These web
services are invoked by a third-party application manage start scenarios developed
with Oracle Data Integrator.

How to perform the different ODI execution tasks with the ODI Run-Time Services
such as executing a scenario, restarting a session, listing execution contexts and
scenarios is detailed in Section 19.7, "Managing Executions Using Web Services".
Section 19.7 also provides examples of SOAP requests and responses.

14.4 Invoking Third-Party Web Services
This section describes how to invoke third-party web services in Oracle Data
Integrator.

This section includes the following topics:

■ Section 14.4.1, "Introduction to Web Service Invocation"

■ Section 14.4.2, "Using the OdiInvokeWebService Tool"

■ Section 14.4.3, "Web Service Invocation in Integration Flows"

14.4.1 Introduction to Web Service Invocation
Web Services can be invoked:

■ In Oracle Data Integrator packages using the OdiInvokeWebService tool: This tool
allows you to invoke any third party web service, and save the response in a XML
file that can be processed with Oracle Data Integrator.

■ For testing Data Services: The easiest way to test whether your generated data
services are running correctly is to use the graphical interface of the
OdiInvokeWebService tool. See Section 14.4.2, "Using the OdiInvokeWebService
Tool" for more information.

14.4.2 Using the OdiInvokeWebService Tool
The OdiInvokeWebService tool invokes a web service using the HTTP or HTTPS
protocol and writes the returned response to an XML file. This tool invokes a specific
operation on a port of a web service whose description file (WSDL) URL is provided.
If this operation requires a SOAP request, it is provided either in a request file, or
directly written out in the tool call (in the XMLRequest parameter). The response of
the web service request is written to an XML file that can be used in Oracle Data
Integrator. How to create a web service request is detailed in Section 14.4.3, "Web
Service Invocation in Integration Flows".

This tool is used as a regular Oracle Data Integrator tool in a tool step of a package.
Refer to Section 10.3.1.4, "Adding Oracle Data Integrator Tool Steps" for information
on how to create a tool step in a package and to Appendix A.5.22,
"OdiInvokeWebService" for details on the OdiInvokeWeb Service tool parameters.

Note: The OdiInvokeWebService tool does not support customizing
the SOAP Headers of the request. Therefore, it does not support
secured web service invocation.

Invoking Third-Party Web Services

14-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

The OdiInvokeWebService tool provides an Advanced editor for generating its code.
In this Advanced editor you can:

■ Connect to the WSDL

■ Specify parameters for the tool in addition to the parameters specified in the
Properties pane

■ Select a specific operation on the automatically selected port and specify request
parameters in the SOAP editor

■ Invoke a Web Service

■ Consult the Web service response in the SOAP editor

Figure 14–2 gives an overview of the Advanced Editor.

Figure 14–2 OdiInvokeWebService Advanced Editor

This image shows the Advanced editor of the OdiInvokeWebService tool.

The Advanced Editor consists of the sections described in Table 14–1.

Table 14–1 Advanced Editor Sections

Section Icon Name
Location in
Figure Description

Web Service Description

File (WSDL) URL

top Enter here the WSDL location

Port left The port of the web service is set
by default. If more than one port
is available for the web service,
select the appropriate port.

Invoke Web
Service

toolbar icon Invokes immediately the current
Web Service, displaying the
response in the SOAP editor.

Invoking Third-Party Web Services

Working with Web Services in Oracle Data Integrator 14-5

SOAP Editor
The SOAP Editor allows you to graphically build the SOAP request for the Web
Service and display the response.

If creating an OdiInvokeWebService step, this SOAP request filled in the SOAP editor
is saved with the step.

The left part of the editor shows the hierarchical structure of the query, the right part
shows the structure of the response. This arrangement can be changed clicking Switch

Switch Panel
Position

toolbar icon Tiles vertically or horizontally the
SOAP editor.

Export
Response XSD

toolbar icon Saves the current response XML
schema description to a file.

Restore
Default
Request

toolbar icon Discards the current request and
reverts to a default, blank request
structure.

Delete Empty
Optional
Components

toolbar icon Removes all blank optional
elements from the query. This
may be necessary to construct a
valid query.

Clean up
before
execution

toolbar icon Automatically deletes empty
optional elements in the SOAP
request when Invoke Web
Service is clicked. This checkbox
has no effect on package steps at
run-time.

Use Request
File

toolbar icon Uses a SOAP request stored in a
file instead of the parameters
specified in the SOAP editor.

Timeout (ms) toolbar icon Specifies a maximum period of
time to wait for the request to be
complete.

Operation The list of operations for the
selected port.

Options The HTTP request options:

■ Timeout: The web service
request waits for a reply for
this time before considering
that the server will not
provide a response and an
error is produced.

■ HTTP Authentication: If you
check this box, you should
provide a user and password
to authenticate on your
HTTP server.

SOAP Editor middle and
right

Displays the web service request
on the left pane in the SOAP
Editor or Source tab and the
SOAP response on the right pane.

Table 14–1 (Cont.) Advanced Editor Sections

Section Icon Name
Location in
Figure Description

Invoking Third-Party Web Services

14-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Panel Position. The raw XML source of the SOAP request and response are shown on
the Source tab.

In the Editor, you can fill in the Value (and optionally the Attributes) for each element
of your request.

Optional elements are displayed in italic. Repeatable elements are labelled with ...(n*)
after the name.

Right-click any element to perform one of the following operations, if possible:

■ Duplicate content - copies the structure and content of the element.

■ Duplicate structure - copies the structure but leaves all fields blank.

■ Delete - deletes the element.

■ Export Request - exports the entire soap request to an XML file.

Results
This part of the interface appears only when using an OdiInvokeWebService tool step
in a package, to control how the response is written to a XML file.

Figure 14–3 Result Section for the OdiInvokeWebService tool

This image shows the additional parameters that are displayed when an
OdiInvokeWebService tool step is used in a package.

■ File Mode (-RESPONSE_MODE): One of NEW_FILE, FILE_APPEND, NO_FILE

■ Result File (-RESPONSE_FILE): The name of the result file to write.

■ XML Charset (-RESPONSE_XML_ENCODING): The name of the character encoding
to write into the XML file.

■ Java Charset (-RESPONSE_FILE_CHARSET): The name of the character encoding
used when writing the file.

Refer to Section A.5.22, "OdiInvokeWebService" for more information on these
parameters.

WARNING: An empty element is passed as is to the Web service.
For strings, this corresponds to an empty string. For numbers or date
types, this may cause an error. If you want to send a null string,
number or date, it is recommended to use the nil="true"attribute.
To remove empty elements, click Remove blank optional elements
in the Advanced editor toolbar.

Note: The result file parameters are only taken into account at
run-time. No result file is generated when clicking Invoke Web
Service.

Invoking Third-Party Web Services

Working with Web Services in Oracle Data Integrator 14-7

14.4.3 Web Service Invocation in Integration Flows

Calling a Web Service using the OdiInvokeWebService tool
To call a Web Service:

1. Create an OdiInvokeWebService tool step in a package, or right-click a datastore
and select Test Web Service in the contextual menu.

2. Fill in the location of the WSDL. You can use either:

■ A URL for a WSDL that has been deployed to a server (e.g.
http://host:8080/services/WSCustomer?wsdl)

■ A local file location (e.g. c:/DataServices/WSCustomer.wsdl)

3. Choose a Port, if more than one is available.

4. Choose an Operation from the list on the left.

5. In the SOAP Editor, enter the web service request. You can also use an external
request file instead. This request file can be generated with ODI. How to generate
a web service request file with ODI is covered in "Generating the Request File".

6. (Optional) Click Remove blank optional elements to delete optional request
parameters which have not been specified. Some Web Services treat blank
elements as invalid.

7. Click Invoke Web Service to immediately invoke the Web Service. The response is
shown in right pane of the SOAP Editor.

8. If you are creating an OdiInvokeWebService tool step, define the response file
parameters.

9. From the File menu, select Save.

Processing the Response File
When using the OdiInvokeWebService tool to call a web service, the response is
written to an XML file.

Processing this XML file can be done with Oracle Data Integrator, using the following
guidelines:

1. Invoke the web service once and use the Export Response XSD option to export
the XML schema.

2. Create an XML model for the response file, based on this XML schema file and
reverse-engineer the XSD to have your model structure.

3. You can now process the information from your responses using regular Oracle
Data Integrator interfaces sourcing for the XML technology.

Refer to the Connectivity and Modules Guide for Oracle Data Integrator for more
information on XML file processing.

Note: Each XML file is defined as a model in Oracle Data Integrator.
When using XML file processing for the request or response file,
model will be created for each request or response file. It is
recommended to use model folders to arrange them. See Section 16.2,
"Organizing Models with Folders" for more information.

Invoking Third-Party Web Services

14-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Oracle Data Integrator provides the OdiXMLConcat and OdiXMLSplit tools for
processing the web service response. Refer to the XML section of the Appendix A.4,
"ODI Tools per Category" for details on how to use these tools.

Generating the Request File
To generate the request file, it is also possible to use the XML driver, similarly to what
is performed for processing the response file.

Using the Binding Mechanism for Requests
It is possible to use the Binding mechanism when using a web service call in a
Procedure. With this method, it is possible to call a web service for each row returned
by a query, parameterizing the request based on the row’s values. Refer to "Binding
Source and Target Data" for more information.

Note: If generating a request file manually or using the XML driver,
note that the request is not a full SOAP but a simplified XML format.
Use the SOAP editor for generating a template request.

15

Working with Oracle Data Quality Products 15-1

15Working with Oracle Data Quality Products

This chapter describes how to work with Data Quality Products in Oracle Data
Integrator.

This chapter includes the following sections:

■ Section 15.1, "Introduction to Oracle Data Quality Products"

■ Section 15.2, "The Data Quality Process"

15.1 Introduction to Oracle Data Quality Products
Oracle Data Profiling and Oracle Data Quality for Data Integrator (also referred to as
Oracle Data Quality Products) extend the inline Data Quality features of Oracle Data
Integrator to provide more advanced data governance capabilities.

A complete Data Quality system includes data profiling, integrity and quality:

■ Profiling makes possible data investigation and quality assessment. It allows
business users to get a clear picture of their data quality challenges, to monitor and
track the quality of their data over time. Profiling is handled by Oracle Data
Profiling. It allows business users to assess the quality of their data through
metrics, to discover or infer rules based on this data, and finally to monitor over
time the evolution of the data quality.

■ Integrity control is essential in ensuring the overall consistency of the data in your
information system's applications. Application data is not always valid for the
constraints and declarative rules imposed by the information system. You may, for
instance, find orders with no customer, or order lines with no product, and so
forth. Oracle Data Integrator provides built-in working environment to detect
these constraint violation and store them for recycling or reporting purposes.
Static and Flow checks in Oracle Data Integrator are integrity checks.

■ Quality includes integrity and extends to more complex quality processing. A
rule-based engine apply data quality standards as part of an integration process to
cleanse, standardize, enrich, match and de-duplicate any type of data, including
names and addresses. Oracle Data Quality for Data Integrator places data quality
as well as name and address cleansing at the heart of the enterprise integration
strategy.

15.2 The Data Quality Process
The data quality process described in this section uses Oracle Data Quality products to
profile and cleanse data extracted from systems using Oracle Data Integrator. The

The Data Quality Process

15-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

cleansed data is also re-integrated into the original system using Oracle Data
Integrator.

The Quality Process has the following steps:

1. Create a Quality Input File from Oracle Data Integrator, containing the data to
cleanse.

2. Create an Entity in Oracle Data Quality, based on this file.

3. Create a Profiling Project to determine quality issues.

4. Create a Oracle Data Quality Project cleansing this Entity.

5. Export the Data Quality Project for run-time.

6. Reverse-engineer the Entities using the RKM Oracle Data Quality.

7. Use Oracle Data Quality Input and Output Files in Interfaces

8. Run this Quality Project from Oracle Data Integrator using the OdiDataQuality
tool.

9. Sequence the Process in a Package.

15.2.1 Create a Quality Input File
Oracle Data Quality uses as a source for the Quality project a flat file which contains
the data to cleanse. This Quality input file can be created from Data Integrator and
loaded from any source datastore using interfaces. This file should be a FILE datastore
with the following parameters defined on the Files tab:

For more information on creating a FILE datastore, refer to the Chapter 5, "Creating
and Reverse-Engineering a Model". For more information on loading flat files, see
"Files" in the Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for
Oracle Data Integrator.

15.2.2 Create an Entity
To import a data source into Oracle Data Quality for Data Integrator means to create
an entity based on a delimited source file.

15.2.2.1 Step 1: Validate Loader Connections
Your administrator must set up at least one Loader Connection when he or she installs
Oracle Data Quality for Data Integrator. This Loader Connection is used to access the
Oracle Data Quality input file. As the input file is a delimited file, this Loader
Connection should be a Delimited Loader Connection. Step 1 requires you validate

Parameter Value

File Format Delimited

Heading (Number of Lines) 1

Record Separator MS-DOS

Field Separator Other

[Field Separator] Other ,(comma sign - Hexadecimal 2C)

Text Delimiter " (double quotation marks)

Decimal Separator empty, not specified

The Data Quality Process

Working with Oracle Data Quality Products 15-3

this Delimited Loader Connection set up. Also verify that all the data and schema files
you need are copied to the directory defined by the Loader Connection.

If you do not have access to the Metabase Manager, ask your Metabase administrator
to verify the Loader Connection for you.

If you are a Metabase User and have access to the Metabase Manager, follow this
procedure:

To validate a Loader Connection

1. Open the Metabase Manager (Start > All Programs > Oracle > Oracle Data
Profiling and Quality > Metabase Manager).

2. Verify you are in Admin Mode.

3. Expand the Control Admin node.

4. Double-click Loader Connections.

5. On the right, the Loader Connections list view displays each Loader Connection,
showing its name, type, data file, and parameters. Review the information to
verify that the Loader Connection created by your administrator is a Delimited
Loader Connection and that the data and schema directories are pointing to the
correct location.

15.2.2.2 Step 2: Create Entity and Import Data
Use the Create Entity wizard to create an Entity. The Wizard takes you through each
step, helps you to select data to load, and provides an interface for specifying
connection and schema settings. It also gives you options for customizing how the
data appears in an Entity.

To import a delimited source file into Oracle Data Quality for Data Integrator:

1. Copy the flat file that you want to import into Oracle Data Quality for Data
Integrator into the data directory that you specified when you defined the Loader
Connection.

2. Click on the Windows Start menu and select All Programs > Oracle > Oracle Data
Profiling and Quality > Oracle Data Profiling and Quality.

3. Log in the user interface with your metabase user. The Oracle Data Profiling and
Quality user interface opens

4. From the Main menu, select Analysis >Create Entity…

5. The Create Entity wizard opens in the upper right pane.

6. On the Connection Page of the Create Entity wizard, select the Loader Connection
given to you by the administrator that you have checked in Step 1.

7. Leave the default settings for the filter and the connection and click Next.

8. Oracle Data Quality connects to the data source using the Loader Connection you
selected in Step 4. If the connection fails, contact your Metabase Administrator

9. In the Entity Selection dialog, select the data source file name you want to import
in the list and click Next.

Note: If you are a Metabase User with full Metabase privileges, you
can create a new Loader Connection.

The Data Quality Process

15-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

10. Select the schema settings for the selected data file corresponding to the
parameters of the file described in the section Section 15.2.1, "Create a Quality
Input File"

■ Delimiter: , (comma)

■ Quote: " (double quotation marks)

■ Attribute information: Names on first line

■ Select Records are CR/LF terminated.

■ Character encoding: ascii

For more information on configuring Entities for delimited files, see the Online
Help for Oracle Data Profiling and Oracle Data Quality.

11. After you select the schema settings, click Preview. The Preview mode shows how
the data will appear in the Entity, based on your selected schema settings. The data
displays below in a list view. Use the Preview mode to customize how the data
will appear in the new Entity.

12. When you are ready to continue, click Close.

13. Click Next. The Load Parameters dialog opens. Specify the parameters as follows:

■ Select All Rows.

■ Leave the default Job name.

14. Click Next to continue.

15. In Confirm Settings, review the list of settings and click Finish to schedule the
Entity creation job. The Schedule Job window opens.

16. Click Run Now.

15.2.2.3 Step 3: Verify Entity
During the data import process, Oracle Data Quality for Data Integrator translates
your data files into three basic components (Metabase objects): Entities, Attributes, and
Rows.

Perform the following list of verification tasks to ensure that the data you expected has
been successfully imported to a Metabase and are correctly represented in the
Metabase Explorer.

1. Make sure that for every data file imported you have one corresponding Entity.

2. Make sure that the column names do not contain any special characters with the
exception of underscore (_) or minus sign (-) characters. Minus signs and
underscores will be translated into spaces during the data load process.

3. Make sure that for every field imported you have one corresponding Attribute.

4. Make sure that you have one Entity Row for every data row imported.

Note: If the file is generated using Oracle Data Integrator These file
format parameters should correspond to the file format specified in
the Files tab of the datastore definition.

The Data Quality Process

Working with Oracle Data Quality Products 15-5

15.2.3 Create a Profiling Project
You can now run a Data Profiling Project with Oracle Data Profiling to find quality
problems. Profiling discovers and analyzes the quality of your enterprise data. It
analyzes data at the most detailed levels to identify data anomalies, broken filters and
data rules, misaligned data relationships, and other concerns that allow data to
undermine your business objectives.

For more information on Data Profiling see "Working with Oracle Data Profiling" in
the Online Help for Oracle Data Profiling and Oracle Data Quality.

15.2.4 Create a Oracle Data Quality Project
You can now create an Oracle Data Quality Project to validate and transform your
data, and resolve data issues such as mismatching and redundancy.

Oracle Data Quality for Data Integrator is a powerful tool for repairing and correcting
fields, values and records across multiple business contexts and applications,
including data with country-specific origins. Oracle Data Quality for Data Integrator
enables data processing for standardization, cleansing and enrichment, tuning
capabilities for customization, and the ability to view your results in real-time.

A Quality Project cleanses input files and loads cleansed data into output files. At the
end of your Oracle Data Quality project this input file may be split into several output
files, depending on the data Quality project.

Important Note: A Data Quality project contains many temporary entities, some of
them not useful in the integration process. To limit the Entities reversed-engineered for
usage by Oracle Integrator, a filter based on entities name can be used. To use this filter
efficiently, it is recommended that you rename in your quality project the entities that
you want to use in Oracle Data Integrator in a consistent way. For example rename
the entities ODI_IN_XXX and the output (and no-match) files ODI_OUT_XXX , where
XXX is the name of the entity.

For more information on Data Quality projects see "Working with Oracle Data Quality"
in the Online Help for Oracle Data Profiling and Oracle Data Quality.

15.2.5 Export the Data Quality Project
Oracle Data Integrator is able to run projects exported from Oracle Data Quality. Once
the Data Quality project is complete, you need to export it for Oracle Data Integrator.
The exported project contains the data files, Data Dictionary Language (DDL) files,
settings files, output and statistics files, user-defined tables and scripts for each process
module you in the project. An exported project can be run on UNIX or Windows
platforms without the user interface, and only requires the Oracle Data Quality Server.

To create a batch script:

1. In the Explorer or Project Workflow, right-click the Oracle Data Quality project and
select Export... > ODQ Batch Project > No data.

2. In Browse for Folder, select or make a folder where you want the project to be
exported.

3. Click OK. A message window appears indicating that the files are being copied.
This export process creates a folder named after the metabase (<metabase_
name>) at the location that you specified. This folder contains a projectN
sub-folder (where N is the project identifier in Oracle Data Quality). This project
folder contains the following folders among others:

The Data Quality Process

15-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ data: This folder is used to contain input and output data as well as temporary
data files. These files have a .DAT extension. As you specified No data for
the export, this folder is empty.

■ ddl: This folder contains the entities metadata files (.DDX and .XML). These
files describe the data files' fields. They are prefixed with eNN_ , where NN is
the Entity number. Each entity is described in two metadata files. eNN_<name
of the entity>.ddx is the description of the entity with possible
duplicated columns (suitable for fixed files). enNN_<name of the entity_
csv.ddx is the description of the entity with non-duplicated columns
(suitable for fixed and delimited files). It recommended to use these files for
the reverse-engineering process.

■ scripts: This folder contains the batch script runprojectN. This script runs
the quality process and is the one that will be triggered by Oracle Data
Integrator.

■ settings: This folder contains settings files (.ddt, .sto, .stt, .stx) and the
configuration file config_batch.tbl.

4. After the message window has disappeared, examine the folder you have
specified and check that all folders and files are correctly created.

5. Move the exported project to a folder on the run-time machine. This machine must
have the Oracle Data Quality Server installed at it will run the quality project.

6. Open with a text Editor the batch script (runprojectN) and the configuration file
(config_batch.tbl) in the /batch/settings sub-folder of your projectN
folder.

7. Perform the following changes to configure the run-time directory in the project.

■ In config_batch.tbl, specify the location (absolute path) of the directory
containing the projectN folder for the DATABASE parameter.

■ In runprojectN, specify the location (absolute path) of the projectN
directory for the TS_PROJECT parameter.

For example, if you have the config_batch.tbl and runproject2.* files
located in C:\oracle\oracledq\metabase_
data\metabase\oracledq\project2\batch\, you should specify

■ in \settings\config_batch.tbl: DATABASE =
C:\oracle\oracledq\metabase_
data\metabase\oracledq\project2\batch

■ in \scripts\runprojectN.*: set TS_
PROJECT=C:\oracle\oracledq\metabase_
data\metabase\oracledq\project2\batch

8. Save and close the config_batch.tbl file.

9. In runprojectN uncomment the very last line of the file (remove the :: character
at the beginning of the last line).

10. Save and close the runprojectN file.

11. Oracle Data Integrator uses CSV formatted files (typically, comma-delimited with
one header line) to provide the data quality project with input data, and expects
output data to be in the same format.

In the /settings directory, open with an Editor the settings file corresponding
to the first process of your project. This file is typically named eN_transfmr_

The Data Quality Process

Working with Oracle Data Quality Products 15-7

p1.stx (where N is the internal ID of the entity corresponding to the quality input
file) if the first process is a transformer.

12. Change the following input parameters in the settings file:

■ In DATA_FILE_NAME, specify the name and location (absolute path) of your
quality input file in run-time.

■ In FILE_DELIMITER, specify the delimiter used in the quality input file.

■ In START_RECORD, specify the line number where data starts. For example, if
there is a 1 line header, the value should be 2.

For example, if you have the customer_master.csv quality input file
(comma-separated with one header line) located in
C:/oracle/oracledq/metabase_data/metabase/oracledq/Data/, you
should edit the following section:

<CATEGORY><INPUT><PARAMETER><INPUT_SETTINGS>
 <ARGUMENTS>
 <ENTRY>
 <ENTRY_ID>1</ENTRY_ID>
 <FILE_QUALIFIER>Customer_Master(1)</FILE_QUALIFIER>
 <DATA_FILE_NAME>$(INPUT)/e1_customer_master.dat</DATA_FILE_NAME>
 <DDL_FILE_NAME>$(DDL)/e1_customer_master.ddx</DDL_FILE_NAME>
 <FILE_DELIMITER/>
 <USE_QUOTES_AS_QUALIFIER/>
 <START_RECORD/>
as shown below:

<CATEGORY><INPUT><PARAMETER><INPUT_SETTINGS>
 <ENTRY>
 <ENTRY_ID>1</ENTRY_ID>
 <FILE_QUALIFIER>Customer_Master(1)</FILE_QUALIFIER>
<DATA_FILE_NAME>C:\oracle\oracledq\metabase_
data\metabase\oracledq\Data\customer_master.csv</DATA_FILE_NAME>
<DDL_FILE_NAME>$(DDL)/e1_customer_master.ddx</DDL_FILE_NAME>
<FILE_DELIMITER>,</FILE_DELIMITER>
<USE_QUOTES_AS_QUALIFIER/>
<START_RECORD>2</START_RECORD>

13. Save and close the settings file.

14. Also in the /settings directory, open the file that corresponds to the settings of
the process generating the output (cleansed) data. Typically, for a cleansing project
which finishes with a Data Reconstructor process, it is named with eNN_
datarec_pXX.stx. Change the following value in the settings file to give the full
path of the generated output file.

<CATEGORY><OUTPUT><PARAMETER>
<OUTPUT_SETTINGS>
<ARGUMENTS>
<FILE_QUALIFIER>OUTPUT</FILE_QUALIFIER>
<DATA_FILE_NAME>C:\oracle\oracledq\metabase_
data\metabase\oracledq\Data\customer_master_cleansed.csv</DATA_FILE_NAME>
<DDL_FILE_NAME>$(DDL)/e36_us_datarec_p11.ddx</DDL_FILE_NAME>

15. Save and close the settings file.

16. If you have several data quality processes that generate useful output files (for
example, one data reconstructor per country). Repeat the two previous steps for
each of these processes.

The Data Quality Process

15-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

15.2.6 Reverse-engineer the Entities
In order to provide the Quality process with input data and use its output data in data
integrator's integration processes, it is necessary to reverse-engineer these Entities.
This operation is performed using a customized reverse-engineering method based on
the Oracle Data Quality RKM. The RKM reads metadata from the .ddx files located in
the /ddl folder of your data quality project.

To reverse-engineer the Entities of a data Quality project:

1. Import the RKM Oracle Data Quality into your Oracle Data Integrator project.

2. Insert a physical schema for the File technology in Topology Manager. Specifying
for both, the Directory (Schema) and the Directory (Work Schema), the absolute
path of your data folder. For example C:\oracle\oracledq\metabase_
data\metabase\oracledq\projectN\data

This directory must be accessible to the agent that will be used to run the
transformations. Oracle Data Integrator will look in the schema for the source and
target data structures for the interfaces. The RKM will access the output data files
and reverse-engineer them.

3. Create a File model and reverse the /ddl folder.

1. In Designer Navigator expand the Models panel.

2. Right-click then select New Model.

3. Enter the following fields in the Definition tab:

Name: Name of the model used in the user interface.

Technology: File

Logical Schema: Select the Logical Schema on which your model will be
based.

4. In the Reverse tab and select:

5. Set the RKM options as shown in Table 15–1:

Parameter Value/Action

Reverse: Customized

Context: Reverse-engineering Context

Type of objects to reverse-engineer: Table

KM Select the RKM Oracle Data Quality

The Data Quality Process

Working with Oracle Data Quality Products 15-9

4. Click Apply. The model is created, but contains no datastores yet.

5. Click Reverse. Now, the model contains datastores that you can see in the Models
view.

15.2.7 Use Oracle Data Quality Input and Output Files in Interfaces
You can now create in Oracle Data Integrator interfaces sourcing or targeting the data
Quality input and output files.

For example, you can:

■ Create interfaces to load the input file using datastores from various sources.

■ Create interfaces to re-integrate the output data back into the sources after
cleansing.

15.2.8 Run this Quality Project from Oracle Data Integrator
The OdiDataQuality tool executes the batch file to run the Oracle Data Quality project.
This tool takes as a parameter the path to the runprojectN script file. It can run either
in synchronous (the tool waits for the quality process to complete) or asynchronous
mode.

For more information about the OdiDataQuality tool and its parameters, see
Section A.5.3, "OdiDataQuality".

15.2.9 Sequence the Process in a Package
Create a package in Oracle Data Integrator sequencing the following process:

1. One or more Interfaces creating the Quality input file, containing the data to
cleanse.

2. OdiDataQuality tool step launching the Oracle Data Quality process.

3. One or more Interfaces loading the data from the Oracle Data Quality output files
into the target datastores.

Table 15–1 KM Options for RKM Oracle Data Quality

Parameter Default Value Description

DDX_FILE_NAME *.ddx Mask for DDX Files to process. If you have used a naming
convention in the Quality project for the Entities that you
want to use, enter a mask that will return only these Entities.
For example, specify the ODI*_csv.ddx mask if you have
used the ODI_IN_XX and ODI_OUT_XX naming convention
for your input and output entities.

USE_FRIENDLY_NAMES No Set this option to Yes if you want the Reverse-Engineering
process to generate user-friendly names for datastore
columns based on the field name specified in the DDX file.

USE_LOG Yes Set to Yes if you want the reverse-engineering process
activity be logged in a log file.

LOG_FILE_NAME /temp/reverse.log Name of the log file.

The Data Quality Process

15-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Part V
Part V Managing Integration Projects

This part describes how to organize and maintain your Oracle Data Integrator projects.

This part contains the following chapters:

■ Chapter 16, "Organizing and Documenting your Work"

■ Chapter 17, "Working with Version Management"

■ Chapter 18, "Exporting/Importing"

16

Organizing and Documenting your Work 16-1

16Organizing and Documenting your Work

This chapter describes how to organize and document your work in Oracle Data
Integrator.

This chapter includes the following sections:

■ Section 16.1, "Organizing Projects with Folders"

■ Section 16.2, "Organizing Models with Folders"

■ Section 16.3, "Using Cross-References"

■ Section 16.4, "Using Markers and Memos"

■ Section 16.5, "Handling Concurrent Changes"

■ Section 16.6, "Creating PDF Reports"

16.1 Organizing Projects with Folders
Before you begin creating an integration project with Oracle Data Integrator, it is
recommended to think about how the project will be organized.

Rearranging your project afterwards may be dangerous. You might have to redo all the
links and cross-references manually to reflect new locations.

Within a project, interfaces, procedures and packages are organized into folders and
sub-folders. It is recommended to maintain your project well organized by grouping
related project components into folders and sub-folders according to criteria specific to
the project. Folders simplify finding objects developed in the project and facilitate the
maintenance tasks. Sub-folders can be created to an unlimited number of levels.

Note that you can also use markers to organize your projects. Refer to Section 16.4,
"Using Markers and Memos" for more information.

16.1.1 Creating a New Folder
To create a new folder:

1. In Designer Navigator expand the Projects accordion.

2. Select the project into which you want to add a folder.

3. Right-click and select New Folder.

4. In the Name field, enter a name for your folder.

5. Select Save from the File main menu.

The empty folder appears.

Organizing Models with Folders

16-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

To create a sub-folder:

1. Create a new folder as described in Section 16.1.1, "Creating a New Folder".

2. Drag and drop the new folder into the parent folder.

16.1.2 Arranging Project Folders
To arrange your project folders in the project hierarchy, drag and drop a folder into
other folders or on the Project. Note that it is not possible to move a folder from one
Project to another Project.

16.2 Organizing Models with Folders
A model folder groups related models according to criteria specific to the project. A
model folder may also contain other model folders. Sub-folders can be created to an
unlimited number of levels.

Note that you can also use markers to organize your models. Refer to Section 16.4,
"Using Markers and Memos" for more information.

16.2.1 Creating a New Model Folder
To create a model folder:

1. In Designer Navigator expand the Models accordion.

2. Click New Model Folder in the toolbar of the Models accordion.

3. In the Name field, enter a name for your folder.

4. Select Save from the File main menu.

The empty model folder appears.

16.2.2 Arranging Model Folders
To move a model into a folder:

1. In Designer Navigator expand the Models accordion.

2. Select the model, then drag and drop it on the icon of the destination model folder.

The model moves from its current location to the selected model folder.

Note the following when arranging model folders:

■ A model can only be in one folder at a time.

■ Model folders can be also moved into other model folders.

16.2.3 Creating and Organizing Sub-Models
A sub-model is an object that allows you to organize and classify the datastores of a
model in a hierarchical structure. The root of the structure is the model. A sub-model
groups functionally homogeneous datastores within a model. The datastores of a
model can be inserted into a sub-model using drag and drop, or by automatic
distribution.

The classification is performed:

Organizing Models with Folders

Organizing and Documenting your Work 16-3

■ During the reverse-engineering process, the RKM may create sub-models and
automatically distribute datastores into these sub-models. For example RKM
handling large data models from ERP systems use this method.

■ Manually, by drag and dropping existing datastores into the sub-models.

■ Automatically, using the distribution based on the datastore’s name.

To create a sub-model:

1. In Designer Navigator expand the Models accordion.

2. In the Models accordion, select the model or the sub-model into which you want
to add a sub-model.

3. Right-click and select New Sub-Model.

4. On the Definition tab, enter a name for your sub-model in the Name field.

5. Click OK.

The new sub-model is created with no datastore.

Arranging Sub-Models
To manually file a datastore into a sub-model:

1. In Designer Navigator expand the Models accordion.

2. In the Models accordion, select the datastore you wan to move into the sub-folder.

3. Drag and drop it into the sub-model.

The datastore disappears from the model and appears in the sub-model.

Setting-up Automatic Distribution
Distribution allows you to define an automatic distribution of the datastores in your
sub-models.

Datastores names are compared to the automatic assignment mask. If they match this
pattern, then they are moved into this sub-model. This operation can be performed
manually or automatically depending on the Datastore Distribution Rule.

There are two methods to classify:

■ By clicking Distribution in the Distribution tab of a sub-model, the current rule is
applied to the datastores.

■ At the end of a reverse-engineering process, all sub-model rules are applied, the
order defined by the Order of mask application after a Reverse Engineer values
for all sub-models.

To set up the automatic distribution of the datastores in a sub-model:

1. In the sub-model's Distribution tab, select the Datastore distribution rule:

The Datastore Distribution rule determines which datastores will be taken into
account and compared to the automatic assignment mask:

– No automatic distribution: No datastore is taken in account. Distribution
must be made manually.

– Automatic Distribution of all Datastores not already in a Sub-Model:
Datastores located in the root model in the sub-model tree are taken in
account.

Using Cross-References

16-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

– Automatic Distribution of all Datastores: All datastores in the model (and
sub-models) are taken in account.

2. In the Automatic Assignment Mask field, enter the pattern the datastore names
must match to be classified into this sub-model.

3. In the Order of mask application after a Reverse Engineer field, enter the order in
which all rules should be applied at the end of a reverse. Consequently, a rule with
a high order on all datastores will have precedence. A rule with a high order on
non-classified datastores will apply only to datastores ignored by the other rules'
patterns. At the end of the reverse, new datastores are considered non classified.
Those already classified in a sub-model stay attached to their sub-model.

4. Click Distribution. The current rule is applied to the datastores.

16.3 Using Cross-References
Objects in Oracle Data Integrator (datastores, models, interfaces, etc) are interlinked by
relationships varying from simple usage associations (an integration interface uses
Knowledge Modules) to complex ones such as code-interpretation relationships (a
variable is used in the mappings or filters of an interface). These relationships are
implemented as cross-references. They are used to check/maintain consistency
between related objects within a work repository. Cross-references, for example,
prevent you from deleting an object if it is currently referenced elsewhere in the work
repository.

Not all relationships appear as cross-references:

■ Relationships with objects from the master repository (For example, a data model
is related to a technology) are not implemented as cross-references, but as loose
references based on object codes (context code, technology code, datatype code,
etc). Modifications to these codes may cause inconsistency in the references.

■ Strong relationships in the work repository (a folder belongs to a project) are
enforced in the graphical user interface and within the repository (in the host
database as foreign keys). These relationships may not normally be broken.

16.3.1 Browsing Cross-References
When modifying an object, it is necessary to analyze the impact of these changes on
other developments. For example, if the length of a column is altered, the integration
interfaces using this column as a source or a target may require modification.
Cross-references enable you to immediately identify the objects referenced or
referencing a given object, and in this way provide effective impact analysis.

Cross-references may be browsed in Designer Navigator as described in.

Table 16–1 Cross-References in Designer Navigator

Accordion Icon Description

Projects and
Other accordion

The Used in and Used by nodes appear under
an object node. The Used in node lists the
objects from which the current object is
referenced. In the case of a variable, for example,
the packages containing steps referencing this
variable and the interfaces using this variable in
the mappings, filters, etc. will be displayed. The
Used by node lists the objects that are using the
current object.

Using Markers and Memos

Organizing and Documenting your Work 16-5

These cross-referenced nodes can be expanded. The referencing or referenced objects
can be displayed or edited from the cross-reference node.

16.3.2 Resolving Missing References
When performing version restoration operations, it may happen that an object in the
work repository references nonexistent objects. A typical situation for this is when
restoring an old version of a project without restoring all the associated models used in
its integration interfaces.

Such a situation causes Missing References errors messages in Oracle Data Integrator
when opening the objects (for example, the interfaces) which reference nonexistent
objects. An object with missing cross-references is marked in the tree with the missing
reference marker and its parent objects are flagged with a warning icon.

To display the details of the missing references for an object:

1. In Designer Navigator, double-click the object with the missing reference marker.

2. The object editor opens. In the object editor, select the Missing References tab.

3. The list of referenced objects missing for the cross-references is displayed in this
tab.

To resolve missing references:

Missing cross-reference may be resolved in two ways:

■ By importing/restoring the missing referenced object. See Chapter 17, "Working
with Version Management"and Chapter 18, "Exporting/Importing" for more
information.

■ By modifying the referencing object in order to remove the reference to the
missing object (for example, remove the Refresh Variable step referencing the
nonexistent variable from a package, and replace it with another variable).

16.4 Using Markers and Memos
Almost all project and model elements may have descriptive markers and memos
attached to them to reflect your project's methodology or help with development.

Models
accordion

TheUsed in node appears under an object node
and lists the objects referencing the current
datastore, model or sub-model as a source or a
target of an interface, or in package steps.

Models
accordion

The Used to Populate and Populated By nodes
display the datastores used to populate, or
populated by, the current datastore

Note: If a text (such as an interface mapping/join/filter, a procedure
command, and so forth) contains one or more missing references, the
first change applied to this text is considered without any further
check. This is because all the missing references are removed when the
text is changed and the cross-references computed, even if some parts
of the text are still referring to an object that doesn't exist.

Table 16–1 (Cont.) Cross-References in Designer Navigator

Accordion Icon Description

Using Markers and Memos

16-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

16.4.1 Markers
Flags are defined using markers. These markers are organized into groups, and can be
applied to most objects in a project or a models.

Typical marker groups are:

■ The development cycle (development, test, production)

■ Priorities (low, medium, urgent, critical)

■ Progress (10%, 20%, etc)

Global and Project Markers
Markers are defined in a project or in the Other view (Global Markers). The project
markers can be used only on objects of the project, and global markers can be used in
all models of the repository.

Flagging Objects
To flag an object with an icon marker:

1. In Designer Navigator, select an object in the Projects or Models accordion.

2. Right-click and select Add Marker, then select the marker group and the marker
you want to set.

The marker icon appears in the tree. The marked object also appears under the
marker's node. You can thus see all objects having a certain marker.

If you click in the tree an icon marker belonging to an auto-incremented marker group,
you switch the marker to the next one in the marker group, and the icon changes
accordingly.

To flag an object with string, numeric and date markers:

1. In Designer Navigator, double-click the object in the Projects or Models accordion.

2. In the object editor, select the Markers tab.

3. Click Insert a Marker.

4. In the new line, select the Group and Marker. You may also set the Value.

If the marker has an associated icon, it appears in the tree.

Filtering Using Markers
Markers can be used for informational purposes (for example, to have a global view of
a project progress and resources). They can also be used when automating scenario
generation by filter the packages. See Section 13.4, "Generating a Group of Scenarios"
for more information.

The list of all objects using a certain marker is shown below the marker's node.

Customizing Markers
A new project is created with default markers. It is possible to customize the markers
for a specific project as well as the global markers.

Note: Markers will not appear if the option Show Markers and
Memo Flags is not checked. See Hiding Markers and Memos for more
information.

Handling Concurrent Changes

Organizing and Documenting your Work 16-7

To define a marker group:

1. In Designer Navigator, click the Markers node in the Project accordion, or the
Global Markers node in the Others accordion.

2. Right-click and select New Marker Group.

3. In the Group Name field, enter the name for the marker group, then define its
Display Properties and Attributes.

4. Click Insert a new Marker to create a new marker in the group.

5. Select the marker Icon. If a marker stores date or a number, the icon should be set
to <none>.

6. Select the marker Name, Type and other options.

7. Repeat operations 4 to 6 to add more markers to the group.

8. Select Save from the File main menu.

16.4.2 Memos
A memo is an unlimited amount of text attached to virtually any object, visible on its
Memo tab. When an object has a memo attached, the memo icon appears next to it.

To edit an object's memo:

1. Right-click the object.

2. Select Edit Memo.

3. The Object editor opens, and the Memo tab is selected.

Hiding Markers and Memos
You can temporarily hide all markers and memo flags from the tree views, to improve
readability.

To hide all markers and memo flags:

Deselect the Display Markers and Memo Flags option in the Designer Navigator
toolbar menu. This preference is stored on a per-machine basis.

16.5 Handling Concurrent Changes
Several users can work simultaneously in the same Oracle Data Integrator project or
model. As they may be all connected to the same repository, the changes they perform
are considered as concurrent.

Oracle Data Integrator provides two methods for handling these concurrent changes:
Concurrent Editing Check and Object Locking. This two methods can be used
simultaneously or separately.

16.5.1 Concurrent Editing Check
The user parameter, Check for concurrent editing, can be set to 1 to perform to
prevent you from erasing the work performed by another user on the object you try to
save. Refer to Appendix B, "User Parameters" for more information.

If this parameter is set to 1, when saving changes to any object, Oracle Data Integrator
checks whether other changes have been made to the same object by another user
since you opened it. If another user has made changes, the object cannot be saved, and
you must cancel your changes.

Handling Concurrent Changes

16-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

16.5.2 Object Locking
The object locking mechanism can be activated in Oracle Data Integrator
automatically, when closing the Oracle Data Integrator or manually.

Automatic Object Locking
This mechanism is automatically activated. When an object is opened in a user
interface, a popup window appears to ask if you want to lock the object. As long as an
object is locked, only the user owning the lock can perform modifying the object, such
as editing or deleting. Other operations, such as executing, can be performed by other
users, but with a warning.

An object locked by you appears with a yellow lock icon. An object locked by another
object appears with a red lock icon.

When the edition window is closed, a popup window appears to ask if you want to
unlock the object.

Note that these windows are configured by the Lock object when opening and
Unlock object when closing user parameters. See Appendix B, "User Parameters" for
more information.

Releasing locks when closing the user interface
When closing Oracle Data Integrator, a window appears asking to unlock or save
objects that you have locked or kept opened.

You can keep objects locked even if you are not connected to Oracle Data Integrator.
This allows you to prevent other users from editing them in the meanwhile.

Managing manually locks
You can also manually manage locks on objects.

To manually lock an object:

1. Select the object in the tree.

2. Right-click, then select Locks > Lock.

A lock icon appears after the object in the tree.

To manually unlock an object:

1. Select the object in the tree

2. Right-click, then select Locks > Unlock.

The lock icon disappears in the tree.

To manage all locks:

1. Select Locked objects from the ODI menu.

2. The Locked Objects editor appears displaying all locked objects that you can
unlock.

Note: A user with the Supervisor privilege can remove locks for all
other users.

Creating PDF Reports

Organizing and Documenting your Work 16-9

16.6 Creating PDF Reports
In Oracle Data Integrator you have the possibility to print and share several types of
reports with the PDF generation feature:

■ Topology reports of the physical architecture, the logical architecture, or the
contexts

■ Reports of the version comparison results.

■ Reports of an ODI object

■ Diagram reports

16.6.1 Generating a Topology Report
Oracle Data Integrator provides the possibility to generate Topology reports in PDF
format of the physical architecture, the logical architecture or the contexts.

To generate a topology report:

1. From the Topology Navigator toolbar menu select Generate Report and then the
type of report you wish to generate:

■ Physical Architecture

■ Logical Architecture

■ Contexts

2. In the Report generation editor, enter the output PDF file location for your PDF
report. Note that if no PDF file location is specified, the report in Adobe™ PDF
format is generated in your default directory for pdf generation specified in the
user parameters. Refer to Appendix B, "User Parameters" for more information.

3. If you want to view the PDF report after generation, select the Open file after the
generation? option.

4. Click Generate.

16.6.2 Generating a Report for the Version Comparison Results
You can create and print a report of your comparison results via the Version
Comparison Tool. Refer to the Section 17.3.3, "Generating and Printing a Report of
your Comparison Results" for more information.

16.6.3 Generating a Report for an Oracle Data Integrator Object
In Designer Navigator you can generate different types of reports depending on the
type of object. Table 16–2 lists the different report types for ODI objects.

Note: In order to view the generated reports, you must specify the
location of Acrobat® Reader™ in the Appendix B, "User Parameters"
before launching the PDF generation.

Table 16–2 Different report types for ODI objects

Object Reports

Project Knowledge Modules

Project Folder Folder, Packages, Interfaces, Procedures

Creating PDF Reports

16-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

To generate a report in Designer Navigator:

1. In Designer Navigator, select the object for which you wish to generate a report.

2. Right-click and select Print >Print <object>.

3. In the Report generation editor, enter the output PDF file location for your PDF
report. Note that if no PDF file location is specified, the report in Adobe™ PDF
format is generated in your default directory for pdf generation specified in the
user parameters. Refer to Appendix B, "User Parameters" for more information.

4. If you want to view the PDF report after generation, select the Open file after the
generation? option.

5. Click Generate.

16.6.4 Generating a Diagram Report
You can generate a complete PDF report of your diagram. Refer to Section 6.2.5,
"Printing a Diagram" for more information.

Model Folder Model Folder

Model Model

Sub-model Sub-model

Table 16–2 (Cont.) Different report types for ODI objects

Object Reports

17

Working with Version Management 17-1

17Working with Version Management

This chapter describes how to work with version management in Oracle Data
Integrator.

Oracle Data Integrator provides a comprehensive system for managing and
safeguarding changes. The version management system allows flags on developed
objects (such as projects, models, etc) to be automatically set, to indicate their status,
such as new or modified. It also allows these objects to be backed up as stable
checkpoints, and later restored from these checkpoints. These checkpoints are created
for individual objects in the form of versions, and for consistent groups of objects in
the form of solutions.

This chapter includes the following sections:

■ Section 17.1, "Working with Object Flags"

■ Section 17.2, "Working with Versions"

■ Section 17.3, "Working with the Version Comparison Tool"

■ Section 17.4, "Working with Solutions"

17.1 Working with Object Flags
When an object is created or modified in Designer Navigator, a flag is displayed in the
tree on the object icon to indicate its status. Table 17–1 lists these flags.

Note: Version management is supported for master repositories
installed on database engines such as Oracle, Hypersonic SQL, and
Microsoft SQL Server. For a complete list of certified database engines
supporting version management refer to the Platform Certifications
document on OTN at:
http://www.oracle.com/technology/products/oracle-dat
a-integrator/index.html.

Table 17–1 Object Flags

Flag Description

Object status is inserted.

Object status is updated.

Working with Versions

17-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

When an object is inserted, updated or deleted, its parent objects are recursively
flagged as updated. For example, when a step is inserted into a package, it is flagged
as inserted, and the package, folder(s) and project containing this step are flagged as
updated.

When an object version is checked in (Refer to Section 17.2, "Working with Versions"
for more information.), the flags on this object are reset.

17.2 Working with Versions
A version is a backup copy of an object. It is checked in at a given time and may be
restored later. Versions are saved in the master repository. They are displayed in the
Version tab of the object window.

The following objects can be checked in as versions:

■ Project, Folder

■ Package, Scenario

■ Interface, Procedure, Knowledge Module

■ Sequence, User Function, Variable

■ Model, Model Folder

■ Solution

Checking in a version
To check in a version:

1. Select the object for which you want to check in a version.

2. Right-click, then select Version > Create...

3. In the Create dialog, click Previous Versions (>>) to expand the list of versions
already checked in.

4. A version number is automatically generated in the Version field. Modify this
version number if necessary.

5. Enter the details for this version in the Description field.

6. Click OK.

When a version is checked in, the flags for the object are reset.

Displaying previous versions of an object
To display previous versions of an object:

When editing the object, the Version tab provides a list of versions checked in, with the
check in date and the name of the user who performed the check in operation.

Restoring a version
To restore a version:

1. Select the object for which you want to restore a version.

2. Right-click, then select Version > Restore...

3. The Restore dialog displays the list of existing versions.

4. Select the version you want to restore and click OK.

Working with Versions

Working with Version Management 17-3

5. Click OK to confirm the restore operation.

Browsing versions
To browse versions:

Oracle Data Integrator contains a tool, the Version Browser, which is used to display
the versions stored in the repository.

1. From the main menu, select ODI > Version Browser...

2. Use the object Type and object Name drop-down lists to filter the objects for which
you want to display the list of versions.

From the Version Browser, you can restore a version, export a version as an XML file or
delete an existing version.

Deleting a version with the Version Browser
To delete a version with the Version Browser:

1. Open the Version Browser.

2. Select the version you want to delete.

3. Right-click, then select Delete.

The version is deleted.

Restoring a version with the Version Browser
To restore a version with the Version Browser:

1. Open the Version Browser.

2. Select the version you want to restore.

3. Right-click, then select Restore.

4. Click OK to confirm the restore operation.

The version is restored in the repository.

Exporting a version with the Version Browser
To export a version with the Version Browser:

This operation exports the version to a file without restoring it. This export can be
imported in another repository.

WARNING: Restoring a version cannot be undone. It permanently
erases the current object and replaces it by the selected version.

Note: The Version Browser displays the versions that existed when
you opened it. Click Refresh to view all new versions created since
then.

Note: Exporting a version, exports the object contained in the
version and not the version information. This allows you exporting an
old version without having to actually restore it in the repository.

Working with the Version Comparison Tool

17-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

1. Open the Version Browser.

2. Select the version you want to export.

3. Right-click, then select Export.

4. Select the Export Directory and specify the Export Name. Select Replace Existing
Files without Warning to erase existing export files without confirmation.

5. Click OK.

The version is exported to the given location.

17.3 Working with the Version Comparison Tool
Oracle Data Integrator provides a comprehensive version comparison tool. This
graphical tool is to view and compare two different versions of an object.

The version comparison tool provides the following features:

■ Color-coded side-by-side display of comparison results: The comparison results
are displayed in two panes, side-by-side, and the differences between the two
compared versions are color coded.

■ Comparison results organized in tree: The tree of the comparison tool displays
the comparison results in a hierarchical list of node objects in which expanding
and collapsing the nodes is synchronized.

■ Report creation and printing in PDF format: The version comparison tool is able
to generate and print a PDF report listing the differences between two particular
versions of an object.

■ Supported objects: The version comparison tool supports the following objects:
Project, Folder, Package, Scenario, Interface, Procedure, Knowledge Module,
Sequence, User Function, Variable, Model, Model folder, and Solution.

■ Difference viewer functionality: This version comparison tool is a difference
viewer and is provided only for consultation purposes. Editing or merging object
versions is not supported. If you want to edit the object or merge the changes
between two versions, you have to make the changes manually directly in the
concerned objects.

17.3.1 Viewing the Differences between two Versions
To view the differences between two particular versions of an object, open the Version
Comparison tool.

There are three different way of opening the version comparison tool:

By selecting the object in the Projects tree
1. From the Projects tree in Designer Navigator, select the object whose versions you

want to compare.

2. Right-click the object.

3. Select Version > Compare with version...

4. In the Compare with version editor, select the version with which you want to
compare the current version of the object.

5. Click OK.

6. The Version Comparison tool opens.

Working with the Version Comparison Tool

Working with Version Management 17-5

Via the Versions tab of the object
1. In Designer Navigator, open the object editor of the object whose versions you

want to compare.

2. Go to the Version tab.

The Version tab provides the list of all versions created for this object. This list also
indicates the creation date, the name of the user who created the version, and a
description (if specified).

3. Select the two versions you want to compare by keeping the <CTRL> key pressed.

4. Right-click and select Compare...

5. The Version Comparison tool opens.

Via the Version Browser
1. From the main menu, select ODI > Version Browser...

2. Select the two versions you want to compare. Note that you can compare only
versions of the same object.

3. Right-click and select Compare...

4. The Version Comparison tool opens.

The Version Comparison tool shows the differences between two versions: on the left
pane the newer version and on the right pane the older version of your selected object.

The differences are color highlighted. The following color code is applied:

17.3.2 Using Comparison Filters
Once the version of an object is created, the Version Comparison tool can be used at
different points in time.

Creating or checking in a version is covered in the topic Working with Versions.

The Version Comparison tool provides two different types of filters for customizing
the comparison results:

■ Object filters: By selecting the corresponding check boxes (New and/or Deleted
and/or Modified and/or Unchanged) you can decide whether you want only
newly added and/or deleted and/or modified and/or unchanged objects to be
displayed.

Color Description

White (default) unchanged

Red deleted

Green added/new

Yellow object modified

Orange field modified (the value inside of this fields has
changed)

Note: If one object does not exist in one of the versions (for example,
when it has been deleted), it is represented as an empty object (with
empty values).

Working with Solutions

17-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ Field filters: By selecting the corresponding check boxes (New and/or Deleted
and/or Modified and/or Unchanged) you can decide whether you want newly
added fields and/or deleted fields and/or modified fields and/or unchanged
fields to be displayed.

17.3.3 Generating and Printing a Report of your Comparison Results
To generate a report of your comparison results in Designer Navigator:

1. In the Version Comparison tool, click the Printer icon.

2. In the Report Generation dialog, set the object and field filters according to your
needs.

3. In the PDF file location field, specify a file name to write the report to. If no path
is specified, the file will be written to the default directory for PDF files. This is a
user preference.

4. Check the box next to Open file after generation if you want to view the file after
its generation.

Select Open the file after the generation to view the generated report in Acrobat®
Reader™ .

5. Click Generate.

A report in Adobe™ PDF format is written to the file specified in step 3.

17.4 Working with Solutions
A solution is a comprehensive and consistent set of interdependent versions of objects.
Like other objects, it can be checked in at a given time as a version, and may be
restored at a later date. Solutions are saved into the master repository. A solution
assembles a group of versions called the solution's elements.

A solution is automatically assembled using cross-references. By scanning
cross-references, a solution automatically includes all dependant objects required for a
particular object. For example, when adding a project to a solution, versions for all the
models used in this project's interfaces are automatically checked in and added to the
solution. You can also manually add or remove elements into and from the solution.

Solutions are displayed in the Solutions accordion in Designer Navigator and in
Operator Navigator.

The following objects may be added into solutions:

■ Projects

■ Models, Model Folders

■ Scenarios

■ Global Variables, User Functions and Sequences.

To create a solution:

Note: In order to view the generated report, you must specify the
location of Acrobat® Reader™ in the user parameters. Refer to
Appendix B, "User Parameters" for more information.

Working with Solutions

Working with Version Management 17-7

1. In Designer Navigator or Operator Navigator, from the Solutions toolbar menu
select New Solution.

2. In the Solutions editor, enter the Name of your solution and a Description.

3. From the File menu select Save.

The resulting solution is an empty shell into which elements may then be added.

17.4.1 Working with Elements in a Solution
This section details the different actions that can be performed when working with
elements of a solution.

Adding Elements
To add an element, drag the object from the tree into the Elements list in the solution
editor. Oracle Data Integrator scans the cross-references and adds any Required
Elements needed for this element to work correctly. If the objects being added have
been inserted or updated since their last checked in version, you will be prompted to
create new versions for these objects.

Removing Elements
To remove an element from a solution, select the element you want to remove in the
Elements list and then click the Delete button. This element disappears from the list.
Existing checked in versions of the object are not affected.

Rolling Back Objects
To roll an object back to a version stored in the solution, select the elements you want
to restore and then click the Restore button. The elements selected are all restored from
the solution's versions.

17.4.2 Synchronizing Solutions
Synchronizing a solution automatically adds required elements that have not yet been
included in the solution, creates new versions of modified elements and automatically
removes unnecessary elements. The synchronization process brings the content of the
solution up to date with the elements (projects, models, etc) stored in the repository.

To synchronize a solution:

1. Open the solution you want to synchronize.

2. Click Synchronize in the toolbar menu of the Elements section.

3. Oracle Data Integrator scans the cross-references. If the cross-reference indicates
that the solution is up to date, then a message appears. Otherwise, a list of
elements to add or remove from the solution is shown. These elements are
grouped into Principal Elements (added manually), Required Elements (directly or
indirectly referenced by the principal elements) and Unused Elements (no longer
referenced by the principal elements).

4. Check the Accept boxes to version and include the required elements or delete the
unused ones.

5. Click OK to synchronize the solution. Version creation windows may appear for
elements requiring a new version to be created.

You should synchronize your solutions regularly to keep the solution contents
up-to-date. You should also do it before checking in a solution version.

Working with Solutions

17-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

17.4.3 Restoring and Checking in a Solution
The procedure for checking in and restoring a solution version is similar to the method
used for single elements. See Section 17.2, "Working with Versions" for more details.

You can also restore a solution to import scenarios into production in Operator
Navigator or Designer Navigator.

To restore a scenario from a solution:

1. Double-click a solution to open the Solution editor.

2. Select a scenario from the Principal or Required Elements section. Note that other
elements, such as projects and interfaces, cannot be restored.

3. Click Restore in the toolbar menu of the Elements section.

The scenario is now accessible in the Scenarios tab.

Note that you can also use the Version Browser to restore scenarios. See Restoring a
version with the Version Browser.

17.4.4 Importing and Exporting Solutions
Solutions can be exported and imported similarly to other objects in Oracle Data
Integrator. Export/Import is used to transfer solutions from one master repository to
another. Refer to Chapter 18, "Exporting/Importing" for more information.

Note: When restoring a solution, elements in the solution are not
automatically restored. They must be restored manually from the
Solution editor.

18

Exporting/Importing 18-1

18Exporting/Importing

This chapter describes how to manage export and import operations in Oracle Data
Integrator. An introduction to the import and export concepts is provided.

This chapter includes the following sections:

■ Section 18.1, "Import and Export Concepts"

■ Section 18.2, "Exporting and Importing Objects"

■ Section 18.3, "Repository-Level Export/Import"

■ Section 18.4, "Exporting the Technical Environment"

18.1 Import and Export Concepts
This section introduces you to the fundamental concepts of export and import
operations in Oracle Data Integrator. All export and import operations require a clear
understanding of the concepts introduced in this section.

18.1.1 Internal Identifiers (IDs)
Before performing export and import operations, it is essential to understand in detail
the concept of internal identifiers (ID) in Oracle Data Integrator.

To ensure object uniqueness across several work repositories, ODI uses a specific
mechanism to generate unique IDs for objects (such as technologies, data servers,
Models, Projects, Integration Interfaces, KMs, etc.). Every object in Oracle Data
Integrator is identified by an internal ID. The internal ID appears on the Version tab of
each object.

ODI Master and Work Repositories are identified by their unique internal IDs. This
RepositoryID of 3 digits must be unique across all work repositories of an ODI
installation and is used to compute the internal ID of an object.

The internal ID of an object is calculated by appending the value of the RepositoryID
to an automatically incremented number: <UniqueNumber><RepositoryID>

If the Repository ID is shorter than 3 digits, the missing digits are completed with "0".
For example, if a repository has the ID 5, possible internal IDs of the objects in this
repository could be: 1005, 2005, 3005, ..., 1234567005. Note that all objects created
within the same repository have the same three last digits, in this example 005.

This internal ID is unique for the object type within the repository and also unique
between repositories for the object type because it contains the repository unique ID.
This mechanism allows to:

Import and Export Concepts

18-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ Avoid any ID conflicts when exporting and importing from one repository to
another

■ Understand the provenance of every object, simply by looking at its Internal ID.
The 3 last digits always refer to the repository where it was created.

Important Export/Import Rules and Guidelines
Due to the structure of the object IDs, these guidelines should be followed:

■ Work repositories must always have different internal IDs. Work repositories with
the same ID are considered to contain same objects.

■ If an export/import operation is performed between two Master/Work
repositories possessing identical internal IDs, there is a risk of overwriting objects
when importing. Objects from both repositories that have same IDs are considered
the same.

18.1.2 Relationships between Objects
Oracle Data Integrator stores all objects in a relational database schema (the
Repository) with dependencies between objects. Repository tables that store these
objects maintain these dependencies as references using the IDs. When you drag and
drop a target datastore into an integration interface, only the reference to the ID of this
datastore is stored in the interface object. If you want to export this interface, and
import it in Synonym mode into another work repository, a datastore with the same ID
must already exist in this other work repository otherwise the import will create a
missing reference. The missing references can be resolved either by fixing the imported
object directly or by importing the missing object.

Solutions allow to export and import sets of dependent objects automatically. Using
solutions and versioning is the recommended way of maintaining the dependencies
automatically when doing export/import. See Chapter 17, "Working with Version
Management".

Therefore, the Model or Sub-model holding this Datastore needs to be exported and
imported in Synonym mode prior to importing the integration interface.

There are also dependencies between work repository objects and master repository
objects. Dependencies within a work repository are ID-based. Dependencies between
objects of the work and objects of the master are based on the Codes and not the IDs.
This means that only the Code of the objects (for example ORACLE is the code of the
Oracle technology in the master) of the master repository objects are referenced in the
work repository.

It is important to import objects in the appropriate order. You can also use Solutions to
preserve these dependencies. Table 18–1 lists the dependencies of an integration
interface to other objects when importing the integration interface in synonym mode.

Import and Export Concepts

Exporting/Importing 18-3

18.1.3 Import Modes
Oracle Data Integrator can import objects, the topology or repositories using several
modes.

Read carefully this section in order to determine the import mode you need.

Table 18–1 Dependencies of an integration interface in the work and Master Repository

Dependencies on other objects of Work
Repository when importing in Synonym Mode

Dependencies on objects of the
Master Repository

■ (Parent/Child) Folder: Folder holding this
Interface needs to be imported first.

■ (Reference) Model/Sub-Model: all
Models/Sub-Models holding Datastore
definitions referenced by the Interface need to be
imported first. Datastore definitions including
Columns, Data Types, Primary Keys, Foreign
Keys (references), Conditions must be exactly
the same as the ones used by the exported
Interface

■ (Reference) Global Variables, Sequences and
Functions used within the Interface need to
imported first

■ (Reference) Local Variables, Sequences and
Function used within the Interface need to
imported first

■ (Reference) Knowledge Modules referenced
within the Interface need to be imported first

■ (Reference) Any Interface used as source in the
current Interface needs to be imported first

■ Technology Codes

■ Context Codes

■ Logical Schema Names

■ Data Type Codes

■ Physical Server Names of the
Optimization Contexts of Interfaces

Import Mode Description

Duplication This mode creates a new object (with a new internal ID) in the
target Repository, and inserts all the elements of the export file. The
ID of this new object will be based on the ID of the Repository in
which it is to be created (the target Repository).

Dependencies between objects which are included into the export
such as parent/child relationships are recalculated to match the
new parent IDs. References to objects which are not included into
the export are not recalculated.

Note that this mode is designed to insert only 'new' elements.

The Duplication mode is used to duplicate an object into the target
repository. To transfer objects from one repository to another, with
the possibility to ship new versions of these objects, or to make
updates, it is better to use the three Synonym modes.

This import mode is not available for importing master
repositories. Creating a new master repository using the export of
an existing one is performed using the master repository Import
wizard.

Import and Export Concepts

18-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Synonym Mode INSERT Tries to insert the same object (with the same internal ID) into the
target repository. The original object ID is preserved.

If an object of the same type with the same internal ID already
exists then nothing is inserted.

Dependencies between objects which are included into the export
such as parent/child relationships are preserved. References to
objects which are not included into the export are not recalculated.

If any of the incoming attributes violates any referential
constraints, the import operation is aborted and an error message
is thrown.

Synonym Mode UPDATE Tries to modify the same object (with the same internal ID) in the
repository.

This import mode updates the objects already existing in the target
Repository with the content of the export file.

If the object does not exist, the object is not imported.

Note that this mode is able to delete information in the target
object if this information does not exist in the export file.

This import mode does NOT create objects that do not exist in the
target. It only updates existing objects. For example, if the target
repository contains a project with no variables and you want to
replace it with one that contains variables, this mode will update
the project name for example but will not create the variables
under this project. The Synonym Mode INSERT_UPDATE should
be used for this purpose.

Synonym Mode INSERT_
UPDATE

If no ODI object exists in the target Repository with an identical ID,
this import mode will create a new object with the content of the
export file. Already existing objects (with an identical ID) will be
updated; the new ones, inserted.

Existing child objects will be updated, non-existing child objects
will be inserted, and child objects existing in the repository but not
in the export file will be deleted.

Dependencies between objects which are included into the export
such as parent/child relationships are preserved. References to
objects which are not included into the export are not recalculated.

This import mode is not recommended when the export was done
without the child components. This will delete all sub-components
of the existing object.

Import Mode Description

Import and Export Concepts

Exporting/Importing 18-5

18.1.4 Tips for Import/Export
This section provides tips for the import and export operations.

Repository IDs
As a general rule, always use different internal IDs for your repositories in order to
avoid any ID conflicts.

Import Reports
The import report is displayed after every import operation. It is advised to read it
carefully in order to determine eventual errors of the import process.

The import report gives you details on the:

■ Import Mode

■ Imported Objects. For every imported object the object type, the original object
name, the object name used for the import, the original ID, and the new,
recalculated ID after the import is given.

■ Deleted Objects. For every deleted object the object type, the object name, and the
original ID is given.

■ Created Missing References lists the missing references detected after the import.

■ Fixed Missing References lists the missing references fixed during the import.

You can save the import report as an.xml or .html file. Click Save... to save the
import report.

Missing References
In order to avoid missing references, use solutions to manage dependencies. See
Section 17.4, "Working with Solutions" for more information.

Import Replace This import mode replaces an already existing object in the target
repository by one object of the same object type specified in the
import file.

This import mode is only supported for scenarios, Knowledge
Modules, actions, and action groups and replaces all children
objects with the children objects from the imported object.

Note the following when using the Import Replace mode:

If your object was currently used by another ODI component like
for example a KM used by an integration interface, this
relationship will not be impacted by the import, the interfaces will
automatically use this new KM in the project.

Warnings:

■ When replacing a Knowledge module by another one, Oracle
Data Integrator sets the options in the new module using
option name matching with the old module's options. New
options are set to the default value. It is advised to check the
values of these options in the interfaces.

■ Replacing a KM by another one may lead to issues if the KMs
are radically different. It is advised to check the interface’s
design and execution with the new KM.

Import Mode Description

Exporting and Importing Objects

18-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Import Mode
Choose the import mode carefully. See Section 18.1.3, "Import Modes" for more
information.

18.2 Exporting and Importing Objects
Exporting and importing Oracle Data Integrator objects means transferring objects
between different repositories.

When exporting an Oracle Data Integrator object, an XML export file is created. ODI
objects have dependencies, as described in Section 18.1.2, "Relationships between
Objects". These dependencies will be exported in the XML export file.

The content of this XML file will depend on the export method you will use:

■ Exporting an Object with its Child Components

■ Exporting an Object without its Child Components

The choice will depend on your goal, if you need to do a partial export then the Export
Without Child Components is the one to use.

The Export Multiple ODI Objects feature is useful when you need to regularly export
the same set of Objects.

Once the export has been performed, it is very important to choose the import strategy
to suite your requirements.

Exporting an Object with its Child Components
This option is the most common when you want to export an object. It allows you to
export all subcomponents of the current object along with the object itself.

When an Object is exported with its child components, all container-dependent
Objects – those which possess a direct parent/child relationship - are also exported.
Referenced Objects are not exported.

For example, when you choose to export a Project with its child components, the
export will contain the Project definition as well as all objects included in the Project,
such as Folders, Interfaces, Procedures, Packages, Knowledge Modules, Variables,
Sequences, Functions, etc. However, this export will not contain dependent objects
referenced which are outside of the Project itself, such as Datastores and Columns, as
defined previously in Section 18.1.2, "Relationships between Objects". Only the
numeric ID references of these Objects will be exported.

Exporting an Object without its Child Components
This option can be useful in some particular situations where you would want to take
control of the import process. It allows you to export only the top-level definition of an
object without any of its subobjects.

For example, if you choose to export a Model without its children, it will only contain
the Model definition but not the underlying Sub-models and Datastores when you
import this model to a new repository.

Partial Export/Import
If you have a very large project that contains thousands of interfaces and you only
want to export a subset of these to another work repository, you can either export the
entire Project and then import it, or choose to do a partial manual export/import as
follows:

Exporting and Importing Objects

Exporting/Importing 18-7

1. Export all Models referenced by the sub-items of your project and import them in
“Synonym mode” in the new repository to preserve their IDs

2. Export the Project without its children and import it in “Synonym mode”. This
will simply create the empty Project in the new repository (with the same IDs as in
the source).

3. Export every first level Folder you want, without its children, and import them in
“Synonym mode”. The empty Folders will be created in the new repository.

4. Export and Import all Markers, Knowledge Modules, Variables, Sequences, etc.
that are referenced by every object you plan to export, and import them in
“Synonym mode”. Refer to section “Import in “Synonym Mode” or Duplication
and Impact on Object IDs” for special caution regarding import of Knowledge
Modules in Synonym Mode.

5. Finally, export the Interfaces you are interested in and import them in “Synonym
mode” in the new repository.

18.2.1 Exporting one ODI Object
Exporting one Oracle Data Integrator Object means export one single ODI object in
order to transfer it from one repository to another.

To export an object from Oracle Data Integrator:

1. Select the object to be exported in the appropriate Oracle Data Integrator
Navigator.

2. Right-click the object, and select Export...

If this menu item does not appear, then this type of object does not have the export
feature.

3. In the Export dialog, set the Export parameters as indicated inTable 18–2.

Table 18–2 Object Export Parameters

Properties Description

Export Directory Directory in which the export file will be created.

Export Name Name given to the export

Child Components Export If this option is checked, the objects linked to the object to be
exported will be also exported. These objects are those visible
under the exported object in the tree. It is recommended to leave
this option checked. Refer to Exporting an Object with its Child
Components for more details.

Replace exiting files without
warning

If this option is checked, the existing file will be replaced by the
ones of the export. If a file with the same name as the export file
already exists, it will be overwritten by the export file.

Advanced options This set of options allow to parameterize the XML output file
format. It is recommended that you leave the default values.

XML Version XML Version specified in the export file. Parameter .xml version
in the XML file header.

<?xml version="1.0" encoding="ISO-8859-1"?>

Character Set Encoding specified in the export file. Parameter encoding in the
XML file header.

<?xml version="1.0" encoding="ISO-8859-1"?>

Java Character Set Java character set used to generate the file

Exporting and Importing Objects

18-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

You must at least specify the Export Name.

4. Click OK.

The object is exported as an XML file in the specified location.

18.2.2 Export Multiple ODI Objects
You can export one or more objects at once, using the Export Multiple... menu item.
This lets you export ODI objects to a zip file or a directory, and lets you re-use an
existing list of objects to export.

A more powerful mechanism for doing this is using Solutions. See Section 17.4,
"Working with Solutions" for more information.

How to export multiple objects at once:

1. Select Export Multiple... from the Designer, Topology, Security or Operator
Navigator toolbar menu.

2. In the Export Multiple Objects dialog, specify the export parameters as indicated
in Table 18–2.

The objects are either exported as .xml files directly into the directory, or as a zip
file containing .xml files. If you want to generate a zip file, you need to select
Export as zip file and enter the name of the zip file in the Zip file name field.

3. Specify the list of objects to export:

1. Drag and drop the objects from the Oracle Data Integrator Navigators into the
Export list. Note that you can export objects from different Navigators at once.

2. Click Load a list of objects... to load a previously saved list of objects. This is
useful if you regularly export the same list of objects.

3. To save the current list of objects, click SaveExport List and specify a file
name. If the file already exists, it will be overwritten without any warning.

To import multiple objects at once, you must use a Solution. See Section 17.4, "Working
with Solutions" for more information.

18.2.3 Importing Objects
Importing and exporting allows you to transfer objects (Interfaces, Knowledge
Modules, Models,...) from one repository to another.

Importing an ODI object
To import an object in Oracle Data Integrator:

1. In the Navigator, select the object or object node under which you want to import
the object.

2. Right-click the object, and select Import, then the type of the object you wish to
import.

3. In the Import dialog:

1. Select the Import Mode. Refer to Section 18.1.3, "Import Modes" for more
information.

2. Enter the File Import Directory.

3. Select the file(s) to import from the list.

Exporting and Importing Objects

Exporting/Importing 18-9

4. Click OK.

The XML-formatted files are imported into the work repository, and the imported
objects appear in the Oracle Data Integrator Navigators.

Note that the parent or node under which objects are imported is dependent on the
import mode used. When using DUPLICATION mode, the objects will be imported
into where the Import option was selected. For Synonym imports, the objects will be
imported under the parent specified by the objects parent id in the import file.

Importing a KM
To import a Knowledge Module into Oracle Data Integrator:

1. In Designer Navigator, select the project into which you want to import the KM.

2. Right-click the project, and select Import > Import Knowledge Modules....

3. In the Import dialog:

1. The Import Mode is set to Duplication. Refer to Section 18.1.3, "Import
Modes" for more information.

2. Enter the File Import Directory.

3. Select the Knowledge Module file(s) to import from the list.

4. Click OK.

The Knowledge Modules are imported into the work repository and appear in your
project under the Knowledge Modules node.

Importing a KM in Replace Mode
Knowledge modules are usually imported into new projects in Duplication mode.

When you want to replace a KM in a project by another one and have all interfaces
automatically use the new KM, you must use the Import Replace mode.To import a
Knowledge Module in Replace mode:

1. Select the Knowledge Module you wish to replace.

2. Right-click the Knowledge Module and select Import Replace...

3. In the Replace Object dialog, specify the Knowledge Module export file.

4. Click OK.

The Knowledge Module is now replaced by the new one.

WARNING: Replacing a Knowledge module by another one in
Oracle Data Integrator sets the options in the new module using the
option name similarities with the old module's options. New
options are set to the default value.

It is advised to check the values of these options in the interfaces as
well as the interfaces' design and execution with the new KM.

Refer to the Import Replace mode description in the Section 18.1.3,
"Import Modes" for more information.

Repository-Level Export/Import

18-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

18.3 Repository-Level Export/Import
At repository level you can export and import the master repository and the work
repositories.

18.3.1 Exporting and Importing the Master Repository
The master repository export/import procedure allows you to transfer the whole
repository (Topology and Security domains included) from one repository to another.

It can be performed in Topology Navigator, to import the exported objects in an
existing repository, or while creating a new master repository.

Exporting the Master Repository in Topology Navigator
The objects that are exported when exporting the master repository are objects,
methods, profiles, users, languages, versions (if option selected), solutions (if option
selected), open tools, password policies, entities, links, fields, lookups, technologies,
datatypes, datatypes conversions, logical agents, contexts and the child objects.

To export a master repository:

1. From the Topology Navigator toolbar menu select Export > Master Repository...

2. In the Export dialog, set the Export parameters as indicated inTable 18–2.

The master repository and its topology and security settings are either exported as
.xml files directly into the directory, or as a zip file containing .xml files. If you
want to generate a zip file, you need to select Export to zip file and enter the name
of the zip file in the Zip File Name field.

3. Select Export versions, if you want to export all stored versions of objects that are
stored in the repository. You may wish to unselect this option in order to reduce
the size of the exported repository, and to avoid transferring irrelevant project
work.

4. Select Export solutions, if you want to export all stored solutions that are stored in
the repository. You may wish to unselect this option for similar reasons.

5. Click OK.

The export files are created in the specified export directory.

Importing the Master Repository
To import the exported master repository objects into an existing master repository:

1. From the Topology Navigator toolbar menu select Import > Master Repository...

2. In the Import dialog:

1. Select the Import Mode. Refer to Section 18.1.3, "Import Modes" for more
information.

2. Select whether you want to import the files From a Folder or From a ZIP file.

3. Enter the file import folder or zip file.

3. Click OK.

The master repository contains now the objects you have imported.

Creating a new Master Repository using a previous Master export
To create a new master repository using an export of another master repository:

Repository-Level Export/Import

Exporting/Importing 18-11

1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, select ODI.

3. Select from the Items list the Master Repository Import Wizard.

4. Click OK.

The Master Repository Import Wizard appears.

5. Specify the Database Connection parameters as follows:

■ Login: User ID/login of the owner of the tables you have created for the
master repository

■ JDBC Driver: The driver used to access the technology, which will host the
repository.

■ JDBC URL: The complete path for the data server to host the repository.

Note that the parameters JDBC Driver and URL are synchronized and the
default values are technology dependant.

■ User: The user id/login of the owner of the tables.

■ Password: This user's password.

6. Specify the Repository Configuration parameters as follows:

■ ID: A specific ID for the new master repository, rather than the default 0. This
will affect imports and exports between repositories.

■ Use a Zip File: If using a compressed export file, check the Use a Zip File box
and select in the Export Zip File field the file containing your master
repository export.

■ Export Path: If using an uncompressed export, select the directory containing
the export in the Export Path field.

■ Technology: From the list, select the technology your repository will be based
on.

7. Click Test Connection to test the connection to your master repository.

The Information dialog opens and informs you whether the connection has been
established.

8. Click Next.

9. Specify the password storage details:

■ Select Use Password Storage Configuration specified in Export if you want
to use the configuration defined in the export.

■ Select Use New Password Storage Configuration if you do not want to use
the configuration defined in the export and select

– Internal Password Storage if you want to store passwords in the Oracle
Data Integrator repository

WARNING: All master repositories should have distinct identifiers.
Check that the identifier you are choosing is not the identifier of an
existing repository

Repository-Level Export/Import

18-12 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

– External Password Storage if you want use JPS Credential Store
Framework (CSF) to store the data server and context passwords. Indicate
the MBean Server Parameters to access the credential store as described in
Table 22–2.

Refer to the Section 22.3.1, "Setting Up External Password Storage" for more
information on password storage details.

10. In the Master Repository Import Wizard click Finish to validate your entries.

A new repository is created and the exported components are imported in this master
repository.

18.3.2 Export/Import the Topology and Security Settings
Exporting then importing the topology or security allows you to transfer a domain
from one master repository to another.

Exporting the Topology and Security Settings
The domains that can be exported are given below:

■ Topology: the full topology (logical and physical architectures including the local
repository, data servers, hosts, agents, generic actions, technologies, datatypes,
logical schemas, and contexts).

■ Logical Topology: technologies (connection, datatype or language information),
logical agents, logical schemas, actions and action groups.

■ Security: objects, methods, users, profiles, privileges, password policies and hosts.

■ Execution Environment: technologies, data servers, contexts, generic actions, load
balanced agents, physical schemas and agents.

To export the topology/security:

1. From the Topology or Security Navigator toolbar menu select Export and then one
of the following options:

■ Topology...

■ Logical Topology...

■ Security Settings...

■ Execution Environment...

2. In the Export dialog, specify the export parameters as indicated in Table 18–2.

The topology and security settings are either exported as .xml files directly into
the directory, or as a zip file containing .xml files. If you want to generate a zip file,
you need to select Export to zip file and enter the name of the zip file in the Zip
File Name field.

3. Click OK.

The export files are created in the specified export directory.

Importing the Topology
To import a topology export:

1. From the Topology Navigator toolbar menu select Import and then one of the
following options:

■ Topology...

Repository-Level Export/Import

Exporting/Importing 18-13

Logical Topology...

Execution environment...

2. In the Import dialog:

1. Select the Import Mode. Refer to Section 18.1.3, "Import Modes" for more
information.

2. Select whether to import the topology export from a Folder or a Zip File.

3. Enter the file import directory.

3. Click OK.

The specified files are imported into the master repository.

Importing the Security Settings
To import a Security export:

1. From the Security Navigator toolbar menu select Import > Security Settings...

2. In the Import dialog:

1. Select the Import Mode. Refer to Section 18.1.3, "Import Modes" for more
information.

2. Select whether to import the security export from a Folder or a Zip File.

3. Enter the file import directory.

3. Click OK.

The specified files are imported into the master repository.

18.3.3 Exporting and Importing a Work Repository
Importing or exporting a work repository allows you to transfer all work repository
objects from one repository to another.

Exporting a Work Repository
To export a work repository:

1. From the Designer Navigator toolbar menu select Export > Work Repository...

2. In the Export dialog, set the Export parameters as indicated inTable 18–2.

The work repository with its models and projects are either exported as .xml files
directly into the directory, or as a zip file containing .xml files. If you want to
generate a zip file, you need to select Export to zip file and enter the name of the
zip file in the Zip File Name field

3. Click OK.

The export files are created in the specified export directory.

Importing a Work Repository
To import a work repository:

1. From the Designer Navigator toolbar menu select Import > Work Repository...

2. In the Import dialog:

1. Select the Import mode. Refer to Section 18.1.3, "Import Modes" for more
information.

Exporting the Technical Environment

18-14 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

2. Select whether to import the work repository from a Folder or a Zip File.

3. Enter the file import directory.

3. Click OK.

The specified files are imported into the work repository.

18.4 Exporting the Technical Environment
This feature produces a comma separated (.csv) file in the directory of your choice,
containing the details of the technical environment. This information is useful for
support purposes.

You can customize the format of this file.

To produce the technical environment file:

1. From the Topology Navigator toolbar menu select Export >Technical
Environment...

2. In the Technical environment dialog, specify the export parameters as indicated in
Table 18–3:

3. Click OK.

Table 18–3 Technical Environment Export Parameters

Properties Description

Export Directory Directory in which the export file will be created.

File Name Name of the .cvs export file

Advanced options This set of options allow to parameterize the XML output file
format. It is recommended that you leave the default values.

Character Set Encoding specified in the export file. Parameter encoding in the
XML file header.

<?xml version="1.0" encoding="ISO-8859-1"?>

Field codes The first field of each record produced contains a code
identifying the kind of information present on the row. You can
customize these codes as necessary.

■ Oracle Data Integrator Information Code: Code used to
identify rows that describe the current version of Oracle
Data Integrator and the current user. This code is used in
the first field of the record.

■ Master, Work, Agent, and Technology Record Code: Code
for rows containing information about the master
repository, the work repositories, the running agents, or the
the data servers, their version, etc.

Record Separator and Field
Separator

These separators define the characters used to separate records
(lines) in the file, and fields within one record.

Part VI
Part VI Running and Monitoring Integration

Processes

This part describes how to run and monitor integration processes.

This part contains the following chapters:

■ Chapter 19, "Running Integration Processes"

■ Chapter 20, "Monitoring Integration Processes"

■ Chapter 21, "Working with Oracle Data Integrator Console"

19

Running Integration Processes 19-1

19Running Integration Processes

This chapter describes how to run and schedule integration processes.

This chapter includes the following sections:

■ Section 19.1, "Understanding ODI Executions"

■ Section 19.2, "Executing Interfaces, Procedures, Packages and Model Operations"

■ Section 19.3, "Executing a Scenario"

■ Section 19.4, "Restarting a Session"

■ Section 19.5, "Scheduling Scenarios"

■ Section 19.6, "Simulating an Execution"

■ Section 19.7, "Managing Executions Using Web Services"

19.1 Understanding ODI Executions
An execution takes place when an integration task needs to be performed by Oracle
Data Integrator. This integration task may be one of the following:

■ An operation on a model, sub-model or a datastore, such as a customized
reverse-engineering, a journalizing operation or a static check started from the
Oracle Data Integrator Studio

■ The execution of a design-time object, such as an interface, a package or a
procedure, typically started from the Oracle Data Integrator Studio

■ The execution of a run-time scenario that was launched from the Oracle Data
Integrator Studio, from a command line, via a schedule or a web service interface

Oracle Data Integrator generates the code for an execution in the form of a session. A
run-time Agent processes this code and connects to the sources and targets to perform
the data integration. These sources and targets are located by the Agent using a given
execution context.

When an execution is started from Oracle Data Integrator Studio, the Execution Dialog
is displayed. This dialog contains the execution parameters listed in Table 19–1.

Table 19–1 Execution Parameters

Properties Description

Context The context into which the session is started.

Agent The agent which will execute the interface. The object can also be
executed using the agent that is built into Oracle Data Integrator
Studio, by selecting Local (No Agent).

Understanding ODI Executions

19-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Session Lifecycle
The lifecycle of a session is as follows:

1. An execution request is sent to the agent, or the agent triggers an execution from a
schedule.

Note that if the execution is triggered from Oracle Data Integrator Studio on a
design-time object (interface, package, etc.), Studio pre-generates in the work
repository the code for the session before sending the request. If the execution is
started from a scenario, this phase is not necessary as the scenario already contains
pre-generated code.

2. The agent completes code generation for the session: It uses the context provided
to resolve the physical information such as data server connections and fully
qualified tables names. This resulting code is written into the work repository as a
session in Waiting status.

3. The agent initializes the connections to the source and target data servers that are
required for the execution of the session.

4. The agent acknowledges the execution request. If the execution was started from
the Studio, the Session Started Dialog is displayed.

5. The agent executes each of the tasks contained in this session, using the
capabilities of the database servers, operating systems, or scripting engines to run
the code contained in the session’s tasks.

6. While processing the session, the agent updates the execution log in the repository,
reports execution statistics and error messages.

Once the session is started, you can monitor it in the log, using for example
Operator Navigator. Refer to Chapter 20, "Monitoring Integration Processes" for
more information on session monitoring.

7. When the session completes, tasks are preserved or removed from the log
according to the log level value provided when starting for this session.

When starting an execution from other locations such as a command line or a web
service, you provide similar execution parameters, and receive a similar Session Started
feedback. If the session is started synchronously from a command line or web service
interface, the command line or web service will wait until the session completes, and
provide the session return code and an error message, if any.

Log Level Level of logging information to retain. All session tasks with a
defined log level lower than or equal to this value will be kept in
the Session log when the session completes. However, if the
object execution ends abnormally, all tasks will be kept,
regardless of this setting.

Simulation Check Simulation if you want to simulate the execution and
create an execution report. Refer to Section 19.6, "Simulating an
Execution" for more information.

Note: A Session is always identified by a unique Session Number (or
Session ID). This number can be viewed when monitoring the session,
and is also returned by the command line or web service interfaces
when starting a session.

Table 19–1 (Cont.) Execution Parameters

Properties Description

Executing a Scenario

Running Integration Processes 19-3

19.2 Executing Interfaces, Procedures, Packages and Model Operations
Interfaces, procedures, and packages are design-time objects that can be executed from
the Designer Navigator of Oracle Data Integrator Studio:

■ For more information on interfaces execution, refer to Section 11.3.8, "Execute the
Integration Interface".

■ For more information on procedures execution, refer to Section 12.1.3, "Using
Procedures".

■ For more information on packages execution, refer to Section 10.5, "Running the
Package".

■ For more information on model operations, refer to Section 5.2, "Creating and
Reverse-Engineering a Model", Section 5.6, "Checking Data Quality in a Model"
and Section 7.2, "Setting up Journalizing".

19.3 Executing a Scenario
Scenarios can be executed in several ways:

■ "Executing a Scenario from the Studio"

■ "Executing a Scenario from a Command Line".

■ From a Web Service. See Section 19.7.2, "Executing a Scenario Using a Web Service"
for more information.

19.3.1 Executing a Scenario from the Studio
You can start a scenario from Oracle Data Integrator Studio from Designer or Operator
Navigator.

To start a scenario from Oracle Data Integrator Studio:

1. Select the scenario in the Projects accordion (in Designer Navigator) or the
Scenarios accordion (in Operator Navigator).

2. Right-click, then select Execute.

3. In the Execution dialog, set the execution parameters. Refer to Table 19–1 for more
information. To execute the scenario with the agent that is built into Oracle Data
Integrator Studio, select Local (No Agent).

4. Click OK.

5. If the scenario uses variables as parameters, the Variable values dialog is
displayed. Select the values for the session variables. Selecting Latest value for a
variable uses its current value, or default value if none is available.

When the agent has started to process the session, the Session Started dialog appears.

19.3.2 Executing a Scenario from a Command Line
You can start a scenario from a command line.

Note: Before running a scenario, you need to have the scenario
generated from Designer Navigator or imported from a file. Refer to
Chapter 13, "Working with Scenarios" for more information.

Executing a Scenario

19-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Before executing a scenario from a command line, read carefully the following
important notes:

■ The command line scripts, which are required for performing the tasks described
in this section, are only available if you have installed the Oracle Data Integrator
Standalone Agent. See the Oracle Fusion Middleware Installation Guide for Oracle
Data Integrator for information about how to install the Standalone Agent.

■ To use this command the connection to your repository must be configured in the
odiparams file. See Chapter 4.3, "Managing Agents" for more information.

■ When starting a scenario from a command line, the session is not started by
default against a remote run-time agent, but is executed by a local Java process
started from the command line. This process can be aborted locally, but cannot
receive a session stop signal as it is not a real run-time agent. As a consequence,
sessions started this way cannot be stopped remotely.

This process will be identified in the Data Integrator log after the Local Agent
name. You can change this name using the NAME parameter.

If you want to start the session against a run-time agent, you must use the AGENT_
URL parameter.

To start a scenario from a command line:

1. Change directory to the /agent/bin directory of the Oracle Data Integrator
installation.

2. Enter the following command to start a scenario.

On UNIX systems:

./startscen.sh <scenario_name> <scenario_version> <context_
code> [<log_level>] [-AGENT_URL=<remote_agent_url>]
[-NAME=<local_agent_name>] [-SESSION_NAME=<session_name>]
[-KEYWORDS=<keywords>] [<variable>=<value>]*

On Windows systems:

startscen.bat <scenario_name> <scenario_version> <context_
code> [<log_level>] [-AGENT_URL=<remote_agent_url>]
["-NAME=<local_agent_name>"] ["-SESSION_NAME=<session_name>"]
["-KEYWORDS=<keywords>"] ["<variable>=<value>"]*

Table 19–2 lists the different parameters, both mandatory and optional. The
parameters are preceded by the "-" character and the possible values are preceded by
the "=" character. You must follow the character protection syntax specific to the
operating system on which you enter the command.

Note: On Windows platforms, it is necessary to "delimit" the
command arguments containing "=" signs or spaces, by using double
quotes. The command call may differ from the Unix command call.
For example:

On Unix

./startscen.sh DWH 001 GLOBAL SESSION_NAME=MICHIGAN

On Windows

startscen.bat DWH 001 GLOBAL "SESSION_NAME=MICHIGAN"

Restarting a Session

Running Integration Processes 19-5

19.4 Restarting a Session
Any session that has encountered an error, or has been stopped by the user can be
restarted.

Session can be restarted in several ways:

Table 19–2 Startscen command Parameters

Parameters Description

<scenario_name> Name of the scenario (mandatory).

<scenario_version> Version of the scenario (mandatory). If the version specified is -1,
the latest version of the scenario is executed.

<context_code> Code of the execution context (mandatory).

<log_level> Level of logging information to retain.

This parameter is in the format LEVEL<n> where <n> is the
expected logging level, between 0 and 5. The default log level is
5.

Example: startscen.bat SCENAR 1 GLOBAL LEVEL5

-AGENT_URL=<remote_
agent_url>

URL of the run-time agent that will run this session. If this
parameter is set, then NAME parameter is ignored.

-NAME=<local_agent_
name>

Agent name that will appear in the execution log for this session,
instead of Local Agent. This parameter is ignored if AGENT_
URL is used.

Note that Using an existing physical agent name in the NAME
parameter is not recommended. The run-time agent which name
is used does not have all the information about this session and
will not be able to manage it correctly. The following features
will not work correctly for this session:

■ Clean stale session: This session will be considered as stale
by this agent if this agent is started. The session will be
pushed to error when the agent will detect this session

■ .Kill Sessions: This agent cannot kill the session when
requested.

■ Agent Session Count: This session is counted in this agent's
sessions, even if it is not executed by it.

It is recommended to use a NAME that does not match any
existing physical agent name.

If you want to start a session on a given physical agent, you
must use the AGENT_URL parameter instead.

-SESSION_
NAME=<session_name>

Name of the session that will appear in the execution log.

-KEYWORDS=<keywords> List of keywords attached to this session. These keywords make
session identification easier. The list is a comma-separated list of
keywords.

<variable>=<value> Allows one to assign a <value> to a <variable> for the
execution of the scenario. <variable> is either a project or
global variable. Project variables should be named <Project
Code>.<Variable Name>. Global variables should be called
GLOBAL.<variable Name>.

This parameter can be repeated to assign several variables.

Do not use a hash sign (#) to prefix the variable name on the
startscen command line.

Restarting a Session

19-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ "Restarting a Session from the Studio"

■ "Restarting a Session from a Command Line".

■ From a Web Service. See Section 19.7.4, "Restarting a Session Using a Web Service"
for more information.

Only sessions in status Error or Waiting can be restarted. The session will resume from
the last non-completed task (typically, the one in error).

19.4.1 Restarting a Session from the Studio
To restart a session from Operator Navigator:

1. In Operator Navigator, select the session that you want to restart.

2. Right-click and select Restart.

3. In the Choose Restart Mode dialog, select the agent you want to use for running
the new session.

4. Click OK.

When Oracle Data Integrator has restarted the session, the Session Started dialog
appears.

19.4.2 Restarting a Session from a Command Line

To restart a session from a command line:

1. Change directory to the /agent/bin directory of the Oracle Data Integrator
installation.

2. Enter the following command to start a scenario.

On UNIX systems:

./restartsession.sh <session_number> [-AGENT_URL=<remote_
agent_url>]

On Windows systems:

restartsession.bat <session_number> ["-AGENT_URL=<remote_
agent_url>"]

Table 19–3 lists the different parameters of this command, both mandatory and
optional. The parameters are preceded by the "-" character and the possible values are

WARNING: When restarting a session, all connections and
transactions to the source and target systems are re-created, and not
recovered from the previous session run. As a consequence,
uncommitted operations on transactions from the previous run are
not applied, and data required for successfully continuing the
session may not be present.

Note: The command line scripts, which are required for performing
the tasks described in this section, are only available if you have
installed the Oracle Data Integrator Standalone Agent. See the Oracle
Fusion Middleware Installation Guide for Oracle Data Integrator for
information about how to install the Standalone Agent.

Scheduling Scenarios

Running Integration Processes 19-7

preceded by the "=" character. You must follow the character protection syntax specific
to the operating system on which you enter the command.

19.5 Scheduling Scenarios
You can schedule the executions of your scenarios using the Oracle Data Integrator
built-in scheduler or an external scheduler. Both methods are detailed in this section:

■ Section 19.5.1, "Scheduling a Scenario with the Built-in Scheduler"

■ Section 19.5.2, "Scheduling a Scenario with an External Scheduler"

19.5.1 Scheduling a Scenario with the Built-in Scheduler
You can attached schedules to scenarios Oracle Data Integrator. Such schedules are
managed by the scheduler built-in run-time agent.

It is important to understand that a schedule concerns only one scenario, while a
scenario can have several schedules and can be scheduled in several ways. The
different schedules appear under the Scheduling node of the scenario. Each schedule
allows a start date and a repetition cycle to be specified.

For example

■ Schedule 1: Every Thursday at 9 PM, once only

■ Schedule 2: Every day from 8 am to 12 noon, repeated every 5 seconds.

■ Schedule 3: Every day from 2 PM to 6 PM, repeated every 5 seconds, with a
maximum cycle duration of 5 hours.

19.5.1.1 Scheduling a Scenario
To schedule a scenario from Oracle Data Integrator Studio.

1. Right-click the Scheduling node under a scenario in the Designer or Operator
Navigator.

Table 19–3 restartsess command Parameters

Parameters Description

<session_number> Number (ID) of the session to be restarted.

-AGENT_URL=<remote_
agent_url>

URL of the run-time agent that will run this session. By default
the session is executed by a local Java process started from the
command line.

Note: To use this command the connection to your repository must
be configured in the odiparams file. See Section 4.3, "Managing
Agents" for more information.

Note: When restarting a session from a command line, the session is
not started by default against a remote run-time agent, but is executed
by a local Java process started from the command line.

If you want to start the session against a run-time agent, you must use
the AGENT_URL parameter.

Scheduling Scenarios

19-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

2. Select New Scheduling. The Scheduling editor.

3. On the Definition tab of the Scheduling editor specify the parameters as follows:

The Status parameters define the activation of the schedule.

The Execution parameters define the frequency of execution for each execution
cycle.

4. On the Execution Cycle tab, specify the parameters for the repeat mode of the
scenario as follows:

5. On the Variables tab, unselect Latest Value for variables for which you want to
provide a Value. Only variables used in the scenario and flagged as parameters for
this scenario appear in this tab.

6. From the File menu, click Save.

Properties Description

Context Context into which the scenario is started.

Agent Agent executing the scenario.

Log Level Level of logging information to retain.

Properties Description

Active The scheduling will be active when the agent is restarted or when the
scheduling of the physical agent is updated.

Inactive The schedule is not active and will not run.

Active for the period Activity range of the schedule. A schedule active for a period of time
will only run within this given period.

Properties Description

Execution Frequency of execution option (annual, monthly,... simple). This option
is completed by a set of options that depend on this main option.

Properties Description

None (Execute once) The scenario is executed only one time.

Many times The scenario is repeated several times.

■ Maximum number of repetitions: The maximum number of times
the scenario is repeated during the cycle.

■ Maximum Cycle Duration: As soon as the maximum time is
reached, the scenario is no longer restarted, and the cycle stops.

■ Interval between repetitions: The downtime between each
scenario execution.

Constraints Allows limitations to be placed on one cycle iteration, in the event of a
problem during execution.

■ Number of Attempts on Failure: Maximum number of
consecutive execution attempts for one iteration.

■ Stop Execution After: Maximum execution time for one iteration.
If this time is reached, the scenario is automatically stopped.

Scheduling Scenarios

Running Integration Processes 19-9

The new schedule appears under the Scheduling node of the scenario.

The schedule changes are taken into account by the run-time agent when it starts or
when it receives a schedule update request.

19.5.1.2 Updating an Agent’s Schedule
An agent reads schedules when starting on all the repositories attached to the master
repository it connects to. It is possible, if a schedule was added for this agent in a given
repository, to refresh the agent schedule.

To update an agent’s schedule:

1. In Topology Navigator expand the Agents node in the Physical Architecture
accordion.

2. Select the Physical Agent you want to update the schedule.

3. Right-click and select Update Scheduling...

4. In the Select Repositories dialog, select the repositories from which you want to
read scheduling information. Check Select All Work Repositories to read
scheduling information from all these repositories.

5. Click OK.

The agent refreshes and re-computes its in-memory schedule from the schedules
defined in these repositories.

19.5.1.3 Displaying the Schedule
You can view the scheduled tasks of all your agents or you can view the scheduled
tasks of one particular agent.

Displaying the Schedule for All Agent
To display the schedule for all agents:

1. Select Connect Navigator >Scheduling... from the Operator Navigator toolbar
menu.

The View Schedule dialog appears, displaying the schedule for all agents.

Displaying the Schedule for One Agent
To display the schedule for one agent:

1. In Topology Navigator expand the Agents node in the Physical Architecture
accordion.

2. Select the Physical Agent you want to update the schedule.

3. Right-click and select View Schedule.

The Schedule Editor appears, displaying the schedule for this agent.

Note: The Scheduling Information is retrieved from the Agent's
in-memory schedule. The Agent must be started and its schedule
refreshed in order to display accurate schedule information.

Simulating an Execution

19-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Using the View Schedule Dialog
The schedule is displayed in form of a Gantt diagram. Table 19–4 lists the details of the
Schedule dialog.

If you select a zone in the diagram (keep the mouse button pressed), you automatically
zoom on the select zone.

By right-clicking in the diagram, you open a context menu for zooming, saving the
diagram as an image file, printing or editing the display properties.

19.5.2 Scheduling a Scenario with an External Scheduler
To start a scenario with an external scheduler, you can either use the command line
command startscen from the external scheduler or use the web service interface for
triggering the scenario execution. See Section 19.3.2, "Executing a Scenario from a
Command Line" and Section 19.7.2, "Executing a Scenario Using a Web Service" for
more information.

If a scenario completes successfully, the return code will be 0. If not, the return code
will be different than 0. This code will be available in:

■ The return code of the command line call. The error message, if any, is available on
the standard error output.

■ The SOAP response of the web service call. The web service response includes also
the session error message, if any.

19.6 Simulating an Execution
In Oracle Data Integrator you have the possibility at design-time to simulate an
execution. Simulating an execution generates and displays the code corresponding to

Note: The Scheduling Information is retrieved from the Agent's
schedule. The Agent must be started and its schedule refreshed in
order to display accurate schedule information.

Table 19–4 Scheduling Details

Selected Agent Agent for which the Schedule is displayed. You can display also
the schedule of all agents by selecting All Agents.

Selected Work Repository Only the scenarios executed in the selected Work Repository are
displayed in the schedule. Default is All Work Repositories.

Scheduling from... to... Time range for which the scheduling is displayed. Click Refresh
to refresh this schedule.

Update Click Update to update the schedule for the selected agent(s)

Time Range The time range specified (1 hour, 2 hours) allows you to center
the diagram on the current time plus this duration. This feature
provides a vision of the sessions in progress plus the incoming
sessions. You can use the arrows to move the range forward or
backward.

Scenarios details This panel displays the details and execution statistics for each
scheduled scenario.

Managing Executions Using Web Services

Running Integration Processes 19-11

the execution without running this code. Execution simulation provides reports
suitable for code review.

To simulate an execution:

1. In the Project view of the Designer Navigator, select the object you want to
execute.

2. Right-click and select Execute.

3. In the Execution dialog, set the execution parameters and select Simulation. See
Table 19–1 for more information.

4. Click OK.

The Simulation report is displayed.

You can click Save to save the report as.xml or.html file.

19.7 Managing Executions Using Web Services
This section explains how to use a web service to perform run-time operations. it
contains the following sections.

■ Section 19.7.1, "Introduction to Run-Time Web Services"

■ Section 19.7.2, "Executing a Scenario Using a Web Service"

■ Section 19.7.3, "Monitoring a Session Status Using a Web Service"

■ Section 19.7.4, "Restarting a Session Using a Web Service"

■ Section 19.7.5, "Listing Contexts Using a Web Service"

■ Section 19.7.6, "Listing Scenarios Using a Web Service"

■ Section 19.7.7, "Accessing the Web Service from a Command Line"

19.7.1 Introduction to Run-Time Web Services
Oracle Data Integrator includes web services for performing run-time operations.
These web services are located in two places:

■ In the run-time agent, a web service allows starting a scenario, monitoring a
session status and restarting a session. To use operations from this web service,
you must first install and configure a standalone or a Java EE agent.

■ A dedicated public web service component provides operations to list the contexts
and scenarios available. To use operations from this web service, you must first
install and configure this component in a Java EE container.

The following applies to the SOAP request used against the agent and public web
services

■ The web services operations accept password in a plain text in the SOAP request.
Consequently, it is strongly recommended to use secured protocols (HTTPS) to
invoke web services over a non-secured network.

■ Repository connection information is not necessary in the SOAP request as the
agent or public web service component is configured to connect to a master

Note: No session is created in the log when the execution is started
in simulation mode.

Managing Executions Using Web Services

19-12 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

repository. Only an ODI user and the name of a work repository are required to
run most of the operations.

19.7.2 Executing a Scenario Using a Web Service
The invokeStartScen operation of the agent web service starts a scenario in
synchronous or asynchronous mode; in a given work repository. The session is
executed by the agent providing the web service.

 <OdiStartScenRequest>
 <Credentials>
 <OdiUser>odi_user</OdiUser>
 <OdiPassword>odi_password</OdiPassword>
 <WorkRepository>work_repository</WorkRepository>
 </Credentials>
 <Request>
 <ScenarioName>scenario_name</ScenarioName>
 <ScenarioVersion>scenario_version</ScenarioVersion>
 <Context>context</Context>
 <LogLevel>log_level</LogLevel>
 <Synchronous>synchronous</Synchronous>
 <SessionName>session_name</SessionName>
 <Keywords>session_name</Keywords>
 <Variables>
 <Name>variable_name</name>
 <Value>variable_value</Value>
 </Variables>
 </Request>
 </OdiStartScenRequest>

The scenario execution returns response that depends on the value of the
synchronous element in the request.

■ In synchronous mode (Synchronous=1), the response is returned once the
session has completed, and reflects the execution result.

■ In asynchronous mode (Synchronous=0), the response is returned once the
session is started, and only indicates the fact whether the session was correctly
started or not.

19.7.3 Monitoring a Session Status Using a Web Service
The getSessionStatus operation of the agent web service returns the status of one
or more sessions in a given repository, identified by their Session Numbers provided
in the SessionIds element. It manages both running and completed sessions.

 <OdiGetSessionsStatusRequest>
 <Credentials>
 <OdiUser>odi_user</OdiUser>
 <OdiPassword>odi_password</OdiPassword>
 <WorkRepository>work_repository</WorkRepository>
 </Credentials>
 <SessionIds>session_number</SessionIds>
 </OdiGetSessionsStatusRequest>

Managing Executions Using Web Services

Running Integration Processes 19-13

19.7.4 Restarting a Session Using a Web Service
The invokeRestartSess operation of the agent web service restarts a session
identified by its session number (provided in the SessionID element) in a given
work repository. The session is executed by the agent providing the web service.

Note that you can change the value of the variables or use the KeepVariables
boolean element to reuse variables values from the previous session run.

 <invokeRestartSessRequest>
 <Credentials>
 <OdiUser>odi_user</OdiUser>
 <OdiPassword>odi_password</OdiPassword>
 <WorkRepository>work_repository</WorkRepository>
 </Credentials>
 <Request>
 <SessionID>session_number</SessionID>
 <Synchronous>synchronous</Synchronous>
 <KeepVariables>0|1</KeepVariables>
 <Variables>
 <Name>variable_name</name>
 <Value>variable_value</Value>
 </Variables>
 </Request>
 </invokeRestartSessRequest>

This operation returns a response similar to InvokeStartScen, depending on the
Synchronous element’s value.

19.7.5 Listing Contexts Using a Web Service
The listContext operation of the public web service lists of all the contexts present
in a master repository.

 <listContextRequest>
 <OdiUser>odi_user</OdiUser>
 <OdiPassword>odi_password</OdiPassword>
 <listContextRequest>

19.7.6 Listing Scenarios Using a Web Service
The listScenario operation of the public web service lists of all the contexts present
in a given work repository.

 <listScenarioRequest>
 <OdiUser>odi_user</OdiUser>
 <OdiPassword>odi_password</OdiPassword>
 <WorkRepository>work_repository</WorkRepository>
 <listScenarioRequest>

19.7.7 Accessing the Web Service from a Command Line
Oracle Data Integrator contains two shell scripts for UNIX platforms that use the web
service interface for starting and monitoring scenarios from a command line via the
run-time agent web service operations:

■ startscenremote.sh starts a scenario on a remote agent on its web service.
This scenario can be started synchronously or asynchronously. When started
asynchronously, it is possible to have the script polling regularly for the session
status until the session completes or a timeout is reached.

Managing Executions Using Web Services

19-14 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ getsessionstatusremote.sh gets the status of a session via the web service
interface. This second script is used in the startscenremote.sh script.

Before accessing a web service from a command line, read carefully the following
important notes:

■ The command line scripts, which are required for performing the tasks described
in this section, are only available if you have installed the Oracle Data Integrator
Standalone Agent. See the Oracle Fusion Middleware Installation Guide for Oracle
Data Integrator for information about how to install the Standalone Agent.

■ Unlike the startscen.sh command line, these scripts rely on the lightweight
WGET utility installed with the UNIX or Linux platform to perform the web
service calls. It does not use any java code and uses a polling mechanism to reduce
the number of running processes on the machine. These scripts are suitable when a
large number of scenarios and sessions need to be managed simultaneously from a
command line.

Starting a Scenario
To start a scenario from a command line via the web service:

1. Change directory to the /agent/bin directory of the Oracle Data Integrator
installation.

2. Enter the following command to start a scenario.

On UNIX systems:

./startscenremote.sh <scenario_name> <scenario_version>
<context_code> <work_repository> <remote_agent_url> <odi_
user> <odi_password> -l <log_level> -s <sync_mode> -t
<timeout> -i <interval> -h <http_timeout> -v

Table 19–5 lists the different parameters of this command, both mandatory and
optional.

Table 19–5 Startscenremote command Parameters

Parameters Description

<scenario_name> Name of the scenario (mandatory).

<scenario_version> Version of the scenario (mandatory). If the version specified is -1,
the latest version of the scenario is executed.

<context_code> Code of the execution context (mandatory).

-l <log_level> Level of logging information to retain.

This parameter is in the format LEVEL<n> where <n> is the
expected logging level, between 0 and 5. The default log level is
5.

Example: startscen.bat SCENAR 1 GLOBAL LEVEL5

<work_repository> Name of the work repository containing the scenario.

<remote_agent_url> URL of the run-time agent that will run this session.

<odi_user> Name of the user used to run this sessions.

<odi_password> This user’s password.

Managing Executions Using Web Services

Running Integration Processes 19-15

Monitoring a Session Status
To monitor the status of a session from a command line via the web service:

1. Change directory to the /agent/bin directory of the Oracle Data Integrator
installation.

2. Enter the following command to start a scenario.

On UNIX systems:

./getsessionstatusremote.sh <session_number> <work_
repository> <remote_agent_url> <odi_user> <odi_password> -w
<wait_mode> -t <timeout> -i <interval> -h <http_timeout> -v

Table 19–5 lists the different parameters of this command, both mandatory and
optional.

s <sync_mode> Execution mode:

■ 0: Synchronous

■ 1:Asynchronous (Do not wait for session completion)

■ 2: Asynchronous (Wait for session completion).

-t <timeout> Timeout in seconds for waiting for session to complete if sync_
mode = 2.

-i <interval> Polling interval for session status if sync_mode = 2.

-h <http_timeout> HTTP timeout for the web services calls.

-v Verbose mode.

Table 19–6 Startscenremote command Parameters

Parameters Description

<session_number> Number of the session to monitor.

<work_repository> Name of the work repository containing the scenario.

<remote_agent_url> URL of the run-time agent that will run this session.

<odi_user> Name of the user used to run this sessions.

<odi_password> This user’s password.

-w <wait_mode> Wait mode:

■ 0: Do not wait for session completion, report current status.

■ 1: Wait for session completion then report status.

-t <timeout> Timeout in seconds for waiting for session to complete if sync_
mode = 2.

-i <interval> Polling interval for session status if sync_mode = 2.

-h <http_timeout> HTTP timeout for the web services calls.

-v Verbose mode.

Table 19–5 (Cont.) Startscenremote command Parameters

Parameters Description

Managing Executions Using Web Services

19-16 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

20

Monitoring Integration Processes 20-1

20Monitoring Integration Processes

This chapter describes how to manage your development executions in Operator
Navigator. An overview of the Operator Navigator’s user interface is provided.

This chapter includes the following sections:

■ Section 20.1, "Introduction to Monitoring"

■ Section 20.2, "Reviewing your Execution Results"

■ Section 20.3, "Managing your Executions"

20.1 Introduction to Monitoring
Monitoring your development executions consists of viewing the execution results and
managing the development executions when the executions are successful or in error.
This section provides an introduction to the monitoring features in Oracle Data
Integrator. How to work with your execution results is covered in Section 20.2,
"Reviewing your Execution Results". How to manage your development executions is
covered in Section 20.3, "Managing your Executions".

20.1.1 Introduction to Operator Navigator
Through Operator Navigator, you can view your execution results and manage your
development executions in the sessions, as well as the scenarios in production.

Operator Navigator stores this information in a work repository, while using the
topology defined in the master repository.

Operator Navigator displays the objects available to the current user in five
accordions:

■ Session List displays all sessions organized per date, physical agent, status,
keywords, etc

■ Hierarchical Sessions displays the execution sessions also organized in a
hierarchy with their child sessions

■ Scheduling displays the list of physical agents and schedules

■ Scenarios displays the list of scenarios available

■ Solutions displays the list of solutions

Introduction to Monitoring

20-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

The Operator Navigator Toolbar Menu
You can perform the main monitoring tasks via the Operator Navigator Toolbar menu.
The Operator Navigator toolbar menu provides access to the features detailed in
Table 20–1.

20.1.2 Sessions
In Oracle Data Integrator, an execution results in a session. Sessions are viewed and
managed in Operator Navigator.

A session is an execution (of a scenario, an interface, a package or a procedure, and so
forth) undertaken by an execution agent. A session is made up of steps which are
themselves made up of tasks.

A step is the unit of execution found between a task and a session. It corresponds to a
step in a package or in a scenario. When executing an interface or a single variable, for
example, the resulting session has only one step.

The task is the smallest execution unit. It corresponds to a command in a KM, a
procedure, etc.

Sessions can be grouped into session folders. Session folders automatically group
sessions that were launched with certain keywords. Refer to Section 20.3.2.3,
"Organizing the Log with Session Folders" for more information.

Table 20–1 Operator Navigator Toolbar Menu Items

Icon Menu Item Description

Refresh Click Refresh to refresh the trees in the
Operator Navigator accordions.

Filter

Filter activated

Click Filter to define the filters for the
sessions to display in Operator Navigator.

Auto Refresh Click Auto Refresh to refresh automatically
the trees in the Operator Navigator
accordions.

Connect
Navigator

Click Connect Navigator to access the
Operator Navigator toolbar menu. Through
the Operator Navigator toolbar menu you
can:

■ Import a scenario

■ Import and export the log

■ Perform multiple exports

■ Purge the log

■ Display the scheduling information

■ Clean stale sessions

Reviewing your Execution Results

Monitoring Integration Processes 20-3

20.1.3 Scenarios and Schedules
A scenario is designed to put a source component (interface, package, procedure,
variable) into production. A scenario results from the generation of code (SQL, shell,
etc) for this component.

You can run from Operator Navigator a scenario that has been previously generated in
Designer Navigator or that has been imported from a file. Refer to Section 20.3.3,
"Managing Scenarios" for more details.

You can schedule the executions of your scenarios using Oracle Data Integrator’s
built-in scheduler or an external scheduler. Both methods are detailed in Section 19.5,
"Scheduling Scenarios".

The schedules appear in Designer and Operator Navigator under the Scheduling node
of the scenario. Each schedule allows a start date and a repetition cycle to be specified.

You can view the scheduling information in Operator Navigator. The Scheduling
Information lets you visualize the agents' scheduled tasks.

20.2 Reviewing your Execution Results
In Oracle Data Integrator, an execution results in a session. A session is made up of
steps which are made up of tasks. Sessions are viewed and managed in Operator
Navigator.

20.2.1 Status
A session, step or task always has a status. Table 20–2 lists the six possible status
values:

When finished, a session takes the status of the last executed step (Done or Error).
When finished, the step, takes the status of the last executed task (Except if the task
returned a Warning. In this case, the step takes the status Done)

Table 20–2 Status Values

Status Name Status Icon Status Description

Done The session, step or task was executed successfully

Error The session, step or task has terminated due to an error.

Running The session, step or task is being executed.

Waiting The session, step or task is waiting to be executed

Warning
(Sessions and
tasks only)

■ For Sessions: The session has completed successfully but
errors have been detected during the data quality check.

■ For Tasks: The task has terminated in error, but since
errors are allowed on this task, this did not stop the
session.

Queued
(Sessions only)

The session is waiting for an agent to be available for its
execution

Reviewing your Execution Results

20-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

20.2.2 Managing Errors
When your session ends in error or with a warning, you can analyze the error in
Operator Navigator.

To analyze an error:

1. In the Operator Navigator, identify the session, the step and the task in error.

2. Double click the task in error. The Task editor opens.

3. On the Definition tab in the Execution Statistics section, the return code and
message give the error that stopped the session.

4. On the Code tab, the source and target code for the task is displayed and can be
reviewed and edited.

5. On the Connection tab, you can review the source and target connections against
which the code is executed.

You can fix the code of the command in the Code tab and apply your changes.
Restarting a Session is possible after performing this action. The session will restart
from the task in error.

20.2.3 Managing Successful Executions
When your session ends successfully, you can view the changes performed in
Operator Navigator. These changes include record statistics such as the number of
inserts, updates, deletes, errors, and the total number of rows as well as execution
statistics indicating start and end time of the execution, the duration in seconds, the
return code, and the message (if any).

Session level statistics aggregate the statistics of all the steps of this session, and each
step’s statistics aggregate the statistics of all the tasks within this step.

To review the execution statistics:

1. In the Operator Navigator, identify the session, the step or the task to review.

2. Double click the session, the step or the task. The corresponding editor opens.

3. The record and execution statistics are displayed on the Definition tab. Note that
for session steps in which an interface has been executed or a datastore check has
been performed also the target table details are displayed.

Note: Fixing the code in the session’s task does not fix the source
object that was executed (interface, procedure, package or scenario).
This source object must be fixed in Designer Navigator and the
scenario (if any) must be regenerated. Modifying the code within the
session is useful for debugging issues.

WARNING: When a session fails, all connections and transactions
to the source and target systems are rolled back. As a consequence,
uncommitted statements on transactions are not applied.

Managing your Executions

Monitoring Integration Processes 20-5

Record Statistics

Execution Statistics

Target Table Details

20.3 Managing your Executions
Managing your development executions takes place in Operator Navigator. You can
manage your executions during the execution process itself or once the execution has
finished depending on the action that you wish to perform. The actions that you can
perform are:

■ Managing Sessions

■ Managing the Log

■ Managing Scenarios

■ Managing Schedules

20.3.1 Managing Sessions
Managing sessions involves the following tasks

■ Starting a Session

■ Stopping a Session

■ Restarting a Session

Properties Description

No. of Inserts Number of rows inserted during the session/step/task.

No. of Updates Number of rows updated during the session/step/task.

No. of Deletes Number of rows deleted during the session/step/task.

No. of Errors Number of rows in error in the session/step/task.

No. of Rows Total number of rows handled during this session/step/task.

Properties Description

Start Start date and time of execution of the session/step/task.

End End date and time of execution of the session/step/task.

Duration (seconds) The time taken for execution of the session/step/task.

Return code Return code for the session/step/task.

Properties Description

Table Name Name of the target datastore.

Model Code Code of the Model in which the target datastore is stored.

Resource Name Resource name of the target datastore.

Logical Schema Logical schema of this datastore.

Forced Context Code The context of the target datastore.

Managing your Executions

20-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

20.3.1.1 Starting a Session
A session is created and started when an integration process is launched. How to run
integration processes is covered in Chapter 19, "Running Integration Processes".

20.3.1.2 Stopping a Session
Any running or waiting session can be stopped. You may want to stop a session when
you realize that for example your interface contains errors or when the execution takes
a long time.

Note that there are two ways to stop a session:

■ Normal: The session is stopped once the current task is finished.

■ Immediate: The current task is immediately interrupted and the session is
stopped. This mode allows to stop long-running tasks, as for example long SQL
statements before they complete.

To stop a session:

1. In Operator Navigator, select the running or waiting session to stop from the tree.

2. Right-click then select Stop Normal or Stop Immediate.

3. In the Stop Session Dialog, click OK.

The session is stopped and changed to Error status.

20.3.1.3 Restarting a Session
Any session that has encountered an error, or has been stopped by the user can be
restarted.

How to restart a session is covered in Section 19.4.2, "Restarting a Session from a
Command Line".

20.3.1.4 Cleaning Stale Sessions
Stale sessions are sessions that are incorrectly left in a running state after an agent or
repository crash.

The Agent that started a session automatically detects when this session becomes stale
and changes it to Error status. You can manually request specific Agents to clean stale
sessions in Operator Navigator or Topology Navigator.

To clean stale sessions manually:

1. Do one of the following:

Note: The immediate stop works only with technologies and drivers
that support task interruption. It is supported if the
statement.cancel method is implemented in the JDBC driver.

Note: Only sessions that are running within a Java EE or standalone
Agent can be stopped. Sessions running in the Studio built-in Agent
or started with the startscen.sh or startscen.bat script
without the AGENT_URL parameter, cannot be stopped. See
Chapter 19, "Running Integration Processes" for more information.

Managing your Executions

Monitoring Integration Processes 20-7

■ From the Operator Navigator toolbar menu, select Clean Stale Sessions.

■ In Topology Navigator, from the Physical Architecture accordion, select an
Agent, right-click and select Clean Stale Sessions.

The Clean Stale Sessions Dialog opens.

2. In the Clean Stale Sessions Dialog specify the criteria for cleaning stale sessions:

■ From the list, select the Agents that will clean their stale sessions.

Select Clean all Agents if you want all Agents to clean their stale sessions.

■ From the list, select the Work Repositories you want to clean.

Select Clean all Work Repositories if you want to clean stale sessions in all
Work Repositories.

3. Click Clean to start the cleaning process.

20.3.2 Managing the Log
Oracle Data Integrator provides several solutions for managing your log data:

■ Filtering Sessions to display only certain execution sessions in Operator Navigator

■ Purging the Log to remove the information of past sessions

■ Organizing the Log with Session Folders

■ Exporting and Importing Log Data for archiving purposes

20.3.2.1 Filtering Sessions
Filtering log sessions allows you to display only certain sessions in Operator
Navigator, by filtering on parameters such as the user, status or duration of sessions.
Sessions that do not meet the current filter are hidden from view, but they are not
removed from the log.

To filter out sessions:

1. In the Operator Navigator toolbar menu, click Filter. The Define Filter editor
opens.

2. In the Define Filter Editor, set the filter criteria according to your needs. Note that
the default settings select all sessions.

■ Session Number: Use blank to show all sessions.

■ Session Name: Use % as a wildcard. For example DWH% matches any session
whose name begins with DWH.

■ Session's execution Context

■ Agent used to execute the session

■ User who launched the session

■ Status: Running, Waiting etc.

■ Date of execution: Specify either a date From or a date To, or both.

■ Duration greater than a specified number of seconds

3. Click Apply for a preview of the current filter.

4. Click OK.

Managing your Executions

20-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Sessions that do not match these criteria are hidden in the Session List accordion. The
Filter button on the toolbar is activated.

To deactivate the filter click Filter in the Operator toolbar menu. The current filter is
deactivated, and all sessions appear in the list.

20.3.2.2 Purging the Log
Purging the log allows you to remove past sessions from the log. This procedure is
used to keeping a reasonable volume of sessions archived in the work repository. It is
advised to perform a purge regularly. This purge can be automated using the
OdiPurgeLog tool.

To purge the log:

1. From the Operator Navigator toolbar menu select Connect Navigator > Purge
Log... The Purge Log editor opens.

2. In the Purge Log editor, set the criteria listed in Table 20–3 for the sessions you
want to delete.

Only the sessions matching the specified filters will be removed.

3. Click OK.

Oracle Data Integrator removes the sessions from the log.

20.3.2.3 Organizing the Log with Session Folders
You can use session folders to organize the log. Session folders automatically group
sessions that were launched with certain keywords. Session folders are created under
the Keywords node on the Session List accordion.

Each session folder has one or more keywords associated with it. Any session
launched with all the keywords of a session folder is automatically categorized
beneath it.

To create a new session folder:

1. In Operator Navigator, go to the Session List accordion.

Table 20–3 Purge Log Parameters

Parameter Description

From ... To Sessions in this time range will be deleted.

Context Sessions executed in this context will be deleted.

Agent Sessions executed by this agent will be deleted.

Status Session in this status will be deleted.

User Sessions executed by this user will be deleted.

Session name Sessions matching this session name will be deleted. Note that
you can specify session name masks using % as a wildcard.

Purge scenario reports If you select Purge scenario reports, the scenario reports
(appearing under the execution node of each scenario) will also
be purged.

Note: It is also possible to delete sessions by selecting one or more
sessions in Operator Navigator and pressing the Delete key.

Managing your Executions

Monitoring Integration Processes 20-9

2. Right-click the Keywords node and select New Session Folder.

3. Specify a Folder Name.

4. Click Add to add a keyword to the list. Repeat this step for every keyword you
wish to add.

Table 20–4 lists examples of how session folder keywords are matched.

To launch a session with keywords, you can for example start a scenario from a
command line with the -KEYWORDS parameter. Refer to Chapter 19, "Running
Integration Processes" for more information.

20.3.2.4 Exporting and Importing Log Data
Export and import log data for archiving purposes.

Exporting Log Data
Exporting log data allows you to export log files for archiving purposes.

To export the log:

1. From the Operator Navigator toolbar menu select Connect Navigator > Export >
Log

2. In the Export the log dialog, set the log export parameters as described in
Table 20–5.

Note: Only sessions with all the keywords of a given session folder
will be shown below that session folder. Keyword matching is case
sensitive.

Table 20–4 Matching of Session Folder Keywords

Session folder keywords Session keywords Matches?

DWH, Test, Batch Batch No - all keywords must be matched.

Batch DWH, Batch Yes - extra keywords on the session are
ignored.

DWH, Test Test, dwh No - matching is case-sensitive.

Note: Session folder keyword matching is dynamic. If the keywords
for a session folder are changed or if a new folder is created, existing
sessions are immediately re-categorized.

Table 20–5 Log Export Parameters

Properties Description

Export to directory Directory in which the export file will be created.

Exports to zip file If this option is selected, a unique compressed file containing all
log export files will be created. Otherwise, a set of log export
files is created.

Zip File Name Name given to the compressed export file.

Filters This set of options allow to filter the log files to export
according to the specified parameters.

Managing your Executions

20-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

3. Click OK.

The log data is exported into the specified location.

Note that you can also automate the log data export using the OdiExportLog tool.

Importing Log Data
Importing log data allows you to import into your work repository log files that have
been exported for archiving purposes.

To import the log:

1. From the Operator Navigator toolbar menu select Connect Navigator > Import >
Log

2. In the Import of the log dialog:

1. Select the Import Mode. Refer to Section 18.1.3, "Import Modes" for more
information.

2. Select whether you want to import the files From a Folder or From a ZIP file.

3. Enter the file import folder or zip file.

4. Click OK.

The specified folder or ZIP file is imported into the work repository.

20.3.3 Managing Scenarios
You can also manage your developments executions in Operator Navigator by using
scenarios.

Before running a scenario, you need to have the scenario generated from Designer
Navigator or imported from a file. Refer to Chapter 13, "Working with Scenarios" for
more information.

Launching a scenario from Operator Navigator is covered in Section 19.3.1, "Executing
a Scenario from the Studio".

From / To Date of execution: specify either a date From or a date To, or
both.

Agent Agent used to execute the session.

Context Session's execution Context

Session State The possible states are Done, Error, Queued, Running,
Waiting and Warning.

User User who launched the session

Session Name Use % as a wildcard. For example DWH% matches any session
whose name begins with DWH.

Advanced options This set of options allow to parameterize the output file
format.

Character Set Encoding specified in the export file. Parameter encoding in the
XML file header.

<?xml version="1.0" encoding="ISO-8859-1"?>

Java Character Set Java character set used to generate the file.

Table 20–5 (Cont.) Log Export Parameters

Properties Description

Managing your Executions

Monitoring Integration Processes 20-11

20.3.3.1 Scenario Folders
In Operator Navigator, scenarios can be grouped into scenario folders to facilitate
organization. Scenario folders can contain other scenario folders.

To create a scenario folder:

1. In Operator Navigator go to the Scenarios accordion.

2. From the Scenarios toolbar menu, select New Scenario Folder > New Scenario
Folder.

3. On the Definition tab of the Scenario Folder editor enter a name for your scenario
folder.

4. From the File menu, select Save.

You can now reorganize your scenarios and drag and drop them into the scenario
folder.

20.3.3.2 Importing Scenarios and Solutions in Production
A scenario generated from Designer can be exported and then imported into a
development or production repository. This operation is used to deploy scenarios in a
different repository, possibly in a different environment or site.

Importing a scenario in a development repository is performed via Designer or
Operator Navigator. With a production repository, only Operator Navigator is
available for this purpose.

How to import a scenario in production is covered in Section 13.6, "Importing
Scenarios in Production".

Similarly, a solution containing several scenarios can be imported to easily transfer and
restore a group of scenarios at once. See Chapter 17, "Working with Version
Management" for more information. Note that when connected to a production
repository, only scenarios may be restored from solutions.

20.3.4 Managing Schedules
A schedule is always attached to one scenario. Schedules can be created in Operator
Navigator. See Section 19.5, "Scheduling Scenarios" for more information.

You can also import an already existing schedule during the scenario import. See
Section 13.6, "Importing Scenarios in Production" for more information.

You can view the scheduled tasks of all your agents or you can view the scheduled
tasks of one particular agent. See Section 19.5.1.3, "Displaying the Schedule" for more
information.

Managing your Executions

20-12 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

21

Working with Oracle Data Integrator Console 21-1

21Working with Oracle Data Integrator Console

This chapter describes how to work with Oracle Data Integrator Console. An overview
of the Console user interface is provided.

This chapter includes the following sections:

■ Section 21.1, "Introduction to Oracle Data Integrator Console"

■ Section 21.2, "Using Oracle Data Integrator Console"

21.1 Introduction to Oracle Data Integrator Console
Oracle Data Integrator Console is a web-based console for managing and monitoring
an Oracle Data Integrator run-time architecture and for browsing design-time objects.

This section contains the following topics:

■ Section 21.1.1, "Introduction to Oracle Data Integrator Console"

■ Section 21.1.2, "Oracle Data Integrator Console Interface"

21.1.1 Introduction to Oracle Data Integrator Console
Oracle Data Integrator Console is a web-based console available for different types of
users:

■ Administrators use Oracle Data Integrator Console to create and import
repositories and to configure the Topology (data servers, schemas, and so forth).

■ Production operators use Oracle Data Integrator Console to manage scenarios,
monitor sessions, and manage the content of the error tables generated by Oracle
Data Integrator.

■ Business users and developers browse development artifacts in this interface,
using, for example, the Data Lineage and Flow Map features.

This web interface integrates seamlessly with Oracle Fusion Middleware Control
Console and allows Fusion Middleware administrators to drill down into the details of
Oracle Data Integrator components and sessions.

Note: Oracle Data Integrator Console is required for the Fusion
Middleware Control Extension for Oracle Data Integrator. It must be
installed and configured for this extension to discover and display the
Oracle Data Integrator components in a domain.

Introduction to Oracle Data Integrator Console

21-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

21.1.2 Oracle Data Integrator Console Interface
Oracle Data Integrator Console is a web interface using the ADF-Faces framework.

Figure 21–1 shows the layout of Oracle Data Integrator Console.

Figure 21–1 Oracle Data Integrator Console

Oracle Data Integrator Console displays the objects available to the current user in two
Navigation tabs in the left panel:

■ Browse tab displays the repository objects that can be browsed and edited. In this
tab you can also manage sessions and error tables.

■ Management tab is used to manage the repositories and the repository
connections. This tab is available to connection users having Supervisor privileges,
or to any user to set up the first repository connections.

The right panel displays the following tabs:

■ Search tab is always visible and allows you to search for objects in the connected
repository.

■ One Master/Details tab is displayed for each object that is being browsed or
edited. Note that it is possible to browse or edit several objects at the same time.

The search field above the Navigation tabs allows you to open the search tab when it is
closed.

Working with the Navigation Tabs
In the Navigation tabs, you can browse for objects contained in the repository. When
an object or node is selected, the Navigation Tab toolbar displays icons for the actions

Using Oracle Data Integrator Console

Working with Oracle Data Integrator Console 21-3

available for this object or node. If an action is not available for this object, the icon is
grayed out. For example, you can edit and add data server objects under the Topology
node in the Browse Tab, but you cannot edit Projects under the Designer node. Note
that the number of tabs that you can open at the same time is limited to ten.

21.2 Using Oracle Data Integrator Console
This section explains the different types of operations available in Oracle Data
Integrator console. It does not focus on each type of object that can be managed with
the console, but gives keys to manage objects with the console.

This section includes the following topics:

■ Section 21.2.1, "Connecting to Oracle Data Integrator Console"

■ Section 21.2.2, "Generic User Operations"

■ Section 21.2.3, "Managing Scenarios and Sessions"

■ Section 21.2.4, "Using Data Lineage and Flow Map"

■ Section 21.2.5, "Performing Administrative Operations"

21.2.1 Connecting to Oracle Data Integrator Console
Oracle Data Integrator console connects to a repository via a Repository Connection,
defined by an administrator.

Note that you can only connect to Oracle Data Integrator Console if it has been
previously installed. See the Oracle Fusion Middleware Installation and Upgrade Guide for
Oracle Data Integrator for more information about installing Oracle Data Integrator
Console.

Connecting to Oracle Data Integrator Console
To connect to Oracle Data Integrator Console:

1. Open a web browser, and connect to the URL where Oracle Data Integrator
Console is installed. For example: http://odi_host:8001/odiconsole/.

2. From the Repository list, select the Repository connection corresponding to the
master or work repository you want to connect.

3. Provide a User ID and a Password.

Note: Oracle Data Integrator Console uses the security defined in the
master repository. Operations that are not allowed for a user will
appear grayed out for this user.

In addition, the Management tab is available only for users with
Supervisor privileges.

Note: The first time you connect to Oracle Data Integrator Console, if
no repository connection is configured, you will have access to the
Management tab to create a first repository connection. See "Creating
a Repository Connection" for more information. After your first
repository connection is created, the Management tab is no longer
available from the Login page, and is available only for users with
Supervisor privileges.

Using Oracle Data Integrator Console

21-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

4. Click Sign In.

21.2.2 Generic User Operations
This section describes the generic operations available in Oracle Data Integrator
Console for a typical user.

This section includes the following operations:

■ Viewing an Object

■ Editing an Object

■ Creating an Object

■ Deleting an Object

■ Searching for an Object

Viewing an Object
To view an object:

1. Select the object in the Browse or Management Navigation tab.

2. Click View in the Navigation tab toolbar. The simple page or the Master/Detail
page for the object opens.

Editing an Object
To edit an object:

1. Select the object in the Browse or Management Navigation tab.

2. Click Update in the Navigation tab toolbar. The edition page for the object opens.

3. Change the value for the object fields.

4. Click Save in the edition page for this object.

Creating an Object
To create an object:

1. Navigate to the parent node of the object you want to create in the Browse or
Management Navigation tab. For example, to create a Context, navigate to the
Topology > Contexts node in the Browse tab.

2. Click Create in the Navigation tab toolbar. An Add dialog for this object appears.

3. Provide the values for the object fields.

4. Click Save in the Add dialog of this object. The new object appears in the
Navigation tab.

Deleting an Object
To delete an object:

1. Select the object in the Browse or Management Navigation tab.

2. Click Delete in the Navigation tab toolbar.

3. Click OK in the confirmation window.

Searching for an Object
To search for a design-time or Topology object:

Using Oracle Data Integrator Console

Working with Oracle Data Integrator Console 21-5

1. In the Search tab, select the tab corresponding to the object you want to search:

■ Designer tab allows you to search for design-time objects.

■ Topology tab allows you to search for topology objects.

2. In the Search Text field, enter a part of the name of the object that you want to
search. Select Case sensitive if you want the search to be case sensitive.

3. Select in Models/Project (Designer tab) or Topology (Topology tab) the type of
object you want to search for. Select All to search for all objects.

4. Click Search.

5. The Search Results appear, grouped by object type. You can click an object in the
search result to open its master/details page.

21.2.3 Managing Scenarios and Sessions
This section describes the operations related to scenarios and sessions available in
Oracle Data Integrator Console.

This section includes the following operations:

■ Importing a Scenario

■ Running a Scenario

■ Running a Scenario

■ Stopping a Session

■ Restarting a Session

■ Cleaning Stale Sessions

■ Managing Data Statistics and Erroneous Records

Importing a Scenario
To import a scenario:

1. Select the Browse Navigation tab.

2. Navigate to Runtime > Scenarios > All Scenarios.

3. Click Import in the Navigation tab toolbar.

4. Select an Import Mode and select an export file in Scenario XML File.

5. Click Import Scenario.

Exporting a Scenario
To export a scenario:

1. Select the Browse Navigation tab.

2. Navigate to Runtime > Scenarios > All Scenarios.

3. Click Import in the Navigation tab toolbar.

4. Select an Import Mode and select an export file in Scenario XML File.

5. Click Import Scenario.

Running a Scenario
To execute a scenario:

Using Oracle Data Integrator Console

21-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

1. Select the Browse Navigation tab.

2. Navigate to Runtime > Scenarios > All Scenarios.

3. Select the scenario you want to execute.

4. Click Execute in the Navigation tab toolbar.

5. Select an Agent, a Context, and a Log Level for this execution.

6. Click Execute Scenario.

Stopping a Session
Note that you can perform a normal or an immediate kill of a running session.
Sessions with the status Done, Warning, or Error cannot be killed.

To kill a session:

1. Select the Browse Navigation tab.

2. Navigate to Runtime > Scenarios > All Sessions.

3. Select the session you want to stop.

4. Click Kill in the Navigation tab toolbar.

Restarting a Session
To restart a session:

1. Select the Browse Navigation tab.

2. Navigate to Runtime > Scenarios > All Sessions.

3. Select the session you want to restart.

4. Click Restart in the Navigation tab toolbar.

Cleaning Stale Sessions
To clean stale sessions:

1. Select the Browse Navigation tab.

2. Navigate to Runtime > Scenarios > All Sessions.

3. Click Clean in the Navigation tab toolbar.

4. In the Clean Stale Sessions dialog, select the Agent for which you want to clean
stale sessions.

5. Click OK.

Managing Data Statistics and Erroneous Records
Oracle Data Integrator Console allows you to browse the details of a session, including
the record statistics. When a session detects erroneous data during a flow or static
check, these errors are isolated into error tables. You can also browse and manage the
erroneous rows using Oracle Data Integrator Console.

To view the erroneous data:

1. Select the Browse Navigation tab.

Note: Sessions with erroneous data detected finish in Warning
status.

Using Oracle Data Integrator Console

Working with Oracle Data Integrator Console 21-7

2. Navigate to a given sessions using Runtime > Sessions > All Sessions, the Search
panel or from the Session tab of Scenario page.

3. Expand the Relationships section and then select the Record Statistics tab.
This tab shows each physical table targeting in this session, as well as the record
statistics.

4. Click the number shown in the Errors column. The content of the error table
appears.

■ You can filter the errors by Constraint Type, Name, Message Content,
Detection date, and so forth. Click Filter Result to apply a filter.

■ Select a number of errors in the Query Results table and click Delete to delete
these records.

■ Click Delete All to delete all the errors.

21.2.4 Using Data Lineage and Flow Map
This section describes how to use the Data Lineage and Flow Map features available in
Oracle Data Integrator Console.

■ Data Lineage provides graph displaying the flows of data from the point of view
of a given datastore. In this graph, you can navigate back and forth and follow this
data flow.

■ Flow Map provides a map of the relations that exist between the data structures
(models, sub-models and datastores) and design-time objects (projects, folders,
packages, interfaces). This graph allows you to draw a map made of several data
structures and their data flows.

This section includes the following operations:

■ Working with the Data Lineage

■ Working with the Flow Map

Working with the Data Lineage
To view the Data Lineage:

1. Select the Browse Navigation tab.

2. Navigate to Design Time > Models > Data Lineage.

3. Click View in the Navigation tab toolbar.

4. In the Data Lineage page, select a Model, then a Sub-Model and a datastore in this
model.

5. Select Show Interfaces if you want that interfaces are displayed between the
datastores nodes.

6. Select the prefix to add in your datastores and interface names in the Naming
Options section.

7. Click View to draw the Data Lineage graph. This graph is centered on the
datastore selected in step 4.

In this graph, you can use the following actions:

■ Click Go Back to return to the Data Lineage options and redraw the graph.

Note: Delete operations cannot be undone.

Using Oracle Data Integrator Console

21-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ Use the Hand tool and then click a datastore to redraw the lineage centered on
this datastore.

■ Use the Hand tool and then click an interface to view this interface’s page.

■ Use the Arrow tool to expand/collapse groups.

■ Use the Move tool to move the graph.

■ Use the Zoom In/Zoom Out tools to resize the graph.

■ Select View Options to change the display options have the graph refreshed
with this new option.

Working with the Flow Map
To view the Flow Map:

1. Select the Browse Navigation tab.

2. Navigate to Design Time > Models > Flow Map.

3. Click View in the Navigation tab toolbar.

4. In the Data Lineage page, select one or more Model. Select All to select all models.

5. Select one of more Projects. Select All to select all projects.

6. In the Select the level of details of the map section, select the granularity of the
map. The object that you select here will be the nodes of your graph.

Check Do not show Projects, Folders... if you want the map to show only data
structure.

7. Optionally, indicate the grouping for the data structures and design-time objects in
the map, using the options in the Indicate how to group Objects in the Map
section.

8. Click View to draw the Flow Map graph.

In this graph, you can use the following actions:

■ Click Go Back to return to the Flow Map options and redraw the graph.

■ Use the Hand tool and then click a node (representing a datastore, an
interface, and so forth) in the map to open this object’s page.

■ Use the Arrow tool to expand/collapse groups.

■ Use the Move tool to move the graph.

■ Use the Zoom In/Zoom Out tools to resize the graph.

21.2.5 Performing Administrative Operations
This section describes the different administrative operations available in Oracle Data
Integrator Console. These operations are available for a user with Supervisor
privileges.

This section includes the following operations:

■ Creating a Repository Connection

■ Administering Repositories

■ Administering Java EE Agents

Using Oracle Data Integrator Console

Working with Oracle Data Integrator Console 21-9

Creating a Repository Connection
A repository connection is a connection definition for Oracle Data Integrator Console. A
connection does not include Oracle Data Integrator user and password information.

To create a repository connection:

1. Navigate to the Repository Connections node in the Management Navigation
tab.

2. Click Create in the Navigation tab toolbar. A Create Repository Connection
dialog for this object appears.

3. Provide the values for the repository connection:

■ Connection Alias: Name of the connection that will appear on the Login page.

■ Master JNDI URL: JNDI URL of the datasource to connect the master
repository database.

■ Supervisor User Name: Name of the Oracle Data Integrator user with
Supervisor privileges that Oracle Data Integrator Console will use to connect
to the repository. This user’s password must be declared in the WLS
Credential Store.

■ Work JNDI URL: JNDI URL of the datasource to connect the work repository
database. If no value is given in this field. The repository connection will allow
connection to the master only, and the Navigation will be limited to Topology
information.

■ JNDI URL: Check this option if you want to use the environment naming
context (ENC). When this option is checked, Oracle Data Integrator Console
automatically prefixes the data source name with the string
java:comp/env/ to identify it in the application server’s JNDI directory.
Note that the JNDI Standard is not supported by Oracle WebLogic Server and
for global data sources.

■ Default: Check this option if you want this Repository Connection to be
selected by default on the login page.

4. Click Save. The new Repository Connection appears in the Management
Navigation tab.

Administering Repositories
Oracle Data Integrator Console provides you with features to perform management
operations (create, import, export) on repositories. These operations are available from
the Management Navigation tab, under the Repositories node. These management
operations reproduce in a web interface the administrative operations available via the
Oracle Data Integrator Studio and allow setting up and maintaining your environment
from the ODI Console.

See Chapter 3, "Administering the Oracle Data Integrator Repositories" and
Chapter 18, "Exporting/Importing" for more information on these operations.

Administering Java EE Agents
Oracle Data Integrator Console allows you to add JDBC datasources and create
templates to deploy physical agents into WebLogic Server.

See Chapter 4, "Setting-up the Topology" for more information on Java EE Agents,
datasources and templates.

To add a datasource to a physical agent:

Using Oracle Data Integrator Console

21-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

1. Select the Browse Navigation tab.

2. Navigate to Topology > Agents > Physical Agents.

3. Select the agent you want to manage.

4. Click Edit in the Navigation tab toolbar.

5. Click Add Datasource

6. Provide a JNDI Name for this datasource and select the Data Server Name. This
datasource will be used to connect to this data server from the machine into which
the Java EE Agent will be deployed.

7. Click OK.

8. Click Save to save the changes to the physical agent.

To create a template for a physical agent:

1. Select the Browse Navigation tab.

2. Navigate to Topology > Agents > Physical Agents.

3. Select the agent you want to manage.

4. Click Edit in the Navigation tab toolbar.

5. Click Agent Deployment.

6. Follow the steps of the Agent Deployment wizard. This wizard reproduces in a
web interface the WLS Template Generation wizard. See Chapter 4.3.2.1,
"Deploying an Agent in a Java EE Application Server (Oracle WebLogic Server)"
for more details.

Part VII
Part VII Managing the Security Settings

This part describes how to manage the security settings in Oracle Data Integrator.

This part contains the following chapters:

■ Chapter 22, "Managing the Security in Oracle Data Integrator"

22

Managing the Security in Oracle Data Integrator 22-1

22Managing the Security in Oracle Data
Integrator

This chapter describes how to set up security in Oracle Data Integrator. An overview
of Oracle Data Integrator security concepts and components is provided.

This chapter contains the following sections:

■ Section 22.1, "Introduction to Oracle Data Integrator Security"

■ Section 22.2, "Setting up a Security Policy"

■ Section 22.3, "Advanced Security"

22.1 Introduction to Oracle Data Integrator Security
Oracle Data Integrator security is used to secure any action performed by
authenticated users against the design-time and run-time artifacts and components of
Oracle Data Integrator.

Security is built around users and profiles, to which security administrators grant
methods (edit, delete, and so forth) on objects types (projects, models, interfaces, and
so forth) or on specific object instances (Data warehouse Project, ODS Project, and so
forth).

All the security information for Oracle Data Integrator is stored in the master
repository.

This section contains the following topics:

■ Section 22.1.1, "Objects, Instances and Methods"

■ Section 22.1.2, "Profiles"

■ Section 22.1.3, "Users"

22.1.1 Objects, Instances and Methods
An Object is a representation of a design-time or run-time artifact handled through
Oracle Data Integrator. For example, agents, models, datastores, scenarios, interfaces
and even repositories are objects. Specific objects have a double name (Agent/Context,
Profile/Method, and so forth). These objects represent links between objects. These
links are also objects. For instance, Agent/Context corresponds to a physical/logical
agent association made through the contexts. Privileges on this object enable to change
this association in the topology.

An Instance is a particular occurrence of an object. For example, the Datawarehouse
project is an instance of the Project object.

Introduction to Oracle Data Integrator Security

22-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

A Method is an action that can be performed on an object. Each object has a predefined
set of methods.

22.1.2 Profiles
A Profile contains a set of privileges for working with Oracle Data Integrator. One or
more profiles can be assigned to a user to grant the sum of these privileges to this user.

A Profile Method is an authorization granted to a profile on a method of an object type.
Each granted method allows a user with this profile to perform an action (edit, delete,
and so forth) on an instance of an object type (project, model, datastore, and so forth).

Methods granted to a profile appear under this profile in the Profiles accordion of the
Security Navigator. When a method does not appear for a given profile, this profile
does not have access to this method.

A method can be granted as a generic or non-generic privilege:

■ A method granted as a generic privilege is granted by default on all the instances
of this object.

■ A method granted as a non-generic privilege is not granted by default on all object
instances, but may be granted per instance.

Generic vs. Non-Generic profiles
Generic profiles have the Generic privilege option selected for all object methods. This
implies that a user with such a profile is by default authorized for all methods of all
instances of an object to which the profile is authorized.

Non-Generic profiles are not by default authorized for all methods on the instances
since the Generic privilege option is not selected for all object methods. The
administrator must grant the user the rights on the methods for each instance.

If the security administrator wants a user to have the rights on no instance by default,
but wishes to grant the rights by instance, the user must be given a non-generic profile.

If the security administrator wants a user to have the rights on all instances of an
object type by default, the user must be given a generic profile.

Built-In Profiles
Oracle Data Integrator has some built-in profiles that the security administrator can
assign to the users he creates.

Table 22–1 shows the built-in profiles delivered with Oracle Data Integrator.

Note: The notions of object instance and method in Oracle Data
Integrator are similar to the concepts used in Object-Oriented
Programming.

WARNING: Although they appear in the Security Navigator,
objects and methods are predefined in Oracle Data Integrator and
should not be altered.

Introduction to Oracle Data Integrator Security

Managing the Security in Oracle Data Integrator 22-3

22.1.3 Users
A User is an Oracle Data Integrator user, and corresponds to the login name used to
connect to a repository.

A user inherits the following privileges:

■ All the privileges granted to its various profiles

■ Privileges on objects and/or instances given to this user

A User Method is a privilege granted to a user on a method of an object type. Each
granted method allows the user to perform an action (edit, delete, and so forth) on
instances of an object type (project, model, datastore, and so forth). These methods are
similar to the Profiles Methods, applied to users.

It is possible to grant users with privileges on instances on specific work repositories
where these instances exist. For example, you may grant a developer user with the edit
privilege on the LOAD_DATAWAREHOUSE scenario on the a DEVELOPMENT
repository and not on a PRODUCTION repository.

Table 22–1 Built-In Profiles

Profile Name Description

CONNECT Profile granted with the basic privileges to connect Oracle Data
Integrator. It should be granted with another profile.

DESIGNER Profile granted with privileges to perform development
operations. Use this profile for users who will work mainly on
projects.

NG_DESIGNER Non-generic version of the DESIGNER profile.

METADATA_ADMIN Profile granted with privileges to manage metadata. Use this
profile for users that will work mainly on models.

NG_METADATA_
ADMIN

Non-generic version of the METATADA_ADMIN profile.

OPERATOR Profile granted with privileges to manage run-time objects. Use
this profile for production users.

REPOSITORY_
EXPLORER

Profile granted with privileges to view objects. Use this profile
for users who do not need to modify objects.

NG_REPOSITORY_
EXPLORER

Non-generic version of the REPOSITORY_EXPLORER profile.

SECURITY_ADMIN Profile granted with privileges to edit security. Use this profile
for security administrators.

TOPOLOGY_ADMIN Profile granted with privileges to edit the Topology. Use this
profile for system or Oracle Data Integrator administrators.

VERSION_ADMIN Profile granted with privileges to create, restore and edit
versions and solutions. Use this profile for project managers, or
developers who are entitled to perform version management
operations.

NG_VERSION_ADMIN Non-generic version of the VERSION_ADMIN profile.

Note: Built-in profiles should preferably not be changed, as they
evolve to secure the new feature of Oracle Data Integrator. If you want
to customize your own profiles or existing profiles, it is recommended
to create duplicates of the built-in profiles and customize these copies.

Setting up a Security Policy

22-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

An authorization by Object Instance is granted to a user on an object instance. It allows
to grant to this user certain methods of this object instance.

The presence in a user's tree of an authorization by object instance for a given instance
shows that the user is granted specific privileges on the object methods for the given
instance (these privileges are specified in the Object Instance editor). If an instance is
not visible in the tree of the user instances, then the User Method or Profile Method
privileges for the object type apply.

As an instance may be replicated over the different work repositories that are attached
to the master repository, authorizations by object instances may be defined for one,
multiple or all your work repositories attached to this master repository. For example,
a LOAD_DATAWAREHOUSE scenario instance may be replicated (using for example
versioning) in the DEVELOPMENT, TEST, and PRODUCTION repositories. Privileges
on the instance will change depending on the repository.

For example, it is common to replicate projects from a Development repository to a Test
repository. A developer may be granted edit privileges for his project in the
Development repository, but not on the Test repository. On the Test repository, he will
only be granted with view privileges on the project.

22.2 Setting up a Security Policy
This section explains how to use the different security concepts to enforce security in
Oracle Data Integrator.

This section contains these topics:

■ Section 22.2.1, "Security Policy Approach"

■ Section 22.2.2, "Managing Profiles"

■ Section 22.2.3, "Managing Users"

■ Section 22.2.4, "Managing Privileges"

22.2.1 Security Policy Approach
There are two main approaches for defining the security in Oracle Data Integrator:

■ The strongly secured approach, where users have no default authorizations on
objects. This approach uses only non-generic profiles. The security administrator
must grant the users authorizations on object instances. This policy is complex to
configure, as it requires to manage privileges by instance.

■ The generic approach, where users inherit the privileges of the profiles they have.
This policy is suitable for most cases, and is simple to configure.

To implement a strongly secured approach:

1. Create the users.

2. Give the users non-generic profiles (built-in or customized).

3. Grant the users privileges on object instances after these are created. This
operation must be repeated for every new instance.

To implement a generic approach:

1. Create the users.

2. Give the users the generic profiles (built-in or customized).

Setting up a Security Policy

Managing the Security in Oracle Data Integrator 22-5

22.2.2 Managing Profiles
You can create, delete or duplicate profiles to customize the profiles assigned to users.

22.2.2.1 Creating a New Profile
To create a Profile:

1. In Security Navigator expand the Profiles accordion.

2. Click New Profile in the toolbar of the Profiles accordion.

3. In the Name field, enter a name for your profile.

4. From the File main menu, select Save.

The new profile appears.

22.2.2.2 Duplicating a Profile
To duplicate a Profile:

1. In Security Navigator expand the Profiles accordion.

2. Select the profile that you want to duplicate from the list of profiles.

3. Right-click and select Duplicate.

A new profile (copy of the original profile) appears.

22.2.2.3 Deleting a Profile
To delete a Profile:

1. In Security Navigator expand the Profiles accordion.

2. Select the profile that you want to delete from the list of profiles.

3. Right-click and select Delete.

4. Click OK in the Confirmation dialog.

The profile disappears from the list. All users granted with this profile lose the
privileges attached to this profile.

22.2.3 Managing Users
You can create and delete users, assign and remove built-in or customized profiles to
users.

22.2.3.1 Creating a New User
To create a User:

1. In Security Navigator expand the Users accordion.

2. Click New User in the toolbar of the Users accordion.

Note: It is possible to combine the two approaches by using
simultaneously generic and non generic profiles. For example, by
using DESIGNER and NG_METADATA_ADMIN for the users, you
would manage projects is a generic approach and models in a strongly
secured approach.

Setting up a Security Policy

22-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

3. In the Name field, enter a name for your user.

4. Provide the Initials for this user.

5. Do one of the following:

■ If using Internal Authentication, click Enter the Password and provide a
password for this user.

■ If using External Authentication, click Retrieve GUID to associate the new
user with a user from the external authentication service. The user name in
Oracle Data Integrator must match the user login in the external authentication
storage. If a match is found, an Global Unique ID appears in the External
GUID field.

6. From the File main menu, select Save.

The new user appears in the Users accordion.

22.2.3.2 Assigning a Profile to a User
To assign a Profile to a User:

1. In Security Navigator expand the Users and the Profiles accordions.

2. Select the profile that you want to assign, then drag it on the user you want to
assign it to.

3. Click OK in the Confirmation dialog.

The profile appears under the Profiles of this user. The user is immediately granted the
privileges attached to this profile.

22.2.3.3 Removing a Profile from a User
To remove a Profile to a User:

1. In Security Navigator expand the Users accordions.

2. Expand the Profiles node under the user.

3. Right-click the profile to be removed.

4. Select Delete.

5. Click OK in the Confirmation dialog.

The profile disappears from the Profiles of this user. All privileges granted to this user
via this profile are removed.

22.2.3.4 Deleting a User
To delete a User:

1. In Security Navigator expand the Users accordion.

2. From the list of users, select the user that you want to delete.

3. Right-click and select Delete.

4. Click OK in the Confirmation window.

The user disappears from the list.

Setting up a Security Policy

Managing the Security in Oracle Data Integrator 22-7

22.2.4 Managing Privileges
After creating users or profiles, it is possible to grant privileges to these users and
profiles. You can grant Profile Methods and User Methods that apply to object types, and
Authorizations by Object Instances (for users only) that apply to specific object instances.

22.2.4.1 Granting a Profile Method or User Method
To grant a Profile Method or User Method:

1. In Security Navigator expand the Users or Profiles accordion.

2. Expand the Objects accordion, and expand the node of the object for which you
want to grant a privilege.

3. Select the method that you want to grant, then drag it on the user or profile you
want to grant the method to.

4. Click OK in the Confirmation window.

The Method is granted to the user or the profile. It appears under the Objects node of
this user or under the profile.

22.2.4.2 Revoking a Profile Method or User Method
To revoke a Profile Method or User Method:

1. In Security Navigator expand the Users or Profiles accordion.

2. Expand the Profiles or the Objects node under the user for which you want you
revoke privileges, then expand the object whose method needs to be revoked.

3. Right-click the method and then select Delete.

4. Click OK in the Confirmation dialog.

The Method is revoked to the user or the profile. It appears under the Objects node of
this user or under the profile.

22.2.4.3 Granting an Authorization by Object Instance
To grant an authorization by object instance to a user:

1. In Security Navigator expand the Users accordion.

2. In the Designer, Operator or Topology Navigator, expand the accordion containing
the object onto which you want to grant privileges.

3. Select this object, then drag it on the user in the Users accordion. The
authorization by object instance editor appears. This editor shows the list of
methods available for this instance and the instances contained into it. For
example, if you grant privileges on a project instance, the folders, interfaces, and
so forth contained in this project will appear in the editor.

4. Fine-tune the privileges granted per object and method. You may want to
implement the following simple privileges policies on methods that you select
from the list:

■ To grant all these methods in all repositories, click Allow selected methods in
all repositories.

Note: You can grant privileges on all the methods of an object by
dragging the object itself on the user or profile instead of dragging one
of its methods.

Setting up a Security Policy

22-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ To deny all these methods in all repositories, click Deny selected methods in
all repositories.

■ To grant all these methods in certain work repositories, click Allow selected
methods in selected repositories, then select the repositories from the list.

5. From the File main menu, select Save.

22.2.4.4 Revoking an Authorization by Object Instance
To revoke an authorization by object instance from an user:

1. In Security Navigator expand the Users accordion.

2. Expand the Instances node under the user for which you want you revoke
privileges.

3. Right-click the instance from which you want to revoke an authorization, and then
select Delete.

4. Click OK in the Confirmation dialog.

The authorizations on this object instance are revoked from the user.

22.2.4.5 Cleaning up Unused Authorizations
Authorizations by object instance are stored in the master repository. However, if
objects are deleted from all work repositories, the authorization are not necessarily
deleted. You may wish to retain certain unused authorizations if they refer, for
example, to objects currently stored in an exported file or in a stored solution.

The Security Clean-up Tool should be used periodically to remove these unused
authorizations from the master repository. Unused authorizations are removed if they
refer to objects that do not exist in the master repository or in any work repository.

To clean up unused authorizations:

1. From the Security Navigator toolbar menu, select Clean Up Security Settings...
The Security Clean-up Tool dialog appears.

Note: Only certain objects support the authorization by object
instance. These object types are listed under the Instances node for
each user.

Methods for which the user has generic privileges are not listed in the
Object Instance Editor.

Note: You can also revoke privileges per method by editing the
Authorization by Object instance and denying certain methods to this
user. If, after this operation, the user no longer has any privilege on an
instance, the instance automatically disappears from the tree in
Security Manager.

Note: All work repositories attached to the master repository must
be accessible in order to check the existence of the objects in these
repositories

Advanced Security

Managing the Security in Oracle Data Integrator 22-9

2. On the Cleanable tab, select Clean for the cleanable security settings you wish to
remove. The security settings that cannot be removed are shown on the
Non-cleanable tab.

3. Click OK to cleanup the selected security settings.

22.3 Advanced Security
This section explains how to improve security in Oracle Data Integrator by using some
of the advanced security features.

This section contains the following topics:

■ Section 22.3.1, "Setting Up External Password Storage"

■ Section 22.3.2, "Setting Up External Authentication"

■ Section 22.3.3, "Enforcing Password Policies"

22.3.1 Setting Up External Password Storage
Oracle Java Platform Security (JPS) offers the standard Java Security Model services for
authentication and authorization.

Oracle Data Integrator stores by default all security information in the master
repository. This password storage option is called Internal Password Storage.

Oracle Data Integrator can optionally use JPS for storing critical security information.
When using JPS with Oracle Data Integrator, the data server passwords and contexts
are stored in the JPS Credential Store Framework (CSF). This password storage option
is called External Password Storage.

To use the external password storage option, you need to install a WebLogic Server
instance configured with JPS and all Oracle Data Integrator components (including the
run-time Agent) need to have access to the remote credential store. Refer to the Oracle
Fusion Middleware Security Guide for more information.

22.3.1.1 Setting the Password Storage
There are four ways to set or modify the password storage:

■ Importing the Master Repository allows you to change the password storage.

■ Creating the Master Repository allows you to define the password storage.

■ Switching the Password Storage modifies the password storage for an existing
master repository.

■ Recovering the Password Storage allows you to recover from a credential store
crash.

Note: When using External Password Storage, other security details
such as user names, password, and privileges remain in the master
repository. It is possible to externalize the authentication and have
users and password stored in an Identity Store using External
Authentication. See Section 22.3.2, "Setting Up External
Authentication" for more information.

Advanced Security

22-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

22.3.1.2 Switching the Password Storage
Switching the password storage of the Oracle Data Integrator repository changes how
data servers and contexts passwords are stored. This operation must be performed by
a SUPERVISOR user.

Use the Switch Password Storage wizard to change the password storage options of
the data server passwords.

Before launching the Switch Password Storage wizard perform the following tasks:

■ Disconnect Oracle Data Integrator Studio from the repository.

■ Shut down every component using the Oracle Data Integrator repository.

To launch the Switch Password Storage wizard:

1. From the ODI main menu, select Password Storage > Switch...

2. Specify the login details of your Oracle Data Integrator master repository as
defined when Connecting to the Master Repository.

3. Click Next.

4. Select the password storage:

■ Select Internal Password Storage if you want to store passwords in the Oracle
Data Integrator repository.

■ Select External Password Storage if you want use JPS Credential Store
Framework (CSF) to store the data server and context passwords.

If you select External Password Storage, you must provide the MBean Server
Parameters to access the credential store as described in Table 22–2 and then
click Test Connection check the connection to the MBean Server.

5. Click Finish.

The password storage options have been changed. You can now re-connect to the
Oracle Data Integrator repository.

22.3.1.3 Recovering the Password Storage
Oracle Data Integrator offers a password recovery service that should be used only in
case of an external password storage crash. Using this procedure, password storage is
forced to Internal Password Storage as the external storage is no longer available. This
operation should be performed by a Supervisor user.

WARNING: When performing such a switch, the data server
passwords are moved from one storage to another. Context
passwords are lost.

Table 22–2 MBean Server Parameters

Host MBeans Server Host, for example: mymachine.oracle.com

Port MBeans Server Port, for example: 7001

User MBeans Server User Name, for example: weblogic

Password MBeans Server Password, for example: weblogic

Advanced Security

Managing the Security in Oracle Data Integrator 22-11

Use the Recover Password Storage wizard to start the password recovery.

To launch the Recover Password Storage wizard:

1. From the ODI main menu, select Password Storage > Recover...

2. Specify the login details of your Oracle Data Integrator master repository defined
when Connecting to the Master Repository.

3. Click Finish.

4. Re-enter manually data server and context passwords. Refer to Chapter 4,
"Setting-up the Topology" for more information.

22.3.2 Setting Up External Authentication
Oracle Platform Security Services (OPSS) is a standards-based and portable security
framework for Java applications. OPSS offers the standard Java Security Model
services for authentication and authorization.

Oracle Data Integrator stores all user information as well as users’ privileges in the
master repository by default. When a user logs to Oracle Data Integrator, it logs
against the master repository. This authentication method is called Internal
Authentication.

Oracle Data Integrator can optionally use OPSS to authenticate its users against an
external Identity Store, which contains enterprise user and passwords. Such an identity
store is used at the enterprise level by all applications, in order to have centralized user
and passwords definitions and Single Sign-On (SSO). In such configuration, the
repository only contains references to these enterprise users. This authentication
method is called External Authentication.

22.3.2.1 Configuring ODI Components for External Authentication
To use the External Authentication option, you need to configure an enterprise Identity
Store (LDAP, Oracle Internet Directory, and so forth), and have this identity store
configured for each Oracle Data Integrator component to refer by default to it.

Oracle Data Integrator Studio
The configuration to connect and use the identity store is contained in an OPSS
Configuration file called jps-config.xml file. Refer to the Oracle Fusion Middleware
Security Guide for more information.

WARNING: When performing a password storage recovery,
passwords for context, data servers, jdbc password of the work
repository and ESS related passwords are lost and need to be
re-entered manually in Topology Navigator.

Note: When using External Authentication, only users and
passwords are externalized. Oracle Data Integrator privileges remain
within the repository. Data servers and context passwords also remain
in the master repository. It is possible to externalize data server and
context passwords, using the External Password Storage feature. See
Section 22.3.1, "Setting Up External Password Storage" for more
information.

Advanced Security

22-12 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Copy this file into the ODI_HOME/client/odi/bin/ directory. The Studio reads the
identity store configuration and authenticates against the configured identity store.

If you want to locate this file in a different location, edit the ODI_
HOME/client/odi/bin/odi.conf file and edit the option that sets the location of
the configuration file. This option is set in the following line:

AddVMOption -Doracle.security.jps.config=./jps-config.xml

Standalone Agent
The configuration to connect and use the identity store is contained in an OPSS
Configuration File called jps-config.xml file. Refer to the Oracle Fusion Middleware
Security Guide for more information.

Copy this file in the ODI_HOME/agent/bin/ directory. The agent and the command
line scripts will authenticate against the configured identity store.

Java EE Components
Oracle Data Integrator components deployed in a container (Java EE Agent, Oracle
Data Integrator Console) do not require a specific configuration. They use the
configuration of their container.

Refer to the Oracle Fusion Middleware Security Guide for more information on OPSS
configuration in a Java EE context.

22.3.2.2 Setting the Authentication Mode
There are two ways to set or modify the password storage:

■ Creating the Master Repository allows you to define the authentication mode.

■ Switching the Authentication Mode modifies the authentication mode for an
existing master repository.

22.3.2.3 Switching the Authentication Mode
Switching the authentication mode of the Oracle Data Integrator repository changes
the way users authenticate. This operation must be performed by a Supervisor user.

Use the Switch Authentication Mode wizard to change the user authentication mode.

Before launching the Switch Authentication Mode wizard perform the following tasks:

WARNING: When switching from an External to Internal
authentication, user passwords are not copied from the identity
store to the repository. The passwords are nullified. All the user
accounts are marked as expired and must be reactivated by a
SUPERVISOR that is created during the switch.

When switching from Internal to External authentication, the users
that exist in the repository and match a user in the identity store are
automatically mapped. Users that do not match a user in the identity
store are disabled. A Supervisor must edit the users so that their
name has a match in the identity store.

The context passwords are lost. Passwords for data servers, jdbc
password of the work repository, and ESS related passwords are
moved from a credential store to an other.

Advanced Security

Managing the Security in Oracle Data Integrator 22-13

■ Disconnect Oracle Data Integrator Studio from the repository.

■ Shut down every component using the Oracle Data Integrator repository.

To use the Switch Authentication Mode wizard:

1. From the ODI main menu, select Switch Authentication Mode.... The Switch
Authentication Mode wizard appears.

2. Specify the JDBC connectivity details of your Oracle Data Integrator master
repository as defined when Connecting to the Master Repository.

3. Click Next.

4. The next action varies depending on the current Authentication Mode in use:

■ If currently using Internal Authentication, you are prompted to switch to
external authentication.

■ If currently using External Authentication, you are prompted to switch to
internal authentication. You must provide and confirm a password for the
SUPERVISOR user that the wizard will automatically create in the repository.

5. Click Finish.

The Authentication mode is changed.

■ If you have switched from external to internal authentication, you can now
re-connect to the Oracle Data Integrator repository as SUPERVISOR, with the
password you have provided in the wizard. Once connected, you can edit each
user to reactivate it and set a password for this user.

■ If you have switched from internal to external authentication, you can now
re-connect to the Oracle Data Integrator repository as one of the users with
supervisor privileges, and re-enable the Oracle Data Integrator users that have
been disabled during the switch.

Reactivating Users After Switching to Internal Authentication
To reactivate a User:

1. In Security Navigator expand the Users accordion.

2. Select the user that you want to reactivate from the list of users.

3. Right-click and select Edit. The User editor appears.

4. Un-select Allow Expiration Date.

5. If you want to set a password for this user, click Change Password and enter the
new password for this user.

6. From the File main menu, select Save.

Re-Enable Users After Switching to External Authentication
To re-enable a User:

1. In Security Navigator expand the Users accordion.

2. Select the user that you want to re-enable from the list of users.

3. Right-click and select Edit. The User editor appears.

4. Enter in the Name field a user name that matches the login of an enterprise user in
the identity store.

Advanced Security

22-14 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

5. Click Retrieve GUID. If the user name has a match in the identity store, this
external user’s GUID appear in the External GUID field.

6. From the File main menu, select Save.

22.3.3 Enforcing Password Policies
The Password Policies consist of a set of rules applied on user passwords when using
Internal Authentication. This set of rules is applied when the password is defined or
modified by the user.

To define the password policy:

1. From the Security Navigator toolbar menu, select Password Policy...

The Password Policy dialog appears. This dialog displays a list of rules.

2. If you want your password to expire automatically, check Password are valid for
(days), and set a number of days after which passwords need to be modified.

3. Click Add a Policy. The Policy Definition dialog appears. A policy is a set of
conditions that are checked on passwords.

4. Set a Name and a Description for this new policy.

5. In the Rules section, add several conditions on the password text or length. You
can define, for example, a minimum length for the passwords.

6. From the Condition to match list, select whether you want the password to meet
at least one or all conditions.

7. Click OK.

8. Add as many policies as necessary, and select Active for those of the rules that you
want to keep active. Only passwords that meet all the policies are considered as
valid for the current policy.

9. Click OK to update the password policy.

A

Oracle Data Integrator Tools Reference A-1

AOracle Data Integrator Tools Reference

This appendix provides a reference of the Oracle Data Integrator Tools. It is intended
for application developers who want to use these tools to design integration scenarios.

This appendix includes the following sections:

■ Appendix A.1, "Using the Oracle Data Integrator Tools"

■ Appendix A.2, "Using Open Tools"

■ Appendix A.3, "Developing Open Tools"

■ Appendix A.4, "ODI Tools per Category"

■ Appendix A.5, "Alphabetic List of ODI Tools"

A.1 Using the Oracle Data Integrator Tools
Oracle Data Integrator Tools (also called Oracle Data Integrator Commands) are
commands provided for performing specific tasks at run-time. These tasks may be as
simple as waiting for a certain time or producing a sound, or as sophisticated as
executing ANT Scripts or reading emails from a server.

They are used in Packages, in Procedure Commands, in Knowledge Modules
Commands or directly from a command line.

A.1.1 Using a Tool in a Package
How to add and use an Oracle Data Integrator Tool in a Package is covered in
Section 10.3.1.4, "Adding Oracle Data Integrator Tool Steps".

It is possible to sequence the tools steps within the package, and organize them
according to their success and failure. For more information, refer to Section 10.4,
"Defining the Sequence of Steps" and Section 10.3.6, "Arranging the Steps Layout".

Note: Previous versions of Oracle Data Integrator that supported
calling built-in tools from Jython or Java scripts using their internal
Java classes (such as SnpsSendMail and SendMail). The usage of tools
using this method is deprecated since version 10.1.3.2.0 and should be
avoided.

Note: The carriage return in a command is not allowed.

Using Open Tools

A-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

In a package, it possible to use directly in the tool parameters variable values,
sequences or Oracle Data Integrator substitution method calls. Refer to Chapter 12,
"Working with Procedures, Variables, Sequences, and User Functions" for more
information.

A.1.2 Using a Tool in a Knowledge Module or a Procedure Command
How to use an Oracle Data Integrator Tool in a KM or Procedure is covered in
Section 12.1, "Working with Procedures".

In a knowledge module or a procedure, it possible to use directly in the tool
parameters variable values, sequences, Oracle Data Integrator substitution method
calls or the results from a SELECT statement. Refer to Chapter 12, "Working with
Procedures, Variables, Sequences, and User Functions" for more information.

A.1.3 Using a Tool from a Command Line

To use an Oracle Data Integrator Tool from a command line:

1. Launch a Shell (UNIX), a Command Prompt (Windows).

2. Go to the oracledi/agent/bin sub-directory of the Oracle Data Integrator
installation directory.

3. Launch the startcmd.bat (Windows) or startcmd.sh (UNIX) command, with
the following syntax:

startcmd <command_name> [<command_parameters>]*

A.2 Using Open Tools
The Open Tools feature provides an extensible platform for developing custom
third-party tools that you can use in Packages and Procedures. Just like the standard

Note: The command line scripts, which are required for performing
the tasks described in this section, are only available if you have
installed the Oracle Data Integrator Standalone Agent. See the Oracle
Fusion Middleware Installation Guide for Oracle Data Integrator for
information about how to install the Standalone Agent.

Note: On Windows platforms, it is necessary to surround the
command arguments containing "=" signs or spaces, by using double
quotes. The command call may differ from the UNIX command call.
For example:

startcmd.bat OdiSleep "-DELAY=5000" (Windows)
./call startcmd.sh OdiSleep -DELAY=5000 (UNIX)

The <command_name> parameter is case-sensitive.

Note: Certain tools require a connection to the repositories to run.
Make sure that repository connection is configured in the odiparams
file. See Section 4.3, "Managing Agents" for more information.

Using Open Tools

Oracle Data Integrator Tools Reference A-3

tools that are delivered with Oracle Data Integrator, they can interact with the
operating system or manipulate data.

Open Tools are written in Java. Writing your own Open Tools is covered in Section A.3,
"Developing Open Tools".

Open Tools are delivered as a Java package (.zip or .jar) containing several files:

■ A compiled Java .class file

■ Other resources, such as icon files

A.2.1 Installing and Declaring an Open Tool
Before you can use an Open Tool, you need to install and add it.

A.2.1.1 Installing an Open Tool
To install an Open Tool, you must add the open tool Jar into the classpath or the
component using this open tool.

Open tools Jars must be added in the same directory as the drivers for the Standalone
Agent and Studio. See "Add Additional Drivers and Open Tools" in the Oracle Fusion
Middleware Installation Guide for Oracle Data Integrator for more information.

For deploying an Open tool Jar with a Java EE agent, you should generate a WLS
template for this agent. The open tool will appear in the Libraries and Drivers list in
the Template Generation Wizard. See Section 4.3.2.1.2, "Create an WLS template for the
Java EE Agent" for more information.

A.2.1.2 Declaring a New Open Tool
This operation declared in a master repository an open tool, and allows this open tool
to appear in the Oracle Data Integrator Studio.

To declare a new tool, either:

1. In the Oracle Data Integrator Studio, select the ODI menu and then select
Add/Remove Open Tools.... The Add Open Tools dialog opens.

2. Enter the name of the class in the Open Tool Class Name field of the Add/remove
Open Tools dialog.

or:

1. Click Find in the ClassPath, then browse to the name of the Open Tool's Java
class. To search for the class by name, enter a part of the name in the field at the
top.

2. Click OK.

Note that all classes currently available to Oracle Data Integrator are shown
including all those which are not Open Tools. You must know the name of your
class to be able to add it.

3. Click Add Open Tool.

4. Select the line containing your Open Tool.

Note: This operation must be performed for each ODI Studio from
when the tool is being used, and for each agent that will run sessions
using this tool.

Developing Open Tools

A-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

■ If it was correctly found on the classpath, then the supplied icons, and its
syntax, description, provider and version number are shown.

■ If it was not found, an error message is displayed.

You should either change the classpath, or move the Open Tool to the right
directory.

A.2.2 Using Open Tools in a Package or Procedure
You can use Open Tools in a Package or a Procedure, similarly to the tools provided
out of the box in Oracle Data Integrator.

A.3 Developing Open Tools
An Open Tool is a Java package that contains a compiled Java class that implements
the interface oracle.odi.sdk.opentools.IOpenTool. For a complete description of all the
classes and methods, see the Oracle Data Integrator Open Tools API Reference (Javadoc).

An Open Tool Package should usually also contain two icons, which are used to
represent the Open Tool in the Oracle Data Integrator graphical interface.

A.3.1 Classes
The following table describes Open Tool classes and interfaces.

A.3.2 Developing a New Open Tool
The following explanation covers the development of a basic Open Tool,
SimpleMessageBox. The source code for this class is available in the
demo/plugins/src directory.

1. Define the syntax. In this example, the Open Tool is called as follows:

Note: This operation must be performed only once for a given
master repository.

Note: An Open Tool name cannot start with Snp or Odi. An Open
Tool with a name starting with these strings will be ignored.

Class or Interface Description

IOpenTool Interface that every Open Tool must implement.

OpenToolAbstract Abstraction of interface with some helper methods. Preferably extend
this class rather than implementing the interface directly.

IOpenToolParameter Interface that parameters used by Open Tools must implement. In
most cases, OpenToolParameter should be used rather than
implementing this interface.

OpenToolParameter Complete implementation of IOpenToolParameter. Each
OpenToolParameter holds one parameter.

OpenToolsExecutionException Exception class that should be thrown if necessary by Open Tool
methods.

SimpleOpenToolExample A simple example of an Open Tool, that can be used as a starting
point.

Developing Open Tools

Oracle Data Integrator Tools Reference A-5

SimpleMessageBox "-TEXT=<text message>" "-TITLE=<window title>"
2. Create 16x16 and 32x32 icons (usually in .gif format)

3. Create and implement the class. See Section A.3.2.1, "Implementing the Class".

4. Compile the class and create a package with the two icon files.

5. Install and declare the Open Tool as described in Section A.2.1, "Installing and
Declaring an Open Tool".

A.3.2.1 Implementing the Class
Implementing the class consists of the following steps:

1. Declaration

2. Importing Packages

3. Defining the Parameters

4. Implementing Informational Functions

5. Execution

A.3.2.1.1 Declaration Before you declare the class, you need to name the package.

Naming the Package
Put the class in a package named appropriately. The package name is used to identify
the Open Tool when installing it.

package com.myCompany.OpenTools;

Declaring the Class
There are two basic approaches to developing an Open Tool:

■ Extending an existing class which you want to convert into an Open Tool. In this
case, you should simply implement the interface IOpenTool directly on the
existing class.

■ Developing a new class. In this case, it is easiest to extend the abstract class
OpenToolAbstract. This also contains additional helper methods for working with
parameters.

public class SimpleMessageBox extends OpenToolAbstract {

A.3.2.1.2 Importing Packages Almost every Open Tool will need to import the following
Open Tool SDK packages.

import oracle.odi.sdk.opentools.IOpenTool; /* All Open Tool classes need these
three classes */

import oracle.odi.sdk.opentools.IOpenToolParameter;

import oracle.odi.sdk.opentools.OpenToolExecutionException;

import oracle.odi.sdk.opentools.OpenToolAbstract; /* The abstract class we extend
for the Open Tool */

import oracle.odi.sdk.opentools.OpenToolParameter; /* The class we use for
parameters */

In this particular example, we also need a package to create the message box:

Developing Open Tools

A-6 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

import javax.swing.JOptionPane; /* Needed for the message box used in this example
*/

A.3.2.1.3 Defining the Parameters Add a property to store the OpenToolParameter
objects. This is used both to define them for the syntax, and to retrieve the values of
the parameters from the eventual user. It is easiest to define the parameters of the
Open Tool with a static array as follows. This array should be private, as it will be
accessed via an accessor function.

private static final IOpenToolParameter[] mParameters = new IOpenToolParameter[]
{
 new OpenToolParameter("-TEXT", "Message text", "Text to show in the messagebox
(Mandatory).", true),
 new OpenToolParameter("-TITLE", "Messagebox title", "Title of the
messagebox.", false)
};

The four parameters passed to the OpenToolParameter() constructor are:

1. The code of the parameter, including the initial hyphen. It is critical that this code
corresponds to the syntax returned by getSyntax().

2. The user-friendly name, which is used if the user is using the graphical interface to
set parameters.

3. A descriptive help text.

4. Whether the parameter is mandatory or not. This is an indication to the user.

You must implement the accessor function getParameters() to retrieve them:

public IOpenToolParameter[] getParameters()
{
 return mParameters;
}

A.3.2.1.4 Implementing Informational Functions Implement functions to return
information about your Open Tool: getDescription(), getVersion(),
getProvider()

public String getDescription() { return "This Open Tool displays a message box
when executed."; }
public String getVersion() { return "v1.0"; }
public String getProvider() { return "My Company, Inc."; }

The getSyntax() function determines the name of the Open Tool as it appears in the
Oracle Data Integrator graphical interface, and also the initial values of the parameter.
Make sure the names of the parameters here match the names of the parameters
returned by getParameters().

public String getSyntax()
{
 return "SimpleMessageBox \"-TEXT=<text message>\" \"-TITLE=<window
title>\"";
}

Note: Oracle Data Integrator does not enforce the mandatory flag on
parameters. Your class must be able to handle any combination of
parameters being provided.

Developing Open Tools

Oracle Data Integrator Tools Reference A-7

The getIcon() method should then return paths to two appropriately sized images.
It should look something like this:

public String getIcon(int pIconType)
{
 switch (pIconType)
 {
 case IOpenTool.SMALL_ICON:
 return "/com/myCompany/OpenTools/images/SimpleMessageBox_16.gif";
 case IOpenTool.BIG_ICON:
 return "/com/myCompany/OpenTools/images/SimpleMessageBox_32.gif";
 default:
 return "";
 }
}

A.3.2.1.5 Execution Finally, the execute() method which actually carries out the
functionality provided by the Open Tool. In this case, a message box is shown. If
extending the OpenToolAbstract class, use the getParameterValue() method to
easily retrieve the values of parameters as they are set at run time.

public void execute() throws OpenToolExecutionException
{
 try
 {
 if (getParameterValue("-TITLE") == null ||
getParameterValue("-TITLE").equals("")) /* title was not filled in by user */
 {
 JOptionPane.showMessageDialog(null, (String)
getParameterValue("-TEXT"), (String) "Message", JOptionPane.INFORMATION_MESSAGE);
 } else
 {
 JOptionPane.showMessageDialog(null, (String)
getParameterValue("-TEXT"),
 (String) getParameterValue("-TITLE"),
 JOptionPane.INFORMATION_MESSAGE);
 }
 }
 /* Traps any exception and throw them as OpenToolExecutionException */
 catch (IllegalArgumentException e)
 {
 throw new OpenToolExecutionException(e);
 }
}

A.3.3 Open Tools at Run Time
In general, your Open Tool class is instantiated only very briefly. It is used in the
following ways:

Note: You must catch all exceptions and only raise an
OpenToolExecutionException.

ODI Tools per Category

A-8 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Installation
When the user chooses to install an Open Tool, Oracle Data Integrator instantiates the
class and calls the methods getDescription(), getProvider(), getIcon() and
getVersion() to retrieve information about the class.

Use in a Package
When the Open Tool is used in a package, the class will be instantiated briefly to call
the methods getDescription(), getProvider(), getIcon() and
getVersion(). Additionally, getSyntax() will be called to retrieve the code name
of the Open Tool and its default arguments. The method getParameters() is called
to display the list of arguments to the user.

Execution
Each time the Open Tool is executed in a package or procedure, the class is instantiated
again - it has no persistence after its execution. The execute() method is called
exactly once.

A.4 ODI Tools per Category
This section lists the Oracle Data Integrator tools per category:

A.4.1 Metadata
■ OdiReverseGetMetaData

■ OdiReverseResetTable

■ OdiReverseSetMetaData

A.4.2 Oracle Data Integrator Objects
■ OdiDeleteScen

■ OdiExportAllScen

■ OdiExportEnvironmentInformation

■ OdiExportLog

■ OdiExportMaster

■ OdiExportObject

■ OdiExportScen

■ OdiExportWork

■ OdiGenerateAllScen

■ OdiImportObject

■ OdiImportScen

A.4.3 Utilities
■ OdiAnt

■ OdiBeep

Tip: See also Appendix A.2, "Using Open Tools" and Open Tools
SDK documentation (JavaDoc).

ODI Tools per Category

Oracle Data Integrator Tools Reference A-9

■ OdiDataQuality

■ OdiKillAgent

■ OdiOSCommand

■ OdiPingAgent

■ OdiPurgeLog

■ OdiReinitializeSeq

■ OdiStartScen

■ OdiUpdateAgentSchedule

A.4.4 Internet Related Tasks
■ OdiFtpGet

■ OdiFtpPut

■ OdiInvokeWebService

■ OdiReadMail

■ OdiScpGet

■ OdiScpPut

■ OdiSftpGet

■ OdiSftpPut

■ OdiSendMail

A.4.5 Files
■ OdiFileAppend

■ OdiFileCopy

■ OdiFileDelete

■ OdiFileMove

■ OdiFileWait

■ OdiMkDir

■ OdiOutFile

■ OdiSqlUnload

■ OdiUnZip

■ OdiZip

A.4.6 SAP
■ OdiSAPALEClient and OdiSAPALEClient3

■ OdiSAPALEServer and OdiSAPALEServer3

A.4.7 XML
■ OdiXMLConcat

■ OdiXMLSplit

Alphabetic List of ODI Tools

A-10 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

A.4.8 Event Detection
■ OdiFileWait

■ OdiReadMail

■ OdiSleep

■ OdiWaitForChildSession

■ OdiWaitForData

■ OdiWaitForLogData

■ OdiWaitForTable

A.4.9 Changed Data Capture
■ OdiRefreshJournalCount

■ OdiRetrieveJournalData

■ OdiWaitForData

■ OdiWaitForLogData

■ OdiWaitForTable

A.5 Alphabetic List of ODI Tools
This section provides an alphabetical list of the Oracle Data Integrator tools.

■ OdiAnt

■ OdiBeep

■ OdiDataQuality

■ OdiDeleteScen

■ OdiExportAllScen

■ OdiExportEnvironmentInformation

■ OdiExportLog

■ OdiExportMaster

■ OdiExportObject

■ OdiExportScen

■ OdiExportWork

■ OdiFileAppend

■ OdiFileCopy

■ OdiFileDelete

■ OdiFileMove

■ OdiFileWait

■ OdiFtpGet

■ OdiFtpPut

■ OdiGenerateAllScen

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-11

■ OdiImportObject

■ OdiImportScen

■ OdiInvokeWebService

■ OdiKillAgent

■ OdiMkDir

■ OdiOSCommand

■ OdiOutFile

■ OdiPingAgent

■ OdiPurgeLog

■ OdiReadMail

■ OdiRefreshJournalCount

■ OdiReinitializeSeq

■ OdiReverseGetMetaData

■ OdiReverseResetTable

■ OdiReverseSetMetaData

■ OdiRetrieveJournalData

■ OdiSAPALEClient and OdiSAPALEClient3

■ OdiSAPALEServer and OdiSAPALEServer3

■ OdiScpGet

■ OdiScpPut

■ OdiSendMail

■ OdiSftpGet

■ OdiSftpPut

■ OdiSleep

■ OdiSqlUnload

■ OdiStartScen

■ OdiUnZip

■ OdiUpdateAgentSchedule

■ OdiWaitForChildSession

■ OdiWaitForData

■ OdiWaitForLogData

■ OdiWaitForTable

■ OdiXMLConcat

■ OdiXMLSplit

■ OdiZip

Alphabetic List of ODI Tools

A-12 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

A.5.1 OdiAnt
Use this command to execute an Ant buildfile.

For more details and examples of Ant buildfiles, please refer to the online
documentation http://jakarta.apache.org/ant/manual/index.html

Usage
OdiAnt -BUILDFILE=<file> -LOGFILE=<file> [-TARGET=<target>]
[-D<property name>=<property value>]* [-PROJECTHELP] [-HELP]
[-VERSION] [-QUIET] [-VERBOSE] [-DEBUG] [-EMACS]
[-LOGGER=<classname>] [-LISTENER=<classname>] [-FIND=<file>]

Parameters

Examples
Download the *.html files from the directory /download/public via ftp from
ftp.mycompany.com to the directory C:\temp:

Step 1: Generate the Ant buildfile:

OdiOutFile -FILE=c:\temp\ant_cmd.xml
<?xml version="1.0"?>
<project name="myproject" default="ftp" basedir="/">
 <target name="ftp">
 <ftp action="get" remotedir="/download/public"
 server="ftp.mycompany.com" userid="anonymous"
 password="me@mycompany.com">
 <fileset dir="c:\temp">
 <include name="**/*.html"/>
 </fileset>
 </ftp>

Parameters Mandatory Description

-BUILDFILE=<file> Yes Ant Buildfile. XML file containing the Ant
commands.

-LOGFILE=<file> Yes Use given file for logging.

-TARGET=<target> No Target of the build process.

-D<property name>=<property value> No List of properties with their values.

-PROJECTHELP No Displays the help on the project.

-HELP No Displays Ant help.

-VERSION No Displays Ant version.

-QUIET No Run in non verbose mode

-VERBOSE No Run in verbose mode

-DEBUG No Prints debug information.

-EMACS No Displays the logging information without
adornments.

-LOGGER=<classname> No Java class performing the logging.

-LISTENER=<classname> No Adds a class instance as a listener.

-FIND=<file> No Looks for the Ant Buildfile from the root of the
file system and uses it.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-13

 </target>
</project>

Step 2: Run the Ant buildfile:

OdiAnt -BUILDFILE=c:\temp\ant_cmd.xml -LOGFILE=c:\temp\ant_cmd.log

A.5.2 OdiBeep
Use this command to play a default beep or sound file on the machine hosting the
agent.

The following file formats are supported by default:

■ WAV

■ AIF

■ AU

Usage
OdiBeep [-FILE=<sound_file>]

Parameters

Examples
Plays the sound file c:\wav\alert.wav

OdiBeep -FILE=c:\wav\alert.wav

A.5.3 OdiDataQuality
Use this command to execute a Batch File to launch a Data Quality project.

Usage
OdiDataQuality -BATCH_FILE=<batch_file> [-OUT_FILE=<stdout_file>]
[-ERR_FILE=<stderr_file>] [-SYNCHRONOUS=<yes|no>]

Note: To play other file formats, you must add the appropriate Java
Sound Provider Interface to the application classpath.

Parameters Mandatory Description

-FILE No Path and filename of sound file to play. If not
specified, the default beep sound for the machine is
used.

Alphabetic List of ODI Tools

A-14 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Parameters

Examples
The following command executes a data quality project exported to the
C:\oracle\oracledq\metabase_data\metabase\oracledq directory.

OdiDataQuality
"-BATCH_FILE=C:\oracle\oracledq\metabase_
data\metabase\oracledq\project2\scripts\runproject2.cmd "
"-OUT_FILE=C:\temp\output file" "-SYNCHRONOUS=YES"

A.5.4 OdiDeleteScen
Use this command to delete a given scenario version.

Usage
OdiDeleteScen -SCEN_NAME=<name> -SCEN_VERSION=<version>

Parameters

Examples
Delete the DWH scenario in version 001

OdiDeleteScen -SCEN_NAME=DWH -SCEN_VERSION=001

A.5.5 OdiExportAllScen
Use this command to export a group of scenarios from the connected repository.

Parameters Mandatory Description

-BATCH_FILE=<batch_file> Yes Location of the Data Quality batch file to execute.
File name must be an absolute path. The batch file
depends on the operating system and is called
runprojectN.

Example:

C:\oracle\oracledq\metabase_
data\metabase\oracledq\project2\scripts\runproje
ct2.cmd

-OUT_FILE=<stdout_file> No File to redirect standard output to (leave blank for
no redirection, use absolute path).

-ERR_FILE=<stderr_file> No File to redirect standard error to (leave blank for no
redirection, use absolute path).

-SYNCHRONOUS=<yes|no> No If set to YES, the tool waits for the quality process to
complete before returning, with possible error code.
If set to NO, the tool ends immediately with success
and does not wait for the quality process to
complete.

Parameters Mandatory Description

-SCEN_NAME=<name> Yes Name of the scenario to delete.

-SCEN_VERSION=<version> Yes Name of the scenario to delete.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-15

The export files are named SCEN_<scenario name><scenario version>.xml.
This command reproduces the behavior of the export feature available in Designer and
Operator.

Usage
OdiExportAllScen -TODIR=<directory> [-FORCE_OVERWRITE=<yes|no>]
[-FROM_PROJECT=<project_id>] [-FROM_FOLDER=<folder_id>]
[-FROM_PACKAGE=<package_id>] [-RECURSIVE_EXPORT=<yes|no>]
[-XML_VERSION=<1.0>] [-XML_CHARSET=<charset>]
[-JAVA_CHARSET=<charset>] [-EXPORT_PACK=<YES|NO>]
[-EXPORT_POP=<YES|NO>] [-EXPORT_TRT=<YES|NO>]
VAR=<YES|NO>]

Parameters

Parameters Mandatory Description

-TODIR=<directory> Yes Directory into which the export files are
created.

-FORCE_OVERWRITE=<yes|no> No If set to yes, existing export files are
overwritten with no warning. Default is No.

-FROM_PROJECT=<project_id> No ID of the project containing the scenarios to
export. It is the Internal Identifier that
appears in the Version tab of the project
window. If this parameter is not set, scenarios
from all projects are taken into account for the
export.

-FROM_FOLDER=<folder_id> No ID of the folder containing the scenarios to
export. It is the Internal Identifier that
appears in the Version tab of the folder
window. If this parameter is not set, scenarios
from all folders are taken into account for the
export.

-FROM_PACKAGE=<package_id> No ID of the source package of the scenarios to
export. It is the Internal Identifier that
appears in the Version tab of the package
window. If this parameter is not set, scenarios
from all components are taken into account for
the export.

-RECURSIVE_EXPORT=<yes|no> No If set to yes, all child objects (schedules) are
exported with the scenarios. Default is yes.

-XML_VERSION=<1.0> No Sets the XML version that appears in the XML
header. Default is 1.0.

-XML_CHARSET=<charset> No Encoding specified in the XML export file in
the tag <?xml version="1.0"
encoding="ISO-8859-1"?>. Default value
is ISO-8859-1. Supported encodings are
available at the following URL:

http://java.sun.com/j2se/1.4.2/docs/guide/i
ntl/encoding.doc.html

-JAVA_CHARSET=<charset> No Target file encoding. Default value is
ISO-8859-1. Supported encodings are available
at the following URL:

http://java.sun.com/j2se/1.4.2/docs/guide/i
ntl/encoding.doc.html

Alphabetic List of ODI Tools

A-16 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Examples
Export all scenarios from the DW01 project of Internal Identifier 10022 into the
/temp/ directory, with all dependant objects.

OdiExportAllScen -FROM_PROJECT=10022 -TODIR=/temp/ -RECURSIVE_EXPORT=yes

A.5.6 OdiExportEnvironmentInformation
Use this command to export the details of the technical environment into a comma
separated (.csv) file into the directory of your choice. This information is required for
maintenance or support purposes.

Usage
OdiExportEnvironmentInformation -TODIR=<toDir> -FILE_NAME=<FileName>
[-CHARSET=<charset>] [-SNP_INFO_REC_CODE=<row_code>]
[-MASTER_REC_CODE=<row_code>] [-WORK_REC_CODE=<row_code>]
[-AGENT_REC_CODE=<row_code>] [-TECHNO_REC_CODE=<row_code>]
[-RECORD_SEPARATOR_HEXA=<rec_sep>]
[-FIELD_SEPARATOR_HEXA=<field_sep] [-TEXT_SEPARATOR=<text_sep>]

Parameters

-EXPORT_PACK=<YES|NO> No Indicates if the scenarios attached to packages
should be exported. The Default value is YES.

-EXPORT_POP=<YES|NO> No Indicates if the scenarios attached to interfaces
should be exported. The Default value is NO.

-EXPORT_TRT=<YES|NO> No Indicates if the scenarios attached to
procedures should be exported. The Default
value is NO.

-EXPORT_VAR=<YES|NO> No Indicates if the scenarios attached to variables
should be exported. The Default value is NO.

Parameters Mandatory Description

-TODIR=<toDir> Yes Target directory for the export.

-FILE_NAME=<FileName> Yes Name of the CSV export file. Default is snps_
tech_inf.csv.

-CHARSET=<charset> No Character set of the export file.

-SNP_INFO_REC_CODE=<row_code> No Code used to identify rows that describe the
current version of Oracle Data Integrator and
the current user. This code is used in the first
field of the record. Default is SUNOPSIS.

-MASTER_REC_CODE=<row_code> No Code for rows containing information about
the master repository. Default is MASTER.

-WORK_REC_CODE=<row_code> No Code for rows containing information about
the work repository. Default is WORK.

-AGENT_REC_CODE=<row_code> No Code for rows containing information about
the various agents that are running. Default is
AGENT.

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-17

Examples
Export the details of the technical environment into the /temp/snps_tech_inf.csv
export file.

OdiExportEnvironmentInformation "-TODIR=/temp/"
"-FILE_NAME=snps_tech_inf.csv" "-CHARSET=ISO8859_1"
"-SNP_INFO_REC_CODE=SUNOPSIS" "-MASTER_REC_CODE=MASTER"
"-WORK_REC_CODE=WORK" "-AGENT_REC_CODE=AGENT"
"-TECHNO_REC_CODE=TECHNO" "-RECORD_SEPARATOR_HEXA=0D0A"
"-FIELD_SEPARATOR_HEXA=2C" "-TEXT_SEPARATOR_HEXA=22"

A.5.7 OdiExportLog
Use this command to export the execution log into a ZIP export file.

Usage
OdiExportLog -TODIR=<toDir> [-ZIPFILE_NAME=<zipFileName>]
[-XML_CHARSET=<charset>] [-JAVA_CHARSET=<charset>]
[-FROMDATE=<from_date>] [-TODATE=<to_date>] [-AGENT=<agent>]
[-CONTEXT=<context>] [-STATUS=<status>] [-USER_FILTER=<user>]
[-SESS_NAME=<session>]

Parameters

-TECHNO_REC_CODE=<row_code> No Code for rows containing information about
the data servers, their versions, etc. Default is
TECHNO.

-RECORD_SEPARATOR_HEXA=<rec_sep> No One or several characters in hexadecimal code
separating lines (or records) in the file. Defaul
is O0D0A.

-FIELD_SEPARATOR_HEXA=<field_sep> No One or several characters in hexadecimal code
separating the fields in a record. Default is 2C

-TEXT_SEPARATOR=<text_sep> No Character in hexadecimal code delimiting a
STRING field. Default is 22.

Parameters Mandatory Description

-TODIR=<toDir> Yes Target directory for the export.

-ZIPFILE_NAME=<zipFileName> No Name of the compressed file.

-XML_CHARSET=<charset> No XML Version specified in the export file.
Parameter xml version in the XML file header.
<?xml version="1.0"
encoding="ISO-8859-1"?>. Default value
is ISO-8859-1. Supported encodings are
available at the following URL:

http://java.sun.com/j2se/1.4.2/doc
s/guide/intl/encoding.doc.html

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-18 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Examples
Export and zip the log into the /temp/log2.zip export file.

OdiExportLog "-TODIR=/temp/" "-ZIPFILE_NAME=log2.zip"
"-XML_CHARSET=ISO-8859-1" "-JAVA_CHARSET=ISO8859_1"

A.5.8 OdiExportMaster
Use this command to export the master repository to a directory or a zip file. The
versions and/or solutions stored in the master repository are optionally exported.

Usage
OdiExportMaster -TODIR=<toDir> [-ZIPFILE_NAME=<zipFileName>]
[-EXPORT_SOLUTIONS=<yes|no>] [-EXPORT_VERSIONS=<yes|no>]
[-XML_CHARSET=<charset>] [-JAVA_CHARSET=<charset>]

Parameters

-JAVA_CHARSET=<charset> No Result file java character encoding. Default
value is ISO8859_1. Supported encodings are
available at the following URL:

http://java.sun.com/j2se/1.4.2/doc
s/guide/intl/encoding.doc.html

-FROMDATE=<from_date> No Beginning date for the export, using the
format yyyy/MM/dd hh:mm:ss. All sessions
from this date will be exported.

-TODATE=<to_date> No End date for the export, using the format
yyyy/MM/dd hh:mm:ss. All sessions until
this date will be exported.

-AGENT=<agent> No Exports only sessions executed by the agent
named like <agent>.

-CONTEXT=<context> No Exports only sessions executed in the context
which code is <context>.

-STATUS=<status> No Exports only sessions in the specified state.
The possible states are Done, Error, Queued,
Running, Waiting and Warning.

-USER_FILTER=<user> No Exports only sessions launched by <user>.

-SESS_NAME=<session> No Name of the session to be exported.

Parameters Mandatory Description

-TODIR=<toDir> Yes Target directory for the export.

-ZIPFILE_NAME=<zipFileName> No Name of the compressed file.

-EXPORT_SOLUTIONS=<yes|no> No Exports all solutions that are stored in the
repository.

-EXPORT_VERSIONS=<yes|no> No Exports all versions of objects that are stored
in the repository.

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-19

Examples
Export and zip the master repository into the export.zip file located in the /temp/
directory.

OdiExportMaster "-TODIR=/temp/" "-ZIPFILE_NAME=export.zip"
"-XML_CHARSET=ISO-8859-1" "-JAVA_CHARSET=ISO8859_1"
"-EXPORT_VERSIONS=YES"

A.5.9 OdiExportObject
Use this command to export an object from the current repository. This command
reproduces the behavior of the export feature available in the user interface.

Usage
OdiExportObject -CLASS_NAME=<class_name> -I_OBJECT=<object_id>
[-EXPORT_DIR=<directory>][EXPORT_NAME=<export_name>|-FILE_NAME=<file_name>]
[-FORCE_OVERWRITE=<yes|no>][-RECURSIVE_EXPORT=<yes|no>] [-XML_VERSION=<1.0>]
[-XML_CHARSET=<charset>] [-JAVA_CHARSET=<charset>]

Parameters

-XML_CHARSET=<charset> No XML Version specified in the export file.
Parameter xml version in the XML file header.
<?xml version="1.0"
encoding="ISO-8859-1"?>. Default value
is ISO-8859-1. Supported encodings are
available at the following URL:

http://java.sun.com/j2se/1.4.2/docs/guide/i
ntl/encoding.doc.html

-JAVA_CHARSET=<charset> No Result file java character encoding. Default
value is ISO8859_1. Supported encodings are
available at the following URL:

http://java.sun.com/j2se/1.4.2/docs/guide/i
ntl/encoding.doc.html

Parameters Mandatory Description

-CLASS_NAME=<class_name> Yes Class of the object to export. The list of classes
is given below.

-I_OBJECT=<object_id> Yes Object identifier. It is the Internal Identifier
that appears in the Version tab of the object
edit window.

-FILE_NAME=<file_name> No Export file name. This may be an absolute
path or a relative path from EXPORT_DIR.

This file name may or not comply with the
Oracle Data Integrator standard export file
prefix and suffix. If you want to comply with
these standards, use the EXPORT_NAME
parameter instead. This parameter cannot be
used if EXPORT_NAME is set.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-20 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

List of Classes

-EXPORT_DIR=<directory> No Directory where the object will be exported.
The export file created in this directory will be
named depending on the FILE_NAME and
EXPORT_NAME parameters.

If FILE_NAME or EXPORT_NAME are left
unspecified, the export file will be
automatically named <object_prefix>_<object_
name>.xml. For example, a project called
Datawarehouse would be exported to PRJ_
Datawarehouse.xml.

-EXPORT_NAME=<export_name> No Export Name. Use this parameter to generate
an export file named <object_prefix>_
<export_name>.xml. This parameter cannot be
used along with FILE_NAME.

-FORCE_OVERWRITE=<yes|no> No If set to yes, an existing export file with the
same name will be forcibly overwritten.
Default is No.

-RECURSIVE_EXPORT=<yes|no> No If set to yes, all child objects are exported with
the current object. For example, if exporting a
project, all folders, KMs, etc. in this project
will be exported into the project export file.
Default is Yes.

-XML_VERSION=<1.0> No Sets the XML version that appears in the XML
header. Default is 1.0.

-XML_CHARSET=<charset> No Encoding specified in the XML File, in the tag
<?xml version="1.0"
encoding="ISO-8859-1"?>. Default value
is ISO-8859-1. Supported encodings are
available at the following URL:

http://java.sun.com/j2se/1.4.2/docs/guide/i
ntl/encoding.doc.html

-JAVA_CHARSET=<charset> No Target file encoding. Default value is
ISO-8859-1. Supported encodings are available
at the following URL:

http://java.sun.com/j2se/1.4.2/docs/guide/i
ntl/encoding.doc.html

Object Class Name

Column SnpCol

Condition/Filter SnpCond

Context SnpContext

Data Server SnpConnect

Datastore SnpTable

Folder SnpFolder

Interface SnpPop

Language SnpLang

Model SnpModel

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-21

Examples
Export the DW01 project of Internal Identifier 10022 into the /temp/dw1.xml export
file, with all of its dependant objects.

OdiExportObject -CLASS_NAME=SnpProject -I_OBJECT=10022
-FILE_NAME=/temp/dw1.xml -FORCE_OVERWRITE=yes
-RECURSIVE_EXPORT=yes

A.5.10 OdiExportScen
Use this command to export a scenario from the current work repository.

Usage
OdiExportScen -SCEN_NAME=<scenario_name> -SCEN_VERSION=<scenario_version>
[-EXPORT_DIR=<directory>][-FILE_NAME=<file_name>|EXPORT_NAME=<export_name>]
[-FORCE_OVERWRITE=<yes|no>][-RECURSIVE_EXPORT=<yes|no>] [-XML_VERSION=<1.0>]
[-XML_CHARSET=<encoding>] [-JAVA_CHARSET=<encoding>]

Parameters

Package SnpPackage

Physical Schema SnpPschema

Procedure or KM SnpTrt

Procedure or KM
Option

SnpUserExit

Project SnpProject

Reference SnpJoin

Scenario SnpScen

Sequence SnpSequence

Step SnpStep

Sub-Model SnpSubModel

Technology SnpTechno

User Functions SnpUfunc

Variable SnpVar

Version of an Object SnpData

Parameters Mandatory Description

-SCEN_NAME=<scenario_name> Yes Name of the scenario to be exported.

-SCEN_VERSION=<scenario_
version>

Yes Version of the scenario to be exported.

Object Class Name

Alphabetic List of ODI Tools

A-22 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Examples
Export the LOAD_DWH scenario in version 1 into the /temp/load_dwh.xml export
file, with all of its dependant objects.

OdiExportScen -SCEN_NAME=LOAD_DWH -SCEN_VERSION=1
-FILE_NAME=/temp/load_dwh.xml -RECURSIVE_EXPORT=yes

A.5.11 OdiExportWork
Use this command to export the work repository to a directory or a ZIP export file.

Usage
OdiExportWork -TODIR=<directory> [-ZIPFILE_NAME=<zipFileName>]
[-XML_CHARSET=<charset>] [-JAVA_CHARSET=<charset>]

-FILE_NAME=<file_name> Yes Export file name. This may be an absolute path or a
relative path from EXPORT_DIR.

This file name may or not comply with the Oracle
Data Integrator standard export file prefix and suffix
for scenarios. If you want to comply with these
standards, use the EXPORT_NAME parameter
instead. This parameter cannot be used if EXPORT_
NAME is set.

-EXPORT_DIR=<directory> No Directory where the scenario will be exported. The
export file created in this directory will be named
depending on the FILE_NAME and EXPORT_
NAME parameters.

If FILE_NAME or EXPORT_NAME are left
unspecified, the export file will be automatically
named "SCEN_<scenario_name> <scenario_
version>.xml".

-EXPORT_NAME=<export_name> No Export Name. Use this parameter to generate an
export file named SCEN_<export_name>.xml. This
parameter cannot be used along with FILE_NAME.

-FORCE_OVERWRITE=<yes|no> No If Yes, overwrites the file export if it already exist.

-RECURSIVE_EXPORT=<yes|no> No Forces the export of the objects under the scenario.
Default is Yes.

-XML_VERSION=<1.0> No Version specified in the generated XML File, in the
tag <?xml version="1.0"
encoding="ISO-8859-1"?>. Default value is
1.0.

-XML_CHARSET=<encoding> No Encoding specified in the XML File, in the tag
<?xml version="1.0"
encoding="ISO-8859-1"?>. Default value is
ISO-8859-1. Supported encodings are available at
the following URL:

http://java.sun.com/j2se/1.4.2/docs/guide/intl/e
ncoding.doc.html

-JAVA_CHARSET=<encoding> No Target file encoding. Default value is ISO-8859-1.
Supported encodings are available at the following
URL:

http://java.sun.com/j2se/1.4.2/docs/guide/intl/e
ncoding.doc.html

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-23

Parameters

Examples
Export and zip the work repository into the /temp/workexport.zip export file.

OdiExportWork "-TODIR=/temp/" "-ZIPFILE_NAME=workexport.zip"

A.5.12 OdiFileAppend
Use this command to concatenate a set of files into a single file.

Usage
OdiFileAppend -FILE=<file> -TOFILE=<target_file> [-OVERWRITE=<yes|no>]
[-CASESENS=<yes|no>] [-HEADER=<n>] [-KEEP_FIRST_HEADER=<yes|no]

Parameters

Parameters Mandatory Description

-TODIR=<directory> Yes Target directory for the export.

-ZIPFILE_NAME=<zipFileName> No Name of the compressed file.

-XML_CHARSET=<charset> No XML Version specified in the export file. Parameter
xml version in the XML file header. <?xml
version="1.0" encoding="ISO-8859-1"?>.
Default value is ISO-8859-1. Supported encodings
are available at the following URL:

http://java.sun.com/j2se/1.4.2/docs/guide/intl/e
ncoding.doc.html

-JAVA_CHARSET=<charset> No Result file java character encoding. Default value is
ISO8859_1. Supported encodings are available at the
following URL:

http://java.sun.com/j2se/1.4.2/docs/guide/intl/e
ncoding.doc.html

Parameters Mandatory Description

-FILE=<file> Yes Full path of the files to concatenate. Use
* to specify generic characters.

Examples:

/var/tmp/*.log (All files with the
"log" extension in the folder /var/tmp)

arch_*.lst (All files starting with
arch_ and with "lst" extension)

-TOFILE=<target_file> Yes Target file.

-OVERWRITE=<yes|no> No Indicates if the target file must be
overwritten if it does exist. By default,
the value is set to No.

Alphabetic List of ODI Tools

A-24 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Examples
Concatenation of the files *.log of the folder: /var/tmp into the file /home/all_
files.log

OdiFileAppend -FILE=/var/tmp/*.log -TOFILE=/home/all_files.log

Concatenation of the files of the daily sales of each shop while keeping the header of
the first file

OdiFileAppend -FILE=/data/store/sales_*.dat -TOFILE=/data/all_stores.dat
-OVERWRITE=yes -HEADER=1 -KEEP_FIRST_HEADER=yes

A.5.13 OdiFileCopy
Use this command to copy files or folder.

Usage
OdiFileCopy -DIR=<directory> -TODIR=<target_directory> [-OVERWRITE=<yes|no>]
[-RECURSE=<yes|no>] [-CASESENS=<yes|no>]

OdiFileCopy -FILE=<file> -TOFILE=<target_file>|-TODIR=<target_directory>
[-OVERWRITE=<yes|no>] [-RECURSE=<yes|no>] [-CASESENS=<yes|no>]

Parameters

-CASESENS=<yes|no> No Indicates if Oracle Data Integrator
should be case sensitive when looking
for the files. By default, files are
searched in uppercase.

-HEADER=<n> No Number of header lines to be removed
from the source files before
concatenation. By default, no line is
removed.

When the HEADER parameter is
omitted, the concatenation does not
require file edition, and therefore runs
faster.

-KEEP_FIRST_HEADER=<yes|no> No Used to keep the header lines of the first
file during the concatenation.

Parameters Mandatory Description

-DIR=<directory> Yes if -FILE is
omitted

Directory (or folder) to copy

-FILE=<file> Yes if -DIR is
omitted

The full path of the files to copy. Use * to
specify the generic character.

Examples:

/var/tmp/*.log (All files with the
"log" extension in folder /var/tmp)

arch_*.lst (All files starting with
arch_ and having the "lst" extension)

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-25

Examples
Copy the file "hosts" from the directory /etc to the directory /home:

OdiFileCopy -FILE=/etc/hosts -TOFILE=/home/hosts

Copy all *.csv files from the directory /etc to the directory /home and overwrite:

OdiFileCopy -FILE=/etc/*.csv -TODIR=/home -OVERWRITE=yes

Copy all *.csv files from the directory /etc to the directory /home while changing their
extension to .txt:

OdiFileCopy -FILE=/etc/*.csv -TOFILE=/home/*.txt -OVERWRITE=yes

Copy the directory C:\odi and its sub-directories into the directory C:\Program
Files\odi

OdiFileCopy -DIR=C:\odi "-TODIR=C:\Program Files\odi" -RECURSE=yes

-TODIR=<target_directory> Yes if -DIR is
specified

Target directory for the copy.

If a directory is copied (-DIR), this
parameter indicates the name of the
copied directory.

If one or several files are copied (-FILE),
this parameter indicates the destination
directory.

-TOFILE=<target_file> Yes if -TODIR is
omitted

Destination file(s). This parameter
cannot be used with parameter -DIR.

This parameter contains:

■ The name of the destination file if
one file only is copied (no generic
character)

■ The mask of the new name of the
destination files if several files are
copied

Note that TODIR and TOFILE are
exclusive parameters. If they are both
specified, then only TODIR is taken into
account, and TOFILE is ignored.

-OVERWRITE=<yes|no> No Indicates if the files of the folder are
overwritten if they already exist. By
default, the value is set to No

-RECURSE=<yes|no> No Indicates if files are copied recursively
when the directory contains other
directories. The value No indicates that
only the files within the directory are
copied, not the sub-directories. Default
is Yes.

-CASESENS=<yes|no> No Indicates if Oracle Data Integrator
should be case sensitive when looking
for the files. By default, all searched files
are uppercases (set to No).

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-26 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

A.5.14 OdiFileDelete
Use this command to delete files or directories.

The most common use cases of this tool are described in the following table where:

■ x means is supplied

■ o means is ommited

Usage
OdiFileDelete -DIR=<directory> | -FILE=<file> [-RECURSE=<yes|no>]
[-CASESENS=<yes|no>]
[-NOFILE_ERROR=<yes|no>] [-FROMDATE=<from_date>] [-TODATE=<to_date>]

Parameters

-DIR -FILE -RECURSE Behavior

x x x Every file with the name or with a name matching the
mask specified in -FILE is deleted from -DIR and from all
its subdirectories.

x o x The subdirectories from -FILE are deleted.

x x o Every file with the name or with a name matching the
mask specified in -FILE is deleted from -DIR.

x o o The -DIR is deleted.

Parameters Mandatory Description

-DIR=<directory> Yes, if -FILE is
omitted

1. If -FILE is omitted, specifies the name of the
directory (folder) to delete.

2. If -FILE is supplied, specifies the path where
files should be deleted from.

-FILE=<file> Yes, if -DIR is omitted Name or mask of file(s) to delete. If -DIR is not
specified, then a full path should be given. Use * to
specify wildcard characters.

Examples:

/var/tmp/*.log (all .log files in the directory
/var/tmp)

/bin/arch_*.lst (all .list files starting with
arch_)

-RECURSE=<yes|no> No 1. If -FILE is omitted, the -RECURSE parameter
has no effect: all subdirectories are implicitly
deleted.

2. If -FILE is supplied, the -RECURSE parameter
specifies if the files should be deleted from this
directory and from all subdirectories.

Default is Yes.

-CASESENS=<yes|no> No Specifies that Oracle Data Integrator should
distinguish upper-case and lower-case when
matching file names.

-NOFILE_ERROR=<yes|no> Yes Specifies that an error should be generated if the
specified directory or files are not found.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-27

Examples
To delete the file my_data.dat from the directory c:\data\input, generating an
error if it is missing.

OdiFileDelete -FILE=c:\data\input\my_data.dat -NOFILE_ERROR=yes

To delete all .txt files from the bin directory, but not .TXT files:

OdiFileDelete "-FILE=c:\Program Files\odi\bin*.txt" -CASESENS=yes

This statement has the same effect:

OdiFileDelete "-DIR=c:\Program Files\odi\bin" "-FILE=*.txt" -CASESENS=yes

To delete the directory /bin/usr/nothingToDoHere.

OdiFileDelete "-DIR=/bin/usr/nothingToDoHere"

To delete all files under the C:\temp directory whose modification time is between
10/01/2008 00:00:00 and 10/31/2008 22:59:00 where 10/01/2008 and
10/31/2008 are not inclusive:

OdiFileDelete -DIR=C:\temp -FILE=* -NOFILE_ERROR=NO -FROMDATE=FROMDATE=10/01/2008
00:00:00 -TODATE=10/31/2008 22:59:00

To delete all files under the C:\temp directory whose modification time is earlier than
the 10/31/2008 17:00:00. An error is thrown, if the directory contains no files to
delete meeting the date criteria:

OdiFileDelete -DIR=C:\temp -FILE=* -NOFILE_ERROR=YES -TODATE=10/31/2008 17:00:00

-FROMDATE=<from_date> No All Files with a modification date later than this date
will be deleted. The date needs to be provided in the
format yyyy/MM/dd hh:mm:ss.

The FROM_DATE is not inclusive.

If -FROMDATE is omitted, all files with a
modification date earlier than the -TODATE date
will be deleted.

If both FROMDATE and TODATE parameters are
omitted, all files matching the -FILE parameter value
will be deleted.

-TODATE=<to_date> No All Files with a modification date earlier than this
date will be deleted. The date needs to be provided
in the format yyyy/MM/dd hh:mm:ss.

The TO_DATE is not inclusive.

If -TODATE is omitted, all files with a modification
date later than the -FROMDATE date will be
deleted.

If both FROMDATE and TODATE parameters are
omitted, all files matching the -FILE parameter value
will be deleted.

Note: It is not possible to delete a file and a directory at the same
time by combining the -DIR and -FILE parameters. To achieve that,
you must make two calls to OdiFileDelete.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-28 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

To delete all files under the C:\temp directory whose modification time is later than
10/01/2008 08:00:00:

OdiFileDelete -DIR=C:\temp -FILE=* -NOFILE_ERROR=NO -FROMDATE=10/01/2008 08:00:00

A.5.15 OdiFileMove
Use this command to move or rename files or a directory into files or a directory.

Usage
OdiFileMove -FILE=<file> -TODIR=<target_directory>|-TOFILE=<target_file>
[-OVERWRITE=<yes|no>] [-RECURSE=<yes|no>] [-CASESENS=<yes|no>]

OdiFileMove -DIR=<directory> -TODIR=<target_directory> [-OVERWRITE=<yes|no>]
[-RECURSE=<yes|no>] [-CASESENS=<yes|no>]

Parameters

Parameters Mandatory Description

-DIR=<directory> Yes if -FILE is
omitted

Directory (or folder) to move or rename.

-FILE=<file> Yes if -DIR is omitted Full path of the file(s) to move or rename.
Use * for generic characters.

Examples:

/var/tmp/*.log (All files with the "log"
extension in the directory /var/tmp)

arch_*.lst (all files starting with arch_ and
with "lst" extension)

-TODIR=<target_directory> Yes if -DIR is
specified

Target directory of the move.

If a directory is moved (-DIR), this
parameter indicates the new name of the
directory.

If a file or several files are moved (-FILE),
this parameter indicates the target
directory.

-TOFILE=<target_file> Yes if -TODIR is
omitted

Target file(s). This parameter cannot be
used with parameter -DIR.

This parameter is:

- The new name of the target file if one
single file is moved (no generic character)

- The mask of the new files names if several
files are moved.

-OVERWRITE=<yes|no> No Indicates if the files or directory are
overwritten if they exist. By default, the
value is no

-RECURSE=<yes|no> No Indicates if files are moved recursively
when the directory contains other
directories. The value no indicates that only
the files contained in the directory to move
(not the sub-directories) will be moved.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-29

Examples
Rename the "host" file into "hosts.old"

OdiFileMove -FILE=/etc/hosts -TOFILE=/etc/hosts.old

Move the file "hosts" from the directory "/etc" to the directory "/home/odi":

OdiFileMove -FILE=/etc/hosts -TOFILE=/home/odi/hosts

Move all files *.csv from directory "/etc" to directory "/home/odi" with overwrite:

OdiFileMove -FILE=/etc/*.csv -TODIR=/home/odi -OVERWRITE=yes

Move all *.csv files from directory "/etc" to directory "/home/odi" and change their
extension to ".txt":

OdiFileMove -FILE=/etc/*.csv -TOFILE=/home/odi/*.txt -OVERWRITE=yes

Rename the directory C:\odi into C:\odi_is_wonderful

OdiFileMove -DIR=C:\odi -TODIR=C:\odi_is_wonderful

Move the directory C:\odi and its sub-folders into the directory C:\Program Files\odi

OdiFileMove -DIR=C:\odi "-TODIR=C:\Program Files\odi" -RECURSE=yes

A.5.16 OdiFileWait
Use this command to manage files events. This command scans regularly a directory
and waits for a number of files matching a mask to appear, until a given timeout is
reached. When the specified files are found, an action on these files is triggered.

Usage
OdiFileWait -DIR=<directory> -PATTERN=<pattern>
[-ACTION=<DELETE|COPY|MOVE|APPEND|ZIP|NONE>] [-TODIR=<target_directory>]
[-TOFILE=<target_file>] [-OVERWRITE=<yes|no>] [-CASESENS=<yes|no>]
[-FILECOUNT=<n>] [-TIMEOUT=<n>] [-POLLINT=<n>] [-HEADER=<n>]
[-KEEP_FIRST_HEADER=<yes|no>] [-NOFILE_ERROR=<yes|no>]

-CASESENS=<yes|no> No Indicates if Oracle Data Integrator should
be case sensitive when looking for the files.
By default, all searched files are
uppercases.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-30 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Parameters

Parameters Mandatory Description

-ACTION=

<DELETE|COPY|MOVE|APPEND|ZIP|NONE>

No Action taken on the files found:

DELETE: Delete the files found

COPY: Copy the files found into the
directory TODIR

MOVE: Move or rename the files found
into folder TODIR by naming them as
specified by TOFILE

APPEND: Concatenates all files found
and creates a result file TOFILE. Source
files are deleted.

ZIP: Zip the files found and store them
into the ZIP file TOFILE

NONE: No action is performed. This is
the default behaviour.

-DIR=<directory> Yes Directory (or folder) to scan

-PATTERN=<pattern> Yes Mask of filenames to scan. Use * to
specify the generic characters.

Examples:

*.log (All files with the "log" extension)

arch_*.lst (All files starting with arch_
and with the extension "lst")

-TODIR=<target_directory> No Target directory of the action. When the
action is:

COPY: Directory where the files are
copied

MOVE: Directory where the files are
moved

-TOFILE=<target_file> No Destination file(s). When the action is:

MOVE: Renaming mask of the moved
files.

APPEND: Name of the file resulting from
the concatenation.

ZIP: Name of the resulting ZIP file.

COPY: Renaming mask of the copied
files. Renaming rules:

■ any alphanumeric character is
replaced in the original filename
with the alphanumeric characters
specified for <target_file>.

■ '?' at -TOFILE leaves origin symbol
on this position

■ '*' at -TOFILE means all remaining
symbols from origin filename

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-31

-OVERWRITE=<yes|no> No Indicates if the destination file(s) will be
overwritten if they exist. By default, the
value is set to no

Note that if this option is used with
APPEND, then the target file will only
have the contents of the latest file
processed.

-CASESENS=<yes|no> No Indicates if file search is case sensitive.
By default, searched files are uppercase.

-FILECOUNT=<n> No Maximum number of files to wait for
(default is 0). If this number is reached,
the command ends.

The value 0 indicates that we wait for all
files until the timeout is reached.

If this parameter is 0 and the timeout is
also 0, this parameter is then forced
implicitly to 1.

-TIMEOUT=<n> No Maximum waiting time in milliseconds
(default is 0)

If this delay is reached, the command
yields control to the following
command, and this no matter what is
the value of parameter FILECOUNT.

The value 0 is used to specify an infinite
waiting time (wait until the maximum
number of messages to read as specified
in parameter FILECOUNT).

-POLLINT=<n> No Interval in milliseconds to search for
new files. Default is set to 1000 (1
second), which means that Oracle Data
Integrator looks for new messages every
second. Files written during the
OdiFileWait are taken in account only
after being closed (File size unchanged)
during this interval.

-HEADER=<n> No This parameter is valid only for the
APPEND action.

Number of header lines to suppress
from the files before concatenation.
Default is no processing (0).

-KEEP_FIRST_HEADER=<yes|no> No This parameter is only valid for the
action APPEND.

It is used to keep the header lines of the
first file during the concatenation.
Default is Yes.

-NOFILE_ERROR=<yes|no> No Indicates the behavior to have if no file
is found.

The value No (default) indicates that no
error must be generated if no file is
found.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-32 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Examples
Wait indefinitely for file flag.txt in directory c:\events and proceed when this file is
detected.

OdiFileWait -ACTION=NONE -DIR=c:\events -PATTERN=flag.txt -FILECOUNT=1
-TIMEOUT=0 -POLLINT=1000

Wait indefinitely for file flag.txt in directory c:\events and suppress this file when it is
detected.

OdiFileWait -ACTION=DELETE -DIR=c:\events -PATTERN=flag.txt -FILECOUNT=1
-TIMEOUT=0 -POLLINT=1000

Wait for the sales files *.dat for 5 minutes and scan every second in directory c:\sales_
in, then concatenate into file sales.dat in directory C:\sales_ok. Keep the header of the
first file.

OdiFileWait -ACTION=APPEND -DIR=c:\sales_in -PATTERN=*.dat
TOFILE=c:\sales_ok\sales.dat -FILECOUNT=0 -TIMEOUT=350000 -POLLINT=1000
-HEADER=1 -KEEP_FIRST_HEADER=yes -OVERWRITE=yes

Wait for the sales files *.dat for 5 minutes every second in directory c:\sales_in, then
copy these files into directory C:\sales_ok. Do not overwrite.

OdiFileWait -ACTION=COPY -DIR=c:\sales_in -PATTERN=*.dat -TODIR=c:\sales_ok
-FILECOUNT=0 -TIMEOUT=350000 -POLLINT=1000 -OVERWRITE=no

Wait for the sales files *.dat for 5 minutes every second in directory c:\sales_in and
then archive these files into a zip file.

OdiFileWait -ACTION=ZIP -DIR=c:\sales_in -PATTERN=*.dat
-TOFILE=c:\sales_ok\sales.zip -FILECOUNT=0 -TIMEOUT=350000
-POLLINT=1000 -OVERWRITE=yes

Wait for the sales files *.dat for 5 minutes every second into directory c:\sales_in, then
move these files into directory C:\sales_ok. Do not overwrite. Append .bak to the file
names.

OdiFileWait -ACTION=MOVE -DIR=c:\sales_in -PATTERN=*.dat
-TODIR=c:\sales_ok -TOFILE=*.bak -FILECOUNT=0 -TIMEOUT=350000
-POLLINT=1000 -OVERWRITE=no

A.5.17 OdiFtpGet
Use this command to download a file from a FTP server.

Usage
OdiFtpGet -HOST=<ftp server host name> -USER=<ftp user>
[PASSWORD=<ftp user password>] -REMOTE_DIR=<remote dir on ftp host>
[-REMOTE_FILE=<file name under the -REMOTE_DIR>] -LOCAL_DIR=<local dir>
[-LOCAL_FILE=<file name under the –LOCAL_DIR>] [-PASSIVE_MODE=<yes|no>]
[-TIMEOUT=<time in seconds>]

Parameters

Parameters Mandatory Description

-HOST=<host name of the Ftp server> Yes The host name of the FTP server

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-33

Examples
To copy the remote directory /test_copy555 on the FTP server machine recursively
to the local directory C:\temp\test_copy:

OdiFtpGet -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp\test_copy -REMOTE_DIR=/test_copy555

To copy all files matching the Sales*.txt pattern under the remote directory / on
the FTP server machine to the local directory C:\temp\. It also uses the Active Mode
for FTP connection:

OdiFtpGet -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp -LOCAL_FILE=Sales*.txt -REMOTE_DIR=/ -PASSIVE_MODE=NO

A.5.18 OdiFtpPut
Use this command to upload a local file to FTP server.

Usage
OdiFtpPut -HOST=<ftp server host name> -USER=<ftp user>
[PASSWORD=<ftp user password>] -REMOTE_DIR=<remote dir on ftp host>
[-REMOTE_FILE=<file name under the -REMOTE_DIR>] -LOCAL_DIR=<local dir>
[-LOCAL_FILE=<file name under the –LOCAL_DIR>] [-PASSIVE_MODE=<yes|no>]
[-TIMEOUT=<time in seconds>]

-USER=<host name of the Ftp user> Yes The user on the FTP server

-PASSWORD=<password of the Ftp user> No The password of the FTP user

-REMOTE_DIR=<dir on ftp host> Yes The directory path on the remote FTP host

-REMOTE_FILE=<file name under -REMOTE
DIR>

No The file name under the directory specified in
the -REMOTE_DIR argument. If this argume
is missing then file will be copied with the
-LOCAL_FILE file name. If -LOCAL_FILE
argument is also missing then the -LOCAL_
DIR will be copied recursively to the
-REMOTE_DIR

-LOCAL_DIR=<local dir path> Yes The directory path on the local machine

-LOCAL_FILE=<local file> No The file name under the directory specified in
the -LOCAL_DIR argument. If this argument
missing then all the files and directories unde
the -LOCAL_DIR will be copied recursively t
the -REMOTE_DIR.

To filter the files to be copied use * to specify
the generic characters.

Examples:

■ *.log (All files with the "log" extension

■ arch_*.lst (All files starting with arch
and with the extension "lst")

-PASSIVE_MODE No If set to No the FTP Session will use Active
Mode. The Default value is yes, it runs in
passive mode

-TIMEOUT=<timeout value> No The time in seconds after which the socket
connection will timeout

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-34 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Parameters

Examples
To copy the local directory C:\temp\test_copy recusively to the remote directory
/test_copy555 on the FTP server machine:

OdiFtpPut -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password>
 -LOCAL_DIR=C:\temp\test_copy -REMOTE_DIR=/test_copy555"

To copy all files matching the Sales*.txt pattern under the local directory
C:\temp\ to the remote directory / on the FTP server machine:

OdiFtpPut -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp -LOCAL_FILE=Sales*.txt -REMOTE_DIR=/

To copy the Sales1.txt file under the local directory C:\temp\ to the remote
directory / on the FTP server machine as a Sample1.txt file:

OdiFtpPut -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp -LOCAL_FILE=Sales1.txt -REMOTE_DIR=/Sample1.txt

Parameters Mandatory Description

-HOST=<host name of the Ftp server> Yes The host name of the FTP server

-USER=<host name of the Ftp user> Yes The user on the FTP server

-PASSWORD=<password of the Ftp user> No The password of the FTP user

-REMOTE_DIR=<dir on ftp host> Yes The directory path on the remote FTP host

-REMOTE_FILE=<file name under -REMOTE
DIR>

No The file name under the directory specified in
the -REMOTE_DIR argument. If this argument
is missing then file will be copied with the
-LOCAL_FILE file name. If -LOCAL_FILE
argument is also missing then the -LOCAL_
DIR will be copied recursively to the
-REMOTE_DIR

-LOCAL_DIR=<local dir path> Yes The directory path on the local machine

-LOCAL_FILE=<local file> No The file name under the directory specified in
the -LOCAL_DIR argument. If this argument is
missing then all the files and directories under
the -LOCAL_DIR will be copied recursively to
the -REMOTE_DIR.

To filter the files to be copied use * to specify
the generic characters.

Examples:

■ *.log (All files with the "log" extension)

■ arch_*.lst (All files starting with arch_
and with the extension "lst")

-PASSIVE_MODE No If set to No the FTP Session will use Active
Mode. The Default value is yes, it runs in
passive mode

-TIMEOUT=<timeout value> No The time in seconds after which the socket
connection will timeout

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-35

A.5.19 OdiGenerateAllScen
Use this command to generate a set of scenarios from design-time components
(Packages, Interfaces, Procedures, or Variables) contained in a folder or a project,
filtered by markers.

Usage
OdiGenerateAllScen -PROJECT=<project_id> [-FOLDER=<folder_id>]
[-MODE=<REPLACE|CREATE>] [-GRPMARKER=<marker_group_code>
-MARKER=<marker_code>] [-GENERATE_PACK=<YES|NO>]
[-GENERATE_POP=<YES|NO>] [-GENERATE_TRT=<YES|NO>]
[-GENERATE_VAR=<YES|NO>]

Parameters

Parameters Mandatory Description

-PROJECT=<project_id> Yes ID of the Project containing the components to
generate scenarios for.

-FOLDER=<folder_id> No ID of the Folder containing the components to
generate scenarios for.

-MODE=<REPLACE|CREATE> No Scenario generation mode:

■ Replace: causes the last scenario generated for
the component to be replaced by the new one
generated, with no change of name or version.
Any schedules linked to this scenario will be
deleted.

If no scenario exists yet, a new one is generated.

■ Create (default): creates a new scenario with the
same name as the latest scenario generated for
the component, with the version number
automatically incremented (if the latest version
is an integer) or sets to the current date (if the
latest version is not an integer).

If no scenario has been created yet for the
component, a first version of the scenario is
automatically created.

New scenarios are named after the component
according to the Scenario Naming Convention
user parameter.

-GRPMARKER=<marker_group_code> No Group containing the marker used to filter the
components for which scenarios must be generated.

When GRPMARKER and MARKER are specified,
scenarios will be (re-)generated only for components
flagged the marker identified by the marker code
and the marker group code.

-MARKER=<marker_code> No Marker used to filter the components for which
scenarios must be generated.

When GRPMARKER and MARKER are specified,
scenarios will be (re-)generated only for components
flagged the marker identified by the marker code
and the marker group code.

-GENERATE_PACK=<YES|NO> No Specifies whether scenarios attached to packages
should be (re-)generated. The Default value is YES.

Alphabetic List of ODI Tools

A-36 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Examples
OdiGenerateAllScen -PROJECT=1003 generates all scenarios in the project
whose id is 1003 for the current repository.

A.5.20 OdiImportObject
Use this command to import the contents of an export file into a repository. This
command reproduces the behavior of the import feature available from the user
interface.

Be careful when using this tool. It may work incorrectly when importing objects that
depend on objects that do not exist in the repository. It is recommended that you use
this API for importing high-level objects (Projects, models, etc).

Usage
OdiImportObject -FILE_NAME=<FileName> [-WORK_REP_NAME=<workRepositoryName>]
-IMPORT_MODE=<DUPLICATION | SYNONYM_INSERT | SYNONYM_UPDATE | SYNONYM_INSERT_
UPDATE> [-IMPORT_SCHEDULE=<yes|no>]

Parameters

-GENERATE_POP=<YES|NO> No Specifies whether scenarios attached to interfaces
should be (re-)generated. The Default value is NO.

-GENERATE_TRT=<YES|NO> No Specifies whether scenarios attached to procedures
should be (re-)generated. The Default value is NO.

-GENERATE_VAR=<YES|NO> No Specifies whether scenarios attached to variables
should be (re-)generated. The Default value is NO.

WARNING: The import mode and the order in which objects are
imported into a repository should be carefully specified. Refer to
Chapter 18, "Exporting/Importing" for more information on import.

Parameters Mandatory Description

-FILE_NAME=<FileName> Yes Name of the XML export file to import.

-WORK_REP_
NAME=<workRepositoryName>

No Name of the work repository into which
the object must be imported. This work
repository must be defined in the
connected master repository. If this
parameter is not specified then the
object is imported into the current
master or work repository.

-IMPORT_MODE=<DUPLICATION |
SYNONYM_INSERT | SYNONYM_UPDATE
| SYNONYM_INSERT_UPDATE>

Yes Import mode for the object. Default
value is DUPLICATION. For more
information see Section 18.1.3, "Import
Modes".

-IMPORT_SCHEDULE=<yes|no> No If the selected file is a scenario export,
imports the schedules contained in the
scenario export file. Default is no.

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-37

Examples
Imports the /temp/DW01.xml export file (a project) into the WORKREP work
repository using DUPLICATION mode .

OdiImportObject -FILE_NAME=/temp/DW01.xml -WORK_REP_NAME=WORKREP
-IMPORT_MODE=DUPLICATION

A.5.21 OdiImportScen
Use this command to import a scenario into the current work repository from an
export file.

Usage
OdiImportScen -FILE_NAME=<FileName> [-IMPORT_MODE=<DUPLICATION |
SYNONYM_INSERT | SYNONYM_UPDATE | SYNONYM_INSERT_UPDATE>] [IMPORT_
SCHEDULE=<yes|no>

Parameters

Examples
Imports the /temp/load_dwh.xml export file (a scenario) into the current work
repository using DUPLICATION mode .

OdiImportScen -FILE_NAME=/temp/load_dwh.xml -IMPORT_MODE=DUPLICATION

A.5.22 OdiInvokeWebService
Use this command to invoke a web service over HTTP/HTTPS and write the response
to an XML file.

This tool invokes a specific operation on a port of a web service whose description file
(WSDL) URL is provided.

If this operation requires a SOAP request, it is provided either in a request file, or
directly written out in the tool call (<XML Request>). The response of the web service
request is written to an XML file that can be used in Oracle Data Integrator.

Usage
OdiInvokeWebService -URL=<url> -PORT=<port> -OPERATION=<operation>

Parameters Mandatory Description

-FILE_NAME=<FileName> Yes Name of the export file.

-IMPORT_MODE=<DUPLICATION | SYNONYM_
INSERT | SYNONYM_UPDATE | SYNONYM_
INSERT_UPDATE>

No Import mode of the
scenario. Default value is
DUPLICATION. For more
information on the import
modes, see Section 18.1.3,
"Import Modes".

-IMPORT_SCHEDULE=<yes|no> No Imports the schedules
contained in the scenario
export file. Default is no.

Note: This Tool replaces OdiExecuteWebService.

Alphabetic List of ODI Tools

A-38 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

[<XML Request>][-REQUEST_FILE=<xml_request_file>] [-RESPONSE_MODE=<NO_FILE|NEW_
FILE|APPEND>]
[-RESPONSE_FILE=<xml_response_file>] [-RESPONSE_XML_ENCODING=<charset>]
[-RESPONSE_FILE_CHARSET=<charset>] [-HTTP_USER=<user>]
[-HTTP_PASS=<password>] [-TIMEOUT=<timeout>]

Parameters

Parameters Mandatory Description

-URL=<url> Yes URL of the Web Service
Description File (WSDL) file
describing the web service.

-PORT_TYPE=<port_type> Yes Name of the WSDL port type
to invoke.

-OPERATION=<operation> Yes Name of the web service
operation to invoke.

<XML Request> No Request message in SOAP
(Simple Object Access Protocol)
format. This message should be
provided on the line
immediately following the
OdiInvokeWebService call.

The request can alternately be
passed via a file which location
is provided with the
REQUEST_FILE parameter.

-REQUEST_FILE=<xml_request_file> No Location of the XML file
containing the request message
in SOAP (Simple Object Access
Protocol) format.

The request can alternately be
directly written out in the tool
call (<xmlRequest>).

-RESPONSE_MODE=<NO_FILE|NEW_FILE|APPEND> No Generation mode for the
response file. This parameter
takes the following values:

■ NO_FILE (default): No
response file is generated.

■ NEW_FILE: A new
response file is generated.
If the file already exists, it
is overwritten.

■ APPEND: The response is
appended to the file. If the
file does not exist, it is
created.

-RESPONSE_FILE=<file> Depends The name of the result file to
write. Mandatory if
-RESPONSE_MODE is NEW_
FILE or APPEND.

-RESPONSE_FILE_CHARSET=<charset> Depends Response file character
encoding. See the table below.
Mandatory if -RESPONSE_
MODE is NEW_FILE or
APPEND.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-39

The following table lists some of the most common XML/Java character encoding
schemes. A more complete list is available at:

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html

Examples
The following web service call returns the capital city for a given country (the ISO
country code is sent in the request). Note that the request and response format, as well
as the port and operations available, are defined in the WSDL passed in the URL
parameter.

OdiInvokeWebService -
-URL=http://www.oorsprong.org/websamples.countryinfo/CountryInfoService.wso
?WSDL -PORT_TYPE=CountryInfoServiceSoapType -OPERATION=CapitalCity
-RESPONSE_MODE=NEW_FILE -RESPONSE_XML_ENCODING=ISO-8859-1
"-RESPONSE_FILE=/temp/result.xml" -RESPONSE_FILE_CHARSET=ISO8859_1
<CapitalCityRequest>
<sCountryISOCode>US</sCountryISOCode>
</CapitalCityRequest>

The generated /temp/result.xml file contains the following:

<CapitalCityResponse>
<m:CapitalCityResponse>
<m:CapitalCityResult>Washington</m:CapitalCityResult>
</m:CapitalCityResponse>
</CapitalCityResponse>

-RESPONSE_XML_ENCODING=<charset> Depends Character encoding that will be
indicated in the XML
declaration header of the
response file. See the table
below. Mandatory if
-RESPONSE_MODE is not
NO_FILE.

-HTTP_USER=<user> No User account authenticating on
the HTTP server.

-HTTP_PASS=<password> No Password of the HTTP user.

-TIMEOUT=<timeout> No The web service request waits
for a reply for this time before
considering that the server will
not provide a response and an
error is produced. If no value is
given, there is no timeout.

XML Charset Java Charset

US-ASCII ASCII

UTF-8 UTF8

UTF-16 UTF-16

ISO-8859-1 ISO8859_1

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-40 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Packages
Oracle Data Integrator provides a special graphical interface for calling
OdiInvokeWebService in packages. See Chapter 14, "Working with Web Services in
Oracle Data Integrator" for more information.

A.5.23 OdiKillAgent
Use this command to kill a standalone agent.

Java EE Agents deployed in an application server cannot be killed using this tool and
must be stopped using the application server utilities.

Usage
OdiKillAgent (-PORT=<TCP/IP Port>|-NAME=<physical_agent_name>)
[-IMMEDIATE=<yes|no>] [-MAX_WAIT=<timeout>]

Parameters

Examples
Stop immediately the ODI_AGT_001 physical agent.

OdiKillAgent -AGENT_NAME=ODI_AGT_001 -IMMEDIATE=yes

A.5.24 OdiMkDir
Use this command to create a directory structure.

If the parent directory does not exist, this command will recursively create the parent
directories.

Usage
OdiMkDir -DIR=<directory>

Parameters Mandatory Description

-PORT=<TCP/IP Port> No If this parameter is specified, the agent running on
the local machine with the specified port is killed.
Note that the -PORT parameter has precedence over
the -AGENT_NAME parameter.

-NAME=<physical_
agent_name>

Yes If this parameter is specified, the physical agent
whose name is provided is killed. This agent may be
a local or remote agent. It must be declared in the
master repository.

-IMMEDIATE=<yes|no> No If this parameter is set to yes then the agent is killed
without waiting for completion of its running
sessions. If it is set to no then the agent is killed after
all its running sessions reach completion or after the
MAX_WAIT timeout is reached. Default value is No.

-MAX_WAIT=<timeout> No This parameter can be used when IMMEDIATE is
set to No. It defines a timeout in milliseconds after
which the agent is killed regardless of the running
sessions. Default is 0, meaning no timeout and the
agent is killed after all its running sessions reach
completion.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-41

Parameters

Examples
Creates the directory "odi" in C:\temp. if C:\temp does not exist, it will also be
created.

OdiMkDir "-DIR=C:\temp\odi"

A.5.25 OdiOSCommand
Use this command to invoke an operating system command shell to carry out a
command, and redirects the output result to files.

The following operating systems are supported:

■ Windows 95, 98, ME, using "command.com"

■ Windows NT, 2000, XP, using "cmd"

■ POSIX-compliant OS's, using "sh"

The following operating systems are not supported:

■ Mac OS

Usage
OdiOSCommand [-OUT_FILE=<stdout_file>] [-ERR_FILE=<stderr_file>]
[-FILE_APPEND=<yes|no>] [-WORKING_DIR=<workingdir>]
[-SYNCHRONOUS=<yes|no>]] [CR/LF <command> |
-COMMAND=<command>]

Parameters

Parameters Mandatory Description

-DIR=<directory> Yes Directory (or folder) to create.

Parameters Mandatory Description

-COMMAND <command> Yes The command to execute. Arguments with spaces
should be enclosed in quotes as appropriate for the
command shell. For a multi-line command, pass the
whole command as raw text after the
OdiOSCommand line without the -COMMAND
parameter.

-OUT_FILE=<stdout_file> No The absolute name of the file to redirect standard
output to.

-ERR_FILE=<stderr_file> No The absolute name of the file to redirect standard
error to.

-FILE_APPEND=<yes|no> No Whether to append to the output files, rather than
overwriting it.

-WORKING_DIR=<workingdir> No The directory in which the command is executed.

-SYNCHRONOUS=<yes|no> No If "yes", the session awaits for the command to
terminate. If "no", the session continues immediately
with error code 0. By default, it executes in
Synchronous mode.

Alphabetic List of ODI Tools

A-42 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Examples
The following command executes the file c:\work\load.bat (on a Windows machine),
appending the output streams to files.

OdiOSCommand "-OUT_FILE=c:\work\load-out.txt"
"-ERR_FILE=c:\work\load-err.txt" "-FILE_APPEND=YES"
"-WORKING_DIR=c:\work" c:\work\load.bat

A.5.26 OdiOutFile
Use this command to write or append content to a text file.

Usage
OdiOutFile -FILE=<file_name> [-APPEND] [-CHARSET_ENCODING=<encoding>]
[-XROW_SEP=<hexadecimal_line_break>] [CR/LF <text> | -TEXT=<text>]

Parameters

Examples
The command generates the file /var/tmp/my_file.txt on the UNIX machine of the
agent that executed it:

OdiOutFile -FILE=/var/tmp/my_file.txt
Welcome to Oracle Data Integrator
This file has been overwritten by <%=odiRef.getSession("SESS_NAME")%>

Parameters Mandatory Description

-FILE=<file_name> Yes Target file. Its path may be absolute or
relative to the execution agent location.

-APPEND No Indicates whether <Text> must be
appended at the end of the file. If this
parameter is not specified, the file is
overwritten if it does exist.

-CHARSET_ENCODING=<encoding> No Target file encoding. Default value is
ISO-8859-1. Supported encodings are
available at the following URL:

http://java.sun.com/j2se/1.4.2/docs/guid
e/intl/encoding.doc.html

-XROW_SEP=<hexadecimal_line_break> No Hexadecimal code of the character used as
a line separator (line break). Defaults to 0A
(Unix line break). For a windows line
break, the value should be 0D0A.

CR/LF <text> or -TEXT=<text> Yes Text to write in the file. This text can be
typed on the line following the OdiOutFile
command (A carriage return - CR/LF -
indicates the beginning of the text), or can
be defined with the -TEXT parameter. The
-TEXT parameter should be used when
calling this Oracle Data Integrator
command from an OS command line. The
text can contain variables or substitution
methods.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-43

This command adds the entry PLUTON into the file hosts of the NT machine of the
agent that executed it:

OdiOutFile -FILE=C:\winnt\system32\drivers\etc\hosts -APPEND
195.10.10.6 PLUTON pluton

A.5.27 OdiPingAgent
Use this command to perform a test on a given agent. If the agent is not started, this
command raises an error.

Usage
OdiPingAgent -AGENT_NAME=<physical_agent_name>

Parameters

Examples
Test the physical agent AGENT_SOLARIS_DEV

OdiPingAgent -AGENT_NAME=AGENT_SOLARIS_DEV

A.5.28 OdiPurgeLog
Use this command to purge the execution logs.

Sessions to be purged are filtered using the parameters of this tool. Only sessions
matching the filter criterial are purged. The COUNT parameter allows to define a
number of sessions (after filter) to preserve in the log. The ARCHIVE parameter
enables automatic archiving of the purged session.

Usage
OdiPurgeLog [-COUNT=<session_number>][-FROMDATE=<from_date>] [TODATE=<to_date>]
[-CONTEXT_CODE=<context_code>] [-USER_NAME=<user_name>]
[-AGENT_NAME=<agent_name>] [-PURGE_REPORTS=<0|1>] [-SESSION_STATUS=<D|E|M>]
-SESSION_NAME=<session_name> -ARCHIVE=<Yes|No> -TODIR=<directory>
-ZIPFILE_NAME=<zipfile_name> -XML_CHARSET=<charset> -JAVA_CHARSET=<charset>

Parameters Mandatory Description

-AGENT_NAME=<physical_agent_name> Yes Name of the physical agent to
test.

Note that the old syntax with
AGENT_NAME is still valid
but deprecated.

Note: Running, waiting, or queued sessions are not purged.

Alphabetic List of ODI Tools

A-44 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Parameter

Parameters Mandatory Description

-COUNT=<session_number> No Retains <number> sessions that match the
specified filter criteria and purges the rest. If this
parameter is not specified or equals zero.All
sessions match the filter criteria are purged.

-FROMDATE=<from_date> No Filter criterion: Starting date for the purge, using
the format yyyy/MM/dd hh:mm:ss.

If -FROMDATE is omitted, the purge is done
starting with the oldest session.

-TODATE=<to_date> No Filter criterion: Ending date for the purge, using
the format yyyy/MM/dd hh:mm:ss.

If -TODATE is omitted, the purge is done up to
the most recent session.

-CONTEXT_CODE=<context_code> No Filter criterion: Purges only sessions executed in
<context_code>

-USER_NAME=<user_name> No Filter criterion: Purges only sessions launched by
<user_name>

-AGENT_NAME=<agent_name> No Filter criterion: Purges only sessions executed by
<agent_name>

-PURGE_REPORTS=<0|1> No If this parameter has a value of 1, the scenario
reports (appearing under the execution node of
each scenario) are also purged.

-SESSION_STATUS=<D|E|M> No Filter criterion: Purges only the sessions with the
specified state:

■ D: Done

■ E: Error

■ M: Warning

If this parameter is not specified, sessions in all
the states above are purged.

-SESSION_NAME=<session_name> No Filter criterion: Session name filter.

-ARCHIVE=<Yes|No> No If set to Yes, exports the sessions before they are
purged.

-TODIR=<directory> No Target directory for the export. This parameter is
required if ARCHIVE is set to yes.

-ZIPFILE_NAME=<zipfile_name> No Name of the compressed file.

Target directory for the export. This parameter is
required if ARCHIVE is set to yes.

-XML_CHARSET=<charset> No XML Encoding of the export files. Default value
is ISO-8859-1. Supported encodings are available
at the following URL:

http://java.sun.com/j2se/1.4.2/docs/
guide/intl/encoding.doc.html

-JAVA_CHARSET=<charset> No Export file encoding. Default value is ISO8859_
1. Supported encodings are available at the
following URL:

http://java.sun.com/j2se/1.4.2/docs/
guide/intl/encoding.doc.html

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-45

Examples
OdiPurgeLog "-FROMDATE=2001/03/25 00:00:00" "-TODATE=2001/08/31 21:59:00"
OdiPurgeLog "-FROMDATE=2001/03/25 00:00:00"
OdiPurgeLog "-TODATE=2001/08/31 21:59:00"

A.5.29 OdiReadMail
Use this command to read emails and attachments from a POP or IMAP account.

This command connects the mail server MAILHOST using the connection parameters
specified by USER and PASS. The execution agent reads messages from the mailbox
until MAX_MSG messages are received or the maximum waiting time specified by
TIMEOUT is reached. The extracted messages must match the filters like those specified
by the parameters SUBJECT and SENDER. When a message satisfies these criteria, its
content as well as its attachment are extracted in a directory specified by the parameter
FOLDER. If the parameter KEEP is set to "no", the retrieved message is then suppressed
from the mailbox.

Usage
OdiReadMail -MAILHOST=<mail_host> -USER=<mail_user>
-PASS=<mail_user_password> -FOLDER=<folder_path>
[-PROTOCOL=<pop3|imap>] [-FOLDER_OPT=<none|sender|subject>]
[-KEEP=<no|yes>] [-EXTRACT_MSG=<yes|no>] [-EXTRACT_ATT=<yes|no>]
[-MSG_PRF=<my_prefix>] [-ATT_PRF=<my_prefix>] [-USE_UCASE=<no|yes>]
[-NOMAIL_ERROR=<no|yes>] [-TIMEOUT=<timeout>] [-POLLINT=<pollint>]
[-MAX_MSG=<max_msg>] [-SUBJECT=<subject_filter>] [-SENDER=<sender_filter>]
[-TO=<to_filter>] [-CC=<cc_filter>]

Parameters

Parameters Mandatory Description

-MAILHOST=<mail_host> Yes IP address of the POP or IMAP mail
server

-USER=<mail_user> Yes Valid mail server account.

-PASS=<mail_user_password> Yes Password of the mail server account.

-FOLDER=<folder_path> Yes Full path of the storage folder for
attachments and messages

-PROTOCOL=<pop3|imap> No Type of mail accessed (POP3 or IMAP).
Default is POP3

Alphabetic List of ODI Tools

A-46 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

-FOLDER_OPT=<none|sender|subject> No Allows the creation of a sub-directory in
the directory FOLDER according to the
following parameters:

■ none (default): no action

■ sender: a sub-directory is created
with the external name of the
sender

■ subject: a sub-directory is created
with the subject of the message

For the sender and subject folder
option, the spaces and non
alphanumeric characters (such as @) are
replaced by underscores in the
generated folders name.

-KEEP=<no|yes> No yes: keep the messages that match the
filters in the mailbox after reading them.

no (default): delete the messages that
match the filters of the mailbox after
reading them

-EXTRACT_MSG=<yes|no> No yes (default): extract the body of the
message into a file

no: do not extract the body of the
message into a file

-EXTRACT_ATT=<yes|no> No yes (default): extract the attachments
into files

no: do not extract attachments

-MSG_PRF=<my_prefix> No Prefix of the file that contains the body
of the message. Default is MSG.

-ATT_PRF=<my_prefix> No Prefix of the files that contain the
attachments. The original file names are
kept.

-USE_UCASE=<no|yes> No yes: force the file names to uppercase

no (default): keep the original letter case

-NOMAIL_ERROR=<no|yes> No yes: generate an error if no mail matches
the specified criteria

no (default): do not generate an error
when no mail corresponds to the
specified criteria.

-TIMEOUT=<timeout> No Maximum waiting time in milliseconds
(default is 0).

If this waiting time is reached, the
command ends.

The value 0 (default) means an infinite
waiting time (as long as needed for the
maximum number of messages
specified into the parameter MAX_MSG
to be received).

-POLLINT=<pollint> No Searching interval in milliseconds to
scan for new messages. Default is 1000
(1 second).

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-47

Examples
Automatic reception of the mails of support with attachments detached in the folder
C:\support on the machine of the agent. Wait for all messages with a maximum
waiting time of 10 seconds:

OdiReadMail -MAILHOST=mail.mymail.com -USER=myaccount -PASS=mypass
-KEEP=no -FOLDER=c:\support -TIMEOUT=10000 -MAX_MSG=0
-SENDER=support@mycompany.com -EXTRACT_MSG=yes -MSG_PRF=TXT
-EXTRACT_ATT=yes

Wait indefinitely for 10 messages and check for new messages every minute:

OdiReadMail -MAILHOST=mail.mymail.com -USER=myaccount -PASS=mypass
-KEEP=no -FOLDER=c:\support -TIMEOUT=0 -MAX_MSG=10 -POLLINT=60000
-SENDER=support@mycompany.com -EXTRACT_MSG=yes -MSG_PRF=TXT
-EXTRACT_ATT=yes

A.5.30 OdiRefreshJournalCount
Use this command to refresh for a given journalizing subscriber the number of rows to
consume for the given table list or CDC set. This refresh is performed on a logical
schema and a given context, and may be limited.

Usage
OdiRefreshJournalCount -LSCHEMA=<logical_schema> -SUBSCRIBER_NAME=<subscriber_
name>
(-TABLE_NAME=<table_name> | -CDC_SET_NAME=<cdc set name>)
[-CONTEXT=<context>] [-MAX_JRN_DATE=<to_date>]

-MAX_MSG=<max_msg> No Maximum number of messages to
extract (default is 1). If this number is
reached, the command ends.

-SUBJECT=<subject_filter> No Parameter used to filter the messages
according to their subjects.

-SENDER=<sender_filter> No Parameter used to filter messages
according to their sender.

-TO=<to_filter> No Parameter used to filter messages
according to their addresses. This option
can be repeated to create multiple filters.

-CC=<cc_filter> No Parameter used to filter messages
according to their addresses in copy.
This option can be repeated to create
multiple filters.

Note: This command is suitable for journalized tables in simple or
consistent mode.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-48 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Parameters

Examples
Refreshes for the CUSTOMERS table in the SALES_APPLICATION schema the count
of modifications recorded for the SALES_SYNC subscriber. This datastore is
journalized in simple mode.

OdiRefreshJournalCount -LSCHEMA=SALES_APPLICATION
-TABLE_NAME=CUSTOMERS -SUBSCRIBER_NAME=SALES_SYNC

Refreshes for all tables from the SALES CDC Set in the SALES_APPLICATION schema
the count of modifications recorded for the SALES_SYNC subscriber. These datastores
are journalized with consistent set CDC.

OdiRefreshJournalCount -LSCHEMA=SALES_APPLICATION
-SUBSCRIBER_NAME=SALES_SYNC -CDC_SET_NAME=SALES

A.5.31 OdiReinitializeSeq
Use this command to reinitialize an Oracle Data Integrator Sequence.

Parameters Mandatory Description

-LSCHEMA=<logical_schema> Yes Logical schema containing the journalized
tables.

-TABLE_NAME=<table_name> Yes for working
with Simple CDC.

Journalized table name, mask or list to check.
This parameter accepts three formats :

■ Table Name

■ Table Name Mask: This mask selects the
tables to poll. The mask is specified using
the SQL LIKE syntax : the % symbol
replaces an unspecified number of
characters and the _ symbol acts as a
wildcard.

■ Table Names List: List of table names
separated by commas. Masks a defined
above are not allowed.

Note that this option works only for tables in a
model journalized in simple mode.

This parameter cannot be used with CDC_SET_
NAME. It is mandatory if CDC_SET_NAME is not
set.

-CDC_SET_NAME=<cdcSetName> Yes for working
with Consistent
Set CDC.

Name of the CDC Set to check.

Note that this option works only for tables in a
model journalized in consistent mode.

This parameter cannot be used with TABLE_
NAME. It is mandatory if TABLE_NAME is not set.

-SUBSCRIBER_NAME=<subscriber_
name>

Yes Name of the subscriber for which the count is
refreshed.

-CONTEXT=<context> No Context in which the logical schema will be
resolved. If no context is specified, the
execution context is used.

-MAX_JRN_DATE=<to_date> No Date (and time) until which the journalizing
events are taken into account.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-49

Usage
OdiReinitializeSeq -SEQ_NAME=<sequence_name> -CONTEXT=<context>
-STD_POS=<position>

Parameters

Examples
Resets the global sequence SEQ_I to zero for the GLOBAL context:

OdiReinitializeSeq -SEQ_NAME=GLOBAL.SEQ_I -CONTEXT=GLOBAL
-STD_POS=0

A.5.32 OdiReverseGetMetaData
Use this command to reverse-engineer metadata for the given model in the reverse
tables using the JDBC driver capabilities. This command is typically preceded by
OdiReverseResetTable and followed by OdiReverseSetMetaData.

Usage
OdiReverseGetMetaData -MODEL=<model_id>

Parameters

Examples
Reverse the RKM’s current model.

OdiReverseGetMetaData -MODEL=<%=odiRef.getModel("ID")%>

Parameters Mandatory Description

-SEQ_NAME=<sequence_
name>

Yes Name of the sequence to reinitialize. It must
be prefixed with "GLOBAL." for a global
sequence, or by <project code>. for a project
sequence.

-CONTEXT=<context> Yes Context in which the sequence must be
reinitialized.

-STD_POS=<position> Yes Position to which the sequence must be
reinitialized.

Notes: T

■ This command uses the same technique as the standard
reverse-engineering, and depends on the capabilities of the JDBC
driver used.

■ The use of this command is restricted to DEVELOPMENT type
Repositories because the metadata is not available on
EXECUTION type Repositories.

Parameters Mandatory Description

-MODEL=<model_id> Yes Model to reverse-engineer.

Alphabetic List of ODI Tools

A-50 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

A.5.33 OdiReverseResetTable
Use this command to reset the content of reverse tablesfor a given model. This
command is typically used at the beginning of a customized reverse-engineering
process.

Usage
OdiReverseResetTable -MODEL=<model_id>

Parameters

Examples
OdiReverseResetTable -MODEL=123001

A.5.34 OdiReverseSetMetaData
Use this command to integrate metadata from the reverse tables into the Repository
for a given data model.

Usage
OdiReverseSetMetaData -MODEL=<model_id> [-USE_TABLE_NAME_FOR_UPDATE=<true|false>]

Parameters

Examples
OdiReverseSetMetaData -MODEL=123001 -USE_TABLE_NAME_FOR_UPDATE=true

A.5.35 OdiRetrieveJournalData
Use this command to retreive the journalized events for a given journalizing
subscriber, a given table list or CDC set. The retrieval is performed specifically for the
technology containing the tables. This retrieval is performed on a logical schema and a
given context.

Parameters Mandatory Description

Parameters Mandatory Description

-MODEL=<model_id> Yes Internal identifier of the model
that has to be reversed.

Parameters Mandatory Description

-MODEL=<model_id> Yes Internal identifier of the model to
be reversed.

-USE_TABLE_NAME_FOR_
UPDATE=<true|false>

No ■ If true, the TABLE_NAME is
used as an update key on the
target tables.

■ If false (default), the RES_
NAME is used as the update
key on the target tables.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-51

Usage
OdiRetrieveJournalData -LSCHEMA=<logical_schema> -SUBSCRIBER_NAME=<subscriber_
name>
(-TABLE_NAME=<table_name> | -CDC_SET_NAME=<cdc_set_name>)
[-CONTEXT=<context>] [-MAX_JRN_DATE=<to_date>]

Parameters

Examples
Retrieves for the CUSTOMERS table in the SALES_APPLICATION schema the
journalizing events for the SALES_SYNC subscriber.

OdiRetrieveJournalData -LSCHEMA=SALES_APPLICATION
-TABLE_NAME=CUSTOMERS -SUBSCRIBER_NAME=SALES_SYNC

Note: This command works for tables journalized using simple or
consistent set modes.

Parameters Mandatory Description

-LSCHEMA=<logical_schema> Yes Logical schema containing the journalized
tables.

-TABLE_NAME=<table_name> No Journalized table name, mask or list to check.
This parameter accepts three formats :

■ Table Name

■ Table Name Mask: This mask selects the
tables to poll. The mask is specified using
the SQL LIKE syntax : the % symbol
replaces an unspecified number of
characters and the _ symbol acts as a
wildcard.

■ Table Names List: List of table names
separated by commas. Masks a defined
above are not allowed.

Note that this option works only for tables in a
model journalized in simple mode.

This parameter cannot be used with CDC_
SET_NAME. It is mandatory if CDC_SET_NAME
is not set.

-CDC_SET_NAME=<cdc_set_name> No Name of the CDC Set to update.

Note that this option works only for tables in a
model journalized in consistent mode.

This parameter cannot be used with TABLE_
NAME. It is mandatory if TABLE_NAME is not
set.

-SUBSCRIBER_NAME=<subscriber_name> Yes Name of the subscriber for which the data is
retrieved.

-CONTEXT=<context> No Context in which the logical schema will be
resolved. If no context is specified, the
execution context is used.

-MAX_JRN_DATE=<to_date> No Date (and time) until which the journalizing
events are taken into account.

Alphabetic List of ODI Tools

A-52 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

A.5.36 OdiSAPALEClient and OdiSAPALEClient3
Use this command to generate SAP Internal Documents (IDoc) from XML source files
and transfer these IDocs using ALE (Application Link Enabling) to a remote tRFC
Server (SAP R/3 Server).

Usage for OdiSAPALEClient
OdiSAPALEClient -USER=<sap_logon> -ENCODED_PASSWORD=<password>
-GATEWAYHOST=<gateway_host> -SYSTEMNR=<system_number> -MESSAGESERVERHOST=<message_
server> -R3NAME=<system_name> -APPLICATIONSERVERSGROUP=<group_name>
[-DIR=<directory>] [-FILE=<file>] [-CASESENS=<yes|no>]
[-MOVEDIR=<target_directory>] [-DELETE=<yes|no>] [-POOL_KEY=<pool_key>]
[-LANGUAGE=<language>] [-CLIENT=<client>] [-MAX_CONNECTIONS=<n>]
[-TRACE=<no|yes>]

Usage for OdiSAPALEClient3
OdiSAPALEClient3 -USER=<sap_logon> -ENCODED_PASSWORD=<password>
-GATEWAYHOST=<gateway_host> -SYSTEMNR=<system_number> -MESSAGESERVERHOST=<message_
server> -R3NAME=<system_name> -APPLICATIONSERVERSGROUP=<group_name>
[-DIR=<directory>] [-FILE=<file>] [-CASESENS=<yes|no>]
[-MOVEDIR=<target_directory>] [-DELETE=<yes|no>] [-POOL_KEY=<pool_key>]
[-LANGUAGE=<language>] [-CLIENT=<client>] [-MAX_CONNECTIONS=<n>]
[-TRACE=<no|yes>]

Parameters

Note: The OdiSAPALEClient tool supports SAP Java Connector 2.x.
To use the SAP Java Connectors 3.x use the OdiSAPALEClient3 tool.

Parameters Mandatory Description

-USER=<sap_logon> Yes SAP logon. This user may be a system user.

-PASSWORD=<password> Deprecated SAP logon password. This command is
deprecated. Use instead ENCODED_
PASSWORD.

-ENCODED_PASSWORD=<password> Yes SAP logon password, encrypted. The OS
command encode <password> can be
used to encrypt this password.

-GATEWAYHOST=<gateway_host> No Gateway Host, mandatory if
MESSAGESERVERHOST is not specified .

-SYSTEMNR=<system_number> No SAP system number, mandatory if
GATEWAYHOST is used. The SAP system
number allows the SAP load balancing
feature.

-MESSAGESERVERHOST=<message_
server>

No Message Server host name, mandatory if
GATEWAYHOST is not specified. If both
parameters, GATEWAYHOST and
MESSAGESERVERHOST are specified,
MESSAGESERVERHOST will be used.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-53

Examples
Processes all the files in the/sap directory and sends them as IDocs to the SAP Server.
The original XML and generated files are stored in the /log directory after processing.

OdiSAPALEClient -USER=ODI -ENCODED_PASSWORD=xxx -SYSTEMNR=002
-GATEWAYHOST=GW001 -DIR=/sap -MOVEDIR=/log -TRACE=yes

A.5.37 OdiSAPALEServer and OdiSAPALEServer3
Use this command to start a tRFC listener to receive SAP IDocs transferred using ALE
(Application Link Enabling). This listener transforms incoming IDocs into XML files in
a given directory.

-R3NAME=<system_name> No Name of the SAP System (r3name),
manadtory if MESSAGESERVERHOST is
used.

-APPLICATIONSERVERSGROUP=<group_
name>

No Application servers group name,
manadtory if MESSAGESERVERHOST is
used.

-DIR=<directory> No XML source file directory. This parameter is
taken into account if -FILE is not
specified. At least one of the -DIR or
-FILE parameters must be specified.

-FILE=<file> No Name of the source XML file. If this
parameter is omitted, all the files in -DIR
are processed. At least one of the -DIR or
-FILE parameters must be specified.

-CASESENS=<yes|no> No Indicates if the source file names are
case-sensitive. Default is NO.

-MOVEDIR=<target_directory> No If this parameter is specified, the source
files are moved to this directory after being
processed.

-DELETE=<yes|no> No Deletes the source files after their
processing. Default is yes.

-POOL_KEY=<pool_key> No Name of the connection pool. Default is
ODI.

-LANGUAGE=<language> No Language code used for error messages.
Default is EN.

-CLIENT=<client> No Client identifier. Default is 001.

-MAX_CONNECTIONS=<n> No Maximum number of connections in the
pool. Default is 3.

-TRACE=<no|yes> No The generated IDoc files are archived in the
source file directory. If the source files are
moved (-MOVEDIR parameter), the
generated IDocs are also moved. Default is
no.

Note: The OdiSAPALEServer tool supports SAP Java Connector 2.x.
To use the SAP Java Connectors 3.x use the OdiSAPALEServer3 tool.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-54 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Usage of OdiSAPALEServer
OdiSAPALEServer -USER=<sap_logon> -ENCODED_PASSWORD=<password>
-GATEWAYHOST=<gateway_host> -SYSTEMNR=<system_number>
-GATEWAYNAME=<gateway_name> -PROGRAMID=<program_id> -DIR=<target_directory>
[-TIMEOUT=<n>] [-POOL_KEY=<pool_key>] [-LANGUAGE=<Language>]
[-CLIENT=<client>] [-MAX_CONNECTIONS=<n>]
[-INTERREQUESTTIMEOUT=<n>] [-MAXREQUEST=<n>] [-TRACE=<no|yes>]

Usage of OdiSAPALEServer3
OdiSAPALEServer3 -USER=<sap_logon> -ENCODED_PASSWORD=<password>
-GATEWAYHOST=<gateway_host> -SYSTEMNR=<system_number>
-GATEWAYNAME=<gateway_name> -PROGRAMID=<program_id> -DIR=<target_directory>
[-TIMEOUT=<n>] [-POOL_KEY=<pool_key>] [-LANGUAGE=<Language>]
[-CLIENT=<client>] [-MAX_CONNECTIONS=<n>]
[-INTERREQUESTTIMEOUT=<n>] [-MAXREQUEST=<n>] [-TRACE=<no|yes>]

Parameters

Parameters Mandatory Description

-USER=<UserName> Yes SAP Logon. This user may be a system
user.

-PASSWORD=<password> Deprecated SAP logon password. This command is
deprecated. Use instead ENCODED_
PASSWORD.

-ENCODED_PASSWORD=<password> Yes SAP logon password, encrypted. The OS
command

encode <password>

 can be used to encrypt this password.

-GATEWAYHOST=<gateway_host> Yes Gateway host.

-SYSTEMNR=<system_number> Yes SAP system number.

-GATEWAYNAME=<gateway_name> Yes Gateway Name

-PROGRAMID=<program_id> Yes The program ID. External Name used by
the tRFC server.

-DIR=<target_directory> Yes Directory in which the target XML files are
stored. These files are named <IDOC
Number>.xml, and are located in
sub-directories named after the IDoc type.
Default is ./FromSAP.

-POOL_KEY=<pool_key> Yes Name of the connection pool. Default is
ODI.

-LANG=<language> Yes Language code used for error messages.
Default is EN.

-CLIENT=<client> Yes SAP Client identifier. Default is 001.

-TIMEOUT=<n> No Life span in milliseconds for server. At the
end of this period the server stops
automatically. If this timeout is set to zero,
the server life span is infinite. Default is 0.

-MAX_CONNECTIONS=<n> Yes Maximum number of connections allowed
for the pool of connections. Default is 3.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-55

Examples
Wait for 2 IDoc files and generates the target XML files in the /temp directory.

OdiSAPALEServer -POOL_KEY=ODI -MAX_CONNECTIONS=3 -CLIENT=001
-USER=ODI -ENCODED_PASSWORD=xxx -LANGUAGE=EN
-GATEWAYHOST=SAP001 -SYSTEMNR=002 -GATEWAYNAME=GW001
-PROGRAMID=ODI01 -DIR=/tmp -MAXREQUEST=2

A.5.38 OdiScpGet
Use this command to download a file from a SSH server.

Usage
OdiScpGet -HOST=<ssh server host name> -USER=<ssh user> [-PASSWORD=<ssh user
password>] -REMOTE_DIR=<remote dir on ftp host> [-REMOTE_FILE=<file name under the
REMOTE_DIR>] -LOCAL_DIR=<local dir> [-LOCAL_FILE=<file name under the LOCAL_
DIR>][-PASSIVE_MODE=<yes|no>] -TIMEOUT=<time in seconds>] [-IDENTITY_FILE=<full
path to the private key file of the user>] [-KNOWNHOSTS_FILE=<full path to known
hosts file>][COMPRESSION=<yes|no>][-STRICT_HOSTKEY_CHECKING=<yes|no>][-PROXY_
HOST=<proxy server host name>] [-PROXY_PORT=<proxy server port>] [-PROXY_
TYPE=<HTTP|SOCKS5>]

Parameters

-INTERREQUESTTIMEOUT=<n> No If no IDOC is received during an interval of
n milliseconds, the listener stops. If this
timeout is set to zero, the timeout is
infinite. Default is 0.

-MAXREQUEST=<n> No Maximum number of requests after which
the listener stops. If this parameter is set to
zero, the server expects an infinite number
of requests. Default is 0.

Note: If -TIMEOUT,
-INTERREQUESTTIMEOUT and
-MAXREQUEST are set to zero or left empty,
then -MAXREQUEST automatically takes the
value 1.

-TRACE=<no|yes> No Activate the debug trace. Default is no.

Parameters Mandatory Description

-HOST=<host name of the SSH
server>

Yes The host name of the SSH server

-USER=<host name of the SSH user> Yes The user on the SSH server

-PASSWORD=<password of the Ftp
user>

No The password of the SSH user or the passphrase
the password protected identity file. If the
–IDENTITY_FILE argument is provided this valu
will be used as the passphrase for the password
protected private key file. If the public key
authentication fails then it falls back to the norm
user password authentication.

-REMOTE_DIR=<dir on remote SSH Yes The directory path on the remote FTP host

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-56 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Examples
To copy the remote directory /test_copy555 on the SSH server machine recursively
to the local directory C:\temp\test_copy

-REMOTE_FILE=<file name under
-REMOTE DIR>

No The file name under the directory specified in the
-REMOTE_DIR argument. Note that all
sub-directories matching the remote file name will
also be transferred to the local folder.

If this argument is missing then file will be copied
with the -LOCAL_FILE file name. If -LOCAL_FILE
argument is also missing then the -LOCAL_DIR
will be copied recursively to the -REMOTE_DIR

-LOCAL_DIR=<local dir path> Yes The directory path on the local machine

-LOCAL_FILE=<local file> No The file name under the directory specified in the
-LOCAL_DIR argument. If this argument is
missing then all the files and directories under the
-LOCAL_DIR will be copied recursively to the
-REMOTE_DIR.

To filter the files to be copied use * to specify the
generic characters.

Examples:

■ *.log (All files with the "log" extension)

■ arch_*.lst (All files starting with arch_ and
with the extension "lst")

-IDENTITY_FILE=<full path to the
private key file of the user>

No The private key file of the local user. If this
argument is specified then public key
authentication is done. The –PASSWORD
argument is used as the password for the password
protected private key file. If the authentication fails
then it falls back to the normal user password
authentication.

-KNOWNHOSTS_FILE=<full path to the
known hosts file on the local
machine>

No The full path to the Known_Hosts file on the local
machine. The Known_Hosts file contains the host
keys of all the Remote machines that the user
trusts. If this argument is missing then the <user
home dir>/.ssh/Known_hosts file is used as the
Known_Hosts file if it exists.

-COMPRESSION=<yes|no> No Set to Yes if you want data compression to be used.
Default is No.

-STRICT_HOSTKEY_CHECKING=<YES|NO> No This argument can take YES | NO values. If YES
value is passed then strict hostkey checking is done
and the authentication fails if the remote SSH host
key is not present in the Known Hosts file specified
in the –KNOWNHOSTS_FILE parameter. The
default value is YES.

-PROXY_HOST No The host name of the Proxy server to be used for
connection.

-PROXY_PORT No The port number of the Proxy server.

-PROXY_TYPE No The type of the Proxy server to which you are
connecting. It can only take HTTP | SOCKS5
values.

-TIMEOUT=<timeout value> No The time in seconds after which the socket
connection will timeout.

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-57

OdiScpGet -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password>
 -LOCAL_DIR=C:\temp\test_copy -REMOTE_DIR=/test_copy555

To copy all files matching the Sales*.txt pattern under the remote directory / on
the SSH server machine to the local directory C:\temp\

OdiScpGet -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password>
 -LOCAL_DIR=C:\temp -REMOTE_FILE=Sales*.txt -REMOTE_DIR=/

To copy the Sales1.txt file under the remote directory / on the SSH server machine to
the local directory C:\temp\ as a Sample1.txt file:

OdiScpGet -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password>
 -REMOTE_DIR=/ REMOTE_FILE=Sales1.txt -LOCAL_DIR=C:\temp
-LOCAL_FILE=Sample1.txt

To copy the Sales1.txt file under the remote directory / on the SSH server machine to
the local directory C:\temp\ as a Sample1.txt file. It does public key authentication by
providing the path to the Identity file and the path to the Known Hosts file.

OdiScpGet -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password>
-REMOTE_DIR=/ -REMOTE_FILE=Sales1.txt -LOCAL_DIR=C:\temp
-LOCAL_FILE=Sample1.txt -IDENTITY_FILE=C:\Documents and Settings\username\.ssh\id_
dsa -KNOWNHOSTS_FILE= C:\Documents and Settings\username\.ssh\Known_Hosts

To copy the Sales1.txt file under the remote directory / on the SSH server machine to
the local directory C:\temp\ as a Sample1.txt file. It does public key authentication by
providing the path to the Identity file. It trusts all the hosts by passing NO value to the
STRICT_HOSTKEY_CHECKING parameter:

OdiScpGet -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -REMOTE_
DIR=/ -REMOTE_FILE=Sales1.txt -LOCAL_DIR=C:\temp -LOCAL_FILE=Sample1.txt
-IDENTITY_FILE=C:\Documents and Settings\username\.ssh\id_dsa -STRICT_HOSTKEY_
CHECKING=NO

A.5.39 OdiScpPut
Use this command to upload a file to a SSH server.

Usage
OdiScpPut -HOST=<SSHserver host name> -USER=<SSH user> [-PASSWORD=<SSH user
password>] -LOCAL_DIR=<local dir> [-LOCAL_FILE=<file name under the LOCAL_DIR>]
-REMOTE_DIR=<remote dir on ftp host> [-REMOTE_FILE=<file name under the REMOTE_
DIR>] [-PASSIVE_MODE=<yes|no>] [-TIMEOUT=<time in seconds>] [-IDENTITY_FILE=<full
path to the private key file of the user>][-KNOWNHOSTS_FILE=<full path to known
hosts file>][-COMPRESSION=<yes|no>][-STRICT_HOSTKEY_CHECKING=<yes|no>] <-PROXY_
HOST=<proxy server host name>][-PROXY_PORT=<proxy server port>] [-PROXY_
TYPE=<HTTP|SOCKS5>]

Parameters

Parameters Mandatory Description

-HOST=<host name of the SSH
server>

Yes The host name of the SSH server

-USER=<host name of the SSH user> Yes The user on the SSH server

Alphabetic List of ODI Tools

A-58 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

-PASSWORD=<password of the SSH
user>

No The password of the SSH user or the passphrase of
the password protected identity file. If the
–IDENTITY_FILE argument is provided this value
will be used as the passphrase for the password
protected private key file. If the public key
authentication fails then it falls back to the normal
user password authentication.

-REMOTE_DIR=<dir on remote SSH Yes The directory path on the remote FTP host

-REMOTE_FILE=<file name under
-REMOTE DIR>

No The file name under the directory specified in the
-REMOTE_DIR argument. If this argument is
missing then file will be copied with the -LOCAL_
FILE file name. If -LOCAL_FILE argument is also
missing then the -LOCAL_DIR will be copied
recursively to the -REMOTE_DIR

-LOCAL_DIR=<local dir path> Yes The directory path on the local machine

-LOCAL_FILE=<local file> No The file name under the directory specified in the
-LOCAL_DIR argument. If this argument is
missing then all the files and directories under the
-LOCAL_DIR will be copied recursively to the
-REMOTE_DIR.

To filter the files to be copied use * to specify the
generic characters.

Examples:

■ *.log (All files with the "log" extension)

■ arch_*.lst (All files starting with arch_ and
with the extension "lst")

-IDENTITY_FILE=<full path to the
private key file of the user>

No The private key file of the local user. If this
argument is specified then public key
authentication is done. The –PASSWORD
argument is used as the password for the password
protected private key file. If the authentication fails
then it falls back to the normal user password
authentication.

-KNOWNHOSTS_FILE=<full path to the
known hosts file on the local
machine>

No The full path to the Known_Hosts file on the local
machine. The Known_Hosts file contains the host
keys of all the Remote machines that the user
trusts. If this argument is missing then the <user
home dir>/.ssh/Known_hosts file is used as the
Known_Hosts file if it exists.

-COMPRESSION=<yes|no> No Set to Yes if you want data compression to be used.
Default is No.

-STRICT_HOSTKEY_CHECKING=<YES|NO> No This argument can take YES | NO values. If YES
value is passed then strict hostkey checking is done
and the authentication fails if the remote SSH host
key is not present in the Known Hosts file specified
in the –KNOWNHOSTS_FILE parameter. The
default value is YES.

-PROXY_HOST No The host name of the Proxy server to be used for
connection.

-PROXY_PORT No The port number of the Proxy server.

-PROXY_TYPE No The type of the Proxy server to which you are
connecting. It can only take HTTP | SOCKS5
values.

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-59

Examples
To copy the local directory C:\temp\test_copy recursively to the remote directory
/test_copy555 on the FTP server machine:

OdiSftpPut -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp\test_copy -REMOTE_DIR=/test_copy555

To copy all files matching the Sales*.txt pattern under the local directory
C:\temp\ to the remote directory / on the FTP server machine:

OdiSftpPut -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp -LOCAL_FILE=Sales*.txt -REMOTE_DIR=/

To copy the Sales1.txt file under the local directory C:\temp\ to the remote
directory / on the FTP server machine as a Sample1.txt file:

OdiSftpPut -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp -LOCAL_FILE=Sales1.txt -REMOTE_DIR=/ -REMOTE_FILE=Sample1.txt

To copy the Sales1.txt file under the local directory C:\temp\ to the remote
directory / on the FTP server machine as a Sample1.txt file. It does public key
authentication by providing the path to the Identity file and the path to the Known
Hosts file.

OdiSftpPut -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp -LOCAL_FILE=Sales1.txt -REMOTE_DIR=/ -REMOTE_FILE=Sample1.txt
-IDENTITY_FILE=C:\Documents and Settings\username\.ssh\id_dsa -KNOWNHOSTS_FILE=
C:\Documents and Settings\username\.ssh\Known_Hosts

To copy the Sales1.txt file under the local directory C:\temp\ to the remote
directory / on the FTP server machine as a Sample1.txt file. It does public key
authentication by providing the path to the Identity file. It trusts all the hosts by
passing NO value to the STRICT_HOSTKEY_CHECKING parameter:

OdiSftpPut -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp -LOCAL_FILE=Sales1.txt -REMOTE_DIR=/ -REMOTE_FILE=Sample1.txt
-IDENTITY_FILE=C:\Documents and Settings\username\.ssh\id_dsa -STRICT_HOSTKEY_
CHECKING=NO

A.5.40 OdiSendMail
Use this command to send an email to an SMTP server.

Usage
OdiSendMail -MAILHOST=<mail_host> -FROM=<from_user> -TO=<address_list>
[-CC=<address_list>] [-BCC=<address_list>] [-SUBJECT=<subject>]
[-ATTACH=<file_path>]* [-MSGBODY=<message_body> | CR/LF<message_body>]

-TIMEOUT=<timeout value> No The time in seconds after which the socket
connection will timeout.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-60 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Parameters

Examples
OdiSendMail -MAILHOST=mail.mymail.com "-FROM=Application Oracle Data
Integrator<odi@mymail.com>" -TO=admin@mymail.com "-SUBJECT=Execution OK"
-ATTACH=C:\log\job.log -ATTACH=C:\log\job.bad
Hello Administrator !
Your process finished successfully. Attached are your files.
Have a nice day!
Oracle Data Integrator.

Parameters Mandatory Description

-MAILHOST=<mail_host> Yes IP address of the SMTP server

-FROM=<from_user> Yes Address of the sender of the message.

Example: support@mycompany.com

To send the external name of the sender, the
following notation can be used:

"-FROM=Support center
<support@mycompany.com>"

-TO=<address_list> Yes List of email addresses of the recipients, separated
by commas.

Example:

"-TO=sales@mycompany.com,
support@mycompany.com"

-CC=<address_list> No List of e-mail addresses of the CC-ed recipients
separated by commas.

Example:

"-CC=info@mycompany.com"

-BCC=<address_list> No List of email-addresses of the BCC-ed recipients,
separated by commas.

Example:

"-BCC=manager@mycompany.com"

-SUBJECT=<subject> No Object (subject) of the message.

-ATTACH=<file_path> No Path of the file to join to the message, relative to the
execution agent. To join several files, the
-ATTACH=... just have to be repeated.

Example: Attach the files .profile and .cshrc to the
mail:

-ATTACH=/home/usr/.profile
-ATTACH=/home/usr/.cshrc

CR/LF <message_body>

or -MSGBODY=<message_body>

No Message body (text). This text can be typed on the
line following the OdiSendMail command (A
carriage return - CR/LF - indicates the beginning of
the mail body), or can be defined with the
-MSGBODY parameter. The -MSGBODY parameter
should be used when calling this Oracle Data
Integrator command from an OS command line.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-61

A.5.41 OdiSftpGet
Use this command to download a file from a SSH server with an enabled SFTP
subsystem.

Usage
OdiSftpGet -HOST=<ssh server host name> -USER=<ssh user> [-PASSWORD=<ssh user
password>] -REMOTE_DIR=<remote dir on ftp host> [-REMOTE_FILE=<file name under the
REMOTE_DIR>] -LOCAL_DIR=<local dir> [-LOCAL_FILE=<file name under the LOCAL_DIR>]
[-PASSIVE_MODE=<yes|no>] [-TIMEOUT=<time in seconds>] [-IDENTITY_FILE=<full path
to the private key file of the user>] [-KNOWNHOSTS_FILE=<full path to known hosts
file>][COMPRESSION=<yes|no>][-STRICT_HOSTKEY_CHECKING=<yes|no>][-PROXY_HOST=<proxy
server host name>][-PROXY_PORT=<proxy server port>] [-PROXY_TYPE=<HTTP| SOCKS5>]

Parameters

Parameters Mandatory Description

-HOST=<host name of the SSH server> Yes The host name of the SSH server

-USER=<host name of the SSH user> Yes The user on the SSH server

-PASSWORD=<password of the SSH user> No The password of the SSH user

-REMOTE_DIR=<dir on SSH host> Yes The directory path on the remote SSH host

-REMOTE_FILE=<file name under -REMOTE
DIR>

No The file name under the directory specified in
the -REMOTE_DIR argument. If this argume
is missing then file will be copied with the
-LOCAL_FILE file name. If -LOCAL_FILE
argument is also missing then the -LOCAL_
DIR will be copied recursively to the
-REMOTE_DIR

-LOCAL_DIR=<local dir path> Yes The directory path on the local machine

-LOCAL_FILE=<local file> No The file name under the directory specified in
the -LOCAL_DIR argument. If this argument
missing then all the files and directories unde
the -LOCAL_DIR will be copied recursively t
the -REMOTE_DIR.

To filter the files to be copied use * to specify
the generic characters.

Examples:

■ *.log (All files with the "log" extension

■ arch_*.lst (All files starting with arch
and with the extension "lst")

-IDENTITY_FILE=<full path to the
private key file of the user>

No The private key file of the local user. If this
argument is specified then public key
authentication is done. The –PASSWORD
argument is used as the password for the
password protected private key file. If the
authentication fails then it falls back to the
normal user password authentication.

-KNOWNHOSTS_FILE=<full path to the
known hosts file on the local
machine>

No The full path to the Known_Hosts file on the
local machine. The Known_Hosts file contain
the host keys of all the Remote machines that
the user trusts. If this argument is missing th
the <user home dir>/.ssh/Known_hosts file
used as the Known_Hosts file if it exists.

Alphabetic List of ODI Tools

A-62 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Examples
To copy the remote directory /test_copy555 on the SSH server machine recursively
to the local directory C:\temp\test_copy.

OdiSftpGet -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp\test_copy -REMOTE_DIR=/test_copy555

To copy all files matching the Sales*.txt pattern under the remote directory / on
the SSH server machine to the local directory C:\temp\

OdiSftpGet -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp -REMOTE_FILE=Sales*.txt -REMOTE_DIR=/
To copy the Sales1.txt file under the remote directory / on the SSH server
machine to the local directory C:\temp\ as a Sample1.txt file.

OdiSftpGet -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -REMOTE_
DIR=/ -LOCAL_FILE=Sales1.txt -LOCAL_DIR=C:\temp -LOCAL_FILE=Sample1.txt

To copy the Sales1.txt file under the remote directory / on the SSH server machine to
the local directory C:\temp\ as a Sample1.txt file. It does public key authentication
by providing the path to the Identity file and the path to the Known Hosts file.

OdiSftpGet -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -REMOTE_
DIR=/ -REMOTE_FILE=Sales1.txt -LOCAL_DIR=C:\temp -LOCAL_FILE=Sample1.txt
-IDENTITY_FILE=C:\Documents and Settings\username\.ssh\id_dsa -KNOWNHOSTS_FILE=
C:\Documents and Settings\username\.ssh\Known_Hosts

To copy the Sales1.txt file under the remote directory / on the SSH server machine to
the local directory C:\temp\ as a Sample1.txt file. It does public key authentication
by providing the path to the Identity file. It trusts all the hosts by passing NO value to
the STRICT_HOSTKEY_CHECKING parameter.

OdiSftpGet -HOST=dev3 -USER=test_ftp -PASSWORD=<password> -REMOTE_DIR=/ -REMOTE_
FILE=Sales1.txt -LOCAL_DIR=C:\temp -LOCAL_FILE=Sample1.txt -IDENTITY_
FILE=C:\Documents and Settings\username\.ssh\id_dsa -STRICT_HOSTKEY_CHECKING=NO

-COMPRESSION=<yes|no> No Set to Yes if you want data compression to be
used. Default is No.

-STRICT_HOSTKEY_CHECKING=<YES|NO> No This argument can take YES | NO values. If
YES value is passed then strict hostkey
checking is done and the authentication fails if
the remote SSH host key is not present in the
Known Hosts file specified in the
–KNOWNHOSTS_FILE parameter. The default
value is YES.

-PROXY_HOST No The host name of the Proxy server to be used
for connection.

-PROXY_PORT No The port number of the Proxy server.

-PROXY_TYPE No The type of the Proxy server to which you are
connecting. It can only take HTTP | SOCKS5
values.

-TIMEOUT=<timeout value> No The time in seconds after which the socket
connection will timeout

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-63

A.5.42 OdiSftpPut
Use this command to upload a file to a SSH server with the SFTP subsystem enabled.

Usage
OdiSftpPut -HOST=<ftp server host name> -USER=<ftp user> [-PASSWORD=<ftp user
password>] -LOCAL_DIR=<local dir> [-LOCAL_FILE=<file name under the LOCAL_DIR>]
-REMOTE_DIR=<remote dir on ftp host> [-REMOTE_FILE=<file name under the REMOTE_
DIR>] [-PASSIVE_MODE=<yes | no>][-TIMEOUT=<time in seconds>] [-IDENTITY_FILE=<full
path to the private key file of the user>] [-KNOWNHOSTS_FILE=<full path to known
hosts file>][COMPRESSION=<yes|no>][-STRICT_HOSTKEY_CHECKING=<YES | NO>][-PROXY_
HOST=<proxy server host name>][-PROXY_PORT=<proxy server port>][-PROXY_TYPE=<HTTP
| SOCKS5>]

Parameters

Parameters Mandatory Description

-HOST=<host name of the SSH
server>

Yes The host name of the SSH server

-USER=<host name of the SSH user> Yes The user on the SSH server

-PASSWORD=<password of the SSH
user>

No The password of the SSH user or the passphrase
the password protected identity file. If the
–IDENTITY_FILE argument is provided this valu
will be used as the passphrase for the password
protected private key file. If the public key
authentication fails then it falls back to the norm
user password authentication.

-REMOTE_DIR=<dir on remote SSH Yes The directory path on the remote FTP host

-REMOTE_FILE=<file name under
-REMOTE DIR>

No The file name under the directory specified in the
-REMOTE_DIR argument. If this argument is
missing then file will be copied with the -LOCAL
FILE file name. If -LOCAL_FILE argument is also
missing then the -LOCAL_DIR will be copied
recursively to the -REMOTE_DIR

-LOCAL_DIR=<local dir path> Yes The directory path on the local machine

-LOCAL_FILE=<local file> No The file name under the directory specified in the
-LOCAL_DIR argument. If this argument is
missing then all the files and directories under th
-LOCAL_DIR will be copied recursively to the
-REMOTE_DIR.

To filter the files to be copied use * to specify the
generic characters.

Examples:

■ *.log (All files with the "log" extension)

■ arch_*.lst (All files starting with arch_ an
with the extension "lst")

-IDENTITY_FILE=<full path to the
private key file of the user>

No The private key file of the local user. If this
argument is specified then public key
authentication is done. The –PASSWORD
argument is used as the password for the passwo
protected private key file. If the authentication fa
then it falls back to the normal user password
authentication.

Alphabetic List of ODI Tools

A-64 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Examples
To copy the local directory C:\temp\test_copy recursively to the remote directory
/test_copy555 on the FTP server machine.

OdiSftpPut -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp\test_copy -REMOTE_DIR=/test_copy555

To copy all files matching the Sales*.txt pattern under the local directory
C:\temp\ to the remote directory / on the FTP server machine.

OdiSftpPut -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp -LOCAL_FILE=Sales*.txt -REMOTE_DIR=/

To copy the Sales1.txt file under the local directory C:\temp\ to the remote
directory / on the FTP server machine as a Sample1.txt file.

OdiSftpPut -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp -LOCAL_FILE=Sales1.txt -REMOTE_DIR=/Sample1.txt

To copy the Sales1.txt file under the local directory C:\temp\ to the remote
directory / on the FTP server machine as a Sample1.txt file. It does public key
authentication by providing the path to the Identity file and the path to the Known
Hosts file.

OdiSftpPut -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp -LOCAL_FILE=Sales1.txt -REMOTE_DIR=/Sample1.txt -IDENTITY_
FILE=C:\Documents and Settings\username\.ssh\id_dsa -KNOWNHOSTS_FILE= C:\Documents
and Settings\username\.ssh\Known_Hosts

To copy the Sales1.txt file under the local directory C:\temp\ to the remote
directory / on the FTP server machine as a Sample1.txt file. It does public key
authentication by providing the path to the Identity file. It trusts all the hosts by
passing NO value to the STRICT_HOSTKEY_CHECKING parameter.

-KNOWNHOSTS_FILE=<full path to the
known hosts file on the local
machine>

No The full path to the Known_Hosts file on the local
machine. The Known_Hosts file contains the host
keys of all the Remote machines that the user
trusts. If this argument is missing then the <user
home dir>/.ssh/Known_hosts file is used as the
Known_Hosts file if it exists.

-COMPRESSION=<yes|no> No Set to Yes if you want data compression to be used.
Default is No.

-STRICT_HOSTKEY_CHECKING=<YES|NO> No This argument can take YES | NO values. If YES
value is passed then strict hostkey checking is done
and the authentication fails if the remote SSH host
key is not present in the Known Hosts file specified
in the –KNOWNHOSTS_FILE parameter. The
default value is YES.

-PROXY_HOST No The host name of the Proxy server to be used for
connection.

-PROXY_PORT No The port number of the Proxy server.

-PROXY_TYPE No The type of the Proxy server to which you are
connecting. It can only take HTTP | SOCKS5
values.

-TIMEOUT=<timeout value> No The time in seconds after which the socket
connection will timeout.

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-65

OdiSftpPut -HOST=machine.oracle.com -USER=test_ftp -PASSWORD=<password> -LOCAL_
DIR=C:\temp -LOCAL_FILE=Sales1.txt -REMOTE_DIR=/Sample1.txt -IDENTITY_
FILE=C:\Documents and Settings\username\.ssh\id_dsa -STRICT_HOSTKEY_CHECKING=NO

A.5.43 OdiSleep
Use this command to wait for <delay> milliseconds.

Usage
OdiSleep -DELAY=<delay>

Parameters

Examples
OdiSleep -DELAY=5000

A.5.44 OdiSqlUnload
Use this command to write the result of a SQL query to a file.

This command executes the SQL query <sql_query> on the data server whose
connection parameters are provided by <driver>, <url>, <user> and <encoded_
pass>. The resulting resultset is written to <file_name>.

Usage
OdiSqlUnload -FILE=<file_name> -DRIVER=<driver> -URL=<url> -USER=<user>
-PASS=<password> [-FILE_FORMAT=<file_format>] [-FIELD_SEP=<field_sep> |
-XFIELD_SEP=<field_sep>] [-ROW_SEP=<row_sep> | -XROW_SEP=<row_sep>]
[-DATE_FORMAT=<date_format>][-CHARSET_ENCODING=<encoding>]
[-XML_CHARSET_ENCODING=<encoding>][-FETCH_SIZE=<array_fetch_size>]
(CR/LF <sql_query> | -QUERY=<sql_query> | -QUERY_FILE=<sql_query_file>)

Parameters

Parameters Mandatory Description

-DELAY=<delay> Yes Number of milliseconds to wait

Parameters Mandatory Description

-FILE=<file_name> Yes Full path to the output file, relative to
the execution agent.

-DRIVER=<driver> Yes Name of the JDBC driver used to
connect to the data server.

-URL=<url> Yes JDBC URL to the data server.

-USER=<user> Yes Login of the user on the data server
which will be used to run the SQL
query.

Alphabetic List of ODI Tools

A-66 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

-PASS=<password> Yes Encrypted password for the login to the
data server. This password can be
encrypted with the system command:

encode <clear_text_password>.

Note that agent(.bat or .sh) is located in
the /bin sub-directory of your Oracle
Data Integrator installation directory.

-FILE_FORMAT=<file_format> No Specifies the file format with one of the
following three values:

■ fixed : fixed size recording,

■ variable : variable size recording,

■ xml : XML file.

If <file_format> is not specified, the
format defaults to variable.

If <file_format> is xml, the XML nodes
generated have the following structure:

<TABLE>

<ROW>

<column_
name>![CDATA[VALUE]]</column_
name>

<column_
name>![CDATA[VALUE]]</column_
name>

...

</ROW>

....

</TABLE>

-FIELD_SEP=<field_sep> No Field separator character in ASCII
format if FILE_FORMAT=variable. The
default <field_sep> is a tab character.

-XFIELD_SEP=<field_sep> No Field separator character in hexadecimal
format if FILE_FORMAT=variable. The
default <field_sep> is a tab character.

-ROW_SEP=<row_sep> No Record separator character in ASCII
format. Default <row_sep> is a
Windows carriage return. For instance,
the following values can be used:

■ Unix: -ROW_SEP=\n

■ Windows: -ROW_SEP=\r\n

-XROW_SEP=<row_sep> No Record separator character in
hexadecimal format. Example: 0A.

-DATE_FORMAT=<date_format> No Output format used for date datatypes.
This date format is specified using the
Java date and time format patterns.
Refer to the following link for a list of
these patterns:
http://java.sun.com/j2se/1.4.2
/docs/api/java/text/SimpleDate
Format.html.

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-67

Examples
The following command generates the file C:\temp\clients.csv separated by ';',
containing the result of the query on the Customers table:

OdiSqlUnload -FILE=C:\temp\clients.csv -DRIVER=sun.jdbc.odbc.JdbcOdbcDriver
-URL=jdbc:odbc:NORTHWIND_ODBC -USER=sa
-PASS=NFNEKKNGGJHAHBHDHEHJDBGBGFDGGH -FIELD_SEP=;
"-DATE_FORMAT=dd/MM/yyyy hh:mm:ss"

select cust_id, cust_name, cust_creation_date from Northwind.dbo.Customers

A.5.45 OdiStartScen
Use this command to start a scenario.

The optional parameter AGENT_CODE is used to dedicate this scenario to another
agent than the current agent.

The parameter SYNC_MODE can start a scenario in synchronous or asynchronous
mode.

-CHARSET_ENCODING=<encoding> No Target file encoding. Default value is
ISO-8859-1. There is a full list of
supported encodingss at the following
URL:

http://java.sun.com/j2se/1.4.2
/docs/guide/intl/encoding.doc.
html

-XML_CHARSET_ENCODING=<encoding> No Encoding specified in the XML File, in
the tag <?xml version="1.0"
encoding="ISO-8859-1"?>. Default
value is ISO-8859-1. There is a list of
supported encodingss at the following
URL:

http://java.sun.com/j2se/1.4.2
/docs/guide/intl/encoding.doc.
html

-FETCH_SIZE=<array_fetch_size> No The number of rows (records read)
requested by Data Integrator in each
communication with the data server.

-CR/LF=<sql_query> | -QUERY=<sql_
query> | -QUERY_FILE=<sql_query_
file>

Yes SQL query to execute on the data server.
The query must be a SELECT statement
or a call to a stored procedure returning
a valid recordset. This query can be
entered on the line following the
OdiSqlUnload command (A carriage
return - CR/LF - indicates the beginning
of the query). The query can be
provided within the -QUERY parameter,
or stored in a file specified with the
-QUERY_FILE parameter . The -QUERY
or -QUERY_FILE parameters must be
used when calling this command from
an OS command line.

Note that the old syntax using REQUEST
and REQUEST_FILE is still valid but
deprecated.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-68 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Usage
OdiStartScen -SCEN_NAME=<scenario> -SCEN_VERSION=<version>
[-CONTEXT=<context>] [-ODI_USER=<odi user> -ODI_PASS=<odi password>]
[-SESSION_NAME=<session_name>] [-LOG_LEVEL=<log_level>]
[-AGENT_CODE=<logical_agent_name>] [-SYNC_MODE=<1|2>]
[-KEYWORDS=<keywords>] [-<VARIABLE>=<value>]*

Parameters

Note: The scenario that is started should be present in the repository
into which the command is launched. If you go to production with a
scenario, make sure to take also all the scenarios called by your
scenario using this command. The Solutions can help you grouping
scenarios for this purpose.

Parameters Mandatory Description

-SCEN_NAME=<scenario> Yes Name of the scenario to start

-SCEN_VERSION=<version> Yes Version of the scenario to start. If
the version specified is -1, the last
version of the scenario is
executed.

-CONTEXT=<context> No Code of the execution context. If
this parameter is omitted, the
scenario is executed in the
execution context of the calling
session.

-ODI_USER=<odi user> No Oracle Data Integrator user to be
used to run the scenario. The
privileges of this user will be
used. If this parameter is omitted,
the scenario is executed with
privileges of the user launching
the parent session.

-ODI_PASS=<odi password> No Password of the Oracle Data
Integrator user. This password
should be encoded. This
parameter is required if the user is
specified.

-SESSION_NAME=<session_name> No Name of the session that will
appear in the Execution Log.

-LOG_LEVEL=<log_level> No Trace level (0 .. 5) to keep in the
execution log. The default value is
maximal (5).

-AGENT_CODE=<logical_agent_name> No Name of the logical agent in
charge of executing this scenario.
If this parameter is omitted, the
current agent executes this
scenario.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-69

Examples
Start the scenario LOAD_DWH in version 2 in the production context (synchronous
mode):

OdiStartScen -SCEN_NAME=LOAD_DWH -SCEN_VERSION=2
-CONTEXT=CTX_PRODUCTION

Start scenario LOAD_DWH in version 2 in the current context in asynchronous mode
on the agent "UNIX Agent" while passing the values of the variables START_DATE
(local) and COMPANY_CODE (global):

OdiStartScen -SCEN_NAME=LOAD_DWH -SCEN_VERSION=2 -SYNC_MODE=2
"-AGENT_CODE=UNIX Agent" -MY_PROJECT.START_DATE=10-APR-2002
-GLOBAL.COMPANY_CODE=SP4356

A.5.46 OdiUnZip
Use this command to unzip an archive file to a directory.

Usage
OdiUnZip -FILE=<file> -TODIR=<target_directory> [-OVERWRITE=<yes|no>]
[-ENCODING=<file_name_encoding>]

Parameters

-SYNC_MODE=<1|2> No Synchronization mode of the
scenario:

1 - Synchronous mode (Default).
The execution of the calling
session is blocked until the
scenario finishes its execution.

2 - Asynchronous mode. The
execution of the calling session
continues independently from the
return of the called scenario.

-KEYWORDS=<keywords> No List of keywords attached to this
session. These keywords make
session identification easier. The
list is a comma-separated list of
keywords.

-<VARIABLE>=<value> No List of variables whose value is set
for the execution of the scenario.
This list is of the form
PROJECT.VARIABLE=value or
GLOBAL.VARIABLE=value

Parameters Mandatory Description

-FILE=<file> Yes Full path to the ZIP file to unzip

-TODIR=<target_file> Yes Destination directory or folder

-OVERWRITE=<yes|no> No Indicates if the files that already exist in the
target directory must be overwritten.
Default is No.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-70 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Examples
Unzip the file archive_001.zip from directory C:\archive\ into directory C:\TEMP:

OdiUnZip "-FILE=C:\archive\archive_001.zip" -TODIR=C:\TEMP\

A.5.47 OdiUpdateAgentSchedule
Use this command to force an agent to recalculate its schedule of tasks.

Usage
OdiUpdateAgentSchedule -AGENT_NAME=<physical_agent_name>

Parameters

Examples
This example causes the physical agent named agt_s1 to update its schedule.

OdiUpdateAgentSchedule -AGENT_NAME=agt_s1

A.5.48 OdiWaitForChildSession
Use this command to wait for child session (started using the OdiStartScen tool) of the
current session to complete.

This command checks every <polling_interval> seconds that the sessions
launched from the session specified in <parent_sess_number> are finished. If all
these child sessions, possibly filtered by their name and keywords are finished (Status
"Done", "Warning" or "Error"), this command terminates.

Usage
OdiWaitForChildSession [-PARENT_SESS_NO=<parent_sess_number>]
[-POLL_INT=<polling_interval>]
[-SESSION_NAME_FILTER=<session_name_filter>]
[-SESSION_KEYWORDS=<session_keywords>]
[-MAX_CHILD_ERROR=ALL|<error_number>]

-ENCODING=<file_name_encoding> No Character encoding used for filenames
inside the archive file. For a list of possible
values, see:

http://java.sun.com/j2se/1.4.2/d
ocs/guide/intl/encoding.doc.html

Defaults to the platform's default character
encoding.

Parameters Mandatory Description

-AGENT_NAME=<physical_
agent_name>

Yes The name of the physical agent to
update.

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-71

Parameters

Examples
Waits, with a polling interval of 5 seconds, for all the child sessions of the current
session named like "LOADxxx" and having the keywords "MANDATORY" and
"CRITICAL", to be finished

OdiWaitForChildSession -PARENT_SESS_NO=<%=odiRef.getSession("SESS_NO")%>
-POLL_INT=5 -SESSION_NAME_FILTER=LOAD%
-SESSION_KEYWORDS=MANDATORY,CRITICAL

Parameters Mandatory Description

-PARENT_SESS_NO=<parent_sess_number> No ID of the parent session. If
this parameter is not
specified, the current
session ID is used.

-POLL_INT=<polling_interval> No Interval in seconds between
each sequence of
termination tests for the
child sessions. Default value
is 1.

-SESSION_NAME_FILTER=<session_name_
filter>

No Only the child sessions
which names match this
filter are tested. This filter
can be a SQL
LIKE-formatted pattern.

-SESSION_KEYWORDS=<session_keywords> No Only child sessions for
which ALL keywords have
match in this
comma-separated list are
tested. Each element of the
list can be a SQL
LIKE-formatted pattern.

-MAX_CHILD_ERROR= ALL | <error_number> No This parameter enables
OdiWaitForChildSession to
terminate in error if a
number of child sessions
have terminated in error:

■ ALL: Error if all child
sessions have
terminated in error.

■ <error_number>:
Error if <error_
number> or more child
sessions have
terminated in error.

If this parameter is equal to
zero, negative or not
specified,
OdiWaitForChildSession
never terminates in an error
status, regardless of the
number of failing child
sessions.

Alphabetic List of ODI Tools

A-72 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

A.5.49 OdiWaitForData
Use this command to wait for a number of rows in a table or a set of tables. This can
also be applied to a number of objects containing data, such as views.

The OdiWaitForData command tests that a table, or a set of tables, has been populated
with a number of records. This test is repeated at regular intervals (-POLLINT) until
one of the following conditions is fulfilled: the desired number of rows for one of the
tables has been detected (-UNIT_ROWCOUNT), the desired, cumulated number of rows
for all of the tables has been detected (-GLOBAL_ROWCOUNT), or a timeout
(-TIMEOUT) has been reached.

Filters may be applied to the set of counted rows. They are specified by an explicit SQL
where clause (-SQLFILTER) and / or the -RESUME_KEY_xxx parameters to
determine field-value-operator clause. These two methods are cumulative (AND).

The row count may be considered either in absolute terms (with respect to the total
number of rows in the table) or in differential terms (the difference between a stored
reference value and the current row count value).

When dealing with multiple tables:

■ the -SQLFILTER and -RESUME_KEY_xxx parameters apply to ALL tables
concerned.

■ the -UNIT_ROWCOUNT parameter determines the row count to be expected for
each one of the particular tables. The -GLOBAL_ROWCOUNT parameter determines
the SUM of the row count number cumulated over the set of tables. When only 1
table is concerned, the -UNIT_ROWCOUNT and -GLOBAL_ROWCOUNT parameters
are equivalent.

Usage
OdiWaitForData -LSCHEMA=<logical_schema> -TABLE_NAME=<table_name>
[-OBJECT_TYPE=<list of object types>] [-CONTEXT=<context>]
[-RESUME_KEY_VARIABLE=<resumeKeyVariable>
-RESUME_KEY_COL=<resumeKeyCol>
[-RESUME_KEY_OPERATOR=<resumeKeyOperator>]|-SQLFILTER=<SQLFilter>]
[-TIMEOUT=<timeout>] [-POLLINT=<pollInt>]
[-GLOBAL_ROWCOUNT=<globalRowCount>]
[-UNIT_ROWCOUNT=<unitRowCount>] [-TIMEOUT_WITH_ROWS_OK=<yes|no>]
[-INCREMENT_DETECTION=<no|yes> [-INCREMENT_MODE=<M|P|I>]
[-INCREMENT_SEQUENCE_NAME=<incrementSequenceName>]]

Parameters

Parameters Mandatory Description

-LSCHEMA=<logical_schema> Yes Logical schema containing the tables.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-73

-TABLE_NAME=<table_name> Yes Table name, mask or list of table names to
check. This parameter accepts three format

■ Table Name.

■ Table Name Mask: This mask selects th
tables to poll. The mask is specified
using the SQL LIKE syntax : the %
symbol replaces an unspecified numb
of characters and the _ symbol is a sing
character wildcard.

■ Table Names List: Comma separated l
of table names. Masks as defined abov
are allowed.

-OBJECT_TYPE=<list of object types> No Type of objects that are checked. By defaul
only tables are checked. To take into accou
other objects, specify a comma-separated li
of object types. Supported object types are:

■ T: Table

■ V: View

-CONTEXT=<context> No Context in which the logical schema will b
resolved. If no context is specified, the
execution context is used.

-SQLFILTER=<SQLFilter> No Explicit SQL Filter to be applied to the
table(s). This statement must be valid for th
technology containing the checked tables.

Note that this statement must not include t
WHERE keyword.

-RESUME_KEY_
VARIABLE=<resumeKeyVariable>

-RESUME_KEY_COL=<resumeKeyCol>

[-RESUME_KEY_
OPERATOR=<resumeKeyOperator>]

No The RESUME_KEY_xxx parameters allow
filtering of the set of counted rows in the
polled tables.

■ <key_column>: Name of a column in
the checked table.

■ <operator>: Valid comparison
operator for the technology containing
the checked tables. If this parameter is
omitted, the value ">" is used by defau

■ <variable_name>: Variable name
whose value has been previously set.
The variable name must be prefixed
with ":" (bind) or "#" (substitution). Th
variable scope should be explicitly
stated in the Oracle Data Integrator
syntax; GLOBAL.<variable name>
for global variables or <project
code>.<variable name> for projec
variables.

-TIMEOUT=<timeout> No Maximum period of time in milliseconds
over which data is polled. If this value is
equal to zero, the timeout is infinite. Defau
to 0.

-POLLINT=<pollInt> No The period of time in milliseconds to wait
between data polls. Defaults to 1000.

-UNIT_ROWCOUNT=<unitRowCount> No Number of rows expected in a polled table
terminate the command. Defaults to 1.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-74 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

-GLOBAL_ROWCOUNT=<globalRowCount> No Total number of rows expected cumulatively,
over the set of tables, to terminate the
command. Defaults to 1.

-INCREMENT_DETECTION=<no|yes> No Defines the mode in which the command
considers row count: either in absolute terms
(with respect to the total number of rows in
the table) or in differential terms (the
difference between a stored reference value
and the current row count value).

■ If set to yes, the row count is performed
in differential mode. The number of
additional rows in the table is compared
to a stored reference value. The
reference value depends on the
INCREMENT_MODE parameter.

■ If set to no, the count is performed in
absolute row count mode.

Defaults to no.

-INCREMENT_MODE=<M|P|I> No This parameter specifies the persistence
mode of the reference value between
successive OdiWaitForData calls.

Possible values are:

■ M: Memory. The reference value is
non-persistent. When OdiWaitForData is
called, the reference value takes a value
equal to the number of rows in the
polled table. When OdiWaitForData
ends the value is lost. A following call in
this mode sets a new reference value.

■ P: Persistent. The reference value is
persistent. It is read from the increment
sequence when OdiWaitForData starts
and saved in the increment sequence
when OdiWaitForData ends. If the
increment sequence is not set (at initial
call time) the current table row count is
used.

■ I: Initial. The reference value is
initialized and is persistent. When
OdiWaitForData starts, the reference
value takes a value equal to the number
of rows in the polled table. When
OdiWaitForData ends, it is saved in the
increment sequence as for the persistent
mode.

Defaults to M.

Note that using the Persistent or Initial
modes is not supported when a mask or list
of tables is polled.

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-75

Examples
Waits for the DE1P1 table in the ORA_WAITFORDATA schema to contain 200 records
matching the filter.

OdiWaitForData -LSCHEMA=ORA_WAITFORDATA -TABLE_NAME=DE1P1
-GLOBAL_ROWCOUNT=200 "-SQLFILTER=DATMAJ >
to_date('#MAX_DE1_DATMAJ_ORACLE_CHAR', 'DD/MM/YYYY HH24:MI:SS')"

Wait for a maximum of 4 hours for new data to appear in either the CITY_SRC or the
CITY_TRG table in the SQLSRV_SALES.

OdiWaitForData LSCHEMA=SQLSRV_SALES TABLE_NAME=CITY%
-TIMEOUT=14400000 -INCREMENT_DETECTION=yes

A.5.50 OdiWaitForLogData
Use this command to wait for a number of modifications to occur on a journalized
table or a list of journalized tables.

The OdiWaitForLogData command determines whether rows have been modified on a
table or a group of tables. These changes are detected using the Oracle Data Integrator
changed data capture (CDC) in simple mode (using the -TABLE_NAME parameter) or
in consistent mode (using the -CDC_SET_NAME parameter). The test is repeated every
-POLLINT milliseconds until one of the following conditions is fulfilled: the desired
number of row modifications for one of the tables has been detected (-UNIT_
ROWCOUNT), the desired cumulative number of row modifications for all of the tables
has been detected (-GLOBAL_ROWCOUNT), or a timeout (-TIMEOUT) has been reached.

Usage
OdiWaitForLogData -LSCHEMA=<logical_schema> -SUBSCRIBER_NAME=<subscriber_name>
(-TABLE_NAME=<table_name> | -CDC_SET_NAME=<cdcSetName>)
[-CONTEXT=<context>] [-TIMEOUT=<timeout>] [-POLLINT=<pollInt>]

-INCREMENT_SEQUENCE_
NAME=<incrementSequenceName>

No This parameter specifies the name of an
automatically allocated storage space used
for reference value persistence. This
increment sequence is stored in the
Repository. If this name is not specified, it
takes the name of the table.

Note that this Increment Sequence is not an
Oracle Data Integrator Sequence and canno
be used as such outside a call to
OdiWaitForData.

-TIMEOUT_WITH_ROWS_OK=<yes|no> No If this parameter is set to Y, at least one row
was detected and the timeout occurs befor
the expected number of rows has been
inserted, then the API exits with a return
code of 0. Otherwise, it will signal an error
Defaults to Yes.

Note: This command takes into account all journalized operations
(inserts, updates and deletes).

The command is suitable for journalized tables only in simple or
consistent mode.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-76 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

[-GLOBAL_ROWCOUNT=<globalRowCount>]
[-UNIT_ROWCOUNT=<unitRowCount> [-OPTIMIZED_WAIT=<yes|no|AUTO>]
[-TIMEOUT_WITH_ROWS_OK=<yes|no>]

Parameters

Parameters Mandatory Description

-CONTEXT=<context> No Context (CONTEXT CODE) in
which the logical schema will be
resolved. If no context is specified,
the execution context is used.

-GLOBAL_ROWCOUNT=<globalRowCount> No Total number of changes expected
in the tablesor the CDC set to end
the command. Defaults to 1.

-LSCHEMA=<logical_schema> Yes Logical schema containing the
journalized tables.

-OPTIMIZED_WAIT=<yes|no|AUTO> No Method used to access the
journals.

■ yes: Optimized method. This
method works for later
versions of journalizing. It
runs faster than the non
optimized mode.

■ no: Non-optimized method.
A count is performed on the
journalizing table. This
method is of lower
performance but compatible
with earlier versions of the
journalizing feature.

■ AUTO: If more than one table
is checked, the optimized
method is used. Otherwise,
the non-optimized method is
used.

Defaults to AUTO.

-POLLINT=<pollInt> No The period of time in milliseconds
to wait between polls. Defaults to
2000.

-SUBSCRIBER_NAME=<subscriber_name> Yes Name of the subscriber used to
get the journalizing information.

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-77

-TABLE_NAME=<table_name> Yes Journalized table name, mask or
list to check. This parameter
accepts three formats :

■ Table Name

■ Table Name Mask: This mask
selects the tables to poll. The
mask is specified using the
SQL LIKE syntax : the %
symbol replaces an
unspecified number of
characters and the _ symbol
acts as a wildcard.

■ Table Names List: List of table
names separated by commas.
Masks a defined above are
not allowed.

Note that this option works only
for tables in a model journalized
in simple mode.

This parameter cannot be used
with CDC_SET_NAME. It is
mandatory if CDC_SET_NAME. is
not set.

-CDC_SET_NAME=<cdcSetName> Yes Name of the CDC Set to check.
This CDC Set name is the fully
qualified model code, typically
PHYSICAL_SCHEMA_
NAME.MODEL_CODE.

It can be obtained in the current
context using a substitution
method API call, as shown below:
<%=odiRef.getObjectName("
L", "model_code",
"logical_schema", "D")%>.

Note that this option works only
for tables in a model journalized
in consistent mode.

This parameter cannot be used
with TABLE_NAME. IT is
mandatory if TABLE_NAME is not
set.

-TIMEOUT=<timeout> No Maximum period of time in
milliseconds over which changes
are polled. If this value is equal to
zero, the timeout is infinite.
Defaults to 0.

-TIMEOUT_WITH_ROWS_OK=<yes|no> No If this parameter is set to yes, at
least one row was detected and
the timeout occurs before the
pre-defined number of rows has
been polled, then the API exits
with a return code of 0. Otherwise,
it will signal an error. Defaults to
yes.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-78 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Examples
Wait for the CUSTOMERS table in the SALES_APPLICATION schema to have 200 row
modifications recorded for the SALES_SYNC subscriber.

OdiWaitForLogData -LSCHEMA=SALES_APPLICATION
-TABLE_NAME=CUSTOMERS -GLOBAL_ROWCOUNT=200
-SUBSCRIBER_NAME=SALES_SYNC

A.5.51 OdiWaitForTable
Use this command to wait for a table to be created and populated with a pre-defined
number of rows.

The OdiWaitForTable command regularly tests wether the specified table has been
created and that it has been populated with a number of records. The test is repeated
every -POLLINT milliseconds until one of the following conditions is fulfilled: the
table exists and contains the desired number of rows (-GLOBAL_ROWCOUNT), or a
timeout (-TIMEOUT) has been reached.

Usage
OdiWaitForTable -CONTEXT=<context> -LSCHEMA=<logical_schema>
-TABLE_NAME=<table_name> [-TIMEOUT=<timeout>] [-POLLINT=<pollInt>]
[-GLOBAL_ROWCOUNT=<globalRowCount>]
[-TIMEOUT_WITH_ROWS_OK=<yes|no>]

Parameters

-UNIT_ROWCOUNT=<unitRowCount> No Number of changes expected in
one of the polled tables to end the
command. Defaults to 1.

Note that -UNIT_ROWCOUNT is
not taken into account with
-CDC_SET_NAME.

Parameters Mandatory Description

-CONTEXT=<context> No Context in which the Logical Schema
will be resolved. If no Context is
specified, the execution context is used.

-GLOBAL_ROWCOUNT=<globalRowCount> No Total number of rows expected in the
table to terminate the command.
Defaults to 0.

-LSCHEMA=<logical_schema> Yes Logical schema in which the table is
searched for.

-POLLINT=<pollInt> No The period of time in milliseconds to
wait between each test. Defaults to 1000.

-TABLE_NAME=<table_name> Yes Name of table to search for.

-TIMEOUT=<timeout> No Maximum period of time in
milliseconds over which the table is
searched for. If this value is equal to
zero, the timeout is infinite. Defaults to
0.

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-79

Examples
Waits for the DE1P1 table in the ORA_WAITFORDATA schema to exist, and to
containing at least 1 record.

OdiWaitForTable -LSCHEMA=ORA_WAITFORDATA -TABLE_NAME=DE1P1
-GLOBAL_ROWCOUNT=1

A.5.52 OdiXMLConcat
Use this command to concatenate elements from multiple XML files into a single file.

This tool extracts all instances of a given element from a set of source XML files and
concatenates them into one target XML file.This tool parses and generates well formed
XML. It does not modify or generate a DTD for the generated files. A reference to an
existing DTD can be specified in the HEADER parameter or preserved from the original
files using the -KEEP_XML_PROLOGUE.

Usage
OdiXMLConcat -FILE=<file_filter> -TOFILE=<target_file> -XML_ELEMENT=<element_name>
[-CHARSET_ENCODING=<encoding>] IF_FILE_EXISTS=<overwrite|skip|error>] [-KEEP_XML_
PROLOGUE=<all|xml|doctype|none>] [-HEADER=<header>] [-FOOTER=<footer>]

Parameters

-TIMEOUT_WITH_ROWS_OK=<yes|no> No If this parameter is set to yes, at least
one row was detected and the timeout
occurs before the expected number of
records is detected, then the API exits
with a return code of 0. Otherwise, it
will signal an error. Defaults to Yes.

Note: XML Namespaces are not supported by this tool. Please
provide the local part of element name (without namespace nor prefix
value) in the -ELEMENT_NAME parameter.

Parameters Mandatory Description

-FILE=<file_filter> Yes Filter for the source XML files. This filter uses
standard file wildcards (?,*). It includes both fil
names and directory names. It is possible to take
source files from a same folder or from different
folders.

The following file filters are valid:

■ /tmp/files_*/customer.xml

■ /tmp/files_*/*.*

■ /tmp/files_??/customer.xml

■ /tmp/files/customer_*.xml

■ /tmp/files/customer_??.xml

-TOFILE=<target_file> Yes Target file into which the elements are
concatenated.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-80 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Examples
The following examples concatenate the content of the IDOC elements in the files
called ord1.xml, ord2.xml, etc, in the ord_i sub-folder into the file called
MDSLS.TXT.XML, with a root element called <WMMBID02> added to the target.

OdiXMLConcat "-FILE=./ord_i/ord*.xml" "-TOFILE=./MDSLS.TXT.XML" -XML_ELEMENT=IDOC
"-CHARSET_ENCODING=UTF-8" -IF_FILE_EXISTS=overwrite -KEEP_XML_PROLOGUE=xml
"-HEADER=<WMMBID02>" "-FOOTER=</WMMBID02>"

OdiXMLConcat "-FILE=./o?d_*/ord*.xml" "-TOFILE=./MDSLS.TXT.XML" -XML_ELEMENT=IDOC
"-CHARSET_ENCODING=UTF-8" -IF_FILE_EXISTS=overwrite -KEEP_XML_PROLOGUE=none

-XML_ELEMENT=<element_name> Yes Local name of the XML element (without
enclosing <> characters, without prefix nor
namespace information) to be extracted with its
content and child elements from the source files.

Note that this element detection is not recursive. If
a given instance of <element_name> contains
other instances of <element_name>, only the
element of higher level will be taken into account
and child elements will only be extracted as a part
of the top element’s content.

-CHARSET_ENCODING=<encoding> No Target files encoding. Default value is
ISO-8859-1. There is a full list of supported
encodingss at the following URL:
http://java.sun.com/j2se/1.4.2/docs/g
uide/intl/encoding.doc.html

-IF_FILE_
EXISTS=<overwrite|skip|error>

No Define behavior when the target file exists.

■ overwrite: overwrite the target file if exists

■ skip: do nothing for this file

■ error: raise an error

-KEEP_XML_
PROLOGUE=<all|xml|doctype|none>

No Copies the source file XML prologue in the target
file. Depending on this parameter’s value, the
following parts of the XML prologue are
preserved:

■ all: copies all the prologue (XML and
document type declaration)

■ xml: copies only the XML declaration
<?xml...?> and not the Document type
declaration.

■ doctype: copies only the document type
declaration (not the XML declaration)

■ none: does not copy the prologue from the
source file.

Note: If all or a part of the prologue is not
preserved, it should be specified in the HEADER
parameter.

-HEADER=<header> No String that is appended after the prologue (if any)
in each target file. You can use this parameter to
create a customized XML prologue or root
element.

-FOOTER=<footer> No String that is appended at the end of each target
file. You can use this parameter to close a root
element added in the header.

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-81

"-HEADER=<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<WMMBID02>"
"-FOOTER=</WMMBID02>"

The following example concatenates the EDI elements of the files called ord1.xml,
ord2.xml, etc that are in the ord_i sub-folder, into the file called MDSLS2.XML. This
file will have a new root element called EDI_BATCH above all <EDI> elements.

OdiXMLConcat "-FILE=./o?d_?/ord*.xml" "-TOFILE=./MDSLS2.XML" -XML_ELEMENT=EDI
"-CHARSET_ENCODING=UTF-8" -IF_FILE_EXISTS=overwrite -KEEP_XML_PROLOGUE=xml
"-HEADER= <EDI_BATCH>" "-FOOTER=</EDI_BATCH>"

A.5.53 OdiXMLSplit
Use this command to split elements from an XML file into several files.

This tool extracts all instances of a given element stored in a source XML file and splits
it over several target XML files.This tool parses and generates well formed XML. It
does not modify or generate a DTD for the generated files. A reference to an existing
DTD can be specified in the HEADER parameter or preserved from the original files
using the -KEEP_XML_PROLOGUE.

Usage
OdiXMLSplit -FILE=<file> -TOFILE=<file_pattern> -XML_ELEMENT=<element_name>
[-CHARSET_ENCODING=<encoding>] [-IF_FILE_EXISTS=<overwrite|skip|error>] [-KEEP_
XML_PROLOGUE=<all|xml|doctype|none>] [-HEADER=<header>] [-FOOTER=<footer>]

Parameters

Note: XML Namespaces are not supported by this tool. Please
provide the local part of element name (without namespace nor prefix
value) in the -ELEMENT_NAME parameter.

Parameters Mandatory Description

-FILE=<file> Yes Source XML File to split

Alphabetic List of ODI Tools

A-82 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

-TOFILE=<file_pattern> Yes File pattern for the target files. Each file is named
after a pattern containing a mask representing a
generated number sequence or the value of an
attribute of the XML element used to perform the
split:

■ Number Sequence Mask: Use the "*" (star) value
to indicate the place of the file number value. For
example, if the <file_ pattern> is equal to
target_*.xml, then the files created will be
named target_1.xml, target_2.xml, and so
on.

■ Attribute Value Mask: Specify between square
brackets the name of the attribute of <element_
name> which value should be pushed to create
in the file name. For example, customer_
[CUSTID].xml would create files named
customer_041.xml, customer_123.xml, etc.
depending on the value of the attribute CUSTID
of the element used to split. Note that if a value
repeats over several successive elements, target
files may be overwritten according to the value of
the OVERWRITE parameter.

Note that pattern can be used for creating different
files within a directory or files in different directories.
The following patterns are valid:

■ /tmp/files_*/customer.xml

■ /tmp/files_[CUSTID]/customer.xml

■ /tmp/files/customer_*.xml

■ /tmp/files/customer_[CUSTID].xml

-XML_ELEMENT=<element_name> Yes Local name of the XML element (without enclosing
<> characters, without prefix nor namespace
information) to be extracted with its content and child
elements from the source files.

Note that this element detection is not recursive. If a
given instance of <element_name> contains other
instances of <element_name>, only the element of
higher level will be taken into account and child
elements will only be extracted as a part of the top
element’s content.

-CHARSET_ENCODING=<encoding> No Target files encoding. Default value is ISO-8859-1.
There is a full list of supported encodingss at the
following URL:
http://java.sun.com/j2se/1.4.2/docs/gui
de/intl/encoding.doc.html

-IF_FILE_
EXISTS=<overwrite|skip|error>

No Define behavior when the target file exists.

■ overwrite: overwrite the target file if exists

■ skip: do nothing for this file

■ error: raise an error

Parameters Mandatory Description

Alphabetic List of ODI Tools

Oracle Data Integrator Tools Reference A-83

Examples
The following example splits the file called MDSLS.TXT.XML into several files. One
file called ord1.xml, ord2.xml, ... is created and contains each instance of the IDOC
element contained in the source file.

OdiXMLSplit "-FILE=./MDSLS.TXT.XML" "-TOFILE=./ord_i/ord*.xml" -XML_ELEMENT=IDOC
"-CHARSET_ENCODING=UTF-8" -IF_FILE_EXISTS=overwrite -KEEP_XML_PROLOGUE=xml
"-HEADER= <WMMBID02>" "-FOOTER= </WMMBID02>"

The following example splits the file called MDSLS.TXT.XML the same way as the
example above except that the files are named using the value of the BEGIN attribute
of the IDOC element that is being split. The XML prologue is not preserved in this
example but entirely generated in the header.

OdiXMLSplit "-FILE= ./MDSLS.TXT.XML" "-TOFILE=./ord_i/ord[BEGIN].xml" -XML_
ELEMENT=IDOC "-CHARSET_ENCODING=UTF-8" -IF_FILE_EXISTS=overwrite -KEEP_XML_
PROLOGUE=none "-HEADER= <?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<WMMBID02>"
"-FOOTER=</WMMBID02>"

A.5.54 OdiZip
Use this command to create a ZIP file from a directory or several files.

Usage
OdiZip -DIR=<directory> -FILE=<file> -TOFILE=<target_file> [-OVERWRITE=<yes|no>]
[-RECURSE=<yes|no>] [-CASESENS=<yes|no>]
[-ENCODING=<file_name_encoding>]

-KEEP_XML_
PROLOGUE=<all|xml|doctype|none>

No Copies the source file XML prologue in the target fil
Depending on this parameter’s value, the following
parts of the XML prologue are preserved:

■ all: copies all the prologue (XML and docume
type declaration)

■ xml: copies only the XML declaration <?xml...?
and not the Document type declaration.

■ doctype: copies only the document type
declaration (not the XML declaration)

■ none: does not copy the prologue from the
source file.

Note: If all or a part of the prologue is not preserved
it should be specified in the HEADER parameter.

-HEADER=<header> No String that is appended after the prologue (if any) in
each target file. You can use this parameter to create
customized XML prologue or root element.

-FOOTER=<footer> No String that is appended at the end of each target file
You can use this parameter to close a root element
added in the header.

Parameters Mandatory Description

Alphabetic List of ODI Tools

A-84 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Parameters

Examples
Creation of an archive of the directory C:\Program files\odi:

OdiZip "-DIR=C:\Program Files\odi" -FILE=*.* -TOFILE=C:\TEMP\odi_archive.zip

Creation of an archive of the directory C:\Program files\odi while preserving the odi
directory in the archive:

OdiZip "-DIR=C:\Program Files" -FILE=odi*.* -TOFILE=C:\TEMP\odi_archive.zip

Parameters Mandatory Description

-DIR=<directory> Yes Base directory (or folder) that will be the
future root in the ZIP file to generate.

-FILE=<file> Yes Path from the base directory of the file(s) to
archive. Use * to specify the generic
characters.

Examples:

/var/tmp/*.log (All files with the "log"
extension of the directory /var/tmp)

arch_*.lst (All the files starting with
arch_ and having the extension "lst")

-TOFILE=<target_file> Yes Target ZIP file.

-OVERWRITE=<yes|no> No Indicates whether the target zip file must
be overwritten (yes) or simply updated if it
already exists (no). Default is that the ZIP
file is updated if it already exists.

-RECURSE=<yes|no> No Indicates if the archiving is recursive in the
case of a directory that contains other
directories. The value no indicates that only
the files contained in the directory to copy
(without the sub-folders) will be archived.

-CASESENS=<yes|no> No Indicates if file search is case sensitive. By
default, Oracle Data Integrator searches
files in uppercases.

-ENCODING=<file_name_encoding> No Character encoding to use for filenames
inside the archive file. For a list of possible
values see:

http://java.sun.com/products/jdk/1.2/do
cs/guide/internat/encoding.doc.html

Defaults to the platform's default character
encoding.

B

User Parameters B-1

BUser Parameters

This appendix lists the Oracle Data Integrator user parameters. User parameters
configure the behavior of Oracle Data Integrator.

To set the user parameters:

1. From the ODI main menu, select User Parameters.

2. In the Editing User Parameters dialog, set the values of the user parameters.

3. Click OK.

Table B–1 contains the complete list of ODI user parameters.

Table B–1 User Parameters

Parameter Values Description

Display lock icons in the tree
view

Yes | No Display lock icons in the Designer
Navigator tree for locked objects. Disabling
this option can provide a speed
improvement when displaying the tree
view. Refer to Section 16.5.2, "Object
Locking" for more information.

Lock object when opening 0 | 1| Ask When opening an object for edition:

■ 1: It is automatically locked

■ 0: It is not locked

■ Ask: the user is prompted to lock the
object.

Refer to Section 16.5.2, "Object Locking" for
more information.

Default path for generation
of Data Services

Directory This is the default path to store the
generated Data Service in. Oracle Data
Integrator places the generated source code
and the compiled Web Service here. This
directory is a temporary location that can
be deleted after generation.

Refer to Section 8.3, "Generating and
Deploying Data Services" for more
information.

B-2 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Unlock object when closing 0 | 1| Ask When closing a modified object:

■ 1: It is automatically unlocked

■ 0: It is not unlocked

■ Ask: the user is prompted to unlock
the object.

Refer to Section 16.5.2, "Object Locking" for
more information.

Process Model Datastores
Only

Yes | No | Ask Whether to generate DDL code for
datastores which do not exist in this model.
If set to "Ask", a confirmation message is
displayed.

Refer to Section 6.3, "Generating DDL
scripts" for more information.

Never transform non ASCII
characters to underscores

Yes | No When true, no characters are transformed
during an export or an alias generation.
Beware, should only be used on platforms
fully supporting your encoding.

Bypass 'Exit ODI' prompt on
exit

Yes | No If this user parameter is set to Yes the exit
confirmation dialog will NOT be shown.

Delete linked sessions with
scenarios

Yes | No | Ask When deleting a scenario in the Scenarios
accordion of Operator Navigator, linked
sessions are automatically deleted if set to
Yes.

Automatic Mapping Yes | No | Ask Automatically maps source columns to
target columns when new datastores are
added to an interface by detecting column
name matches. Refer to Section 11.3.5,
"Define the Mappings" for more
information.

Use New Load Balancing Yes | No When using load balancing, agents that run
out of sessions can be reallocated sessions
from other agents that have not yet been
started. Otherwise, sessions are only
allocated once each. Refer to Section 4.3.3,
"Load Balancing Agents" for more
information.

Help for Interface Diagram 0 | 1 If 1, a help message is displayed whenever
editing an interface diagram with no
datastores attached.

Check for concurrent editing 0 | 1 When saving changes to any object, checks
whether other changes have been made to
the same object, by another user. If another
user has made changes, the object cannot
be saved.

Refer to Section 16.5.1, "Concurrent Editing
Check" for more information.

Keeps in the cache the list of
models whose DBMS is not
accessible.

Yes | No If this user parameter is set to true, the list
of models whose DBMS is not accessible is
kept in the cache. This speeds up
expanding and displaying the nodes under
these models.

Table B–1 (Cont.) User Parameters

Parameter Values Description

User Parameters B-3

Operator display limit (0=no
limit)

Numeric When the number of sessions to display in
Operator Navigator exceeds this number, a
confirmation message is displayed. Default:
100

Delay between two refresh
(seconds)

Numeric The number of seconds to wait between
two refreshes in Operator Navigator. Only
applies when auto-refresh mode is enabled.

Default PDF generation
directory

Directory When generating a report, the default
directory to save the generated .pdf file to.
Refer to Section 16.6, "Creating PDF
Reports" for more information.

Directory for Saving your
Diagrams (PNG)

Directory When printing a model diagram with
Common Format Designer, specifies the
default directory to save the generated .png
file to. Refer to Chapter 6, "Working with
Common Format Designer" for more
information.

Default Context for
Execution

Context name When executing any object, this is the
context selected by default in the Execution
dialog. If an invalid context name is
specified, the default context in Designer is
used.

Refer to Chapter 19, "Running Integration
Processes" for more information.

PDF Viewer Path to file Complete path including filename of
program to view generated .pdf files.
Required to use the Open file after
generation option.

Refer to Section 16.6, "Creating PDF
Reports" for more information.

Query buffer size Numeric Size of the cache used for prepared
statements (Queries) issued on the
repositories. Only applies to repositories on
Oracle instances. Changes in this value are
only taken into account when the
application is restarted.

Default Context for Designer Context name Default context used in Designer
Navigator. This context will be displayed
by default in the different lists, and selected
when opening Designer Navigator.

Default Agent Agent name When executing any object, the agent
selected by default in the Execution options
window. If an invalid agent name is
specified, the local agent is used.

Oracle Data Integrator
Timeout

Numeric Number of seconds to wait during
database connections before giving up.
Increase this value if you regularly
encounter timeout problems. Default: 30.
Changes in this value are only taken into
account when the application is restarted

Table B–1 (Cont.) User Parameters

Parameter Values Description

B-4 Oracle® Fusion Middleware Developer’s Guide for Oracle Data Integrator

Export default Java encoding Java encoding Export default Java encoding. Default is
ISO8859_1. You will find a list of supported
encodingss at the following URL:
http://java.sun.com/j2se/1.4.2/d
ocs/guide/intl/encoding.doc.html

Refer to Chapter 18, "Exporting/Importing"
for more information.

Export default charset Charset encoding Default export charset encoding. Default is
ISO-8859-1. You will find a list of supported
encodingss at the following URL:
http://java.sun.com/j2se/1.4.2/d
ocs/guide/intl/encoding.doc.html

Refer to Chapter 18, "Exporting/Importing"
for more information.

Export default version 0 | 1 If 1, the versioned objects will be exported
during the master repository export. If 0,
the versioned objetcs are not exported.
Default is 1.

Refer to Chapter 18, "Exporting/Importing"
for more information.

Show the CDC modifications
in the tree

0 | 1 Shows the CDC modifications in the tree
(1=Enabled/0 = Disabled). Default is 1.

Refer to Chapter 7, "Working with Changed
Data Capture" for more information.

Display resource names in
the tree view

Yes | No Whether to display the resource name of a
datastore in the Models accordion. This
might be useful when the resource name
differs from the datastore name.

Scneario Name Convention Naming
convention

Use this parameter to define the default
naming pattern for new scenarios created
for objects via the Studio or the tools. The
following tags can be used in the pattern.

■ %PROJECT_NAME% : Name of the
project containing the object.

■ %FOLDER_PATH%: Folder path to the
object from in the project tree,
separated with underscores.

■ %FOLDER_NAME(n)%: Name of one
folder in the path, starting from the
bottom (n=1 corresponds to the object's
parent) to the top folder in the project
tree. If the folder does not exist for the
given index, returns an empty string.

■ %FOLDER_NAME%: Shortcut to
%FOLDER_NAME(1)%

■ %OBJECT_NAME%: Name of the source
object of the scenario

Table B–1 (Cont.) User Parameters

Parameter Values Description

	Contents
	Preface
	What’s New In Oracle Data Integrator?
	Part I Understanding Oracle Data Integrator
	1 Introduction to Oracle Data Integrator
	1.1 Introduction to Data Integration with Oracle Data Integrator
	1.1.1 Data Integration
	1.1.2 Oracle Data Integrator
	1.1.3 E-LT

	1.2 Oracle Data Integrator Concepts
	1.2.1 Introduction to Declarative Design
	1.2.2 Introduction to Knowledge Modules
	1.2.3 Introduction to Integration Interfaces
	1.2.3.1 Datastores
	1.2.3.2 Declarative Rules
	1.2.3.3 Data Flow

	1.3 Typical ODI Integration Projects
	1.3.1 Batch Oriented Integration
	1.3.2 Event Oriented Integration
	1.3.3 Service-Oriented Architecture
	1.3.4 Data Quality with ODI
	1.3.5 Managing Environments

	1.4 Oracle Data Integrator Architecture
	1.4.1 Repositories
	1.4.2 User Interfaces
	1.4.3 Design-time Projects
	1.4.4 Run-Time Agent

	2 Oracle Data Integrator QuickStart
	2.1 Oracle Data Integrator QuickStart List

	Part II Administering the Oracle Data Integrator Architecture
	3 Administering the Oracle Data Integrator Repositories
	3.1 Introduction to Oracle Data Integrator Repositories
	3.2 Creating Repository Storage Spaces
	3.3 Creating the Master Repository
	3.4 Connecting to the Master Repository
	3.5 Creating a Work Repository
	3.6 Connecting to a Work Repository
	3.7 Changing the Work Repository Password
	3.8 Advanced Actions for Administering Repositories
	3.8.1 Attaching and Deleting a Work Repository
	3.8.2 Erasing a Work Repository
	3.8.3 Renumbering Repositories

	4 Setting-up the Topology
	4.1 Introduction to the Oracle Data Integrator Topology
	4.1.1 Physical Architecture
	4.1.2 Contexts
	4.1.3 Logical Architecture
	4.1.4 Agents
	4.1.5 Languages
	4.1.6 Repositories

	4.2 Setting Up the Topology
	4.2.1 Creating a Context
	4.2.2 Creating a Data Server
	4.2.2.1 Pre-requisites and Guidelines
	4.2.2.2 Creating a Data Server
	4.2.2.3 Creating a Data Server (Advanced Settings)
	4.2.2.4 Testing a Data Server Connection

	4.2.3 Creating a Physical Schema
	4.2.4 Creating a Logical Schema
	4.2.5 Creating a Physical Agent
	4.2.6 Creating a Logical Agent

	4.3 Managing Agents
	4.3.1 Standalone Agent
	4.3.1.1 Configuring the Standalone Agent
	4.3.1.2 Launching a Standalone Agent
	4.3.1.3 Stopping an Agent

	4.3.2 Java EE Agent
	4.3.2.1 Deploying an Agent in a Java EE Application Server (Oracle WebLogic Server)
	4.3.2.1.1 Define the Java EE Agent in the Topology
	4.3.2.1.2 Create an WLS template for the Java EE Agent

	4.3.2.2 Deploying Datasources from Oracle Data Integrator in WLS for an Agent

	4.3.3 Load Balancing Agents
	4.3.3.1 Delegating Sessions
	4.3.3.2 Agent Unavailable
	4.3.3.3 Setting Up Load Balancing

	Part III Managing and Reverse-Engineering Metadata
	5 Creating and Reverse-Engineering a Model
	5.1 Introduction to Models
	5.1.1 Datastores
	5.1.2 Data Integrity
	5.1.3 Reverse-engineering
	5.1.4 Changed Data Capture

	5.2 Creating and Reverse-Engineering a Model
	5.2.1 Creating a Model
	5.2.2 Reverse-engineering a Model

	5.3 Creating and Reverse-Engineering a Datastore
	5.3.1 Creating a Datastore
	5.3.2 Reverse-Engineering File Datastores
	5.3.2.1 Reverse-Engineering Fixed Files
	5.3.2.2 Reverse-Engineering Delimited Files
	5.3.2.3 Reverse-Engineering COBOL Files

	5.3.3 Adding and Deleting Datastore Columns
	5.3.4 Adding and Deleting Constraints and Filters
	5.3.4.1 Keys
	5.3.4.2 References
	5.3.4.3 Conditions
	5.3.4.4 Mandatory Columns
	5.3.4.5 Filter

	5.4 Editing and Viewing a Datastore's Data
	5.5 Using Partitioning
	5.5.1 Defining Manually Partitions and Sub-Partitions of Model Datastores

	5.6 Checking Data Quality in a Model
	5.6.1 Introduction to Data Integrity
	5.6.2 Checking a Constraint
	5.6.3 Perform a Static Check on a Model, Sub-Model or Datastore
	5.6.4 Reviewing Erroneous Records

	6 Working with Common Format Designer
	6.1 Introduction to Common Format Designer
	6.1.1 What is a Diagram?
	6.1.2 Why assemble datastores and columns from other models?
	6.1.3 Graphical Synonyms

	6.2 Using the Diagram
	6.2.1 Creating a New Diagram
	6.2.2 Create Datastores and Columns
	6.2.3 Creating Graphical Synonyms
	6.2.4 Creating and Editing Constraints and Filters
	6.2.5 Printing a Diagram

	6.3 Generating DDL scripts
	6.4 Generating Interface IN/OUT

	7 Working with Changed Data Capture
	7.1 Introduction to Changed Data Capture
	7.1.1 The Journalizing Components
	7.1.2 Simple vs. Consistent Set Journalizing

	7.2 Setting up Journalizing
	7.2.1 Setting up and Starting Journalizing
	7.2.2 Journalizing Infrastructure Details
	7.2.3 Journalizing Status

	7.3 Using Changed Data
	7.3.1 Viewing Changed Data
	7.3.2 Using Changed Data: Simple Journalizing
	7.3.3 Using Changed Data: Consistent Set Journalizing
	7.3.4 Journalizing Tools
	7.3.5 Package Templates for Using Journalizing

	8 Working with Data Services
	8.1 Introduction to Data Services
	8.2 Setting Up Data Services
	8.2.1 Configuring the Web Services Container
	8.2.2 Setting up the Data Sources
	8.2.3 Configuring the Model

	8.3 Generating and Deploying Data Services
	8.3.1 Generating and Deploying Data Services
	8.3.2 Overview of Generated Services
	8.3.3 Testing Data Services

	Part IV Developing Integration Projects
	9 Creating an Integration Project
	9.1 Introduction to Integration Projects
	9.1.1 Oracle Data Integrator Project Components
	9.1.1.1 Oracle Data Integrator Project Components
	9.1.1.2 Global Components

	9.1.2 Project Life Cycle

	9.2 Creating a New Project
	9.3 Managing Knowledge Modules
	9.3.1 Knowledge Modules Naming Convention
	9.3.2 Choosing the Right Knowledge Modules
	9.3.3 Importing and Replacing Knowledge Modules
	9.3.4 Encrypting and Decrypting a KM

	9.4 Organizing the Project with Folders

	10 Working with Packages
	10.1 Introduction to Packages
	10.1.1 Introduction to Steps
	10.1.2 Introduction to Creating Packages
	10.1.3 Introduction to the Package editor

	10.2 Creating a new Package
	10.3 Working with Steps
	10.3.1 Adding a Step
	10.3.1.1 Executing an Interface
	10.3.1.2 Executing a Procedure
	10.3.1.3 Variable Steps
	10.3.1.4 Adding Oracle Data Integrator Tool Steps
	10.3.1.5 Model, Sub-Models and Datastore Related Steps
	10.3.1.6 Checking a Model, Sub-Model or Datastore
	10.3.1.7 Journalizing a Model or a Datastore
	10.3.1.8 Reverse-Engineering a Model

	10.3.2 Deleting a Step
	10.3.3 Duplicating a Step
	10.3.4 Running a Step
	10.3.5 Editing a Step’s Linked Object
	10.3.6 Arranging the Steps Layout

	10.4 Defining the Sequence of Steps
	10.5 Running the Package

	11 Working with Integration Interfaces
	11.1 Introduction to Integration Interfaces
	11.1.1 Components of an Integration Interface

	11.2 Introduction to the Interface Editor
	11.3 Creating an Interface
	11.3.1 Create a New Interface
	11.3.2 Define the Target Datastore
	11.3.2.1 Permanent Target Datastore
	11.3.2.2 Temporary Target Datastore
	11.3.2.3 Define the Update Key

	11.3.3 Define the Datasets
	11.3.4 Define the Source Datastores and Lookups
	11.3.4.1 Define the Source Datastores
	11.3.4.2 Define Lookups
	11.3.4.3 Define Filters on the Sources
	11.3.4.4 Define Joins between Sources

	11.3.5 Define the Mappings
	11.3.6 Define the Interface Flow
	11.3.7 Set up Flow Control and Post-Integration Control
	11.3.7.1 Set up Flow Control
	11.3.7.2 Set up Post-Integration Control

	11.3.8 Execute the Integration Interface

	11.4 Using the Quick-Edit Editor
	11.4.1 Adding and Removing a Component
	11.4.1.1 Adding Components
	11.4.1.2 Removing Components

	11.4.2 Editing a Component
	11.4.3 Adding, Removing, and Configuring Datasets
	11.4.4 Changing the Target DataStore
	11.4.5 Customizing Tables
	11.4.6 Using Keyboard Navigation for Common Tasks

	11.5 Designing Integration Interfaces: E-LT- and ETL-Style Interfaces

	12 Working with Procedures, Variables, Sequences, and User Functions
	12.1 Working with Procedures
	12.1.1 Introduction to Procedures
	12.1.2 Creating Procedures
	12.1.2.1 Create a New Procedure
	12.1.2.2 Define the Procedure's Options
	12.1.2.3 Create and Manage the Procedure's Commands

	12.1.3 Using Procedures
	12.1.3.1 Executing the Procedure
	12.1.3.2 Using a Procedure in a Package
	12.1.3.3 Generating a Scenario for a Procedure

	12.1.4 Encrypting and Decrypting Procedures
	12.1.4.1 Encrypting a KM or Procedure
	12.1.4.2 Decrypting a KM or Procedure

	12.2 Working with Variables
	12.2.1 Introduction to Variables
	12.2.2 Creating Variables
	12.2.3 Using Variables
	12.2.3.1 Using Variables in Packages
	12.2.3.2 Using Variables in Interfaces
	12.2.3.3 Using Variables in Object Properties
	12.2.3.4 Using Variables in Procedures
	12.2.3.5 Using Variables within Variables
	12.2.3.6 Using Variables in the Resource Name of a Datastore
	12.2.3.7 Using Variables in a Server URL
	12.2.3.8 Passing a Variable to a Scenario
	12.2.3.9 Generating a Scenario for a Variable

	12.3 Working with Sequences
	12.3.1 Introduction to Sequences
	12.3.2 Creating Sequences
	12.3.2.1 Creating Standard Sequences
	12.3.2.2 Creating Specific Sequences
	12.3.2.3 Creating Native Sequences

	12.3.3 Using Sequences and Identity Columns
	12.3.3.1 Tips for Using Standard and Specific Sequences
	12.3.3.2 Identity Columns

	12.4 Working with User Functions
	12.4.1 Introduction User Functions
	12.4.2 Creating User Functions
	12.4.3 Using User Functions

	13 Working with Scenarios
	13.1 Introduction to Scenarios
	13.2 Generating a Scenario
	13.3 Regenerating a Scenario
	13.4 Generating a Group of Scenarios
	13.5 Exporting Scenarios
	13.6 Importing Scenarios in Production
	13.6.1 Import Scenarios
	13.6.2 Replace a Scenario
	13.6.3 Working with a Scenario from a Different Repository

	13.7 Encrypting and Decrypting a Scenario

	14 Working with Web Services in Oracle Data Integrator
	14.1 Introduction to Web Services in Oracle Data Integrator
	14.2 Data Services
	14.3 Oracle Data Integrator Run-Time Services
	14.4 Invoking Third-Party Web Services
	14.4.1 Introduction to Web Service Invocation
	14.4.2 Using the OdiInvokeWebService Tool
	14.4.3 Web Service Invocation in Integration Flows

	15 Working with Oracle Data Quality Products
	15.1 Introduction to Oracle Data Quality Products
	15.2 The Data Quality Process
	15.2.1 Create a Quality Input File
	15.2.2 Create an Entity
	15.2.2.1 Step 1: Validate Loader Connections
	15.2.2.2 Step 2: Create Entity and Import Data
	15.2.2.3 Step 3: Verify Entity

	15.2.3 Create a Profiling Project
	15.2.4 Create a Oracle Data Quality Project
	15.2.5 Export the Data Quality Project
	15.2.6 Reverse-engineer the Entities
	15.2.7 Use Oracle Data Quality Input and Output Files in Interfaces
	15.2.8 Run this Quality Project from Oracle Data Integrator
	15.2.9 Sequence the Process in a Package

	Part V Managing Integration Projects
	16 Organizing and Documenting your Work
	16.1 Organizing Projects with Folders
	16.1.1 Creating a New Folder
	16.1.2 Arranging Project Folders

	16.2 Organizing Models with Folders
	16.2.1 Creating a New Model Folder
	16.2.2 Arranging Model Folders
	16.2.3 Creating and Organizing Sub-Models

	16.3 Using Cross-References
	16.3.1 Browsing Cross-References
	16.3.2 Resolving Missing References

	16.4 Using Markers and Memos
	16.4.1 Markers
	16.4.2 Memos

	16.5 Handling Concurrent Changes
	16.5.1 Concurrent Editing Check
	16.5.2 Object Locking

	16.6 Creating PDF Reports
	16.6.1 Generating a Topology Report
	16.6.2 Generating a Report for the Version Comparison Results
	16.6.3 Generating a Report for an Oracle Data Integrator Object
	16.6.4 Generating a Diagram Report

	17 Working with Version Management
	17.1 Working with Object Flags
	17.2 Working with Versions
	17.3 Working with the Version Comparison Tool
	17.3.1 Viewing the Differences between two Versions
	17.3.2 Using Comparison Filters
	17.3.3 Generating and Printing a Report of your Comparison Results

	17.4 Working with Solutions
	17.4.1 Working with Elements in a Solution
	17.4.2 Synchronizing Solutions
	17.4.3 Restoring and Checking in a Solution
	17.4.4 Importing and Exporting Solutions

	18 Exporting/Importing
	18.1 Import and Export Concepts
	18.1.1 Internal Identifiers (IDs)
	18.1.2 Relationships between Objects
	18.1.3 Import Modes
	18.1.4 Tips for Import/Export

	18.2 Exporting and Importing Objects
	18.2.1 Exporting one ODI Object
	18.2.2 Export Multiple ODI Objects
	18.2.3 Importing Objects

	18.3 Repository-Level Export/Import
	18.3.1 Exporting and Importing the Master Repository
	18.3.2 Export/Import the Topology and Security Settings
	18.3.3 Exporting and Importing a Work Repository

	18.4 Exporting the Technical Environment

	Part VI Running and Monitoring Integration Processes
	19 Running Integration Processes
	19.1 Understanding ODI Executions
	19.2 Executing Interfaces, Procedures, Packages and Model Operations
	19.3 Executing a Scenario
	19.3.1 Executing a Scenario from the Studio
	19.3.2 Executing a Scenario from a Command Line

	19.4 Restarting a Session
	19.4.1 Restarting a Session from the Studio
	19.4.2 Restarting a Session from a Command Line

	19.5 Scheduling Scenarios
	19.5.1 Scheduling a Scenario with the Built-in Scheduler
	19.5.1.1 Scheduling a Scenario
	19.5.1.2 Updating an Agent’s Schedule
	19.5.1.3 Displaying the Schedule

	19.5.2 Scheduling a Scenario with an External Scheduler

	19.6 Simulating an Execution
	19.7 Managing Executions Using Web Services
	19.7.1 Introduction to Run-Time Web Services
	19.7.2 Executing a Scenario Using a Web Service
	19.7.3 Monitoring a Session Status Using a Web Service
	19.7.4 Restarting a Session Using a Web Service
	19.7.5 Listing Contexts Using a Web Service
	19.7.6 Listing Scenarios Using a Web Service
	19.7.7 Accessing the Web Service from a Command Line

	20 Monitoring Integration Processes
	20.1 Introduction to Monitoring
	20.1.1 Introduction to Operator Navigator
	20.1.2 Sessions
	20.1.3 Scenarios and Schedules

	20.2 Reviewing your Execution Results
	20.2.1 Status
	20.2.2 Managing Errors
	20.2.3 Managing Successful Executions

	20.3 Managing your Executions
	20.3.1 Managing Sessions
	20.3.1.1 Starting a Session
	20.3.1.2 Stopping a Session
	20.3.1.3 Restarting a Session
	20.3.1.4 Cleaning Stale Sessions

	20.3.2 Managing the Log
	20.3.2.1 Filtering Sessions
	20.3.2.2 Purging the Log
	20.3.2.3 Organizing the Log with Session Folders
	20.3.2.4 Exporting and Importing Log Data

	20.3.3 Managing Scenarios
	20.3.3.1 Scenario Folders
	20.3.3.2 Importing Scenarios and Solutions in Production

	20.3.4 Managing Schedules

	21 Working with Oracle Data Integrator Console
	21.1 Introduction to Oracle Data Integrator Console
	21.1.1 Introduction to Oracle Data Integrator Console
	21.1.2 Oracle Data Integrator Console Interface

	21.2 Using Oracle Data Integrator Console
	21.2.1 Connecting to Oracle Data Integrator Console
	21.2.2 Generic User Operations
	21.2.3 Managing Scenarios and Sessions
	21.2.4 Using Data Lineage and Flow Map
	21.2.5 Performing Administrative Operations

	Part VII Managing the Security Settings
	22 Managing the Security in Oracle Data Integrator
	22.1 Introduction to Oracle Data Integrator Security
	22.1.1 Objects, Instances and Methods
	22.1.2 Profiles
	22.1.3 Users

	22.2 Setting up a Security Policy
	22.2.1 Security Policy Approach
	22.2.2 Managing Profiles
	22.2.2.1 Creating a New Profile
	22.2.2.2 Duplicating a Profile
	22.2.2.3 Deleting a Profile

	22.2.3 Managing Users
	22.2.3.1 Creating a New User
	22.2.3.2 Assigning a Profile to a User
	22.2.3.3 Removing a Profile from a User
	22.2.3.4 Deleting a User

	22.2.4 Managing Privileges
	22.2.4.1 Granting a Profile Method or User Method
	22.2.4.2 Revoking a Profile Method or User Method
	22.2.4.3 Granting an Authorization by Object Instance
	22.2.4.4 Revoking an Authorization by Object Instance
	22.2.4.5 Cleaning up Unused Authorizations

	22.3 Advanced Security
	22.3.1 Setting Up External Password Storage
	22.3.1.1 Setting the Password Storage
	22.3.1.2 Switching the Password Storage
	22.3.1.3 Recovering the Password Storage

	22.3.2 Setting Up External Authentication
	22.3.2.1 Configuring ODI Components for External Authentication
	22.3.2.2 Setting the Authentication Mode
	22.3.2.3 Switching the Authentication Mode

	22.3.3 Enforcing Password Policies

	A Oracle Data Integrator Tools Reference
	A.1 Using the Oracle Data Integrator Tools
	A.1.1 Using a Tool in a Package
	A.1.2 Using a Tool in a Knowledge Module or a Procedure Command
	A.1.3 Using a Tool from a Command Line

	A.2 Using Open Tools
	A.2.1 Installing and Declaring an Open Tool
	A.2.1.1 Installing an Open Tool
	A.2.1.2 Declaring a New Open Tool

	A.2.2 Using Open Tools in a Package or Procedure

	A.3 Developing Open Tools
	A.3.1 Classes
	A.3.2 Developing a New Open Tool
	A.3.2.1 Implementing the Class
	A.3.2.1.1 Declaration
	A.3.2.1.2 Importing Packages
	A.3.2.1.3 Defining the Parameters
	A.3.2.1.4 Implementing Informational Functions
	A.3.2.1.5 Execution

	A.3.3 Open Tools at Run Time

	A.4 ODI Tools per Category
	A.4.1 Metadata
	A.4.2 Oracle Data Integrator Objects
	A.4.3 Utilities
	A.4.4 Internet Related Tasks
	A.4.5 Files
	A.4.6 SAP
	A.4.7 XML
	A.4.8 Event Detection
	A.4.9 Changed Data Capture

	A.5 Alphabetic List of ODI Tools
	A.5.1 OdiAnt
	A.5.2 OdiBeep
	A.5.3 OdiDataQuality
	A.5.4 OdiDeleteScen
	A.5.5 OdiExportAllScen
	A.5.6 OdiExportEnvironmentInformation
	A.5.7 OdiExportLog
	A.5.8 OdiExportMaster
	A.5.9 OdiExportObject
	A.5.10 OdiExportScen
	A.5.11 OdiExportWork
	A.5.12 OdiFileAppend
	A.5.13 OdiFileCopy
	A.5.14 OdiFileDelete
	A.5.15 OdiFileMove
	A.5.16 OdiFileWait
	A.5.17 OdiFtpGet
	A.5.18 OdiFtpPut
	A.5.19 OdiGenerateAllScen
	A.5.20 OdiImportObject
	A.5.21 OdiImportScen
	A.5.22 OdiInvokeWebService
	A.5.23 OdiKillAgent
	A.5.24 OdiMkDir
	A.5.25 OdiOSCommand
	A.5.26 OdiOutFile
	A.5.27 OdiPingAgent
	A.5.28 OdiPurgeLog
	A.5.29 OdiReadMail
	A.5.30 OdiRefreshJournalCount
	A.5.31 OdiReinitializeSeq
	A.5.32 OdiReverseGetMetaData
	A.5.33 OdiReverseResetTable
	A.5.34 OdiReverseSetMetaData
	A.5.35 OdiRetrieveJournalData
	A.5.36 OdiSAPALEClient and OdiSAPALEClient3
	A.5.37 OdiSAPALEServer and OdiSAPALEServer3
	A.5.38 OdiScpGet
	A.5.39 OdiScpPut
	A.5.40 OdiSendMail
	A.5.41 OdiSftpGet
	A.5.42 OdiSftpPut
	A.5.43 OdiSleep
	A.5.44 OdiSqlUnload
	A.5.45 OdiStartScen
	A.5.46 OdiUnZip
	A.5.47 OdiUpdateAgentSchedule
	A.5.48 OdiWaitForChildSession
	A.5.49 OdiWaitForData
	A.5.50 OdiWaitForLogData
	A.5.51 OdiWaitForTable
	A.5.52 OdiXMLConcat
	A.5.53 OdiXMLSplit
	A.5.54 OdiZip

	B User Parameters

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

